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Abstract

By using the growth tensor and a natural curvilinear coordinate system for description of 
the distribution of growth in plant organs, three geometrie types of shoot apical domes 
(parabolic, clliptical and hyperbolic) were modcled. It was assumed that apical dome ge­
ometry remains unchanged during growth and that the natural coordinate systems are 
paraboloidal and prolate spheroidal. Two variants of the displacement yelocity fields V 
were considered. One yariant is specified by a constant relative elemental ratę of growth 
along the axis of the dome. The second is specified by a ratę inereasing proportionally with 
distance from the geometrie focus of the coordinate systems (and the apical dome). The 
growth tensor was used to calculate spatial yariations of growth rates for each yariant of 
each dome type. There is in both yariants a elear tendency toward lower growth rates in 
the distal region of the dome. A basie condition for the existence of a tunica is met.
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INTRODUCTION

Symplastic growth is a tensorial attribute of plant organs (Hejnowicz and 
Romberger 1984, Hejnowicz 1984). The growth tensor is a covariant derivative 
of the displacement velocity field in the organ. Linear relative elemental ratę of 
growth in a direction s, RERG,^, can be calculated as the double inner product 
of the growth tensor expressed in physical components and the unit vector pointing 
in direction s. The relative elemental ratę of growth in volume, RERGml, is given 
by the sum of diagonal components of the growth tensor. Another important pro- 
perty of the growth tensor derives from its eigenvectors. To appreciate this term, 
observe that when the growth tensor is multiplied by a vector, i.e. the tensor “acts” 
on a directed linear element in the organ, a new vector appears which in generał 
has a direction and magnitude different from the original one. However, there are
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always three orthogonal vectors, called eigenvectors of the tensor, at each position, 
which maintain their original directions though the magnitude is changed (if the 
growth is isotropic all vectors maintain their direction). The directions of the eigen- 
vectors are termed the principal directions of growth. If the growth tensor is multi- 
plied by a unit vector of variable direction, the magnitude of the resulting vector 
attains an extreme value, either maximal or minimal, in the principal directions. 
These extreme RERGt values are called principal growth rates. They pertain to 
the principal directions of growth, which are mutually orthogonal. The principal 
directions of growth can be associated with each positional point within an organ, 
and short linę segments corresponding to these directions can be joined to form 
a network of orthogonal trajectories. These trajectories represent a natural coordinate 
system most favourable for dynamie description of a growing organ (Hejnowicz 
1984). The ratio of a pair of principal growth rates quantitatively specifies the 
directionality of growth in the corresponding piane. The morę this ratio deviates 
from 1 the morę pronounced is the anisotropy of growth. We refer to this ratio 
as to anisotropy ratio (Erickson 1976).

Our aim is to illustrate use of the growth tensor and the natural coordinate 
system, as indicated by the title of this paper, in relatively simple cases of growing 
organs, namely in apical domes of different chape but growing in such a way that 
the shape is steady. We will consider three types of apical dome: (A) parabolic, 
(B) elliptic, and (C) hyperbolic (Fig. 1) assuming that the natural coordinate sys- 
tems for these domes are paraboloidal (u, v, <p) for A, and are two variants of pro- 
late spheroidal (£, <p) for B and C.

Fig. 1. Schemes of the natural coordinate systems for apical domes considered in 
this paper. It is assumed that the thicker periclinal coordinate curve represents 
the surface of the dome. a —> paraboloidal coordinate system, b and c — two va- 
riants of prolate spheroidal coordinate system: b for elliptic dome, c for hyperbolic 

dome

THE GROWTH TENSOR IN PHYS1CAL COMPONENTS, GENERAŁ FORM

The growth tensor in physical components can be obtained either by converting 
into physical components the covariant derivative of the displacement velocity 
field, V, or directly from the dyadic VK (Hejnowicz and Romberger 1984). 
We omit the procedurę of deriving the tensor, and write the finał form of the tensor 
taking into account the simplification resulting from the assumption that we are
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considering apical domes that grow with steady geometry. This simplification re- 
quires that there be only one non-zero component in the vector V, namely that 
corresponding to the periclinal coordinate lines (which are meridional on the sur- 
face) (Hejnowicz 1984). Thus, there is only Vu in the parabolic dome (Vv= ^=0), 
only V„ in the elliptic dome, and only Vt in the hyperbolic dome. The growth tensor 
in the generał form, i.e. without specification of the field is:

