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Abstract. In this work the subject of the application of clustering as a knowl-

edge extraction method from real-world data is discussed. The authors analyze

an influence of different clustering parameters on the quality of the created

structure of rules clusters and the efficiency of the knowledge mining process for

rules / rules clusters. The goal of the experiments was to measure the impact of

clustering parameters on the efficiency of the knowledge mining process in rule-

based knowledge bases denoted by the size of the created clusters or the size

of the representatives. Some parameters guarantee to produce shorter/longer

representatives of the created rules clusters as well as smaller/greater clusters

sizes.
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1. Introduction

For the last twenty years, there has been an enormous interest in integrating database
and knowledge-based system (KBS) technologies to create an infrastructure for mod-
ern advanced applications. The result of it are knowledge bases (KBs) which consist
of database systems extended with some kind of knowledge, usually expressed in
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the form of rules [1] – logical implications, that can usually be described in form of
equation (1):

condition1 & condition2 & ... & conditionn =⇒ conclusion, (1)

Such a natural way of knowledge representation makes rules easily understood by
experts and knowledge engineers (that are working with KBSs) as well as people not
involved in the expert system building (such as data scientists not acquainted with
given domain).

1.1. Rules as knowledge representation method

Rules are very specific type of data (knowledge) structure. Usually they are generated
from data stored in tabular form (f.e. decision tables). Methods used in order to
generate the rules, aims to create so called minimal rules, which means that the rules
achieved in this way, have got a short description and cover as many data from the
original dataset as possible. Every rule contains two parts: conditional (with at least
one premise) and decisional (usually with one conclusion). Sometimes (what makes
the analysis more complicated) conclusion of one rule may be a condition in others.
In this case it is said that such rules form a chain, and during the inference process
they are all processed as a cause and effect chain. Sometimes rules’ attributes are
weighted therefore the importance of some rules (given as a ordered set of attributes)
is higher than others because of difference in weights of their attributes and/or their
lengths. What is more, conditional and decisional part of a rule can be also treated
differently from each other, f.e. conditional part may have higher priority (greater
weights for premises than for a conclusion). All these circumstances make the rules
very specific kind of knowledge representation.

1.2. An efficiency of the knowledge mining process

KBs are constantly increasing in volume, thus the knowledge, often stored as a set
of rules, is getting progressively more complex and when the rules are not organized
into any structure, the KBS isn’t as efficient as it could be. There is a growing
research interest in searching for methods that could manage large sets of rules using
the clustering approach as well as joining and/or reducing rules [2]. Because of many
advantages of clustering algorithms [3, 4] it is possible to organize the rules in a
smart way. The aim of clustering algorithms is to group the rules into a set of groups
(f.e. the hierarchy) of similar rules. To achieve it, some kind of technique, that
allows describing similarity between rules, has to be proposed. In the literature there
are already a lot of methods of describing similarity between objects, that can be
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modified to work with rules as well. When two given rules are said to be the most
similar (by given similarity measure in a given step of clustering process), they are
meant to be clustered before the others. It influences on the further clustering steps.
Similarity measure used to find a pair of rules or groups of rules that are the most
similar in a given moment is called an intra-cluster similarity measure or inter-object
(inter-rule) similarity measure. The authors studied different intra-cluster similarity
measures [5] and choose the following three measures for experimental validation:
Gower’s measure [6, 7], Simple Matching Coefficient (SMC) [7] and Jaccard’s Index
[8] sometimes also called weighted similarity or weighted similarity coefficient [7].
They are further described and anylyzed in Section 2.1.1.

The analysis of the rules’ similarity can be based on either premises or conclusions
of the rules. In this reasearch rules are divided into a number of groups based on sim-
ilar premises in order to improve the inference process efficiency [9]. This approach
is dictated by the forementioned fact, that conditional parts of the rules are gen-
erally longer than their decisional parts, and thus making clustering more complex,
accurate and interesting. Moreover, the authors directed their research toward the
forward (data driven) inference process where the premises of the rules are the basis
of searching. To minimize the number of rules that needs to be read before KBS’s
anwser to given input is reached, instead of searching within the whole set of rules
(as in case of traditional inference processes), only representatives of groups would
be compared with the set of facts and/or hypothesis to be proved. The most rele-
vant group of rules is selected and the exhaustive searching is done only within this
group. This way, given a set of rules, new knowledge may be derived using a standard
forward chaining inference process, which can be described as follows: each cycle of
deductions starts with matching the condition part of each rule with known facts. If
at least one rule matches the facts asserted into the rule base, it is fired. It’s really
crucial to find and describe all the factors which influence clustering results and inter-
ference efficiency as it’d help in designing or partitioning of KBs in order to maximize
KBS’s effectiveness.

