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Abstract

Channel coding is an important consideration influencing the design of a com­

munications system. In particular, error control coding is used to detect and/or 

correct errors and line coding to modify the characteristics of the transm itted 

signal to suit other constraints of the channel, such as restricted frequency re­

sponse.

This thesis explores aspects of channel coding for such constrained channels 

with emphasis given to error control coding.

Specifically, the first chapter of this thesis presents a general overview of channel 

coding, presents the organisation of the thesis and details the main contribu­

tions.

The second chapter gives an overview of the principles of error control cod­

ing and line coding and explains a few terms that are commonly used in the 

remainder of the thesis.

One kind of constrained channel investigated here is the binary asymmetric 

error channel, where error transitions from one to zero occur with different 

probability than from zero to one. Error correcting codes for this channel and 

their properties are investigated in the third chapter.

The fourth chapter introduces disparity control coding, and proposes a new 

error control coding structure that satisfies disparity constraints for both binary 

asymmetric and symmetric error channels.



Run length limited channels are the subject of the fifth chapter. A new cod­

ing structure is proposed that offers advantages in performance over the one 

conventionally used for error control in such channels.

The sixth chapter introduces peak power constraints present in multi-carrier 

systems. Codes that can be used limit the peak to average power ratio of such 

systems are presented and the application of the coding structure of the fifth 

chapter is also discussed.

The final chapter brings the thesis to a conclusion by summarising the main 

results and proposing areas where further work may be fruitful.
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1 Introduction

This thesis addresses a number of points relevant to coding for communica­

tions transmission and storage. In general, coding is the mapping of one data 

sequence into another in such a way that a desired property is achieved.

Figure 1.1 shows the main categories that coding theory deals with. These are 

cryptography, where the source data are modified to improve security, channel 

coding where redundancy is added in order to improve reliability and source 

coding tha t attem pts to remove any redundancy present in the source data. 

This thesis deals with channel coding, which is also shown as subdivided into 

error control and line coding.

Coding

Channel
coding

Line
coding

Cryptography
Source
coding

Error control 
coding

Figure 1.1: Subdivisions of coding

Both line and error control coding are used to improve the reliability of the 

channel, in two different ways. Line coding modifies the properties of the trans­

m itted sequence in a way that aims to increase the probability of error free
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transmission. In contrast, error control coding is used to correct and/or detect 

transmission errors after they have occurred.

The motivation for this work was that the techniques normally designed for 

generalised channels are not applicable to certain constrained channels. In 

general, we may wish to match the signal to the channel in more subtle ways 

than normal, or to incorporate more than one coding objective in a single code. 

An example of the former is coding to control errors which affect asymmetrically 

“I ’s” and “O’s” (asymmetric channel). An example of the latter is when a 

channel requires both line and error control coding: the use of cascaded codes 

has some disadvantages compared with a single code designed to meet both 

requirements.

1.1 O rganisation o f th is thesis

Following this introduction, the next chapter provides a brief description of the 

basic principles of channel coding. Several commonly used terms are explained 

and some commonly used terms are introduced. Continuing this chapter, line 

and error control codes are discussed in more detail, and their various subdivi­

sions are described.

Following on from that introduction, the third chapter deals with error cor­

recting codes for an asymmetric channel. This is a channel where the normal 

assumption that all kinds of errors are equally probable does not hold. The use 

of specially designed codes gives better results. Several new properties of such 

codes are introduced and some codes with higher rate than those previously 

known are presented.
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The fourth chapter deals with coding for channels where both disparity control 

(see section 2.3.1) and error control are desirable. A new error correcting line 

code structure is proposed that can be applied to codes designed for the binary 

symmetric and asymmetric channels.

The fifth chapter deals with coding for channels where run length limiting com­

bined with error protection is required. High rate codes tha t can be combined 

with systematic error control codes are discussed that exhibit negligible reduc­

tion of the error correcting capability of the error control code. Furthermore, 

a technique to design line codes is proposed that optimises the source word to 

channel word mapping to allow efficient implementation of the code.

The sixth chapter discusses coding techniques that can be applied in systems 

where multiple carriers are utilised simultaneously. The main aim here is to 

reduce the peak to average power ratio of such systems, with a small increase 

in redundancy and a low level of implementation complexity.

Finally, the seventh chapter concludes the thesis and provides some suggestions 

for future work.

1.2 O utline o f m ain contributions

The main contributions of this thesis are the following:

• Identification of previously unknown asymmetric error correcting code prop­

erties.

• Development of higher rate asymmetric error correcting codes than  previously 

published ones.
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• Elaboration of a new disparity error correcting line coding structure.

• Demonstration for the first time of asymmetric error correcting line codes for 

disparity control.

• Presentation of a coding structure that can achieve overall high coding rate in 

combined run length limited codes together with conventional systematic error 

correcting codes, without a noticeable increase in error rate.

• Development of optimisation techniques that provide a reduction in the hard­

ware complexity of line codes.

• Study of the trade-off between implementation complexity and performance in 

high rate peak to average power ratio reducing codes for m ulti-carrier systems.

The following papers have been published or have been accepted for publication 

during the course of this study.

[1] S. Fragiacomo, C. Matrakidis, and J. J. O ’Reilly, “A new error correct­

ing line code,” in IT S /IE E E  ROC&C International Telecommunications 

Symposium, (Acapulco, Mexico), pp. 54-58, Oct. 1996.

[2] S. Fragiacomo, C. Matrakidis, and J. J. O’Reilly, “Exploiting soft decision 

decoding for error correcting line codes,” in IEEE ICCS/ISPACS Confer­

ence Proceedings, vol. 2, (Singapore), pp. 638-642, Nov. 1996.

[3] S. Fragiacomo, C. Matrakidis, and J. J. O’Reilly, “Soft decision error cor­

recting line code for optical data storage,” in LEOS Conference Proceed­

ings, vol. 1, (Boston, USA), pp. 201-202, Nov. 1996.
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[4] S. Fragiacomo, Y. Bian, A. Popplewell, C. Matrakidis, and J. J. O ’Reilly, 

“An accelerated simulation technique for evaluating communication sys­

tems using EEC,” in Proceedings of the European Conference on Networks 

and Optical Communications, vol. 2, (Antwerp, Belgium), pp. 145-148, 

June 1997.

[5] C. Matrakidis and J. J. O’Reilly, “A block decodable line code for high speed 

optical communication,” in IEEE International Symposium on Information 

Theory, (Ulm, Germany), p. 221, June 1997.

[6] S. Fragiacomo, C. Matrakidis, and J. J. O’Reilly, “A class of low complex­

ity line codes,” in IEEE International Symposium on Information Theory, 

(Ulm, Germany), p. 219, June 1997.

[7] S. Fragiacomo, G. Matrakidis, and J. J. O’Reilly, “Class of low complexity 

line codes for optical data storage and communications,” in The Pacific 

Rim Conference on Lasers and Electro-Optics, (Ghiba, Japan), pp. 92-93, 

July 1997.

[8] C. Matrakidis and J. J. O’Reilly, “Limiting the maximum run-length of 

block turbo codes,” in Proceedings of the International Symposium on 

Turbo Codes & Related Topics, (Brest, France), pp. 220-222, Sept. 1997.

[9] S. Fragiacomo, C. Matrakidis, and J. J. O’Reilly, “Performance aspects 

of a class of low complexity line codes,” in International Conference on 

Signal Processing Applications & Technology, vol. 1, (San Diego, USA), 

pp. 632-636, Sept. 1997.
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[10] s. Fragiacomo, C. Matrakidis, and J. J. O’Reilly, “Multicarrier transmis­

sion peak-to-average power reduction using simple block code,” Electronics 

Letters^ vol. 34, pp. 953-954, May 1998.

[11] S. Fragiacomo, C. Matrakidis, A. Popplewell, and J. J. O’Reilly, “Novel 

accelerated technique for low bit error rate communication systems,” lE E  

Proceedings on Communications, vol. 145, pp. 337-341, Oct. 1998.

1.3 Sum m ary

This introductory chapter has provided an indication of the motivation for and 

general orientation of the study of communications coding to be addressed in 

the remainder of this thesis, together with an outline of the main contributions 

and details of the results published to date. Given this we turn  our attention in 

the next chapter to reviewing briefly some relevant aspects of channel coding.
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2 A spects of channel coding

2.1 Introduction

Channel coding is the process whereby the reliability of a channel is improved 

by adding redundancy into the transm itted data. Channel coding is usually 

subdivided into two categories, line coding and error control coding, th a t use 

this redundancy in different ways. Line coding modifies some properties of the 

transm itted sequence trying to improve the reliability of the transmission, while 

error control coding attem pts to correct and/or detect errors at the receiver.

The main aim of this chapter is to provide a brief introduction to those two 

channel coding categories. We begin by outlining in section 2.2 the common 

terms tha t are going to be used in the remainder of the thesis. In section 2.3 

we turn  our attention to briefly describing the background and key ideas of line 

coding. Section 2.4 consists of an overview of the principles of error control 

coding. Finally, the chapter concludes with a short summary.

2.2 B rief description o f com m on coding term s

There are several common terms relating to channel coding tha t are used 

throughout this thesis. The more important ones are as follows.

2.2.1 Code rate

One quantity of interest is code rate. This is a measure of the redundancy added 

to the transm itted sequence in order to achieve the desired properties. It is the 

ratio of the number of uncoded information symbols (often bits) divided by
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the number of encoded symbols that represent the same information. If several 

coding stages are cascaded, then the overall rate is the product of the rates of 

all stages.

2.2.2 Hamming distance

The Hamming distance between two sequences is the number of symbol posi­

tions in which the two sequences differ. Also of importance is the minimum 

Hamming distance of a code, which is the minimum Hamming distance calcu­

lated between all possible pairs of co de-words in the code.

2.2.3 Error correcting/detecting capability

The error correcting/detecting capability of a code is the maximum number 

of single symbol or bit errors that are guaranteed to be corrected/ detected 

by the code. However, depending on the actual code used and the decoder 

implementation, there may be specific patterns of more errors tha t can be cor­

rected/ detected.

2.2.4 Error extension

When errors are present in the received sequence that cannot be corrected, the 

resulting sequence may exhibit more errors after decoding than those th a t were 

originally present. This is called error extension. The two measures of error 

extension commonly used are the average error extension and the maximum 

error extension. Usually error extension is more im portant for line codes where 

typically no error correcting capability exists or is not exploited.
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2.2.5 Systematic codes

W hen the information symbols that are to be transm itted are present unmodi­

fied in the encoded sequence then the code is a systematic one, otherwise it is 

called non-systematic. The symbols of a code-word of a systematic code can be 

divided into information symbols and redundancy symbols. Many commonly 

used error correcting codes are systematic, while most line codes are not.

2.3 Line coding

Lines codes are codes designed to modify the characteristics of the transm itted 

data  in a way that suits the transmission channel. This improves the reliability 

of the transmission. The primary common requirements of a line code are[12]:

• to minimise vulnerability to inter-symbol interference (ISI) and noise;

• to enable extraction of a timing reference; and

• to achieve the first two ends with only modest redundancy.

The two most common categories of line coding are disparity control and run 

length limiting.

2.3.1 Disparity control line coding

In a binary coding system, disparity is a measure of the imbalance between ones 

and zeros in the transm itted sequence. It is the difference between the number 

of transm itted ones and zeros. If disparity is bounded, then the transm itted 

sequence has no power at very low frequencies. This allows AC coupling of the
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transm itter and the receiver and facilitates transmission through channels with 

poor signal to noise ratio at low frequencies [13].

A disparity control line code utilises the added redundancy to limit the disparity 

of the transm itted sequence between bounds at any point in the sequence. This 

is usually achieved by bounding the value of the disparity at the end of each 

code-word.

2.3.2 Run length limiting line coding

A run is a sequence of consecutive identical symbols; run length is the number 

of consecutive identical symbols. Run length limiting coding is used when the 

length of the runs needs to be limited. An upper limit allows the extraction 

of the timing information from the transm itted sequence by guaranteeing the 

presence of enough signal transitions. A lower limit in the run length is also 

used on several systems to reduce the inter-symbol interference [14].

2.4 Error control coding

Error control codes (ECCs) are codes designed to detect or correct errors that 

were inserted during the data sequence transmission. The two main categories 

of ECC are forward error correction (EEC) where some error correction is per­

formed at the receiver, and automatic repeat request (ARQ) where the receiver 

detects the errors and requests the retransmission of the corrupted informa- 

tion[15].

Figure 2.1 shows the family of error correcting codes. The first two sub­

categories are binary and multi-level codes. Both of these categories can be
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Block

Binary

Non-linear

Error control 
Codes

Linear 

e.g. Hamming
Linear 

e.g. Convolutional

Multi-level

Tree

Figure 2.1: Family tree of error correcting codes

split into two other sub-categories, namely block and tree codes. Block codes 

only depend on the current information word for encoding and decoding, while 

tree codes utilise memory and the encoding and decoding of each code-word 

is dependent on a specific number of previous code-words. Furthermore, both 

tree and block codes can be subdivided into linear and nonlinear codes. Convo­

lutional codes are an important category of linear tree codes, while Hamming, 

BCH and Reed-Solomon are three well known categories of linear block codes. 

Reed-Solomon codes are multi-level, while the other are usually binary.

The error correcting capability t of a code is usually (i.e. for symmetric errors) 

dependent on the minimum Hamming distance d between all pairs of code­

words. For such codes this relationships is given by the formula

d = 2t 1.
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Alternatively, the same code can be used to detect up to 2t errors or to correct 

2t erasures.

Another im portant distinction in forward error control systems is to do with the 

way the decoder performs the detection. The simplest decoder architecture only 

uses the received word hard-limited to ones and zeros (in the binary case) and 

assumes that possible errors are equally probable in all the symbols. This kind 

of decoder is called a hard decision decoder. An alternative is a decoder tha t 

uses information about the probability of error in all symbols, obtained from 

the analogue value of the received information. These are called soft decision 

decoders and can typically correct more (up to 2t) errors than hard decision 

ones. However, their implementation is more complicated and under extreme 

conditions there is the possibility that the may correct fewer errors than a hard 

decision decoder.

2.5 Sum m ary

This section has introduced some key terms and ideas in channel coding, iden­

tifying specifically the usually separate and distinct codes for line and error 

control coding. W ith this background we are now in a position to tu rn  our 

attention to some of the more subtle factors that it may be desirable to address 

with channel coding. In particular, chapter 3 addresses error control coding 

designed for the asymmetric error channel.
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3 Asym m etric error control codes

3.1 Introduction

This chapter begins with a brief description of the asymmetric channel. Some 

well known properties of asymmetric Z-channel error correcting codes are then 

described, followed by a number of properties that were discovered during this 

study of the channel. Those properties are subsequently used to derive upper 

bounds on the size of codes that correct asymmetric Z-channel errors.

3.2 A sym m etric errors

00

1
1-p

Figure 3.1: A general binary communication channel

The general behaviour of a binary communication channel is shown in figure 3.1. 

To the left is the input of the channel and to the right is the output. W hen we 

transm it a 1 at the input of the channel, we expect to receive a 1 at the output. 

However there is a (usually small) probability that at the output we will receive 

a 0. This is called a 1-error, and the probability that it will occur is shown in 

the figure with the symbol p. On the other hand, if we transm it a 0 and receive
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a 1, then we have a 0-error, and its probability is shown in the figure with the 

symbol q.

In most cases, those two probabilities are considered to be independent and 

equal. In such cases we have what is known as the binary symmetric channel.

There are some cases though, where these two probabilities cannot be considered 

equal. Then, we have an asymmetric error channel.

1
1-p

Figure 3.2; Z channel

One such (extreme) case is the Z-channel, which is shown in figure 3.2. In this 

case, the probability of a 0-error is zero, but the probability of 1-error is p. 

This is the case in some optical communication systems [16] and some data 

storage systems [17].

It is clear that the asymmetric errors can be considered as a special case of 

symmetric errors and treated as such, neglecting the asymmetry. However, if 

we take advantage of the knowledge we have of the nature of the errors then it 

may be possible to design more efficient communication systems.
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3.3 A sym m etric d istance

An im portant concept for the understanding of Z-channel error-control codes 

is the asymmetric distance.