(A) Parabolic dome:*

1
Fzm2+v2 W2 + v

óVu
<5v u2+v

0 0

(B) Eliptic dome:

1 P, sin z/ cos q

^sin h2 f+sin2 sin h2 f+sin2»?

V„ sin h% cos/zf
sin h2 f+sin2 r/

0 0

(C) Hyperbolic dome:

0

0

5
u

0

0

cos rj 
sin r)

1
|/sin h2 £+sin2z?

sin t] cos 7)
0

<5f sin A2+sin2

sin cos
0sin h2 +sin2

0 0
Vt cos h$

sin hS

Each form of the growth tensor given above is in a natural coordinate system, 
thus the diagonal components represent the principal growth rates. A nondiagonal 
component Tpq, p^q, represents the angular velocity of the rotation around an 
axis normal to the piane pq. It is not directly evident from the generał form of the 
growth tensor that the nondiagonal components are skew-symmetric (which is 
the condition for their representing rotation velocities), howcver, this field V must 
be such as to guarantee this property.

* the symbol — denotes partial derivative
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METHODS OF CALCULATIONS

One should observe that the field V cannot be defined without restriction be- 
cause the growth must be compatible, i.e. the various organ parts must remain 
joined together during growth. The principles of V field specification are given 
in a previous paper (Hejnowicz 1984). If KPCPlci(Bal, termed Klf is specified along 
one coordinate linę ut, i.e. u2=a, and Vi = V\ (u1; w2=a)*,  the generał eąuation 

Ai „

* In case of the apical dome which is a figurę of revolution and grows without rotation of the 
tip, the K-field does not depend upon «3=ę>. Also the scaling factors do not depend upon p.

for Vx is Ki=y- where/?! is the scalę factor in the direction tangent to the 
«i

Ui curve and is given in its generał form, i.e. hi =ht (ult u2), while Aj and P) are the 
scalę factor and displacement velocity along the coordinate linę defined by u2=a.

The scalę factors for different natural coordinate systems are given in a pre- 
vious paper (Hejnowicz 1984), for instance, for the parabolic dome Aj=)/m2+v2, 
and Ai on the dome axis (v=0, there) is A1 = |''m2=m.

The growth tensor was utilised to calculate the variation of RERGt and RERGvot 
by means of a RIAD 32 computer.

The linear relative elemental rates of growth, RERGh in different directions 
differing by 10° one from the other in a chosen piane, were evaluated by the double 
product of the growth tensor and the unit vector in a particular direction at the 
considered point.

Values of RERGt in all possible directions from a considered point determine 
a closed surface such as the “peanut-shaped” representations in Fig. 2. The extremal 
values lie along the principal directions, which can be denoted as periclinal (P), 
anticlinal (A), and latitudinal (Z,). These directions define three orthogonal planes 
which are shown in the Fig. 2: axial (AP), tangent to anticlinal surface (AL), and 
tangent to periclinal surface (PL). Values of RERGt are displayed in the form of 
two-dimensional plots of RERGt around a number of points lying on the axial 
piane (Figs. 3-5, 7, 8, 10). The plots are in the planes AP and PL. Examples of plots 
in the piane AL and in the piane transverse to dome axis are in Figs. 3b and 4b. 
The latter piane is determined by the latitudinal and radial directions and is denoted 
as the LR piane.

Elongate or bilobate plots indicate anisotropic growth. The long axis of each 
plot indicates maximal principal growth ratę, the short axis (the neck of bilobate 
plot) indicates the minimal ratę (except the map in Fig. 4b which involves only 
one principal direction).

