

You have downloaded a document from RE-BUŚ
 repository of the University of Silesia in Katowice

Title: A generalized a-Wright convexity and related functional equation

Author: Janusz Matkowski, Małgorzata Wróbel

Citation style: Matkowski Janusz, Wróbel Małgorzata. (1996). A generalized a-Wright convexity and related functional equation. "Annales Mathematicae Silesianae" (Nr 10 (1996), s. 7-12).

Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych Polska-Licencja ta zezwala na rozpowsze chnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nie tworzenia utworów zależnych).

A GENERALIZED a-WRIGHT, CONVEXITY AND RELATED FUNCTIONAL EQUATION

Janusz Matkowski and Małgorzata Wróbel

Abstract

Let I be an interval and $M, N: I \times I \rightarrow I$ some means with the strict internality property. Suppose that $\varphi: I \rightarrow \mathbb{R}$ is a non-constant and continuous solution of the functional equation

$$
\varphi(M(x, y))+\varphi(N(x, y))=\varphi(x)+\varphi(y) .
$$

Then φ is one-to-one; moreover for every lower semicontinuous function $f: I \rightarrow \mathbb{R}$ satisfying the inequality

$$
f(M(x, y))+f(N(x, y)) \leq f(x)+f(y),
$$

the function $f \circ \varphi^{-1}$ is convex on $\varphi(I)$. This is a generalization of an earlier result of Zs . Páles. An application to the a-Wright convex function is given.

1. Introduction

Let $I \subset \mathbb{R}$ be an interval and $a \in(0,1)$ a fixed number. A function $f: I \rightarrow \mathbb{R}$ is said to be a-Wright convex if, for all $x, y \in I$,

$$
\begin{equation*}
f(a x+(1-a) y)+f((1-a) x+a y) \leq f(x)+f(y) . \tag{1}
\end{equation*}
$$

It is shown in [3] that every lower semicontinuous a-Wright convex function is convex.

Key words and phrases: a-Wright convexity, Jensen convexity semicontinuity, functional equation, functional inequality.

Clearly, every linear function f converts (1) into equality. In this connection let us note that Zs. Páles [4] found a close relation between the more general functional inequality

$$
\begin{equation*}
f(M(x, y))+f(N(x, y)) \leq f(x)+f(y), \quad x, y \in I \tag{2}
\end{equation*}
$$

and the corresponding functional equation

$$
\begin{equation*}
\varphi(M(x, y))+\varphi(N(x, y))=\varphi(x)+\varphi(y), \quad x, y \in I \tag{3}
\end{equation*}
$$

where $M, N: I \times I \rightarrow I$ are continuous functions satisfying the following strict internality condition

$$
\begin{equation*}
x, y \in I, x \neq y \Rightarrow M(x, y), N(x, y) \in(\min (x, y), \max (x, y)) \tag{4}
\end{equation*}
$$

(in particular, M and N are means on I). He proved that: if there exists a continuous strictly monotonic solution $\varphi: I \rightarrow \mathbb{R}$ of (3), then a continuous function $f: I \rightarrow \mathbb{R}$ satisfies (2) if, and only if, $f \circ \varphi^{-1}$ is a convex function on $\varphi(I)$. In this note we show that this result remains true if φ is non-constant and continuous, and f lower semicontinuous.

2. Main result

The following result improves the result of Páles [4]
Theorem. Let $M, N: I \times I \rightarrow I$ be continuous functions satisfying condition (4), and suppose that $\varphi: I \rightarrow \mathbb{R}$ is a non-constant and continuous solution of equation (3). Then φ is one-to-one, and for every lower semicontinuous function $f: I \rightarrow \mathbb{R}$ satisfying inequality (2), the function $f \circ \varphi^{-1}$ is convex on $\varphi(I)$.

