
AN ARCHITECTURE FOR
INTEGRATING MULTIPLE
REAL TIME DATA FEEDS

Neil Roodyn

A thesis submitted for the degree of

Doctor of Philosophy

University of London

Department of Computer Science

University College London

1998

ProQuest Number: U641916

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U641916

Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract
This thesis investigates ‘industry strength’ solutions for integrating multiple real time
data feeds. It addresses one of the major problems challenging computing namely
‘information overload’. The thesis focuses on those problems faced by a user of
multiple data sources, either real time data feeds or databases. The thesis’ goal is a
system architecture providing a generic interface which allows die coimection of one
or more data sources to a unified collection point. On entering the system the data is
screened and filtered for information which is pertinent to the end user. This data is
then available for other programs that use the data, through a standard interface.
The thesis comprises four parts: a critique of existing commercial real time products,
and then the invaition of three experimental real time systems, constituting the core of
this research. These systems have been created in collaboration with industry,
providing unique end user feed back, and also ensuring a degree of compliance with
industry standards. The three experimental systems comprise: (i) a 16 bit real time
system for providing private investors with financial information; (ii) a 32-bit system
for tracking buses in real time; (iii) a 32 bit ‘generic’ real time system which caters for
multiple feeds. The three systems have all been designed and implemented by the
author, and the systans are now being tested in a commercial environment.
The critique examines several commercial real time systems and analyses their key
features relating to information overload. It studies the fimdamental aspects of real
time data processing with specific reference to the industry standard Microsoft
Windows in the PC aivironment.
The second part describes tiie design and implementation of a 16-bit real time system
for providing end users with stock exchange data fit>m one or more data sources. To
provide experimental data on the use of the system it was built in collaboration with
Updata Software. It utilises 16 bit DLLs for multiple process information sharing and
providing data in a soft’ real time manner.
The third part describes the design and implementation of a 32-bit real time system.
This system provides feedback on vehicle positions and with the aid of Hançshire
County Council is being tested for passenger information systems on buses. It utilises
shared global memory blocks to share information between processes.
The final part presents the new generic’ system architecture, whose design draws on
experience gamed from the previous two systems and ftie feedback, provided firom
users. Lessons learnt fi'om previous systems include the need for integration of
filtering into the system and providing an open interface to ease data input frcmi new
data feeds. This system also addresses the need for compliance with industry
standards. It makes strong use of object architectures and, being WOSA compliant,
provides COM interfaces to satisfy the need to share information and provide an open
interface. The two chapters covering this work contain the design of the system and
the strategy employed to implement the design, and then test the system.
The thesis and the software implemented make three contributions to science: i) it
reduces information overload by integrating the data fi’om multiple sources and
providing a single interface for accessing that data, ii) it provides techniques for
bringing real time data to the pŒsonal computer desktop, and iii) it helps to
personalise Üie data by providing a simple filtering mechanism and an interface for
more complex filtering systems. An innovation of this thesis is that tihe
implementations of the designs have been taken through to industry products, in order
to provide feedback.

TABLE OF CONTENTS
C H A P T E R 1.IN TRO D U C TIO N .. 8

1.1. AN A rchitecture fo r M ultiple Rea l Tim e D a ta Fe e d s ... 8
1.2. In form a tion Ov e r l o a d .. 8
1.3. Rea l Tim e Sy s t e m s ...10
1.4. Rea l W o rld Ap p l ic a t io n s .. 11
1.5. Resea rc h M o t iv a t io n s .. 13
1.6. Thesis Or g a n is a t io n ... 14
1.7. Resea rc h C o n t r ib u t io n s ...16

C H A P T E R 2. R E A L T IM E P R O C E S S IN G O F D A T A F E E D S18

2.1. INTRODUCTION..18
2.2. E xistin g s y s t e m s ...18
2.3. Rea l Tim e D ata P ro cessin g un der W in d o w s .. 24
2.4. Ind ustrial Str en g th Softw are E ng in eer in g ...35

C H A P T E R 3 R E A L T IM E S Y S T E M F O R P R IV A T E IN V E S T M E N T 38

3.1. In t r o d u c tio n ..38
3.2. System Re q u ir e m e n t s ...38
3.3. Overview o f The Sy stem D esig n ... 42
3.4. Deta iled D e s ig n ... 45
3.5. Overview Of The Sy stem Im ple m e n t a t io n ... 49
3.6. Deta iled Im plem en ta tio n ... 50
3.7. The E v e n t s ...53
3.8. The P ro blem D om a in C o m p o n e n t ...55
3.9. The Task M an ag em ent C o m p o n e n t ... 55
3.10. D ata M an ag em ent Co m po n e n t ... 55
3.11. End U ser Fe e d b a c k ...56
3.12. C o n c l u sio n ...56

C H A P T E R 4. R E A L T IM E S Y ST E M F O R T R A C K IN G V E H IC L E S57

4.1. In t r o d u c tio n ..57
4.2. System Re q u ir e m e n t s .. 57
4.3. Overview of i h e System D e sig n ...58
4.4. Deta iled System De s ig n ... 60
4.5. Overview O f Th e System Im ple m e n t a t io n ... 63
4.6. Deta iled IMPLEMENTATION...63
4.7. The E v e n t s ...68
4.8. The P ro blem D om a in c o m p o n e n t ...68
4.9. Da ta M anagem ent C o m po n e n t ..68
4.10. En d U ser fee d b a c k ..68
4.11. Co n c l u sio n ...69

C H A P T E R 5. G E N E R IC R TD SYSTTEM F O R M U L T IP L E D A T A F E E D S 70

5.1. In t r o d u c t io n ..70
5.2. System En g in e e r in g ..70
5.3. ANALYSIS..71
5.4. Top Lev el D e s ig n .. 72
5.5. Su m m a r y .. 87

C H A P T E R 6. G E N E R IC R TD SY ST E M IM P L E M E N T A T IO N88

6.1. In t r o d u c tio n ..88
6.2. Lan guage Cho ice A nd St y l e ...88
6.3. The Ob je c t s ... 89
6.4. The R e l a t io n sh ips ..91
6.5. The E v e n t s ...91

6.6. D ata M a n a g em en t .. 96
6.7. Testin g m e t h o d o l o g ie s .. 97
6.8. CONCLUSION...103

CHAPTER 7. ASSESSM ENT... 105

7.1. In t r o d u c tio n ... 105
7.2. Private Investm ent Sy s t e m ..105
7.3. Vehicle Tra ck in g System ...107
7.4. RTD Sy s t e m ..108
7.5. Lessons Le a r n t .. 110
7.6. Su m m a r y ..110

CHAPTER 8. CONCLUSIONS AND FUTURE W O R K ..112

8.1. In t r o d u c tio n ... 112
8.2. C o n c l u sio n s ...112
8.3. Fu rther W o r k ...117
8.4. Su m m a r y ..119

APPENDICES

1. The Live Data DLL API 122
2. Price File DLL API 125
3. The Tempdata Objects 129
4. The Pricefile Objects 132
5. Generic System Interfaces 135
6. Developers Rules 138
7. Class Listing For Generic System 145
8. Classes For Generic System 146

LIST OF FIGURES

Figure 1-1 Screen Shots From Reuters Trading Terminal.. 9
Figure 1-2 Comparison of multiple systems to single sytem..10
Figure 1-3 Each data supplier provides a proprietary system to view the data............... 12
Figure 2-1 Screen shot of Reuters Trader's Workstation.. 20
Figure 2-2 Screen shot of Reuters Graphics..20
Figure 2-3 Screen shot of Bloomberg system..21
Figure 2-4 Screen shot of Bloomberg charts screen..22
Figure 2-5 Screen shot of Bloomberg chart full screen.. 23
Figure 2-6 Screen shot of Fair Shares Professional.. 24
Figure 2-7 Priority Spectrum For Windows NT[11]...32
Figure 2-8 Priority Inversion.. 34
Figure 2-9 The Water Fall Model.. 36
Figure 3-1 Modular based product range... 43
Figure 3-2 General Data Flow Model for Modularity...44
Figure 3-3 More Detailed Data Flow Design...45
Figure 3-4 Objects for the live data DLL.. 46
Figure 3-5 Objects for Historical Data DLL..48
Figure 3-6 Cardinality of Data Relationships in Live Data DLL..................................... 51
Figure 3-7 Class Relationships in Live Data DLL.. 52
Figure 3-8 Cardinahty of Data Relationships in the Pricefile DLL..................................52
Figure 3-9 Class Relationships in the Pricefile DLL... 53
Figure 4-1 Overview of initial system design..58
Figure 4-2 Overview of Data Flow in Server Software System..59
Figure 5-1 How the system will act to control data flow...71
Figure 5-2 Initial Design Ideas... 72
Figure 5-3 Database Tables and Relationships..73
Figure 5-4 Object Relationships for RTD... 78
Figure 5-5 Object Relationships after adding new values list...79
Figure 5-6 Method for offline storage of live data.. 80
Figure 5-7 Structure Storage 'Price Files'...83
Figure 5-8 Using structured storage files for system folders..83
Figure 5-9 Using a single structure storage file for all historical data............................. 84
Figure 5-10 Custom Folder files...85
Figure 5-11 Extract of Visual Basic code to input data...87
Figure 6-1 Object Model for Data Input...92
Figure 6-2 Object Model for Filtra- Component...93
Figure 6-3 Class Relationships in RTD..94
Figure 6-4 Object Model for Output Component...94
Figure 6-5 Flow Chart for White Box testing.. 100
Figure 6-6 Flow Graph For White Box Testing... 101
Figure 7-1 Visual Basic Code to insert price for ShareA..109

LIST OF TABLES

Table 3-1 Fields collected by the system..40
Table 3-2 Data required by external applications.. 41
Table 3-3 Fields Required for Live Data Object.. 47
Table 3-4 Fields Required for Tick data Object..47
Table 3-5 Price file entries.. 48
Table 5-1 Objects in the Live Data Application..76

ACKNOWLEDGMENTS

The author wishes to thank Professor Philip Treleaven for his advise and

guidance on this work, and Professor Anthony Finkelstien for his comments

on the first draft of this thesis.

I also would like to thank the people from industry who aided in this work.

Amongst them are; Graeme Ellisson for his help at Updata Software, Joe

Field and Jeff Hayes for their input to the Bus Tracking system, and the

clients of Black Ace Software Engineering.

C h a p t e r

1

INTRODUCTION

This chapter presents an introduction to real time systems, the issues
surrounding information overload and how real world applications currently
cope It also contains the aims, contributions and organisation o f this thesis.
The major contribution o f this thesis is to present a software architecture
that integrates multiple real time data feeds.

1.1. An Architecture for Multiple Real Time Data Feeds

With the growing amount of information available to end users on personal

computers there is an increasing need to integrate this data. Much of this data

is available in the form of a stream of data, known as a data feed. This thesis

presents three experimental architectures for integrating multiple real time

data feeds. Each architecture builds upon its predecessor in order to obtain a

more generic architecture. These architectures address the issue of

‘information overload’, which is one of the major problems challenging

computing today. The thesis focuses on solving the problems faced by a user

of multiple data sources, either real time data feeds or databases. The thesis’

goal is to create an architecture that provides a generic interface allowing the

connection of one or more data sources to a singje collection point. This

architecture will allow the data to be filtered for information that is relevant to

the end user. This data is then made available for other programs to use

through a standard interface. It is this architecture that integrates multiple real

time data feeds that is the main contribution of this thesis to solving the

problem of information overload.

1.2. Information Overload

Jan Wyllie, an industry pundit, recently made the following comment in a

paper entitled ‘Turning information overload into useful knowledge

resources’ [5]:

‘Information is a resource which - unlike physical resources - is not scarce.
People are overwhelmed ^ the sheer volume - huge and ever growing
numbers o f newspapers, teleidsion programs, learned journals and
conmrsations. The World Wide Web and email simply make a desperate
situation worse. '

It highlights the ever growing problem o f information overload; there is too

much information for the user to cope with. Nowhere is this more apparent

than in the domain o f financial information systems, where along with

thousands of stock prices updated every second, a vast quantity o f news and

financial reports are available, an example o f this can be seen in figure 1-1.

G. Miller states that the human mind can only simultaneously cope with

seven (plus or minus two) chunks o f information [49]. It seems unlikely that

humans will be able to absorb more information so the problem may be

alleviated by simply reducing the amount o f data with which users have to

handle [16].

3 IF

Figure 1-1 Screen Shots From Reuters Trading Terminal

This approach is ideally suited to be carried out by a computer system, rather

than the end user, d he computer can sift through vast quantities o f data in

order to retrieve, or filter out, that which is useful information for the end

user. This solution also fits in with current industry thinking on providing a

single interface for multiple tasks; one o f the reasons Microsoft’s Windows

has been so successful.

There are some systems that attempt to address this problem within specific

information domains. An example is email systems that provide filters based

on a set o f rules entered by the users, such as Microsoft Exchange. There is
9

not a generic system available that allows new filters to be singly added to an

existing system without being concerned about the information domain.

One area, in which much work has been carried out to lessen the impact of

information overload, is that of stock market surveillance systems. The

quantity of information, provided by a stock market, can be too excessive to

monitor without the aid of filtering tools. Many of the tools available

concentrate on filtering the data from a single proprietary feed.

It was this problem of information overload which inspired the ideas for this

thesis, to provide a single collection point for all data on the desktop, so that

the data may then be filtered for information which the user actually wanted

to see. Figure 1-2 illustrates the concept of providing a unified collection

point as shown in B, where the generic system software provides the task of

collating the data, rather than the data user.

Data User

Specific SystemSpecific System

Data Feed Database

Data User

Generic System

Data Feed Database

A. Multiple Systems, one for each data source. B. Single Generic System, collects and

filters from multiple data sources.

Figure 1-2 Comparison o f multiple systems to single sytem

1.3, Real Time Systems

This thesis addresses the issue of information overload with real time systems.

In general ‘systems’ can be broken down into three main groups:[1]

1. Batch: The response time is not important to the user and often could be

hours or even days.

10

2. On-line: Results are expected within a short time scale of seconds or

minutes, but the time is not critical.

3. Real time: The results must be delivered within a definite short time,

milliseconds to seconds, or the system will not work.

Batch systems usually require lengthy processing using resources that are

scarce or expensive. Quite often the user will pre process information on a

local computer before sending a job to a remote computer. These jobs will

usually be sent in groups or batches, hence the name. The results will then be

sent back to the local computer when the job has completed. Due to the non­

urgent nature of this type of processing, transmissions may be queued until

communication rates are cheaper, or more processor time is available.

On-line systems often don’t use local processing, but instead rely on terminals

communicating with a central computer, which handles transactions using

some from of time slicing. These are sometimes known as ‘soft* real time

systems, since they are not always time critical, and the response time is often

dependent upon the amount of activity.

Real time systems on the other hand are always time critical, and are

sometimes called Tiard’ real time systems. With these systems a delayed

response in considered unacceptable.

Although there are a number of architectures for real time systems there is

not one that exists to solve the problem of collecting data from multiple

sources on a widely used operating system (such as Microsoft Windows). The

major reason for this is that such operating systems are not designed to

support such systems. The architectures provided in this thesis attempt to

overcome the shortcomings of the Microsoft Windows operating system,

with respect to handling real time data.

1.4. Real World Applications

The information overload problem can currently be seen in many areas. One

of which is the financial markets where an enormous amount of data is

already available for PCs, in the form of stock prices, news and financial

11

reports. This data is generally incomprehensible as simply prices with times

and dates, and is best viewed using charts or some other analysis tools. It is

also useful to be able to view the fluctuations in the market with respect to

other events, which take place in the World such as the News. Certain

applications, like Reuters 2000 and Bloomberg, are starting to provide some

functionality in this area, althou^ generally they are targeted at one

proprietary data feed. They work by linking into a proprietary API, which is

controlled by the feed provider. This then forces the user to use that one data

source, and does not permit comparisons (except manually) with other

information providers.

Another area in which information overload is already becoming a problem is

the Internet, with email, the World Wide Web and news groups providing a

seemingly endless stream of information to sort through[2]. This is possibly

the area in which most work has been done in order to help alleviate the

current situation of information volume by providing various means of

sorting and filtering. But mostly this processing is done off-line after the data

has been received and not in real time as it is collected.

Bloombergs,
Vata Feecy

[outers Dal
\ Feed .

Market Eye
^ t a Feed/

Bloombergs
Software

Market Eye (ICV)
Softvrare

Reuters Software

Figure 1-3 Each data supplier provides a proprietary system to view the

data

12

M.A.LD. pic, which is currently one of the leading suppliers of on-line

business information, has realised there is a problem and has created a

business out of working towards a solution. Dan Wagner, Chief Executive of

M.A.LD. pic stated in a press release[14]:

of the key probkms in the online industry have been information
overload and unpredictable, variable costings. M .A.LD have met these
problems head on and notv have in place a series of products that will give
compcmies more control over their information budget tvithout any of the
problems of information overload. ”

But once ag^n this solution is only for data provided by M.A.I.D. over the

Internet, and although this is currently quite extensive, it doesn't cover

everything which is available. It isn't clear how to plug a third party data

source into the system, or even if it's possible.

What is required is a more open and generic system which isn't specifically

targeted at a proprietary data feed, but which provides an interface to allow

any third party feed provider enter data into the system.

1.5. Research Motivations

This thesis was initially conceived, to create an architecture to receive data

from various information sources (some live and real time), store the data,

allow for the retrieval of that data and display it. Initially the data was to be

financially based only with a view to expanding the system to cope with other

types of data in the future. It quickly became apparent that it would be a far

more powerful tool if the data could be of any type. So a generic system to

handle all real time data types was written.

It was also realised that in order to be of any use the system being designed

would have to be usable by the majority of the people suffering from the

information overload problem. To this end it would be pointless designing a

system that provided a specific programming language style interface, it would

have to be configurable by a non technical person.

Microsoft has already provided guidelines on designing simple real time

systems under their Windows systems using COM (Component Object

13

Model), represented in the Windows Open System Architecture (WOSA)

extensions for real time (XRTQ. These would have to be followed in order to

be compatible with any other systems that follow these guidelines.

This thesis provides an architecture that extends the WOSA guidelines by

adding a more detailed storage hierarchy, allowing for simple data input and

catering for historical data. This architecture has the following features:

[1] Multiple sources of data can be input simultaneously. The data can be of

multiple types and C2in be linked together to provide a single way of

traversing through it.

[2J The data can be filtered for information that is pertinent to the end user.

A standard interface is provided to easily allow new filtering tools to be

added. The system starts by selecting only the information that is actually

chosen by the user to be collected.

[3] An interface is provided in order to retrieve the data which has been

filtered. Multiple data clients can obtain the either all or a subset of the

filtered data.

[4] Data clients can request to be notified of new filtered data. In this way

clients can easily be written which take an action upon a change in the

data being filtered.

1.6. Thesis Organisation

This thesis is organised into 8 chapters.

Chapter Two - Real Time Processing of Data Feeds, surveys existing systems,

and their usage. These include Reuters, Bloombergs and Fairshares. Also

covered are issues involving real time data processing on personal computers

running Microsoft Windows, this is important as Windows now presents the

majority of installed users in the World and it is deemed commercially

important to provide a system that most users can adopt.

14

Chapter Three - Real Time System For Private Investment, presents a new

architecture for integrating multiple real time data feeds and contains a case

study of the design and implementation of a 16 bit real time system written

for the private investment market, and currently marketed by Updata software

Ltd. This system is based on the first experimental architecture for integrating

multiple data feeds.

Chapter Four - Real Time System For Bus Tracking, studies the design and

implementation of a 32 bit real time system, written in order to track buses

and provide passenger information. This system was designed and written in

conjunction with Han^ shire County Council, and is currently in use and

providing feedback. The architecture for this system builds upon the

architecture presented in the previous chapter.

Chapter Five - Generic RTD System For Multiple Data Feeds, describes the

final architecture presented in this thesis and examines the methodologies

used for engineering the generic software system, along with an in-depth view

of the design of the system. Including ways it could be made more future

proof. The architecture for this system is the third presented in this thesis and

builds upon those presented in the previous two chapters.

Chapter Six - Generic RTD System Implementation, describes in detail the

ultimate target of this thesis. Covering the implementation phase of the

project, examining the language choice and style as well as specific details of

implementation. Also considered in this chapter are testing strategies.

Chapter Seven - Assessment, assesses the three different architectures

presented in previous chapters. Pointing out what can be learned from each

one and how these lessons have changed the way in which the next system

was created.

Chapter Eight - Conclusions And Future Work, rounds up the thesis by

making notes to the success of the various systems in the real world, and

su^^sting what work could be carried out in the future.

15

1.7. Research Contributions

This thesis provides an architecture that makes four contributions to science.

Uniform Data Collection Point. This provides an interface for filtering and

sorting data, by providing an ‘engine’ to which any feed can be added using

only a few simple lines of Visual Basic.

Standard Real Time Engine. The data that is collected can be real time. By

providing a system for immediately notifying data users of changes to the

data, the system can cope with data that is constantly changing. This real time

engine is fully compliant with the Microsoft WOSA XRT specifications. The

system also provides a mechanism for handling historical data.

Resolving Information Overload. To resolve information overload, the

system provides a somewhat more complex interface so that programs can be

written to examine the data and filter out the required information. Selecting

only the information that is of interest to the end user can do this.

The ‘intelligence’ of the sorting and filtering software will dictate the level to

which the information overload problem can be resolved. The sirrçlest would

be to allow the user to choose categories of information from which to collect

data, if they choose an area then all the data would be collected. A more

intelligent approach would be to provide an agent which actually searched the

incoming data for topics of interest, or keywords [17]. Either way it is

expected that the information overload problem will be lessened to some

extent.

The Industry Aspect. A unique point of this thesis is that the experimental

software, in order to be realistic, has addressed two points;

[1] Industry compliance; the architectures presented have all attempted to

overcome the shortcomings of the Microsoft Windows operating system in

order to provide systems which would gain commercial acceptance, and thus

be able to prove the worth of the architecture in the real world.

16

[2] End user feedback; by providing architectures which could be deployed in

the real world it was possible to obtain a level of end user feedback that is not

usually available to research projects.

17

C h a p t e r

2

REAL TIME PROCESSING OF DATA FEEDS

This chapter examines several commercial real time systems and identifies
their key features relating to information overload. It studies the
fundamental aspects o f real time data processing with specific reference to
the industry standard Microsoft Windows in the PC environment

2.1. Introduction

To provide an understanding of the complex nature of real time data delivery,

along with mechanisms for achieving the goals of this thesis, this chapter

provides an insight into the methods employed by existing systems to provide

large amounts of data to the user in a timely manner. The financial sector is

the largest market for real time systems on PC’s. These systems aim to

provide end users with the price of shares as soon as they change in the

markets, along with news and financial reports.

The second section of this chapter studies some of the various techniques

which can be employed to create these types of systems, under what is

essentially not a real time operating system, namely Microsoft Windows.

2.2. Existing systems

The financial markets provide large quantities of data that the end user

requires in the shortest possible time frame. The data consists of anything

that is quantifiable that occurs within the markets, such as prices of shares,

exchange rates, times of trades and volumes of trades. Each item for which

data is provided is called an instrument. This data is usually provided in the

form of a ‘feed’, which is simply a stream of the data. Three systems are

examined.

Reuters Traders Workstation

Reuters provide a range of real time financial systems for the PC market

place, the one which is examined here is their Trader’s Workstation. This

links directly to a Reuters feed, through a card that plugs into the PC. Reuters

18

aim to provide the information to the desktop within one second of a price

change occurring on the trading room floor.

The software they provide has a Windows style interface, with some standard

menus, r i^ t click popup menus, and child windows.