Plots of RERGt for a given variant are all on the same scalę.
The volumetric growth ratę, RERGvol, was evaluated for points on the axial 

piane and displayed in the form of regions corresponding to chosen ranges of 
RERGv„i. The program SYMAP was used to get map of the regions.
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Fig. 2. Imaginary 3-dimensional figures intended to aid visualization of the pre- 
dicted variation of RERGt values in all directions from considered points within an 
aplical dome. Each and every point on the surface of one of the “pea-nut-shaped” 
volumes represents a value of RERGt in a specific direction from the considered 
point. Thus only the surface configurations of the “peanut” shapes have signifi- 
cance and points within the volumes have no meaning. Coordinate lines of the 
"natural” system, ut, u^, u3, which are orthogonal as they pass through the consi­
dered point, are indicated. The axis specifying a RERGt surface in any pair of 
dimensions are tangent to the corresponding coordinate lines at a considered point, 
and also specify the principle directions there. The axes determining the jRERGy 
surface are denoted as P (periclinal), A (anticlinal), and L (latitudinal). R indicates 
thę radial direction with reference to the longitudinal axis of the apex and is not 
defined in the curvilinear coordinate system. The planes for which RERG^ values 
are computed and displayed (in the following figures) are PA, PL, AL, and LR

RESULTS

PARABOLIC DOME

Variant Ai (Fig. 3): RERGMrlcti„ai is constant on the dome axis
i

Observe, that the axis consists of two parts, periclinal below the focus and 
anticlinal above the focus. Our assumption that only Vpcricllnal exists on the axis 
implies that the RERGi along the anticlinal part of the axis is zero. This fulfills 
a necessary condition for existence of a tunica on the apical dome, hence we can 
consider the anticlinal and periclinal part of the axis as belonging to the tunica and 
corpus, respectively. The focus represents the vertex of the corpus.
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The periclinal part of the axis is defined by v=0. From the growth tensor we 
1 ÓVU

read that the RERGl(c=0. along this part of the axis is------ ;—. The condition' ' u ou
1 dV„

specifying the variant At is thus: RERGl(l)=0}= — —— = constant=£ (on the 
K ' u ou

axis). From the properties of the natural coordinate system it follows that Vu is 
ÓVU dVu

a function of u only (Hejnowicz 1984), therefore -r—= which 
ou du

by integration leads to the eąuation for the displacement velocity along the axis: 
Vu=\ku2. Thus Vu at different points in the dome is Vu=\ku /w2+v2. The 
growth tensor for the variant At thus is:

k
7

2u2+v2
u2+v2 0

uv 
i?4-v2

u2
U2 + v2 0

0 0 1

Many of the characteristics of the growing dome can be read from the tensor 
itself; 1) At the dome vertex the meridional and latitudinal growth rates are equal 
and amount to 1/2 k. The ratio of these rates increases from 1 to 2 with increasing 
distance from the vertex; 2) The ratio of the periclinal to anticlinal growth rates 
on the axial piane everywhere surpasses 2, thus the directionality of growth in the 
axial piane is quite pronounced; 3) The latitudinal growth ratę is the same every- 
where, i.e. each latitudinal linear element increases by k 50% per time unit.

The growth rates in different directions and at different locations for variant At 
are shown in Figs. 3a-c. It is obvious that the figures produced by RERGt are bilobate 
everywhere on axial piane (Fig. 3a), however the anisotropy ratio is most pronounced 
in the distal region close to dome surface. The RERGi figurę at a point, on the piane 
tangent to the anticlinal surface (m constant) at this point, is similar to that on the 
axial piane in the distal region of the dome (compare Fig. 3b with 3a), however 
the former tends toward a circle with increasing distance from the tip, while the 
latter remains bilobate. The RERGt figurę at a point, on the piane tangent to pe­
riclinal surface (v constant) at this point, is circular in distal region. This means 
that growth is isotropic in the two dimensions considered there, and tends toward 
anisotropy (bilobate plots) with increasing distance from the tip (Fig. 3c). The 
volumetric growth ratę (Fig. 3d) varies within a rather narrow rangę. The lowest 
ratę is in the distal region, the highest in the core of the dome.
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Variant A2 (Fig. 4): RERG,„lcllntl on the axis increases linearly with physical distance from the 
focus