0 0 1 1

I\ A
V

B 1 0 0 0

Figure 3.3: Illustrating the quantity A'(x, u) and the 

asymmetric distance of two binary vectors: A (A ,B ) =  1,

A (B , A) =  2 and d^(A , B) =  max{A(A, B), A (B , A)} =  2

The asymmetric distance is best defined using the quantity A (x , u) which is 

defined by A (x, u) =  \{i\xi =  OAu% =  1}|, where x, u are equal length and with 

symbols = 1 ,2 ,... .  This means that A (x, u) is the number of positions

where x  is zero and u is one.

Figure 3.3 demonstrates the one directional nature of A (x, u). In the above 

example, A (A , B) =  1 and A (B , A) =  2.

Now, the asymmetric distance u) is defined as

dy (̂x, u) =  max{A(x, u), A (u, x)}.

So, in the example shown in figure 3.3, B) =  2.

This compares to the well known Hamming distance which is defined as

d//(x, u) =  A (x, u) +  A(u, x).

29



0 0 1 1

I\ l\

\l M

B 1 0 0 0

Figure 3.4: The Hamming distance of two binary 

vectors d //(A ,B ) =  A (A , B) +  A (B , A) =  3

In figure 3.4 we see the same two vectors, only this time the arrows are bidi­

rectional, denoting the symmetric nature of the Hamming distance. In this 

example, d//(A , B) =  3.

As we can easily see, d^(x, u) < d/f(x, u) < 2d^(x, u). The exact relation 

between dA and dn  is

2dy^(x, u) =  d//(x, u) +  |w(x) -  tc(u)|,

where tc(x) is the Hamming weight of the binary vector x  and is equal to the 

number of “I ’s” in the vector.

3.4 Error correcting capabilities o f a code C

The error correcting capabilities of a code C  can be described by using two 

quantities, the minimum asymmetric distance A, and the minimum Hamming 

distance d.

The minimum Hamming distance is defined by

d = min{d//(x, u) | x, u G C; x  ^  u}
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and the minimum asymmetric distance by

A =  min{d^(x, u) | x, u G C; x  u}.

As is the case between the asymmetric and the Hamming distance of two code­

words, it is fairly easy to show that A  < d.

Error

!----------

000 001 o il 111
Figure 3.5: An error path between two code-words 

with dn = 3 in a symmetric error channel

Code C  can correct up to K  symmetric errors when 2K  +  1 < d. An example 

of why this is the case can be seen in figure 3.5. In this example the two code­

words A  =  {0, 0,0} and B =  {1,1,1} are shown along with a possible error path  

between them. The Hamming distance between these words is 3. If during the 

transmission through a symmetric error channel, the word {0,0,1} is received, 

there are two possible cases. Either A was transm itted and one error occurred, 

or B  was transm itted and two errors occurred. Assuming the probability of one 

error occurring is bigger than the probability of two errors occurring, we have 

to assume that one error occurred. This however means tha t we can’t correct 

two errors in such a code.

However, C  can correct up to T  asymmetric Z-channel errors, when T  + 1  < A. 

An example of this can be seen in figure 3.6. In this example, the same code­

words are used as in figure 3.5. The asymmetric distance between A  and B
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Error

A H -----------( B

000 001 o il  111
Figure 3.6: An error path between the same code-words 

as in Fig. 3.5 in the Z-channel. Note tha t dA is also 3

is also 3. Now if the word {0,0,1} is received after the transmission through 

a z-channel, we know that B was transm itted and two errors have occurred. 

There is no way that A  was transm itted and one error occurred, due to the one 

directional nature of the errors in this channel. (Note the arrows in figure 3.6).

We have seen an example, and it can be proved that for a given code the 

maximum values of T  and K  have the relationship Tmax > d^max be. a code 

can correct at least as many asymmetric Z-channel errors as symmetric ones. 

This is opposite to the relationship between the symmetric and asymmetric 

distance, A  < d.

However, Varshamov[18] has proven that most linear codes can correct the same 

number of symmetric and asymmetric Z-channel errors, so in order to gain from 

the use of asymmetric codes, nonlinear codes have to be used in most cases.

An interesting point is tha t the asymmetric errors tha t can be corrected using 

a code C  don’t have to be all 1-errors or all 0-errors, but can be certain com­

binations. So, a more general expression for the error correcting capabilities 

of a code C  is that the code can correct up to T% 1-errors and To 0-errors if 

Tq +  Ti -1- 1 < A. As an example, on a generalised asymmetric channel where 

a single 0-error is more probable than three 1-errors, a code with asymmetric
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distance 4 can be used to correct any combination of up to a single 0-error and 

up to two 1-errors.

We can also have codes that can correct either symmetric or asymmetric er­

rors. The necessary and sufficient condition for a code C  correcting either K  

symmetric or T  asymmetric errors where T  > K  is given in [19], and is

d > K  + T - \- l  A A > T  +  1.

3.5 R elation  betw een  th e asym m etric Z—channel error correcting and  

sym m etric error correcting capabilities

A code C  with minimum asymmetric distance A and minimum Hamming dis­

tance d can correct up to T  =  A — 1 asymmetric Z-channel errors or up to K  

symmetric errors if d > 2K  -|- 1.

From the definitions of d and A it is clear that

A < d < 2A.

If K  and T are the maximum number of symmetric and asymmetric Z-channel 

errors tha t C  can correct, then we have the following cases;

If d is odd, then d =  2K  -f 1 and

2 K + l  = d < 2 A  = 2(T + l ) ^  K  < T + ^  

and since K  and T are integers,

K  <T .
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If d is even, then d = 2 K  +  2 and even simpler

2K + 2 = d < 2 A  = 2 { T ^ l ) ^  K  <T .

So, even though d > A , K  < T  and C  can correct at least the same number 

of asymmetric Z-channel errors as it can correct symmetric ones, which was 

expected since asymmetric Z-channel errors are a special case of symmetric 

errors.

3.5 C ode word properties

A code C  with code-words of length n and minimum asymmetric distance 

A(A < n) has the following properties:

On a code C with minimum asymmetric distance A, there can be one and only 

one code-word with weight less than A.

If there is no code-word with weight less than A then the all zero code-word 0 

can be added to the code. For each code word u, where w{u) > A we have 

dA(u,0) =  w{u) > A.

Suppose there are two code words x, u with weight less than A. From the

definition of dn  it is obvious that d//(x, u) < w(x) 4- w{u). Then, assuming

w(x) > w{u) we have

2dA(x, u) < w{x) +  w{u) +  \w{x) — w{u)\ = 2w{x.) < 2A.

So there can be at most one code word with weight less than A.

Similarly, there can be one and only one code-word with weight more than 

n — A. This means that if A > ^ then C  can have a maximum size of two 

CO de-words.
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I f  a code C contains a code-word with weight less that the minimum asymmetric 

distance A , then this code-word can be substituted with the all zero code-word 

0, without decreasing the minimum asymmetric distance of the code.

Suppose X  is the code-word with weight less than A. Then for each code-word 

u  in the code, where u /  x we have w{u) > ic(x) and

2d^(u, x) < w(u)  +  w(x) +  \w(u) — tc(x)| =  2w{u) =  2d^(u, 0).

In the same way, the code-word with weight more than n — A can be substituted 

with the all one code-word 1.

3.5.1 New properties

In this section, some new properties of the code C  with code-words of length 

n  and minimum asymmetric distance A(A < n) are presented, together with 

some constructions for such codes.

A  code C with minimum asymmetric distance A can be turned into a code with 

the same minimum asymmetric distance containing at least one code-word o f 

weight A.

The code is first transformed so that it includes the all zero code-word 0 as 

described earlier. Then, any code-word with weight A has distance A from 0, 

which means tha t potentially it can be part of C. Let’s say that the code-word 

with the next biggest weight is x and has weight A +  /c. Then, if we set to 

zero k bits tha t are one from this code-word, we end up with a code-word x '
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with weight A. In this case, for any code-word u  G C,where u  ^  x, 0 we have 

u) > d//(x , u) -  A: so

2dA(x% u) > d/f (x, u) -  /c +  \w{u) — (ic(x) — k)\

= djy(x, u) +  |tc(u) — w{x)\ =  2d^(x, u).

As in the previous cases, a code can be transformed to have at least one code­

word with weight n — A.

A  code C with code-words of length n and minimum asymmetric distance A, 

with A  < ^  can have at least two code-words o f weight A .

As shown in the previous case, C  can be transformed to have the all zero code­

word 0 and a code-word u  with weight A. If the code word with the next 

biggest weight is x  and has weight A +  A:, then it can have at most k common 

ones with u. If they have m  common ones, then d//(x, u) =  2A +  A: — 2m, and 

we know that

2d/t(x,u) =  d //(x ,u ) +  |u;(x) — w(u)| > 2A

=> 2A +  A: — 2m — |A +  A: — A| > 2A k > m.

So, if A: =  0 we have two code-words in C  with weight A tha t have no 

common ones, which is the necessary condition for their asymmetric distance 

to be A. On the other hand, if A; ^  0 then if we delete k ones from x  

including all common ones with u, then we end with a code word x ' with

weight A, which has asymmetric distance A from 0 and u. For every other
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code-word v G C, where v ^  0 ,x ,u , we have d //(x ',v )  > dii/(x, v) — k so 

2dy (̂x% v) > d//(x, v) -  /c +  |w(v) -  (w(x) -  k)\

=  d//(x, v) +  |ic(v) -  w(x)| =  2dA(x, v).

Again, we can transform C if n > 2A to have at least two code-words with 

weight n — A.

A corollary of the above statement is that if n =  2A, then C  can have up to 4 

code-words, one with weight 0, one with weight n  and two with weight A.

A  code C with code-words of length n and minimum asymmetric distance A, 

with n > IA  can have at least two code-words o f weight A and at least another 

two code-words of weight n — A.

Lfj rfi Lfj rfi ffi
w = 0 0- •0 0- 0 O' 0 O' 0 O' 0
w =  A 1- • 1 1- '1 O' 0 O' 0 O' 0
w =  A 0- •0 O' 0 1' '1 1 ' '1 O' 0
w = n - -A 0- •0 1- '1 1' '1 O' 0 1 ' '1
w = n - A 1- • 1 O' 0 O' 0 1 ' '1 1' '1
w = n 1- • 1 1' '1 1 ' '1 1 ' '1 1 ' '1

Figure 3.7: A code with n =  |"|A]

Figure 3.7 shows the construction of a code that has n — [5A /2] and has six 

code-words, with the above mentioned properties. Therefore, any code with 

n  > 5A /2 can have at least six code-words since according to the properties 

discussed earlier it can be transformed to one tha t will have at least two code 

words with weight A and at least another two code-words with weight n — A.
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Finally, the following construction shows that a code with even n and n  =  3A 

can have at least 12 code-words.

A
2

A
2

A
2

A
2

A
2

A
2

1C =  0 0- •0 0- •0 0- •0 0- •0 0- •0 0- •0
w = A 1- •1 1- • 1 0- •0 0- •0 0- •0 0- •0
w = A 0- •0 0- •0 1- • 1 1- • 1 0- •0 0- •0
w = A 0- •0 0- •0 0- •0 0- •0 1- • 1 1- • 1
w — n /2 0- •0 1- • 1 0- •0 1- • 1 1- • 1 0- •0
w = n /2 1- •1 0- •0 1- • 1 0- •0 1- • 1 0- •0
w - n /2 0- •0 1- • 1 1- • 1 0- •0 0- •0 1- • 1
w =  n /2 1- • 1 0- •0 0- •0 1- • 1 0- •0 1- • 1
w = n — A 0- •0 0- •0 1- • 1 1- • 1 1- • 1 1- • 1
w = n — A 1- • 1 1- • 1 0- •0 0- •0 1- • 1 1. • 1
w = n — A 1- • 1 1- • 1 1- • 1 1- • 1 0- •0 0- •0
w = n 1- • 1 1- • 1 1- • 1 1- • 1 1- • 1 1- • 1

Figure 3.8: A code with n =  3A, when A is even

3.5.2 Code size

From the above sections we can derive the following bounds for the size Z  of 

an asymmetric Z-channel error control code with code-words of length n  and 

minimum asymmetric distance A, (A < n):

Z  = 2 n < 2A

% =  4 2A < n <  5A /2

Z >  6 5A /2 < n

The first statement, as well as the third one have been proved above. For the 

second statement, we already know that Z > 4 for n > 2A. Therefore the only 

thing to show is that after the all zero code-word and the two with weight A 

there is only one more code-word for n < 5A/2.
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Let n = 2A +  x with x < A /2 and ci, C2 be the two code-words with weight A. 

The minimum weight for a fourth code-word with distance at least A from ci 

and C2  is 2(A — x) +  X =  2A — x. Now, n — (2A — x) = 2A -\-x — 2A +  x =  2x and 

since x < A / 2 this code-word is in the area where only one code-word exists. 

Therefore the code can have up to 4 code-words.

3.6 Integer program m ing upper bound

This section describes the procedure used to calculate the upper bound Z{n,  A) 

to the size of an asymmetric Z-channel error correcting code C  with code-words 

of length n  and minimum asymmetric distance A.

For this purpose, relations between the number of code-words with different 

weight are used. Let Ai  be the number of code-words that have weight i. 

Kl0ve[2O] proves that

w

A{ s , 2A , w — j ) Aj  < A ( n s , 2 A , w )
j — W  — S

with s =  0 , 1 , . . . ,  rc and tc =  0 , 1 , . . . ,  n. A{n, d, w) is the maximum number of 

code-words in a code of length n and minimum distance d that have constant 

weight w. When the value of A{n,d,w)  is not known, the lower bound can be 

used on the left hand side while the upper bound can be used on the right hand 

side. Tables of bounds on the size of A(n, d, w) can be found in the appendix.

Furthermore, some additional constraints can be exploited. As we have seen 

earlier,
Aq — A ^  — 1,

Ai  =  0 Z =  1 , . . . , A  — 1,72 — A +  1, . . . ,72 — 1,

A a  > 2  n > 2A and

> 2  72 > 5A/2.
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It must be noted here that the quantities Ai  are integers, therefore integer 

programming can be used in place of linear programming to give more accu­

rate results. For this purpose, the branch and bound technique was imple­

mented as described by Sultan[21], with additional refinements described by 

Walukiewicz[22], Some additional constraints given by Weber et. al. [23] can 

also be utilised to improve the accuracy of the results.

,A 2 3 4 5 6 7

5 6 2 2 2 — —

6 12 4 2 2 2 —

7 18 4 2 2 2 2
8 36 7 4 2 2 2
9 62 12 4 2 2 2

10 108-117 18-uj 6 4 2 2
11 180&-210 30+ 8 4 2 2
12 340z-410 54-63 12 4 4 2
13 652b-786 98-108 18 6 4 2
14 12046-1500 186-208 30-34 8 4 4
15 2216z-2828 266-384 44-46 12 6 4
16 42326-5430^ 364-734 66-88 16-17 7 4
17 79686-10374 647-1278 122-160 26+ 8 4
18 146246-19898 1218-2380 234-308 36-44 12 6
19 280326-38008 2050-4242 450-602 46-80 15*-16+ 7
20 538566-73174^ 2564-8068 860-1144w 54-138 22*-25 9
21 1015766-140798 4251-14162 1628-2094 62-230 32*-36 12
22 1957006-271953 8450-26679 3072-4081 88-412 48*-64 14,-16
23 349536-523584 16388-50200 4096-7260 133-742 65*-110 19,-22

Table 3.1: Bounds on the asymmetric Z-channel error 

correcting code size. Upper bounds obtained from linear 

programming, with new tighter ones shown in bold, 

except + obtained through exhaustive search and w 

from [24]. Lower bounds are from [24], except s[25], 

z[26], b[27] and * found with new search algorithm
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Table 3.1 shows the upper bounds obtained in this way, with the exception of 

the values marked by +  that are discussed later and the ones marked with w 

tha t were taken from reference [24]. In that reference, there were a few tighter 

upper bounds for the case A =  5. However these depend on the values of 

A{n, 10, w), which reference [28] states are unreliable, as further discussed in 

the appendix.

The upper limits noted with +  were obtained by performing an exhaustive 

search on all words that have weight w > n /2  with n odd. The upper limit 

is clearly twice the number of code-words found with this search. The upper 

bounds that are tighter that any previously published ones are shown in bold.

3.7 Lower bound on th e num ber of code-w ords

Table 3.1 also shows the lower bound to the number of code-words. Most of 

these values were taken from [29], except for the values noted with s[25], z[26], 

6[27] and * tha t will be discussed later.

