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Abstract

Ischaemic preconditioning is a term used for the reduction of ischaemic damage to the 

liver by a transient period of ischaemia and reperfusion. This thesis evaluates the 

hypothesis that ischaemic preconditioning may protect against ischaemia reperfusion 

injury of the liver via nitric oxide formation. Two study models were used. In the first 

model, lobar ischaemia reperfusion injury in the rat was used to investigate the 

relationship of nitric oxide metabolism with hepatic oxygenation, microcirculation, and 

function with ischaemic preconditioning of the liver. As the fatty liver is less tolerant of 

ischaemic injury the second study model has evaluated ischaemic preconditioning in a 

steatotic liver model.

In the first study model, Sprague Dawley rats were subjected to 45 mins lobar ischaemia 

followed by 2 hr reperfusion. Ischaemic preconditioning was performed with 5 min 

lobar ischaemia and 10 min reperfusion before the sustained ischaemia. L-arginine or 

N“-nitro-L-arginine methyl ester (L-NAME) was administered to stimulate or block 

nitric oxide synthesis. Ischaemic preconditioning resulted in significantly increased 

hepatic intracellular oxygenation, microcirculation and hepatic tissue ATP, and 

decreased hepatocellular injury. Preconditioning significantly increased nitric oxide 

production measured by plasma nitrite/nitrate and cGMP. L-arginine treatment 

reproduced the protective effect of ischaemic preconditioning. Nitric oxide inhibition 

with L-NAME antagonized the protective effect of ischaemic preconditioning. Nitric



oxide synthase detected by NADPH diaphorase was induced by ischaemic 

preconditioning, hnmunobistocbemistry and Western blotting showed this to be due to 

overexpression of the constitutive isoform eNOS rather than the inducible isoform 

iNOS.

The second study involved model of hepatic steatosis in rats induced by a high fat diet. 

Liver histology in these animals showed moderate grade macro vesicular steatosis. The 

same protocol for ischaemic preconditioning resulted in increased intracellular 

oxygenation, microcirculation and ATP, and decreased hepatocellular injury. These 

results were similar to those observed with preconditioning in the normal livers.

This thesis has confirmed a protective effect of hepatic ischaemic preconditioning. This 

is associated with increased eNOS derived nitric oxide production. Furthermore, the 

protective effect of ischaemic preconditioning can be applied to the steatotic liver. 

These data may have important implications in liver surgery and transplantation and 

may lead to the development of pharmacological strategies for protecting the liver from 

ischaemic injury.
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1.1 Overview of Ischaemia reperfusion injury and the clinical problem

Liver injury caused by ischaemia and reperfusion occurs in various surgical 

interventions including hepatectomy and liver transplantation Ischaemia 

reperfusion injury (IRI) is associated with an acute inflammatory response and 

microvascular dysfunction, which finally lead to irreversible cell injury (figure 1.1). The 

pathogenesis of hepatic IRI is multifactorial and various mechanisms have been 

suggested Recent studies have shown that Kupffer cell activation following 

reoxygenation of ischaemic tissue generates reactive oxygen species which result 

in direct tissue damage and initiate a series of complex pathophysiological events 

Production and release of inflammatory cytokines such as interleukins and TNF-a cause 

endothelial cell activation, leading to synthesis of adhesion molecules and secretion of 

platelet activating factor, which promote leukocyte endothelial cell adhesion 

Activated endothelium in addition produces more reactive oxygen species and 

promotes microcirculatory failure Neutrophils adhere to the activated endothelium 

where they amplify the inflammatory cascade Furthermore, inflammatory cytokines 

activate vascular endothelium in other organ systems leading to systemic inflammatory 

response syndrome IRI is also associated with a progressive loss of adenine 

nucleotides ATP depletion causes alterations in membrane ion translocation by 

inhibition of ATP dependant Na^ ATPase, resulting in sodium influx and 

intracellular sodium accumulation with cell
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Ischaemia/ reperfusion 

KC activation

i
ROS  ►tsuperoxide, >lnitric oxide

Inflammatory cytokines activation -► vascular endothelium 
(IL, TNF-a) in other organ systems

Endothelial cell activation remote^

I
Drgan injury / SIRS

Adhesion molecules expression 
PAF release

i .
Leukocyte endothelial cell adhesion

Microcirculatory failure

Parenchymal injury 
(Apoptosis/necrosis)

Figure 1.1. Schematic illustration of pathophysiological events following reperfusion of 

ischaemic liver. Keys: KC, Kupffer cell; ROS, Reactive oxygen species; IL, 

interleukin; TNF, tumour necrosis factor; PAF, platelet activating factor; SIRS, 

systemic inflammatory response syndrome; t ,  increased; i ,  decreased.
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swelling and death These factors are not unique to a particular organ as they 

contribute to IRI to liver, heart and lung, as well as kidney (reviewed by

Ischaemic and hypoxic liver injury are caused by absolute and relative deficiency of 

oxygen, respectively Ischaemic liver injury occurs during storage of livers for 

transplantation surgery, hepatic artery thrombosis of liver allografts, and interruption of 

portal vascular flow in liver resections (Pringle maneuver) Hypoxic liver injury is 

the consequence of hypotensive emergencies and various shock syndromes 

Furthermore, hypoxic liver injury has been suggested as a contributory factor in 

alcoholic liver disease Re- oxygenation or reperfusion injuries represent an 

aggravation of the hypoxic or ischaemic insult caused by the introduction of oxygenated 

blood In addition to the two global, mechanistic categories of ischaemic and 

reperfusion injury, various liver cell types have a different temperature-dependent 

susceptibility to ischaemic and reperfusion injury, adding more complexity to the 

clinical manifestations of this type of liver injury

Some degree of IRI is inevitable in harvesting and transplanting the liver. The allograft 

is subjected to varying periods of warm and cold ischaemia. If hemodynamic 

compromise is present in the donor, warm ischaemia may occur before the organ is 

removed. After allograft harvesting, a prolonged period of cold ischaemia occurs during 

transportation of the organ and preparation of the recipient. During transplantation of 

the allograft into the recipient, ischaemia may occur due to technical factors and/or
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microcirculatory abnormalities. Warm ischaemia is tolerated less well than cold 

ischaemia due to, at least in part, the higher metabolic rate with the consequent higher 

demand for energy when ischaemia occurs at body or room temperature. Preservation 

injury is a major determinant of outcome following ortho topic liver transplantation 

transplantation and contributes to serious complications such as primary non-function, 

primary dysfunction and non-anastomotic biliary strictures of transplantated livers 

These preservation-related complications are major causes of retransplantation and 

mortality, and become more important with increasing numbers of orthotopic liver 

transplantations and the concomitant lack of suitable donor organs. At present only 

about two thirds of organs offered for transplantation are accepted, and fatty livers, 

organs of donors with prolonged intensive care or prolonged ischaemia time are rejected 

These organs are more vulnerable to ischaemia-reperfusion damage, and graft and 

patient survival is diminished after use of such organs Better protection against 

IRI would decrease the rate of preservation-related complications and, moreover, should 

increase the number of organs available for liver transplantation.

Another common cause of liver ischaemia is temporary clamping of the portal triad 

(Pringle manoeuvre) practised to achieve a bloodless field and minimise intraoperative 

blood loss during parenchymal resection for liver tumours. It has been the practice of 

most surgeons to reperfuse the liver at regular intervals to minimise the total ischaemic 

time. As this is both inconvenient, bloody and of no proven benefit studies have 

focussed on the ischaemic duration that the liver can tolerate. In 1992 Huguet et al
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demonstrated that the healthy liver can tolerate normothermic ischaemia for an hour 

However with the trauma of surgery and underlying hepatic disease, safe ischaemic 

times are not known.

1.2 Therapeutic Perspective

It can be assumed that a combination of various interventions will be required for 

optimal prevention of ischaemia reperfusion injury. The quest for protection from 

ischaemia reperfusion injury is not new, but in the past several years, this concept has 

been approached more rigorously by investigators addressing important clinical 

problems, particularly myocardial infarct, cardiopulmonary bypass, stroke, peripheral 

vascular embolism, and the preservation of organs for transplantation. Much of the 

recent work has been focussed on the remarkable observation that relatively short 

periods of ischaemia sustained just prior to a more prolonged (i.e., clinically relevant) 

episode, appears to have improved the tolerance to the latter in a number of organs 

including the heart brain spinal cord skeletal muscle retina kidney, 

intestine and liver

The term ischaemic preconditioning was introduced in 1986 by Murry and co-workers 

In this classical study the authors referred to ischaemic preconditioning as an 

adaptation of the myocardium to ischaemic stress induced by repetitive short periods of 

ischaemia and reperfusion. In the liver, brief periods of ischaemia and reperfusion (5-10
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min) protected against injury after warm ischaemia ^^%r hypothermic preservation in 

Euro-Collins or UW- solution in animal models. The concept has been applied 

clinically by Clavien et al who showed reduced apoptosis of sinusoidal endothelial 

cells by ischaemic preconditioning in patients undergoing hemihepatectomies under 

inflow occlusion. A broader and more fundamental question about ischaemia 

preconditioning is, how does it work? Defining the mechanisms of the preconditioning 

effect may allow for a powerful, targeted intervention against an anticipated period of 

liver ischaemia. Clearly, agents that induce the preconditioning response may assist the 

preservation of liver for transplantation and be an important adjunct to liver resection 

for tumors. Most studies suggest that ischaemic preconditioning modulates critical 

mechanisms of organ injury, however the underlying molecular mechanisms are yet to 

be clearly defined. The next chapter (Chapter 2) has reviewed the potential mechanisms 

of ischaemic preconditioning.
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1.3 Aim and objectives of this thesis

This study has investigated the potential role of nitric oxide as a mechanism of 

ischaemic preconditioning of the liver. The objectives of the study were:

1. To investigate the relationship of nitric oxide metabolism with hepatic 

oxygenation, microcirculation, and function with ischaemic preconditioning of 

the liver,

2. To investigate whether the protective effect of ischaemic preconditioning is 

applicable to the fatty (diseased ) liver.

1.4 Hypothesis and thesis description

The review of literature in the following chapter has highlighted that nitric oxide (NO) 

is a player rather than a spectator in the IPC cascade. However the link between NO and 

the protective effects of IPC is speculative. NO regulates perfusion of the hepatic 

microcirculation; the breakdown of microvascular perfusion with subsequent 

impairment of tissue oxygenation plays a central role in the pathophysiology of IR 

induced injury of the liver We have therefore hypothesized that IPC may act 

through local release of NO and influence hepatoprotection through modulation of 

hepatic tissue oxygenation and hepatic microcirculation. An approach to study the role 

of NO in hepatic IRI involves the use of agonists and antagonists; in this study the 

endogenous substrate for NO synthesis, L-arginine and NO synthase inhibitor, Nco- 

Nitro-L-arginine methyl ester (L-NAME) have been used.
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In Chapter 2, the potential mechanisms of IPC have been critically reviewed.