The z-component of the physical distance from the focus is: z=| (u2 — v2) 
thus, on the axis z=| u2 and we can write the condition specifying the variant

1 óVu u2 _ k
A2 in the form:-----~——kz=k — . Upon integrating we obtain F„=—u*,  and

u ou 2 8

3 /-------------K„= — M y w24-v2 . The growth tensor for this variant thus is:
O

k u2 (4u2+3v2) U3 V

8 U2+v2 ^U2^2

U3 V u4
\ M2 + v2 u2+v2

0 0

o

o

M2

Inspection of this tensor reveals three important facts: (1) At the vertex (m=0) 
linear growth rates yanish in all directions. (2) The ratios of the periclinal to the 
latitudinal, and of the periclinal to the anticlinal principal growth rates, are every- 
where between 3 and 4, and higher than 4, respectively, which indicates appreciable 
anisotropy of growth. (3) The anticlinal growth ratę along the axis is nuli above 
the focus, thus this part of the axis belongs to the tunica.

Figures 4a-d consists of maps of growth ratę distribution for variant A2- The 
anisotropy of growth on an axial piane and on periclinal surfaces is morę pronounced 
than in variant At. Notę that Figs. 3b and 4b represent different planes of RERGt 
plotting. The RERGt on transverse piane shown in Fig. 4b was calculated according 
to the formula:

2 2

RERGt (trans) = y2_|_pi (P"> + RERG l (.ant) —

The distal region of Iow growth ratę appcars morę clearly than in variant At. 
The borders between regions classified on the basis of volumetric growth ratę are 
oriented anticlinally. The RERGt figures in the very distal region are reduced prac- 
tically to points and their shapes cannot be discerned. It is easy to show that this 
figurę would be circular at the vertex on the periclinal surface if the variant A2 
were modified so as to have growth rates, in the meridional and latitudinal direc­
tions, of certain value greater than 0 at the vertex (in A2 they equal 0 there). This 
can be achieved by starting the RERGt on the axis not from nuli as in A2, but 
from a certain positive value, say b. The growth tensor in this subvariant would be:
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1 4ku4+16Aw2+v2 (3kw2+8Z>) wv(k«2+8h)
08 m2+v2 u2+v2

uv(ku2+8A) u2 (ku2+%b)
0u2+v2 U2 + v2

0 0 ku2jt-8b

It is seen that the meridional and latitudinal principal growth rates at the vertex, 
m=0, v>0, are both b, thus their ratio there is 1.

ELLIPTIC DOME

Yariant Bi (Figs. 5 and 6a): RERGp„icunl,i = RERGt is constant on the axis

Along the periclinal part of axis £=0. From the growth tensor in spheroidal
1 <5 V.

coordinates we have on the axis: RERG, .--------r—=kthus K= — k cos n+C.w sin r) dr) '
At the focus K,=0, ?/=0, thus C=k. We have thus: V„=k (1 —cos?/) on the axis, 

)/sin h2 f+sin2 rj
and V„=----------:------------ k (1 —cos rj) in the whole dome. The growth tensor forsin t]
this yariant is thus:

cos i) sin h2 i 
(sin h2 f+sin2 ?/) (14-cos ?/) 

(1 —cos rj) sin r) S cos h$ 
sin t) (sin h2 f+sin2 ?/)

0

(1 —cos rj) son h £ cos h 
sin i) (sin h2 f 4-sin2 rj)

(1 —cos?/) cos?/
sin A2 f+sin2 ?/

cos ?/
0 i-------1 —COS r)

Inspection of this growth tensor reveals that both the meridional and the latitudina 
principal growth rates attain | at the vertex, however, it is difficult to read the 
ratio of the principal growth rates from the tensor directly. The ratio and variation 
of growth rates are shown on the maps in Figs. 5a, b and 6a. At the vertex there 
is isotropy of growth on dome surface, as we would expect. The meridional ratę 
at the vertex is considerable while the anticlinal ratę is nuli, which means that con- 
ditions favor development of a tunica. The ratę of volumetric growth attains a ma- 
ximum at the vertex of the corpus (just below the focus). The decrease of RERGvoi 
in the basal part of the dome is due to the decrease of RERGt in anticlinal and 
latitudinal directions there.