There is also the other type of cluster similarity measure – so called inter-cluster
similarity measure. It’s used to describe how much each group resembles one another
basing on their members (see the details in Section 2.1.2.).

Examining the influence of choosing different similarity measures on the efficiency
of clustering algorithms, is the main goal of this research. It’s crucial to answer the
question if a given similarity measure influences the shape of grouped KB’s struc-
ture. To have a chance to analyze it, the silimarity measures described in section 2.1.
were implemented by the authors. The result of this implementation is the CluVis

system, described briefly in Section 4. The system allows to examine different simi-
larity measures and methods of hierarchical clustering for any given knowledge base
in predefined form described further in [10].

The rest of the paper is organized as follows. We first mention all related efforts
in the study of rules clustering in Section 2., where the description of different inter
and intra cluster similarity measures were described. Section 3. focuses on two se-
lected visualization algorithms designed for hierarchical strucures. Short description
of the authors system CluVis can be found in Section 4., whereas Section 5. describes
experimental setup, evaluation methodology and the results on public data sets.
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2. Rules clustering

Nowadays mankind’s knowledge is growing rapidly. People are constantly developing
new ways of using this knowledge in practice. As a result KBSs came into being –
decision systems, in particular, are prime exmample of that. These systems, often
limited to only one domain, tend to store their knowledge in special form. Rule-based
knowledge bases (as mentioned in 1.) are most common, because it’s easier (for knowl-
edge engineers and experts) to present laws and rudiments of given domain in this
shape. Rules stored in knowledge bases are often unorganized as usually there’s no
reasonable way of doing so, because it’s hard (if not impossible) to judge eg. which
law or theorem is more important than the other. However, to ensure KBSs’ optimal
work, it’d be necessary to decrease amount of data that system needs to read to get
final conclusion. One way to achive that is proposing some kind of rules partitioning
that’d agregate similiar and separate different rules, describing each of such groups
with proper description (generalization of it’s members) and thus allowing searching
through KB from most general groups to specific rule and, ipso facto, successfully
decreasing amount of data read during generating KBS’s anwser. The same approach
may be neccessary during updating KB (deleting redundant rules etc.), where search-
ing through KB is also required. It’s possible to find such partitioning using data
exploration methods. The most natural approach seems to be clustering.

Clustering is one of the oldest and most common methods of organizing data sets.
The goal of clustering is to maximize intra-cluster similarity and minimize inter-cluster
similarity, thus creating a partition, where similiar rules are joined into one cluster
and rules different from others are singled out. During this unsupervised process
similiar objects (according to given similarity measure) are joined into groups thus
often decreasing amount of data required to be analyzed in order to extract knowledge
from examined data set. Several methods of clustering has been proposed, each of
them includes variety of different techniques. Due to forementioned fact selecting
proper algorithm is a nontrivial task as there are many factors to be considered. In
this work, sets of complex objects known as rules (denoted as Horn’s clauses) are
being examined. As the authors were aiming to find hierarchy-like partitioning that’d
ensure that finding specific rule is achieved through searching through more general
groups, hierarchical clustering methods were used. Hierarchical clustering has also
one more advantage. It doesn’t impose on any special methods of describing clusters
similarity and thus can be used for rules clustering without additional modifications.
To avoid increasing complexity of research the authors selected one of the most well
known algorithms from this popular group of techniques – Classical AHC algorithm
– and used to organize several KBs.

2.1. Similarity measures

Measuring similarity or distance between two data points is a core requirement for
several data mining and knowledge discovery tasks that involve distance computation.
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The notion of similarity or distance for categorical data is not as straightforward as
for continuous data. When data consists of objects that agregate both types at once
the problem is much more complicated. It is necessary to find a measure, that could
deal with this case.