It has some useful features, such as the ability to build up a set of child

windows, as shown in the screen shot in figure 2.1, and then save that layout

as a workspace for future use. This helps solve the information overload

problem by allowing the users to define what they view. By double clicking on

an instrument a more detailed child window opens, with information

pertaining specifically to that instrument. The user can also perform searches,

change the formatting of the output along with standard Windows features,

such as changing fonts. It is possible to draw charts on an instrument, by

selecting to draw a chart, a separate application is launched, Reuters Graphics.

Charts are a common method that it is used to lessen the information

overload problem, by providing a view of the data that is easier for humans to

understand.

This system also provides a means of getting data out of this application into

other applications, it does this by means of a DDE (Dynamic Data

Exchange) link. This provides some clues as the underlying technologies used

to create this system.

The first thing to note is the fact that the system runs under Windows For

Workgroups as well as Windows 95. This would indicate that it is a 16 bit

system. While running the Reuters software there are always a couple of

background tasks that are running. It would appear that these provide the link

from the feed to the front end software. Through further examination, using

software spies, it would seem likely that they use DDE as a communication

protocol. The fact that it uses DDE (Dynamic Data Exchange) linking rather

than COM (Component Object Model) also suggests use of old 16 bit

technologies. While there are commercial considerations for Reuters to

provide a 16 bit system, such as a large existing 16 bit user base, it does mean

that they are not utilising the full potential power available to them. By using
19

older technologies the Reuters system has the benefit o f backward

compatibility, but it does incur the penalty o f not utilising the more advanced

up to date technologies which would provide faster data handling and more

open interfaces.

a m

mm..

onrrsoii: Trm«u 32.17 «0.19 osss
srasA.."! s i

'iJ*

E l i i4 M mm

S I* .
SSsS ... t 09.96 2̂.01 tflM.I VI06 AG

CnlltacHpeflw

Î ® as im a «Pet Chng Vdlwe I-$.M X 19362.35
19369?!?̂ Rm 00 Vr -Higti Pr ¥» li* H«. Pr Vi

Mfl WWW AK ■'èftwwror
%

I 1 02^ m 7 V r H i o h

Yield Ix Date

mmx

Ri#i.Jan87
M023.S2 19298.90 190(6 19

I f # H i g h L l f H i . O e t L l f e . ü M00915.0? 29KC09 05.25

Figure 2-1 Screen shot of Reuters Trader^s Workstation

Figure 2-2 Screen shot of Reuters Graphics

20

Bloomberg
Bloomberg provide an integrated package o f software along with their feed,

which requires a card inside the PC. This provides on-line data along with

radio and TV, so could be considered to provide multiple feeds. It provides

two main screens for viewing the information, and for this reason two actual

VDU’s are usually used, splitting the desktop between them. This helps to

reduce the amount o f information displayed on each screen and therefore

reduce the information overload.

This system does not have a Windows ‘look and feel’, it has no pull down

menus or icons, in fact it looks very much like a text based terminal.

BuLiri Giivi B B N

F j t d ' =y[i e d u f r e v i « g y & a u : k u < b
m i - i r . i i s l r i p = i , m a r k p t - = , , t r = r i i ' = . a m
P 3 l i : L , e n t e r 9 (P _ Y < G U >

M A R K E T S S U M M A R I E S E C O N O M Y
: 'I p u c " d 1 _ T O P T u p f t u r i e - . ' C ' k a t i .
T a m i i i r H : ̂ 1 - ‘. H I M l i e d a G i i m r . ' A ' F r r p r . a - . l s
i . . u " r e ' t i : u - F . T M ' . i i L i , o 1 e i . i u e . " H i I r s t u n t i n e i i g h t
E n : T] . j 1 - 11 t : a t G l c n . e E Q U I T Y 8 D E B T ;
E n u M - j S U R V E Y S .. , M M L c m p a r n j . M e j e
I n . h i . - ' T ! : B F ' . H E u t i) H n l n - . t M ' T E N F S E ' F i I i mj -

G E N E R A E NEI-JS
A P T A l t ' L u l l P L t

- I F M | \ F F n t P i l a i n
' - Z I l . e r . i l U M ' P z t

••- M M i t e r . at . ! o n . ?]
‘M ' Gove rmft t
> - F i P . 11 t i l s

i f . u p , -iti p I t M M FTi'M F rrr ivam ' -I
Icnen-M'i'kei '1 Mnoqere
t o t g a u e N E W S M E N U S
l u - i i c i r a i Z '.‘. [B' Mi C o l u m n s
^ r s f e - , e . l 2 : E P O P a i j e O n e

n . a n - . ' 4 '-11 ' i pi i - . F a r t p s

M o t g a N
MunicIr?I 22 E
P r s f e - , e . l 2 : E
I n . a n p . 4 '•!
N e w l o r d s 2 - I
N e w E m - t i e : .

S P E t l A E R E P O R T S
45 1 J ;.M id; u'l - -
M M C F C r IM. U-r.cï

T E C - F r r . i v a m ' - i s A,“- j P p r u n m e n H “ h i E C F \ p r - t s
' M n a q e r s . E . o r n E s t i m o t e s I ET.!'; U r a t i - e r
1 E W S M E N U S 4 M . I r s t . o n t I n o i g h t - 4 1 U n e ' - . Nai . . : .
EE' Mi C o l u m n s 3 5 t E E E h E m H i i l u s i s - ' " u o r r t i c n s
E P O P d i j e O n e "‘ I E F V C B F v H n l y . i s . A U D I O & V I D E O
'•II N p i . i s L a r t p s T ? : M u n i P a t i n g - F u i E ' F E . a d i :
I N I N e , IS c e a i l l C-ib. i U c v t / t o r p Mm j n g M . , ' EM' E c r i m s
. N P L u : t o m P a p e - _ H u . t i o n H i ^ t o r u E . : ' h V ! 1u 1 1 i i r c d i a
S k c M L M V y R E E E R E N C E ■ -
'.'..I M d i i i p u l d t u r M F t F U P - Î; i r e ? L ' ‘h i . r i e . ' F d v K u m l . p r s

T r a c l i t i q Pt . s s FT F T P E L n n t r i n i t u " ' a t c - ' n s t i o n
F F) l U E E u V E m g e t H e t i r i t s - t - t E i i - ' r ’e p i - i n - V i c l ? c P e q u e s i

Figure 2-3 Screen shot o f B loom berg system

In order to navigate around the software it is necessary to learn a proprietary

navigation system. It has a system o f menus that are activated by certain

keystrokes. Bloomberg do provide a proprietary keyboard which has labels on

the keys for the various menus. In order to aid the user the system provides

an integrated tutorial session which literally talks the user th ro u ^ the entire

system. By following these tutorials it quickly becomes apparent that this

21

system is huge and not only provides the user with information but also

connects all the Bloomberg users together. So it is possible to send messages

to other users o f the same system. It contains areas where ideas can be tested

and portfolios can be created.

The graphing it provides is integrated into the same system but is rather

primitive. The user can draw charts on almost any instrument but the charts

cannot be manipulated. There are sets o f predetermined types o f chart that

can be viewed.

These charts can be customised to the extent that the user can choose to view

more than one instrument on a chart but the kind o f zooming features

provided by the Reuters package are not available, although it is possible to

view the chart full screen.

I N D U 6 5 4 4 . 0 9 Y a= of c.o^e 1

KB rm" pt;
531 i 6560 . 51- 12/ 2? D i v - Y l c 2.02
: .2L c _ ■ 00 J y i j - t ■ V o i 4 4 , 228.100

Til ilex B O

! 2 J] 7 % - 1 . J •• 2 ? 1.4
1. /4.96 - 1. 3/97 29.346Z^

.— --------- - — -----------r-jcc'-'u MOy :»ün;bul,. r i ' i i o C! fi‘j I n u x pt 7u l
i - . : - - I i 4 4 I | 4 T i k ’-l i V J ' e . + : L . ' 1 2 0 1 4

 ;.....
i v - ■ :-------- i-------- :] LIE . 90 e +2T +3.001 38i

b ip ' 40-3 T ' -2:094 145;
d t m W l t m n v r . T i T B i . ' l i i i r ' ' - #1 w - 1.924 4::4:

..-f.Fi'-j.. r< •••ri . 41 5 7 ~ ' z “ 1 . 5 9 9 . ' I H c

_ _ _ _ _ _ _ _ _ _ IIh PI E T ' l l . l l i i H P f _ _ _ _ _ _ _ _ _ _ _
T i û b i l P r i f ' ^ / V i p l d I ' . h a n g p f i n e

I4DIJ ■ 5514.09 ti: 1.6 1/0:
TX 746.03 -11,0: 1,0:
J3H7 111-18 + 1/0:
:D(-7 94.38 UU-- I/o:
7T30 ■ 9.7-02 . " - 1/0.
E.39 1.186 - .(':i2C 1/0:
.175 HE. 7 r.2 : l./O:

15 00 r 00 1? OC 2\ oc
1*̂ UM I * LIU 1:4 UL iT UU

Figure 2-4 Screen shot o f Bloom berg charts screen

90

■ I D h y C H h P
H = 53-4 N L

0 U N I
52'4 N V c !

[f|ii ity G I P

[Ê eE JAN 3
21:01 4. 5 3 + 1 'a N

jU m iilT W l!,.„ . 1

00 i=. -j't I:; 0:1 ir 1.3 r,r, oo i9 30 30

Figure 2-5 Screen shot o f B loom berg chart full screen

So what is the underlying technology behind this system? Well it would

appear that it is simply a terminal based front end with a fast connection to a

powerful real time system managed by Bloomberg. So really the system on

the desktop isn’t real time at all, it is on-line to a real time system which

resides elsewhere.

FairShares
It worth taking a look at a far simpler package here, FairShares is certainly

aimed at the lower end o f the market than either the Reuters or Bloomberg

systems. FairShares main strength is portfolio management. The professional

product is a Windows rewrite o f die original DOS product. It offers general

coverage o f technical analysis and a facility to record fundamental information

on a company. On the portfolio management side the software covers just

about everything a private investor could need including; CGT, Dividends,

Scripts and r i^ ts . Reports can be produced for tax purposes and portfolio

valuation and performance as well as compound growth rate.

Wdiile Fairshares is not a dedicated technical analysis package it does provide

a small number of tools. Some are quite complex, but there is a lack o f
23

simple tools such as trend lines. The package has facilities to enter data on

PE, Yields and Company Results. It is possible to plug various thrid party

feeds into this system, e.g. Teletext or Market Eye, none o f these provide the

accuracy o f either Reuters or Bloomberg but they are less than half the price.

The fact that it is a port o f a DOS based system and that it supports D D E

indicates that it is 16 bit, it does provide a much more Windows type look

and feel than either o f the two more expensive packages, unfortunately it also

feels cheaper as can be seen from the screen shot shown in figure 2-6.

edot

FairShares P ro fession a l - [Sum m ary of Brltisfi Telecom }

Summary ot British Telecomf^______
. . . -elecommunications

%ShereType # ^ # O r d in a r y
|M kl,C»p.(£ m) l l ' 2 4 0 1 2 5
I'Price on 10 S ep 94' 389.00
^.Business :^ fe ^ T e le c o m m u n ic a h o n s ’̂ '̂

Investors Chronicle comment on 29 Jul 94 .v Fairly priced
Investment A, e a - .^1... 0 0 /, J,

^t'.Recent Results ^ Year End M er31st-.ff'

syr'eor|Tumt eriv.Pie-Tox!;
P oft£m "Profit £m C ? (p)"̂ ̂ '^V' îterim''* - t-inai

1990!? 12.315 00 2,302.00^ 1 535 00 24 83 4 6 5 0 f f 7 1 5 0 h S
I T e l e c o m m Nonei

Order
Now!!

PE ratio §;-:13.6:3
#G ross Yield \:^'3.2%

(j'<î5ÿ« T im es Covered ÿ ; / 2.8%
Div in 12 months ?a«10

&ÈWX: N o n e

to y Retained'^ Earning ":%^^Dividends (net)
£m "Profit £m ̂ fo l-5*^ " .̂...'Interim'‘i Final

100 4 oou

Figure 2-6 Screen shot o f FairShares Professional

2.3. Real Time Data Processing under Windows

This section examines the mechanisms that can be employed to achieve the

goal o f creating software that deals with data in ‘real time’. This section

clarifies what is meant by real time. It is important at this time to explain

some o f the fundamental aspects o f why Windows is not a real time system,

and how commercial programmers can get around this limitation. It is

assumed that the reader has a working knowledge o f abstract data types, and

the Windows environment.

24

There are Operating Systems designed especially for real time applications

(RTOS’s) and Microsoft Windows is certainly not one of them [11]. The

reason for studying ways of creating a system for Microsoft Windows is

commercial acceptance. More and more companies are trying to use

Windows as a standard environment at all levels of the industrial hierarchy. So

it is becoming a requirement that real time data be handled within this

environment. Another good reason for selecting Windows as an environment

is the broad and powerful API (Application Programming Interface) which it

provides. There are many good development platforms and compilers which

support this API, and also many skilled programmers who know the API

well. This leads to the fact there are many other applications already available

for Windows, some of which may complement a real time system being

written.

Definition of a Real Time System

Real time, as stated in the previous chapter, is any data that is only of use

during a certain time frame. Data that can still be of use some time after this

time frame has elapsed (e.g. for statistical analysis) is considered to be

historical data.

One of the most con^rehensive definitions was found in the real time FAQ

on the Internet's comp.realtime news group: “A real time system is one in

which the correctness of the computations not only depends upon the logical

correctness of the computation, but also upon the time at which the result is

produced. If the timing constraints of the system are not met, system fiiilure is

said to have occurred.”

To fulfil this definition, a couple of basic requirements must be met:

1. Meet deadlines. After an event has occurred an action must be taken

within a predetermined time limit. Missing a deadline is considered a

software fault.

2. Simultaneity or simultaneous processing. Even if more than one event

happens simultaneously, all deadlines for all these events should be met.

25

The first requirement does not mean that it is a software fault if a text editor

or spreadsheet application reacts slowly and thus slows down the user’s

progress. This would be considered as a performance problem that could be

solved by using a faster processor. Using a faster processor may not

necessarily relieve the problem of missing deadlines.

Simultaneity suggests that a real time system requires inherent parallelism in

the form of either multiple processors and/or multi-tasking.

The data involved will generally come from an external source, the user will

wish to view the changes in that data within a specified time frame. Each

application will tend to be different, but generally real time data becomes

historical data once that specified time frame has elapsed. The aim of the

software is therefore to get the data to the user within that time frame.

An example of this is software which handles data from the financial markets;

users of this data need to know the values of their shares before that value

changes. Reuters claim to deliver the price to a user’s screen within 1 second

of it changing in the marketplace. So, for this type of data, the time frame is

measured in milliseconds.

Hard and Soft Real Time Systems
Dr. M. Timmerman, in his paper Windows NT as Real Time OS?’ [9], makes

a distinction between hard and soft real time systems based on their

properties.

The properties of a hard real-time system are:

1. No lateness is accepted under any circumstances

2. Useless results if late

3. Catastrophic failure if deadline missed

4. Cost of missing deadline is infinitely high

26

Whereas a soft real-time system is characterised by:

1. Rising cost for lateness of results

2. Acceptance of lower performance for lateness

A hard real time system must, without fail, respond to some kind of event

within a specified time window. This response must be predictable and

independent of other activities undertaken by the operating system. This

implies that all system calls will have a specific measured latency period.

Latency refers to the time taken for the CPU to acknowledge and handle an

interrupt. This generally involves three steps.

1. The CPU must finish processing the current instruction, flush the

instruction pipeline, read the interrupt vector, locate the address of the

handler, and jump to that address.

2. The handler records the current state of the computer, and creates a frame

that records the state of the thread which was interrupted (this includes

program counters and registers). The handler then starts an intermpt

dispatcher which determines the source of the interrupt. This dispatcher

then transfers control to either an interrupt service routine (ISR) or an

internal kernel routine. The ISR would have been provided by a device

driver for a particular device which caused the interrupt.

3. Finally the ISR starts an I/O transfer from the device, and can execute

other threads when the transfer completes. When this is done the CPU is

again interrupted for service.

Windows 3,x
Within the following section the word "Windows' will apply to Windows 3.x

and not Windows NT.

Microsoft produced a short white paper on real time systems under its

Windows environment, a section of it is included below.

27

The information in this article applies to - Microsoft Windows Software
Development K it (SDK) for Windows versions 3.0 and 3.1
In no sense can Microsoft Windows be considered a "real-time" ppstem.
It is a message-driven, event-polling p ŝtem, with nonpreemptive
scheduling. The following is additional information:
1. It is possible to write a Windows-based explication that sits on some

interrupt in order to watch board-level activity. In general, this
facility is used Jy manufacturers of boards to write drivers that
watch and respond to interrupts used by the board. I t is extremely
dangerous to allocate!sit on any interrupt used by Windows itself
(keyboard, mouse, etc.).

2. Dedicated ystems (those that will not run general-purpose Windows
applications) mcy sit on the timer interrupt, as long as Windows
is eventually notified of the timer ticks. Because of the
nonpreemptive aspect of the Windows ystem, it is insensitive to
delays in the arrival of timer ticks. Tying to run more than one
time-critical (plication that sits on the timer interrupt is
likely to fa il

3. You must arrange for a Windows "library" of routines to proude
access to information available from a board. The issue is one of
how to dimde the work between the folbwingportions:
a. The driver portion, which watches the interrupt, logs data, and

notifies clients [through PostMessageQ] of the availability of
data

b. The client portion, which obtains datafrom the driver portion,
andprocesses, displcys, and stores data

Drivers can be implemented as Windows libraries, and clients of the
device can be implemented as Windows-based applications. The driver
portion can be made N E A R real time; the cpplication portion is
going to be message driven.

Copyright Microsoft Coporation 1995.

It is importîint at this stage to understand some fundamental aspects of how

Windows works. Windows presents the illusion of multi-tasking, in fact it

simply switches between applications while they are idle. So it would seem

that the obvious solution to writing a system which involves constant

processing would be to never allow the system to become idle. This is

suggested in point 2 above, and this would work but no other applications

would be able to run. It would only be usable in a dedicated system, this

defeats the whole purpose of using Windows.

In the article produced by Microsoft point 1 states how a driver for a board

can sit on an hardware interrupt, it then suggests that these interrupts be used

to post messages to an application. This assumes that the software for the

28

driver knows about the applications which are going to use the data it

provides. This is not always the case, and some driver software gets around

this by allowing applications to register themselves as users of the data. The

driver software can then post the data to the registered applications. This

solution is fine if the amount of data is limited and the application using the

data wishes to know about all the data. It is very inefficient if the application

using the data only wishes to process a very small amount of the data being

collected by the driver.

For example a card which collects data from the stock exchange may be

pulling in information about thousands of share prices. If the application

being written is for drawing a graph for one or two share prices, it certainly

doesn’t want to be called every time any share price changes. One way in

which this application could receive its data would be to ask the driver every

so often for the latest change in the two prices in which it is interested; this is

polling.

Polling Vs. Idle Loop Processing

Polling

Within the Windows environment polling is very easily achieved by setting iç>

a timer and then requesting the data during the timer event. There are several

ways of using timers:

1. A window handle is given when the timer is set up, this will place

WM_TIMER messages into the given window’s message queue. This is a

fairly safe method.

2. A pointer to a call-back function is given when the timer is set up, the call­

back function will then be called every time the timer goes off. This can be

dangerous.

29

3. No handle or function pointer is given when the timer is set up, this will

cause the WM_TIMER messages to be placed on the applications message

queue. This is by far the safest way of using a timer.

The second method can lead to problems if the processing being done within

the call-back function takes longer than the interval between timer calls. This

will cause the function to be called again while the first instance is still

working, this could lead to unpredictable behaviour.

The first and third methods are safer as the messages will be queued if the

application is still busy processing the last timer message or dealing with user

interaction. Specifying a specific window for a timer message could be useful

if the application has multiple windows each of which are interested in

different data, although it is important to remember that there is a limit to the

number of timers available, within Windows. For this reason the safest

method would be to create a single timer for the application. For more

information see the Microsoft documentation on the SetTimer API [50].

Idle Loop Processing

When an application is not doing anything it enters a loop, the default

behavior for which is to simply monitor for incoming messages then yield

some time for other applications, this is known as the idle loop. It is possible

to perform some other functionality within this loop, but it is important not

to spend too long in here as it will cause other applications to slow down.

This technique is useful if the application wishes to know about changes in a

large amount of data, each time it enters the idle loop it could pop one change

from a queue of the latest changes.

Summary

The section above considers Windows 3.x, it is possible that this environment

could be used for a soft real time system, and the user should be aware that

data is likely to be missed if it starts to come in at a rate faster than it can be

handled.

30

Windows 3.x, even on the fastest available machines is useless for a hard real

time system, as one application can keep the control forever and block the

rest of the system, Windows 3.x is co-operative.

This hasn't stopped people from trying to create real time systems under

Windows, and there are currently several packages available on the market

which claim to be real time, and although they are obviously soft real time,

they do still deliver data within some form of constrained time limits.

Windows N T

Being a full operating system rather than just a GUI environment Windows

NT shows rather more promise as a platform for real time systems. Once

again it is worth looking at what Microsoft have to say about using NT for

real time systems. This time they provide much more information, hinting

that they envisage NT as a more suitable platform. Although the point that

NT is not a real time OS (RTOS) is made very clear [33] :

\.Microsofi® Windows NT™ Workstation is not a hard real-time
operating system. Rather, it is a general-purpose operating system that has
the capability to provide very fast response times, but is not as
deterministic as a hard real-time system. ’

In order to judge just how good Windows NT is at providing a platform for

real time systems we need to take a look at some of the facilities it provides.

As some of the developers of the VMS operating system helped to create

Windows NT, some real time characteristics have been introduced into the

system. An example is the real time class processes that are scheduled in the

same way as they would be in a RTOS.

Windows NT is a multi-threaded and pre-emptive OS, unlike Windows 3.x

which requires co-operation from the applications, NT has a scheduler. This

scheduler can pre-empt any thread in the system, in order to give resource to

a thread which needs it more. The OS also enables pre-emption at the

intermpt level by allowing multiple levels of intermpts.

31

In order to find which thread needs a resource the most, the OS needs to

know when a thread has to finish its job and how much time it needs in order

to do so. At the moment no OS can do this at it is simply far too complex to

implement. The solution is to give each thread a priority, this is the job o f the

system designer, who has to convert deadline requirements into thread

priorities. Windows NT provides 32 priority levels, o f which 16 are reserved

for the operating system and real time processes. Each process has a base

priority class, the priority spectrum diagram in figure 2-7 shows which

priorities are used for different types o f process.

m Real-time time-critical Real-time
classes

Real-time normal

System levels like input,
cursor, cache flushing,
file sys., drivers

Real-time idle

15-Nonreal-time/
time-critical

13-High foreground N g T „ n
 ̂ Ht9-Norm al foreground g g T

Dynamic
classesK7-Normal background

4 -L ow foreground/background If
1 -Nonreal-time/idle

0-Idle thread «

Figure 2-7 Priority Spectrum For Windows N T [11]

Each process will have one or more threads, and each thread will inherit its

priority from the associated process. Using an API each thread can have its

priority varied by ±2, so for a given process there can only be five different

thread priorities. For example the threads o f a process with base priority 24

can only have priorities in the range o f 22 - 26. Many RTOS’s have 256 levels

o f priority, this allows the system to be designed for more predictable

outcomes, and the best way to design a system is to give each thread a

different priority.

32

One way around this is to use different processes and pass information

between them, this increases the number of priorities to 16, but does bring up

another problem which is that of the time taken to switch between the

processes. This context switch time is higher than the time to switch between

threads in the same process. This is because threads in the same process share

their memory address space, unlike separate processes, which each need an

individual address space in order to avoid any interference with other

processes.

