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MARIA STOLARCZYK*

ON THE EXISTENCE OF OPTIMAL CONTROL
FOR GENERAL STOCHASTIC EQUATIONS

Abstract. In this paper we consider the problem of optimal control for general stochastic
differential equation of 1t6 type. We prove the existence of solutions of this equation under weaker
assumptions than in [2]. Moreover, we prove the compactness of the space of solutions and the
existence of optimal control.

In this paper we consider the problem of optimal control for general
stochastic differential equation of 1t0 type. The equation of this type has been
considered in the paper [2] by Fleming and Nisio, where under certain
assumptions the existence and uniqueness of solutions and existence of optimal
control were proved.

In the present paper using Opial’stheorem on the differential inequalities and
some ideas of the paper [4] we prove the existence of solutions of this equation
under weaker assumptions than in [2]. Similar assumptions are made for
stochastic differential equation without delay and control by Blaz in [1],
Moreover, in this paper we prove the compactness of the space of solutions
and obtain the theorem on the existence of optimal control similar to the
one of [2],

Preliminaries. Let (Q, S' , P) be a probability space. Given a stochastic process
X(t), —cc < t < co, denote by &U\MX) the least o-algebra for which X(t)
is measurable for te[u,u]. The Wiener process is denoted by B(t),
—go < t < cc,B(0) = 0. @uv(dB) denotes the least c-algebra generated by
{B(t) —B(s),u < s < t < v}. The least a-algebra that contains SSV,082, ... is
denoted by % Vo

For fixed s, we define the process flsX by:

(1.1) (nsx)(t) = x(s+t), 0.
By _ we denote the space of all real continuous functions defined on the
negative half-line (—o00,0] with the metric q_,
where
(12)
with
A m sup \h(H\
re[-m,0]

Let a(t,f) and b(t,f,g) be real valued continuous functionals defined on

[0, 00)xg'_ and [0, co)x g’_ X respectively. Let X_(t),t ~ 0, be a con-

Received June 10, 1983.
AMS (MOS) Subject classifications (1980). Primary 60H10. Secondary 34HO05.
" Instytut Matematyki Uniwersytetu Slaskiego, Katowice, ul. Bankowa 14, Poland.



116

tinuous stochastic process. A stochastic process U (t),t~ 0, is called an
admissible control, or to be more precise, the triple (X_,U,B) is called an
admissible system if with probability one:

1.3) \U(t)—Il/(s)] < |t—s|, O t,s < o0, U(0) = 0,
and if
(1.4) &(X_) v @0,(V) v x,r(B) is independent of ~ (i00(dB)

for every t~ 0.
A continuous stochastic process X(t) is called a solution of a stochastic
differential equation (for an admissible system (X _,U,B))

(1.5 dX(t) = a(t,ntX)dU(t) + b(t,ntX ,n tB)dB(t)
with the past condition if
(1.6) X(f) = *_(£), t~o0,

@7 88-a,(X) v @0,t{U) v ;M-x,t(B) is independent of 38ux (dB)
for every t ~ 0, and if with probability one
(1.8) X(t) = X(0)+ \a(r,nxXX)dU(T)+\b(T,nzX ,n tB)dB(T).
0 0
Ito’s formula [3]. Letf :R -* R be a twice continuously differentiable function

and let a(t) be a continuous stochastic process which may be represented as the
difference of two increasing processes. Suppose that

(21) £(t) = £(m)+ ] J1(s)da(s) + j/l(s)dB(s).
Then we have u u
22 I(E(F))-1(E(u)) = E/X(S'(S))«(S)da(sﬂ
£\ f;x(as))A2(s)ds+\ FA(s))A(s)dB(s).

In particular, if/ (x) = x4 then

(2.3) [E(0]4 = [t(u)Y +4373(5)N(9da(9

+ 6] A2(s)M2(s)ds + 4] £3(s)A(s)dB(s).

) E[£6(s)/12(s)]ds < oo
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then
(24)  E[£(€)]4 = E[£(U)]4+ 4£ }E3(s)~(s)da(s) + 6 £[~2(s)"2(s)]ds.
Using 4£3" < 3£4+ ™4 and 2£2A2 ™ £4+ A4 we have

E[E(1)]4 ™ £["(u)]4+ 3E][N4(s) + ~ 4A(s)]doe(s) + 3TE[4(s) + " 4(s)]ds.