In Chapter 3, the methodology and experimental study model have been described.

The changes in liver oxygenation and HM with IPC and their relationship with NO 

metabolism will give an important indication of the effect of IPC on IRI. In chapters 4 

and 5 the relationship of NO metabolism with hepatic oxygenation, microcirculation 

and function in IPC of the liver has been demonstrated. The association of increased 

nitric oxide production with the preconditioning effect has been demonstrated.

In chapter 6, the distribution and expression of nitric oxide synthase isoenzymes in IPC 

of the liver has been studied.

In chapter 7, the application of the protective effect of ischaemic preconditioning 

against ischaemia reperfusion injury in the steatotic liver has been investigated.

In chapter 8, general discussion of the thesis including methodological considerations, 

results and conclusions drawn from the experiments has been carried out and future 

directions suggested.

References and. Appendix listing the presentations and publications arising out of work 

described in this thesis appear at the end of the thesis.
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Chapter 2

Ischaemic Preconditioning of the Liver- Mechanisms and Clinical 

Applications: A Review of Literature
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2.1 Introduction

Brief episodes of ischaemia followed by a period of reperfusion called ischaemic 

preconditioning (IPC) have been shown to protect organs against subsequent sustained 

ischaemia. IPC was first described by Murry and co-workers in 1986 In a canine 

model, they demonstrated that multiple brief ischaemic episodes (coronary vascular 

occlusions) protected the heart from a subsequent sustained ischaemic insult. Since then 

myocardial ischaemic preconditioning has been shown to occur in many animal species 

and in humans Subsequently, IPC has been demonstrated in other organ systems 

including skeletal muscle brain spinal cord kidney intestine ^̂ ^̂ and liver 

Although these studies suggested a preconditioning response in most organ systems 

the mechanism of the preconditioning effect remains uncertain.

IPC has been described as an endogenous adaptive mechanism for prevention of injury 

resulting from ischaemia reperfusion The phenomenon is fascinating, as it is easily 

reproducible and potentially readily applicable in clinical situations. In the liver the 

preconditioning effect is a promising strategy in assisting preservation of the liver in 

clinical situations of anticipated hepatic ischaemia such as transplantation and during 

resection for tumors using hepatic vascular occlusion. Clearly, identifying the 

mechanism of preconditioning may allow recognition of a pharmocological agent, to 

protect the liver from ischaemic injury.
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The mechanisms underlying the preconditioning effect have not been defined. In 

contrast, various potential mediators have been proposed and investigated. Most of the 

data on mediators of preconditioning in organs including the liver has been extrapolated 

from information gathered in the heart. This chapter reviews the major developments in 

characterization of mechanisms of IPC in the liver. In addition, clinical applications of 

IPC to minimise ischaemic injury to the liver have been discussed.

2.2 Methods of search

All the studies were identified by PubMed, ISIS and CAS searches between years 1966- 

2002 with the following keywords: ischaemia, ischaemia reperfusion injury, 

preconditioning, ischaemic preconditioning, hepatoprotection. Other sources include 

review articles and textbooks.

2.3 Evidence that ischaemic preconditioning occurs in the liver

2.3.1 Studies on warm ischaemia

Over the last decade many investigators have studied the effects of IPC on regional and 

global ischaemia in the liver, and the evidence is encouraging (see table 2.1). Lloris- 

Carsi in 1993 first demonstrated in the rat liver that a single episode of preconditioning 

with 5 minutes portal triad clamping followed by 10 minutes reperfusion showed 

improved survival and decreased liver enzyme levels after subsequent 90 minutes
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Table 1: Current data on Hepatic IPC- published studies.

Keywords: I, ischemia; R, reperfusion; *, cold ischemia; t ,  increased; decreased; LFT’s, liver function tests; NOS, nitric oxide synthase; 

cNOS, constitutive nitric oxide synthase; GPT, glutamate pyruvic transaminase; ATP, adenosine triphosphate; LDH, lactate dehydrogenase;

HSP, heat shock protein; HM, hepatic microcirculation; TNF-a, tumour necrosis factor-a; MPC, myeloperoxidase; SEC, sinusoidal endothelial 

cell; IL-6, interleukin-6; AMPK, adenosine monophosphare activated protein kinase; ICAM, intercellular adhesion molecule; ICG, indocyanine 

green; GET, orthotopic liver transplantation; PKC, protein kinase C; lEG’s, immediate early genes; LPO, lipid peroxidase; SOD, superoxide 

dismutase; XOD, xanthine oxidase; 5’-NT, 5’-nucleotidase; MIP-2, macrophage inflammatory protein-2; MDA, malondialdehyde; ROS, reactive 

oxygen species; cAMP, cyclic adenosine monophosphate; SAPK’s, stress activated protein kinases; p38MAPK, p38 mitogen activated protein 

kinase.



Study Group Year Species IPC time 
(min)

Ischaemia 
time (min)

Reperfusion 
time (min)

Hepatic
ischaemia

Pharmacological
manipulations

Parameters assessed Outcome of IPC Proposed mechanism

Lloris-Carsi (30) 1993 Rat lx3(5I+10R) 90 3 days Total Nil LET'S & Survival 70% 3 day survival + liver 
enzyme levels

Not addressed

Hardy (39) 1996 Rat 51+1 OR 0-45 1 to 8 days partial Nil LET'S, Histology & Survival 90% 1 day survival, T 
prothrombin time

not addressed

Peralta (41) 1996 Rat lOI+lOR 90 90 partial spermine NONOate; L- 
NAME/Bosentan

LET'S, Tissue endothelin & 
NOS activity, histology

i  GPT & endothelin 
T cNOS.

Nitric oxide

Kume (56) 1996 Rat 151 30 10& 40 Total hyperthermia- 42°C for 15 min ATP,transaminase,LDH, 
HSP72 , survival

100% survival, T ATP, i  
transaminase & LDH

HSP72

Peralta (45) 1997 Rat lOI+lOR 90 90 partial spermine NONOate; Adenosine; 
L-NAME

LET'S, HM 4-transaminases & LDH Adenosine & Nitric oxide

Peralta (46) 1998 Rat 2-30I+10R 90 90 partial Adenosine deaminase/Xanthine; 
spermine NONOate

LET'S 4transaminases Adenosine & Nitric oxide

Yoshizumi (40) 1998 Rat 51+1 OR 40 120 partial Nil LET'S, Bile flow. Tissue ATP, 
Histology

4-transaminase, LDH & tissue 
necrosis, T ATP

not addressed

Yin (31) 1998 Rat 51, 101 or 
201+1 OR

* 16 to 24 hrs 60 to 5 days cold storage L-arginine/adenosine; L-NAME LET'S, Bile flow, TNE-a, 
Survival

87.5% Iday & 75% 5 days graft 
survival

Nitric oxide

Adam (82) 1998 Rat 5 or 101 + lOR *24 hrs 180 cold storage 
(UW)

Nil Bile, transaminases, LDH 
release, vascular resistance

T transaminases, LDH & vascular 
resistance

not addressed

Peralta (48) 1999 Rat 101+ lOR 90 90 partial Adenosine; adenosine deaminase; 
DPCPX; DMPX

Transaminases, hepatic 
perfusion,nitrite/nitrates

Adenosine A2 receptor antagonist 
abolished

Adenosine A2 receptors & Nitric 
oxide

Peralta (47) 1999 Rat 101+ lOR 90 90 partial Gadolinium chloride, TNF, L- 
NAME, spermine NONOate

TNE, transaminases, vascular 
permeability, edema, MPO, 
histology

4 TNE & tissue injury Nitric oxide

Yadav (54) 1999 Mouse 101+ lOR 75-90 60 to 180 partial & total Nil LET'S, Hepatocellular 
apoptosis. Survival

4 apoptosis of hepatocytes & SEC modulation of apoptosis cascade

Nakayama (55) 1999 Rat 101+ lOR 45 40 min to 24 hrs Total AdoR A l, A2 agonists & 
antagonists

LET'S, Tissue ATP, histology. 
Survival

T adenosine 
4 tissue damage

Adenosine A2 receptors

Zapletal (67) 1999 Rat 51+ lOR 70 30 partial Nil Intravital microscopy t  perfusion parameters, 4 
leucocyte adherence

Nilsson (52) 2000 Rat 101+15 60 60 Total Dipyridamole LET'S, HM T peripheral liver blood flow & 4 
transaminase

Adenosine
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Howell (53) 2000 Mouse 51+ lOR 30 30 min to 24 hrs partial Dipyridamole LFT's, leukocyte/ endothelial 
cell adhesion

-iendothelial/leukocyte interaction 
& transaminase

Adenosine

Clavien (29) 2000 Human 101+ lOR 30 30 Total Nil LFT's, Hepatocellular 
apoptosis.

4- transaminases & apoptotic 
sinusoidal lining cells

Modulation of apoptosis cascade

Peralta (49) 2000 Rat 101+ lOR 10-90 90 partial SQ-22536, forskolin adenine nucleotides, 
glycogen, glucose-6-P, 
fructose-6-P, transaminases

preserved energy metabolism 
during sustained ischemia

cAMP dependent PKC

Tsumaya (58) 2000 Mice 10/15/201 + 
20R

70 1 to 48 hrs Total Nil TNF, IL-6, transaminase. 
Histology, survival

t  survival, transaminase, TNF, 
IL-6 & liver necrosis

not addressed

Peralta (50) 2001 Rat 101+ lOR 90 0 to 360 partial AICAR/ 8-bromo-AMP/ araA; 
ZVAD; spermine NONOate/ L- 
NAME

AMPK activity, nucleotides, 
lactate, transaminases, 
apoptosis, histology

AMPK activation, ÎATP, I 
lactate & hepatic injury

AMP via PKC

Peralta (51) 2001 Rat 101+ lOR 90 90 partial ICAM, P-selectin & TNF 
blockade; TNF/ gadolinium

MPO & lipid peroxidation, 
vascular permeability, TNF, 
transaminases, hepatic 
perfusion, histology, ICAM 
& P-selectin expression

remote organ protection by hepatic 
preconditioning

TNF & P-Selectin

Schulz (83) 2001 Pig 101+ 10RX 3 120-200 480 or 300 Total Nil ICG clearance, bile flow, 
transaminases, ATP, 
Glycogen & lactate contents, 
histology

No protection against prolonged 
ischemia

not addressed

Aral (76) 2001 Rat 5 or 101 + lOR *30 hrs 15 or 240 cold storage Nil SEC injury, superoxide 
formation in Kupffer cells, 
graft survival & TNF after 
OLT

T graft survival & protection to 
contra-lateral liver

not addressed

Ricciardi (77) 2001 Pig 151+ 15R *120 240 cold storage PKC inhibitor Chelerythrine graft function & circulation, 
LDH, endothelial cell 
damage, PKC levels