2.1.1. Intra-cluster similarity measures

In this paper, the authors study a variety of similarity measures. Having a set of
attributes A and set of sets of their values V =

⋃
i Vi rules premises and conclusions

are build using pairs (ai, vj), ai ∈ A, vj ∈ Vi called descriptors D as a vector of lenght
equal to number of attributes in permise and conclusion of given rule, where i-th
position denotes the value of i-th attribute for a given premise/conclusion attribute.

In all similarity measures, described in this work, similarity S between two rules
ri and rj can be denoted as weighted sum of similarities sk considering k-th common
attribute of these rules. This can be written as equation (2):

S(ri, rj) =
∑

k:ak∈(A(ri)∩A(rj))

wksk(rik, rjk), (2)

where A(r) is set of attributes of rule r, wk is the weight assigned to k-th attribute
and rik and rjk are values of k-th attributes of i-th and j-th rule respectively.

SMC (simple matching coefficient) [7] is the simplest measure of similarity consid-
ered in this work. It handles continous attributes the same way it does with categorical
attributes, namely (equation (3)):

s(rik, rjk) =

{
1 if rik = rjk
0 otherwise

(3)

In this case, however, overall similarity of rules S is simple sum, as weight wk

of each attribute is equal to 1. Due to that fact this similarity measure tends
to favor rules with more attributes. More advanced form of this measure is Jac-
card index [8, 7]. It eliminates forementioned drawback of SMC by setting weight
wk = 1

Card(A(ri)∪A(rj))
, where Card : V → N is the cardinality of a set.

Last measure described in this work is Gower’s index [6]. This measure is most
complicated one, that the authors have used, as it handles categorical data differently
from numeriacal data. Similarity considering categorical data is count the same way
as in case of Jaccard or SMC. Similarity of continous attributes can be denoted as
following (equation (4)):

s(rik, rjk) =

{
1− |rik−rjk|

range(ak)
if range(ak) 6= 0

1 otherwise
(4)

where range(ak) = max(ak)−min(ak) is range of k-th common attribute.
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All measures described in this subsection were used as a parameter of classical
AHC algorithm in order to examine influence they have on resultant structure of
clustering. It was shown that f.e. some of them tends to generate structures with
larger number of ungrouped rules and that different inter-object similarity measures
influences average length of cluster representative, thus allowing one to consider KB
partitioning basing on cluster representatives length.

2.1.2. Inter-cluster similarity measures

Apart from the usual choice of similarity functions, linkage criterion must be selected
(since a cluster consists of multiple objects, there are multiple candidates to compute
the distance to). There are many possible ways of describing inter-cluster similarity.
The most popular among them are known as Single Link (SL), Complete Link (CoL),
Average Link (AL) and Centroid Link (CL) [3, 4, 11].

Single link is the most head-on approach, as it describes similarity of the clusters
basing on their most similar objects, thus in case of rules-clustering one may say,
that clusters of rules are as similar as their most common two rules. This method is
known to cause undesireable occurence called cluster chaining, wherein long clusters
are being created. In general, however, it’s not proper partitioning for given dataset
and thus another method should be proposed.

The most similiar to SL is method called Complete Link. Both of these methods
returns similarity of single pair of rules as similarity of two clusters, however, in case
of complete link, clusters are only as similar as their two most disrinct rules. The
values of CoL are obviously lower (on average) than in case of SL. It is known in the
literature (and also had been shown during experiments in this work) that CoL tends
to generate partitionings wherein there’s lower number of small groups and bigger
number of larger ones. Both of forementioned methods share a common drawback,
namely: they are sensitive to noisy data. The reason for that is that they both base
their result on single pair of rules instead of considering whole contents of the clusters.

Another inter-cluster similarity measure that was used in this work is Average
Link. Let Ci, Cj be two clusters of rules. Then similarity between Ci and Cj can be
defined by equation (5):

AL(Ci, Cj) =

∑
ri∈Ci

∑
rj∈Cj

S(ri, rj)

Ci ∗ Cj

(5)

In other words AL is described as mean similarity of all rules inside examined clusters.
It’s sensitive neither to noisy data nor to cluster chaining as it considers all rules that
are inside given clusters.

Another measure that considers all rules within given clusters is centroid link.
This one however, instead of considering similarity between rules that are inside ex-
amined clusters, considers only similarity between two virtual objects, called centroids
of clusters. Usually centroids are described as geometrical center of the cluster, how-
ever, in case of rules, defining geometrical center of cluster is non-trivial task, thus
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representative of this cluster was used instead. It was dictated by assumption that
representative of the cluster (further described in subsection 2.2.) is meant to be the
most general rule in the cluster – one may say most ,, centered ” one. Let c(Ci) be
centroid of i-th cluster. Then similarity between clusters Ci and Cj can simply be
defined as CL(Ci, Cj) = S(c(Ci), c(Cj)).