If in particular a(s) with probability one satisfies the Lipschitz condition
la(t) —a(s)| ~ [t—s|

then with probability one a(t) has almost everywhere a derivative a'(t) bounded
by one and if a sum £4(s)+ " 4(s) is continuous then

} [E4(s) + N4(s)] da(s) < j [E4(s)+ ™ 4(s)]ds.
By (2.4) we have
(2.5) E[Z(t)Y ~ E[E(u)]4+ 6 }IE[<r(s) + " 4(s) + >l4(s)]ds.

Prohorov Metric. Let Z be a separable complete metric space with the metric
g and 36Qthe <r-algebra of Borel sets on Z. Given two probability measuresnt,n?2
on I, we define the Prohorov metric L(n1,n2). Let e12 be the infimum of e such
that for every closed subset F of Z

Pi(F) < M2(OHE)) + e
where 0 e(F) is the s-neighborhood of F. Define e21 by changing nl1on n2and n2
on nt in the definition of el2. Set
L(Mi,H2) = max(el2,e?21).

The set of all probability measures on (Z,3%e) with metric L is a separable
complete metric space.

Let X(a>) be a X-valued random variable defined on a probability space
(£2,~,P). The random variable X defines a probability measure fix on Z

HX{B) = P({a>: X(0j)eB}) for Be3Se.

Let /(Z) be the system ofall 2-valued random variables (they need not be defined
on the same probability space). We define a distance between two random
variables X 1, X 2e x(Z) by:

L(X1,X2) = L(nXl, Hx2.

In this way, we can define L-convergence, L-compactness, etc., on %2).
Moreover, we have the following
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THEOREM (Skorohod, [4]). 1fXnn = 1,2, ... (not necessarily defined on
the same probability space) is an L-Cauchy sequence, then there are a probability
space (£2, ,P) and a sequence of random variables Y,Ynn = 1,2,... defined on
£2 such that

(3.1) L(Y,. X0 = 0

(3.2 P(e(Y,, y)->0) = I.

So if in y(l1) we identify random variables X, Y which have the same
probability law then Skorohod’s theorem implies that (x(Z), L) is a complete
space. The convergence in the sense of the metric L means the weak convergence.

A subsystem = {Xx:<xeA} of %(Z) is weakly compact if is compact
under weak convergence.

We shall use the following

THEOREM (Prohorov, [4]). In order for = {Xx:ueA} to be weakly
compact in %(2), it is necessary and sufficient that for every e > 0, there exists
a compact subset Ke of I such that

(3.3) P(XxeK g > 1—£ for every aeA.
Let (It,gt), i= 1,2, ..., n be separable complete metric spaces. Then the
direct product space I = 1 yx12x... X1l nis also a separable complete metric

space with metric

n
Q{x,y) = ZlQi(xt,yd, X = (xI,x2, ..., xj,y = (ylty2, ....,y,,).
i=

Let = {X* = (X&l...Xxn)-ae A} be a subsystem of £(1). Then Jf is weakly
compact if and only if its component ;= {Xati:ocE A} is weakly compact for
every i = 1,2,...,n.

In this paper we consider also (&+,q+) and (*,{j)-spaces of all continuous
functions on [0, o0) and (—00, 00), respectively, where

® [If—olL
e+(f,9)= I 2 \h\m = max \h(t)u
m= 1 I+ 11/-0L (e[0, m]
e(f,g)= | 2 Wi\m=  max \h(t)\.
m=1 ' 11/ GWm te[ —m,m]

They are separable complete metric spaces.
We have the following useful condition for weakly compactness of <§+.
LEMMA 1[4, Lemma 3.2], C X(&t) is weakly compact ifthere existc > 0
and cm> O,m, = 1,2,... such that, for every X = (X(t):t » 0)e Jf,

(3.9) EX4(0) < c,
(3.5 E\X(t)-X(s)\4 N cmt—s|3/2, 0 ~ t,s » m.
This condition holds also for 3?7 cz %€ ) and .W c; y(€).
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Aproximate sums of a stochastic integral. Let A be a parameter set. For each
oceA we have a continuous stochastic process Xa= XJt), —00 < t < 00, an
admissible control Ja= U~t),t”~ 0 and a Wiener process Bx such that
38- rltt(Xa) v @0,t{UX) v & - oo,t(BX) is independent of SSUm (dBJ for every t ~ 0.

Let a(t,f) and b(t,f,g) be continuous for te[0, oo) and f,ge€_. The
following stochastic integral is defined:

4.2) J. = Ba(x,anx)dUa(T)+ bb(T,anx, n zBa)dBa(T).