All values in the table with up to 12 code-words have been verified as exact 

by using exhaustive search. However, this search becomes computationally 

infeasible as the number of code-words increases. In practice, it was impossible 

to exhaust the search space for any code with more than 12 code-words.

Therefore it is appropriate to use heuristic search algorithms to try  and find 

codes larger than the existing ones. One such procedure was developed by 

Saitoh[25]. The code space is partitioned into sets tha t have the same weight. 

A “greedy algorithm” is then used to search each set, either starting from the 

one with weight w /2  and proceeding towards the sets with weights A and n —A, 

or the other way round. Each set was searched in lexicographic order.
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Based on this technique, a new procedure was developed. The original algorithm 

was searching the code space in order, while the new one was modified to search 

using a random sequence. After a few trials employing different random search 

sequences, some new codes were obtained. These code sizes are marked with 

an asterisk in the table.

3.8 Sum m ary

In this chapter, the basic properties of the asymmetric error Z-channel were 

discussed, together with the properties of the error correcting codes used specif­

ically for this channel.

It was shown, tha t such a code can be modified to include the all zero and all one 

code-words. Furthermore, if the code can have more code-words then it can be 

modified to include at least two with weight equal to the minimum asymmetric 

distance A. Moreover, two code constructions were presented showing tha t a 

code with length n = [ |A ]  can have at least six code-words and a code with 

n =  3A can have at least twelve code-words when A is even.

Finally, new lower and upper bounds on the number of code-words th a t are 

available for a specific code-word length and asymmetric distance were ob­

tained. The upper bounds were calculated by either solving integer programmes 

incorporating those properties, or by performing exhaustive searches on subsets 

of the code space. The lower bounds were improved by obtaining new codes 

using a heuristic search technique.

Having identified some key properties of asymmetric Z-channel error control 

codes, we will now turn  our attention to a different aspect of channel coding.
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namely disparity control line coding, and in particular combined disparity and 

error control coding. The properties of asymmetric Z-channel error control 

codes will be utilised in this respect to investigate disparity control codes for 

this channel as well.
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4 Combined disparity and error control coding

4.1 Introduction

There are two areas of coding that are of particular interest in the design of a 

communications system. These are error control coding, used to detect and/or 

correct errors and line coding, used to modify the characteristics of the trans­

m itted signal to match the requirements of the channel.

This chapter deals with the effects of the interaction of those two coding opera­

tions when present in the same system. First the disparity control requirements 

are discussed and a commonly used coding technique is presented. Then the ad­

vantages of a combined disparity and error control code are discussed and a new 

code structure is introduced. Finally, codes for combined disparity and asym­

metric Z-channel error control coding are identified. The chapter concludes 

with a short summary.

4.2 Line coding

Roughly speaking, the objective of a line code is to improve the quality of 

the transm itted data. In this respect, the primary requirements of a line code 

are [12]:

• to minimise vulnerability to ISI (inter-symbol interference) and noise;

• to enable extraction of a timing reference; and

• to achieve the first two ends with only modest redundancy.
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While the achievement of any two of the above is easy, meeting all three is more 

complicated.

The two most widely used categories of line codes are the disparity limited line 

codes and the run length limited line codes.

4.2.1 Disparity limited line codes

Disparity is a measure of the imbalance of the symbols being transm itted, and 

can be defined as follows (with the definition being applicable to any radix r). 

Let ai be the zth digit of a sequence, and ôï =  r  — 1 — be its complementary

value. Then the disparity of the digit is dj =  — 0 7 , and the disparity of a

n-digit word is
n  n

d =  ^ 2  di = 2 ai - n{r — 1).
i=l X—1

If we are using binary codes, as we will be doing for the rest of this chapter, 

then the disparity of a code word is given as

d = 2 ^ 2  ai — n.
Z = 1

This is equal to the number of ones minus the number of zeros.

If the quantity of interest is the disparity of a single binary code-word c, then 

is called the Hamming weight of c, and is represented by w{c). Then,

d = 2w{c) — n.

In figure 4.1 an example of three code-words of length n =  4 along with their 

corresponding disparity is given.
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Code-word Disparity

0

B

0 1 0 1

1 0 1 1

0 1 0 0

+2

-2

Figure 4.1: Some code-words and their disparity

W hat we are really interested in is that the disparity of a transm itted signal 

should be bounded. This means that the imbalance of transm itted ones and 

zeros will never exceed a fixed value. This way we can achieve a frequency 

response with no DC component[30, 31], which in effect limits the inter-symbol 

interference [12]. The disparity of the transm itted signal is calculated by ac­

cumulating a sum of the disparities of all the transm itted words. This sum is 

called the running disparity. If the running disparity is bounded, then it is clear 

th a t the disparity of the transm itted signal is also bounded.

4.3 A ltern ate  dictionary line codes

One category of line codes that can provide bounded disparity is called alternate 

dictionary line codes. The idea behind them is straightforward: In the simplest 

form the encoder has a choice of two code-words, one with positive and one 

with negative disparity for each input word and selects the appropriate one 

according to the sign of the running disparity. So, while the running disparity 

is positive, only code-words with negative disparity are used, and when the
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running disparity is negative only code-words with positive disparity are used. 

A simple binary implementation adds one zero bit to each word in the input 

sequence, and the the alternate words are these and their inverse (which have 

opposite disparity) [32].

input +  disparity —

000 n i l 0000
001 1101 0010
010 1011 0100
Oil 1001 0110
100 0111 1000
101 0101 1010
110 0011 1100
111 1110 0001

Table 4.1: A 3B4B alternate line code with the 

last bit indicating inversion of the code-word

Such a code is shown in table 4.1. This is a 3B4B code because it encodes 3 bits 

of input information into 4 bits that are to be transmitted. The encoding is 

done as follows: At the end of every three bits a zero is added. Then depending 

on the running disparity the new code-word is transm itted as is or inverted, 

with the last bit used to indicate the inversion at the decoder.

For the case where the number of bits n in the codeword is even, there exist 

words tha t have zero disparity. The transmission of such a word doesn’t affect 

the running disparity, so it can be used in both dictionaries [33].

Table 4.2 gives an example of such a simple alternate dictionary line code. 

This is also a 3B4B code. The disparity of this code is bounded between 0 

and +2, since six of the output words have disparity 0, and the remainder are 

mapped from two alternate pairs, each with ±2 disparity. This code offers
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input + disparity —

000 1011 0100
001 0011
010 0101
Oil 0110
100 1001
101 1010
110 1100
111 1101 0010

Table 4.2: A 3B4B alternate line code employing 

zero disparity words in both dictionaries

tighter disparity bounds than the code in table 4.1 whose disparity is bounded 

by ±3.

o 0.: 0)Q.

0.6

0.4

0.2

0.2 0.3 0.4 
N orm alised

0.5 0.6
N orm alised  F req u en cy

0.7 0.9

Figure 4.2: Frequency response 

of the 3B4B line code of table 4.2
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In figure 4.2 we see the frequency response of the 3B4B line code from table 4.2; 

this was obtained using the procedure described in [34, 35, 36, 37]. There is 

no DC component in the frequency response and the low frequency content is 

limited, the main objective which improves the immunity of the coded signal 

to inter-symbol interference.

4.4 Error correcting line codes

A common requirement in a coding system is to have both error protection and 

line coding properties.

Line
encoder

Line
decoder

ECC
decoder

ECC
encoder

Figure 4.3: A cascaded error control and line coding system

A commonly used arrangement in such a case is shown in figure 4.3. A line code 

is used to give the required line coding properties to the transm itted sequence, 

while an outer error control code is used to correct any errors that occur. There 

are two significant drawbacks in such a system. The first is tha t both codes 

add redundancy, and thereby the overall rate of the code may be significantly 

reduced. Furthermore, many line codes give rise to what is known as error 

extension: Since the line codes offer no error control, it is possible tha t an error 

th a t occurred in the channel will confuse the line decoder and will result in 

more errors tha t the error control code will have to correct.

To avoid both of those problems, the family of error correcting line codes has 

been proposed [38, 39]. Their main feature is that the transm itted code words
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have the desired line coding properties, while at the same time they are valid 

error correcting code words. Therefore, it is possible to effect the error correc­

tion before the line decoding, avoiding possible error extensions. Moreover, it 

is possible to achieve higher coding rates by using such codes,albeit potentially 

at the expense to some degree of the overall system complexity.

One such code that can be used when bounded disparity is desired together with 

error protection has been proposed[39] that partitions an error correcting code 

into two alternate dictionaries that have positive and negative disparity respec­

tively. The code used is a systematic linear transparent code and is divided in 

such a way that every code-word corresponds to its binary inverse in the alter­

nate dictionary. Using this partition scheme, one bit in the transm itted word 

is used to indicate whether the code-word has been inverted for transmission, 

while the code-word is still valid.

To achieve higher efficiency, a scheme with more complicated encoding and 

decoding has also been proposed [40] where code-words that have zero disparity 

are used in both of the alternate dictionaries. Using this method, the number 

of available entries in the dictionary increases.

4.4.1 Proposed technique.

This technique can be further extended by making the following observation: 

the CO de-words in the alternate dictionaries tha t correspond to the same input 

information need not satisfy the Hamming distance constraint between them. 

An error tha t will fail to be corrected this way (provided that it is within the 

error correcting capabilities of the code) will transform the code-word to the 

alternate one which will be decoded as the same information. An extreme case
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is the previously nientioned teclini(iue, where both alternate code-words are the 

same, and therefore have zero Hamming distance.

110

Oil

010

000

101

100

001

Figure 4.4: The 3 bit code-word space

Figure 4.4 helps illustrate this point. Here, the eight possible 3 bit code-words 

are dis])layed as a cube. All code-words that have distance one are connected 

with a line. It is fairly easy to see that a disparity code with minimum Hamming 

distance two can only have three code-words.

010

Oil

000

001 101

110

100

Figure 4.5: Two pairs that form a 3 

bit error correcting line code
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However, we can select two alternate pairs, with each pair having distance two 

from the other pair, while the code-words of each pair have distance one. This 

is shown in figure 4.5, where each pair is connected with a thick line. This 

simple example is used to demonstrate that higher rate codes are possible using 

this technique.

4.4.2 Example.

It is possible to design error correcting line codes tha t have more code-words 

pairs than the partition into two sets of the longest possible error correcting 

code of the same length.

A more practical example is given in table 4.3. This is a 9-bit distance 3 code 

where the possible number of pairs is 21. However, the maximum number of 

CO de-words in a 9-bit error correcting code is 40 [28]. Therefore this code can 

give error correcting line codes with more code-word pairs than is possible using 

a normal error correcting code. In the table, the pairs where the distance of the 

pairs is less than 3 are shown with an underlined word number. Only three of 

the 2 1  pairs meet the minimum distance constraint.

Figure 4.6 shows the power spectral density of this code.

This code was obtained using a computer search employing a “greedy algo­

rithm ” . Originally, the set of code-words with positive disparity was searched 

in order and each word that had minimum distance at least three from all se­

lected words was also selected. Then, for all possible pairs of the initial set of 

words, the procedure was repeated with the pair having exchanged positions. 

The best code obtained with this procedure was retained and the set of code­

words with negative disparity was searched for the alternate code. This was
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word + disparity —

1 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0

2 0 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1

3 0 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1

4 0 1 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0

5 0 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1

6 0 1 1 0 1 1 0 1 0 0 0 1 0 0 1 0 1 0

7 0 1 1 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0

8 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 1

9 1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1 0

1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 1 0 0 0

1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0

1 2 1 0 1 0 0 1 1 0 1 1 0 1 0 0 0 1 0 0

13 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 0 0 0

14 1 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1

15 1 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0

16 1 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1

17 1 1 0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 0

18 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1

19 1 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1

2 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0

2 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 0

Table 4.3: An error correcting alternate line code 

with 9 bits and minimum distance 3. The underlined 

words show the pairs with distance less that three

done with a similar procedure that selected words tha t had distance less than 

three from their pair whenever possible. The whole procedure was repeated 

until no further improvement was obtained.

4.5 A sym m etric error correcting codes

It is also possible to design error correcting line codes suitable for the asymmet­

ric Z-channel. Such a code can be split in two subsets of positive and negative
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Figure 4.6: Frequency response of the 

new 9-l)it error correcting line code

disparity that can be alternatively used depending on the running disparity of 

the transniitted sequence.

The case where the asymmetric distance A is two (that is, single asymmetric 

Z channel error correcting codes), will be studied in more detail.

For a code with even word length, no improvement is possible with the proposed 

technicpie. Since the words with zero disparity can be transmitted in any case, 

the only improvement in code size would be possible if pairs of words with posi­

tive and negative disparity were possible with distance less than two. However, 

the difference in Hamming weight and the Hamming distance between the words 

of every possible pair are both greater than or equal to two. Therefore, from
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the formula 2dA{a^b) = d,H(a,b) +  \w{a) — w{b)\ we get that the asymmetric 

distance of the pair will be greater than or equal to two.

However, in the case where the length of the code-words is odd, improvements 

are possible. It can be shown that any single asymmetric Z-channel error 

correcting code tha t consists of words of only positive (or negative) disparity 

can form one half of an alternate asymmetric Z-channel error correcting line 

code. Specifically, for two single asymmetric Z-channel error correcting codes, 

one with positive and one with negative disparity, a co de-word of one code will 

have distance less than two with at most one code-word of the other code.

Assume three codewords c%, C2 and cg, with w{ci) < w{c2 ) < w{cs). Since 

2dA{cL, b) = dnicL, b) \w{a) — w(b)\, we have that

2 dA(ci, C2 ) + 2 dA(ci, C3 ) =  d//(ci, C2 )+ d //(c i, C3)-\-w{c2)-w{ci)-\-w{c3)-w{ci).

However, d//(a, b) +  d //( 6 , c) > d//(a, c) gives us

2dA(ci, C2 ) +  2dA(ci, C3 ) > d//(c 2 , C3 ) +  w{c2 ) -  w{ci) +  w{cs) -  w{ci) ^

<=> 2 c/a(ci, C2 ) +  2 dA(ci, C3 ) > 2 d^(c 2 , C3 ) +  2 w{c2 ) -  2w{ci) <#> 

dA(ci, C2 ) +  dA(ci, C3 ) > dA(c2 , C3 ) +  w{c2 ) -  w{ci).

If Cl has negative disparity, and C2 , C3  have positive disparity, then w(c2 ) —

tu(ci) >  1  and since ^^(< 2̂ , C3 ) > 2  we have

dA{ci,C2) +  dA(ci,C3 ) > 3.