In previous authors’ researches it was noticed that the method of creating the
representatives are equally important with the clustering algorithm and similarity
measures used to clustering rules. In this work, further researches on this matter
were conducted.

2.2. Cluster’s representative

It is very important for data to be presented in the most friendly way. Sole visualiza-
tion of clustering (described further in 3.) is not enough, as it would only reduce the
whole pattern discovery to examining an accumulation of shapes, thus some kind of
symbolic description has to be proposed. Cluster representatives are the proposed so-
lution for this issue. There are many methods of creating representatives. In this work
representative aims to be an average rule of the cluster, basing on cluster’s content.
Its creation algorithm can be described as follows. Having as input data: cluster C,
and a threshold value t [%], find in the cluster’s attributes set A only these attributes
that can be found in t rules and put them in set A′. Then for each attribute a ∈ A′

check if a is symbolic or numeric. If it is symbolic then count modal value, if numeric -
average value and return the attribute-value pairs from A′ as cluster’s representative.
The representative created this way contains attributes that are the most important
for the whole cluster (they are common enough). This way the examined group is well
described by the minimal number of variable1. It should be possible to characterize
the clusters using a small number of variables (the number of attributes attained by
this method strongly depends on selected threshold value). It is very important to
examine the quality of created clusters and to generate the well-formed descriptions
for them, what is difficult especially when the objects of clustering are rules.

2.3. Clustering algorithm

As mentioned in section 2. Classical AHC algorithm was used to for rules clustering
in this work. It’s essential to point out that during each iteration step it joins only
two most similiar clusters (not all clusters with similarity exceeding given threshold).
Decision of choosing this algorithm over general AHC was dictated by the fact, that
selecting rational threshold value, especially when grouping complex objects such as
rules, would require deep analysis of each examined data set.

1 However the authors see the necessity to analyze the more methods for creating clusters’ repre-
sentatives and their influence on the resultant structure efficiency.
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Clustering algorithm used in this work agregates all the elements forementioned in
this section. As AHC algorithm doesn’t specify neither inter-object nor inter-cluster
similarity measure, they have to be precised as algorithm’s parameters. In this work all
measures specified in 2.1.1. and 2.1.2. were used in all possible configurations. During
each merging step created cluster is given a description, in form of representative,
generated in a way described in 2.2. It’s worth mentioning that representative is
created basing solely on rules within given cluster, not on representative of cluster
figuring higher in hierarchy.

The grouping is complete after selected number of groups is reached. The number
of produced clusters is in range from 1 to N , where N is the number of rules in exam-
ined knowledge base. After grouping is finished resultant structure can be visualized
using algorithms described further in 3.

3. Knowledge base visualization

The most common way of clustering presentation is tree like structure called dendro-
gram, however, it has some fatal flaws that makes it inadequate for researches such as
presented in this work. Among others, the most vital issue is that it isn’t suited for
representing large clusterings, as it quickly becomes less readable. This problem con-
cerns many visualization algorithms, but some of them loses their readability much
slower e.g. treemaps. In this work two treemap algorithms were used – rectangular
treemap [12] and circular treemap [13]. The differences between the two are very dis-
tinct for each of them base on different geometrical shapes and has different methods
of deploying them. In this work classical slice-and-dice deployment method was used
for rectangles as proposed in [12] and method described in [10] was used for circles.

Figure 1 presents the case of using the CluVis to cluster 42 rules in a given knowl-
edge base with 70 attributes into 10 groups. Clusters are presented graphically using
Circular Treemap (as selected visualization algorithm) and classical AHC (as clus-
tering algorithm) with Gower measure for inter-cluster similarity measure and (CL)
Complete link as intra cluster similarity measure. For this particular case the biggest
cluster’s size is 18 rules (which is 42% of all rules in KB), (denoted as J33) with the
representative’s length equal to 67 descriptors (which is also the maximum length for
representatives in general). The other clusters contains the following number of rules:
4, 4, 6, 1, 1, 1, 4, 2, 1.