Fig. 3. Spatial and orientational variation of growth rates for variant At. In each figurę only half of the axial longisection of the dome is shown, the y-coordinate 
corresponds to the dome axis. The a-coórdinate corresponds to the dome radius. The curvilinear coordinates are not marked, however, the points in Fig. 3c lie 
along four coordinate lines u (v = 0 i.e. the dome axis, v = 1, v = 2, v =3). The position of the focus is indicated by the point F. Distances from the vertex 
and radial distances are plotted in arbitrary units, the same for both coordinates (x and y). a — Plots of RERGt for piane PA (see Fig. 2); b — Plots of RERGl 
for piane AL (the.L-direction in the figurę is oriented periclinally in result of plot rotation by 90° around A); c — Plots of RERGt for piane PL (the L-direction in 
the figurę is oriented anticlinally). The units of RERGt (100°/o of the growth increment during arbitrary unit time) are the same for all plots. d — Zonation with 
respect to the RERG„0l. The numbers indicate the rangę of values of RERGvoi in zones shaded with identical symbols. The unit of RERGvoi is arbitrary, because it 

represents the increment of volume of a smali element at a point during an arbitrary unit time



Fig. 4. Spatial and orientational variation of growth rates for the variant A2.Explanation as in Figs. 2 and 3, except that the (b) shows RERGi in the piane LR 
transverse to dome axis) instead in the piane AL as in Fig. 3b
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Fig. 5. Spatial and orientational variations of RĘRGt for yariant Bv a — piane 
PA (axial piane); b — piane tangent to periclinal surface, PL
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Fig. 7. Spatial and orientational variation of RERGt for variant Bj. a 
piane (PA); b — piane tangent to periclinal surface (PL)

Fig. 8. Spatial and orientational variation of RERGi for variant C



Fig. 10. Spatial and orientational variation of RERGl for yariant C2
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Variant B2 (Figs. 7 and 6b): RERGp„icunai on the axis increases linearly with physical distance 
from the focus

It is convenient to locate the origin of the z-axis at the focus and to take the 
focal length as a unit length. The physical distance from the focus, z, is then given 
on the axis by z=l —cos tj. From generał form of the growth tensor we have on the 

1 <5K„
axis RERGt -------- • By mtroducing the condition RERGX („ f=0) =

w sin 7/ dr]
k

= k(l-cos?/) and integrating, we obtain Vn= — k cos rj — — sin2 >/+c (on the 

axis). At the focus t;=0, K„=0, c=k. Therefore, on the axis V„=k (1 — cos ?/ — 
j/sin h2 f+sin2 7/

— ł sin2 ri) and in the whole dome V„—----------------------- k (1 —cos ri—k sin2 ri).2 ’ sin v ' 2 u
The appriopriate growth tensor thus is:

k
cos r) sin h2$ I

(1 —cos?;)— . - . , Isin h2 £+sin2 t) \ 1 +cos tj

sin h k cos h £ I 1 
Sin sin h2 £+sin2ł? \ 1+cost/

sin h $ cos h $ I 1 \
’S'n Z?sin7z2 £+sin27? \ 1+cos 7? /

I 1 1\
sinA2 £+sin27? \ 1+cos ?? - 2/’

COS 7?

1 -4.1
1

0 0 COS T]

Inspection of this growth tensor indicates that the principal growth rates vanish at 
the vertex. Figs. 7a, b show the variation of linear growth rates in the planes PA 
and PL, and Fig. 6b shows the variation of the volumetric growth ratę.

There are minima of all growth rates in the distal part of the dome. The ma- 
ximal principal growth ratę is in periclinal direction. This growth ratę is well differ- 
entiated from the two remaining principal rates. The borders between the regions 
distinguished on the basis of the ratę of volumetric growth run along anticlines.