T graft function PKC

Ricciardi (78) 2001 Pig 151+ 15R *120 240 cold storage Tyrosine kinase inhibitor 
Genistein

graft function & circulation. 
Tyrosine kinase activity

T graft function Tyrosine Kinases

Saito (60) 2001 Rat 101+ lOR 40 6 to 48 hrs partial Nil Transaminases, endothelial 
cell injury, apoptosis, 
transcription of lEG's

i  transaminases, endothelial cell 
injury, necrosis, apoptosis & 
lEG’s transcription

not addressed

Yamada (59) 2001 Rat 101+ lOR 40-120 upto 7 days partial Nil Transaminases,LDH,
necrosis,hepatocyte
regeneration

4- transaminases, LDH & necrosis. not addressed

Zhang (61) 2001 Mice Nil Transaminase, LDH, LPO, 
SOD

i  transaminases, LDH, LPO& t  
SOD

not addressed

Ishii (66) 2001 Rat 101+ lOR 40 6 to 48 hrs Nil transaminases, LDH, 
necrosis, apoptosis, lEG's 
transcription alterations

transaminases, LDH, necrosis, 
apoptosis, lEG's transcription 
alterations

not addressed
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Peralta (62) 2002 Rat 101+ lOR 90 90 partial Xanthine, xanthine oxidase, 
allopurinol, GSH ester

Xanthine, glutathione, 
superoxide dismutase, lipid 
peroxidation, transaminases

i  xanthine, XOD in liver with i  
neutrophil accumulation, oxidative 
stress, & microvascular disorders 
in lung

Xanthine/XOD pathway for ROS 
generation

S indram (75) 2002 Rat 101+ 15R *30 hrs 60 cold storage 
(UW)

N-acetyl-cysteine SEC detachment, apoptosis, 
peroxide, gelatinolytic & 
gelatinase activity

4- SEC detachment & activities of 
matrix metalloproteinase

Oxygen free radicals

Rudiger (63) 2002 Mice 101+ 15R 75-120 180 partial Nil transaminase, apoptosis 
markers, histology, survival

4- transaminase, no apoptosis or 
necrosis, 100% survival for 
ischemic period upto 75 mins but 
not 120 mins

modulation of apoptosis csacade

Ajamieh (64) 2002 Rat 101+ lOR 90 90 partial Ozone transaminases, 5'-NT, 
oxidative stress, histology

•I hepatocellular injury & 
oxidative stress

not addressed

Peralta (42) 2002 Mice 101+ 15R 90 6 to 24 hrs partial Gadolinium chloride, TNF, MIP- 
2, antibodies against TNF and 
MIP-2.

Transaminases, TNF, MIP-2, 
MDA, MPO, P-selectin 
expression

Preconditioning & Bcl-2 
overexpression together abolished 
liver injury

Via TNF and MIP-2 inhibition

Serafin (73) 2002 Rat lOI+lOR, 
10I+15Ror 
51+1 OR

60 2 to 24 hrs partial NO donors and inhibitors, 
glutathione ester

Microcirculation, neutrophil 
activity, lipid peroxidation

>4 hepatic injury in normal and 
fatty livers

Nitric oxide

Teoh (43) 2002 Mice 2 to 201+1 OR 90 24 hrs partial Nil Transaminases, histology. 4 hepatocellular injury NF-kappaB and SAPKs

Fernandez (44) 2002 Rat 101+1 OR 90 16 hrs Total Xanthine, XOD Transaminases, ROS 4- liver and lung injury Via xanthine/XOD blockade
Koti (69) 2002 Rat 51+1 OR 45 120 partial L-arginine, L-NAME Transaminases, NOx, hepatic 

oxygenation
4 hepatocellular injury, T 
intracellular oxygenation

Nitric oxide

Koti (68) 2002 Rat 51+1 OR 45 120 partial L-arginine, L-NAME Transaminases, NOx, cGMP, 
microcirculation

4 hepatocellular injury, T 
microcirculation

Nitric oxide

Iwasaki (65) 2002 Rat 101+ lOR 15 X 3, or 45 Upto 180 min total Nil Transaminases, TNF, 
histology

t  protective effect for intermittent 
than continuous I

Not addressed

Funaki(87) 2002 Mice 151+20R 70 0 to 24 hrs total Nil NF-kB activity 4- NF-kB activation NF-kB
Ricciardi (88) 2002 Pig 151+ 15R cold storage Genestein, chelerythrine TK, PKC, NF-KB TK, PKC, NF-kB activation PKC and TK, NF-kB
Arai (32) 1999 Rat 5I + 5R *30 hrs 15 cold storage 

(UW)
Nil SEC killing, Kupffer cell 

activation
4' SEC death & KC activation. not addressed

Arai (74) 2000 Rat 5I + 5R *30 hrs cold storage 
(UW)

AdoR A I, A2 agonists & 
antagonists

SEC killing, SEC cAMP i  SEC death & t  cAMP Adenosine A2 receptors via 
cAMP

Carini (79) 2000 Rat 101+ lOR 90 Hypoxia Protein kinase C stimulators & 
inhibitors

Hepatocyte viability, pH, 
Na+, ATP

i  hepatocyte cell death PKC

Carini (80) 2001 Rat 101+ lOR 90 Hypoxia AdoR A l, A2 agonists ( & 
antagonists; PKC, MEK 
inhibitors

cell viability, PKC 
isoenzymes activity, P38 
MAPK activity

hepatocyte killing 4 reduced by 
35%

Adenosine A2 receptors, Gi 
proteins, Phospholipase C, PKC, 
P38 MAPK

Compagnon (81) 2002 Rat 10 anoxia+ 10 
reoxygenation

30 + *24 -  
48 hrs

60 Warm 
ischaemia + 
cold storage

Nil LDH, ATP, oxygen uptake, 
protein synyhesis

T hepatocyte viability, T ATP & 
protein synthesis

Not addressed
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ischaemia Hardy et al showed improved survival in rats undergoing liver resection 

during 45 minutes ischaemia after prior 5 minutes ischaemia with 10 minutes 

reperfusion Similarly Yoshizumi and co-workers have demonstrated improved

survival and increased tissue ATP with preconditioning in a rat liver resection model 

Subsequently the ischaemic preconditioning effect in the liver has been reproduced 

in several in vivo rodent models of partial and global liver ischaemia 

Preconditioning protected from partial and global ischaemia. Since none of these studies 

have directly compared effects of preconditioning on partial vs global ischaemia, it is 

not known whether any differences exist between the two effects. These studies have 

demonstrated that liver ischaemic preconditioning for warm ischaemia resulted in 

decreased hepatocellular injury increased tissue ATP decreased TNF-a 

"̂̂ ’̂̂ ^ ând IL-6 release, decreased leukocyte/ endothelial cell interactions 

decreased endothelial cell injury increased peripheral liver blood flow increased 

microcirculation decreased hepatocellular apoptosis preserved energy 

metabolism increased hepatic intracellular oxygenation and remote organ

protection These studies provide considerable evidence that preconditioning 

ameliorates ischaemia reperfusion induced liver injury in the rodent liver. 

Encouragingly, recent investigations by Clavien and coworkers have shown that IPC 

exists in the human liver In this study, patients undergoing hemihepatectomies 

under inflow occlusion showed inhibition of sinusoidal endothelial cell apoptosis within 

30 minutes of reperfusion in the preconditioned livers. In a murine model of partial
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hepatic ischaemia, the same group showed that EPC also inhibits apoptosis of 

hepatoeytes at later stages of reperfusion

The steatotic liver is partieularly susceptible to isehaemia reperfusion injury resulting in 

poor outeome following liver surgery ^̂ ^̂ and transplantation There is therefore, an 

urgent need for strategies to reduce IRI in steatosis. The recent report by Serafin et al 

shows IPC increases the tolerance of fatty livers to ischaemia reperfusion injury in rats. 

In this study obese Zueker rats subjeeted to 60 minutes of lobar liver ischaemia had 

70% survival at 30 days with IPC there were no survivors without IPC.

2.3.2 Studies on cold ischaemia

The proteetive effeet of IPC is not restrieted to warm isehaemia and decreased tissue 

damage in cold preserved livers (cold storage- reperfusion injury) after IPC has been 

demonstrated in small and large animal models. In rat livers, IPC prior to storage in cold 

University of Wisconsin (UW) solution for 30 hrs, decreased sinusoidal endothelial cell 

(SEC) death and Kupffer cell (KC) aetivation In another study eombining two 

sets of experiments, IPC prior to preservation of rat livers in cold UW solution for 30 

hrs decreased SEC detachment and activities of matrix metalloproteinases, and also 

deereased SEC apoptosis after 1 hour of reperfusion in an isolated perfused rat liver 

model In a rat liver transplant model IPC protected liver grafts from ischaemia 

reperfusion injury Furthermore, in a recent study in cold preserved rat livers Arai et 

al have observed that the benefit of IPC extends not only to the ipsilateral lobe, but
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also to the contralateral lobe resulting in an improved graft survival after orthotopic 

liver transplantation. In this study the authors observe that ‘such heterologous 

preconditioning provides a new means to protect liver tissue against ischaemia 

reperfusion injury without imposing ischaemia on the target tissue’ The effects of 

IPC on cold organ preservation has been evaluated in animal models other than rodent, 

Ricciardi et al demonstrating that IPC reduced IRI in cold ischemic porcine livers^^^l

2.3.3 Studies on isolated hepatocytes

The hepatoprotective response of IPC has also been shown in isolated hepatocytes. In, 

in vitro studies on freshly isolated hepatocytes, preconditioned (with brief hypoxia) 

hepatocytes showed increased resistance to cell death during hypoxic incubation 

Normothermic IPC has been shown to improve hepatocyte viability and energy 

metabolism in isolated rat hepatocytes subjected to hypothermic preservation injury

The above studies, mostly in rodent livers, have shown liver protection by IPC to warm 

and cold ischaemia. However there are few published studies which have suggested that 

hepatic IPC may be of limited or no benefit. A study by Adam et al in fact suggested 

that preconditioning had a deleterious effect on hepatic tolerance to cold ischaemia.

This study used a model of isolated perfused livers from Wistar rats Preconditioning 

protocols of 5 or 10 min ischaemia followed by 10 min reperfusion before liver 

harvesting, prior to extended cold ischaemia of 24 hrs resulted in extensive reperfusion 

injury, increased vascular resistance and increased transaminases and LDH release. In a
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larger animal model using pigs, a preconditioning protocol of repeated 10 min 

ischaemia followed by 10 min reperfusion, prior to 120 min or 200 min sustained 

ischaemia was tested^^^l In the 120 min ischaemia group IPC increased bile flow and 

ATP, but the degree of hepatic necrosis and apoptosis was not different from control 

groups. With 200 min ischaemia EPC resulted in no significant differences in bile flow, 

ATP and liver enzymes from control groups, and the degree of necrosis and apoptosis 

was in fact greater in preconditioned livers. It should be emphasized that 200 min of 

global hepatic ischaemia is likely to cause irreversible injury and this time period is 

considerably longer than would be considered for human liver surgery. This study 

suggested that IPC conferred some functional protection against reversible ischaemia 

but no protection from prolonged ischaemia in pigs The major difference between 

this study and those showing benefits with EPC is the use of three cycles of 

preconditioning in comparison with a single episode. In a more recent study Rudiger et 

al noted that in mice IPC resulted in 100% animal survival with no morphological 

parenchymal injury after 75 minutes sustained ischaemia as against 14% survival with 

significant parenchymal injury after 120 minutes ischaemia.