Visualizations generated using these algorithms, without any additional features,
would only be accumulations of shapes. In some cases such solution would seem
sufficient, however, in general, especially when exploring large sets of rules, it is
confusing or chaotic. To make exploration of large KBs easier each visualization is
responsive. Each shape stores information about cluster it represents. Moreover there
is possibility of future examining objects agregated in cluster by selecting it. To ensure
that desired cluster is selected, active shape is highlighted. To make visualization even
more readable, colors (of the rainbow) were used to mark procentage size of the cluster.
Colors and their order were selected in such way to make it easy to remember.
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Figure 1. Sample treemap visualization.

4. CluVis

CluVis [10] is an application designed to group sets of rules generated by RSES [14]
and visualizing them using selected treemap methods. It is first application capable of
working on raw KBs as generated from RSES. It was successfully used in previous re-
searches to group and visualize medical knowledge bases generated from artificial data
sets available on [15] as well as one generated from real medical data [11]. Moreover,
it aggregates functionalities of both clustering and visualization software, making it
universal tool for exploring KBs. Along its main functionalities (many of which can
be seen in figure 2), described in more detail in sections 2. and 3. CluVis is capable
of generating reports of grouping (to txt or special xml files which can be opened
in such applications as e.g. Libre Calc) containing detailed information about each
obtained cluster and about clustering in general (number of nodes, min/max/avg rep-
resentative length...). It’s also possible to save generated visualization to png file as
well as to find best clustering (according to implemented cluster validation indexes –
MDI and MDBI – not discussed in this article). CluVis is an open source applica-
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tion written in C++11 using QT graphic libraries. It’s available in english and polish
and its source code can be downloaded from https://github.com/Tomev/CluVis.

Every XML report file, generated using the authors application, contains the fol-
lowing informations: index of an experiment (Index), the name of the knowledge base
file (Name of the base), the number of attributes (Attributes number), of objects
(Objects number), of nodes in the created hierarchy (Nodes number), of created clus-
ters (Clusters number). It also says what was the algorithm used to visualize the
groups of rules (X or Y), which clustering algorithm it uses, what was the intra-
cluster and inter-cluster similarity measure, what part of the rule (conditional or/and
decisional) was analyzed as well as the names of the biggest and the smallest cluster
(The biggest cluster / The smallest cluster). Moreover it gives the values for:
Coverage sum,
Biggest cluster size, Biggest representative length, Ungrouped objects,
Biggest representative size, Smallest representative size,
Average representative size, MDI\verb, MDBI. It also contains the details data of
each cluster, like Index, Cluster’s name, Cluster’s size,
Objects percent in cluster, Cluster’s nodes number,
Cluster’s nodes percent, Cluster’s coverage, Cluster’s coverage percent,
Cluster’s representative, Cluster’s representative length.

Then an example of the cluster representative (which contains 25 of descriptors)
may looks like:

(history_ringing=f)&(history_fullness=f)&(m_m_sn_gt_500=f)&

(m_s_sn_gt_2k=f)&(boneAbnormal=f)&(history_buzzing=f)&(m_m_gt_2k=f)&

(m_gt_1k=f)&(history_dizziness=f)&(m_s_sn_gt_1k=f)&(airBoneGap=f)&

(history_fluctuating=f)&(m_s_gt_500=f)&(age_gt_60=t)&(air=mild)&

(history_noise=t)&(m_p_sn_gt_2k=f)&(m_m_sn_gt_2k=f)&(history_heredity=f)&

(history_recruitment=f)&(late_wave_poor=f)&(m_at_2k=f)&(m_cond_lt_1k=f)&

(bser=MISSING)&(m_s_sn_gt_3k=f)=>(class=cochlear_age_and_noise)

Automatically created KBs (e.g. creating rules from dataset using LEM2 algo-
rithm) have a chance to contain some undesired rules (like ones that would never be
activated or are simply redundant). It is essential to maintain simplicity of KBs thus
some method of eliminating these rules is required. As CluV is is used to transform
unorganized KBs into organized ones, presented in form of responsive visualization
that enhances readability of KB, it’s a perfect tool for this task.