HYPERBOLIC DOME

Yariant Ci (Figs. 8 and 9a): RERGp„ICiiPai=RERGt is constant along the axis

At the periclinal part of the axis t?=0. From the generał form of the growth
1 ÓV{

tensor we have RERGl(, „=0>=——= k on the axis. By integrating we ' sinAf dl-
obtain V(=k (cos h£ — 1) (on the axis). Thus, in the whole dome we have 

j/sin h2 f+sin2?/
V,=--------:——-------- kfcoshS — 1) and the growth tensor attains the par-sm A f
ticular form:
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k
sin h2 f+sin2 7)

sin2 rj 
cos Af4-1 + sinA2f;

sin cosr) (cos Af — l)
9

sin cos»/ (cos h$ — V)
cos h$ (cos h£-\);

sin h$

sin h$

0

0

0
cos Af

0 i+^M<si"ł’f+si"1’>
From this tensor we can see that at the vertex, where 1=0 and »?>0, the meridional 
and latitudinal principal growth rates are different from 0 and their ratio is 1. Maps 
of growth ratę variations for this variant are given in Figs. 8 and 9a. The aniso- 
tropy of growth is nowhere very pronouced, the volumetric growth ratę varies 
within a rather narrow rangę with the minimum being in the surface layer in the 
distal part.

Variant C2 (Figs. 9b and 10): RERGperlcii„ai = RERGt incrcases lincarly with physical distance
from the focus

On the axis, >?=0, the physical distanceis z=cos h f — 1 and the RERGl(i ,=0)= 
1 óF. ~ / 1 \

^sinAiTf" Up°n inte8ration we obtain V(=k I—cos A 2f-cosA f)l 4-C.

3
At the focus f=0, K{=0, thus c= — k. The displacement velocity for k=l is:

F. = — cos A2 cos A f+ — on the axis, and4 4
|/sin A2 £+sin2 rj 11 3\

F.=------ ——---------- 1 — cos A 2f-cosAf + -r inthe wholedome.ę sinAf \4 4/
The growth tensor is:

3
cos A 2£—cos Af+ —4

cosAf — 1 cos A f sin2
| cos A 2f—cos A f+i sin A2 £4-sin2 7) ’ 

sin 7) cos 7)
sin A £ (sin A2 f+sin2 ??)

sin 7] cos 7)
sin A £ (sin A2 f+sin2 7?) ’

cos A f 
sin A2 f 4-sin2 tj ’

cos A f
sin A2 f

The maps of RERG, and RERGvoi are shown in Figs. 10 and 9b. The spatial varia- 
tion of growth rates is similar to that in the yariant A2 for the parabolic dome.
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DISCUSSION

As long ago as 1879 J. Sachs considered orthogonal periclinal and anticlinal 
trajectories in the form of confocal parabolas, ellipses and hyperbolas as a refer- 
ence framework for the analysis of growth and celi divisions in apical meristems. 
This framework was most thoroughly exploited by Schiiepp (1966), but still not 
as coordinate system. Schiiepp’s analysis of growth was not based on the mathe- 
matical concept of the derivative, thus curvilinear coordinate systems were irrelev- 
ant for him. The use of the periclines and anticlines as a natural coordinate system 
is, however, of basis importance in the type of growth analysis pioneered by Erick- 
son and Sax (1956) which is applicable to organs such as apical domes. How to 
use the natural coordinate system in growth analysis is the problem dealt with 
in this paper, which is only a step towards the analysis of real meristems.