Proof. Put $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$. Define $M_{k}, N_{k}: I \times I \rightarrow I, k \in \mathbb{N}_{0}$, by

$$
\begin{gathered}
M_{0}(x, y):=M(x, y), \quad N_{0}(x, y):=N(x, y), \\
M_{k+1}(x, y):=M\left(M_{k}(x, y), N_{k}(x, y)\right) \\
N_{k+1}(x, y):=N\left(M_{k}(x, y), N_{k}(x, y)\right),
\end{gathered}
$$

and $m_{k}, n_{k}: I \times I \rightarrow I, k \in \mathbb{N}_{0}$,

$$
\begin{aligned}
& m_{k}(x, y):=\min \left(\left(M_{k}(x, y)\right),\left(N_{k}(x, y)\right),\right. \\
& n_{k}(x, y):=\max \left(\left(M_{k}(x, y)\right),\left(N_{k}(x, y)\right) .\right.
\end{aligned}
$$

Of course all the functions $M_{k}, N_{k}, m_{k}, n_{k}$ are continuous. As M and N are means we have

$$
\begin{aligned}
m_{0}(x, y) & \leq m_{1}(x, y) \leq \ldots \leq m_{k}(x, y) \leq n_{k}(x, y) \\
& \leq \ldots \leq n_{1}(x, y) \leq n_{0}(x, y)
\end{aligned}
$$

and

$$
\begin{equation*}
M_{k}(x, y), N_{k}(x, y) \in\left[m_{k}(x, y), n_{k}(x, y)\right], \tag{6}
\end{equation*}
$$

for all $k \in \mathbb{N}_{0}$ and $x, y \in I$. It follows that the sequences (m_{k}) and (n_{k}) converge on $I \times I$. Thus there exist $m_{\infty}, n_{\infty}: I \times I \rightarrow I$ such that

$$
\lim _{k \rightarrow \infty} m_{k}(x, y)=: m_{\infty}(x, y) \leq n_{\infty}(x, y):=\lim _{k \rightarrow \infty} n_{k}(x, y),
$$

for all $x, y \in I$. Since the functions of both sequences are continuous, $\left(m_{k}\right)$ is increasing and (n_{k}) is decreasing, the function m_{∞} is lower semicontinuous, and n_{∞} is upper semicontinuous on $I \times I$. Suppose that there are $x, y \in I$ such that $m_{\infty}(x, y)<n_{\infty}(x, y)$. Hence, as M and N are the strict means, we would get

$$
M\left(m_{\infty}(x, y), n_{\infty}(x, y)\right), N\left(m_{\infty}(x, y), n_{\infty}(x, y)\right), \in\left(m_{\infty}(x, y), n_{\infty}(x, y)\right)
$$

Now the continuity of M and N implies that for sufficiently large k

$$
M\left(M_{k}(x, y), N_{k}(x, y)\right), N\left(M_{k}(x, y), N_{k}(x, y)\right) \in\left(m_{\infty}(x, y), n_{\infty}(x, y)\right),
$$

i.e.

$$
M_{k+1}(x, y), N_{k+1}(x, y) \in\left(m_{\infty}(x, y), n_{\infty}(x, y)\right) .
$$

Hence, by the definition of the sequences (m_{k}) and (n_{k}),

$$
m_{k+1}(x, y), n_{k+1}(x, y) \in\left(m_{\infty}(x, y), n_{\infty}(x, y)\right),
$$

for sufficiently large k which is a contradiction. This proves that for all $x, y \in I$

$$
m_{\infty}(x, y)=n_{\infty}(x, y)
$$

Define $K: I \times I \rightarrow I$ by

$$
K(x, y):=m_{\infty}(x, y), \quad x, y \in I .
$$

The function K, being lower and upper semicontinuous, is continuous. The pointwise convergence of the sequences (M_{k}) and (N_{k}) to K is a consequence
of relation (6). Take $x, y \in I$ and $x \neq y$. Without any loss of generality we can assume that $x<y$. Then

$$
x<M(x, y)<y, \quad x<N(x, y)<y .
$$

Since

$$
\min (M(x, y), N(x, y)) \leq K(x, y) \leq \max (M(x, y), N(x, y))
$$

we infer that K has strict internality property.
The definitions of $\left(M_{k}\right),\left(N_{k}\right)$, and relation (2) and (3), by an obvious induction imply, that for all $k \in \mathbb{N}$

$$
f\left(M_{k}(x, y)\right)+f\left(N_{k}(x, y)\right) \leq f(x)+f(y), \quad x, y \in I,
$$

and

$$
\varphi\left(M_{k}(x, y)\right)+\varphi\left(N_{k}(x, y)\right)=\varphi(x)+\varphi(y), \quad x, y \in I
$$