Thus, a large body of evidence favours liver protection by EPC from injury in both warm 

and cold ischaemia. The existence of EPC in the liver has been demonstrated in rodents, 

pig and humans. Although most of the data on hepatic EPC has been gathered in rodents 

and it is recognised that information on preconditioning in rats may not always be 

extrapolated to larger species and humans, the recent report by Clavien and co-workers
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of the first human study is a thoughtful example of potential clinical application of

the preconditioning effect.

2.4 Possible mechanisms of preconditioning

The precise mechanism of the IPC response is unknown. From studies on 

preconditioned myocardium, it is widely accepted that IPC is mediated via a receptor 

targeting mechanism Molecules released during ischaemia attach to cellular 

receptors and contribute to the preconditioning response. The candidate compounds 

implicated in liver IPC include adenosine protein kinase C nitric

oxide heat shock proteins tyrosine kinases mitogen activated

protein kinases oxidative stress nuclear factor kB and modulation of 

apoptosis cascade However the characterizations of these candidate compounds into 

different processes in the preconditioning cascade such as initiating trigger, signalling 

pathway and end-effector are not defined and the inter-relationship between these 

processes is unknown. In the liver, the most investigated molecules are nitric oxide 

(NO) adenosine protein kinase C and heat shock proteins This chapter 

reviews the major developments in characterization of these proposed mechanisms of 

preconditioning (Fig.2.1).
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Figure 2.1. Schematic illustration of possible mechanisms involved in ischaemic 

preconditioning. Keys; NOS, nitric oxide synthase; KATP, potassium dependent ATP channel; PKC, 

protein kinase C; cGMP, cyclic guanosine monophosphate; NFkB, nuclear factor kB.
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2.5 The role of adenosine

Adenosine is an extracellular molecule proposed both as “trigger” and “mediator” of 

IPC During ischaemia, adenosine triphosphate is degraded to adenosine. The 

extracellular adenosine released in large quantities during ischaemia is believed to play 

a role in the protective effect of IPC during reperfusion of the ischaemic tissue. 

Ischaemia reperfusion injury is associated with neutrophil and leukocyte activation and 

primary microvascular failure. Adenosine inhibits leukocyte adhesion, decreases 

expression of vascular adhesion molecules and inhibits neutrophil and platelet 

function^^^’ Adenosine also inhibits free radical production,^^^’^̂  ̂important mediators 

of cellular damage in the early phase of ischaemia reperfusion injury, and is a potent 

vasodilato/^^l The above would suggest adenosine may be protective against ischaemia 

reperfusion injury and the effects of adenosine in IPC likely to be multifactorial. Most 

of the data on the role of adenosine in IPC has been gathered in the cardiac musclê "̂̂ '̂ ^̂  

and extrapolated to skeletal muscle^^^  ̂and kidneys

Over the recent years a few studies have gathered evidence of the involvement of 

adenosine in liver IPC. Whereas Al receptors have been implicated in the myocardium 

A2 receptors have been proposed to be the adenosine receptor subtype likely to be 

expressed in the liver The existence of adenosine A2 receptors on hepatic SEC is 

supported indirectly by demonstrating dose dependent increase in cAMP by adenosine 

and selective A2 receptor agonist CGS-21680 In this study by Arai et al, adenosine
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A2 receptors blockade prevented the protective effect of IPC in rat livers preserved in 

cold UW solution IPC and administration of adenosine A2 receptor agonist, in this 

study, decreased SEC death and increased cAMP levels The authors have proposed 

that SEC protection by IPC is mediated by activation of adenosine A2 receptors 

producing an increase in cAMP levels in sinusoidal endothelial cells, but the mechanism 

downstream to increased cAMP, by which adenosine decreases SEC injury is not 

explained. The same authors have previously shown that IPC suppressed KC activation 

and have stipulated the involvement of adenosine A2 receptors in this response IPC 

induced protection of SEC’s could have profound implications for preservation of livers 

for transplantation, since SEC’s are susceptible to cold preservation injury^^’ whereas 

hepatocytes are vulnerable to warm ischaemia reperfusion injury SEC injury rather 

than hepatocellular injury has been shown to be responsible for graft failure from cold 

ischaemia reperfusion injury Peralta et al have postulated activation of

adenosine A2 receptors with subsequent formation of NO to play a role in mediating 

IPC against warm ischaemia reperfusion injury In this study adenosine 

administration in the presence of a NO donor reproduced the protective effect of IPC on 

hepatic parenchymal cells. In another study, a three-fold increase in adenosine after IPC 

was associated with decreased parenchymal tissue damage^"^ \̂ Both EPC and increasing 

endogenous adenosine concentrations with the non-specific adenosine uptake inhibitor 

dipyridamole, decreased hepatic leukocyte/endothelial cell interactions after ischaemia 

reperfusion injury All of the above studies have been carried out in rats and 

although the evidence is limited, suggest that adenosine modulates IPC induced
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protection of non parenchymal and parenchymal cells against cold and warm hepatic 

ischaemia reperfusion injury in the rat liver. There are no studies challenging the 

involvement of adenosine in the rat liver.

The data on adenosine from IPC studies in rat livers contradicts the information 

gathered in the rat heart. The role of adenosine in myocardial preconditioning is 

supported indirectly by studies in rabbits pigs dogs and humans 

demonstrating abolition of preconditioning by adenosine receptor blockade. However in 

rats, it is evident that adenosine has no role in IPC of the myocardium IPC is 

effective in the absence of extracellular accumulation of adenosine in the rat heart 

Thus, adenosine does not appear to be endogenous trigger or obligatory mediator of 

preconditioning in rat hearts. Thus, in the rat species the adenosine concept does not 

seem to apply consistently to different tissues. It therefore seems likely that adenosine 

may only be a mediator to IPC of the liver but not a sole mechanism.

2.6 The role of protein kinase C

The PKC mediated signalling pathway of myocardial preconditioning was proposed by 

Downey and colleagues The hypothesis proposes that during preconditioning

ischaemia G-protein activation following G-protein coupling with adenosine receptors 

leads to PKC activation and subsequent translocation from the cytosol to the membrane 

where it phosphorylates substrate proteins to induce tolerance to subsequent ischaemia
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However conflicting results in some species, particularly large animals where the 

concept does not apply consistently, would suggest that PKC activation is an 

epiphenomenon or secondary effect and not a primary mediator of the cardioprotective 

effects of preconditioning Most of the evidence surrounding the PKC

hypothesis is indirect and based on pharmacological approaches using PKC activators 

and inhibitors. Many of the inhibitors are not specific to PKC and are also isoform 

nonspecific. The above reviewers highlighted the limitations of pharmacological

methods and also the fact that studies using isoform specific antibodies may not indicate 

activity of these specific PKC isoforms. Further, information on events downstream of 

PKC activation and the end effector of preconditioning is lacking at present.

In recent years, a few studies have evaluated the evidence for involvement of PKC in 

preconditioning of the liver. This evidence is indirect and based on a pharmacological 

approach. Carini et al used an in vitro model of isolated rat hepatocytes and proposed 

that hypoxic preconditioning was mediated via PKC mediated activation of vacuolar 

proton ATPase (V-ATPase) In this study the increased tolerance of preconditioned 

hepatocytes to hypoxia was abolished by inhibition of PKC with chelerythrine or 

blocking V-ATPase with bafilomycin Al and mimicked by stimulators of PKC, 4p- 

phorhol-12-myristate-13-acetate (PMA) and 1,2 dioctanoyl-glycerol (1,2 DOG). The 

authors observed that the prevention of intracellular acidosis and of cytosolic Na+ 

increase during hypoxia was associated with decreased hypoxic injury in preconditioned 

hepatocytes In another study, the same authors observed that preconditioning for

42



isolated hepatocytes was abolished by adenosine A2a receptor antagonist and have 

proposed a signalling pathway involving adenosine A2a receptors, PKC and kinases 

downstream of PKC (p38 mitogen activated protein kinase) to be involved in hypoxic 

preconditioning of isolated rat hepatocytes However downstream of this point, the 

mechanisms by which liver injury is decreased have not been explained. In the heart, it 

has been suggested that the kinase cascade activated during preconditioning leads to the 

opening of mitochondrial K atp channels but there is no evidence that these are the 

end effectors. There is data to suggest that mitochondrial K atp channels may simply act 

as another signal transduction step The kinase cascade can also stimulate 

phosphorylation of heat shock proteins activation of the transcription factor nuclear

factor kB and upregulation of inducible nitric oxide synthase but the link with 

end effects of preconditioning has not been established. Ricciardi et al have extended 

support for involvement of PKC and tyrosine kinase in liver IPC in larger animals 

In one study, tolerance of ischaemically preconditioned pig livers to cold ischaemia was 

abolished by pretreatment with PKC inhibitor chelerythrine In another study by the 

same authors pretreatment with tyrosine kinase inhibitor genistein abolished the 

preconditioning effect in cold preserved pig livers While these data support a role 

for PKC in ischaemic preconditioning, they still do not prove that PKC is responsible 

for preconditioning.
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2.7 The role of heat shock proteins

HSP’s are intracellular stress proteins that have been shown to accumulate after 

hyperthermia and ischaemia^^^^ l̂ The concept of sublethal whole animal hyperthermia 

conferring tolerance to other stresses such as ischaemia and lethal endotoxin exposure, 

is referred to as hyperthermic preconditioning and has been associated with HSP 

accumulation^^ In the rat liver, tolerance to ischaemic injury has been associated 

with production of various inducible HSP’s; HSP72 HSP73 and, HSP70 and 

HO-1/HSP32 Ishikawa et al have proposed that in heat shock preconditioned rat

livers HSP’s maintain mitochondrial membrane integrity during the ischaemic episode, 

to produce energy rich phosphates during reperfusion and thus contribute to ischaemic 

tolerance In an in vivo study in rats by Kume et al the reduced postischaemic 

hepatocellular injury and improved survival was associated with overexpression of 

HSP72 in ischaemically preconditioned livers as well as in the livers preconditioned 

with heat shock In this study HSP72 was detected within 6 to 72 hrs after heat 

exposure and the authors have proposed that HSP72 production is associated with 

delayed protective effect of IPC. The link between HSP72 and delayed effect of IPC has 

not been explained. It is also not clear whether HSP production and accumulation is the 

reason for resistance to ischaemia or merely a marker of tolerance

While these studies demonstrate that HSP’s are detected after preconditioning, the 

molecular mechanism of protection associated with HSP accumulation is not explained
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and these studies do not prove that HSP’s are responsible for preconditioning.