Let A= {0=s0< < ... <sn=t} and JMA) be an approximate sum of
Jx for A:

4.2) Ja(A) = | a(s,, 11SXJ [UJsl+,)- Ua(s,)] +

1= O
+ Y B(SPTANa/TIBI[BalsHD-B AS)].

By the definition of stochastic integral Jxwe have that Ja{A) “mJxin probability
for each a as |zl|] = max(s,+1—s() -» 0, i.e. there exists 3 = 8(e,<) such that
|A] < 5 implies

P(\J*(A)-JJ >e)<e.

LEMMA 2 [2, Lemma 4]. Let a(t,f) be a continuous functional on
[0,co)x$_. Then a(t,llte) is continuous in (t,cp) of [0, 00)x”. Similarly
b(t, Flt(p, n\I/) is continuous in (t,e,il/) of [0, 00)x " X E.

LEMMA 3 [2, Lemma 6], If {Xx:a.e A} is weakly compact then there is
a 8 = (5() independent of a such that \A| < <& implies

(4.3) P(\IXA)—Ja > e) < £for every aeA.

Existence of solution. We consider the stochastic differential equation

dX(t) = a(t,n,X)dU(t) + b(t,ntX ,ntB)dB(t) for t ~ 0
with past condition
X{t) = X_(t) for t sSO.

Let us impose the following assumptions:

(Al) a:[0, 00)x _ >R, fc:[0, 00) x _ X R are continuous;

(A.2) there exist a bounded measure dKt on (—o00,0] and a function

$1:R+ xR+ -»R+ such that

a\t,f) ~ 0t(t, J I/ArdKJs));
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(A.3) there exist a positive integer M, two bounded measures dK2,dK 3 on
(—o00, 0], an increasing function G(t) and a function <2:R+ xR + -» R +such that

] \f(stdK2(s)+ J g2M(s)dK3sj)

and

(A.4) for all te [0, oo) and y e R + functions <PV, <2 are increasing and there
exist two positive constans V., V2 such that for every random variable
£:S2~R+,E£ < 00

E~(t, 0 < V~t, EQ, i= 1,2, te]0, oo);

(A5) EX£(t) ~ ¢ < 00, t"O;
(A.6) the right-hand maximum solution M(t; 0, c) of deterministic differential
equation

[ = 6*(t,y),
where

= y+ VM t, WKI\Y)+v20 2(t, [|* 2[i>+G (1)),

117M1= J dK t(s), WK2V = J dk 2¢s), A —(2M—1)-(2M —3)-... *3 1,

—Co —Co

with initial condition (0,c) exists in the interval [0, o0o).
THEOREM 1 Under assumptions (A.l)—(A.6) there exists a solution X(t) of
equation (1.5), (1.6) and the inequality

(5.1) E[X(]4 " Af(t;0,¢c), t O,

holds.
Proof. Take h > 0 and define an approximate solution X h(t) by Cauchy’s
polygonal method:

'X_(t), tno0,
X,,(nh) + a(nh, 11TiX H(U(t)- U{nh))
+b(nh,nrX h,n thB)(B(t)-B(nh)), nh <t (n+l)h,
n=20,1,..

(5.3) (@Er{t) = nh for te [nh,(n+ )h), n= 0,1, ...



Then Xh(t) satisfies

(5-4) X h(t) = Xf(0) + ha(cph(s), n A X Hdu(s)

t

+ tJ)H<Ph(s)>n vh(s)x h. n vhSB)dB(s), t ™ o.
Let

(5.5) ch(t) = sup E[Xh(s)]4, t~O.

S™t

We shall show that ch(t) < oo and ch(t) » M(t;0,c). Since ch(t) is increasing, to
prove that it is finite it is enough to show that ch(t) < oo for t = nh, by induction.
By (A.5) we have

c¢f(0) = SUPE[X(s)]4 = sup £[X _(s)]4 < ¢ < oo.
s« 0 s« 0

If ch(nh) < oo then ch((n+ I)h) < oo because we have, for te[nh,(n+1)Ji],

E[Xh(t)]4 » n{E[X hnh)Y +Ea*(nh,nthXHh* + 3Eb*(nh,nrXh, n nhB)h2}

s£ 21{ch{nh) + E(p,(nh, XMHA(s+ nh)dK t(s)) hd+

LeoZ

0 0
+ 3E<P2(nh, J X% (s+ nh)dK2(s)+ J B2M(s+ nh) dK3(s)) h2} ~
—@ ()