In fact it is this which distinguishes a thread from a process, the

synchronisation and inter thread communication mechanism which exist

within a processes address space but not across process boundaries. Older

versions of UNIX are multi-tasking but not multi threaded, each task is a

process that can only communicate via pipes and shared memory, both of

which use the file system, which cannot provide predictable behaviour.

One problem, which often gets uncovered in real time systems is priority

inversion. For this condition to occur at least three threads of different

priority are required to be involved. When the lowest priority thread has

locked a resource which is shared with the highest priority thread, and the

middle priority thread is running. This leads to a situation where the highest

priority thread is suspended until the resource is unlocked, and the resource

will only be unlocked by the lowest priority thread once the middle priority

thread has finished running. Hence the highest priority thread is waiting on

the lowest priority thread - priority inversion. This can be avoided by the OS

allowing priority inheritance to boost the lowest priority thread above the

middle one, a blocking thread inherits the priority of the thread it has blocked

if it is higher than its own priority. Windows NT does not do this and so extra

care needs to be taken in order to avoid such a situation.

Another problem related to priority inversion, occurs due to the way in which

some API calls are implemented in a synchronous manner. They block the

calling thread until the API call has completed. This implies that a lower level

real time class thread could prevent the upper ones from running.

33

Riority' inversion

1 H ip es t priority

'Suspendedj

Pend on resource

Ready

Low est priority

Figure 2-8 Priority Inversion

Memory Management

One of the features o f N T is its virtual memory system, this is not necessarily

such a problem for real time systems as it might first appear. The paging 1 /O

(disk swapping occurs at a lower priority than real time processes, paging can

still occur within a real time process, but this is meant to ensure that

background memory management doesn’t interfere with any processing at

real time priorities. Another point is that Windows NT allows an application

to lock itself into physical memory (as long the machine actually has enough).

I'his will ensure that the application is not affected by paging within its own

memory address space. The last tiling that Windows N T provides is memory

mapping, which allows multiple processes to share the same physical

memory. This permits very fast data transfers between co-operating

processes.

One o f the problems with using a general purpose OS such as Windows NT

can be seen in the memory caching technique which is used to increase the

34

overall system performance. This method uses a small amount of high speed

physical memory to hold the most recently used code or data, if the next

piece of data required is not in this cache memory then it must be retrieved

from the slower main memory. This can lead to unpredictable behaviour as

far as accurate timing of latency periods.

Conclusion

Windows NT is not written specifically for use as a real time operating

system, but it does provide some features that allow for fast response times. It

is therefore conceivable that a reasonable performance could be expected

from a not too complex real time system written to run on Windows NT.

2.4. Industrial Strength Software Engineering

The software created in this thesis is far larger and more robust than the

demonstration software produced by most research projects. This is due to

the fact that it needed to be tested in a commercial environment. In order to

create software that will stand up to use within this environment it needs to

be of industrial strength.

In order to create industrial strength software a strict approach to the design

and implementation needs to be taken along with a broader view of the

requirements for the system being created. This section outlines the steps that

were taken to create each of the three systems in this thesis.

All of the systems created for this thesis utilised a loose form of the waterfall

model. A strict adherence to the waterfall model would ensure that any

previous steps could not be addressed after the next step had been taken.

This is not usually a realistic constraint to put on a commercial system, where

the market place is constantly changing [40].

The Waterfall model
This model views the system being designed as a whole from the hipest level

and breaking the project down a stage at a time, as shown in Figure 2-9. Each

stage is explained in turn.

35

System
Engineering

Analysis

Design

Code

Testing

Maintenance

Figure 2-9 The Water Fall Model

System Engineering. This stage involves establishing the requirements for

all system elements including those that are not software. Then the

relationship of the software to the rest of the system should be considered

along with a small amount of top level design and analysis.

Analysis. During this stage the information domain of the system being

created should be understood along with the required functions, performance

and interfacing. These should all be documented and reviewed with the

management or client.

Design. This stage can be broken down into a multi-step process, focusing

on the different attributes of the system. These are the data structures, the

software architecture, procedural detail and interfaces. Again this stage should

be fully documented, as it will become part of the software configuration.

Coding. If the design has been done properly the coding should become as

simple mechanistic task of translating the design into a machine-readable

form.

Testing. Once the code has started being generated testing can begin. This

testing should initially focus on the logical internals of the software, making

sure that all the statements have been tested. Then testing should move onto

36

the functional externals, ensuring that defined inputs will produced the

required results.

Maintenance. All systems require modifications after they have been

finished, either because bugs need to be fixed or extra functionality is

required. Maintenance applies each of the preceding steps to an existing

system rather than a new one.

These steps are what Booch[48] terms the Macro processes. He also specifies

a set of Micro processes, which are also used within the software developed

for this thesis, they are:

1. Identify the classes and objects

2. Identify the semantics of these classes and objects.

3. Identify the relationships between these classes and objects.

4. Specify the interfaces and implementation of these classes and objects.

Evolutionary Approach

While each system was developed using a loose form of the waterfall model

an evolutionary approach has been used throughout this thesis. Each system

designed has built upon the previous system in order to obtain the final

architecture.

Summary

By adhering to a known commercial design methodology it should be

possible to create software that was not merely a proof of concept but could

be readily tested within a commercial environment.

37

C h a p t e r

3

REAL TIME SYSTEM FOR PRIVATE INVESTMENT

This chapter examines the first experimental architecture created for this
thesis. The architecture was used for the design and implementation of a 16-
bit real time system for monitoring share prices for private investors. This
work was done in collaboration with Updata Software Ltd. who markets the
system.

3.1. Introduction

The aim of this experiment was to create an architecture where a single

collection point could be used for multiple sources of data. This would help

ease the information overload problem that exists for users of data from

multiple sources. The system built around this architecture was designed to

deal with large volumes of stock market data in real time. Various vendors

supply data and so the system had to be flexible enough to cope with as yet

unknown data feeds. This real time data then had to be made accessible to a

variable number of applications, which would want to perform different tasks

on either all the data or a subset of the data.

3.2. System Requirements

Initial Requirements
The first stage in any design process is to gather all the known tasks required

of the system, and then clarify any unclear issues. The initial system

requirements were identified are as follows:

1. Input stock market data from one or more sources.

2. Process that data within a specified short time frame.

2.1. Store every item of data input.

2.2. Sort data into groups.

2.3. Archive the data into history files.

3. Provide access to the data from external applications.

4. Run within the Microsoft Windows 3.x environment.

38

The first requirement indicated that it would be necessary to create an

interface for applications to pass data into the system. In order to create this

interface it would be necessary to identify exactly what data would be

provided, ‘stock market data’ does not provide enough information. Actual

fields and value ranges needed to be specified.

The second requirement had been broken down into the identified tasks of

the data processing. The fact that this stage must occur within a specified time

frame was a clear indication that this is some form of real time system. In

order to decide whether it was a ‘hard’ or ‘soft’ real time system, further

questions needed to be asked. The groups mentioned above in requirement

2.2 also needed more explanation.

The third requirement would mean that an interface would have to be created

to allow other applications access to the data. The data required by other

applications needed to be fully specified in order for this interface to be

designed properly.

The final requirement was purely commercial and meant that any issues

surrounding development within the Windows 3.x platform would be

addressed during the design and implementation stages of this system.

Refined Requirements
The first stage of identifying the requirements threw up the following

questions:

1. Exactly what data would be passed into the system?

2. What should happen if the data is not processed within the specified time

frame?

3. What is meant by ‘groups’, when sorting the data?

4. Exactly what data is required by the external applications?

The answers to these questions are given below and they did much to help

understand what was required of the system.

39

1. 'Exactly what data would be passed into the systemi

As already stated the data passed into tlie system would be stock market data.

What was needed was an exact break down o f the fields that went up to make

an item o f stock market data. The following table shows the fields that would

be input into this system.

Field a Description Source ^ #
Name name o f J ^ ^ ^ K S f iT e le te x t ; IC ^ R e u te # , User^,
Last Last trading day's price Teletext, ICY, Reuters
Low Low for the day Teletext, ICV, Reuters
High H i ^ for the day Teletext, ICV, Reuters
Current Latest p r ice^ a K & * g ICV,i Reuters
Open Open price for the day ICV, Reuters

Best bid price ICV,{Reuters
Ask Best ask price ICV, Reuters

Alpha volatility , : ;Si- Teletext* ICVj Reuters
Beta Beta volatility Teletext, ICV, Reuters
Stop Loss ?|i, Stop loss value
Volume The volume traded Teletext, ICV, Reuters

i D a t e S t P s * Date o f current price ? Teletextj ICVj Reuters y T # # -
Last Date Date o f last price Teletext, ICV, Reuters

Time o f current price' ̂ Reuters
Table 3-1 Fields collected by the system

2. W hat should happen i f the data is not processed within the spedfied time frame?

Asking this question would identify whether this was to be a ‘hard’ or ‘soft’

real time system. A ‘hard’ real time system would have been considered to fail

if the processing did not occur within the given time frame. Whereas a ‘soft’

real time system would mean that some form o f penalty would be incurred if

the data processing failed to be performed within the time constraints.

A requirement was to produce a system which would deliver the data to the

end user as fast as possible. If the data could not be processed within the time

frame, it would mean that end users would be seeing data later than required.

This was not considered a software failure, and as long as no data was lost,

and would be acceptable during extremely busy times within the financial

markets.

40

3. W hat do 'groups’ mean, ivhen sorting the data?

Previous software produced by Updata Software had grouped the stock

market data items into ‘folders’. These ‘folders’ were merely a logical way o f

grouping together related items. For example an Equities ‘folder’ would group

all the data items from the Equities market. It was required that the new

system behaved in a similar manner, by grouping related items.

4. 'Exactly what data is required hy the external applications?

The answer to this question would help to identify the requirements for the

interface to provide data to external applications. The external applications

would need to have access to all the data in table 3.2.

‘folders* iWuiÊh stock The groups of cfata which the system
market items are grouped. . proÿdes. Identified by à unique name

Each stock market item in a folder The instruments that are stored in
each group. Each item can be
identified by more than one name.

The value in each field from a The most recent for all fields except
stock m^ket item, including the current priced where every change
which ‘folder* it belongs to. for the day may be required.
A list of the historical values of The values for previous days trading
fields in a stock market item at the end o f the day.

The source of the data - The vendor from where the'data was

lu..-. .
Table 3-2 Data required by external applications

System Specification

From the initial requirements and the answers to the questions given in the

previous section, a system specification could be drawn up.

This system will perform the following tasks:

1. Provide an interface to allow the following data to be fed into the system:

A Name and one or more o f the following fields: Last, Low, High,

41

Current, Open, Bid, Ask, Alpha, Beta, Stop Loss, Volume, Date, Last

Date, Time.

2. Attempt to process any data within a 1 second of it being input into the

system. If the processing has not finished within this time frame it will not

cause any other data which is input into the system to be lost.

3. Each item will be sorted into a ToldeT or group of related items.

4. The system will be possible to archive each item into a historical data file.

5. The system will provide an interface so that other applications can access

the data. The interface will allow the applications access to a list o f‘folders’

each item within a folder and the value of each field within an item. There

will be functions for;

a. searching for a specific folder by name,

b. searching for a specific item by one of its six names,

c. reading the values from any specified field of an item

d. archiving an item to its historical file,

e. reading the values of specified fields in a named historical file.

3.3. Overview Of The System Design

Traditionally companies that had delivered products targeted at the users of

financial information produced ‘all in one executables’. They did not break

the processes down into a modules which could be plugged together to

produce a final product.

An idea for a modular based product range was summarised with the diagram

shown in figure 3-1.

The flow of data begins from the bottom of the diagram at the data feed, then

into the data repository and finally into the end-user applications.

42

Teletext data
feed

Data feed X

Basic Charts
and Analytics

Advanced
Charts and
Analytics

Real-time
Charts and
Analytics

Advanced
Teletext
Interface

Basic tick
screens and
teletext data
feed

UtilitiesQuote screens,
news, tickers

Real-time and historical data repository

Figure 3-1 Modular based product range

A first step towards modularity was designed. The general data flow model

for this first version is shown in figure 3-2.

In both figures 3-1 and 3-2 the key con^onent is the real time and historical

data repository. By utilising the fact that under 16 bit Windows, DLL’s

(Dynamic Link Libraries) only have one instance of their data which can be

accessed by more than one application a more detailed design was drawn up,

as shown in figure 3-3. In this diagram the real time and historical data

repository has been broken down into the two DLL’s on the left.

The two key components in the diagram are the Live Data DLL and the

Historical Data DLL. These DLL modules would provide an API that would

be available to any programmers working on other parts of the system

43

Quotes screens,
news tickers t Charts, Analytics t

Real time data repository

t
Teletext

t
Market Eye

— 1 1 r ~ i
1 —11 j

_

□ □

Utilities t

Figure 3-2 General Data Flow Model for Modularity

There were four good reasons for breaking the system down into the modules

shown in the figure 3-3.

1. It created a more generic system, which allows for different viewer to be

‘plumed’ into the system at a later date.

2. New feeds when they became available could be easily added into the

system.

3. Development could be carried out on the modules individually without

having to worry about the rest of the system.

4. If at a later stage the functionality of a key component needed to be

changed, only one module would need to be changed, thus minimising any

side effects.

44

Feed EXE Feed DLL
Live Data
DLL Arrows show

flow of dataData Director EXE

Live Data Screens
EXE

Historical
Data DLL

Historical and Live
Data Viewer EXE

Historical Data
Viewer/Editor EXE

Figure 3-3 More Detailed Data Flow Design

From this stage an object-oriented approach was taken to the design of each

of the modules, starting with the two key components, the Live Data and

Historical Data DLL’s.

3.4. Detailed Design

The software engine to cope with the data is in two 16 bit DLLs which export

16 bit functions for handling live data (tempdata) and historical data

(Pricefiles). They both call functions exported from each other.

Design of the Live Data DLL

The Live Data DLL deals with the storage and retrieval of data that is

relevant within one day of trading. It would therefore have to deal with not

just the current price but also previous prices for that day. A basic design of

the objects was drawn up as shown in figure 3-4.

As the data is collected during the day it will be stored in memory in order to

enable fast access. Each item of data is categorised and stored in a data object

of that type. The objects are logically grouped into folders and these folders

are managed by the DLL.

45

Application
Object

Folder
Object

Live Data
Object

List of List of List of
Folder Live Data T ick Data
Objects Objects Objects

Tick Data
Object

Figure 3-4 Objects for the live data DLL

The Application Object This deals with the functionality that is required for

the program to run as a DLL. It also provides the API for the external

applications. It contains a list o f folder objects.

The Folder Object This provides a logical way o f grouping together items of

data that are o f the same type. For example a folder could be used to

represent all the Equities while another could be used to group together Gilts.

It contains a list o f Live Data Objects. It provides a means by which all the

items in the list o f Data Items can be iterated through.

The Live Data Object This represents one day o f values for a single

instrument or item. It contains a set o f fields for that day o f trading, and a list

of tick data objects. The tick data object list is used to keep track o f all the

current prices for that item for that day. The fields required are shown in table

3.3.

C M P # #

Name The name o f the item
Synonymss 1-6 O ther names for the i t e m j ^ ^
Folder Name The name o f the folder in which the item is stored
Source The sourcct o f the data lie. whaTs the feed
Last____________ Last trading day's price__________________

H # .
Low for the d a y ^ m ^
H i ^ for the day

Currënt
Open open price for the day

Ask best ask price
sAlphaf-a^gajalpha
Beta____________ beta volatility

- ■

S Ü L o s s

46

Volume the volume traded
:Date date df current price
Last Date date o f last price

time of « fe n t price
Table

The Tick Data Object This represents a current price at a particular time. It

contains a price and a time

a.pnc4 valutPrice
the time that the item became the

Table 3-4 Fields Required for T ick data Object

The Interface

The Live Data Objects needed to be accessible for integration by existing 16

bit applications, these were written in C and use a linked list o f structures. So

it was necessary to export the data into such structures, it was also a

requirement to be able to import one o f these stmctures and then place the

data into a Live Data Object. The list of the interfaces designed can be found

in Appendix 1.

Design O f The Historical Data DLL

This DLL handles the storage and retrieval o f data from previous days o f

trading, this data is stored in a ‘Pricefile’. A Pricefile is the historical data for

one instrument on the market. It contains a collection o f Live Data Objects,

going back through a period o f time, with one Live Data Object for each day.

The Pricefile also stores information about that specific file, for example its

name, folder name, the date o f the first record in the file, and the date o f the

last record in the file.

47

The objects required were decided as shown in figure 3-5.

Application
Object

List of File
Objects

File Object

List of Live
Data Objects

Live Data
Object

List of Tick
Objects

Tick Data
Object

Figure 3-5 Objects for Historical D ata DLL

The Application Object deals with the functionality that is required for the

program to run as a DLL. It also provides the API for the external

applications. It contains a list o f file objects.

As can be seen from this description it is very similar to the Application

Object in the Live Data DLL, and therefore should share some code.

The Füe Object provides a logical way o f grouping togetlier all the previous

days Live Data for a particular instrument. It represents a ‘Pricefile’. It

contains a list o f Live Data Objects.

It provides a means by which all the items in the list o f Data Items can be

iterated through.

Again this is similar to a Folder Object in the live data DLL and some base

code functionality should be shared.

The each Pricefile needs to be able to store values for the following entries:

a L iv e # # # # #
Name the filename of the item
Synonyms
Folder Name the name o f the folder in which the Live Data Ooject is

stored
Start Date ' 3 the date o f the first Live Data O bject in the^^^#^% .^y
End Date the date o f the last Live Data Object in the list
Display Flags Æçy a„set o f fla^ indicating the; format to display the data

Table 3-5 Price file entries

48

The Live Data Object represents all the data for one day of trading for a

single item or instrument.

This contains a list of tick data objects and also a set of fields for that day of

trading. The tick data object list is used to keep a track of all the current prices

for that item for that day.

This is identical to the Live Data Object in the Live Data DLL and so the

entire object can be reused

The Tick Data Object Represents the current price at a particular time. It

contains a price and a time

This is identical to the Tick Data Object in the Live Data DLL and so the

entire object can be reused

The Interface

The Tricefiles* need to be accessible for integration by existing 16 bit

applications, these are written in C and currently use a header structure and a

linked list of structures. So it was necessary to export the TPricefile’ into such

structures, it was also a requirement to be able to import one of these

structures and then place the data into a Trice file' object.

A set of utilities for manipulating the Tricefiles' also needs to be provided,

Tricefiles' need to be renamed, have items added and removed from them,

and the data needs to be validated.

The full interface as it was defined can be found in Appendix 2.

3.5. Overview Of The System Implementation

Choice of Implementation Language

It was decided at an early stage that one of the main considerations in this

system would be the speed of the processes. This meant that we would have

to choose a corralled language rather than one that is interpreted at runtime.

49

Much of the existing code base from previous projects undertaken by the

same company was in straight C, and so they had an existing core of

programmers who knew C.

The system would have to run within the Windows 3.x environment, and so a

compiler which supported all the Windows 3.x API’s would be needed.

The design had been drawn up using some object-oriented (OO)

methodologies. So a language which supported OO would make the

translation of design to implementation for simpler.

All these points led to the decision to implement this system using C++.

Using C++ would also allow a pre written class library to be used. This would

increase productivity as much of the underlying Windows code was already

written. The chosen class library, was the Microsoft Foundation Classes, as

this wrapped the Windows SDK more fully than any other library.

It was also decided to implement the interfaces for external applications in

strai^t C. This would mean that it would be possible for other developers to

integrate existing applications into the system, using C, C++, Visual Basic or

any other language which could import C function (this covers most MS

Windows programming languages).

3.6. Detailed Implementation

The Objects
The main objects being used are listed below:

• Tick Data - represents a singjle price for a particular time

• Live Data - represents one days data for a particular subject, e.g. FTSE

• Price file - represents an historical list of days data

Live Data Objects

The Live Data objects contain the fields needed as mentioned in the design

above, along with full access member functions. The class description for

these objects is given in Appendix 3.

50

The Price File objects

The price file objects contain the fields needed as mentioned in the design

above, along with full access member functions. The class description for

these objects is given in Appendix 4.

The Relationships

Relationships in the Live Data DLL

The data in this library can be seen to be stored in a tree structure, or

directory type structure, which is one deep. All the data items (Live Data

Objects) are stored in folders, there are no folders in folders, and there are no

data items in the root. The diagram in figure 3-6 shows the cardinality of the

data that is stored.

Live Data items

Tick Data items

Live Data Folders

Root (Application)

Figure 3-6 Cardinality of Data Relationships in Live Data DLL

In order to access a data item its folder must be opened, and then the item for

that folder can be retrieved. The class hierarchy for the items in the Live Data

DLL can be seen in figure 3-7. The objects prefixed with a C are from the

Microsoft Foundation Classes and the objects prefixed UD are the specific

objects created for the Live Data library.

51

UDTmpListList

CWinApp

CObList

CObject

UDTmpApp

UDTickltem

UDTmpltemUDTmpltemList

Legend

Has a by reference— o # Hasa by value

Inheritance One to many-

Figure 3-7 Class Relationships in Live Data DLL

Relationships in the Pricefile DLL

Figure 3-8 shows the relationships between the objects in the price file. It

shows that each price file will contain one or more items of Live Data and

that each item of Live Data will contain one or more tick item.

Price File

Historical Data items

Root (Application)

Historical Tick Data items

Figure 3-8 Cardinality of Data Relationships in the Pricefile DLL

52

CWinApp

UDPriceApp

CObject UDTickltem

tp UDPriceList

UDPriceFile ■' ■■ 1--------, UDTmpltem

T ------#-------

CObList

Legend

-Inheritance ► h One to many <

-Has a by reference— o e Hasa by value

Figure 3-9 Class Relationships in the Pricefile DLL

The Pricefile DLL contains a list of the Pricefiles that it has open. The class

hierarchy for the items in the Pricefile DLL can be seen in figure 3-9. The

objects prefixed with a C are from the Microsoft Foundation Classes and the

objects prefixed UD are the specific objects created for the pricefile library.

3.7. The Events

At run-time the data will be changing, the applications that use the data will

need to be notified of these changes as and when they occur. This can be

resolved by several means all of the following have been tried and evaluated:

Callback functions: The applications using the DLL register a
callback function with the DLL. When a new item of data comes
in the DLL makes a call to that callback function to notify the
application that there is a new data item available.
Idle loop notification retrieval: during the idle loop of the
application using the DLL, the application calls the DLL and asks
if there has been an update since it last asked. If there has then the
application queries the DLL for the latest changes.
DDE: Dynamic Data Exchange, the DLL registers itself as a
DDE server and the Applications register themselves as DDE

53

clients. The clients then request that the server notifies them of
any changes. The server then notifies the client when it gains any
new data.

The problem with all the above methods is the shear volume of traffic causes

an enormous amount of messaging to occur between the applications and the

DLL. This is especially true for DDE where for each notification several

messages must be sent. The server tells the clients a new item is available, the

client then asks the server for the new item, the server gives the new item to

the client, the client then notifies the server that it has received the new item.

What is needed is some form of refinement so as not to waste time sending

messages, especially when the Application may not even want that specific

item of data.

The final solution was a combination of the first two methods. The

application registers a callback function with the DLL. When the DLL gets

new data, it adds the data to a list for each client application then notifies the

client of the data through the callback. The application then builds up a list of

notifications, and in the idle loop starts removing items from the head of the

list. If the application requires data for an item it requests it from the DLL.

All the classes require external access to some of their member’s \^riables.

Internally within each DLL this is easily solved by providing public get and

set methods in classes that are required to provide external access to their

members. As far as external applications are concerned all member variables

will have to be accessed through the API of external calls which are presented

by the DLL.