2.8 The role of nitric oxide

Nitric oxide (NO) is a colourless, odourless, free radical gas which has been identified 

as an important signaling molecule in almost every tissue in the body. NO is produced 

from L-arginine by the enzyme nitric oxide synthase. In the liver, as in many other 

organs NO has many actions and cellular sources. Several observations suggest that NO 

is a major player in modulating ischaemia reperfusion induced liver injury. Recent 

evidence supports the role of NO in regulating perfusion of the hepatic microcirculation 

(HM) The breakdown of microvascular perfusion with subsequent impairment of 

tissue oxygenation plays a central role in the pathophysiology of IR induced injury of 

the liver Treatment of rats with nonspecific NOS inhibitors resulted in failure of 

hepatic microvascular perfusion and development of patchy necrosis Inhibition

of nitric oxide synthase (NOS) in rats also resulted in aggravated hepatic injury 

following the oxidative stress of endotoxaemia Augmentation of NO synthesis with 

NO donors has been shown to attenuate hepatic IRI and improve post transplant 

survival NO may modulate microvascular perfusion through it’s vasodilatory effect 

and through it’s anti-inflammatory actions including inhibitory effects on stellate cell 

activation neutrophil adhesion and platelet aggregation The other 

vasoactive substances which modulate blood flow in the HM are endothelins (ET). ET 

evokes sinusoidal constriction by contraction of Ito cells NO produces relaxation of
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hepatic stellate cells and opposes the vasoconstrictive effects of stellate cell activation 

and as a result may limit microcirculatory disturbances. Blocking ET receptors or 

providing a NO donor, protected HM and reduced hepatic IRI in an experimental 

model'^^^^l These data suggest that NO may influence liver injury either directly or 

through effects on blood flow. Furthermore, NO is a scavenger of superoxide. The early 

reperfusion injury is characterized by a profound increase in production of superoxide 

and a decrease in endogenous NO Current data suggests that IRI induces an acute

inflammatory response and microvascular dysfunction by altering the balance between 

superoxide and NO in endothelial cells Furthermore, the decreased availability of 

NO following IRI may contribute to the pathogenesis of SIRS by facilitating neutrophil 

endothelial cell interactions and inducing an oxidative stress in remote organs 

Augmentation of NO synthesis with NO donors has been shown to attenuate IRI and 

improve post transplant survival From the above observations it may seem likely

therefore, that the adaptational phenomenon of preconditioning following transient 

ischaemia may exert its protective effect through local production of NO

129)

It has been proposed that NO plays a key role in both initiating and mediating ischaemic 

preconditioning. While functional evidence in the heart indicates that NO modulates 

both acute (< 24 hrs) and delayed (> 24 hrs) preconditioning, downstream of this point 

in the biochemical pathway hypotheses are less well established A recent study

by Lochner et al has proposed that NO through generation of cGMP acts as a trigger of
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acute preconditioning in rat hearts Parratt has suggested that endocardial 

endothelium derived NO may mediate stimulate cGMP resulting in the induction of the 

cGMP-sensitive cAMP phosphodiesterase enzyme. The resulting increase in cAMP may 

mediate IPC. It appears that whereas the acute phase of preconditioning is protein 

synthesis independent, the late phase requires new protein synthesis. It has been 

proposed that eNOS derived NO leads to activation of PKC and other kinases which in 

turn through nuclear factor-KB (NF-kB) and other transcription factors leads to increase 

in transcription of iNOS The end effector of IPC in the supposed NO pathway is

speculative and cGMP dependent mechanisms and ATP sensitive potassium channel 

have been proposed

Interaction of NO with other mediators of IPC

In the liver it has been suggested that depending on the rate of its production, NO may 

also play a mediating role in preconditioning NO has been implicated in IPC 

associated decreased tissue damage in both warm ischaemia and cold ischaemic 

storage of the rat liver. However the link between protective effects of IPC and NO 

is speculative. Peralta et al suggested that liver IPC in rats is mediated by the inhibitory 

action of NO on endothelin In other studies in rats, the same authors have

demonstrated that inhibition of adenosine and simultaneous administration of NO donor 

offered similar results to ischaemic preconditioning and have proposed that 

activation of adenosine A2 receptors with subsequent NO formation mediates IPC in the
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rat liver Yin et al have postulated that IPC increased resistance to cold ischaemic 

liver injury in rats through stimulation of endogenous NO In this study 

pharmacological NO stimulation mimicked and NO inhibition antagonized IPC 

associated protection of liver grafts from preservation reperfusion injury in a rat liver 

transplantation model but the mechanism has not been explained. A recent report by 

Serafin et al has implicated NO in the preconditioning response for ischaemia 

reperfusion injury in fatty livers. In this thesis the relationship of hepatic oxygenation 

and hepatic microcirculation with NO metabolism in IPC of the liver have been 

evaluated.

NO and apoptosis

NO suppresses apoptosis in endothelial cells. In recent years it has been suggested that 

apoptosis is the dominant mechanism for cell turnover in the human liver. Apoptosis is 

a rapid process terminating in nuclear pyknosis and cell death. Apoptosis of sinusoidal 

endothelial cells (SEC) and hepatocytes are a feature of ischaemia reperfusion injury in 

warm and cold ischaemia of the liver. The signalling pathways leading to 

nuclear apoptosis in response to extracellular stimuli, involve activation of cysteine 

proteases known as caspases and release of cytochrome c from the mitichondria 

Subsequent activation of downstream caspases such as caspase 3 ultimately executes 

nuclear apoptosis Antiapoptotic molecules such as Bcl-2 and caspase inhibitors 

have been shown to prevent release of mitochondrial cytochrome c In an

48



experimental model of partial hepatic ischaemia, IPC inhibited apoptosis of SEC and 

hepatocytes and was associated with inhibition of caspase 3 activity In the study 

IPC was not associated with higher Bcl-2 or Bcl-xl expression. The link between IPC 

and inhibition of caspase activity is speculative. NO has been shown to inhibit caspase 

activity in vitro Apoptosis in hepatocytes exposed to TNF-a and actinomycin-D 

was prevented by NO. In this study NO produced by an NO donor or through iNOS 

gene expression, inhibited caspase family proteases by S-nitrosylation and prevented 

cytochrome c release Other mechanisms for antiapoptotic effect of NO are increase 

in cGMP and upregulation of Bcl-2 and HSP’s Thus, potentially liver IPC 

may be mediated through NO modulation of the apoptosis cascade.

2.9 Role of IPC in hepatic surgery

Ischaemia reperfusion injury is a major cause of morbidity and mortality following liver 

surgery and transplantation. Ischaemia reperfusion injury after prolonged ischaemia has 

been shown to occur in virtually all organ systems. Ischaemic (and reperfusion) injury 

to the liver occurs during liver resections performed under temporary inflow occlusion 

(Pringle manoeuvre) or inflow and outflow occlusion commonly used to reduce 

intraoperative blood loss, and during storage and implantation of livers for 

transplantation. The liver tolerates prolonged ischaemia poorly and safe ischaemic times 

particularly for the diseased liver are not known. Both warm and cold ischaemias result
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in significant liver injury and ischaemia reperfusion injury of the liver can result in 

multiple system organ failure and systemic inflammatory response syndrome.

In the setting of liver resections, the effects of intermittent inflow occlusion, continuous 

inflow occlusion and total vascular exclusion during liver resections have been studied 

in clinical trials Whereas total vascular exclusion was effective in reducing

blood loss, it led to unpredictable hemodynamic intolerance, increased morbidity and 

longer hospital stay This is not surprising since the state of total vascular exclusion 

is akin to the anhepatic phase of liver transplantation and hemodynamic consequences 

on reperfusion would be anticipated. In a prospective evaluation of intermittent inflow 

occlusion versus no inflow occlusion in patients undergoing liver resections, the former 

resulted in less blood loss and better preservation of liver function in the early 

postoperative period When intermittent versus continuous inflow occlusion were 

studied in patients undergoing liver resections the group subjected to intermittent 

inflow occlusion was associated with decreased hepatocellular injury indicated by lower 

postoperative liver enzymes and semm bilimbin levels. However the intraoperative 

blood loss during liver transection was significantly higher in this group and this is most 

likely related to bleeding from the transected surface during successive reperfusion 

episodes Thus, the increased blood loss and likely increased duration of surgery 

due to successive reperfusion episodes may outweigh the benefit of intermittent 

occlusion on parenchymal tolerance to ischaemia. Although some liver resections can 

be performed without vascular inflow occlusion, prolonged ischaemia may be
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unavoidable to achieve radical tumor resection. An ideal protective strategy for human 

liver surgery would allow a bloodless parenchymal transection and an increased 

parencymal tolerance to ischaemia. In theory, ischaemic preconditioning may obviate 

the need for intermittent releases of hepatic vascular occlusions and extend safe periods 

of ischaemia by increasing hepatic tolerance to ischaemia during hepatic surgery. The 

potential for clinical application of ischaemic preconditioning for hemihepatectomies 

under inflow occlusion has been demonstrated by Clavien et al In this study 

ischaemic preconditioning protected against 30 minutes of continuous inflow occlusion 

with patients showing a twofold decrease in serum transaminases compared to patients 

subjected to continuous ischaemia only, but no significant differences in duration of 

surgery, need for intensive care or mortality. This study provides evidence that 

ischaemic preconditioning occurs in the human liver.

In the setting of liver transplantation, ischaemia time of the donor liver is a major 

determinant of graft outcome and patient survival after liver transplantation(19). Liver 

transplantation requires mandatory organ ischaemia. Warm ischaemia to the graft may 

occur at organ harvest in an unstable donor and cold ischaemia occurs during 

preservation of the liver for transplantation. During implantation of the graft in the 

recipient, the liver is subjected to further warm ischaemia until the vascular 

anastomoses are completed. Finally reperfusion injury is inevitable following 

revascularization. Prolonged ischaemia results in primary non function or dysfunction 

of the transplanted liver graft and is associated with biliary and vascular
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complications*-^^’ often resulting in retransplantation. This adversely affects patient 

outcome and survival. Therefore ischaemic preconditioning is an attractive strategy to 

assist liver preservation and protect the liver from ischaemia reperfusion injury during 

transplantation by increasing ischaemic tissue tolerance of the liver. As yet there are no 

reported studies demonstrating clinical benefits of ischaemic preconditioning in patients 

undergoing liver transplantation. Most animal studies have shown that ischaemic 

preconditioning offers a degree of protection against cold ischaemia in experimental 

liver transplantation. This data in animal models is encouraging and clinical studies are 

required to clarify the potential application of ischaemic preconditioning in human liver 

transplantation.