A 27 {c,,(nh)+VI 0 1(nh, ch(nh)\KI\)h4 + 3h2V2<P2(nh,ch(nh)\\K2\ +
+ AG(nh))} < oo.
Moreover, by (5.4) and (2.5)
E[Xh(v)]4 < E[Xh(0)]4+ 6]OE [ X &(s) + a4(Ph(s), ngH9X h) +
+ A Whis)”H,ph@Xh, I1({phsBjlds
< c+ eé)[c*(s)+ Vi i (0*(«). ox(s) 11X 1)+
+y2*2{vM c*s) I 21+ AG(s))] ds <
At 6] <P(s,cf(s))ds.
We have the integraloinequality

t

(5.6) ch(t) <Sc+ 6 % <P(s, c*(s))ds.
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The Opial’s theorem [6, Theorem 52.1] implies that
(5.7) chity M(t;0,c), t~ 0.
This estimation does not depend on h
Next we shall prove that
(5.8) E\X,,(t)-Xh(s)\4 cn\t-s\312 0 <s< f~ n n= 1,2, ..

Indeed,

Xh(t)-Xi(s) = \ a(<Ph(*),n <h(O)X hydU(T) +

+ IH<Ph(T)’ n ¢h(NX h’ n ¢(nB)d B (1)’

E(Xh(t)-X h(s))4 "~ Z(t-s)3\Ea*(@h(T),nEhvX hdz +

4-8-6(t-s)\ Eb*(cph(i), n VAMX h, n iphiX)B)dz
because

YEfod(% (T),/7 h®X /7 A (OB)AT < V2]<P2(eh(T),ch(z)\K2\\+AG(z)dz < oo.

S S

Hence

E(Xh(t)-X h(s))4 A S(t-5)3VI \cPL((PH(r),ch(T)\K1\)dx +

+ 48(F —s) V23 <2((ph(x), ch(r) |[K 2] + AG(x))dz ?
|
s: 8(t—s)3vxJ” (t, ||K, P-Af(t;0,c))dr +

S

t
+ 48(f—s)F2J <2(¢, ||K 2] *M (t; 0, ¢) + AG(r))dz <

S

N 8(t-s)4Ft max 0,(t, \\K11<M (t;0,c)) +
te[s,f]

+ 48(f—s)2v2 max <€(t, [|[K2| *M (t;0, o)+ /1G(1)) 7

ie[s,i]
< c,|f-s|32

Applying Lemma 1 to the class of stochastic processes {X +h= (Xh(t):t >
> 0):h > O}(c: /(&) we can see that {X +,:h > 0| is weaklv compact. It is
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obvious that {Bh= B:h > 0}(cz x”)) and {X-h= X_:h > 0}(c x(~-)) are
also weakly compact. Let
(5.9 3>+ = {he%> +: \h(t) —h{s)\ < |t—s|, t,s * 0}.

It is clear that {Uh= U:h > 0} is weakly compact subset of Hence
{(Xh,B, U, X_):h > 0} is weakly compact subseto fA*" x” x X #_). Sothat
we can find an L-Cauchy sequence (Xh(n), B, U, X _) with h(n) j 0. By Skorohod’s

theorem we can construct (Yn,BnUnY”n, n= 1,2, ...,00 on a certain
probability space such that

(5.10) L((X,,(n),B, U, X(Y,,, BnUny_,)=0

and

(5.H) p((ynBnt/,,y_n"(y@BAOt/@y_j) = i,

where the convergence is to be understood in the sense of the metric in
i$x([($xS>+ x €_. Since, by (5.10),

L((BnUnY-n,(B,U,X_)) =0
and, by (5.11),
P{(Bn UnY.N"(BWOUaY-0) =1,

we get

(5.12) L((B,, Ux,y_J,(B, U,X ) = 0.

If we can prove that

(5.13) gg-nJYJ v Vv tM-nJBJ is independent of A r=00(dBJ,
(5.19) Yx (t)= y-oo(t), t ~ 0, with probability 1

and

(5.15)  YJt) = yMO)+ %a(z,FITycr:)d[/QQt)+

t
+ jbixJItY~A~'BAdBNIT) with probability 1

0
then we can conclude that X(t) = yoq(t) is the solution of (1.5). Using some ideas
of the paper [4] we shall prove (5.13), (5.14) and (5.15). By the definition of X hwe
have that 36-",,(Xh v %KI(U) v N (5) isindependent of #, a.(dB) and, by
(5.10)and (5.11),~-*,,~) v 0,t{Un v ~_ ,,.(£,) isindependent of* (-00dB,,)
for every n, also for n — oo. (5.14) holds by definition of X hand the continuity of
yoot) and y_~(t). It remains to show (5.15). Set