Therefore, only one of C2 and C3  -  say C2  -  can have asymmetric distance less 

than two from c i , and in the same way it can be shown that no other code-word 

of negative disparity can have distance less than two from C2 .
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This helps the search for asymmetric Z-channel error correcting line codes with 

asymmetric distance at least 2 and an odd word length. For example the pro­

cedure that was described earlier can be used with the simplification that only 

the positive disparity set needs to be searched since the existence of a negative 

counterpart is guaranteed. Assuming the code with the most code-words is 

found, a code with the same size but negative disparity words can be generated 

by inverting all words. Then all pairs of distance less than two can be identified, 

and the remaining code-words can be paired arbitrarily. The search space can 

be reduced further by employing the properties of the asymmetric Z-channel 

error correcting codes discussed in the previous chapter. The all one codeword 

and two other codewords of weight n — 2 can be selected as parts of any code, 

simplifying the search.
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Figure 4.7: Power spectral density of the new 1 1 -bit 

asymmetric Z-channel error correcting line code
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( 0 5 f , 0 0 0 ) , ( 0 b 7 , 0 0 3 ) , (Oeb,OOc) , ( O f c , 1 2 0 ) , ( O f f , 506 )  , ( 1 2 f , 4 1 0 ) ,

( 1 7 3 , 1 3 3 ) , ( 1 7 d , 2 e 4 ) , ( 1 9 d , 0 9 d ) , ( l b a , 2 8 0 ) , ( I c 7 , 0 c 7 )  , ( l d b , 6 4 5 )  ,

( l e e , 4 b 2 ) , ( 2 3 b , 2 2 8 ) , ( 2 6 7 , 03 2 )  , ( 2 7 0 , 5 5 2 ) , ( 2 9 0 , 2 9 6 )  , ( 2 a d , l l l ) ,

( 2 c f , 6 8 2 ) , ( 2 d 5 , 0 4 9 ) , ( 2 f 2 , 4 0 5 ) , ( 2 f 9 , 4 e 8 ) , ( 3 1 7 , 0 6 4 ) , ( 3 3 f , l 0 O ) ,

( 3 4 d , 4 c O ) , ( 3 5 a , 3 1 a ) , ( 3 6 b , 11 c )  , ( 3 7 4 , 3 7 0 )  , ( 3 8 b , 2 5 0 ) , ( 3 a 6 , 0 9 8 ) ,

( 3 b l , 3 9 1 ) , (3bc,474), ( 3 d 6 , 3 2 c ) , ( 3 e 8 , 1 4 2 ) , ( 3 0 f , l b 4 ) , ( 3 f 5 , 4 4 3 ) ,

( 3 f a , 3 8 8 ) , ( 4 3 d , O a l ) , ( 4 6 e , 4 4 e )  , ( 4 7 7 , 6 d 0 ) , ( 4 8 f , 4 8 b ) , ( 4 b b , 5 9 8 ) ,

( 4 d 3 , 7 0 0 ) , ( 4 d d , 5 0 d ) , ( 4 e 5 , 4 a 5 ) , ( 5 1 b , 2 0 6 ) , ( 5 3 6 , 4 0 a ) , ( 5 4 f , 4 5 9 ) ,

( 5 5 5 , 1 5 5 ) , ( 5 6 9 , 5 6 1 ) , ( 5 7 a , 2 5 c ) , ( 5 7 f , O f l ) , ( 5 9 0 , 2 3 5 ) , ( 5 a 3 , 1 8 4 ) ,

( 5 a c , 0 1 b ) , ( 5 a f , 3 4 4 ) , ( 5 b 5 , 7 0 3 ) , ( 5 c a , 4 9 4 ) , ( 5 d 7 , 0 d a ) , (5 f0 ,0 5 6 ) ,

( 5 f 9 , 6 1 1 ) , ( 6 1 f , 5 c 4 ) . ( 6 4 b , 5 3 0 ) , (656,078), ( 6 6 d , 5 2 a ) , ( 6 7 1 , 2 6 1 ) ,

(67b,2bO), ( 6 9 9 , 0 a 6 ) , ( 6 a a , 2 a a ) , ( 6 b 4 , 2 8 5 ) , ( 6 b d , 1 9 2 ) , ( 6 c c , 6 8 c ) ,

( 6 d a , 4 1 7 ) , ( 6 d f , l a 9 ) , ( 6 e 3 , 3 c 2 )  , ( 6 e e , 0 3 e ) , ( 7 0 0 , O c c ) , ( 7 2 5 , 7 a 0 ) ,

( 7 3 3 , 2 c 9 ) , ( 7 3 8 , 6 3 8 ) , ( 7 5 9 , 2 5 3 ) , ( 7 5 0 , 3 2 2 ) , ( 7 6 2 , 6 6 2 )  , ( 7 6 7 , 5 8 1 ) ,

( 7 8 7 , 2 0 f ) , ( 7 9 2 , 7 4 8 ) , ( 7 9 b , 6 2 4 ) , ( 7 a 9 , 4 2 9 ) , ( 7 b 6 , 2 4 a ) , ( 7 c l , 7 1 4 ) ,

( 7 c d , 0 6 d ) , ( 7 e 4 , 1 2 5 ) , ( 7 f 3 , 1 8 e ) , ( 7 f c , 1 6 6 ) , ( 7 f f , 1 4 b )

Table 4.4: New 11-b it single asymmetric Z-channel 

error correcting line code with 95 code-word 

pairs (in hexadecimal). Underlined are the 

pairs with asymmetric distance less than two

Table 4.4 shows, in hexadecimal, the 95 pairs that form an 11-b it code with min­

imum asymmetric distance between pairs at least 2. This compares favourably 

to the code that can be constructed from the best known asymmetric Z-channel 

error correcting code, tha t has 180 codewords [27] giving up to 90 pairs. This 

code has 16 pairs with asymmetric distance less than two, shown underlined in 

the table. Figure 4.7 shows the power spectral density of this code.
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This code was generated with the above procedure, with an added step. After 

a code of 94 code-words was generated, an added optimisation step was used. 

This tried to improve all subsets of the code with size 94 — k, where k was 

progressively increased, by exhaustively searching all possible combinations of 

the remaining words with positive disparity. The result of 95 words was obtained 

for k =  5. For values of k higher than 6  this optimisation was found to be 

computationally infeasible.
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Figure 4.8; Power spectral density of the reduced 

11-bit asymmetric Z-channel error correcting line code

This code can be transformed to satisfy a tighter disparity bound, by removing 

the all one and all zero code-words. The power spectral density of the resulting 

94 word code is shown in figure 4.8, where a small reduction of the low frequency 

content can be seen.
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4.5.1 Alternative encoding scheme.

Another improvement that recpiires more complicated encoding is possible using 

a technicjue similar to that described in [9]. This requires that the code-words 

are paired in such a way that words with high positive (negative) disparity are 

])aired with words with low negative (positive) disparity. The encoder can then 

select the code-word that gives a value of disparity closer to zero which on 

occasion will have the same sign as the running disparity. A small example will 

illustrate the point. If the current disparity is —1 and the words in the pair 

that is to be transmitted have disparities of +7 and —1, selecting based on the 

sign the disparity would become + 6 , while selecting the other one the disparity 

becomes —2.
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Figure 4.9: Power spectral density of the same 

1 1 -b it code using the more complicated encoder

59



The code tha t was given in table 4.4 was designed for use with this technique, 

and the resulting power spectral density is shown in figure 4.9. A considerable 

improvement in the low frequency content is evident from this graph. Removing 

the all one and all zero words from this code makes no apparent difference in the 

low frequency content, which is an indication that the variance of the disparity 

is very low.

4.6 Sum m ary

In this chapter, the basic forms of line coding were discussed, as well as the 

need for combined error control and line coding schemes. The family of error 

correcting line codes that limits the low frequency content of the transm itted 

sequence by limiting the disparity of the transm itted sequence was presented. 

The requirements of such codes were discussed in the context of channels dis­

playing both symmetric errors and asymmetric Z-channel errors and a new class 

of such codes was introduced that is shown that to have more code-words than 

previously published ones for some specific cases.

Two such examples of disparity limiting error correcting codes were presented, 

th a t achieve higher rate than the presently known ones. One is a 9-bit single 

symmetric error correcting code with 21 pairs of code-words. The other is a 

11-bit single asymmetric Z-channel error correcting code with 95 code-word 

pairs.

Finally, an alternative encoding scheme was proposed that uses more compli­

cated encoding rules than the traditional one. This is shown to achieve tighter 

disparity bounds and consequently better low frequency suppression, using the 

above mentioned single asymmetric Z-channel error correcting code.
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Disparity control is but one common feature which may be incorporated into 

a line code. Another, and sometimes quite separate, requirement can be to 

limit the lengths of “runs” of identical symbols. A category of codes that can 

be used in such situations are called run length limited (RLL) codes. The 

following chapter considers this class of codes and their combination with error 

control coding.
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5 Combined run—length limited and error control coding

5.1 Introduction

There are certain channels, where it is advantageous to transm it sequences with 

limited runs of consecutive identical symbols. As an example, there is evidence 

th a t the error performance of long-haul high speed optical communication sys­

tems, employing optical amplifiers, can be improved if maximum run-length 

limited sequences are transmitted. In an experimental system, the bit error 

rate of a link was found to be markedly higher when a long m-sequence (with 

runs of the order of 30 bits) was used to generate the input data, compared 

with the results obtained using a short m-sequence (with runs of the order of 

7 bits) [41]. This indicates that there is potential benefit in using run-length 

limited coding.

Since systematic error control, typically based on Reed-Solomon (RS) codes, is 

now employed for such systems, it is appropriate to devise arrangements tha t 

enable run-length limiting to be incorporated. In this particular context it is 

im portant to note that the data rates are very high ( 1  G b/s or greater) so tha t 

any proposed code must be of relatively low complexity if it is to be practically 

realisable [42].

ECC Line O , Line ECC
encoder encoder decoder decoder

Figure 5.1: Conventional cascaded coding arrangement
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A conventional coding arrangement used in such a system is shown in figure 5.1. 

However, this technique cannot be used with a soft decision decoder for the 

error control code, since its line decoding operation eliminates the analogue 

information from the channel. In such a system, a systematic line code has 

to be used so that the decoding consists of extracting the information bits 

retaining the analogue information. The disadvantage of this approach is tha t 

the maximum run is longer than what is possible with a non-systematic code.

Furthermore, this arrangement has the disadvantage tha t error extension is 

present from the line decoder before the error control decoder. Since a typical 

line code has no error control capabilities, any errors in the channel during the 

transmission of a co de-word may result in a completely different code word 

after decoding. However, when RS coded data are used with a block decodable 

line code, the input size of the line code word can be selected to match the 

symbol size of the error control code. This avoids error extension due to the 

line code since it is restricted in only one n-b it symbol of the RS code [43]. The 

disadvantage of this approach is that the maximum rate of the line code tha t 

can be used is n /(n+ 1). If a higher-rate line code is used, the error extension of 

the line code will affect more symbols and in order to achieve the same residual 

bit error rate, the use of a more powerful RS code is required.

5.2 O verview

To combat those problems, several attem pts have been made to invert the order 

of the error correcting and line codes. In such schemes the error correction takes 

place before the line decoding.
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Figure 5.2: Bliss’ coding scheme

In an attem pt to solve the error extension problem, Bliss[44] proposed encoding 

the information with a line code before the error control encoding. Then, the 

parity information is encoded with a second line code. The encoding arrange­

ment is shown in figure 5.2. Immink[45, 46] proposes a scheme that employs an 

added lossless compression stage before the error control encoding to improve 

the tolerance to burst errors. A comprehensive overview of such schemes with 

emphasis to applications in magnetic recording is presented in [47].

ECLC ( ) , ECC Line
encoder decoder decoder

Figure 5.3: Error correcting line code 

encoding and decoding arrangement

Furthermore, Popplewell[48, 49] proposed a class of codes called error control 

line codes (ECLC) where the code-words transm itted in the channel are simul­

taneously valid error correcting co de-words, and line co de-words. Therefore 

they can be decoded first by the error correcting code and then by the line code 

as shown on figure 5.3.

5.3 Proposed  line code

In this chapter a new procedure which allows block decodable line codes which 

exhibit tighter run-length bounds to be used is presented [5]. This technique also
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utilises two cascaded codes with the line code encapsulating the error control 

code, allowing error control decoding before line decoding. Since the analogue 

value for each bit is available, soft decision error control decoding is possible. 

However, before the transmission of the coded sequence, an added step takes 

place. This step distributes a part of each error control code word in a predefined 

way tha t guarantees the limiting of the maximum run-length.

Error control 
encoding

Bit
shuffling

Line
encoding

Figure 5.4: Proposed coding arrangement

This procedure requires that the error control code is a systematic one. Fig­

ure 5.4 shows the steps used during encoding.

run-length limited 
coded bits

Cq C, K

parity bits 
(no run-length limits)

UK+1

V__ V JL

^ 0  ^ 1  ^ K + l u N

u N

K

Figure 5.5: Shuffling of the bits to satisfy run-length bounds

During line encoding, the information symbols are encoded, generating a block 

of run-length limited data. This block is then encoded using an error control 

code. The effect is tha t part of the resulting code word is encoded with a run - 

length limited code, while the parity bits have no run-length limitations. To
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combat this we shuffle the bits so that the parity bits are distributed as single 

bits in appropriate positions in the line coded part. Such an example can be 

seen in figure 5.5. In the worst case, using a regular line code and providing 

any two parity bits have a sufficient number of run-length limited bits between 

them, this stage will increase the maximum run by one.

1 1 0 0 1 1 0 1

/
/

I
\
\

1 1 0 0 X 1 1 0 1

Figure 5.6: Example of bit insertion in a code-word

In figure 5.6, this increase of the run length is illustrated. One codeword of such 

a code is displayed. A 8 -b it long code-word has one bit inserted in the middle. 

The maximum run-length in this code word was two before the insertion and 

it becomes three afterwards.

However, by correctly designing the line code, it is possible in most cases to 

incorporate the inserted bits within the maximum run-length. This can be 

achieved by designing the line code to have unconstrained bit positions where 

single bits can be inserted without affecting the maximum run[50]. Such a code 

has the property th a t it can be encoded and decoded independently of the value 

of those bits.

Furthermore, in certain error correcting and line code combinations, it is possi­

ble to leave some of the information symbols uncoded and to distribute them, 

together with the parity symbols, in available unconstrained bit positions of the
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run-length limited sequence. Wherever this is feasible, it results in increased 

overall rate.

This procedure allows the transmission of the uncoded control symbols with a 

small increase in the complexity of the coding system.

5.3.1 Implementation details

Block decodable line codes are commonly referred to as nBmB codes, with n 

the number of information bits and m  the length of the code. This study is 

restricted to line codes with rate of the form (m — l) /m , i.e. n = m  — 1.

As an example consider an RS(255,245) five error correcting code. For each code 

word 2040 bits are transmitted. W ith our procedure, 238 of the input symbols 

can be encoded using a 13B14B line code giving 136 line codewords, and leaving 

136 bits uncoded (10 error control symbols and 7 information symbols) Those 

bits can be distributed one after each line code word, giving a sequence with a 

maximum run of 6  identical symbols.

If error control codes of a lower rate are to be used, then line codes with more 

unconstrained bit positions per code word are necessary. The error control code 

has K  information bits encoded into N  bits. We want the line code length m  

plus the number of unconstrained bit positions s to be a divisor of N  so tha t the 

line code is aligned with the error control code, resulting in simplified decoding. 

Let X = N /(m  +  s). Then for this technique to work,

m  K
X X m  < K  --------- < —

m +  s N
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For each code word, the number of information bits encoded in the run-length 

limited sequence is x x (m —1 ), while the number of information bits left uncoded 

IS K  — {x X m).  Therefore, the overall rate R  of the transm itted sequence is

N  N  m  s

Therefore, this coding procedure reduces the rate by only l / (m  +  s).

Code Run length

s =  0 s =  1 s =

7B8B 4 5 5

8B9B 4 5 5

9B10B 5 5 5

lO BllB 5 5 5

11B12B 5 5 5

12B13B 5 5 5

13B14B 5 5 5

14B15B 5 5 5

15B16B 5 5 6

16B17B 5 6 6

Table 5.1: Maximum run-length of various codes, 

s is the number of unconstrained bit positions

Table 5.1 lists the maximum run-length of codes with zero, one and two uncon­

strained bit positions, obtained by employing an exhaustive search algorithm.

This table illustrates the cases where using codes with unconstrained bits gives a 

smaller run length compared with just inserting the bits in a regular run length 

limited code. For example, if a normal lOBllB  run length limited line code is
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selected, the maximum run length is 5. If one bit is inserted in the middle of 

the code-word (or possibly between successive co de-words), then the maximum 

run length becomes 6 , and the code is equivalent to an 11B12B code with one 

unconstrained bit position. However, an 11B12B code with one unconstrained 

bit can have a maximum run length of 5.

Code Run length 

s =  1  s =  2

lO BllB  5

11B12B 5 5

12B13B 5 5

13B14B 5 5

14B15B 5 5

15B16B 5

Table 5.2: Codes of table 5.1 presenting an improvement in 

run-length. s is the number of unconstrained bit positions

Table 5.2 presents the cases where such improvements are possible. However, 

even in the cases where there is no apparent improvement in run length, there 

is likely to be an improvement in terms of hardware implementation, since the 

new code will have more relaxed run-length constraints than would a normal 

run-length limited code.
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5.4 Im plem enting a line code

One problem encountered during the design of a line code is the selection of 

CO de-words from those available, as well as the problem of assigning the code­

words to input words. This section presents a technique th a t was developed to 

aid this assignment.

The main characteristic that was required of the designed code was implemen­

tation simplicity. This translates to low hardware requirements for the encoder 

and the decoder. Another method with similar aims but for a different class of 

line codes is described in [50, 51].