Letting k tend to the infinity, and making use of the lower semicontinuity of f, the continuity of φ, and the relation

$$
\lim _{k \rightarrow \infty} M_{k}(x, y)=K(x, y)=\lim _{k \rightarrow \infty} N_{k}(x, y)
$$

which is a consequence of (6), we hence get

$$
\begin{equation*}
2 f(K(x, y)) \leq f(x)+f(y), \quad x, y \in I \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \varphi(K(x, y))=\varphi(x)+\varphi(y), \quad x, y \in I . \tag{8}
\end{equation*}
$$

Suppose that there are $a, b \in I, a \neq b$, such that $\varphi(a)=\varphi(b)$, and put

$$
C:=\{x \in I: \varphi(x)=\varphi(a)\} .
$$

By the continuity of φ, the set C is closed in I. Note that C is an interval. In the opposite case we could find $a_{1}, b_{1} \in C, a_{1}<b_{1}$, such that $\varphi(x) \neq \varphi(a)$ for all $x \in\left[a_{1}, b_{1}\right]$. Setting in equation (8) $x=a_{1}, y=b_{1}$ we would get

$$
2 \varphi\left(K\left(a_{1}, b_{1}\right)\right)=\varphi\left(a_{1}\right)+\varphi\left(b_{1}\right)=2 \varphi(a)
$$

i.e. $\varphi\left(K\left(a_{1}, b_{1}\right)\right)=\varphi(a)$, which according to the choice of the interval $\left[a_{1}, b_{1}\right]$ is impossible. Now the continuity of K and the property (6) easily imply that $C=I$. This contradiction proves that φ is one-to-one.

From (8) we have

$$
K(x, y)=\varphi^{-1}\left(\frac{\varphi(x)+\varphi(y)}{2}\right), \quad x, y \in I .
$$

Substituting this into (7) we get

$$
2 f\left[\varphi^{-1}\left(\frac{\varphi(x)+\varphi(y)}{2}\right)\right] \leq f(x)+f(y), \quad x, y \in I .
$$

Setting here $x:=\varphi^{-1}(s), y:=\varphi^{-1}(t)$, for $s, t \in \varphi(I)$ gives the Jensen convexity of the function $f \circ \varphi^{-1}$ on the interval $\varphi(I)$. This function is lower semicontinuous as the composition of the continuous function φ and lower semicontinuous function f. It follows that $f \circ \varphi^{-1}$ is convex (cf. for instance [1], Chapter I, Cor. 2.5). This completes the proof.

Corollary. Let $I \subset \mathbb{R}$ be an interval and $a \in(0,1)$ a fixed number. If $f: I \rightarrow \mathbb{R}$ is lower semicontinuous and

$$
f(a x+(1-a) y)+f((1-a) x+a y) \leq f(x)+f(y)
$$

for all $x, y \in I$, then f is convex (and continuous).
Proof. Since the function $\varphi: I \rightarrow \mathbb{R}, \varphi:=\left.\mathrm{id}\right|_{I}$ is a non-constant and continuous solution of the functional equation

$$
f(a x+(1-a) y)+f(1-a) x+a y)=f(x)+f(y), \quad x, y \in I,
$$

and the functions $M, N: I \times I \rightarrow I$, defined by

$$
M(x, y):=a x+(1-a) y, \quad N(x, y):=(1-a) x+a y, \quad x, y \in I,
$$

are continuous means with the strict internality property, the result follows from the above theorem.

Remark. The a-Wright convex functions appear in a natural way in connection with the converse of the Minkowski inequality (cf. [3]). Note that in [2] (answering to the question posed in [3]) it was shown that there exist a-Wright convex functions which are not Jensen convex.

References

[1] I. Ekeland, R. Temam, Convex Analysis and semigroups, North-Holland Publishing Company, Inc. - New York, 1976.
[2] Gy. Maksa, K. Nikodem, Zs. Páles, Results on t-Wright convexity, C. R. Math. Rep. Acad. Sci. Canada, Vol. 13 (1991), 274-278.
[3] J. Matkowski, On a-Wright convexity and the converse of Minkowski's inequality, Aequationes Math. 43 (1992), 219-224.
[4] Zs. Páles, On two warible functional inequality, C. R. Math. Rep. Acad. Sci. Canada, Vol. 10 (1988), 25-25.

Deparment of Mathematics
Technical University
Willowa 2
PL 43-309 Bielsko-Biaea
Instytut of Mathematics
Pedagogical Uniwersity
Armil Krajowej 13/15
PL-42-200 Czȩstochwa