In the present paper we consider only two variants of growth distribution in 
apical domes growing with steady geometry. In both variants there is a strong 
tendency towards lower growth rates in the distal region of the dome. Such a ten- 
dency is manifested by shoot apices in angiosperms in the vegetative phase (Lyndon 
1976). It seems probable that growth distributions in real domes is within the rangę 
delimited by the two variants considered here, or is not far from this rangę. Among 
the two variants the second seems morę realistic. It is characterized by pronounced 
increasing of growth rates with distance from the vertex. For this variant the zones 
distinguished by volumetric growth ratę are delineated by anticlinal surfaces, as 
also happens in real shoot apices. On the other hand, the lowering of the growth 
rates in the distal part of the dome in the case of the 2nd variant is morę pronounced 
than usually happens in shoot apices of many species. Thus some combination 
of both variants is probably morę realistic than either of the variant separately. 
Probably even better would be a model based on morę complicated growth ratę 
variation along the axis than the two simple cases considered here. Perhaps the 
modeling of growth in the shoot apex should be based on growth distribution 
specified for a displacement linę on dome surface rather than on the axis. We have 
been aware of this possibility because it was indicated by the studies of Green 
(1980), however, in the first trial of the modeling based on the growth tensor we 
deliberately used the specification on dome axis because the modeling is in this 
case the simplest, and purpose of this paper was to provide an example of such 
modeling.

Acknowledgment

We express our thanks to Dr. J. A. Romberger for valuable advices, comments, and writing 
certain passages of the text.

REFERENCES

Erickson R. O., 1976. Modeling of plant growth. Ann. Rev. Plant Physiol. 27: 407-434. 
Erickson R. O., Sax K. B., 1956. Elemental growth ratę of the primary root of Zea mays. Proc.

Amer. Phil. Soc. 100 : 487-498.



28 Z. Hejnowicz et al.

Green P. B., 1980. Organogenesis — a biophysical view. Ann. Rev. Plant Physiol. 31: 51-82.
Hejnowicz Z., 1984. Trajectories of principal direction of growth, natural coordinate system 

in growing plant organ. Acta Soc. Bot. Pol. 53: 000-000.
Hejnowicz Z., Romberger J. A., 1984. Growth tensor of plant organs. J. Theor. Biol. (in press).
Lyndon R. F., 1976. The shoot apex. In: Celi Division in Higher Plants. M. M. Yeoman (ed.). 

Academic Press, London, pp. 285-314.
Sachs J., 1879. Ueber Zellenanordnung und Wachstum. Arb. Bot. Inst. in Wtirzburg II Heft 2: 

185-208. 1
Schiiepp O., 1966. Meristeme, Wachstum und Formbildung in dem Teilungsgeweben hóheren 

Pflanzen. Birkhauser Verlag, Basel.

Modelowanie przestrzennej zmienności wzrostu w apikalnych częściach wierzchołków 
pędu za pomocą tensora wzrostu

Streszczenie

Do opisu wzrostu organów roślinnych za pomocą tensora wzrostu stosować można naturalne 
układy współrzędnych. Ich wybór zależy od trajektorii głównych kierunków wzrostu w organie. 
Znajomość tensora wzrostu w naturalnym układzie współrzędnych jest wygodna do badań prze­
strzennej zmienności wzrostu. Względne elementarne szybkości wzrostu liniowego (RERGi) w kie­
runkach głównych są wtedy składowymi diagonalnymi tensora. Suma składowych diagonalnych 
stanowi względną szybkość wzrostu objętościowego (RERGv<,i). W pracy pokazano w jaki sposób 
stosować tensor wzrostu i naturalne układy współrzędnych do opisu apikalnych części wierzchoł­
ków pędu w przypadkach kiedy geometria wierzchołków nie zmienia się podczas wzrostu. Zba­
dano trzy typy wierzchołków: paraboliczny, eliptyczny i hiperboliczny. Przyjęto, że naturalnymi 
układami współrzędnych są: układ paraboloidalny dla wierzchołka parabolicznego oraz wydłużony 
sferoidalny dla eliptycznego i hyperbolicznego. Tensory wyznaczono dla dwóch wariantów RERGi 
na osi: stałej szybkości wzrostu i wzrastającej proporcjonalnie z odległością od ogniska układu 
współrzędnych. Przy pomocy komputera obliczono zmienność RERGt i RERG^i ilustrując ją 
mapami. W obu wariantach szybkości wzrostu są mniejsze w regionie dystalnym wierzchołka.
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