The date may change while the program is running. This will cause a problem

to the DLL handling Live Data, as each item of Live Data represents one day

of data. When a date change is detected the live Data Objects will need to be

archived to the relevant price file and then the contents of the Live Data

Objects needs to be reset to staxt afresh for the new day-

54

3.8. The Problem Domain Component

Each of the three objects, Pricefile, Live Data and Tick Data, will be inherited

from the generic MFC class CObject. This provides some basic functionality

such as serialization, and collections (in both lists and arrays).

The Pricefile class will be inçlemented in a DLL with other interface classes

to support the DLL. The Tick Data and Live Data classes will be

implemented in another DLL.

3.9. The Task Management Component

Each time a new piece of data is added to a Live Data Object, the value in

current field in the Live Data will become a Tick Data item and the new item

will become the current item. This will be wrapped up in the interface to the

Live Data Object. External access will be initially th rou^ ‘C’ style exported

functions from the DLLs these will make up the API for the data

management.

If the date of incoming data changes the current Live Data Object needs to

be archived to historical Pricefiles, the Live Data Object needs to be cleared

out and the new days data needs to begin being stored in the Live Data

Objects. This can be triggered externally through the API, and will be

monitored for internally in the Live Data Object class each time new data

comes in.

3.10. Data Management Component

All the classes contain a serialisation method, which serialises to disk the

members that are required to persist. This is generally all the members of the

objects mentioned. Tick Data, Live Data and Pricefiles.

The API presents an external method of forcing the DLL’s to save their data.

These are:

• GLTMP SaveFile and GLTMP LoadFile for loading and saving lists of Live Data
Objects

• GLTMP ArchiveDataToFiles to place Live Data Objects into historical price files
• GLPRC SaveFile, GLPRC SaveFileAs and GLPRC LoadFile to load and save

price files within the Pricefile DLL.

55

3.11. End User Feedback

There was a consensus among the end users that being able to view

information from multiple sources was a big step forwards. The problem with

the system implemented here was that it was not single to integrate a new

data feed into the system, as a working knowledge of the proprietary API was

required. Another drawback was the fact that each feed had to provide its

own filtering mechanism. This meant that it was fairly difficult to write a feed

to place date into the system. The other proprietary component, the storage

mechanism also provided some complaints, as users wished to be able to view

the data in other applications. The ability to store the data in a standard SQL

database would solve this.

3.12. Conclusion

The architecture and system presented in this chapter provided a way of

bringing multiple date feeds together to one location. This had not been done

before on the Microsoft Windows operating system. A drawback was that

each feed had to provide its own filtering mechanism.

For commercial reasons this system was 16 bit and therefore did not take

advantage of threading or multiple processor technologies. This also meant

that it had a proprietary interface and was not open like COM.

This product is now in production and being marketed by Update Software.

It is currently one of the leading applications in the private investment

software market within the United Kingdom.

The architecture presented in this chapter needed to be tested using a

different information domain to prove its worth as a generic architecture. It

would also be important to test this architecture on a 32 bit Windows

platform such as Windows NT, so as to gain a wider commercial acceptance.

As the design is based around features of 16 bit Windows it is envisioned that

some changes will have to be made. The following chapter modifies this

architecture for use on Windows NT with a different date domain.

56

C h a p t e r

4

REAL TIME SYSTEM FOR TRACKING VEHICLES

This chapter explores the second architecture created for this thesis and
used for the design and implementation o f a 32-bit real time system,
developed in conjunction with Hampshire county council in order to
monitor the positions o f buses. It provides information for passengers. This
system is currently operating in Winchester.

4.1. Introduction

The aim of this system was to reduce information overload for passengers on

a public bus service. This system tracks in real time the location of vehicles

and provides feedback to the user of approximately how long it will be before

each vehicle reaches its following destinations. The initial system has been

designed to inform passengers how long they will have to wait at a bus stop

for the next bus.

This is a study not only of the engineering of a soft real time system, but also

the design and implementation of a solution for a real world problem.

Covering the stages and issues that typically occur within the software

engineering industry today.

4.2. System Requirements

This project had to be tendered for from Hampshire County Council, the

company that won the tender had already submitted a full functional

requirement specification as part of this process. The author was then

employed to design and implement a system that would meet the

specification. From the original specification document the following main

requirements were identified:

1. Track the positions of multiple vehicles in real time.

2. Store the positions of vehicles for historical analysis

3. Provide the positions of vehicles to client machines

4. Predict when a vehicle is likely to arrive at a set of given destinations
57

5. Server .to run on Windows NT, while clients run Windows for

Workgroups.

4.3, Overview of the System Design

The system runs on NT Advanced Server, and provides feedback to various

other locations via client PC Workstations running Windows for

Workgroups, as shown in figure 4-1.

X 25 Link

Workstation
PC

Workstation
PC

Server PC
Workstation
PC

Workstation
PC

Radio
Communications
device

Pager
Communications
device

Vehicle VehicleVehicle Vehicle
On^ÿfieet Display ^ On Street Display

On Street Display On Street Display

Figure 4-1 Overview of initial system design

The part of this system that is of most interest to us, as it deals with the real

time aspect of the data, is in the software residing on the server PC as shown

in Figure 4-2.

Each of the DLL’s (Dynamic Link Libraries) exports an API (application

programming interface) which provides the other modules with access to

their functionality. All the DLL’s sit in the process space of the Main EXE

(Executable). In order to communicate with the communication EXE’s

(Pager and Radio) a DLL was created which contains shared memory buffers,

58

allowing inter process conversations. This shared memory DLL uses the

principles of mapped memory as discussed in chapter 2.

Main EXE

Lines o f data
flowDatabase

Main
Engine

Display
DLL

Vehicle
DLL

Radio DLLDLL

Shared Memory DLL

Radio EXEPager EXE

Figure 4-2 Overview of Data Flow in Server Software System.

This inter process communication could have been achieved using a

predefined protocol such as DDE or COM. The reason for not using these is

twofold.

1. These predefined protocols are defined so as to create an open interface

for all programs to communicate with each other. It was not a

requirement of this product to be able to share data with any outside

applications.

2. Speed of operation is a factor when dealing with a system of this nature.

COM and DDE are notoriously slow, requiring a number of handshaking

procedures to take place. Also the fact that the data has to pass through a

whole separate set of DLL’s (controlling COM or DDE) means that they

will take longer to process the data.

59

4.4. Detailed System Design

Each module is now examined in turn.

Display DLL This handles messages going to the passenger information

displays on the street. It is passed messages from the Main Engine DLL, this

module then decides whether these messages should be sent down to the

actual displays. There is a set of rules governing when different types of

message should be sent. These rules are encapsulated within this DLL. The

main engine also queries this DLL for the information that is actually on the

displays.

Pager DLL The main function of this DLL is to encode the messages to

send to the displays into the format required by the Pager communications

device. It therefore contains an encoding routine along with a queue for

buffering messages to be sent.

Pager EXE The actual handling of the protocols required to send messages

to the hardware is performed within this executable. It receives messages

already encoded from the Pager DLL and sends them to the Pager device for

broadcast. As it is a separate process it will run in its own address space and

the OS will provide it with time to perform its own processing. This design

would allow this process to run on a separate processor or even a different

machine in order to increase performance.

Vehicle DLL This DLL stores a list of all the active vehicles that are out on

trips. It acts as a buffer for messages going to the vehicles and messages

coming back from the vehicles.

Radio DLL As with the Pager DLL the Radio DLL deals with encoding

messages, which are sent out by Radio. The Radio DLL also has to deal with

decoding messages which are received, from the radios on board the vehicles,

and then pass the message back up to the correct vehicle in the Vehicle DLL.

Radio EXE Again similar to the Pager EXE, the Radio EXE handles the

actual protocols required by the Radio hardware to send and receive encoded
60

messages which are received from the Radio DLL. Also as with the Pager

EXE as this is a separate process it could be run on a different processor or

machine in order to increase performance.

Main Engine DLL This is where most of the work for the system is carried

out. Including predicting when vehicles are going to arrive at their

destinations, handling requests from the Workstation via the Database, and

keeping the Database up to date with vehicle information and display sign

information. Due to its corr^lexity the main engine is broken up into the

following modules, each of which is looked at in turn:

• Application
• Vehicle module
• Custom Message module
• Trip module
• Schedule module
• Display module

Application The functionality of this module is to act as the main

application that loads and unloads executables (Pager and Radio). It then

waits for events. When these events occur they are dispatched to the relevant

module. It also handles start of day initialisations and any other global events,

which occur at specified periods.

Vehicle Module On notification from trip handler module this module

passes messages on to the vehicle DLL: On a user request this module makes

calls to the vehicle DLL. On receipt of a vehicle’s location from the vehicle

DLL this module calls the trip handler module, passing the latest location. It

processes received ticket machine data, as got form the vehicle DLL. It

processes received vehicle errors and write the relevant data to vehicle and

system error database tables, via the data module.

Custom Message Module This module gets custom messages from the

database, then sends custom messages to the display handler module. It

maintains a buffer of messages for each display (a list of lists), and decides

when each message is activated and subsequently deactivated. This module

61

also responds to a user clearing messages, by removing the message from its

internal list and making sure it is removed from the display.

Trip Module This is probably one of the most complex parts of the entire

system. The duties of this module include getting assignment data from an

allocations table. It receives vehicle locations from vehicle handler module,

and then determines a vehicle's location on a trip, it then writes vehicle

locations ^lus other vehicle data) to the database for workstations to query.

Trips are monitored and diagnostic functions on vehicles then performed.

Vehicle transit times are sent to the link data module. Forecasts are made

within this module and then sent to the display handler module. When a trip

is finished this module will archive the trip to the database along with

performance details. Finally it enables and disables communications for each

vehicle by calling the vehicle handler module.

Schedule Module The schedule module receives vehicle transit times from

the trip handler module and maintains a list of all the links with associated

transit times. It then gives transit times to the trip module on request. This

means that future forecasts can be based on previous transit times. It is in this

module that any clever forecasting algorithms could be added at a later date,

for example looking at not just average times to travel along a certain link but

the time of day that the link is being traversed. It also performs any end of

day archiving necessary.

Display Module This initialises the display handler DLL by adding displays

from the database. It receives display message requests from the trip handler

and the custom message handler, and then passes requests to display handler

DLL. It also responds to messages from the display handler DLL that a

display is en^ty or that an error has occurred. The display contents are

written to the database when the display handler DLL returns an appropriate

status. It also downloads string tables to the displays at end of the day or

when a request is made.

62

4.5. Overview Of The System Implementation

This project could obviously not be completed on time by the author alone.

The company already had two good full time programmers and one

contractor. The contractor was a C programmer, one of the full time staff had

strong Visual Basic skills and the other had strong database and C++ skills.

It was decided that the front ends on the client machines, running Windows

for Workgroups, would be written in Visual Basic. The staff member with the

Visual Basic skills took on this job.

Meanwhile the other staff could concentrate on the server side which was to

be written in C++ with C interfaces on the DLLs. The member of staff with

the strong database skills worked on the database, while the contractor started

on some of the simpler DLLs. The author concentrated on overseeing the

entire operation as well as coding much of the server code.

4.6. Detailed Implementation

The Objects
Each module has a main application object which deals with the details of

how that module should behave, as either an in-process DLL or a stand alone

application with it's own process space.

The objects of each module are covered in turn.

Display DLL The application object contains a collection of Display objects,

and a timer which when triggered notifies each Display object in the list of the

timer event.

Each Display object represents an actual display on the street, and contains a

list of test strings representing what is currently being displayed. This object

applies a set of rules to decide whether a new message should be displayed.

The Display object updates itself on receipt of a timer event notification ficom

the application class. The Display object then sends a message to the Pager

DLL to send the current display text to the actual displays.

63

Pager DLL The application contains a list of Pager objects. Each Pager

object represents a pager EXE which can send messages to the on street

displays. This object contains a method for encoding the messages and

passing them on to the Pager EXE. The messages are passed used the shared

memory DLL.

Pager EXE The application contains a method for reading messages from

the shared memory DLL and using function calls to the underlying hardware,

sends messages via a pager to the actual on street display.

Vehicle DLL The application contains a list of Vehicle objects. Each Vehicle

object represents an actual bus. It contains information about its current

position, which route itis currently on and what its next route is to be. The

vehicle object receives positional data from the Radio DLL and on request

returns this data to the main engine DLL.

Radio DLL The application object contains a list of Radio objects. Each

Radio object represents a Radio EXE. This object contains methods for both

encoding and decoding radio messages. Messages received from the Vehicle

DLL are encoded and passed on to the Radio EXE. Message received from

the Radio EXE are decoded and passed on to the Vehicle DLL.

Radio EXE The application object contains a method for reading messages

from the shared memory DLL and then broadcasts them on the Radio

device. This object also receives message from the radio device, which it

passes on to the Radio DLL, through the shared memory DLL.

Main Engine DLL The ^plication object contains an object to represent

each of the six components of the Main Engine DLL. It also contains the

time for the start of day and a list of registered executables. It contains access

methods for each of the component objects, in this way each component can

communicate to any other by accessing it througji the application class. Each

module or component is examined in turn by looking at the classes present in

that module.

64

Vehicle ModuJe

Module class - this represents the activities of the module, which are:

• Handle vehicle error
Handle incoming vehicle locations
Handle incoming ticket machine data
Add vehicle
Remove vehicle
Remove all vehicles

Custom Message Module

Module Class - this represents the activities of the module, it contains a list of

custom message displays and has a method to initialise the displays.

Custom Message Display Class -a class which represents a display contains a

stack of custom messages, along with methods to perform the following

tasks:

• Add a message
• Remove a message
• Send the current message
• Clear the current message

Custom Message Class - contains the following members:

• List of custom message lines
• Whether or not message is persistent (fla^
• Whether or not message is part of cluster (fla^
• Start date and time
• Finish date and time

Custom Message Line Class - contains the following members:

• Line number
• Type of message
• Message table number

Trip Module

Module Class - This polls the allocations table for new allocations and scans

active vehicles. It can then perform location updates. It contains the following

members:

65

• List of active vehicles
• Pointer to the database
• Toda/s full schedule
• Tomorrow’s limited schedule

Active Vehicle Class - this represents an active vehicle, which is either on a

trip or about to start a trip. It writes the vehicle location to the database,

creates active trips when required using allocation from allocations list and

static data, handles trip cancellations, writes errors to database, and updates

link data. It contains the following members:

• List of day's allocations
• List of next trips
• Position on current trip
• Trip status

This module also provides the following public methods:

• Add allocation
• Cancel allocation
• Location update

Active Trip Class - used to represent a trip which is about to start or has

started. It contains a method for archiving the trip data when it is finished

along with the following members:

• Ordered list of trip displays
• Ordered list of links for trip
• Ordered list of timing points for trip
• Start offset
• Finish offset

Trip Display Class -this represents a single display on a trip and contains a

method for updating the forecast message on the display. It also contains the

following members:

• Location
• Message number
• Forecast arrival time
• Displayed minutes
• Time of display

66

Trip Searcher Class - This class polls the database for vehicle allocation

changes, and then passes changes to the module class.

Display Module

Module Class - handles errors from display handler DLL, writes display

contents to the database, adds and removes displays, downloads the message

table, retrieves scheduled times from schedule module when a display is

empty, receives forecasts and clears from the trip handler, and receives

custom messages from the custom message handler. This class provides

public methods to:

• Handle forecasts
• Handle custom messages
• Handle display errors
• Handle empty displays
• Download the message table

Schedule Module

Module Class - contains a list of tables, and methods to;

• Create tables starting at a given date
• Get next vehicle
• Set vehicle arrival

Table Class - contains a list of cell lists, one for each display, and has the

following methods:

• Get next vehicle
• Set vehicle arrival

Cell List Class - contains a list of cells. It also has methods to:

• Get next vehicle
• Set vehicle arrival

Cell Class - contains the following members:

• Board number
• Trip number
• Due time
• Actual arrival time
• (Vehicle number)

67

4.7. The Events

The key event that occurs during the running of this system is that of a

receipt of a new position for a vehicle. This leads to a new prediction being

made that then gets sent to the signs on the street. With a small number of

buses and signs to cope with this is a relatively trivial task. As the number of

buses increases the software performance needs to be kept high as the signs

on the streets need to be refreshed at least every twenty seconds.

By using separate processes to deal with the actual hardware communications

performance benefits can be leveraged by scaling up the number of

processors running the server software. The performance bottleneck then

becomes the communication bottleneck between the main system and the

communication software. This system uses shared memory to pass data

across the process boundary, as this is the fastest method.

4.8. The Problem Domain Component

The main problem that this system solves is information dissemination. The

information informs passengers when the next bus will arrive at a bus stop,

and the system ensures the passenger gets this information updated regularly.

4.9. Data Management Component

All the data for this system is stored in an industry standard SQL database on

the server. This can then be used to perform an historical analysis of the

performance of various factors, such as the routes or the vehicles. It also

allows for other software to be written to perform analysis on the data

without knowledge of the internal stmctures of this system.

4.10. End User feedback

Feedback for this system has come from three sources Hampshire County

Council, the Bus Company and bus passengers.

Both the council and the Bus Company conplained about the fixed nature of

the system, that it was not easy to change the route a bus was on, or details of

the timetable. In terms of the real time data delivery there was no complaint.

68

Most of the feedback from the passengers was regarding the lack of accuracy

of predictions. This is due the unpredictable nature of transport systems, and

has little relevance to this thesis.

4.11. Conclusion

This system was written with a view to making it usable in other scenarios

than tracking buses. It could be used to track any vehicle that is travelling on a

predefmed route, and make predictions of arrival times. It could also be used

without the prediction component to sirrply track the location of any mobile

object.

The bus tracking and passenger information system derived from the core

technology is currently running in Winchester, and is easing the information

overload problem for bus passengers wishing to know the arrival time of their

next bus.

The architecture presented in this chapter has expanded the ideas initially

provided in the previous chapter to create a system that accepts multiple data

feeds and runs on the Windows NT operating system. The idea of memory

sharing has been transferred, although implemented differently. Also

hierarchical storage of the data has been utilised as in the first system.

In order to take this architecture further it was now necessary to generalise

the data types being accepted and stored and also provide a generic interface

for filtering. The architecture and system presented in the following two

chapters attenpts to do this.

69

C h a p t e r

5

GENERIC RTD SYSTEM FOR MULTIPLE DATA
FEEDS

This chstpter analyses how the generic RTD system was designed to take
any form o f real time data from multiple sources and provide the data to a
number o f client programs. This system was developed in collaboration with
Black Ace Software Engineering a company specialising in real time
systems on PC’s.

5.1. Introduction

It was realised from the previous projects that it would be possible to create a

system that could handle data in multiple formats from multiple sources. The

architectures studied in the previous chapters have the ability to take data

from more than one source, the problem was that the data has to be in a fixed

format. Another drawback of the previous architectures was the lack of a

general model for filtering the data.

This was going to have to change in order to create a more generic system,

where the format of the data cannot be predetermined. In order to create

such a generic system the architecture was designed based on previous

architectures but addressing the issues of generic data types and an open

model for filtering. This chapter looks at the software engineering techniques

employed to create such a system along with the actual design. Also

considered is the issue of how the system was designed in order to plan for

future changes. This system is called RTD, which stands for Real Time Data

The rest of this chapter looks at the first three stages of the waterfall model as

applied to the engineering of the RTD system.

5.2. System Engineering

The reasons for developing RTD were to create a system that could:

1. Take any type of data as its input; whether the data was from a financial

institution or the position of a vehicle would not make any difference as

70

to how it is input to the system. There would need to be an input

interface that could cope with multiple data types.

2. Take data from more than one feed; this input interface would also need

to cope with input from more than one source.

3. Filter the data for information that was of interest to the user; some

mechanism for deciding what information the user wants would be

required.

4. Provide the data to one or more client programs; an interface for

exporting the data in a timely manner to client programs would be

required.

5. Store the data for later analysis; the system would require some form of

database system to archive the data to a storage medium.

From this list the diagram in figure 5-1 was drawn up.

Data
Feed RTD Data

Client

Data
Feed

Data
ClientData

Feed

Archive

Figure 5-1 How the system will act to control data flow.

53. Analysis

The information domain of the system was not easy to define, as there was

not a specific goal for this system but rather to provide a generic solution to a

problem that had been encountered previously. All that could be said was that

any data entering the system could be placed in this system and then filtered

and provided to client programs.

71

This system would be required to filter the data and only keep that data which

the user would require. It would also have to archive the data, it would be

prudent to allow the user to choose what should be archived and how often.

Depending on the inputs and filtering huge amounts of data could amass very

quickly.

At this stage is would not be possible to gauge performance levels as the input

volume is not a known factor. For this reason the system could not be

defined as a hard-real time system.

The interfaces required are both for the input of data as well as the extraction

of data. There would also need to be some way of extracting the archived

historical data. In order to provide a generic interface that was expandable an

open and uniform data transfer protocol would need to be chosen.

5.4. Top Level Design

The diagram in figure 5-2 was drawn up as an initial idea for the lines of

communication between the code modules and the storage system. This was

based on the architectures presented in the two previous chapters.

Storage

LiveData Historical Data

Data Director

Historical Data Object
Manager

LiveData Object
Manager

Hybrid Live/Historical
Data Object Viewing and

editing tools
Historical Data Object
Viewing and editing

tools
LiveData Viewing and

Editing Tools

Figure 5-2 Initial Design Ideas

72

Storage
The storage engine would need to be user definable as either an ODBC

compliant relational database, or a proprietary storage mechanism which

would be based on the Compound Storage Model using the COM Structured

Storage implementation. It would be necessary to provide COM storage

methods for the data objects in order to link and embed them in other

container applications and so it would be fairly trivial to take this a stage

further and provide the full storage mechanism if no database is required. An

ODBC relational database would contain the tables shown in figure 5-3.

Historical Data ID
Name
Contents Description

Historical Data Archive

Data Folder ID
Name
Contents Description

Live Data Folder

Tick Item
Tick ID
Data Item ID
Field Type
Field Value
Date/Time
Index

Data Item ID
Data Type
Parent ID
Name
Contents Description
Date/Time

Data Item

Figure 5-3 Database Tables and Relationships

System Folder Table - used as a means of grouping the Data Items that are live.

Historical Data Archive Table - for grouping toother data items relating to the

same thing over a period of time.

Data Item - can represent either a live piece of data or an archived piece of

data, the Data Type field will indicate which. The parent ID will then

reference either a System Folder or Historical Data Archive.

Tick Item - represents a field and its value at a given time for a Data Item. The

Data Item ID is a foreign key pointing to the Data Item to which this field

belongs. The Field Type field indicates which field this tick represents E.g.

Trade price. The Field Value gives the value of that field. The index can be

used to indicate the number of ticks for the field given.
73

LiveData Object Manager
The LiveData Object Manager would be a process in the system which

accesses the data base and converts the live data into exportable COM objects

conforming to the WOSA standards plus proprietary extensions.

Historical Data Object Manager
The Historical Data Object Manager is another process in the system that

accesses the database and exports entire histories of a certain Data Item

wrapped as an COM object.

Data Director

This would provide the user with the functionality to decide where the datais

stored and in what format. It will also be the method by which feeds register

themselves for automatic execution and termination. It would therefore be a

container application for the feeds property sheets. This could be integrated

into the LiveData Object Manager.

Applications And Tools

COM aware applications and tools could then be written and used to

manipulate this data. It was foreseen that the Object Managers would have a

permission system, so that only those tools with the correct permissions

could write data back into the database. This would allow for differing levels

of developers. Ones that know the APTs to write data into the Objects, and

ones that only know how to read the data.