2.10 Conclusions

The past decade has provided interesting new data establishing the existence of IPC in 

the liver. IPC is a powerful endogenous means to protect the liver from ischaemia. To 

date one study has demonstrated human clinical benefits of liver ischaemic 

preconditioning. Further clinical studies are required to prove unequivocally that 

ischaemic preconditioning is possible in the human liver. However the central 

mechanism of ischaemic preconditioning remains undefined. Current research has 

demonstrated that IPC is an endogenous adaptive phenomenon that can be reproduced 

easily in different models of warm and cold ischaemia, and in animals as well as 

humans. However the causal relationship between the initiating event, biochemical
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pathways and end effector molecules remains mechanistically undefined and 

controversial. As the field advances with mechanistically descriptive studies, these 

controversies in interrelationships in the preconditioning cascade are likely to be 

resolved and will hopefully lead to pharmacological strategies for protecting the liver 

from ischaemic injury.
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Chapter 3 

Methods
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In this chapter, the various investigative techniques and the experimental model used 

have been described in detail. To avoid repetition of methods description, in future 

chapters reference is made to the relevant sections in this chapter.

3.1 Assessment of hepatic tissue oxygenation by near infrared spectroscopy

3.1.1 Principle of near infrared spectroscopy

The immediate effect of ischaemia reperfusion on hepatic tissue oxygenation was 

measured using near infrared spectroscopy (NIRS). Light at visible wavelength (450- 

700 nm) is strongly attenuated in tissue and as a result can only penetrate a maximum 

distance of a few millimetres However, the absorption of light by the tissue

chromophores is significantly lower at near infrared wavelengths (700-1000 nm), 

allowing photons at this wavelength to penetrate deeply NIRS relies upon this 

relative transparency of biological tissue to light in the NIR region (700 to 1000 nm 

wavelength range) to measure tissue properties noninvasively. There are three main 

tissue chromophores in liver whose near infrared absorption characteristics vary with 

their oxygenation status, namely oxyhaemoglobin (HbOz), deoxyhaemoglobin (Hb) and 

the mitochondrial enzyme that consumes oxygen, cytochrome oxidase. NIRS directly 

measures changes in haemoglobin oxygenation and concentration (HbO] and Hb) which 

reflects extracellular tissue oxygenation NIRS also directly measures the

reduction oxidation (redox) changes of the copper centre (C ua) of cytochrome oxidase.
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The Cua dimer rapidly accepts and donates electrons, and therefore changes in the 

redox state of Cua in cytochrome oxidase in principle can reflect changes in 

intracellular oxygenation and mitochondrial function (35,40). The change in the 

concentration of these chromophores can be quantified using a modified Beer Lambert 

Law NIRS measurements of liver parenchymal oxygenation correlate with liver 

blood flow and arterial oxygenation and with hepatic vein oxygen partial pressure 

Furthermore, a significant correlation between changes in redox state of 

cytochrome oxidase measured by NIRS and tissue ATP has been demonstrated 

NIRS also measures HbT (total haemoglobin, Hb + Hb02) which reflects the blood 

volume in liver tissue. The use of NIRS to measure liver oxygenaton has been 

extensively investigated and it has recently been applied to severity grading of IRI

3.1.2 Near infrared spectrophotometer

The NIR spectrometer used in this study is the NIRO 500 (Hamamatsu Photonics K.K., 

Hamamatsu, Japan) (Figure 3.1). This spectrometer is the commercial version of an 

instrument developed by colleagues in the Department of Medical Physics and 

Bioengineering, University College London In the NIRO 500, the light source is 

monochromatic light generated from semiconductor laser diodes (LD). The light is 

produced at four wavelengths (774, 826, 849, and 906 nm). The choice of the 

wavelengths is based on 765 nm, the absorption maximum for Hb; 810 nm, the isobestic 

wavelength at which the extinction coefficients of HbO] and Hb are equal which can be
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used to calculate haemoglobin concentration independent of oxygen saturation; 845 nm, 

the absorption maximum for oxidised Cyt Ox; and 900 nm, a reference wavelength

155)

The light is produced by laser diodes and carried to the liver via a bundle of optical 

fibres in sequential pulses. The optical fibres are covered by a light proof protective 

sheath and its distal end terminated in a very small glass prism which reflects the light 

through 90° to direct it into the tissue Photons emerging from the liver are collected 

by the second bundle of optical fibres and detected by a photomultiplier tube (PMT) 

light detector The incident and transmitted light intensities are recorded and from 

these the changes in the concentration of tissue chromophores (pmole/L) are calculated 

using an algorithm incorporating the known chromophores absorption coefficients and 

an experimentally measured optical pathlength

3.1.3 Recording of hepatic tissue oxygenation in the rat

The NIRS instrument (NIRO-500, Hamamatsu Photonics K.K., Hamamatsu, Japan) 

used in this study produces near infrared light at four wavelengths which is transmitted 

in sequential pulses via a bundle of optical fibres to the liver. Photons emerging from 

the liver are collected by a second bundle of optical fibres and detected by a 

photomultiplier tube. The difference between transmitted and received light intensity at 

each wavelength was used to determine the optical density changes at each wavelength.
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Figure 3.1 Experimental operating room equipped with 1) Dual channel surface laser 

Doppler flowmeter and 2) its probes (DRT4, Moor instruments Ltd, Devon, UK);

3) Near infrared spectrometer and 4) its probes (NIRO 500, Hamamatsu Photonics, 

Hamamatsu, Japan); 5) Probes holder; 6 ) Computer; 7) Blood pressure monitor;

8 ) Pulse oximeter; 9) Infusion pump
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The optical fibre bundles (NIRO probes) (figure 3.1) were mounted inside a probe 

holder and placed on the surface of the median lobe of the liver with a 1 0  mm 

separation. A flexible probe holder (figure 3.1) was used to ensure a satisfactory contact 

with the liver surface and a fixed interprobe spacing ^^^\This probe holder ensured 

that the sites of light entry and exit are maintained at a constant and known spacing 

distance which minimises the possibility of artefact due to changes in the distance 

between the probe ends. Also, it allows a satisfactory contact between the liver surface 

and the probe ends.

The NIRO includes the facility to set the attenuation and therefore chromophore 

concentration changes to zero with the NIRO initial setting. Since all the measurements 

are changes from an arbitrary initial zero, this function is important to ensure that 

artefacts such as system drift, optode movement, and excessive light have a minimal 

effect on the data. For collection of NIRS data, a sampling time of 1 HZ was used. The 

NIRS data were continuously collected in a laptop computer connected to the NIRO. 

These data are the changes in light attenuation (optical densities: OD) at four 

wavelengths due to absorption by the tissue chromophores. A NIRS algorithm 

developed specifically to convert these data changes into concentration changes of 

hepatic HbO], Hb and redox state of Cua in cytochrome oxidase (Cyt Ox Cua redox 

state) in nmole/L was used<“’’’ '“ I  In addition the sum ofHbOz + Hb (HbT)

was computed continuously and reflects the liver blood volume To determine 

absolute changes in chromophore concentration, the optical path length in the tissue
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must be known as a function of wavelength. The differential path length factor has been 

determined specifically for the liver by measuring the absorption coefficient as a 

function of wavelength The differential path length factor of the liver is 2,7, and

this value was used to adjust the NIRS algorithm for calculating the changes in the 

chromophore concentration This was then transferred to excel® data sheets

(Microsoft Company, Seattle, USA) for analysis. The data at the relevant time points 

were collected as the mean of 1-minute data and calculated in regard to the baseline 

value at the start of the experiment. In all the experimental groups the preischaemic 

baseline was taken as a baseline against which changes were recorded.

3.2 Assessment of hepatic microcirculation by laser Doppler flowmetry

3.2.1 Principle of laser Doppler flowmetry

Laser Doppler flowmetry is an optical technique for assessing tissue microcirculation. 

Measurement is easy to perform and provides a continuous assessment of 

microcirculation without interference with tissue blood flow The theory of

operation of this technique has been described in detail in many studies

Briefly, a monochromatic laser light from a 2mV-helium neon laser operating at 632 nm 

is guided to the tissue via optical fibres. The back-scattered light from the tissue is 

transmitted through optical fibres to photodetectors. Only the photons which are
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scattered by moving red blood cells will have a Doppler frequency shift, whereas those 

from the static tissue matrix will not be Doppler shifted. Mixing of these components at 

the photodetector surface produces an electrical signal containing all of the Doppler 

frequency shift information. Further processing of the signal produces an output voltage 

that varies linearly with the product of total number of moving red blood cells in the 

measured volume of a few cubic millimetres multiplied by the mean velocity of these 

red blood cells. The numeric product is termed perfusion units or blood cell flux

Linearity of the laser Doppler flowmeter (LDF) signal from the liver with total organ 

perfusion has been demonstrated and the technique has been shown to be sensitive to 

rapid changes in organ blood flow The LDF measurements are expressed in flux

units. Due to the problems associated with variation in signal across the surface of the 

liver, it is not possible to apply a conversion factor so that the LDF signal can be 

expressed in absolute flow units

The application and reproducibility of LDF measurement for assessment of liver 

microcirculation has been validated in both experimental animals and human

liver transplantation^^^^l
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3.2.2 Laser Doppler flowmeter

The hepatic microcirculation in this study was measured using a commercially available 

dual channel surface laser Doppler flowmeter (DRT4, Moor Instruments Ltd., Devon, 

UK) (Figure 3.1). The LDF was calibrated before each study against a standard 

reference (Brownian motion of polystyrene microspheres in water) provided by the 

manufacturer.

3.2.3 Recording of the hepatic microcirculation in the rat

To minimise any disturbance to blood flow by the LDF probe pressure on the tissue, the 

probe was mounted on a probe holder so that the actual probe was just in contact with 

the surface of the left lateral lobe of the liver without any pressure by the probe weight. 

LDF data were collected continuously at sampling rate of 1 Hz. LDF measurements at 

the relevant time points were collected as a mean of one-minute data. Data from the 

continuous measurement by LDF was collected via the NIRS program that can accept 

the input of 4 different clinical monitors. After conversion of the NIRS data to excel 

sheets, the LDF data at the relevant points in each experiment was calculated as a mean 

of 1 -minute data.
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3.3 Assessment of hepatocellular injury (liver transaminases)

Liver transaminases alanine aminotransferase (ALT) aspartate transferase (AST) was 

measured in plasma. The blood samples were heparinised and then centrifuged at 2,000 

g for 10 minutes at room temperature to sediment the erythrocytes. The plasma 

supernatant was removed and analysed on a Hitachi 747 auto-analyzer using 

commercially available enzymatic kit tests. The tests were determined using reagents 

supplied by Boehringer Mannheim Ltd UK.

3.4 Assessment of nitric oxide production

The transient and volatile nature of nitric oxide (NO) makes it unsuitable for most 

convenient detection methods. However, since most of the NO is oxidized to nitrite 

(NO2 ) and nitrate (NO3"), the concentrations of these anions have been used as a 

quantitative measure of NO production.