The process of organizing knowledge bases in CluVis is as follows. After im-
porting KB into the application and selecting clustering parameters grouping can
be performed. First selected file is scanned to see weather it has proper format. In
the next step data about attributes is gathered (such information as frequency of
each value of each categorical attribute, maximal and minimal values of continous at-
tributes...) as they are used in some similarity measures. Then rules are transformed
from lines of text into hashmaps, which are basically vectors2, which are stored as
a singular clusters. Then similarity matrix (which is triangle matrix holding informa-
tion about similarity between i-th and j-th cluster) is built using similarity measure
selected during first phase. Then two the most similiar clusters are joined, and the

2 The i-th variable value is accessed by it’s name in map, not by it’s index
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Figure 2. CluVis’s GUI.

similarity matrix is updated. During merging of two smaller clusters, their represen-
tative is calculated. There may be many possible stop conditions for AHC (e.g. end
when similarity of most similiar objects is equal to 0). CluVis ends clustering after
given (as clustering parameter) number of clusters is reached. The grouping ends
when stop contidion is satisfied (selected number of clusters is formed). As soon as
grouping is complete visualization can be generated.

Graphical representation of clustering can be performed in two ways – with fully
hierarchical view, or not. Visualization is responsive meaning that selecting a cluster
and clicking it with right mouse button will generate new visualization representing
internal structure of selected cluster. Considering that during each step of used AHC
algorithm only two objects are merged usually structure of internals is trivial (large
cluster + single object), however, it’s nonetheless a method of exploring KB by diving
deeper into it. To ensure proper direction of diving, one may generate a report from
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each cluster on current visualization and select one that seems most appropriate.
Sample visualization was presented on figure 1.

5. Experiments

In this section, an experimental evaluation of 3 similarity measures and 4 clustering
methods on 7 different KBs [15] is presented. Decision rules were generated from the
original data using RSES software and LEM2 algorithm [14]. The smallest number of
attributes was 5, the greatest 280. The smallest number of rules was 42, the greatest
490.

Table 1. Characteristics of the experimental data.

AttrN RulesN ClustersN UngroupedN
Arythmia 280 154 12,5±2,52 5,78±5,68
Audiology 70 42 6,92±3,02 3,56±2,85

Autos 26 60 7,89±2,25 3,57±2,92
Balance 5 278 19±9,00 7,46±8,70
Breast 10 125 11±1,01 5,08±3,35
Diab 9 483 28,74±19,13 11,75±13,75

Diabetes 9 490 29,5±19,64 13,58±14,87

Table 2. Data gathered during experiments.

BRS ARS WARS BRL BCS
Arythmia 151,9±4,6 133,4±11,6 2,1±0,2 147,4±1,5 111,5±41,7
Audiology 67,0±0,4 49,7±1,2 1,5±0,4 66,8±0,5 29,8±7,8

Autos 11,9±1,9 8,6±1,7 3,2±0,6 10,7±0,5 38,3±14,0
Balance 4±0 3,5±0,4 1,4±0,2 4±0 180,2±93,5
Breast 9±0 7,1±1,1 1,4±0,2 9±0 7,6±32,8
Diab 5,4±0,5 3,4±0,8 2,9±0,7 4,8±0,6 314,8±137,2

Diabetes 5,6±0,7 3,3±0,8 2,9±0,7 4,9±0,3 335,2±140,7

All the details of analyzed datasets are included in table 1 and 2. The meaning of
the columns in table 1 and 2 is following:

AttrN – number of different attributes occuring in permises or conclusions of rules
in given knowledge base.

RulesN – number of rules in examined knowledge base.

ClustersN – number of nodes in dendrogram representing resultant structure.
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UngroupedN – number of singular clusters in resultant structure of grouping.

BRS – Biggest representative size – number of descriptors used to describe longest
representative.

ARS – Average representative size – average number of descriptors used to describe
cluster’s representatives.

WARS – Weighted Average representative size (AttrNumber) – division of average
number of descriptors used to describe cluster’s representative in give data set
and number of attributes in this data set.

BRL – Biggest representative length – number of descriptors in biggest cluster’s
representative.

BCS – Biggest cluster size – number of rules in the cluster that contains the most
of them.

The performance of different similarity measures was evaluated in the context of
knowledge mining using informations like: the number of rules clusters (CN – Clus-
ters number), the number of ungrouped rules (U – Ungrouped objects), the sizes
of the biggest cluster (BiggCluS – Biggest cluster size) as well as its representative
(BiggRepS – Biggest representative size) and the representative the most specific
(BiggRepL – Biggest representative length). More specific means more detailed,
containing a higher number of descriptors.