Feeds would simply become a subset of the tools that talk to the Live Data

Object Manager, and have permissions to write data back to the database.

They would also need the extra functionality of being able to create new Data

Item Objects.

No programs should ever read or write directly from/to the database. This

would provide a layer between the applications and the Database so if the

method of storage changes, say to an OO database system, only the Managers

will need to be changed.

74

Networking
In order to ensure that the product will work over a network it was

considered important to look into designing this capability from the

beginning. By using a Database to store and retrieve the data the client-server

model could be used as a layer between the database and the object handler

modules.

Using full RPC (rather than LRPC) COM is now providing a distributed

mechanism for conversation with its interfaces across machine boundaries

known as DCOM. This would mean that if the interfaces are provided as

COM interfaces they could be used over a distributed system.

WOSA Compliant Real Time Engine

Microsoft have already produced some guidelines for creating real time

systems for financial market data, in a paper called WOSA Extensions for

Real Time Market Data [4], otherwise known as WOSA/XRT. WOSA stands

for Windows Open Systems Architecture.

The design specification they provide basically sets some rules for how to use

COM in order to follow a standard, which would mean that other

applications which also follow the standard would be able to share the data.

The extra features that were addressed within this paper have now been

integrated into COM.

Storage of Real Time Data
The aim of this section is to set out the structures and objects in which live

data (real time) is stored in this project. This section is split into two parts, the

first part covers the storage of real time data at run time, the second part

examines offline storage of real time data.

The application, which is derived from this design, will be a 32 bit Executable,

it must support an COM interface, for data retrieval and display purposes. It

would also provide an COM interface for data submission.

75

It was important to follow the guidelines given in the WOSA XRT design

specification and so where possible comparisons have been made with the

XRT specification.

Run-Time Storage of Real Time Data
The Objects / Structures

Table 5-1 lists the objects being used in the structure of the Live Data

application. Each object (barring the collections) will be able to draw itself. In

this way an object linked or embedded into a document will update its

contents and display the update without the containing document having to

worry about it.

supported .
Name ^

LiveData
System
List

Application

Folder DataObjects
Collection

BACRlTDDoc- ;^jlDispate^

7 t

. A " ■'/V IDataObject

Live Data Item
List

Dataltems
Collection

BACDataltems

Live Data Item "Dat^Item
(Tempdau).

. IDataObject

Field List Properties
Collection

BACFields

Value List Properties B AC Values
V*;

Table 5-1 Objects in the Live D ata Application

B AC Value - This object contains a value and a time. The value is stored as a

VARIANT type and the time as the time and date.

B AC Values -A collection of Value objects
76

BACField -This object contains a name and a value list. The name is a

CString and the value list a COblist of values. It also contains a pointer to the

COM server object for this item, which is really just a helper class, and

another pointer to the data object class object which owns it.

BACFields -A collection of Field objects.

BACDataltem - An object which contains a BACProperties object. Generally

known as a Live Data item.

BACDataltems -A collection of data items, or a List of Live Data Items.

BACRequest -An object which contains a BACPropeties object. This is part

of a new concept, where a list of requested data is stored in the Data Object.

BACRequests -A collection of request objects.

BACDataObject - An object which contains a BACDataltems object, and a

BACRequests object. Generally known as a system folder.

The Relationships

The relationships as suggested by the WOSA/XRT specifications can be seen

in figure 5-4. Alongside the WOSA/XRT names I have placed the Black Ace

Software Engineering interpretation in a text box.

The WOSA con^liant system in figure 5-4 caters only for data now (live or

real time data) and doesn’t cope with ticks or lists of other attached

information such as news files or movies. Each Property contains one value.

A tick is in fact an object with name, value and time properties, so a list of

ticks would be a list of these objects. The WOSA/XRT specification doesn’t

have this concept.

In order to cope with additional lists of Values within each Live Data Item

there will have to be a new interface to reach previous ticks. In this way we

77

remain W O SA/XRT compliant and reuse the objects we already have in

order to attach further lists o f data to the Live Data Items.

Application

Live data ^plication

^
(DataObjects Collection)

c
List of System Foldcrs i

DataObject System Folder •‘W"-

C Requests Collection ^

c
Request

^ ̂
(Properties Collection)

Property

C D

Dataltems Collection)

“z S i i

Legend

Has a (by reference)

This concept is new to BASE, it
attaches a ü ^ of requests t^each
system folder. It allows the users of
t^ M a to request notificatioiis of
da#cAnges, and to specify wbat'^
properties of that data they’re

Note; a user of this data will be Ŵ .'
anodiCT application

List of Live Data Items

Dataltem
Live Data Item

(PropertiesCoH ectionjX
List of Fields in Live Data

. a ,

Property
Field In Live Data ,

Figure 5-4 Object Relationships for RTD

The document-centric view of the world, as perceived by Microsoft, is still

maintained in that the application has the Data Objects as documents. The

Data Objects in Black Ace Software Engineering terms are System Folders

and so the Live Data application must support MDl.

Disk Storage of Real Time Data
Using the Structured Storage model o f file storage this project needed to

implement its own storage based on the Compound File storage

implementation provided by Microsoft.

78

DataObjects Collection

z' a
(Requests Collection
^ -------------m----------

Fields Collection

Dataltems Collection

Fields Collection)
 # ^

Dataltem

DataObject

Value

Field

Field

Application

Request

Legend

Has a (by reference)

Figure 5-5 Object Relationships after adding new values list

The main reason for doing this is initially to present Windows 95 & NT users

with long filenames and property sheets. In the long term the Cairo NT OS

will be enforcing use of Confound Files as it runs on a new filing system

called OFS (Object Filing System).

79

The Objects / Structures

The structured storage model provides two basic objects, a storage and a

stream. A storage can be seen as a directory and a stream as a file, the

difference being that these all live in one file. In essence a file system within a

file.

For implementation purposes COM provides IStorage and IStream objects.

The Relationships

Initially lets take a look at the choices of storage for Live data.

stream
Live Data Object

Stream
Live Data Object

Stream
Live Data Object

Stream
Live Data Object

Stream
Live Data Object

Stream
Live Data Object

0/S required streams
Properties etc..

Storage
System Folder

Storage
System Folder

Root Storage
(the actual file)

Live Data Storage 1

Figure 5-6 Method for offline storage of live data

This first approach limits us to only having one level of folders within live

data. This is similar to how it is done within Updata Software’s 4th generation

of software, as described in chapter 3.

Another approach would be as shown in figure 5-7. This approach looks a lot

more complicated, but implementation of this would be very little above that

of the first method. The problem would be in how to deal with data like this

in applications.

80

Live Data Storage 2

Stream
Live Data Object

Storage
System Folder

Stream
Live Data Object

Stream
Live Data Object

Storage
System Folder

Stream
Live Data Object

Stream
Live Data Object

Stream
Live Data Object

Stream
Live Data Object

Storage
System Folder

Stream
Live Data Object

Storage
System Folder

Root Storage
(the actual file)

0/S required streams
Properties etc..

Storage
System Folder Root

Figure 5-7 Another method for storage of live data

It would not be impossible to move from the method presented in the first

place to the second suggestion. For this reason the first method could be used

initially for storage of live data, and then the second method moved to if

needed.

A completely new approach would be to look at live data with a document-

centric view where each folder could be seen as a document containing lists

of data items which are related in some manner. This would mean that there

could be several files to represent the live data at any one time.

81

stream
Live Data Object

Stream
Live Data Object

Stream
Live Data Object

Root Storage
(the actual file)

O/S required stream s
Properties etc...

S torage
System Folder

Live Data Storage 3

Figure 5-8 Third method for live data storage

In order to store these objects we need to work from the bottom up, as by

defining a mechanism to store the smallest components first, the larger

conponents will find much of the work has been done for them because they

are essentially collections of the smaller components.

VARIANT (value)

Property (field)

Property List

Data Item (Live Data, Tick Data)

Data Item List

Data Object (System Folder)

Solving storage
problems in the
direction of the
arrow allows for
storage of items
in an OO
fashion.
Each object
looks after itself.

Figure 5-9 Using OO to solve implementation of storage problem

8 2

Storage of Historical Data
System Folders

The next problem is how to deal with historical data, the data derived from

live data. The simplest way would be to extend the concept of Trice Files' (as

used in the Private Investment System in chapter 3). into compound files as

shown in figure 5-7.

Stream
Price file'

0 /8 required streams
Properties etc..

Storage
contents

Root Storage
(the actual file)

Historical Data Storage 1

Figure 5-7 Structure Storage ’Price Files’

Another method would be that each file represents a system folder. As shown
in figure 5-8.___

Historical D ata S torage 2

Root Storage
(the actual file)

O /S required stream s Storage
Properties etc.. (System Folder)

S tream Stream Stream
Price File' Price File' Price File'

Figure 5-8 Using structured storage files for system folders

This would solve the problem that exists with system folders being

directories, there is no way to attach information to a whole system folder. It

83

would also create other problems that we would have to be solved, such a

picking a price file to draw a chart on.

Taking it to its extreme, the whole world of information could be stored in

one file.

stream
'Price File'

Stream
'Price File'

Stream
Price File'

Stream
Price File'

Stream
Price File'

Stream
'Price File'

Stream
'Price File'

Stream
'Price File'

Root Storage
@he actual file)

Storage
(System Folder)

O/S required streams
Properties etc..

Storage
(System Folder)

Storage
(System Folder)

Historical Data Storage 3

Figure 5-9 Using a single structure storage file for all historical data

This would make for an enormous cumbersome file, but may have

advantages in that we could set properties for all the data in one go. Also it

would be easy to keep track of links between folders. This approach would be

most suitable if some form of database management system was being used.

Method 2 looks like the most feasible, where each actual disk file will

represent a folder, a container of price files. The reason for not choosing the

3rd method is that the files would become huge as large quantities of data gets

collected. It would be quite feasible to have files greater than several hundred

megabytes in size, this is not currently regarded as sensible, although as the

cost of storage falls it may be worth returning to this concept in several years.

Custom Folders

The difference between Custom Folders and System Folders is that Custom

folders only store a link to the data files whereas System Folders actually store

the data files. The Custom Folders will store their links in streams which each

represent a System Folder.

84

Root Storage
(the actual file)

Storage
(Custom Folder)

O /S required streams
Properties etc..

Stream
'System Folder'

Contains links to price files
in this system folder

Stream
System Folder'

Contains links to price files
in this system folder

Stream
System Folder'

Contains links to price files
in this system folder

Historical Data Storage 4

Figure 5-10 Custom Folder files

The Problems

One of the main problems in the past has been that in order to store a field it

needed to be present in the records being stored. These records were

determined at design time and therefore any expansion of the system that was

required meant that the record size would change and therefore a conversion

routine would have to be written. The WOSA/XRT specification along with

COM compound files solves this by allowing us to specify what is being

stored in a stream.

Data Access and Inter Module Communication
This section looks at how the data in the system will be accessed externally by

other applications and also how messages will be passed between various

modules involved in the system, both internally and externally.

As specified in the WOSA/XRT design paper the system will provide the

COM automation interfaces shown in Appendix 3. It wiU also provide

additional interfaces in order to increase the available functionality of the

system.

Downhsts

In order to accept data from more than one feed it is considered necessary to

have some kind of generic data stripping system. The private investment

system described in chapter 3 used a system called Downlists (short for

download lists). This is a list of what data to strip off the feed and where to

85

place this data in the system. Up until now these downlists have been feed

specific, each feed has had its own downlist structure and system. What was

needed was a more general-purpose downlist system that is built into the live

Data engine. The requests system as specified in the WOSA/XRT

specification is exactly this.

In order to make this more generic an interface would need to be provided to

allow third applications to make adjustments to the requested data. This is the

system that will be used for filtering the data. The first version will merely

allow the user to select that data that they wish to collect. Future versions

could use some intelligent systems to adjust the requests at run-time and

provide a powerful filtering system.

Interface for Additional Components
One of the key components which was required for this system was a data

feed program. An aim of this project was to make it very simple to plug data

into the system. To this end an OLE automation interface has been created to

allow data to be pumped into the system using a very few lines of Visual Basic

code. Using OLE Automation this would be possible and the extract of code

in figure 5-11 gives an example of how data could be input into the system.

Private Sub Form_Lcad()

Set rtd = CreateObjectC'BASE.RTD.APPLICATION")

If rtd Is Nothing Then

MsgBox ("Error Loading Real time engine")

Else

Set dataFeed = rtd. Feed

If dataFeed Is Nothing Then

MsgBox ("error getting data feed pointer")

End If

End Sub

Private Sub SendData_Click()

If dataFeed Is Nothing Then

MsgBox ("error getting data feed pointer")
86

On Error Resume Next

^*^al = dataFeed.FeedData("News", "Finance", "Headline", TextI.Text)

Ival = dataFeed. FeedData("News", "Finance", "Story", Text2.Text)

End If

End Sub

Figure 5-11 Extract of Visual Basic code to input data

5.5. Summary

This chapter has started to present the architecture designed for the RTD

system. It builds i^jon the lessons learnt from the previously examined

architectures.

This architecture allows data to be input from multiple sources, filtered and

provided to data clients. The data type is not constrained and the architecture

has been designed to ensure a timely provision of the data.

The following chapter takes the design into the implementation stage and

then looks at how the system can be tested while being implemented and

after irr^lementation has finished.

87

C h a p t e r
6

GENERIC RTD SYSTEM IMPLEMENTATION

This chapter describes how the RTD generic system was implemented, and
tested. It examines the reasons for choosing certain programming
languages, the objects that were created and relationships between them. It
also examines the methodologies o f testing systems, and how they were
applied to the RTD system.

6.1. Introduction

Before the implementation stage could begin a programming language had to

be chosen. The first section of this chapter looks at how a suitable language

was chosen. The next section in this chapter shows how the design was taken

to the stage of coding, and how the implementation solves the specific

problems of event handling and data management. The final part of this

chapter shows the testing methods used to ensure that the implementation

produced a robust and solid product.

6.2. Language Choice And Style

It is important when embarking on the implementation stage of a piece of

software to pick not only the correct language but also a coding style, which

should be adhered to strictly throughout the life cycle of the software. In this

way all the code within the project will have the same look and feel, making it

far easier to maintain. Setting a coding style is also done for commercial

reasons, the code from RTD is likely to be maintained or enhanced by other

programmers in the future. By picking a set of rules in the beginning it is

more likely that these other programmers will be able to understand the code

and also follow the rules.

The language chosen depends on the environment being programmed for as

well as the design structure. The system has been designed using an object

oriented (OO) methodology, and so it would make sense to use an OO

language for implementation. The problem with many OO languages such as

Smalltalk or Java is that they are interpreted and not con^iled. This would

88

lead to unacceptable performance for a system that has to deal with data as

quickly as possible. For this reason C++ was chosen. Being more of a hybrid

language it allows an OO structure to the program while permitting some

lower level coding to perform time critical tasks. Another good reason for

choosing this language is the vast support that is available for it in terms of

conpilers produced and knowledge bases of information.

The paper shown in Appendix 6 was drawn up in order to lay down the rules

for programmers on the project.

6.3. The Objects

In order to simplify the implementation process an existing class library was

chosen to provide a foundation of functionality, from which the classes for

this project could be derived. The library chosen was the Microsoft

Foundation Classes. The main reason for choosing this library is that it wraps

the functionality provided by the OS API more fully than any other library

available.

Appendix 7 provides a corrçlete listing of all the classes created for this

project. As can be seen these follow very closely to the objects drawn up at

the design stage. This is a good thing as it shows that the design was correct.

If at this stage it was discovered that the implementation of the classes didn’t

closely follow the objects designed, it would be worth going back and

reviewing the design stage. The following section describes the classes

implemented. Appendix 8 provides diagrams to show the classes and their

members and methods.

The Application Class Provides all the OLE functionality required for the

OLE automation Application object.

The Data Objects Class This class provides the interface for collection of

data objects in the application. It provides a hidden method for retrieving the

enumerator.

89

The Data Object Enumerator Class This class provides the functionality

for traversing the data object collection. It basically wraps the lEnumVariant

COM interface, which is represented here by the nested XEnumDataObjects

class.

The Data Object Class This is the most complex class in the whole system,

it represents both the document as seen in Microsoft's document centric view

of the World, and also the COM data object providing an IDataObject

interface and an IDispatch interface.

The Data Items Class This class provides the interface for a collection of

data items in a data object. It provides a hidden method for retrieving the

enumerator, the same as the data objects class.

The Data Item Enumerator Class This class provides the functionality for

traversing a data item collection. It basically wraps the lEnumVariant COM

interface, which is represented here by the nested XEnumDataObjects class.

The Data Item Class This class represents a set of data for one particular

item, such as a share price or a particular vehicle.

The Fields Class This class represents a collection of field classes. As with

the previously examined collections it contains an enumerator for iterating

through the fields.

The Field Enumerator Class Similar to the previous enumerator classes.

The Field Class Contains a list of values for the field.

The Values Class This class represents a collection of value classes. As with

the previously examined collections it contains an enumerator for iterating

through the values.

The Value Enumerator Class Similar to the previous enumerator classes.

90

The Value Class This contains a time and a value for that time. It also

contains a pointer back to the field to which it belongs.

The Requests Class This class represents a collection of request classes. As

with the previously examined collections it contains an enumerator for

iterating th rou^ the requests.

The Request Enumerator Class Similar to the previous enumerator classes.

The Request Class This contains the name of the request, a data object that

it refers to and a list of requested fields.

6.4. The Relationships

The class relationships are shown in figure 6-3. All the classes beginning with

the BAG prefix are Black Ace Software Engineering classes created for this

project. The classes beginning with just a C are part of the Microsoft

Foundation Classes library. The interfaces exposed by the classes are shown

in Appendix 5.

6.5. The Events

This section examines the externally triggered events that can occur while the

system is running and how the inçlementation of RTD deals with these

events.

Data Input

The first event examined is the input of data from a feed. This occurs when

an external feed program calls the feed data automation function. This

function takes 4 parameters, the name of the data object (folder), the name of

the data item, the name of the field for which this data belongs and the value.

The first three must be of type string (BSTR), and the last is a variant, it one

can be of multiple types. This allows the system to store both numerical

values as well as text for different fields. One problem that this does lead to is

that there is no way to type check individual field values at run time.

91

o-
lApplicabon

Application
- fullName.’String
- name.String
- visible:Boolean
- dataObjects:DataObjects
■ newGrouplDNumber

ActivateO
4 QmtQ

'has

O -
IBAFeed

Feed

+ FeedDataO
4- FeedDatalntoGroupQ

has

h
1

FeedObiects
+ enumFeedObjectsdEnumVariant — o

lEnumVariant

'has

o-
IBAFeedObject

FeedObiecf has Feedltem s
- fileName:String • enumFeedOb|ects:!EnumVanant
- name.String 1 1

^ h a s

— O
lEnumVariant

o —
IBAFeedltem

Feedltem
- name;String

Fields
enumFeedObjects: lEnumVariant
count:Number

+ Add{)
+ RemoveO
+ GetitemQ

'has lEnumVariant

o -
IBAFieid

Field
- nameiString
- parent: IUnknown
* tlme;Time
• value;Variant

Figure 6-1 Object Model for Data Input

Figure 6-1 shows the object model for the input component. The

A p p l i c a t i o n class is the only class o f the i n p u t component that can be

directly accessed from other, possibly distributed COM component. These

are likely to be implementations o f data feed components that act as adapters

and convert proprietary data formats into a form supported by RTD. The

A p p l i c a t i o n class within RTD is a sin^eton, which means that there will

only one instance o f that class. In order to feed data into the RTD system, the

Data Feed components will need to gain access to a F ee d object, from the

A p p l i c a t i o n object. Data can be entered into the system by invoking

F e e d D a ta O and F e e d D a t a ln t o G r o u p s () from a F e e d objeCt. Fof example,

the F e e d o b j e c t could represent a t\'pe of feed, such as ReutersSSL4, the

F e e d l t e m could represent a financial instrument, such as British Telecom

92

shares and a Field could represent the bid price. The concept of a data

group was created in order to allow the feed component to create links

between certain t>pes of data. A F eed object can get a group identifier

from the Application using NewCroupidc).A group identifier is a unique

number for the RTD system.

O-
lApplication

Application
- fu[IN arTie;5tnng
* nam eiStnng
- visible; Boolean
- dataObjects: DataObjects
- newGroiipID: Number
+ ActivateO
+ Quito

O
IBARTDObject

'has
DataObject

- nam e:Stnng
* active:Boolean
- dataitem siD ataltem s
4 Quito
+ CloseO
4- SaveAsO
4 Activate

has

1 1

R equests
- enumFeedObjects:lEnumVariant
- counf:Number
' parent'I Unknown

4- AddO
4- RemoveO
r GetltemO

IBARequest

RfiQUfiSt
name; String

'has

has

— — o
lEnumVariant

Fields
- enumFeedObjects;!EnumVariant
- count; Number
- parent:IUnknown

+ AddO
4- RemoveO
+ GetltemO

m as lEnumVariant

Field
Q-

IBAField

- name:String
- parent; I Unknown
- time;Time
- value;Variant

Figure 6-2 Object Model for Filter Component

93

CPtrListCWinApp
CDocManager

CDocTemplate

BACApp I *-<
BACDataObJects <>

BACRTDDoc
BACFeed

BACEnumDataObjectsBACApplication

BACEnumRequests
BACEnumPeedObjects

BACRequests [>

BACDataltems
BACFeedObjects

41 CObList I h

BACFeedObject
BACRequest

BACDataltem BACEnumDataltems

BACFeeditems

— [] BACFields

BACFeed Item
BACEnumFields BACField

BACEnumFeedltems
BACEnumValuesBACValue

Legend

One to many ^Inheritance

Has a by valu<Has a by reference—□ o — Using by reference—o

Figure 6-3 Class Relationships in RTD

Figure 6-4 Object Model for Output Component

94

Data Output
The second event examined is the output of data to a client application. This

can occur in one of two ways:

1. The client application is polling for the data and therefore making a

request

2 The client application has registered to be notified of any changes to the

data.

In the first scenario, the client application will simply make an automation call

to the RTD system requesting the value for a field of a data item in a data

object.

The second case provides a more interesting problem that requires a hot link

to be set up for the data item. COM provides a technology for creating and

using hot links, known as Connection Points. The RTD system acts as a

COM server presenting each data item as a COM server item, to which clients

can connect.

The diagram in Figure 6-4 shows the object model used by the Output

component. The structure again reflects the aggregation hierarchy that we

exploited also in the data input and filtering components. The Application

object acts as the single root from which the hierarchy of available objects can

be accessed. The DataObject class will be the same as the one used for

filtering. If we request for data in the London Stock Exchange DataObject, it

will be the same instance of DataObject as the one used to access the data

collected for the London Stock Exchange. The Dataltem object represents

the actual item that RTD is collecting the data for, so an example again would

be British Telecom. This Dataltem then contains a collection of Fields, these

Field objects are from the same class as the Fields presented in the Input and

Filter components. The difference is that now the field can contain a list of

values to represent data items at specific times from the feed.

95

6.6. Data M anagem ent

There are two issues with managing the data within the RTD system:

1. Filtering the data, deciding which data inputs to keep and which to

discard.

2. Storing the data, the mechanisms for storing the data to keep.

Each of these is examined.

Filtering
The system of requests as suggested in the WOSA/XRT design specification

works well in an environment which is predetermined, the user can be

provided with a list of what available and make requests from that list. In the

situation which is created with a system like this, a feed could plug it's data

into the system at run time. Without knowledge of the data provided by this

feed, the end user would not be able to request that the data be collected. For

this reason a feed list is created by the system each time any feed places any

new form of data into the system. This list consists of the data object, which

contains data items, which contain fields. From this list a user can request any

field for which they wish to collect data.