Plasma nitrite + nitrate (NOx) was measured using a 280 Nitric Oxide Analyser (Sievers 

Instruments) by chemiluminescence method

NO was determined as its decay products, nitrite (NO2 ) and nitrate (NO3 ):

3 NO + 2 O2 -> NO3 + 2 NO2

The method is based on the gas phase chemiluminescence reaction between NO and 

ozone (O 3), viz:

NO + 0 3 ^  NO2* + O2 and NO2* NO2 + hv
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Briefly, the plasma sample (0.5 ml) was diluted one in ten and centrifuged at 1,000 g for 

60 minutes at room temperature to remove protein. NO3 was then reduced by nitrate 

reductase prior to chemiluminescence which involved incubating the sample with 40 

pM NADPH, 1 pM FAD and 10 mU nitrate reductase in 20 mM Tris buffer pH 7.4 at 

37 °C for 60 minutes. Standard solutions of NO2’ or NO3 reduced sample were then 

added to the purging (reaction) vessel which contained a reducing solution of 1.5 ml KI 

(50 mg/ml) and 2 0 0  pi anti-foaming agent in 6  ml concentrated acetic acid to generate 

NO. NO then reacted with O3 produced from O2. The Nitric Oxide Analyser was 

attached to a PC computer and with a NOA-Excel linked program, which allowed real 

time NO2’ and NO3 measurements to be recorded. Results were compared with a 

standard NO2 calibration graph.

3.5 Assessment of hepatic bioenergetics (adenosine triphosphate)

At termination, samples of ischaemic and non-ischaemic lobes of liver were freeze 

clamped in liquid nitrogen for adenosine triphosphate (ATP) determination. ATP levels 

in ischaemic and non-ischaemic liver tissue were assayed spectrophotometrically.

ATP levels in ischaemic or non-ischaemic liver tissue were assayed from liver extract 

using a Unicam UVl spectrophotometer. Liver extract was prepared as follows: 

approximately 1 g frozen liver was ground up in liquid N2 with a mortar and pestle and 

then added to 5 ml perchloric acid. This homogenate was spun at 3667 r.p.m. for 20
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minutes at 4°C and the supematent neutralized with KOH. The supematent was 

centrifuged again at 3667 r.p.m. for 20 minutes at 4°C to remove a KCIO4 precipitate.

ATP levels were measured as a reduction of NAD^ to NADH followed 

spectrophotometrically at 340 nm. The reaction mechanism was as follows:

ATP + glucose —>ADP + glucose-6-phosphate NADH + 6-phosphoglucolactose. In 

brief, 150 pi liver extract was added to 1 ml of assay solution (containing 0.4 mM 

glucose; 5 mM MgS0 4 ; 0.2 mM NAD" ;̂ 50 mM Tris, pH 8.0) and 0.2 U hexokinase 

(Sigma H5500) at 4°C. The absorbance was read at 340 nm and this provided blank 

readings. 0.2 U glucose-6 -phosphate dehydrogenase (Sigma G5760) was then added 

and the sample left in the dark for 60 minutes before the absorbance was again read at 

340 nm.

3.6 Guanosine 3’,5’-cyclic monophosphate (cyclic GMP, cGMP)

cGMP has been shown to be present in most tissues and is formed by the action of the 

enzyme guanylate cyclase on GTP. It is involved in a number of important biological 

reactions. Nitric oxide (NO), a stimulator of guanylate cyclase, also stimulates cGMP 

levels. The interaction of NO with guanylate cyclase allows cGMP to act as a third 

messenger in some cells.

cGMP accumulation in liver tissue was determined by using a commercial ELISA kit
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(Cayman chemical, USA) Briefly, immediately at termination of experiment liver 

tissue was frozen in buffer, homogenised, centrifuged and supernatant collected for 

assay. Each sample supernatant was then individually acetylated by addition of 100 pL 

of 4 M KOH and 25 pL Acetic Anhydride, vortex for 15 seconds, and finally 25 pL of 4 

M KOH and vortex. Samples (50 pL) or standard solutions of cGMP (3 pmol/ 50 pL to 

0.0234 pmol/ 50 pL), were incubated together with rabbit anti- cGMP (50 pL), and 

cGMP linked to acetylcholinesterase (50 pL), in pre-coated plates at room temperature 

for 18 hr s. After plates were washed, colour development was initiated by the addition 

of Ellman’s Reagent (200 pL) for 60 mins. Absorbance was measured at 412 nm on a 

plate reader.

3.7 NADPH Diaphorase histochemical stain

Nitric oxide (NO) is synthesised from L-arginine by the enzyme NO synthase (NOS). 3 

isoforms of this enzyme has been identified: neuronal NOS (nNOS/ NOS 1), inducible 

NOS (iNOS/ NOS 2) and endothelial NOS (eNOS/ NOS 3) NO is extremely labile 

with a short half-life of less than 10 seconds and it is not possible to identify NO on 

tissue sections. However, NOS distribution can be studied using histochemical 

techniques and in vitro autoradiography. These techniques provide important in situ 

evidence to supplement biochemical data. NOS expression can be studied using 

Northern blotting and Western blotting on tissue homogenates allowing quantitative 

analyses.
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NADPH Diaphorase histochemical stain is a rapid technique that localizes NOS on 

tissue sections. Diaphorases are a group of redox enzymes, which are able to reduce 

various chromagen in the presence of a reduced co-factor. A diaphorase with absolute 

dependence on NADPH previously used to stain neurons in the brain was found to be 

related to NOS All isoforms of NOS have since been found to have NADPH 

diaphorase activity and no other enzyme unrelated to NOS have shown the same 

activity. NADPH diaphorase is therefore recognised as a simple, convenient and reliable 

marker for detecting NOS.

Fresh tissue was frozen and stored at -70 C. Five pm transverse sections were cut with a 

cryostat at approximately -25°C and thaw-mounted onto polylysine-coated microscope 

slides.For staining, sections were allowed to equilibrate at room temperature (approx 

22°C) for 30 min and post-fixed for 30 min in 3% paraformaldehyde in O.OIM PBS 

buffer at 4°C. After rinsing in PBS and drying in cold air, sections were incubated for 1 

hour at 37°C with 1 mg/ml B-NADPH (cofactor) and 0.2 mg/ml nitroblue tétrazolium 

(chromagen) dissolved in PBS buffer (pH 7.6), containing 0.2% Triton X-100. The 

reaction was stopped by removing the incubation solution, blotting the sections and 

rinsing for 5 min in running tap water. Sections were then stained for 3 min with 1% 

eosin, and prepared for microscopic examination. Controls were incubated with 

nitroblue tétrazolium and no NADPH. NADPH diaphorase-positive staining gives blue 

stain.
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3.8 Immunohistochemistry

NADPH diaphorase staining does not differentiate between the 3 isoforms of NOS. 

Polyclonal antibodies against the specific NOS isoforms are commercially available 

(Santa Cruz Biotechnology, Santa Cruz, CA, USA) and can identify the isoforms on 

tissues sections.

Cryostat-cut sections thaw-mounted onto polylysine-coated slides were used. Sections 

were allowed to equilibrate at room temperature for 30 min and fixed in acetone for 2 0  

min at -20°C and rinsed in O.OIM PBS. Endogenous enzyme activity was inhibited by 

pre-incubating sections in 0.5% hydrogen peroxide in methanol for 10 minutes. Sections 

were incubated in 5% normal goat serum in PBS at room temperature for 20 min to 

block background staining. Tissue was then incubated in the appropriate primary 

antibody (rabbit anti-e NOS or anti-I NOS, Santa Cruz Biotechnology, Santa Cruz, CA, 

USA) for 60 min at room temperature. After incubation sections were rinsed with PBS 

and incubated with biotinylated secondary goat antibody for 30 minutes. Following 

further rinses, sections were incubated with streptavin/biotinylated horseradish 

peroxidase solution for 30 min (StreptABC Complex/HRP duet, Mouse/Rabbit kit, 

DAKO). DAB was used as the chromogenic substrate solution and sections were 

counterstained with Mayer’s haematoxylin and prepared for microscopic examination. 

For negative controls, sections were processed without primary antibody.
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3.9 Western blot analysis

eNOS and iNOS proteins were identified using Western blotting.

3.9.1 Preparation of protein extracts

Samples of liver tisssue (100- 200 mg) were homogenised in ice-cold lysis buffer (20 

mM HEPES [pH 7.2], 1 mM EDTA, 0.2 M Sucrose, 20 pg/ml Soybean trypsin 

inhibitor, 20 pg/ml leupeptin, 5 pg/ml peptastin, 5 mg/ml DTT, 5 pg/ml E-64, 5 pg/ml 

bestatin, 5 pg/ml aprotinin, 5 pg/ml antipain, 0.1 mM PMSF). After centrifugation at 

10,000g at 4°C for 30 min, the supernatants were stored at -80°C. Protein determination 

of samples was performed using the Bicinchoninic acid protein assay (Pearce).

3.9.2 SDS gel electrophoresis and Western blotting

Solubilized proteins were subjected to Nu-polyacrylamide gel electrophoresis 

(NuPAGE) system (Invitrogen life technologies Ltd, Paisley, UK) on precast NuPAGE 

4- 12% gradient gels using NuPAGE MOPS running buffer and electrophoretically 

transferred onto nitrocellulose membranes using NuPAGE western blot buffer. After 

blotting the membranes the transfer of proteins was checked using Ponceau S stain. The 

membranes were then blocked using PBS containing 0.5% bovine serum albumin, 1% 

polyvinylpyrrolidone 10, 1% polyethylene glycol, 0.2% Tween 20 and 10 mM NaF.
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Next, the membranes were incubated with appropriate primary antibody (polyclonal 

rabbit anti e-NOS, anti i-NOS, 1:200 dilution, Santa Cruz Biotechnology, Santa Cruz, 

CA, USA) overnight at 4°C. Next the membranes were washed for 3 x 5 min and 1x15 

min with PBS Tween 0.05%. After this the membranes were incubated for 1 hr at room 

temperature with anti rabbit IgG horseradish peroxidase secondary antibody (1:200 

dilution). Next the washing steps were repeated. To detect any proteins, which have 

bound the antibody, the membranes were incubated with West Dura reagents (Perbio, 

Cheshire, UK) for 5 min according to manufacturers instructions. After this the 

membrane was exposed to a digital camera as part of an electronic imaging system to 

visualise the proteins bound to the antibody.

3.10 Histology

Liver biopsies were taken from the ischaemic lobes at the end of the experiment in the 

fatty liver model. The tissue sections were fixed in neutral buffered formalin (10%), 

embedded in paraffin and were stained with haematoxylin and eosin (H&E). Sections 

were examined under light microscope to determine the presence and extent of 

inflammation and necrosis. For fatty livers the grade of steatosis was analysed in a 

semi-quantitative manner: mild (<30%), moderate (30- 60%), and severe (>60%) using 

a clinically applied grading system
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3.11 Animal preparation and surgical procedure

The study was conducted under a project license granted by the home office in 

accordance with the Animals (Scientific Procedures) Act 1986. Male Sprague- Dawley 

rats, each weighing 250- 300g were used for the experiments. All animals were kept in 

temperature controlled environment with 1 2  hours light- dark cycle and allowed tap 

water and standard rat chow pellets ad libitum. Animal research protocols were 

approved by the hospital ethics committee

Animals were anaesthetised using Urethane 1 mg/kg body weight intraperitoneally and 

prepared for aseptic surgery. Animals were allowed to breathe spontaneously via 

concentric mask connected to an oxygen regulator during the procedure. The animal’s 

body temperature was maintained at 37-39 oC using a heating pad (Harvard apparatus 

Ltd., Kent, UK) and monitored with rectal temperature probe. The arterial oxygen 

saturation and heart rate were continuously monitored with pulse oximeter (Ohmeda 

Biox 3740 pulse oximeter, Ohmeda Louisville Co., USA). Polyethylene catheters (PE­

SO, 0.38-mm inner diameter, Portex, Kent, UK) were inserted into the right femoral 

artery and connected to a pressure transducer for monitoring of mean arterial blood 

pressure (MABP), and in the right femoral vein for administering normal saline (1 

ml/lOOg body weight/hr) to compensate for intraoperative blood loss.