(5.16) Jn= (})a(s, nsYndun(s)+ (})b(s,IIsYn, n sBndBn(s)
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(5.17) Jn(h) = })a(ek(s),nﬂ’(s)Yn)dUn(sH

+ (})b(e h(s), n Vh(s) Yn, /7,,hS)}IB,,)dBNn(S) =

m—
X a(kh,nkhY)[Un((k+ 1)h)-U n(kh)] +

k- 0O

+ a(mh,nmhYn) (Un(t)-U n(mh)) +
m—
+ £ b(kh,nkhYn,n knBn[Bn((k+\)h)-Bn(kh)] +

+ 6(m?, [7nfcY,, n mhBr)(Bn{t)-B,,(mnAj.

Jn(h) is an approximate sum of Jnfor A = {0 < h< 2h < ... < mh < f}. Since
P(e(Y,, YJ-0) = IL{Y,.n = 1,2,..., oo} is weakly compact and by Lemma
3 for e > 0 there exists O = <5 such that \n\ < 5 implies

(5.18) P(\J,(h)-Jn>£)<£, n—1,2, ..., oo.
We have, by (5.4), (5.10) and (5.17),
Yn(t) = Yn(0) + J,,(h(n))
and, by (5.11),
P{\YJt)-YJ0)-JIx\> 66) * PfIYA)-Y W[ > £)+
+?2(ly0(0)-y.,(0)] > s)+P(\J00- J n(h(m)\ > 4c) <
< 2e+ P(\IX—J,,(fi(n)j > 4e), n>
By (5.18) we have
P{\j. i, {h(n)\ > 4e) < PAJA-JIh)|> e)+
+ P (\jJh)-JInh\ > e)+ P{\In(h)-In\ > e)+
+ PO\jn-j,,(h(n))\ >s)<
<3s+P(\JJh)-In(h)\>s)

for h < <5(e)andn > N2such that h(n) < <5(e)forn > N 2.By (5.17), (5.11) and the
continuity of a(t, Tlt(p) and b(t, 1Jtcp, Jn(h) -> J~(h) with probability one.
Therefore

(5.19) P{\YJt)- YJO0)-Jj > 6e) < 6e.
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Since e is arbitrary, (5.19) implies (5.15). Moreover, because

E(Xh()4 < for h> 0

£(Moo(t))4 < I!In E(Yn(t)4 = I_im E (XhM(t))4 < M (t;0,c)

we have the estimation (5.1).

Compactness of the solution space. Let J( denotes a set of all admissible
systems S = {X_,U,B). Let Jf = {Xs:Se Jt} where Xs denotes a solution of
equation (1.5) for admissible system S. For | e / we have

t t

E(X(t) —X(s))*  8E(j a(z, 13zX)dU (zj)4+ %E(] b(z, TIXX, 77tB)dB(r))4 »

S

t t

~ 8(t—s)3] Ea4d(z, I7rX)di + 48(t—s) J Eb4(z, TIZX , FIxB)dz <

< 8(/-s)3fF 1<fl(r, \\KI\\-M(z-0,c))dz +

+48(i-s) I V2<P2(x, ||IK2| M(z-0,c) + AG{z))dz ~

N oent—s|3/2, 0A” t,s A n

From Lemma 1, recalling (A.5) we conclude that Jf is weakly compact subset of
x(%). Jf x Jf is also weakly compact subset of X% X X Q+x”"). We can find
an L-Cauchy sequence (X m Sn). By Skorohod’s theorem there exist a certain
probability space {Q, S',P) and (Ym, Y-m UmBn), m = 0,1,2, ..., such that

L((Ym Y_m Um Bm, (Xm X_mUmBJ)=0

P((Ym Y_m UmBn)- (Y0, Y_0,U0,B0) = 1

where the convergence is to be understood in the sense of the metric in
AXN_xS>+x”. In similar way as in existence theorem we prove that
(Y0.Y 0,U0,B0) is a solution of (1.5). This denotes that Jf xJt is compact.
Existence of optimal control. Let i/f(/, h) be a functional on 1xS>t,
0< h) < +00. We have atheorem analogous to Theorem 3in the paper [2],
THEOREM 2. Let J{xc J{ be closed in metric L and be lower
semi-continuous on X &+. Then there exists SOe .//j such that

Eil/(X0, UO) s; Eilt(X, U), Sed/,

where X nand X are the solutions of (1.5) corresponding respectively to SOand S.
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