The purpose of the Filter component is to filter the data that is passed via any

of the Input components and to select that subset that users are interested in.

The object model for the Filter is shown in Figure 6-2. Again, Application is a

singleton that acts as a root from where the hierarchy of filtering related

objects can be retrieved. To request that particular types of data be collected

by an RTD implementation, a Request object needs to be created within the

DataObjectThe DataObject represents a collection of Request objects.As an

exairçde, a DataObject could represent the London Stock Exchange and a

Request could represent British Telecom shares, a particular financial

instrument. Each Request object then contains a list of the data fields to be

collected. So an example would be to collect the Bid and Offer fields only.

There is a similarity that can be noted between the architecture for the

96

filtering and the input. In particular, the Application, Fields and Field class

and their respective interfaces are reused.

As this functionality is all provided through an OLE automation interface,

there is no reason that a program could not be written to select the fields

from the feed list. In this way some AI techniques could be applied to select

the data be collected.

Data Storage

It was decided that although the job of data storage could be easily performed

by a third party database it would not necessarily be the quickest mechanism,

it would also mean that the end user would have to already have access to the

database engine provided on their machine. For this reason a proprietary

storage mechanism has been provided, along with the option of storing to a

third party ODBC compliant database if the user so wishes.

The proprietary storage for the RTD system uses a file to store each data

object. This file, or document, stores all of its data items, each data item

stores all of its fields and each field stores all of its values. This is

accomplished by using the compound file technology, which is Microsoft’s

implementation of the Structured Storage model examined in the Storage

section in the previous chapter.

6.7. Testing Methodologies

One of the big problems with software today is that of quality, obviously one

of the aims of this project was to produce high quality software. This begged

the question - What is software quality? In ‘Quality is Free’[13], a book by

Philip Crosby, this is discussed:

The problem of quality management is not n^hatpeople don*t know
about it. The problem is what they think they do know....

97

In this regard, quaUty has much in common with sex. Eve)ybo(̂isfor it.
(Under certain circumstances of course.) Everyone feels they understand it.
(Even though they wouldn't want to explain it.) Everyone thinks
execution is only a matter of following natural inclinations. (After all, we
do get along somehow.) And, of course, mostpeople feel thatproblems in
these areas are caused ly other people. (If only they would take the time
to do things right.)

Although this is quite amusing there is also a lot of truth, in what he says. Too

many people seem to think that writing software is Hke doing single maths,

singly work out the correct answer to a formula and it will all work.

Unfortunately it*s not that simple, there are many external forces at work with

software, there are large number of variables to cope with.

In order to deal with this a strategy for testing the system needed to be

developed. The first stage involved testing sections of code as they were

written by tracing through the functions, attençting to follow each possible

path. Once the entire system had been put together it would be possible to

start doing black box testing. This involves creating inputs and testing the

output.

White Box Testing
In order to perform a set of white box tests each function needed to be

broken down into the possible paths which could be taken through it. It

would then be possible using the debugging tools to trace each path, along

with the variables contained within the function. For example the following

function builds up a list of all the field names in a data object.

98

CStringList* BACRTDDoc; iBuildFieldListO

m_lstFields.RemoveAll();
// go through all the data items
POSITION pos = NULL;
for (pos = m_pDataItems->GetHeadPositionO;pos!=NULL;)
{

BACDataltem* pDataltem = m_pDataItems->GetNext(pos);
// if we have a valid data item
i f (pDataltem)
{

//get tile fields
BACFields* pFields = pDataItem->IntemalGetFields();

if (pFields)
{

POSITION fieldPos =NULL;
// iterate through all the fields
for (fieldPos = pFields->GetHeadPositionO; fieldPos!=NULL;)
{

BACField* pField = pFields->GetNext(fieldP os);
if (pField)
{

//get the name for each field
CString strFieldName = pField->GetStrName();
// i f the name is not already in our list o f fields
i f (! m lstFields.Find(strFieldName))
{

// add the name to the end o f our list o f fields

m_lstFieldsAddTail(strFieldName);
}//endif (!m lstFields.Find(strFieldName))

}//endif (pField)
}//end for (fieldPos = pFields->GetHeadPositionO; fieldPos! =NULL;)

}//end if (pFields)
}//endif (pDataltem)

}// end for (pos = m_pDataItems->GetHeadPosition();pos!=NULL;)

return &m IstFields;

This code can be viewed as the flow chart in figure 6-5, this can then be

converted into the flow graph shown in figure 6-6.

From the flow graph the cyclomatic complexity can be calculated in one of
three ways:

1. The complexity equals the number of regions in the flow graph.

2. Complexity, V(G), for the flow graph G is: V(G) = E — N +2. Where E is
the number of edges (lines) in the flow graph, and N is the number of
nodes.

3. Conplexity, V(G), for the graph G is: V(G) = P +1. Where P is the
number of predicate nodes in the graph. A predicate node can be
identified as it has more than one line emanating from it.

99

K

?fe..

for eadidata

if valid data item

ifWid jfielda

For each field

i f valid field

i f field nam e not
in list

r

Figure 6-5 Flow Chart for White Box testing

100

1 2 3 .

Figure 6-6 Flow Graph For White Box Testing

The simplest is to count the number of regions in the graph. The graph in

figure 6-6 has six regions and therefore the complexity is six.

Using the second method there are 13 edges and 9 nodes so the complexity

V(G) = 1 3 - 9 + 2 = 6.

Using the third method V(G) = 5 predicate nodes +1 = 6;

This means that there are six paths that need to be tested.

101

Black Box Testing

Once the system started to reach completion, it was possible to write test

harnesses in order to perform black box testing. The test harnesses had to be

simple programs, so as to minimise the likelihood o f bugs existing within

them. They were written in Visual Basic, this allowed them to be put together

quickly and for changes to be made easily.

The first test program to be written was one to pump data into the system. It

pumped four random numbers into a set field o f four different data items in

the same data object. It also provided an interface to place a user-defined

number into a user defined data item.

Share Price Pump

Share A Share B Share C " Share D W g g ;: Share A Share B

New Share ^Share Name ^

4

The next program to be written was one that could read the feed list and

allow the user to choose which fields from which data items to collect data

from.

102

Data Request

& Shares
1 5 ShareA

0 Price
1 5 ShareB

□ Price
5 ShareC

0
5 ShareD

O Price
5 fred

O Price

, ; ^ 5 News

'•-1,“ ; "L .

Once this was achieved it would be possible to create a program which

viewed the values being pumped into the system.

Using Real Data

Once the system was capable o f performing the basic required functionality it

was possible to start using real data. Writing a simple feed handler to take the

data from a financial feed provider provided this.

The RTD system has been tested using data from Datastream’s Market Eye,

Reuters SSL 4 and ISMA’s TRAX feeds. Although these are all providers o f

financial information each provides their data in a different format.

6.8. Conclusion

This concludes the examination o f the implementation and testing o f the

RTD system, a real world solution to handling multiple data feeds in one

system. The architecture o f the system has built upon the architectures

presented in chapters 3 and 4 by providing a single interface to allow filtering

engines to attach to the system. It also allows for a range o f basic data types

to be collected, filtered and output by the system in a timely manner.

The system created from the architecture is capable o f taking data from any

number o f feeds, through an open COM interface. It provides an interface

for filtering the data, which allows a third party program to define the rules

103

for filtering. It stores recent data in memory for timely data retrieval and

archives historical data to either a database or proprietary file system. The

RTD architecture has been licensed to several companies to use as a basis for

their own real time systems.

104

C h a p t e r

7

ASSESSMENT

This chapter provides an assessment of each o f the three systems based on
the experimental architectures, the Private Investment System, the Vehicle
Tracking System and the Generic RTD System. It examines the lessons that
were leamt from each o f these systems and how they were applied in the
next system.

7.1. Introduction

The goal of this thesis has been to create an industrial strength architecture to

help solve the problems of information overload by integrating multiple real

time data feeds. Throughout this thesis the issues associated with designing

architectures to create these solutions have been addressed by exploring 3

architectures and the systems that have been created from each architecture.

These systems presented in this thesis are examined in this chapter

highlighting the features that were introduced and the drawbacks discovered.

The lessons leamt, both from creation of each system, and provided from

end user feedback are examined. An explanation of how these lessons have

influenced the next system, along with how these were applied, is covered in

this chapter.

7.2. Private Investment System

The system examined in chapter 3 for private investors to monitor the

information provided by stock markets. It was designed for 16 bit Windows

and can cope with multiple data feeds. The following section describes the

strengths and weakness of the architecture for this system.

A uniform mechanism for data entry and data retrieval

The main strength of the architecture for Private Investment System is that it

provides a new way of bringing multiple data feeds together to one location

by using a 16 bit DLL, which exports an API. This takes advantage of the fact

that under 16 bit Windows a DLL is loaded only once and shared between

105

î^plications. Therefore any data placed into the DLL can be accessed by any

application which calls an API the DLL provides. As an experiment it was

successful in solving the problem of integrating data from multiple sources

into a singje collection point.

However a weakness of the architecture is that there still needs to be multiple

applications to place the data into the DLLs, any new feed which needs to be

integrated has to have some non trivial code written to talk to the API.

A Single Place for Filtering

The Data Director application provides the user with one place to control

and filter the feeds. But each feed needs an application to actually perform the

filtering and this Teed application’ needs to comply with the proprietary API

of the Data Director. This is one of the drawbacks and means that it is fairly

difficult to write a feed to place data into the system* Third party data

providers have found difficulty in integrating their specific feeds, and

generally require input from an experienced developer.

This is overcome in the RTD system by providing a filtering system in the

main engine, and so enabling a feed to place it’s data in the system with only a

few lines of code.

Data Storage for Timely Retrieval

The Private Investment System provides its own hierarchical mechanism for

storing ‘live’ data in memory. This means that it is very fast to retrieve the

data, which is required, to deliver to the end user within fixed time frames. It

also provides a mechanism for archiving historical data to files on disk. These

files have a proprietary format and are not compatible with other systems.

Drawbacks

For commercial reasons the Private Investment System is 16 bit and therefore

does not take advantage of threading or multiple processor technologies. This

also means that it has a proprietary interface that was not open like COM.

106

This interfiice has been designed for a specific task and was therefore created

with fixed fields for data entry, these fields had a strong financial bias,

meaning it is not possible to use the system for tracking other data. It also

means that in order to add a new field to the system the code has to be

changed and recompiled.

7.3. Vehicle Tracking System

This section assesses the bus tracking system described in chapter four,

pointing out the features it provides along with the benefits and drawbacks.

Multi-Processing

Being a 32 bit system means that it can take advantage of multi-processing.

This is done by splitting the task up into components that can run as

individual processes. The strength of this architecture, over threading is if a

particular component fails the rest of the system continues to operate. The

disadvantage of this is the time the processor takes to context switch between

each process. This time will be minimal if there is enough physical memory to

hold all the processes code and data.

Global Memory for Data Sharing

This assesses the solution to the problem of transferring data between the

processes. The system provided by the Private Investment System could not

be used, as it relies on the fact that 16 bit DLLs are loaded once for the whole

system. 32 bit DLLs are loaded per process and so another method had to be

employed to transfer data.

The festest mechanism of data transfer between 32 bit processes is through

the use of shared memory blocks. This takes advantage of Windows NT’s

memory mapping as described in chapter 2. Specific libraries were written to

manage these memory blocks and lock them into physical memory to prevent

them being swapped into a secondary storage device. This system for

transferring data proved to be very successful with good feedback times

reported by the system users.

107

Information Overload

This system helps to solve the information overload problem for passengers

of buses by providing them with a simple list of buses expected at each stop

along with estimated times of arrival. This means the passenger does not have

to look at the timetable.

Drawbacks

Like the private investment system the Bus Tracking system was designed to

solve a specific problem (tracking vehicles) and can not handle generic data. It

has fixed data entry types, and specific interfaces, which are not as open as an

OLE interface. There was a good commercial reason for this, providing an

open interfiice carries the overhead of longer development times, and possibly

lengthier response times.

7.4. RTD System

The architecture for the RTD system was designed from the beginning to be

a general solution to handle multiple real time data inputs. For this reason it

has many features that were not required by the previous two systems.

Memory Storage for Timely Data Retrieval

Using memory storage for the real time data provides a fast retrieval time for

data, this system that was first applied in the Private Investment System using

a DLL to control the storage. This was refined in the Vehicle Tracking

System where a global memory block was used. The RTD process controls

the real time data, which is locked into its own memory address space and

COM interfaces provide access to the data.

Hierarchical Data Storage

The hierarchical data storage system initially designed in the Private

Investment System was refined into a much deeper hierarchy for the RTD

system. This was also carried th rou^ to the archiving provided by the

108

system. A hierarchical folder and file like system helps to alleviate the

information overload problem by grouping like data together.

Single Filtering System

The RTD system provides a mechanism for filtering. This filtering system

was based around the request system outlined in the WOSA specification [4].

This helps to overcome the information overload problem by providing a

single place from which all data can be filtered.

Open Interface

Being based strongly on COM, RTD provided an open interface for both

data entry and retrieval. This meant it is very simple to write an application to

place data into the system or to read data that the system is holding as shown

in figure 7-1.

LgroupID = xrt.NewGroiç)ID

Iva] = dataFeed.FeedDataIntoGroup("Shares", "ShareA", "Price", CInt(sharePriceA), IGroupID)

F igu re 7-1 V isual B asic C ode to insert price for ShareA

Also the fact that COM was used allowed for a generic data entry type in the

form of Variants. By doing this, the system is non-specific, and can be used

for multiple purposes, such as share prices, news stories or map co-ordinates.

One of the problems with the Private Investment System was the fact that the

data is stored in proprietary files. This meant that third party products cannot

easily manipulate the data. The Vehicle Tracking System used an industry

standard SQL con^liant database which allowed the data to be queried and

analysed by other systems. The RTD system provides multiple storage

options, including a proprietary mechanism or use of any ODBC compliant

Database.

109

7.5. Lessons Leamt

The storage of data in fixed memory provided fast response times and so this

system has been employed and refined in each of the other systems. This was

initially used in the Private Investment System, with a single DLL controlling

the memory in which the data was stored. The Vehicle Tracking System uses

shared global memory blocks, which can be accessed th rou^ a DLL. The

RTD System uses a single instance COM server application to control the

memory within its own address space.

The non standard format for data archiving in the Private Investment System

provided some problems for some end users who wished to perform their

own analysis on the data. The Vehicle Tracking system uses a standard SQL

database for data storage and the RTD system provided the choice between a

database or a proprietary file format.

The fixed fields in the Private Investment System provides problems when

integrating new feeds. Some feeds provided data in different formats to that

expected. This was not a problem for the Vehicle Tracking System, which

was a closed system, and therefore any data that a vehicle could provide was

known at the requirement stage of the development. The RTD System

overcomes this by allowing the feed to provide data in multiple formats and

building up the data hierarchy of fields as the data is input.

The Private Investment System requires each feed to provide its own filtering

mechanism This has proved to be a real problem with each feed provider

having to rewrite a filtering system to integrate their feed into the system. This

is solved in the RTD system by providing a single filtering system within the

RTD COM Server. In order to allow for future enhancements the RTD

System also provides COM interfaces for the filtering system.

7.6. Summary

Each of these systems has built on the lessons leamt from the previous

system It has been an evolving process to reach the final ^ a l of achieving

completion of the RTD system.

110

This RTD system helps to overcome the issues being addressed in this thesis.

It provides a uniform collection point for multiple data feeds and multiple

data types. It has a built in filtering system to enable the user to selectively

remove data they do not wish to view. It contains a mechanism for data

archival, in order to allow for analysis to be performed on historical data.

Finally each system has been deployed in the real world to provide feedback

from end users and test the architectures applicability to solving real world

problems.

The following chapter draws some conclusions from this process and looks at

how the system can be taken further.

I l l

C h a p t e r

8

CONCLUSIONS AND FUTURE WORK

This chapter draws conclusions from all the work carried out in this thesis.
Recommendations are made for areas for future work, based on what has
been leamt from this project.

8.1. Introduction

The major contribution of this thesis is the new architectural style presented

to address the issue of information overload on personal computers by

integrating data from multiple sources. In order to achieve this a series of

three architectures have been created and tested, culminating in a final

architecture which collects generic data types from multiple feeds, provides a

conçonent for filtering the data, and provides the data to many data clients.

This chapter looks at the conclusions that have been drawn from the

architectures presented as well as looking at further work in this area.

8.2. Conclusions

This chapter concludes this thesis by reviewing the research carried out and

identifies the contributions made by each new architecture towards addressing

the issues of information overload by handling multiple real time data feeds.

As each architecture has been used to produce a system that has been

deployed in the real world, the feedback provided from these systems will be

utilised to understand the success of each architecture.

Real Time Processing of Data Feeds and Information Overload
Chapter 2 provided an understanding of real time data delivery, along with

discussing the mechanisms used for achieving the goals of this thesis. This

chapter also provided an insight into the methods employed by existing

systems to provide lar^ amounts of data to the user in a timely manner.

Many systems in the financial industry use data feeds for the exchange of

information. A data feed can be considered as a continuous stream of data.

Data feeds are also used in the transport sector, for example in air traffic
112

control and vehicle tracking systems. Data feeds are produced by one system

and processed, filtered, viewed and archived by other systems. An example is

the integration of different trading systems for financial products, which feed

data to back-office systems where these trade data are processed and sub­

sequent financial transactions are started. There are commercial providers of

data feeds, such as Reuters and Bloomberg, which provide subscribers with

up-to-date price information about trades that have recently been completed

at the stock exchanges.

Following multiple data feeds is too laborious for humans and they are often

overwhelmed by the sheer amount of information that is presented to them.

The data feeds of Reuters and Bloomberg are good exanples. They provide

new data items every few seconds, whenever a trade has been completed at

the stock exchange. It is irrpossible for humans to follow several of these

feeds over prolonged periods of time. This situation is referred to as

information overload.

Many data feeds have to be processed as quickly as possible. Traders at the

stock exchange, for example, m i^ t miss opportunities if they are not

informed about changes in the market as they happen. Hence, many of the

information systems used in this setting have real-time response-time

requirements. In safety-critical systems, such as cruise control in aircraft or

reactor controls in nuclear power plants, real-time constraints are hard and

could lead to disasters if the system does not respond in time. The response­

time requirements in financial systems are soft in that slow responses do not

render the system incorrect, but they would lead to a low acceptance of the

system.

All the systems examined in the second chapter cater for a specific proprietary

feed and do not permit the addition of a new feed. Neither do they provide

an interface to allow the addition of new filtering systems. No existing

systems were discovered to provide an open interface, which would allow

them to become reusable tools for the integration and filtering of data.

113

One of the goals of this thesis was to test the architectures invented in a real

world environment, in order to provide feedback as to the robustness and

performance of the systems created from each architecture. For this reason

the second half of chapter 2 examines the issues of processing real time data

under the Microsoft Windows environment. Microsoft Windows was chosen

because its wide acceptance within industry meant that it would be possible to

deploy the systems created in real world applications.

The difference between the 16 bit and 32 bit architectures provided by

different versions of Windows were examined. 32 bit Windows was shown to

have many more features that would enhance the development of a real time

system, such as threading, multiprocessor support, a scheduler and memory

management functions. A limited number of available thread priorities and

the inability to guarantee a latency period means that it would never be

possible to create a hard real time system under the 32 bit Windows

architecture. Techniques to enhance the timely delivery of data within 32bit

Windows are examined, including using memory m ^ped files, multiple

processes to increase the number of thread priorities, and issues with priority

inversion.

The Private Investment System
A new architecture to integrate multiple data feeds was introduced in chapter

3. The development lifecycle of the system based on this new architecture was

described. It is a 16 bit Windows application to provide financial stock market

information to private investors. The architecture around which it is designed

collates data from multiple sources and stores the latest values in memory in

order to provide timely retrieval of the data by data clients.

The problem of Infomiation Overload is addressed by providing a single

point from which all the feeds input into the system could be controlled and

filtered. Multiple Real Time Data Feeds can be used to place data into the

system. Each feed requires its own software to place the data into the system

by calling the APIs provided. This is achieved by having a set of 16 bit DLLs

that export the APIs. In 16 bit Windows, DLLs are shared between

114

iÇ)plications and so there is only ever one instance of a DLL running, this

enables more than one application to place data into the same DLL and

allows for multiple applications to read the data.

This applicability of this architecture to solve a real world problem is proved

by the fact that this system is currently one of the best selling private

investment software packages in the United Kingdom

The Vehicle Tracking System

The forth chapter introduces a new architecture based on the one presented

in chapter three. A system to provide bus passengers with information about

the arrival time of their next bus was built around this architecture

Information Overload problems are addressed by providing the end uses (bus

passengers) with the information which they most readily need, when the next

buses are going to arrive. This reduces the need to look up the information

from a timetable. This information is based on the current location of the

busses approaching the bus stop.

Multiple Real Time Data Feeds provide the locations for each bus on the

system. Each bus uses a radio transmitter to send information about its

location to a central station, where the information about each bus is collated.

In order to provide a single interface to place the data into a sin^e location, a

32 bit DLL was written which uses a shared memory block. Each application

can then load its own copy of the DLL and use the interface it provided to

access the data in the shared memory block.

One of the issues also addressed by this system was the fact that it provides

information to multiple ‘clients’ (the signs at the bus stops). This system

therefore not only acts as a collection point for multiple information sources

but also acts as a source.

The effectiveness of this architecture to solve real world problems was

demonstrated by collaborating with Hampshire Country Council, and using

Winchester as a test site.

115

The Generic RTD System
The final architecture presented in this thesis builds upon the two

architectures presented in chapters 3 and 4. This final architectural style

attempts to overcome the drawbacks discovered in the previous two. The

software created based upon this architecture is a generic system to collect

different formats of data from multiple sources and provide an open interfiice

for filtering, data collection and data retrieval. The development of this

system was examined in chapters 5 and 6.

Integrating the filtering into the system reduces information overload and

thus, unlike the Private Investment System, provides a single point from

which all the data that is entered into the system can be filtered. This single

filtering system also provides several COM interfaces to enable other

applications to customise the filtering.

Multiple real time data feeds can easily input their data into the system using a

simple COM interface, which is provided by the COM server RTD

executable. Making this executable a single instance application ensures that

the data can all be input to the same collection point. RTD then keeps all the

most recent data in memory and archives the historical data.

Creating the RTD system for Black Ace Software Engineering has showed

the industrial relevance of this architecture, as this RTD system has since

been used as the core technology for more than three financial real time

systems.

Summary
This thesis has provided an architecture that has made four contributions to

science.

A Unifonn Data Collection Point has been created by integrating multiple

data feeds through a standard interface and providing a single place from

which the data can filtered and sorted.

116

A Standard Real Time Engine has been proposed. By using techniques to

overcome the limitations of the Microsoft Windows operating system, such as

memory mapped files and locking data into physical memory, it has been

possible to create a system in which the data that is collected can be real time.

By providing an architecture system for notifying data clients of changes to

the data, the systems created can cope with data that is constantly changing.

Resolution of Information Overload has been achieved to a certain extent

by providing an architecture that can collate information from multiple

sources and exposes an interface to allow the filtering of all the data that

passes into the system.

The Industry Aspect of creating an architecture that would solve real world

needs has been addressed by building systems based on the proposed

architectures that have been tested in a commercial environment. This has

ensured that the architectures complied with industry standards and would

gain commercial acceptance, along with providing end user feedback on each

system deployed in order to more fully understand the requirements of the

architecture provided.

8.3. Further Work

The architecture presented in this thesis and the work carried out has lead to

the formation of a company to specifically provide real time data solutions to

primarily the financial markets. This section describes some of the further

work which has already been undertaken, along with exploring the possible

directions of work that may be taken in order to further enhance this

architecture.