A first approach to the problem was to use Karnaugh maps. The input bits 

were to be the input to a logic function that was to be designed, and one map 

(function) was to be used for each bit of the output codeword, for a random 

selection of codewords. Then an optimisation technique was to be used to 

modify the Karnaugh maps by replacing the selected code-words with others 

until a satisfactory function for each bit was achieved. This approach posed 

several difficulties in implementation and was soon abandoned. However, it 

was helpful in obtaining the following insight:

Obviously, for a logic function to be easy to implement, many neighbouring 

positions in the Karnaugh map have to have the same state (zero or one). Since 

the inputs of the function are the input words, this is roughly equivalent to 

input words tha t have small Hamming distance giving the same output. And a 

suitable requirement over the whole of the output code word may be tha t input 

words with Hamming distance equal to one correspond to output code words
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th a t have small Hamming distance between them. Therefore, the cost function 

C  used was

C = 'Y^dH{w{k),w{l))  I dH{k,l) = l,
k . l

w h e r e  k a n d  I a r e  i n p u t  w o r d s ,  w h i l e  w{k) a n d  w{l) a r e  t h e  c o r r e s p o n d i n g  

CO d e - w o r d s .

This requirement was used in a computer programme tha t used simulated an­

nealing to minimise the average distance of the output code-words tha t cor­

respond to all pairs of input words that have Hamming distance one between 

them. Simulated annealing is a global optimisation technique that was proposed 

by Metropolis[52] and is considered a good choice for a wide variety of problems. 

It attem pts to minimise a cost function C  by doing a random change in the ini­

tial configuration and then accepting the change if the difference A =  Ci — Co 

of the new cost C\  and the old cost Cq is negative, or with probability

p = A > 0

where T  is called the “tem perature” , and is progressively reduced. This way the 

probability of accepting a new configuration that increases the cost function is 

reduced as the optimisation progresses, while smaller increases are always more 

likely to be accepted than larger ones.

In channel coding, simulated annealing has been used to obtain large error 

correcting codes[53] and constant weight codes[28]. However, stochastic op­

timisation techniques are not known to have been used in the design of line 

codes.
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Several other more complicated cost functions were used, that did not result in 

better performance. Those include cost functions where the difference

C = ' ^ d u ( w ( k ) ,  'w(l)) -  dnik,  I)

or the ratio
k . l

k . l

of the Hamming distance of the output codewords with the Hamming distance 

of the input words were used. Also the squared value of the Hamming distance, 

as well as the Hamming distance raised to a higher power

C = ^ ( d H { w { k ) , w { l ) ) r  I d„{k,l) = l, 71. > 2
k . l

were considered in an effort to penalise higher values. However, those cost 

functions required increased computation, and the resulting codes presented no 

advantages compared to those obtained with the original cost function, while 

many of them required a significantly more complex implementation.
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Figure 5.7: Number of conhgurable logic 

blocks for different values of the cost function
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Figure 5.7 displays the hardware complexity of a line code as a function of the 

value of the cost function. Each of these is the lowest value obtained from several 

optimisation trials. The hardware complexity in this case is represented by the 

number of configurable logic blocks (CLBs) of a Xilinx field programmable gate 

array (FPGA)[54] that were required. This number was obtained using the SIS 

design software package[55]. The code used in this example is a simple run 

length limited code, that had 1 1  input bits, a 1 2  bit codeword and a maximum 

run of 5 consecutive identical symbols.

In this graph the relationship between the cost function and the resulting code 

complexity can be seen. Lower cost functions give, in most cases, codes of lower 

complexity. This is always the case with lower cost values, while some discrep­

ancies occur at higher cost values. This may be explained by the increased 

difficulty of obtaining a good hardware implementation using SIS or any other 

computer design software when the requested functions become more complex.

5.3.2 Improvement

A further refinement of the technique is the following. The original optimisation 

algorithm uses only the Hamming distance of the code words as a measure. This 

in general required one logic function for each input bit. It is possible to further 

reduce the hardware requirements if we arrange for some of the input bits to 

be present directly in the output.

Table 5.3 shows the number of input bits that can be present uncoded in the 

code-word without sacrificing the maximum run constraints. Of course, the 

encoding of the remaining bits of the codeword are dependent on all bits of the
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Code Uncoded

7B8B 3

8B9B 2

9B10B 5

lOBllB 4

11B12B 5

12B13B 5

13B14B 6

14B15B 6

15B16B 5

Table 5.3: Maximum number of uncoded 

bits that can be present in line code

input word. This is different from the unconstrained bits that were mentioned 

earlier, whose values do not affect the remainder of the code-word.

A modified version of the algorithm was designed that, prior to optimisation, 

selected from all the possible code-words the subset into which the highest pos­

sible number of input bits could be used as output bits. Then the optimisation 

function was slightly modified to preserve those relationships. The end result 

was codes th a t required fewer CLBs compared with codes that had the same 

cost value.

Figure 5.8 shows the results obtained for this modified cost function for several 

optimisation trials. Again there is a clear overall trend for better results with 

lower values of the cost function. However, this graph is more erratic than the 

one using the original method. One possible explanation may be th a t again the 

demands on the logic minimisation software were increased, since the resulting
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for different values of the modified cost function

functions were more complicated compared to the previous case, even though 

the overall result is better since there are fewer of those functions. Furthermore, 

it is clear that this method gives improved results compared to the original one.

Using the original approach, the best result was 98 CLBs, giving an average 

of 8 ^  CLBs per output bit. With the improved approach, 5 of the input bits 

are left uncoded in the output code-word, leaving only 7 out of the 12 output 

bits encoded. In this case, the best result is 70 CLBs, giving an overage of 10 

CLBs per output bit. This supports the above statement that each output bit is 

encoded with a more complicated function, but the overall complexity is lower.

5.3.3 Error extension

Another consideration in many line codes is the error extension present in the 

code. This is the number of errors present in the output after the decoding of
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a codeword with a single error. Since most line codes have no error correcting 

capabilities, this error extension can take large values. The above technique 

can also be used to reduce error extension. A modified cost function is required 

for this case. The cost function tested was the sum of the Hamming distances 

of all pairs of input words whose corresponding code-words have a Hamming 

distance of one. Minimising such a cost function gives a code where single errors 

in the channel decode to code-words similar to the transm itted ones. This is 

effectively the inverse of the previous cost function. However, this cost function 

minimises the average error extension. If the maximum error extension needs 

to be minimised, then the Hamming distance of the codewords tha t are to be 

summed can be raised to a power, so that the optimisation process will favour 

smaller values to a greater extent.

Only code-words that differ in one bit were considered, since the error extension 

is more pronounced in this case.

Finally, both cost functions can be used together to give a code with a reasonable 

hardware implementation, while keeping the error extension of the code low.

5.4 E xam ples o f designed codes

Using the proposed technique to design codes with a single unconstrained bit 

position we get the following results:

Table 5.4 shows the number of bits that can be present uncoded at the output 

CO de-word of a line code that incorporates one unconstrained bit position. This 

differs from table 5.3 since the presence of the unconstrained position restricts 

the number of available-codewords, and in certain cases increases the maximum
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Code Uncoded bits

6B7B 4

7B8B 5

8B9B 5

9B10B 4

lOBllB 5

11B12B 5

12B13B 5

13B14B 5

14B15B 4

Table 5.4: Uncoded bits for various

codes including the unconstrained one

run length. Since the unconstrained bit is not part of the code as such, the

entries in table 5.4 are one bit shorter than the equivalent entries in table 5.3.

however, in order to compare the number of uncoded bits, the unconstrained 

bit is added to the uncoded bits.

Figure 5.9 shows the number of Xilinx 3000 CLBs that were required to im­

plement line codes with one unconstrained bit position, for several different

CO de-word lengths. Clearly, the complexity increases rapidly with the number

of CO de-word bits, the number of CLBs roughly doubling with each added bit. 

This provides an indication that the procedure can scale to even longer codes.

5.5 Sum m ary

A new coding scheme has been described tha t allows the use of block codes with 

a simple line code that gives tight run-length bounds with a small decrease in
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the overall code rate and without limiting the decoding power of the error 

control code. This was achieved by reversing the usual cascaded error control 

and line codes, so that the error control code is the outer one, in such a way 

that the properties of the line code are retained.

Furthermore, a stochastic optimisation technique was employed to select the 

source to channel code-words mapping in an efficient way, in order to implement 

those codes. Clearly, better optimised codes required less complex hardware 

implementations than unoptimised ones. Several different cost functions were 

investigated and the most promising one was identified.

Finally, several line codes suitable for use in the cascaded structure described 

above were designed and their relative hardware complexity was assessed.
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In the following chapter a departure from the traditional line coding construc­

tions is addressed; line codes are designed that can constrain the peak to average 

power ratio of a multi-carrier communication system.
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6 Peak power constrained coding for m ulti-carrier system s

6.1 Introduction

M ulti-carrier modulation is the technique where the information is divided into 

several parallel data streams that are transm itted simultaneously using several 

sub-carriers.

One such technique is orthogonal frequency division multiplexing (OFDM) that 

involves several sub-carriers with overlapping modulation spectra. The wave­

forms used are selected in such a way as to guarantee the orthogonality of the 

sub-carriers and can be generated using fast Fourier transforms (FFTs) at the 

transm itter and the receiver.

One problem of such multi-carrier techniques is that the peak transm itted power 

can be many times larger than the average power, giving a large peak to average 

power ratio (PAPR).

Increased interest in multi-carrier transmission has resulted in a number of so­

lutions being proposed for the reduction of peak transm itted power. A recent 

paper by Jones et al. [56] offers a simple block coding scheme for power reduc­

tion, where the block coding is applied across the carriers. This code uses only 

the code-words that would give the lower values of the PAPR, thereby giving 

very good results. In the four carrier case, this can be achieved by using three 

information bits with an added parity bit, giving a very simple solution. For 

a larger number of carriers, though, no such simple solutions were found, and 

the only alternative proposed is to use look-up tables, with all th a t entails in 

terms of complexity.
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Because of the perceived complexity of this scheme, several other techniques 

have been proposed; these achieve lower complexity, but yield inferior results in 

terms of PAPR reduction and code rate. In this chapter, new codes th a t achieve 

acceptable reduction in the PAPR value without requiring the complexity of a 

large look-up table are developed.

6.2 M u lti-carrier m odulation

A bandpass signal v{t) is commonly represented by the following equation

v{t) = x{t) cos(27r/ct) -  y(t) sin(27r/ct),

where fc is the carrier frequency, while x{t) is the in-phase and y{t) is the 

quadrature part of v{t).

An equivalent representation of v(t) is

v(t) =

where 3R(x) is the real part of x, and g{t) is the complex envelope of v{t). The 

complex envelope can be given as a function of the in-phase and quadrature 

parts of v{t) by

g{t) = x { t )+jy{ t ) ,

where x(t)  and y{t) are real baseband waveforms, while g(t) is obviously a 

complex baseband waveform.

For a m ulti-carrier signal with N  sub-carriers,

^  k k
c o s ( 27t ( / c  +  - ) t )  -  yk{t) s i n ( 27r ( / c  +  - ) t ) .
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where T  is the symbol period, and Xk{t), ykif) are the in-phase and quadrature 

parts of the /c-th sub-carrier. The complex envelope representation is

N - l
v{t) = S R (^  

k=0

where now gk(t) is the complex envelope of the k- th  sub-carrier, and as before 

9k{t) = Xk(t) -\-jyk{t).

The sum of the several sub-carriers can be considered as a single baseband 

signal, giving

9{t) = X I  9 k { t ) e ^ .  
fc=o

For the transmission of digital signals, both Xk{t) and yk{t) take values from 

the discrete set of possible values that are held constant for the duration of 

the symbol period. The discrete complex envelope for the k- th  sub-carrier will 

be identified as dk{t). Obviously, dk{t) = Xk{t) jyk(t)-  Then, the complex 

envelope of an N  sub-carrier system is

N - l
j '2 7 r f c t

dk[t)e

where (pk is the initial phase of the k- th  sub-carrier. The initial phase of each 

sub-carrier is explicitly mentioned in this expression since, for all sub-carriers, 

the gk{t) are limited to values from the same discrete set, while under the 

original formulation the initial phase was incorporated in the value of gk{t)- 

Moreover, for simplicity the initial phase (pk of each sub-carrier is assumed to 

be equal to zero for the rest of the discussion.
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6.3 Peak to  average power ratio

Since x{t) and y{t) are baseband waveforms, it is reasonable to assume tha t they 

are constant over one period of the carrier signal. Therefore, the instantaneous 

envelope power of v{t) is given by

P{t) = f c f  v^{r)dT =
' t

= fc j  {x(t) c o s (27t / c t ) -  y{t) s i n ( 27r / c T ) )  dr =

The peak envelope power (PEP) is defined as “the average power tha t would 

be obtained if \g{t)\ were to be held constant at its peak value” [57]. Therefore, 

in our case,
o max(^(t)c/*(t))
-PpEP = ---------2----------’

where T  is the duration we are interested in.

The peak to average power ratio (PAPR) (sometimes referred to as peak fac­

tor [58]) is given by

maxu^(t) _  I  max(^/(t)p*(t))
P A P R  =

where E{x)  is the expected value of x. Sometimes a different quantity, called 

the crest factor, is used. The crest factor is defined as

m a x |î)(t) |

V W W )

which is the square root of the PAPR.
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The case we are interested in is the transmission of digital data. Therefore, for 

each period only a limited sum of different waveforms is possible. For the study 

of coding schemes that can be used to affect the PAPR, only one such period 

is studied neglecting the effects of the transition to a different waveform. The 

peak power can be calculated by either sampling at a high frequency the multi- 

carrier signal, or by using the property that the peak value of a continuous 

function s(t) in the interval a to b is given by

liin n
n-^oo \ b — a

0.2 0.4 0.6
t/T

Figure 6.1: Envelope power of a four sub-carrier signal

Assuming that each sub carrier has a power normalised to 1 Watt, then the av­

erage power is equal to N  Watts. However, when all combinations of inputs are 

allowed, the peak value of the power is Watts. This can be seen in figure 6.1
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where the envelope power of the four sub-carrier signal \/2  is plot­

ted over one period. The PAPR in such a case has a value of N.  This poses 

several problems, mainly that an amplifier that is linear up to this power is re­

quired, if the intermodulation distortion must be kept low, adding significantly 

to the cost of the system.

To avoid these problems, several authors have proposed to modify the initial 

phase of each carrier [59, 60, 61, 62] in several ways th a t avoid the large values 

of PAPR. However, most of this work is not concerned with modulation. When 

the carriers are independently phase modulated such phasing schemes become 

ineffective[63] because of the carriers’ uncorrelated phases.

Another technique that has been proposed is to vary the level of all carriers in 

such a way that the peak transm itted power for every combination of inputs 

remains the same[58]. This method can limit the peak power to any value. How­

ever, the resulting bit error rate is higher than that of a standard modulation 

scheme.

A more promising idea is to add some redundancy in the transm itted sequence 

in such a way as to avoid the input combinations that give large values to the 

PAPR[56, 64, 65]. Several such systems have been proposed.

One th a t gives very good results in both code rate and PAPR reduction is to 

only transm it the better half of the possible input combinations, which requires 

only one bit of redundancy. However, only for a four carrier system is there 

a simple implementation; for higher values of N  the use of lookup tables is 

proposed.
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Several other schemes have been proposed that trade PAPR reduction or code 

rate for implementation simplicity[66, 67, 68, 69, 70, 10]. Furthermore, sev­

eral attem pts have been made to combine the PAPR reduction with error cor­

rection, for example by using Golay sequences and Reed-Muller codes [71] or 

m-sequences [72, 73].

6.4 Encoder structure

This chapter focuses on the tradeoff between PAPR reduction and implementa­

tion complexity for encoding schemes. This section outlines the encoder struc­

ture tha t will be used.

Encoded Bits

Input

Encoder Logic

Systematic Bits
Output

Uncoded Bits

Figure 6.2: Encoder structure.

This encoder structure is shown on figure 6.2. Here, the encoder output can be 

divided into three parts: the encoded bits, the systematic bits and the uncoded 

bits. The uncoded bits are the output bits that are passed from the input to 

the output without affecting the encoding process in any way. The encoded bits 

are the ones whose value depends on a function of several input bits. Finally,
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the systematic bits are those that are present in the output in the same way 

as in the input, while their value affects the encoding of some (or all) of the 

encoded bits. The figure shows an example of a ten input to twelve output 

decoder. The five encoded bits, depend on the value of seven of the input bits, 

including the four systematic bits. This leaves three uncoded bits. Of course, 

even though these bits are shown in order in the diagram, depending on the 

actual code their order may be different.