The optimal structure of KBs with rules clusters should contain the well separated
groups of rules, and the number of such groups should not be too high. Moreover,
the number of ungrouped rules should be minimal. Creating an optimal description
of each cluster (representative) is very important because they are used further to
select a proper group (and reject all the others) in inference process, in order to
mine knowledge hidden in rules (by accepting the conclusion of the given rule as a
true fact). The experimental results verifies the initial hypotheses about the inter
and intra cluster similarity measures. As can be seen from Tables 3 and 4 no single
measure is always superior or inferior. This is obvious since each KB has different
characteristics (different number of attributes and/or rules) as well as different types
of attributes. The use of some measures however, guarantees achieving more general
or more specific representatives for created rules clusters. There are some pairs of
measures that exhibit complementary performance, i.e. one performs well where the
others perform poorly and vice-versa.

Table 3. Influence of inter-cluster similarity measures on respective values.

CN BiggCluS BiggRepL U BiggRepS
Gower 16,6±14,1 157,2±147,4 35,7±51,2 8,1±9,9 36,4±52,3
SMC 16,4±14,3 155,6±143,6 35,4±50,8 5,6±6,7 36,3±52,4

WSMC 22,1±16,5 211,5±152,8 5,7±2,0 6,1±9,1 6,0±1,9

Table 3 and figure 3 show that choosing different intra-cluster similarity measures
does not influence the overall efficiency (the exception is Jaccard’s index).
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Figure 3. Ungrouped rules – interval plot for inter-cluster similarity measures.

Table 4 (with figure 4) however shows that the size of the biggest cluster and
the number of ungruped rules depends on the inter-cluster similarity measures. The
experiments confirmed that the SL method produces straggling clusters, called chain-
ing, where clusters may be forced together due to single elements being close to each
other, even though many of the elements in each cluster may be very distant from
each other. CoL, on the other hand, tends to find compact clusters.

Table 4. Influence of intra-cluster similarity measures on respective values.

SL CL AL CoL
CN 16,5±14,2 16,5±14,1 16,6±14,1 16,6±14,1
U 12,1±11,8 2,1±3,1 4,5±5,2 10,4±10,9

BigCluS 213,5±166,2 84,0±89,8 157,2±139,8 167,8±142,6
BigRepL 35,4±50,4 35,1±50,6 35,4±50,4 35,4±50,5
BigRepS 36,0±51,8 36,4±51,5 36,5±51,5 36,5±52,2
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Figure 4. Ungrouped rules – interval plot for intra-cluster similarity measures.

6. Summary

This article presents how exploration of complex KBs can be performed using clus-
tering and visualization of rules clusters and presents the application of clustering as
a knowledge extraction method from real-world data. Clustering a large set of objects
(rules in this case) is not enough when exploring such an enormous amount of data
in order to find some hidden knowledge in it. The extraction of valuable knowledge
from large data sets can be difficult or even impossible. Modularization of KBs (by
clustering) helps to manage the domain knowledge stored in systems using the de-
scribed method of knowledge representation because it divides rules into groups of
similar forms, context, etc. The authors analyze an influence of different clustering
parameters on the quality of created structure of rules clusters and the efficiency of the
knowledge mining process for rules / rules clusters. In the course of the experiments,
three different similarity measures and four clustering measures have been examined
in order to verify their impact on the size of the created clusters and the size of the
representatives. The experiments have revealed that there is a corelation between the
parameters used in the clustering process and future efficiency levels of the knowledge
mined from such structures: some parameters guarantee to produce shorter/longer
representatives of the created rules clusters as well as smaller/greater clusters sizes.
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The authors propose to use clusters of rules and visualize them using treemap algo-
rithms and hope that this two-phase way of rules representation allows the domain
experts to explore the knowledge hidden in these rules quicker and more efficiently
than before. In the future, the authors plan to extend the software’s functionality,
especially in the context of parameters used in clustering and visualizing procedures,
as well as importing other types of data sources. It would be easier then to support
human experts in their everyday work by using the created software (CluVis) in work
with many expert systems.
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pp. 377–389.

[8] Jaccard P., tude comparative de la distribution florale dans une portion des alpes
et des jura. Bulletin de la Socit Vaudoise des Sciences Naturelles, 1901, 37, pp.
547–579.
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