RTD has been further instantiated in the Black Ace Software Engineering

product named BASE Market Monitor. This product tracks share prices and

news from financial markets. Feeds have been written to accept data from

Datastreams Market Eye, Teletext and World Wide Web pages. Features of

RTD have also been used within Cognitech’s Market Surveillance System and

also more recently in the Visual Global Markets product. These products use

117

more 'heavy-weight' feeds from ISMA and Reuters respectively. The BASE

Market Monitor product is aimed at smaller investors and home users. The

feeds that it connects to provides either soft real time or time delayed data.

This product runs on a sin^e machine and the RTD engine is a single

instance application. Many clients packages then talk to this engine in order to

provide different views of the data to the user, such as tickers, charts and

price screens. The architectural style holds up well to this model. If a single

client fails, it does not bring down any other clients or the RTD engine, as

they each sit in their own protected process spaces. The response times and

therefore performance of the system depends heavily on the activity of the

feeds. When the market is busy, the load increases and the response time

drops. Actual timing measurements have not been taken but existing users of

the system seem content with the performance, and the author is the first to

know when there is a problem!

The Market Surveillance System required a ‘harder' real time system. The

surveillance team in a stock exchange needs to know within seconds if market

makers or traders are not adhering to the rules of the market place. Initially

this system was written with the European Exchange EASDAQ where ISMA

provide the TRAX data feed. By collecting the data on a server machine the

RTD system was extended to provide many client machines with the real time

data. The classical client-server model has been used for this system and it is

currently being used by the surveillance team within EASDAQ. Cognitech

then decided to take the architecture further in the Visual Global Markets

product. This product takes full advantage of the DCOM model and is based

on a three tier architecture. The data provided by Reuters enters a server

machine, where it is also archived. This database server advises a second

server of data changes. This second server has a set of complex filtering and

calculating components. These middle layer con^onents apply the business

rules to the Reuters data. Several client machines then can be advised of

information that is of use to the end user. To date two different versions of

the client have been written. One which is a fully functional program for

filtering, sorting and editing the data, and the other which is an add-in to

Microsoft's Excel application, where the data can be further manipulated. It is
118

this ability to link to such an industry standard as Excel that makes the RTD

architecture so powerful.

Currently there are three key areas in which more work is being carried out on

enhancing the RTD system. They are:

[1] Integrating RTD into more real world systems;

[2] Enhancing the filtering mechanisms;

[3] Providing more front-end tools for handling the data.

Each is examined in turn.

Until RTD gets integrated into more real world solutions it will not be

possible to evaluate its success as a generic architectural style. For this reason

it is now being licensed to various companies, as the back-end engine for their

real time data needs. It will be essential to integrate this system into more real

world solutions in order to prove its worth. One of the irrç)ortant features of

RTD is the fact that it has a built in filtering mechanism, with an open

interface. By enhancing this system to provide more intelligent filtering, the

RTD system will become a more attractive tool to use. One of the areas in

which the filtering could be improved would be to have an intelligent system

of searching for specific key words in the incoming data. Thirdly, it will

become necessary as more systems use the RTD system, to provide some

more front-end tools for manipulating the data. This would enable both

developers and system administrators to have a better view of how the system

works, and therefore how to best use it.

8.4. Summary

The aim of this thesis was to create and present an architecture to solve the

problem of information overload on personal computers by integrating

multiple real time data feeds. This has been done through creating a series of

three experimental architectures each of which built upon the previous one.

In order to gain a greater insight into the worth of each architecture a system

119

has been written and deployed into the real world based upon the architecture

The final architecture presented (RTD) is an architectural style that can be

used to solve multiple needs. RTD has been deployed three times in financial

systems. RTD is now being evaluated to be used to solve a diverse range of

problems, from geogr^hical tracking, through financial data filtering, to

handling real time audio inputs. One of the largest barriers to overcome was

the fact that Windows is not a real time operating system and so does not

provide the support required of a Tiard’ real time system. But, as this thesis

has shown, it is possible to write a ‘sofT real time system, which has good

performance, to run on the Windows platform.

120

G l o Ss a r y
ActiveX COM based technology
Agent An object that can operate upon other

objects. Usually in some autonomous
manner.

API Apphcation Programming Interface
Class A set o f objects that share a common

structure and functionality.
COM Component Object Model - Microsoft’s

object technology
COM Interface A collection of methods and properties

exposed by a COM object.
DCOM Distributed Component Object Model
DDE Dynamic Data Exchange
DLL Dynamic Link Library
EXE Executable
Interface The outside view of an object or class,

emphasising its abstraction.
MFC Microsoft Foundation Classes - a

Windows class library

OLE Object Linking and Embedding - COM
based technology for sharing data.

Real time system A system vliose essential processes must
meet certain time critical deadlines.

RTD ‘Real Time Data’ — the generic system
created in chapters 5 and 6 for Black Ace
Software Engineering Ltd.

RIOS Real time operating system
WOSA Windows Open Services Architecture
XRT Extensions for Real Time

121

A p p e n d i x 1

TH E LIVE DATA DLL API

Below each exported function is listed along with a k ie f description of its functionality.

CreateNewList

This creates a new root list of folders and disposes of any existing folders and there
contents which may be currently stored in the DLL.

SaveFile

The SaveFile function saves the current root and any folders and files within the folders
to a file with the name given in the szFilename parameter.

LoadFile

The LoadFile function loads the folders and datafiles firom a file, given by the
szFilename parameter.

GetNumberOfFoIders

The GetNumberOfFoIders gets the number of folders in the root.

GetNameOfNthFolder

The GetNameOfNthFolder retrieves the name of the nth foldCT in the roots list of
folders.

GetOpenFolder

The GetOpaiFolder function gets the number and name of the folder >Aihich is currently
opened in the library.

GetFolderByName

The GetFolderByName function gets the a folder number fi'om the name of tlK folder.
The number is placed into the address pointed to by pnFolderNumber. This function can
be used to check if a folder of that name exists by passing NULL in as the foldemumber
pointer.

OpenNthFolder

122

The OpenNthFolder function opens the nth folder in the roots folder list.

CreateNewFolder

The CreateNewFolder function creates a new folder in the root folder list, of the name
pszFolderName. The number of the new folder is placed in pnFolderNumber.

DeleteNthFolder

The DeleteNthFolder function deletes the nth folder from the root folder list.

GetNumb erO fitems

The GetNumberOfltems function will get the number of items in the folder which is
currently open.

GetNameO fNthltem

The GetNameOfNthltem function will get the name of the nth item in the folder A ĥich
is currently open.

DeleteNthltem

The DeleteNthltem function will delete the nth itan in the folder which is currently
open.

CreateNewItem

The CreateNewItem function will create a new item in the folder which is currently
open

GetltemByName

The GetltemByName function will get an item number in the folder which is currently
open from a name given.

OpenltemByNames

The OpenltemByNames function will find an item from foldw name and item name and
fill a structure with the item data.

CloseltemByNames

The CloseltemByNames function will find an item from the names given and copy the
data in the structure into the items data.

GetltemByNames

123

The GetltemByNames function will get a pointer to a Live Data object from the item
and folder names given.

GetTickCountForltem

The GetTickCountForltem function will get the number of ticks for the item given by its
name and folder name.

AddTickT oltem

The AddTickToltem functicm will add a new tick to the itan given by name and folder
name.

GetNthTicklnltem

The GetNthTicklnltem get the data in the nth tick for the item given by its name and
folder name.

ArchiveDataT oFiles

The ArchiveDataToFiles function will store the Live Data Objects into their respective
history files. If bClearData set to TRUE then the tempdata items will also be cleared of
all current data.

124

A p p e n d i x 2

PRICE FILE DLL API

Below each exported function is listed along with a brief description of its functionality.

GetFolderFromFileName

The GetFolderFromFileName function gets the name of the system fcdder from the
filename of the price file, this only works if the filename contains the path of the file.

CreateNewList

The CreateNewList functicai creates a new empty hst of loaded price files.

SaveFile

The SaveFile function saves the file called szFilename. The file still remains loaded in
memory.

SaveFileAs

The SaveFileAs function saves the file called szFilename as szNewName. The file still
remains loaded in memory as szNewName.

LoadFile

The LoadFile function loads a file called szFilename into the file list

C loseFile

The CloseFile function closes the file called szFilename freeing the memory.

AddT em pdataT oFile

The AddTempdataToFile function adds a Live Data Object frcan the Live Data DLL (if
there is any) to the end of the file of the given name.

NewFile

The NewFile function creates a file called szFilename and places it in the file list.

G etN um b erO fFile s

125

The GetNumberOfFiles function gets the number of files currently loaded in the root
list.

GetNameOfNthFile

The GetNameOfNthFile function gets the name of the nth file in the list of curraitly
loaded files.

GetFileByName

The GetFileByName function gets a file numbor firom a name. The number represents
its position in the list of loaded files.

AddNewT mpItemToNthFile

The AddNewTmpItemToNthFile function adds a new Live Data Object to the nth
loaded file in the list using data from a dialog box which is displayed fi'om this DLL.

AddTmpItemT oNthFile

The AddTmpItemToNthFile function adds a Live Data Object to the nth loaded file in
the list.

GetNthTmpItemFromNthFile

The GetNthTmpItemFromNthFile function gets the nth Live Data Object from the nth
file.

GetNumb erOfltemsInNthFile

The GetNumberOfltemsInNthFile function gets the number of Live data objects in the
nth file in the list of loaded files.

RemoveNthTmpItemFromNthFile

The RemoveNthTmpItemFromNthFile function removes the nth Live Data Object fi*om
the nth file.
NOTE: this does delete the item.

UnlinkNthTmpItemFromNthFile

The UnlinkNthTmpItemFromNthFile function removes the nth Live Data Objectfirom
the nth file.
NOTE: this doesn't delete the item.

RemoveTicksFromNthFile

The RemoveTicksFromNthFile function removes all ticks fî om the nth file except for
those in the the last nLeaveLast Live Data Objects.
NOTE: this does delete the ticks for good

126

MergeFiles

The MCTgeFiles function merges the contents of file! into file l.

ValidateNthFile

The ValidateNthFile function validates the data in the nth file.

SplitPremiumNthFile

The SplitPremiumNthFile function adds fPrranium to all prices before wBeforeDate in
the file given by nFileNumber.

SplitBonusNthFile

The SplitBonusNthFile fimction multiplies fRatio to all prices before wBeforeDate in
the file given by nFileNumber.

SplitAutoNthFile

The SplitAutoNthFile function multiplies (price after wBefcreDate / price on
wBeforeDate) to all prices before wBeforeDate in the file given by nFileNumber.

GeiJSJthT mpStructFromNthFile

The GetNthTmpStructFromNthFile function get a tempdata structure for the
nItemNumber’tii item in the nFileNumber’th file.

SetNthTmpItemlnNthFileFromStruct

The SetNthTmpItemlnNthFileFromStruct function sets the values in the nth tempdata
item in the nth file to the same as those passed in the structure.

GetFileStxuctFromNthFile

The GetFileStructFromNthFile function gets a File structure fi'om the nth file.

SetFileStructlnNthFile

The GetFileStructFrmnNthFile function copies the data in a File structure into the nth
file.

GetNthPriceLRecFromNthFile

The GetNthPriceLRecFromNthFile function fills a PriceLRec structure fi'om the
nItemNumber’th item in the nFileNumber’th file.

127

GetFirstNPriceLRecsFromNthFile

The GetFirstNPriceLRecsFromNthFile function gets the first nitems of Live Data and
copies data from them into PriceLRec structure for the nFileNumber’th file.

128

A p p e n d i x 3

TH E TEMPDATA OBJECTS

The tempdata items are stored in objects of the class UD_TMP_Item as

shown below.

class UD TMP Item : public CObject
{
CTime m currentXime;
CTime m lastTime;

CObList mtickList;

CString szNamel; // the pricehne file name
C String szName2; // 2nd name
CString szName3; // 3rd name
CString szName4; // 4th name
CString szNameS; // 5th name
CString szName6; // 6th name

CString szFolder; // Folder to store tempdata item in
CString szSource; // source of data

CStringList m movieList; // a list of conected movies
CStringList m newsList; // a list of conected news items

float fLast; // last trading day's price
float fLow; // Low for the day
float fHigh; // High for the day
float fCurrent; // Latest price
float fOpen; // open price for the day
float fBid; // Best bid price
float fAsk; // best ask price
float fOpenlnterest; // Open Interest
float fAlpha; // Alpha volatility
float fBeta; // Beta volatility
float fStopLoss; // StopLoss value
WORD wVolume; // not used
WORD wDate; // date o f current price
WORD wLastDate; // date of last price
WORD wFlags; // display format bit flags
WORD wDataSource; // identifies the data source type (eg. teletext, mkteye)

DWORD dwTime; // time field
DWORD dwSysTime; // system time field

BYTE bLinked; // is it dde linked

UD TMP Item* udTmpNext; // pointer to the next tempdata itan
UD TMP Item* udTmpPrev; // pointer to the previous tempdata item

protected:

129

DECLARE_SERIAL(UD_TMP_Item)
public:

// constructors and destructor
UDTMPItemO;
UD TMP_Item(const char* szName, const char* szFold);

-UDTM PItem O;
// set and get item values
BOOL SetNamel (const char *szName);
const char* GetNamelQ;

BOOL SetName2(const char *szName);
const char* GetNamelQ;

BOOLSetName3(const char *szName);
const char* GetNameSQ;

BOOL SetName4(const char *szName);
const char* GetName4Q;

BOOL SetName5(const char *szName);
const char* GetName5();

BOOL SetName6(const char *szName);
const char* GetName6();

BOOL SetFolder(const char *szName);
const char* GetFolda"();

CStringList* GetMovieListQ;
CStringList* GetNewsList();

BOOL SetSource(const char *szName);
const char* GetSourceQ;

BOOL SetLast(float fVal);
float GetLastQ;

BOOL SetLow(float fVal);
float GetLowQ;

BOOL SetHigh(float fVal);
float GetHighQ;

BOOL SetCurrent(float fVal);
float GetCurrentQ;

BOOL SetOpen(float fVal);
float GetOpenQ;

BOOL SetBid(float fVal);
float GetBidQ;

BOOL SetAsk(float fVal);
float GetAskQ;

BOOL SetOpenInterest(float fVal);
float GetOpenlnterestQ;

130

BOOL SetAlpha(£loat fVal);
float GetAlphaO;

BOOL SetBeta(float fVal);
float GetBetaQ;

BOOL SetStopLoss(float fVal);
float GetStopLossQ;

BOOL SetVolume(WORD wVal);
WORD GetVolume();
BOOL SetDate(WORD wVal);
WORD GetDate();

BOOL SetLastDate(WORD wVal);
WORD GetLastDateQ;

BOOL SetFlags(WORD wVal);
WORD GetFlags();

BOOL SetDataSource(WORD wVal);
WORD G^DataSource();

BOOL SetTime(DWORD wVal);
DWORD GetTimeO;

BOOL SetSysTime(DWORD wVal);
DWORD GetSysTime();

BOOL SetLinked(BYTE bVal);
BYTE GetLinkedQ;

BOOL SetNext(UD_TMP_Item* udTmpNext);
UD_TMP_Item* GetNextQ;
BOOL SetPrev(UD_TMP_Item* udTmpPrev);
UD TMP Item* GetPrevQ;

// validate the data
BOOL Validate();
// clear out all the data
BOOL ClearDataQ;

// save and load the data in the item
virtual void Serialize(CArdiive& ar);

// tick data member functions
BOOL AddTicl^float fPrice, DWORD dwTime);
BOOL DeleteNthTick(int nTickNumber);
int GetTickCountQ;
UD_T1CK Item* GetNthTick(int nTickNumber);

// overload the assignment operator
virtual void operator=(UD_TMP_Item& src);
};

131

A p p e n d i x 4

TH E PRICEFILE OBJECTS

The pricefiles are stored in objects of the class UD_PRICE_File as shown

below.

class UD_PRICE_File:public CObject

{

CString szFolderName;

CString szFileName;

CString szNamel

CString szNamel

CString szName3

CString szName4

CString szNameS

CString szName6

WORD wStartDate; // date of 1 st record

WORD wEndDate; // date of 1 st record

WORD wFormat; //no of dec. points on in the prices mode

CObList m contents; // list of tempdata items

CObList m charts; // chart objects for this price file

protected;

DECLARE_SERIAL(UD_PRICE_File)

public:

// contractors

UD_PRICE_File(ccaist char* szFolder, const char* szName);

UD_PRICE_File();

//destructor

~UD_PRICE_FileO;

// retrieve items fi'can list

UD TMP Item* GetFirstltemQ;
132

UD TMP Item* GetNthItem(int n);

UD TMP Item* NewItem(const char* sz name);

UD TMP Item* GetItemByDate(WORD wDate);

// add an item

BOOL AddItem(UD_TMP_Item* pTmpItem);

// remove item, this will delete it

BOOL RemoveNthltem(int n);

// unlink item, this just takes out of the hst but doesn't delete it

BOOL UnlinkNthltem(int n);

// remove ticks from the temp items in the file

// leaving the last n temp items alone

BOOL RemoveT icks(int nLeaveLast);

// get the number of items in the hst

int GetltemCountQ;

// get the start and emi dates

WORD GetStartDateO;

WORD GetEndDateO;

// get the names

const char* GetNamelQ;

const char* GetName2()

const char* GetNameSQ

const char* GetName4()

const char* GetNameSQ

const char* GetName6();

// get the folder name

const char* GetFolderNameQ;

// get the file name

const char* GetFileNameQ;

// rename the file

BOOL RenameF ile(const char* pszNewName);

// set the names

BOOL SetNamel (const char* szName)

BOOL SetName2(const char* szName)

BOOL SetName3 (const char* szName)

BOOL SetName4(const char* szName)

BOOL SetName5(const char* szName)

133

BOOL SetName6(const char* szName);

// set the folder name

BOOL SetFolderName(const char* szName);

// Set the file name

BOOL SetFileName(const char* szName);

// set the start and end dates

BOOL SetStartDate(WORD wDate);

BOOL SetEndDate(WORD wDate);

// vahdate all the data in the file

BOOL ValidateQ;

// save and load the data in the item

virtual void Serialize(CArchive& ar);

// file utihties

// merge another file into this file

BOOL MergeIn(UD PRICE File* pSourceFüe);

// add a premium to all prices before a certain date

BOOL SplitPremium(float fPremium, WORD wBeforeDate);

// multiply a ratio by all prices before a certain date

BOOL SpIitBonus(float fRatio, WORD wBeforeDate);

// multiply to all prices before wBeforeDate price after date / price on date

BOOL SplitAuto(WORD wBeforeDate);

// sort the file into date order

BOOL Sort();

// chart object functions

CObList* GetChartListQ;

int GetChartCountO;

BOOL RemoveNthChart(int n);

UD Chartltem* GetFirstChart();

UD Chartltem* GetNthChart(int n);

UD Chartltem* NewChartQ;

134

A p p e n d i x 5

GENERIC SYSTEM INTERFACES

The interfaces provided by the RTD system described in Chapters 5 and 6 are

shown in the diagrams below. Using the following key:

Interface
Method
Property

Key for Interfaces Diagrams

IRTD
Activated
Close(VARIANT saveC hanges, VARIANT fileName)
DataitemsfVARiANT item)

Quito
RequestsfVARIANT item)
Saved

'C # SaveAsfVARIANT fileName)
Active
Application

iS* ColumnDelimitef
'" iS* DataUserlD
''iS * FullName

(§* MoslRecentOniy
Name
Parent

' iS* Password
Path

'"iS* Saved
Status
Title
Username
Visible
WorkstationID RTD Interface

g IBACApplication
Activated
DataObjectsfVARIANT item)
DoAboutO
DoOptionsd
Quit(VARIANT save)

^ Application
Æ" Feed

FullName
iS* Name
i f Parent
i f Visible Application Interface

135

Data Item Interface

Data Items Interface

Data Objects Interface

IBACDatallems
ltem(VARlANT index)

''J f* Application
Count

Æ" DataObject
Parent

0 '^-C' IBACDataObjects
Add(VARIANT name]
ltem{VARIANT nameOrlndex]
OpenlVARIANT filename)
Remove(VARIANT index)
Count

B IBACDataltem
'^iS* Application

DataObject
Fields
Parent
Properties

IBACFeed
FeedData(VARIANT dataobject, VARIANT dataitem. VARIANT field, VARIANT value)
Application

iS* FeedObjects
" Æ* Parent

Feed Interface

Feed Item Interface

Feed Object. Interface

Field Interface

g '^»0 IBACFeedltem

Æ " Fields
''iâ * Name

IBACFeedObject
Feedltems
FileName

'^ i§ ‘ Name

B I B A C F i e l d
Application

Æ " Name
''jS* Parent

Value
' Values

136

IBACFields
'"j»A dd(V A R IA N Tnam e)

ltem(VARIANT index)
RemovelVARIANT item)
ResetO
Application

'^i§* Count
DataObject
Parent Fields Interface

IBACRequest
Application
Fields

'^iS* Parent
Properties
R equest Request Interface

IBACRequests
AddfVARIANT name, VARIANT prperties)
CreateProperties|VAR I AN T n am el, VARIANT name2)

" i f ltem(VARIANT index)
RemovelVARIANT item)
ResetO
Application

" ' i f Count
DataObject
Parent Requests Interface

IBACValue
"Æ " Application

Parent
Time

" ' i f Value Value Interface

g " - 0 IBACValues
Add(VARIANT value, VARIANT time)
ltem(VARIANT value)
RemovelVARIANT value)
Application

' Count
Parent Values Interface

137

A p p e n d i x 6

DEVELOPERS RULES

This document describes how every developers machine should be set up for

working with the BASE RTD project. It also provides coding conventions

that should be adhered to. This is NOT a guideline it is the LAW.

Connecting to Üie Server

The server being used for this project is the BASE Server administered by

Neil. You can use the Dial Up Networking provided by Windows 95 in order

to connect to it.

The server is called BASE SERVER and provides each user with 3 drives

which they can connect to:

Vss Visual Source Safe
BASE BASE project documents and source
<usemame> a home directory, scratch pad area

This server will be available on 0181 343 4089.

The server is a Windows NT machine with Remote Access Server running on

it.

Do not use software compression, Microsoft says that there might be

problems with it!

The protocol you should use to connect is NetBEUI.

Drives

Each machine must have the following drive mappings. Where the actual files

are stored doesn’t matter and is up to each individual developer.

Description Drive Letter
documents U:

138

Local soiirce P:
MSDEV M:

Network drives

Each machine should have the following network drives for connecting to

the server.

UNC Drive Letter
WBASE SERVERWss V:
WBASE SERVER\BASE T:
WBASE SERVER\<LJsemame> R:

The best way that I have found to do this is to have a couple of batch files

which will set up this environment for you and then one which removes the

environment. Below are some examples of how you could do this in batch

files.

InitAoF.bat
subst Z: /D
subst Z: d:\projects\AoP\Docs

subst y: /D
subst y: d:\projects\AoP\Database

subst x: ID
subst x: d:\DXSDK

substw : I D
subst w: d:\projects\AoRSource

subst v: ID
subst v: d:\projects\AoP\Media

subst U: ID
subst u: d:\msdev
NetInitAoP.bat
net use s: /DELETE /YES
net use s: “WBASE SERVERW/ss”

net use t: /DELETE /YES
net use t: “WBASE SERVER\AoP"
AoPClean.bat
subst Z: ID
subst y; ID
subst X: /D
subst w: ID
subst v: ID
subst U: ID

net use s: /DELETE /YES
net use t: /DELETE /YES

Version Control
139

In order to keep track of the source files being created and edited, we are

going to use Visual Source Safe.