The number of encoded and systematic bits is used as a measure of the imple­

mentation complexity of the encoder logic.

The remainder of this chapter will focus on the tradeoff between PAPR reduc­

tion and implementation complexity for various modulation schemes, using for 

the most part just one single bit of redundancy.

6.5 B inary phase shift keying (B PSK )

Using this modulation method only one bit of information per sub-carrier is 

transm itted at each period. The two different values are represented by a 180 

degree phase shift of the sub-carrier. The modulation data dk take the values 

from the set {\/2, —\/2} when each carrier’s power is normalised to 1 Watt. 

The resulting complex envelope is of the form

N - l

9{t) = V 2 j : ± e ^ .
k=0

Using Jones’ scheme to achieve a good reduction of the PAPR, only half of the 

available combinations are used, thereby effectively using one redundant bit. 

This is achieved by using a block code that encodes N  — 1 bits to an N- hi t
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Figure 6.3: PAPR reduction possible with Jones’ scheme

code- word, where each bit is used to modulate one of the sub-carriers. The 

PAPR reduction that can be achieved using this scheme is shown on hgure 6.3. 

Obviously, this scheme results in a very low overhead, while obtaining the best 

possible improvement for the specihed overhead. However, the only case where 

such a teclmicpie is also simple to use is the 4-carrier system, where the required 

code is three bits with an added parity check bit. For more complicated codes, 

the best proposed alternative is to use a look-up table for the encoding and 

decoding.

However, we shall show that if one is willing to sacrihce some of the improvement 

of the PAPR , then simpler codes are possible without any reduction in the code 

rate. The number of encoded bits required to achieve the best result is shown on 

table 6.1. In most of the cases, to achieve the best possible result it is necessary 

to encode and decode most of the bits. However, in the 4-carrier system only 

one single bit needs to be encoded while the other three are systematic, and
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Carriers Encoded Bits Gain(d

4 1 3.54

6 2 3.48

8 4 4.50

10 8 5.05

12 8 5.93

14 12 6.20

16 14 6.56

18 12 7.04

Table 6.1: Number of encoded bits required for Jones’ scheme

the decoding can be achieved by just ignoring the value of the encoded bit. 

Similarly, for a larger number of carriers it is possible to design codes tha t need 

less bits to be encoded and decoded.

Furthermore, it is possible to design codes that have the property tha t the 

encoding and decoding of the coded bits is independent of the value of some 

uncoded bits (as shown in figure 6.2). However, this is not always the case. As 

an example, in the 4-bit code discussed earlier, the encoding of the fourth bit 

{i.e. the parity bit) depends on the value of all of the three systematic bits.

The simplest case is where one bit is encoded and its value is dependent on 

only one other systematic bit. In most cases this can be achieved by setting 

the added bit at the end of the code-word to the inverse of the second to last 

information bit[10]. The decoding can be as simple as ignoring the encoded 

bit, or its value can be used to improve the reliability of the information of the 

systematic bit.
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Following the analysis in [64], the substitution z — e^T results in

N - l
k tg{t) = dkz

k = 0

where dk is the signal modulated on the k -th  sub carrier and in this case takes 

values from the set {—1,1}. The transformations of multiplication by -1, or of 

substitution of z with — z, z~^ and —z~^ give other sequences with the same 

peak value. Multiplication by —1 is equivalent to inverting the code-word. 

Substitution of z with — z is equivalent to inverting the signal of the odd sub­

carriers. Finally, substituting z with z"^ is equivalent to reversing the order 

of the sub-carriers. However, not all combinations of those transformations 

correspond to distinct values of the information sequence, but there will be at 

least three that will. Therefore, for each code-word, there will be another three 

and possibly more combinations that give the same peak value.

Carriers Gain(dB) Possible(

4 2.27 3.54

6 2.67 3.26

8 2.50 2.50

10 1.94 1.94

12 1.58 1.58

14 1.34 1.34

16 1.16 1.16

18 1.02 1.02

Table 6.2: PAPR gain possible by using simple code 

compared with best possible gain using comparable scheme
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One of the code-words that gives the worst PAPR values is the one where dk = I 

for all k. Using combinations of the above transformations we get another three 

code-words that give the same peak value. These are the dk = —I for all k 

and the dk = I for k odd (even) and dk = —1 ior k even (odd). It turns out 

tha t there are no other code-words that give the same peak value. Those four 

code-words can be avoided with the simple code described above. For 8 carriers 

and more, this code gives the best result that is achievable when only one bit is 

encoded. The improvement possible is shown in table 6.2 compared to the best 

possible improvement when only a single bit is encoded. However, for a large 

number of carriers the possible PAPR improvement becomes insignificant [74].

6.5.1 Search algorithms

To obtain the number of bits that can be systematic or uncoded while the 

required PAPR improvement is achieved for a given code size and rate, two 

exhaustive search procedures were used. Initially, the subset of the possible 

code-words whose peak power is below the required maximum is selected. The 

first search algorithm is used to find the maximum number of uncoded bits, 

while the second one is used to find the maximum number of systematic bits 

possible for such a code. Moreover, the two algorithms can be cascaded to find 

the value of the sum of the number of uncoded and systematic bits for this code.

The first algorithm searches for the maximum possible number of uncoded bits. 

The binary tree representing all possible combinations when every bit is either 

considered or not is traversed. For each bit under consideration, all pairs of 

codewords that differ only in that bit position are selected and only the code­

word with zero at that bit position is retained. The procedure is repeated with 

the selected words until all bit positions are examined, or until the code rate
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requirements can not be satisfied. The combination with the maximum number 

of bits is the final result.

The second algorithm searches for the maximum possible number of systematic 

bits. Again, the binary tree representing all possible combinations when every 

bit is either considered or not is traversed. For each bit under consideration, 

the code-words are subdivided into two sets depending on the value of that 

bit. These sets are further subdivided for every other bit explored until all 

the bits are examined or the code rate requirements can not be satisfied. The 

combination with the maximum number of bits is the final result.

6.5.2 Results

Figures 6.4 to 6.7 show the number of bits that need to be coded as a function 

of the PAPR improvement for several values of N.  Each graph has three lines. 

The bottom  solid line shows the maximum number of uncoded bits possible for 

the specified gain. The top solid line shows similarly the maximum number of 

systematic bits attainable. Finally, the dotted trace in the middle shows the 

sum of systematic and uncoded bits when the number of uncoded bits has its 

maximum feasible value (bottom trace).

From these figures the requirements for encoding and decoding hardware can 

be obtained. As an example consider the case where a 5dB gain in PAPR is 

required from a 16 carrier system. The best options can be seen in figure 6.7. 

From th a t diagram there is a choice of two codes. One is where 9 bits can be 

systematic, leaving the remaining 7 bits to be encoded as a function of most 

of the fifteen input bits, and one is where three of the input bits can be left 

uncoded while another five bits are systematic for a total of 8. This leaves
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another 8 bits to be encoded as a function of 12 bits. Selecting the last code, 

the requirements are for a 12-bit to 8-bit encoder and for a matching 13-bit to 

7-bit decoder. This is compared to the 15-bit to 14-bit encoder and 16-bit to 

13-bit decoder required for the 6.56dB improvement when using Jones’ scheme.

Carriers Encoder Decoder

4 3-^1

6 3->l

8  5 - 4̂ 1 &-+2

10 5 ^ 3  6 ^ 2

12 4-^3  5 ^ 2

14 6 ^ 6  7->5

16 6->6 7 ^ 5

18 6-^6 7 ^ 5

Table 6.3: Encoder and decoder arrangement for 3dB gain

Table 6.3 shows the number of inputs and outputs required for the encoder 

and decoder of codes that achieve a 3dB reduction in the PAPR for several 

carrier numbers. These codes use the maximum possible number of uncoded 

bits, as well as the maximum number of systematic bits available out of the 

remaining ones. The number of inputs and outputs is depicted in the table as 

i npu t s^  outputs.

6.6 Q uadrature phase shift keying (Q PSK )

W ith a QPSK modulation scheme, two bits of information can be transm itted 

per carrier in one period. The modulation data dn take values from the set
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{1 +  j, 1 — j, — 1 +  j, — 1 — j}  when each sub-carrier’s power is normalised to 

1 W att. The resulting complex envelope is of the form

N - l

k^O

The substitution z = e^T  ̂ results in

N - l

9{t) = ^  dkZ^\
fc=o

where dk = ±1 According to [64], there are three sets of transformations of 

g{t) tha t preserve the peak value. The first one consists of the multiplication 

by —1, by j  or by —j.  The second set consists of substitution of z by —z, by 

j z  or by — jz . The third set consists of substitution of z by z “ ,̂ by jz~^, by 

—z~^ or by —jz~^.  By combining transformations from those three groups, the 

equivalence of several input code-words with respect to the peak value can be 

shown.

Carriers Gain(dB) Possible (

4 - 0.82

5 0.65 0.88

6 0.62 0.76

7 0.66 0.83

8 0.65 0.79

9 0.67 0.75

10 0.67 0.82

Table 6.4: PAPR gain possible by using simple code compared 

to the best possible gain using comparable code (QPSK)
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There is a simple code that can avoid the input combinations that give the 

worst value of PAPR. In this case the code consists of adding at the end of the 

word a single encoded bit which is the inverse of the bit that is seventh from 

the last. This is so because due to the code-word equivalence, any other code 

that adds a bit that is a function of a single bit closer to the end will give a 

code-word that exhibits the worst case peak to average power ratio. The gain 

that can be achieved with this code is shown in table 6.4 compared to the best 

PAPR gain achievable with one single added bit.

PAPR Gain (dB)

Figure 6.8: Uncoded and systematic bits as a function 

of the PAPR gain for a 4 sub carrier QPSK system

Figures 6.8 to 6.10 show tlie number of bits that need to be coded as a function 

of the PAPR improvement for several values of N.  As in the previous section, 

each graph has three lines. The bottom solid line shows the maximum number 

of uncoded bits possible for the specified gain. The top solid line shows similarly
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Figure 6.9: Uncoded and systematic bits as a function 

of the PAPR gain for a 6 sub carrier QPSK system
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Figure 6.10: Uncoded and systematic bits as a function

of the PAPR gain for an 8 sub carrier QPSK system
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the maximum number of systematic bits attainable. The dotted trace in the 

middle shows the maximum value of the sum of systematic and uncoded bits 

when the number of uncoded bits reaches its maximum attainable value (bottom  

trace).

As an example, the “Possible” column in table 6.4 can be obtained from such 

diagrams by noting the PAPR gain where the leftmost segment of the top line 

ends. This is the point where two encoded bits are required instead of one, 

while the rest are systematic.

Carriers Encoder Decoder

5 9 ^ 3  1 0^2

6 9 ^ 3  10^ 2

7 10-^4 11 ^3

8 11 ^ 4  12^ 3

9 1 1 ^6  12-^5

Table 6.5: Encoder and decoder arrangement for 2dB gain

Table 6.5 shows the encoder and decoder arrangements for codes tha t result in 

a 2dB gain compared to the uncoded system.

A different approach that requires added redundancy is to code one carrier (2 

bits) in order to minimise the value of the PAPR. This is useful when each 

sub-carrier is modulated independently. In such a case, the encoder has no 

control over the individual carriers, therefore one feasible solution is to add an 

additional carrier to reduce the peak value.
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•o
o 2 . 6

2.2

Number of carriers

Figure 6.11: Possible PA PR gain for 

one redundant carrier (QPSK)

g 0.9

0.7

0.6

0.5

Number of uncoded carriers

Figure 6.12: Peak power reduction with 

added redundant carrier (QPSK)
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Figure 6.11 displays the possible PAPR improvement when the last carrier is 

used to add the appropriate redundancy. Figure 6.12 shows the peak power 

reduction, compared to the power of a system with one less carrier. No attem pt 

has been made at this stage to investigate the complexity of a code tha t achieves 

this improvement.

6.7 C onsideration o f system s w ith  a large num ber o f carriers

Up to this point the number of carriers on the examined systems has been fairly 

small. Direct extension to a larger number of carriers is possible but rapidly 

becomes computationally cumbersome. However, it is possible that the coding 

of systems with a large number of carriers can be addressed by segmentation 

into blocks of fewer carriers, where the techniques presented here can form a 

basis for more advanced coding schemes.

As a simple example, each segment can be coded with one of the codes presented 

earlier, giving some PAPR reduction. Coding schemes that take into account 

the values of the other segments can give better results. The identification of 

such schemes is the subject of ongoing research.

6.8 A sp ects o f error control

When both error control and PAPR reduction are required there are several 

possible approaches that can be used. The straightforward method is to use a 

cascaded coding scheme, for example a Reed-Solomon code encapsulating the 

line code that limits the PAPR. To combat the disadvantages of this method 

tha t were discussed earlier, a concatenated coding scheme can be used. Some
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Error control 
encoding

Line
encoding

Bit
shuffling

Figure 6.13: Coding structure 

proposed in the previous chapter

existing work in this area proposed the use of Golay sequences and Reed-Muller 

codes[71] or m-sequences[72, 73].

Alternatively, the coding structure proposed in the previous chapter can be 

employed (Figure 6.13). As seen earlier, it is feasible to design line codes that 

control the PAPR, while their encoding and decoding is independent of the 

value of some bit positions. When such a code is utilised, the bit shuffling stage 

can distribute the parity bits of the systematic error control code into those 

bit positions. The resulting sequence can then be error corrected before line 

decoding at the receiver, allowing the use of high rate line and error control 

codes without sacrificing any of the error control code capability.

6.9 Sum m ary

New codes that can be used to reduce the peak to average power ratio of multi­

carrier modulation systems have been devised and their complexity investigated. 

In particular, two very simple codes were presented that achieve some improve­

ment in the PAPR for both BPSK and QPSK systems. These work by adding 

one single bit of redundancy, its value being the inverse of a suitably chosen bit 

of the code-word.

Moreover, the encoder and decoder overhead for several other codes of the 

same rate was studied. An estimate of their complexity was investigated as
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a function of the required PAPR reduction. Furthermore, the use of two bits 

of redundancy with QPSK modulation was explored: one of the carriers is 

dedicated to reducing the PAPR. This is of interest for systems with individually 

modulated carriers.

It has been noted tha t this study has been constrained to small numbers of 

carriers, but that the techniques presented here may be extended to apply to 

larger systems, with more carriers, or may form a basis for the design of more 

complicated coding schemes for such systems.

Finally, the use of such codes in conjunction with error control coding was also 

discussed, and the coding structure proposed in the previous chapter was found 

appropriate for this case as well.

The following chapter brings the thesis to an end by reviewing the main con­

tributions and identifying areas for further work.

103



7 Concluding remarks

7.1 Introduction

In this thesis, several constrained channels have been studied and appropriate 

coding techniques were developed to exploit the individual characteristics of the 

channel. The aim has been to offer better performance compared to conven­

tional generic solutions and to do so with an emphasis on relative simplicity 

for implementation of the proposed coding structures. This concluding chapter 

will review the main contributions of this study and identify some areas where 

further work is likely to prove fruitful.

7.2 C ontributions o f th is thesis

The main contributions of this thesis are as follows:

In the third chapter:

• Previously unpublished properties of asymmetric Z-channel error correcting 

codes were identified. These are considered to be important contributions from 

a theoretical and a practical point of view since they aid the search for both 

tighter code bounds and new, higher rate, codes.

• New tighter upper bounds for the size of asymmetric Z-channel error cor­

recting codes are presented. Those are based on the above mentioned new 

properties as well as recently published values for related bounds.

• Asymmetric Z-channel error correcting codes with more code-words than 

those available in the literature were designed.
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In the fourth chapter:

• A new disparity constrained error correcting line coding structure was pro­

posed and suitable codes were identified. This is an extension of an existing 

technique, tha t allows the generation of higher rate codes and can be very useful 

when combined codes are required.

• The possibility of combining asymmetric Z-channel error control with dis­

parity control to realise combined asymmetric Z-channel error correcting line 

codes was explored and examples of such codes were devised, establishing for 

the first time the feasibility of this strategy.

In the fifth chapter:

• A coding structure that can achieve overall high coding rate in combined 

run length limited codes together with conventional systematic error correcting 

codes, without a loss of error correcting performance was identified. This coding 

structure is potentially very useful since it can be extended for use in other 

coding problems as well.