Getting Visual Source Safe Running

This you should find in your V; drive. The source safe data will be found on

your T : drive in the source safe directory. When you run the Visual Source

safe Explorer, you will need to point it to this directory. You can do this by

running it with the / s command line switch followed by the T:\ drive:

V:\win32\SSEXP.EXE /ST:\

If you have a client license you can install the client version of Visual Source

Safe from the V: drive by running Netsetup. You can then use the Exe on

your local machine, but you will still have to point it to the data on the

network using the /S command switch:

D:\Tools\vss\WIN32\SSEXP.EXE /ST:\

Using Visual Source Safe

When you run Visual Source Safe for the first time you’ll need to set up a

working directory for each of the projects. The source code working

directories will all be on your P: drive and should have the same name as the

projects.

In order to have a local copy of files on your hard disk you should ‘get’ all the

projects from Visual Source Safe. Do not use ‘check ouf unless you want to

make changes to a file.

I have looked briefly at how Visual Source Safe is integrated into the MSDev

enironment and it doesn’t seem to provide away to specify where the Visual

Source Safe data files are located. Until this is solved don’t try to check file’s

in or out using the MSDev environment.

140

Code Conventions

As much as possible stick to the Hungarian notation as used by most

Windows programs nowadays, also try to use the following guidelines ;

1. Class names should begin with BAG
2. Structure names should begin BAS
3. Exported ‘C’ style fimctions should begin BAX
4. COM Interfaces should begin IBA
5. Member variables of classes and structures should start with m_
6. All variables should have meaningful names - NOT myVar
7. Try to make comments meaningful explaining why things are being done

Resource ID’s

Try to stick to the following prefixes:
Prefix Type of symbol Example
1DR_ Identification shared by multiple

resources of different types
mRMAINFRAME

IDD Dialog resource m D SPELL CHECK
HIDD Dialog resource Help context HmD SPELL CHECK
IDB Bitmap Resource mB_LOGO
IDC Cursor Resource m e PENCIL
m i Icon Resource m i NOTEPAD
m _ Command fi'ran menu item or

toolbar button
m_TOOLS_SPELLING

Hm Command Help context Hm TOOLS SPELLING
rop_ Message Box prompt m P_lNVALm _PARTNO
Hmp Message box Help context HmP_lNVALm_PARTNO
m s String Resource m s COPYRIGHT
m e Control within Dialog box m e RECALC

Variable Prefix Naming Conventions

Prefix Type
ch char
b BOOL
n int
n UINT
w WORD
1 LONG
dw DWORD
P
Ip FAR*
Lpsz LPSTR
Lpsz LPCSTR
H handle
Lpfii callback
OLE Naming

141

OLE provides guidelines for naming if s objects, collections and enumerators.

These can be found in the OLE2 Programmers Reference and in the OLE

Automation Programmer^s Reference both by Microsoft Press.

Choose names for exposed objects, properties, and methods that can be easily

understood by the users of your application. The guidelines in this section

^p ly to all the items you expose:

• Objects (implemaited as classes in your p lica tion)
• Properties and methods (implemented as members of a class)
• Named arguments (implemented as named parameters in a member function)
• Constants and enumeration’s (implemented as settings for prc)̂erties and methods)

Use entile words or syllables

It is easier for users to remember corr^lete words than to remember whether

you abbreviated Window as Wind, Wn, or Wnd.

When you need to abbreviate because an identifier would be too long, try to

use complete initial syllables. For example, use AltExpEval instead of

AlternateExp ressionEvaluation.

Use Don’t use
Application App
Window Wnd

Use mixed case

All identifiers should use mixed case, rather than underscores, to separate

words.

Use Don’t use
ShortcutMenus Shortcut Mcnus, Shortcufmenus,

SHORTCUTMENUS, SHORTCUT_MENUS
BasedOn basedOn

Use the same word you use in the interface

Use consistant terminology, don't use names like HWND that are based on

Hungarian notation. Try to use the same word your users would use to

describe a concept.

142

Use Don’t use
Name Lbl

Use the correct plural for the class name

Collection classes should use the correct plural for the class name. For

example, if you have a class named Axis, you should store the collection of

Axis objects in an Axes class. Similarly, a collection of Vertex objects is stored

in a Vertices class. In cases where English uses the same word for the plural,

append the word “Collection.”

Use Don’t use
Axes Axiss
SeriesCoUection CollectionSeries
Windows ColWindow
Using plurals rather than inventing new names for collections reduces the

number of items a user must remember. It also simplifies the selection of

names for collections.

Source Files

All source files should start with a commented section as follows

n---

// Source file name
// description of the contents of this file
If
// Created by: <Name of author>
// On: <date of creation>
//
if Last modified by: <Name of programmer>
// On: <date of last modification>
if
n---

Code Style

Use the automated indenting provided by MSVC4. Tabs should be 4 spaces

long.

Brackets

143

Always use brackets to wrap conditional parts of the code, use the following

template;

if(xxxxxxx)
{

function one
}
and NOT:

if(xxxxxxx){
function one

}
OR:

if(xxxxxxx)
function one

In Line functions

In line code should not exist. All declarations should be in header files. All

implementation code should be in CPP files.

144

A p p e n d i x 7

CLASS LISTING FOR GENERIC SYSTEM

This diagram shows all the classes created for the generic system.

a BASE Real Time Data classes
æ ■ BACApplicatbn

æ ■ BACChildFrame

æ ■ BACDatallem

æ ■ BACDalaltems

E ■ BACDalaObjects

æ D BACEnumOataitems

æ ■ BACE numü ataO bjecls

æ 0 BACEnumFeedHems

E ° BACE numF eedO bjecls

æ ■ BACEnumFields

æ- ■ BACEnumRequests

E ■ BACEnumValues

® " BACFeed
S ■ BACFeedtem

S! ■ BACFeed tems

æ ■ BACFeedObjecl
i+i ■ BACFeedO bjecls

s ■ BACField

æ o BACFIelds

® ■ BACInPIaceFrame
æ ■ BACMainFrame
æ a BACRealT imeO ataApp

E ■ BACRequest

E ° BACRequests

s ■ BACRTDDoc
BACRTDSrvrllem

E ° BACRTDView

æ ■ BACValue

® ■ BACValues

æ ■ BACXRT
CAboulDIg

B ^ G lobais
^ cisid
Cp theApp

145

A p p e n d i x 8

CLASSES FOR GENERIC SYSTEM

This appendix contains a class diagram for each of the main classes in the
generic RTD system. 1 he diagrams use the key shown below.

■ ; Class

Public Method Public Member
Protected Method Protected Member
Private Method Private Member

The Application Class

Activated
BACApplicationO

9 $ ~BACApplication()
<^4 DataObjectsO

DoAboutO
GetAppO

9 $ GetApplicationO
GetFeedO
GetFullNameO

GetNameO
<^4 GetParentO

GetVisibleO
4 OnFinalReleaseO

9^ Quito
SetVisibleO

146

The Data Objects Class

É " 2 BACOataObjects
4 _NewEnum()
4 AddO
4 BACDalaObjectsO
4 ~BACDalaObjects()
4 GetCountO

GelDocTemplateO
4 Ge(Document()
4 GeHtemQ
4 OnFinalReleaseO
4 GpenO

_________ 4 RemoveQ_________

The Data Object Enumerator Class
B ° S BACEnumDataObjects

B XEnumDalaGbjecls
♦ AddRefO
4 CloneO
♦ Ne«l()
4 Query]nleffaceO
♦ R eleased
♦ ResetO

4 SkpO
♦ BACEnumDataObjeclsO
♦ "BACEnumDalaGbiectsO

GelDocTemplateO
OnCloneO

♦ OnFinalReleaseO
GnNextO
OnResetO
OnSkipj)

0 m_posCurrent

147

The Data Object Class
^ BACRTDDoc GetWorkstationlDd 0

Activated 9 4 LoadFfomFiled
4 AddFieldSetO LoadFromStreamsd
♦ AddRequestd OnGetEmbeddedlemd 0
♦ AssertValidO 4 OnNewDocumentd

BACRTDDocO ♦ OnOpenDocumentO
♦ -BACRTDDocO 4 OnSaveDocumentd

CallGnDataChangeO Quito
♦ ClearRequestsO ♦ RemoveRequest(const CString & str)

9 ^ Closed ♦ RemoveRequest(int nRequest)
♦ Dumpd $ R emoveR equest(BACR equest " pRequest]
♦ FeedDatad ♦ RenderToGlobald

GetActived Saved
GetApplicationO <94 SaveAsd
GelDataltemsO SaveToFiled
GetDataUserIDd ♦ Serialized

♦ GetEmbeddedtemd SetActived
GetFullNameO 9 4 SetDataUserlDd
GelMostRecentOnlyd SetMostRecentOnlyd
GetNameO 9 * SetPasswordO

4 GetNewDataitemlDO 9 » SetTitled
4 GetNewFiddCollectionIDd SetUsemamed
♦ GetNewRequestlDO SetVisibleO

9 $ GetParentO SetWorkstationlDO
9 $ GetPasswordd StoreT oStreamsd
9 $ GetPathd 9 $ Slreardnd

♦ GetRequestfconst CString & rstrRequest) StreamOutd
♦ GetRequest(int index) m_bActive
4 GetRequestCountd ^ m_bl nS endO nD ataChange

Ç # GetRequestsd m_bMostRecentOnly
"g* GdSavedO ^ m_clXRT

GetStatusd • m_columnDelimiter
9 $ GetTided m_dwD atal temCounter

GetUsemamed m_dwFieldCollectionCounter
GetVisilded m_dwR equestCounter

m_lstD a id terns
m_lstFieldSels
m JstRequests
mJTickTotal
m_pXRTData
m_$trPasswofd
m strUsemame

148

The Data Items Class

BACD atal terns
4 _NewEnum{)
4 Add(BACDataltem ■‘ pNewltem)
4 BACDataltems(BACRTDDoc ' pDataObject)

BACDalaltemsO
4 ~BACDataltems(l
4 GetApplicationO
4 GetAtlndex(int nindex)

^ 4 GetCountO
4 GetDataltem(LPCTSTR Ipszltem)
4 GetOataltem(const VARIANT FAR & index)
4 GetDataObjectO
4 GetHeadPositionO
4 Getltem(const VARIANT FAR & index)
4 GetNext(POSITION & pos)
4 GetParentO
4 OnFinalReleaseO
4 Serialize(CArchive & ar)

m_lstD atal terns
m_pDataObject

The Data Item Enumerator Class
a ^ î BACEnumD atal terns

a i '^ T Î XEnumDdtallems
" $ AddRefO

4 Clone(l E numVAR IAN T FAR " FAR " ppenum)
$ Nexf(unsigned long celt, VARIANT FAR " rgvar, unsigned long FAR “ pcelFetched)
4 QuerylnterfacetREFIID iid, void " " ppvObj)
$ Released
4 ResetO

' ' ^ Skip(unsigned long celt)
' ' ^ BAŒnumDataltems(BACDataltems “ pD atal terns)

BACEnumD atal temsO
$ ~BACEnumDataltems()

9 $ 0 nCloneO E nurrf/AR I AN T FAR “ FAR " ppenum)
^ OnFinaPeleaseÜ

9 $ OnNextfunsigned long ulQty, VARIANT FAR " paVariant, unsigned long FAR " pulQtyFetched)
9 $ OnResetO
9 $ OnSkip(unsigned long uQty)

' jàî» m_pD atal terns
m_posCurrent
m_xEnumD atal terns

149

The Data Item Class

g '^ 'L Î BACDataltem
4 BACDataltem(BACRTDDoc " pDataObject)

BACDataltemO
4 -BACDataltemO
4 CalcDisplaySize(CDC * pDC, CSize & sizeHem)
^ CopyO
4 Drag(LPCRECT IpltemRect, CPoint ptOffset)
4 Draw(CDC " pDC, CPoint ptStart, int n = -1)
4 FeedD ata(VAR IAN T field, VAR IAN T value)

GetApplicationO
9 $ GetDataObjectO

GetFéIdsO
4 GetlDO

" 9 $ GetParentQ
9 $ GetPropertiesO

4 GetServerltemO

^ InternalGetFieldsO
4 LoadF romD B (CD aoD ataba$e " pD at abase , CDaoRecordset & itemRecordset]
^ OnFinalReleaseO

9 $ QnGetEmbeddedltemO
4 SaveAsTextfCArchive St ar, BOOL fIncludeNames = TRUE)
^ SaveToDB(CDaoDatabase “ pD atabase, long IDataObjectlD)
^ Serialize{CArchive & ar)
4 SetDataObjectfBACRTDDoc " pDalaObject)
^ SetServefltem(BACDataltemServerltem “ pServerltem)

'̂ .ùé m_dwlD
m_pDataOb|ect
m_pFields
m_pServerltem

150

The Fields Class

B ' ^ BACFields
4 _NewEnumO
4 Add(const VARIANT FAR & name)
4 AddField(CString slrName)
4 BACFieidsO
4 BACFields(BACRTDDoc " pDalaObject]
4 BACFieidsO
g FindField(consl VARIANT FAR & field)
4 GetApplicationO

^ 4 GetCountO
4 GetDataObjectO
^ GetHeadPositionO

4 GetlDO
4 Getltem(const VARIANT FAR & index)
4 GetNextlPOSITIGN & rPos)
4 GelParentO
4 OnFinalReleaseO

^ ^ Remove(const VARIANT FAR & item)
^ 4 ResetO

^ SaveAsText(CArchive ît af, BOOL fIncludeNames)
4 Serialize|CA(chive & ar)
4 SetDataObject(BACRTDDoc * pDataObject)

m_dwlD
m_lstFields
m_pDataObject

The Field Enumerator Class
BACEnumFields

g '^ 'C XEnurrfields
$ AddRefl)
4 Clone(l E numVAR IAN T FAR " FAR ' ppenum)
4 Next(unsigned long celt. VARIANT FAR " rgvar. unsigned long FAR " pceltFetched)
^ Querylnterface(REFIID iid, void ’ " ppvObj)
$ Released
^ ResetO
^ Skip(unsigned long celt)

' ' 4 BACEnumFields(BACFields " pFields)
BACEnumFiddsO

4 BACEnumFieldsO
OnClone(l E numVAR IAN T FAR * FAR “ ppenum)

$ OnFinalReleaseO
9 $ OnNext(unsigned long ulQty. VARIANT FAR “ paVariant. unsigned long FAR " pulQtyFetched)

OnflesetO
GnSkip(unsigned long ulQty)
m_pFields
m_posCurrent
m_xEnumFields

151

The Field Class
BACField

4 AddValue(const VARIANT FAR 8c value, const VARIANT FAR 8c time)
4 BACField(BACRTDDoc * pDataObject)

BACFieldO
4 -BACFieldO
4 GetApplicationO
^ GetNameO
4 GetParentO

4 GetStrNameO
^ 4 GetValueO

4 GetValueListO
^ GetValuesO
4 HasValue(const VARIANT FAR & value)
4 OnFinalReleaseO
4 SaveAsText{CArchive8c ai)

^ 4 SaveNamesAsText(CArchive 8c ar)
4 Serialize(CAfchive & ar)
^ SetDataObject[BACRTDDoc " pDataObject)
4 SetName{LPCTSTR IpszNewValue)
^ SetValue(const VARIANT FAR 8c newValue)
4 SetValueAndTime(const VARIANT FAR & newValue, const VARIANT FAR 8c newTime)

m_pDataObject
m_pValues
m_strName

The Values Class
" BACValues

^ _NewEnum()
4 Add(const VARIANT FAR & value, const VARIANT FAR & time)
4 BACValues(BACField * pField)
4 BACValuesO
4 -BACValuesO
4 FindValue(const VARIANT FAR 8c value)
^ GetApplicationO
4̂ GetCountO
4 GetHeadPositionO
4 GetNextfPOSITION & pos)
4 GetParentO
4 GetValueForTime(const VARIANT FAR & time)
4 GetValueltem(const VARIANT FAR & value)
4 ltem(const VARIANT FAR & value)
4 OnFinalReleaseO
4 Remove(const VARIANT FAR & value)
4 RemoveHeadO
4 Serialize(CArchive 8c ar)
^ SetField(BACField*pField)

m_lstValues
m_pField

152

The Value Enumerator Class
BAŒnumValues

3 ' ' * ^ XEnumValues
4 AddRefO

’’ ^ Clone(IE numVAR IAN T FAR * FAR " ppenum)
4 Next(unsigned long cell. VARIANT FAR " rgvar. unsigned long FAR " pceHFelched)
$ Querylnle(lace(REFIID iid, void " " ppvObj)
^ ReleaseO
^ ResetO
^ Sklp(unsigned long celt)

4 BACEnumValuesfBACValues " pValues)
BACEnumValuesO

4 ~BACEnumValuesO
OnClone(IE numVAR IAN T FAR * FAR “ ppenum)

4 OnPinaReleasefl
"^4 OnNext(unsigned long ulQty, VARIANT FAR * paVariant, unsigned long FAR * pulQtyFetched)
9 $ OnResetO

OnSkip(unsignedlongulQly)
m_posCurrent
mjaValues
m_xEnumVaiues

The Value Class
_ BACValue

4 BACValue(BACField " pField)
4 BACValue{BACField ” pField, const VARIANT FAR & value, const VARIANT FAR & time)

BACValueO
4 -BACValueO
^ GetApplicationO
4 GetParentO
4 GetTimeO
4 GetValueO
4 OnFinalReleaseO
$ Serialize(CArchive & ar)
4 SetField(BACField " pField)
4 SetValue(const VARIANT FAR & newValue)

mjDField
" m_time

m value

153

The Requests Class

3 ' ^ ‘5 BACReques(s
4 _NewEnum()
^ Add(consl VARIANT FAR & nam e, const VARIANT FAR & properties)
4 AddR equest(BACR equest ' pRequest]
4 BACRequestsfBACRTDDoc * pDataObject = NULL)
4 ~BACRequests()
4 CreateProperties(const VARIANT FAR & n am el, const VARIANT FAR & name2)

^ 4 GetApplicationO
^ 4 GetCountO

4 GetDataObjectO
^ ^ GetHeadPositionO

^ Getltem(const VARIANT FAR & index)
4 GetNext{POSITION & pos)
4 GetParentO
4 GetRequest(int index)
4 G etR equest(const [String & rstrRequest)
4 OnFinalReleaseO
^ Remove(const VARIANT FAR & item)

RemoveRequest(BACRequest " pRequest)
RemoveRequest(const [String & str)
RemoveRequestfint nRequest]

^ 4 ResetO
4 Serialize([Archive & ar)

' m_lstRequests
m_pDataObject

The Request Enumerator Class
BACEnumRequests

XEnumRequests
" ^ AddRefO

^ CioneflE numVAR IAN T FAR ' FAR * ppenum)
4 Nexf(unsigned long cell, VARIANT FAR " rgvar, unsigned long FAR " pceRFelched)
^ Querylnterface(REFIID iid, void * " ppvObj)
4 ReleaseO
4 ResetO
4 Skip(unsigned bng celt)

^ BACEnumRequests(BACRequests ' pRequests)
BACEnumRequestsO

4 ~BACEnumRequestsO
9 $ OnCbne(IE numVAR IAN T FAR “ FAR " ppenum)

4 OnFinalReleaseO
OnNext(unsigned long uQty, VARIANT FAR * paVariant, unsigned long FAR * pulQtyFetched)

% OnResetO
9 $ GnSkipfunsigned bng ulQty)

m_posCurrent
m_pRequests
m_xEnumRequests

154

The Request Class

E] ' ^ ; BACRequest
^ BACRequest(BACRTDDoc * pDataObject)

BACRequestO
4 "BACRequestO

GetApplicationO
9 $ GetFieldsO

4 GetlDO
9 ^ GetParentO
9 $ GetPropertiesO
9 $ GetRequestO

^ GetRequestNameO
4 IsFieldRequested(const VARIANT FAR & field)
4 LoadFromDB(CDaoDatabase " pD atabase, CD aoRecordset & requestRecordset)
4 OnFinalReleaseO
4 SaveToDB(CDaoDatabase * pD atabase, long IDataObjectlD)
^ Serialize|CArchive & ar)
4 SetDataObject(BACRTDDoc ' pDataObject)

SetFields(LPDISPATCH newValue)
" 9 $ SetProperties(LPD IS PAT CH newValue)

SetRequest(LPCTSTR IpszNewValue)
4 SetRequestName(CString strRequest)

m_dwlD
m_pDataObject
m_pFields
m _sttRequest

155

BIBLIOGRAPHY

[1] Cooling,} E. Software Design far Real-time Systems. International Thomson
Computer Press, 1995.

[2] Yin Leng Theng, Harold Thimbleby, Matthew Jones, Reducing irformation
overbad: A co??iparative study of lypertext systems, School of Computing
Science, Middlesex University

[3] Dennis Eskow, Beat Information Overbad, Febmary 1997, PC World
[4] Brockschmidt, Kraig. Inside OLE Microsoft Press, 1995.
[5] Wyllie, Jan. Turning irformation overbad into useful knowledge resources. Internet

1996.
[6J WOSA Extensions for Real Time Market Data (WOSA/XRT) Design

Specification. Open Market Data Council For Windows
[7] Pressman, Software En^neering, A Practitionen Approach, McGraw Hill
[8] 0LE2 Programmer’s Reference Vols One (& Two. Microsoft Press, 1993.
[9] Crittenden, John. Information Overbad Feature Articles PacificByte 1996
[lOJTmfitt, Ken. Information Overbad\ntetntt 1996.
[11] Dr. M. Timmerman Mon fret, Windows N T as Real-Time OS?, Real Time

Magazine
[12] Brookes ‘The Mythical Man Month ’
[13] Crosby, P. ‘Quality Is Free’, McGraw-Hill.
[14] M.A I D pic Targets Information Overload in 1997, Internet November

1996
[15] Robert M. Losee, Parameter Estimation for Probabilistic Document-

Retrieval Models, Journal of the American Society for Information
Science, 39(1), 1988, p. 8-16.

[16]Baclace, Paul E (1991): Personal Information Intake Filtering. In:
Proceedings of Bellcore Workshop on High-Performance Information
Filtering (Morriston, N.J.).

[17]Baclace, Paul E (1992): Competitive Agents for Information Filtering.
Commun. ACM 35(12, December), 50.

[18]Belkin, Nicholas}; Croft, W Bruce (1992): Information Filtering and
Information Retrieval: Two Sides of the Same Coin?. Commun. ACM
35(12, December), 29-38.

[19] Chimera, Richard; Shneidennan, Ben (1994): An Exploratory Evaluation
of Three Interfaces for Browsing Large Hierarchical Tables of Contents.
ACM Transactions on Information Systems 12(4, October), 383-406.

[20]Fisher, G; Stevens, C (1991): Information Access in Complex, Poorly
Structured Information Spaces. In: Human Factors in Computing
Systems CHI'91 Conference Proceedings (New Orleans, La. Apr. 1991).
(Eds: Robertson, Scott P; Olson, Gary M; Olson, Judith S) ACM, New
York, 63-70.

[21] Gant, Stephen P (1995): A Portarit of Potential Adopters of Information
Filters. In: ASIS'95. Vol. 32. (Ed: Kinney, Tom) Information Today,
Medford, New Jersey, 167-171.

[22] Losee, Robert M Jr (1989): Minimizing Information Overload: the
Ranking of Electronic Messages. Journal of Information 15, 179-89,

156

[49] Miller G. ‘The Magical Number Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Information’. The Psychological Review
vol. 63 (2)

[50]Microsoft Windows 3.1 Programmer’s Reference, Microsoft Press, 1992
[51]Roodyn, Neil and Emmerich, Wolfgang. ‘An Architectural Style for

Multiple Real-Time Data Feeds’. ICSE 1999

158