• To aid in the design of such codes, optimisation techniques were developed 

tha t enabled reduced hardware complexity of line codes. To the best of my 

knowledge, no other such techniques have been previously presented and the 

proposed ones give very good results. Therefore, the resulting code implemen­

tations can have a significantly simpler implementation compared with a more 

conventional table lookup implementation.
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In the sixth chapter:

•  A study of the trade-off between implementation complexity and performance 

in high rate peak-to-average power ratio reducing codes for m ulti-carrier sys­

tems was presented, concentrating on systems with a small number of carriers. 

The techniques presented can form a basis for addressing the problem in systems 

with a large number of carriers

• Specific new high rate codes were developed based on this study, that give a 

considerable reduction of the peak-to-average power ratio on systems with a 

small number of carriers.

• The generality of the coding structure proposed in the fifth chapter is demon­

strated by the design of a combined PAPR reducing error correcting coding 

scheme.

A more detailed overview of the contributions made in each chapter can be 

found in their respective concluding sections.

7.3 Suggestions for further work

Promising areas for further study include the following:

• Devise means of cascading disparity constrained line codes with systematic 

error correcting codes, similar to the run length limiting technique of chapter 

four. A simple approach to this is to code all but one of the information bits of 

a linear transparent systematic code with a disparity control code, then error 

control encode, and if the overall disparity has the same sign as the running 

disparity invert the whole codeword and use the previously uncoded bit to
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keep track of the inversion. This approach will not provide very tight disparity 

bounds but further improvements may be possible.

• Identify run length limited asymmetric Z-channel error correcting codes. Ev­

ery asymmetric Z-channel error correcting code can be converted to such a 

code by removing the all one and all zero word. Then it is trivial to show that 

the maximum run of the code will be less than or equal to 2(n — A), where n 

is the length of the code-word and A is the minimum asymmetric distance of 

the code. However, codes with smaller maximum runs providing for efficient 

encoding and decoding should be possible.

• Investigate ways to construct long codewords for multi-carrier systems with 

limited peak to average power ratio. This might be achieved for example, by 

concatenating shorter codewords. The resulting peak to average power ratio 

reduction is slightly higher than can be achieved with each of the shorter code­

words. However, the possible gain for the same rate in longer codewords is 

many times more, so it is appropriate for more efficient schemes to be expected.
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A ppendix A: Limits of constant weight codes 

A .l  Introduction

In this appendix a few quantities that are used in the elsewhere to calculate 

bounds on the size of asymmetric error correcting codes are discussed and 

bounds on their values are given.

One useful quantity is A {n ,d ,w ), the maximum number of co de-words in any 

binary code of length n  tha t have constant weight w and minimum distance d. 

Since not all of these numbers are known, upper and lower bounds to their value 

are of interest and several methods have been proposed for their calculation. 

Here, we concentrate on the calculation of the upper bound. Furthermore, 

lower bounds from several sources are collected and presented together with 

the respective upper bounds.

Another quantity tha t is useful is T (ici,u i,tU 2 , 7 1 2 , d), which is the number of 

CO de-words of length rii +  ri2 , with wi one bits in the first rii bits and W2 

ones in the remaining U2 bits of the code-word. Some simple bounds for T are 

presented as well.

A .2 Trivial values

Some values of A{n, d, w) are easy to calculate.

A{n^d,w) = A { m , d l , w )  if d is odd.

A{n, d, w) = A{n, d, n — w).

A{n, d,w) = 1 if 2w < d.

A(n, d, w) =  if 2w =  d.

A(7%,2,u;) =  ( ^ ) .
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A .3 J oh n son ’s bounds

Johnson[75] presented several methods that can be used to calculate upper 

bounds to A(n, d, w).

A{n, d, w) < [ ^ A { n  — 1, d, rc — 1)J, {n>  w >1) ,

A { n ,d ,w ) < [ - — —A ( n — l,d ,w ) \ ,  { n > w > 0 ) .

Furthermore, he described the following theorem:

Suppose A{n, d, w) = M , and q, r are the integers satisfying

w M  = nq + r, 0 < r < n.

Then

nq{q — 1) +  2qr < {w — d /2 )M (M  — 1).

Using this theorem some values of M  can be rejected, thereby leading to tighter 

upper bounds.

Another bound he proposed is the following:

A {n ,2u ,w ) < M j{n ,2u ,w ) = ^  /F j{n ,2 u ,w ),

with u = j  + 2g,\ j  |<  d/2 and

tj m i { lF r n i )

where m i  = [1 + tj =  ^ “

u ,w ,u ,n - w ,2 u )  a.ïiACi = .

Calculating the values of M j for all possible values of j  we get an improved 

upper bound on several occasions.

109



A .4 B ounds using linear program m ing

Another method that can be used to calculate bounds on codes is linear pro­

gramming.

Let C be a code of length n, weight w < ^  and weight distribution Aq, . . . ,  A 2 W 

Then, to obtain a bound on A{n, d, w) we maximise the sum Aq +  Ai + . .  .-\-A2 w 

subject to the constraints

A2i ^  0, i — d/2, • •., w,

Ao =  1, A2 =  . . .  =  Ad-2 =  0.

Furthermore, we have upper limits on the number of code-words A 2 i at distance 

2i from a given code-word:

A 2 i < T(z, tu, 2 , n — w, d), i = d /2 , . . .  ,w.

The following two linear programmes have been described in the literature, 

giving additional constraints on the numbers Aj.

A.4.1 Delsarte’s bound

Best et. al.[76] present a linear programming arrangement tha t gives an upper 

bound of A(n, d, w)  based on the following theorem given by Delsarte[77j.

w
' ^ A 2 iQk{h'ri,w) > 0 , k = 0 ,...,w
i=0

The coefficients Q k{i,n ,w )  are given by
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and Ei{x) is an Eberlein polynomial defined by

A.4.2 Van P ul’s bound

C. L. M. van P u l[78] presented a difiFerent linear programming bound in his 

M aster’s thesis:

Bk > 0 , k = 1, n

where

,„W = V  r V
2 î H - 1 / \ A :  — 2ii — 1i=0

Furthermore, Van Pull gives a lower bound on the quantities Bk that can be used 

to tighten the constraints of the linear programme. Specifically, if A(n, d, w) = 

M  and

=  Qk 0  <  r/c <

then

This lower limit can be utilised in the following way: after we have established 

an upper value for A {n ,d ,w ), we set M  equal to tha t value. Then we try  to solve 

the linear programme using the lower limits for Bk that we can calculate using 

this value of M . If the programme is infeasible, then we repeat the procedure 

with the next lower M , until we get a feasible solution. Then M  is our new 

upper limit.

I l l



w
n 3 4 5 6 7 8 9 10

6 4

7 7

8 8 14

9 12 18

10 13 30 36

11 17 35 66

12 20 51 80-
84

132

13 26 65 123-
132

166-
182

14 28 91 169-
182

278-
308

325-
364

15 35 105 237-
271

389-
455

585-
660

16 37 140 315-
336

615-
722

836-
1040

1170-
1320

17 44 156- 441- 854- 1416- 1770-
157 476 952 1753 2210

18 48 198 518- 1260- 2041- 3186- 3540-
565 1428 2448 3944 4420

19 57 228 692- 1620- 3172- 4667- 6726-
752 1789 3876 5814 8326

20 60 285 874- 2304- 4213- 7730- 10039- 13452-
912 2506 5111 9690 12920 16652

21 70 315 1071- 2856- 6156- 10753- 16897- 20188-
1197 3192 7518 13416 22609a 27131a

22 73 385 1386 3927- 8252- 16430- 25570- 36381-
4389 10032 20674 32794 49739

23 83 418- 1771 5313 11638- 23276- 40786- 57436-
419 14421 28842 52833 75426

24 88 498 1895- 7084 15656- 34914- 59387- 96496-
2011 18216 43262a 76911a 126799

25 100 550 2334- 7772- 21106- 46872- 88748- 140605-
2490 8379 252993 56925 120172 192277

26 104 650 2670- 10010- 26920- 65364- 128050- 218905-
2860 10790 31122 82221 164449s 312447

27 117 702 3276- 12012- 35510- 87709- 186058- 330347
3510 12870 41618 105036 246663 444012

28 121 819 3718- 15288- 44747- 121403- 260224- 502068
3931 16380 51480 145663 326778 690656

11 12 13 14

116937- 146552-
207998

228901-
342843

398381- 425950- 
624387 685686

675262- 778872- 
1022562 1296803

Table A.l :  A ( n ,4 ,  lo)
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w
n 4 5 6 7 8 9 10 11 12 13

8 2

9 3

10 5 6

11 6 11

12 9 12 22

13 13 18 26

14 14 28 42 42

15 15 42 70 69-
78

16 20 48 112 109-
138

120-
150i

17 20 68 112-
136

166-
234

184-
282z

18 22 68-
72

132-
202

243-
349

260-
427i

304-
4243

19 25 76-
83

172-
228

338-
520i

408-
734

504- 
7891

20 30 84- 232- 462- 588- 832- 944-
100 276 651 1107 1363i 1420a

21 31 108- 269- 570- 774- 1184- 1454-
126 350 828 1695 2364i 2701a

22 37 132- 319- 759- 1139- 1792- 2182- 2636-
136 462 1100 2277 3774a 4310i 5064i

23 40 147- 399- 969- 1436- 2271- 2970- 3585-
170 521 1518 3162 5819 7521i 7953i

24 42 168- 532- 1368- 1882- 3041- 4200- 5267- 5616-
192 680 1786 4554 8432 12186 14682 15906

25 50 210 700- 1900- 2590- 4127- 6036- 7960- 9031-
800 2428 5581 12620 19037 246301 30587

26 52 260 910 2600- 3532- 5703- 8695- 12037- 14836- 15977-
2971 7891 16122 28893 42081i 49233i 61174

27 54 260- 1170 3510 4786- 7727- 12368- 18096- 23879- 27553-
280 10027 23673 43529 66078a 84574i 91079a

28 63 280- 1170- 4680 6315- 10313- 17447- 29484- 40188- 49462-
302 1306 12285 31195 63756 1042311 142117 164219a

14

52995-

Table A. 2: A{n,Q,w)
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w
n 5 6 7 8 9 10 11 12

10 2

11 2

12 3 4

13 3 4

14 4 7 8

15 6 10 15

16 6 16 16 30

17 7 17 24 34

18 9 21 33-
39

46-
54

48-
68

19 12 28 52-
57

78-
92

88-
114

20 16 40 80 130-
142

160-
204

176-
228

21 21 56 120 210 280-
318i

336-
4232

22 21 77 176 330 280-
493

616-
639i

672-
7 662

23 23 77-
80

253 506 400-
7952

616-
IIIO 3

1288-
1328i

24 24 78- 253- 759 640- 960- 1288- 2576
92 274 1143 1638a 2 I 881

25 30 100 254- 759- 829- 1248- 1662- 2576-
328 856 1610 2448 1 3 5 I 61 4 I 682

26 30 130 257- 760- 883- 1519- 1988- 3070-
371 1066 2160 3719i 5314a 6790i

27 30- 130- 278- 766- 970- 1597- 2295- 3335-
32 135 500 1252 2914 5260i 7837i 10547i

28 33 130- 296- 833- 1107- 1820- 2756- 4916-
149 540 1750 3895 7368i 11939 17299%

13 14

4805- 6090-

Table A. 3: A {n ,8 ,w )
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w
n 6 7 8 9 10 11 12 13

12 2

13 2

14 2 2

15 3 3

16 3 4 4

17 3 5 6

18 4 6 9 10

19 4 8 12 19

20 5 10 17 20-
26

38

21 7 13 21 27-
39

38-
54

22 7 16 24-
33

35-
51

46-
81i

46-
862

23 8 20- 33- 45- 54- 65-
23 46 83 1162 135i

24 9 24- 38- 56- 72- 95- 122-
27 69 1182 1702 2222 2462

25 10 28- 48- 72- 100- 125- 132-
32 84 158i 262i 3852 462

26 13 28- 54- 91- 130- 168- 195- 210-
36 104 2132 410 576 2 727i 8862

27 14 36- 6 6 - 118- 162- 2 2 2 - 351- 405-
48 121  2983 575 972 12 8 8 2  1460i

28 16 37- 78- 132- 2 1 0 - 286- 365- 756-
56 168 376 821i 14352 19802 2438 i

14

790-

Table A.4: A(n, 10, w)
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w
n 7 8 9 10 11 12 13

14 2

15 2

16 2 2

17 2 2

18 3 3 4

19 3 3 4

20 3 5 5 6

21 3 5 7 7

22 4 6 8 11 12

23 4 6 10 16 23

24 4 9 16 24 24- 46
34

25 5 10 25 28- 36- 50-
352 51i 672

26 5 13 26- 33- 39- 54- 58-
28 56 82 97 i 104i

27 6 15 39 39- 54- 82- 86-
75 IIO2 1392 1562

28 8 19 39- 49- 65- 84- 99-
46 1022 1482 1982 2442

Table A.5 A( n, 12, w)

14

w

16

17

18

20

21

22

24

25

10 13 14

13 19- 27 
20

27 4 6

11 21 28- 28- 54 
30 412

28

Table A.6: A{n, 14, w)
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A.4.3 Additional constraints

The results of the linear programme can be improved by using some additional 

constraints. In particular, for several parameter combinations we find tha t 

^ 2 w ^  1. The existence of a code-word at this distance from another code­

word constrains the distribution of other co de-words, giving extra terms of the 

form

^ 2 i +  (T(z, w ,i ,n  — w, d) — t)A 2 w < T(z, ru, %, n — w, d), 

where t is given by:

w

t = ^  T { j ,w A ,w J  -  i ,n  -  2w,d). 
j = d / 2

T(icl, n l, ic2, n2, tc3, n3, d) is the extension of T to three pairs of w, n.

A .5 Tables o f upper and lower bounds of A (n ,d ,w )

The tables presented here, give both upper and lower bound to A (n ,d ,w ), or 

the exact value where it is known. The range selected for the values of n, d and 

w in these tables is the same as that used in [28], except tha t d < 14.

The lower limits were obtained from two sources. The main one is the tables 

of Brouwer et. al.[28]. Furthermore, some newer values obtained by Nurmela 

et. al.[79, 80], together with values obtained from the tables electronically 

published by Rains and Sloane[81], were added.

The upper limits were calculated using all the methods described earlier. The 

linear programmes were solved using the simplex procedure, as described by 

Sultan[21]. Where there is no suffix to a value, then the value was calculated
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using Johnson’s formulas. Where linear programming was used there is a suf­

fix specifying which method was used; 1 where the value was obtained using 

Delsarte’s programme, 2 when Van Pul’s bound was used, and 3 when a com­

bination of both programmes gave the presented result.

On several occasions, the values obtained for the upper limit were worse than 

the ones presented in both Best[76] and Van Pul[78]. Specifically, the following 

tighter upper bounds were given:

A (21, 8,10) < 399 and A(20,10, 9) < 24 as presented in reference [76] as well as 

A (21,10,10) < 44, A (22,10,10) < 73, A (22,10,11) < 81 and A (24,10,8) < 68 

found in reference [78].

Most of these values were calculated using linear programming, except for 

A (20,10, 9) and A (24,10,8), which seem to be in error since no references are 

given. For the rest of the values, it is possible tha t the upper limits of the 

value of T (icl, n l, ic2, n2, d) used were more exact, possibly calculated through 

the linear programming bound described in [76]. However, several of the values 

of T {w l, n l , w 2 ,n 2 ,10) that were presented in tha t paper were found to be in 

error [28].

Furthermore, the additional constrains described earlier tha t can be used when 

^ 2 w ^  1 can be generalised for any value A 2 i < 1. Such values exist for many 

of the parameter sets where a discrepancy was found.

A .5 Sum m ary

A detailed study of the upper limit of the number of code-words in a constant 

weight code was presented, together with a collection of the latest published
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lower bounds. These assist in the calculation of new upper and lower bounds of 

the number of co de-words in asymmetric error correcting codes, together with 

the properties of such codes that were discussed in the third chapter.

119



References

[1] S. Fragiacomo, C. Matrakidis, and J. J. O’Reilly, “A new error correct­

ing line code,” in IT S /IE E E  ROC&C International Telecommunications 

Symposium, (Acapulco, Mexico), pp. 54-58, Oct. 1996.

[2] S. Fragiacomo, C. Matrakidis, and J. J. O’Reilly, “Exploiting soft decision 

decoding for error correcting line codes,” in IEEE ICCS/ISPACS Confer­

ence Proceedings, vol. 2, (Singapore), pp. 638-642, Nov. 1996.

[3] S. Fragiacomo, C. Matrakidis, and J. J. O’Reilly, “Soft decision error cor­

recting line code for optical data storage,” in LEOS Conference Proceed­

ings, vol. 1, (Boston, USA), pp. 201-202, Nov. 1996.

[4] S. Fragiacomo, Y. Bian, A. Popplewell, C. Matrakidis, and J. J. O’Reilly, 

“An accelerated simulation technique for evaluating communication sys­

tems using FEC,” in Proceedings of the European Conference on Networks 

and Optical Communications, vol. 2, (Antwerp, Belgium), pp. 145-148, 

June 1997.

[5] C. Matrakidis and J. J. O’Reilly, “A block decodable line code for high 

speed optical communication,” in IEEE International Symposium on In­

formation Theory, (Ulm, Germany), p. 221, June 1997.

[6] S. Fragiacomo, C. Matrakidis, and J. J. O’Reilly, “A class of low complex­

ity line codes,” in IEEE International Symposium on Information Theory, 

(Ulm, Germany), p. 219, June 1997.

[7] S. Fragiacomo, G. Matrakidis, and J. J. O’Reilly, “Glass of low complexity 

line codes for optical data storage and communications,” in The Pacific

120



Rim  Conference on Lasers and Electro-Optics, (Chiba, Japan), pp. 92-93, 

July 1997.

[8] C. Matrakidis and J. J. O’Reilly, “Limiting the maximum run-length of 

block turbo codes,” in Proceedings of the International Symposium on 

Turbo Codes & Related Topics, (Brest, France), pp. 220-222, Sept. 1997.

[9] S. Fragiacomo, C. Matrakidis, and J. J. O’Reilly, “Performance aspects 

of a class of low complexity line codes,” in International Conference on 

Signal Processing Applications & Technology, vol. 1, (San Diego, USA), 

pp. 632-636, Sept. 1997.

[10] S. Fragiacomo, C. Matrakidis, and J. J. O’Reilly, “Multicarrier transmis­

sion peak-to-average power reduction using simple block code,” Electronics 

Letters, vol. 34, pp. 953-954, May 1998.

[11] S. Fragiacomo, C. Matrakidis, A. Popplewell, and J. J. O’Reilly, “Novel 

accelerated technique for low bit error rate communication systems,” I  EE  

Proceedings on Communications, vol. 145, pp. 337-341, Oct. 1998.

[12] K. W. Cattermole, “Principles of digital line coding,” International Journal 

of Electronics, vol. 55, no. 1, pp. 3-33, 1983.

[13] K. A. Schouhamer Immink, Properties and Constructions of Binary Chan­

nel Codes. PhD thesis, Technishe Hogeschool Eindhoven, May 1985.

[14] D. T. Tang and L. R. Bahl, “Block codes for a class of constrained noiseless 

channels,” Information and Control, vol. 17, pp. 436-461, 1970.

[15] S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and 

Applications. Prentice-Hall, Inc., 1983.

121



[16] J. R. Pierce, “Optical channels: Practical limits with photon counting,” 

IEEE Transactions on Communications, vol. 26, pp. 1819-1821, Dec. 1978.

[17] S. D. Constantin and T. R. N. Rao, “On the theory of binary asymmetric 

error correcting codes,” Information and Control, vol. 40, pp. 20-36, 1979.

[18] R. R. Varshamov, “Some features of linear codes that correct asymmetric 

errors,” Soviet Physics-Doklady, vol. 9, pp. 538-540, Jan. 1965.

[19] J. H. Weber, C. de Vroedt, and D. E. Boekee, “Necessary and sufficient 

conditions on block codes correcting/detecting errors of various types,” 

IEEE Transactions on Computers, vol. 41, pp. 1189-1193, Sept. 1992.

[20] T. Kl0ve, “Upper bounds on codes correcting asymmetric errors,” IEEE  

Transactions on Information Theory, vol. 27, pp. 128-131, Jan. 1981.

[21] A. Sultan, Linear Programming. An Introduction with Applications. Aca­

demic Press, Inc., 1993.

[22] S. Walukiewicz, Integer Programming. Kluwer Academic Publishers, 1991.

[23] J. H. Weber, C. de Vroedt, and D. E. Boekee, “New upper bounds on 

the size of codes correcting asymmetric errors,” IEEE Transactions on 

Information Theory, vol. 33, pp. 434-437, May 1987.

[24] J. H. Weber, C. de Vroedt, and D. E. Boekee, “Bounds and constructions 

for binary codes of length less than 24 and asymmetric distance less than 

6,” IEEE Transactions on Information Theory, vol. 34, pp. 1321-1331, 

Sept. 1988.

[25] Y. Saitoh, K. Yamaguchi, and H. Imai, “Some new binary codes correct­

ing asymmetric/unidirectional errors,” IEEE Transactions on Information  

Theory, vol. 36, pp. 645-647, May 1990.

122



[26] Z. Zhang and Z.-G. Xia, “New lower bounds for binary codes of asym­

metric distance two,” IEEE Transactions on Information Theory, vol. 38, 

pp. 1592-1597, Sept. 1992.

[27] S. Al-Bassam, R. Venkatesan, and S. Al-Muhammadi, “New single asym­

metric error-correcting codes,” IEEE Transactions on Information Theory, 

vol. 43, pp. 1619-1623, Sept. 1997.

[28] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith, “A new ta ­

ble of constant weight codes,” IEEE Transactions on Information Theory, 

vol. 36, pp. 1334-1380, Nov. 1990.

[29] T. Etzion, “New lower bounds for asymmetric and unidirectional codes,” 

IEEE Transactions on Information Theory, vol. 37, pp. 1696-1704, Nov. 

1991.

[30] E. Gorog, “Redundant alphabets with desirable frequency spectrum prop­

erties,” IBM  Journal of Research and Development, vol. 12, pp. 234-241, 

May 1968.

[31] G. L. Pierobon, “Codes for zero spectral density at zero frequency,” IEEE  

Transactions on Information Theory, vol. 30, pp. 435-439, Mar. 1984.

[32] R. O. Carter, “Low-disparity binary coding system,” Electronics Letters, 

vol. 1, pp. 67-68, May 1965.

[33] J. M. Griffiths, “Binary code suitable for line transmission,” Electronics 

Letters, vol. 5, pp. 79-81, Feb. 1969.

[34] G. L. Cariolaro and G. P. Tronca, “Spectra of block coded digital signals,” 

IEEE Transactions on Communications, vol. 22, pp. 1555-1564, Oct. 1974.

123



[35] G. L. Cariolaro and G. P. Tronca, “Correlation and spectral properties of 

multilevel (M,N) coded digital signals with applications to pseudoternary 

(4,3) codes,” Alta Frequenza, vol. 43, pp. 2-15, Jan. 1974.

[36] G. L. Cariolaro, G. L. Pierobon, and G. P. Tronca, “Analysis of codes and 

spectra calculations,” International Journal of Electronics^ vol. 55, no. 1, 

pp. 35-79, 1983.

[37] G. S. Poo, “Computer aids for code spectra calculations,” lE E  proceedings 

F, vol. 128, pp. 323-330, Oct. 1981.

[38] R. H. Deng and M. A. Herro, “DC-free coset codes,” IEEE Transactions 

on Information Theory, vol. 34, pp. 786-792, July 1988.

[39] J. J. O’Reilly and A. Popplewell, “Class of disparity reducing transmission 

codes with embedded error protection,” lE E  Proceedings /, vol. 137, pp. 73- 

77, Apr. 1990.

[40] A. Popplewell, Combined Line and Error Control Coding. PhD thesis. 

University of Wales, Bangor, Mar. 1990.

[41] R. W. Tkach, R. M. Derosier, F. Forghieri, A. H. Gnauck, A. M. 

Vengsarkar, D. W. Peckham, J. L. Zyskind, J. W. Sulhoff, and A. R. 

Ghraplyvy, “Transmission of eight 20-gb/s channels over 232 km of con­

ventional single-mode fiber,” IEEE Photonics Technology Letters, vol. 7, 

pp. 1369-1371, Nov. 1995.

[42] W. A. Krzymien, “Transmission performance analysis of a new class of line 

codes for optical fiber systems,” IEEE Transactions on Communications, 

vol. 37, pp. 402-404, Apr. 1989.

124



[43] J. P. J. Heemskerk and K. A. S. Immink, “Compact disc: System aspects 

and modulation,” Philips Technical Review^ vol. 40, no. 6, pp. 157-164, 

1982.

[44] W. G. Bliss, “Circuitry for performing error correction calculations on 

baseband encoded data to eliminate error propagation,” IBM  Technical 

Disclosure Bulletin, vol. 23, no. 10, pp. 4633-4634, 1981.

[45] K. A. Schouhamer Immink, “Code configuration for avoiding error propa­

gation,” Electronics Letters, vol. 32, pp. 2191-2192, Nov. 1996.

[46] K. A. S. Immink, “A practical method for approaching the channel capac­

ity of constrained channels,” IEEE Transactions on Information Theory, 

vol. 43, pp. 1389-1399, Sept. 1997.

[47] J. L. Fan and A. R. Calderbank, “A modified concatenated coding scheme, 

with applications to magnetic data storage,” IEEE Transactions on Infor­

mation Theory, vol. 44, pp. 1565-1574, July 1998.

[48] A. Popplewell and J. J. O’Reilly, “Runlength limited binary error control 

codes,” lE E  Proceedings I, vol. 139, pp. 349-355, June 1992.

[49] A. Popplewell and J. J. O’Reilly, “New class of runlength-limited error- 

control codes with minimum distance 4,” lE E  Proceedings I, vol. 140, 

pp. 104-108, Apr. 1993.

[50] A. J. van Wijngaarden and K. A. S. Immink, “Combinatorial construc­

tion of high rate runlength-limited codes,” in IEEE Glohecom Conference 

Record, vol. 1, (London, UK), pp. 343-347, Nov. 1996.

[51] K. A. S. Immink and A. J. van Wijngaarden, “Simple high-rate constrained 

codes,” Electronics Letters, vol. 32, p. 1877, Sept. 1996.

125



[52] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and 

E. Teller, “Equation of state calculations by fast computing machines,” 

Journal of Chemical Physics, vol. 21, pp. 1087-1092, June 1953.

[53] A. A. El Gamal, L. A. Hemachandra, I. Shperling, and V. K. Wei, “Using 

simulated annealing to design good codes,” IEEE Transactions on Infor­

mation Theory, vol. 33, pp. 116-123, Jan. 1987.

[54] “Xilinx xc3000 series field programmable gate arrays,” Nov. 1997.

[55] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal- 

danha, H. Savoj, P. R. Stephan, R. K. Bray ton, and A. Sangiovanni- 

Vincentelli, “Sis: A system for sequential circuit synthesis,” tech. rep.. 

Department of Electrical Engineering and Computer Science, University 

of California, Berkeley, May 1992.

[56] A. E. Jones, T. A. Wilkinson, and S. K. Barton, “Block coding scheme for 

reduction of peak to mean envelope power ratio of multicarrier transmission 

schemes,” Electronics Letters, vol. 30, pp. 2098-2099, Dec. 1994.

[57] L. W. Couch, Digital and Analog Communication Systems. Macmillan 

Publishing Company, 1993.

[58] D. Wulich, “Peak factor in orthogonal multicarrier modulation with vari­

able levels,” Electronics Letters, vol. 32, pp. 1859-1860, Sept. 1996.

[59] L. J. Creenstein and P. J. Fitzgerald, “Phasing multitone signals to min­

imize peak factors,” IEEE Transactions on Communications, vol. 29, 

pp. 1072-1074, July 1981.

[60] S. Boyd, “Multitone signals with low crest factor,” IEEE Transactions on 

Circuits and Systems, vol. 33, pp. 1018-1022, Oct. 1986.

126



[61] A. van den Bos, “A new method for synthesis of low-peak-factor signals,” 

IEEE Transactions on Acoustics, Speech, and signal Processing, vol. 35, 

pp. 120-122, Jan. 1987.

[62] E. van der Ouderaa, J. Schoukens, and J. Renneboog, “Comments on “mul­

titone signals with low crest factor” ,” IEEE Transactions on Circuits and 

Systems, vol. 34, pp. 1125-1127, Sept. 1987.

[63] D. W. Bennett, R. J. Wilkinson, and P. B. Kenington, “Determining the 

power rating of a multichannel linear amplifier,” lE E  Proceedings Commu­

nications, vol. 142, pp. 274-280, Aug. 1995.

[64] P. W. J. van Eetvelt, S. J. Shepherd, and S. K. Barton, “The distribu­

tion of peak factor in qpsk multi-carrier modulation,” Wireless Personal 

Communications, vol. 2, pp. 87-96, 1995.

[65] S. Shepherd, J. Orriss, and S. Barton, “Asymptotic limits in peak enve­

lope power reduction by redundant coding in orthogonal frequency-division 

multiplex modulation,” IEEE Transactions on Communications, vol. 46, 

pp. 5-10, Jan. 1998.

[66] D. Wulich, “Reduction of peak to mean ratio of multicarrier modulation 

using cyclic coding,” Electronics Letters, vol. 32, pp. 432-433, Feb. 1996.

[67] S. J. Shepherd, P. W. J. van Eetvelt, C. W. Wyatt-Millington, and S. K. 

Barton, “Simple coding scheme to reduce peak factor in qpsk multicarrier 

modulation,” Electronics Letters, vol. 31, pp. 1131-1132, July 1995.

[68] M. Friese, “Multicarrier modulation with low peak-to-average power ra­

tio,” Electronics Letters, vol. 32, pp. 713-714, Apr. 1996.

127



[69] P. van Eetvelt, G. Wade, and M. Tomlinson, “Peak to average power reduc­

tion for ofdm schemes by selective scrambling,” Electronics Letters^ vol. 32, 

pp. 1963-1964, Oct. 1996.

[70] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak- 

to-average power ratio of multicarrier modulation by selected mapping,” 

Electronics Letters, vol. 32, pp. 2056-2057, Oct. 1996.

[71] J. A. Davis and J. Jedwab, “Peak-to-m ean power control and error correc­

tion for ofdm transmission using Golay sequences and Reed-Muller codes,” 

Electronics Letters, vol. 33, pp. 267-268, Feb. 1997.

[72] X. Li and J. A. Ritcey, “M-sequences for ofdm peak-to-average power ratio 

reduction and error correction,” Electronics Letters, vol. 33, pp. 554-555, 

Mar. 1997.

[73] C. Tellambura, “Use of m-sequences for ofdm peak-to-average power ratio 

reduction,” Electronics Letters, vol. 33, pp. 1300-1301, July 1997.

[74] C. Tellambura, “Comment: Multicarrier transmission peak-to-average 

power reduction using simple block code,” Electronics Letters, vol. 34, 

p. 1646, Sept. 1998.

[75] S. Johnson, “Upper bounds for constant weight error correcting codes,” 

Discrete Mathematics, vol. 3, pp. 109-124, 1972.

[76] M. R. Best, A. F. Brouwer, F. J. Mac Williams, A. M. Odlyzko, and N. J. A. 

Sloane, “Bounds for binary codes of length less than 25,” IEEE Transac­

tions on Information Theory, vol. 24, pp. 81-93, Jan. 1978.

[77] P. Delsarte, An Algebraic Approach to the Association Schemes of Coding 

Theory. PhD thesis. Université Catholique de Louvain, June 1973.

128



[78] C. L. M. van Pul, “On bounds on codes,” M aster’s thesis, Eindhoven Uni­

versity of Technology, Aug. 1982.

[79] K. J. Nurmela, M. K. Kaikkonen, and P. R. J. Ostergard, “New constant 

weight codes from linear permutation groups,” in IEEE International Sym ­

posium on Information Theory, (Ulm, Germany), p. 453, 1997.

[80] K. J. Nurmela, M. K. Kaikkonen, and P. R. J. Ostergard, “New constant 

weight codes from linear permutation groups,” IEEE Transactions on In­

formation Theory, vol. 43, pp. 1623-1630, Sept. 1997.

[81] E. M. Rains and N. J. A. Sloane, “Table of constant weight binary codes,” 

http://www.research.att.com/~njas/codes/Andw, May 1998.

129

http://www.research.att.com/~njas/codes/Andw