Laparotomy was carried out through a midline incision. The ligamentous attachments
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from the liver to the diaphragm were severed and the liver was exposed. Ischaemia of 

the median and left lateral lobes of the liver was produced by clamping the 

corresponding vascular pedicle containing the portal vein and hepatic artery branches 

using an atraumatic micro vascular clamp. The other hepatic lobes were not handled 

during the procedure. This method produces ischaemia to the left and median lobes of 

the liver (about 70% of the liver) while leaving the blood supply to the right and caudate 

lobes uninterrupted At the end of the ischaemia period the vascular clamp was 

removed and reperfusion was allowed. Hepatic tissue oxygenation and hepatic 

microcirculation were measured on the liver surface, in separate but identical 

experiments, to avoid interference with each other. Hepatic tissue oxygenation was 

continuously measured via optodes placed on the surface of the median and left lateral 

lobes during ischaemia and reperfusion periods. Hepatic microcirculation was 

continuously measured via a probe placed on a fixed site on the left lobe of the liver and 

held in place by a retort holder during ischaemia and reperfusion period. The animal’s 

abdomen was covered with a plastic wrap to prevent fluid evaporation. At the end of the 

experiment the animals were killed by exsanguination.

3.12 Experimental protocols

The rats were randomly allocated to one of 5 study groups.

Group 1. Control (sham) group (n=6 ): The liver was exposed for 3 hours. There was no 

liver ischaemia.
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Group 2. Ischaemia-reperfusion (IR) (n=6 ): Ischaemia was induced in the median and 

left lateral hepatic lobes for 45 minutes, followed by a 2 hour period of 

reperfusion.

Group 3. Ischaemic preconditioning (IPC) + IR (n=6 ): The median and left lateral lobes 

were preconditioned with 5 minutes ischaemia followed by 10 minutes of 

reperfusion. This was followed by IR (group 2 procedure).

Group 4. L-arginine + IR (n=6 ): Animals were treated with L-arginine (100 mg/kg body 

weight, intravenously) 10 minutes prior to IR.

Group 5. L-NAME + IPC + IR: Animals were treated with Nco-Nitro-L-arginine methyl 

ester (L-NAME) (30 mg/kg body weight, intravenously) 10 minutes prior to 

group 3 procedure.

3.13 Blood collection

Blood samples were collected in separate but identical experiments so as not to interfere 

with systemic hemodynamic stability, NIRS and LDF measurements. Samples (1 ml 

each) for plasma ALT, AST and NOx measurements were collected from the inferior 

vena cava at baseline and subsequently at the end of, 5 min ischaemia, 10 min 

reperfusion (preconditioning protocol), 45 min ischaemia and 2 hrs reperfusion.

Samples were heparinised and centrifuged at 2,000 g for 10 minutes at room 

temperature to sediment the erythrocytes. The plasma supematent was removed and 

stored at -20 °C until required for assay.
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3.14 Tissue preparation

At termination of reperfusion phase, sections of ischaemic and non-ischaemic lobes of 

liver were (1) freeze clamped in liquid nitrogen for adenosine phosphate determination 

and (2) collected on dry ice and immediately stored at -80 C for immunohistochemistry, 

cGMP determination and western blotting.

3.15 Data collection and statistical analysis

Data from the NIRS, LDF and the pulse oximeter (Sa02, heart rate, mean arterial blood 

pressure) were collected continuously on a laptop computer. A NIRS algorithm 

specifically developed for liver NIRS was used. The data were calculated as one- 

minute averages at baseline, at the end of 45 mins of ischaemia and at the end of 30, 180 

mins of reperfusion. The values are expressed as mean ± SD of 6  animals in each group. 

One way analysis of variance (ANOVA) and Bonferroni adjustment for multiple 

comparisons were used unless otherwise stated where unpaired Student’s t test was used 

for statistical analysis between groups. P<0.05 was considered statistically significant. 

The relationships between hepatic oxygenation changes, transaminases, ATP and NOx, 

and between hepatic microcirculation changes, transaminases, ATP and NOx were 

tested using Spearmans correlation coefficient.
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Chapter 4

The relationship of hepatic tissue oxygenation with nitric oxide 

metabolism in ischaemic preconditioning of the liver
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4.1 Introduction

In this chapter the effects of EPC and NO stimulation and inhibition on hepatic tissue 

perfusion and oxygenation have been studied. The major determinants of ischaemia- 

reperfusion induced injury of the liver are capillary perfusion failure and impairment of 

tissue oxygenation after reperfusion Hepatic tissue oxygenation correlates with

microcirculatory impairment and liver dysfunction and is an indicator of the severity of 

ischaemia reperfusion injury (IRI) Hepatic tissue oxygenation has also been 

correlated with early graft function and survival in liver transplantation in experimental 

animals and humans Studying the changes in liver oxygenation following IPC 

may provide insight into the mechanism by which IPC modulates liver IRI.

The use of near infrared spectroscopy (NIRS) to measure liver oxygenation has been 

described in section 3.1. It has recently been applied to severity grading of IRI In 

the present study, plasma alanine aminotransferase was used as an indicator of 

hepatocellular injury and plasma nitrite + nitrate (NOx) an indicator of NO production.

4.2 Material and Methods

The methods used have been described in details in chapter 3 and only a brief 

description is given below.
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4.2.1 Animal preparation, surgical procedure and experimental protocols

Briefly, the animals were anaesthetised and laparotomy was carried out through a 

midline incision as described in section 3.11. The ligamentous attachments from the 

liver to the diaphragm were severed and the liver was exposed. Ischaemia of the median 

and left lateral lobes of the liver was produced by clamping the corresponding vascular 

pedicle containing the portal vein and hepatic artery branches using an atraumatic 

micro vascular clamp. The other hepatic lobes were not handled during the procedure. At 

the end of the ischaemia period the vascular clamp was removed and reperfusion was 

allowed. Hepatic tissue oxygenation was continuously measured via optodes placed on 

the surface of the median and left lateral lobes during ischaemia and reperfusion periods 

as described in section 3.1. The experimental protocols were as described in section 

3.12, and the study groups of 6  animals each were 1) Sham, 2) ischaemia reperfusion 

(IR), 3) Ischaemic preconditioning (IPC) + IR, 4) L-arginine + IR and, 5) L-NAME + 

IPC + IR). At the end of the experiment the animals were killed by exsanguination.

4.2.2 Measurements of hepatocellular injury and nitric oxide production

Blood samples were collected in separate but identical experiments so as not to interfere 

with systemic hemodynamic stability and NIRS measurements. Samples (1 ml each) for 

measurements of liver specific enzyme alanine aminotransferase (ALT) in plasma and 

plasma nitrite + nitrate (NOx) were collected from the inferior vena cava at baseline and 

subsequently at the end of, 5 min ischaemia, 10 min reperfusion (preconditioning
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protocol), 45 min ischaemia and 2 hrs reperfusion. ALT was a marker for hepatocellular 

injury and was measured in plasma (see section 3.3). NOx was a marker for NO 

production and was measured using a 280 Nitric oxide analyser by chemiluminescence 

method (See section 3.4).

4.2.3 Data collection and statistical analysis

As described in section 3.15, the data were collected continuously on a laptop computer 

and a NIRS algorithm specifically developed for liver NIRS (149) was used. One way 

analysis of variance (ANOVA) and Bonferroni adjustment for multiple comparisons 

were used unless otherwise stated where unpaired Student’s t test was used for 

statistical analysis between groups. The relationship of hepatic oxygenation with plasma 

ALT and NOx was tested using Spearmans correlation coefficient.

4.3 Results

In all animals in the experimental groups the heart rate and arterial oxygen saturation 

did not change significantly relative to baseline or between the groups, throughout the 

experiment (p>0.05). In the L-arginine treated group, a transient fall in blood pressure 

was observed immediately after L-arginine administration, but this was statistically not 

significant. In the other groups blood pressure did not change significantly throughout 

the experiment.
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4.3.1 Hepatic tissue oxygenation

Figure 4,1 shows the pattern of changes in tissue oxygenation with lobar ischaemia and 

reperfusion.

Tissue oxygenation did not alter significantly during the course of the experiment in the 

sham laparotomy group (non- ischaemic control group)

In IR group (group 2), with ischaemia there was a significant decrease in Hb02 and Cyt 

Ox Cua redox state and an increase in Hb. These parameters did not change 

significantly until the end of ischaemia (Fig.4.1 and Table 4.1). On reperfusion, there 

was a significant further increase from ischaemic levels in Hb and further decline in Cyt 

Ox Cua redox state (Fig.4.1 and Table 4.2). Hb02 levels rose on reperfusion but were 

not significantly higher than ischaemic levels (Fig.4.1 and Table 4.2).

Following IPC (group 3), Hb02 and Hb levels during ischaemia were not significantly 

different from IR group (Fig.4.1 and Table 4.1). Preconditioning was associated with an 

increased Cyt Ox Cua redox state during 45 minutes of ischaemia in comparison to the 

IR group with levels similar to those of controls (Fig.4.1 and Table 4.1). On reperfusion 

there was significant rise in Cyt Ox Cua redox state which persisted throughout the 

reperfusion period (Fig.4.1 and Table 4.2). The levels of Hb02 increased on reperfusion 

in the IPC group but this was statistically not significant when compared with IR alone 

group at the end of 2 hrs of reperfusion (Fig.4.1 and Table 4.2). The levels of Hb on
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reperfusion showed an increase from ischaemic levels which was not significantly 

different from IR alone group (Fig.4.1 and Table 4.2). There was a significant increase 

in HbT on reperfusion indicating an increased liver blood volume. There were 

significant differences in Cyt Ox Cua redox state at the end of 2 hrs of reperfusion 

between this group and other groups (p<0 .0 0 0 1 ).

In L- arginine treated group (group 4), the pattern of changes in Hb02, Hb and Cyt Ox 

Cua redox state during ischaemia and reperfusion were similar to those observed in IR 

group (Fig.4.1). The differences in tissue oxygenation between theses two groups during 

ischaemic and reperfusion periods were not significant (Tables 4.1, 4.2).

In the L- NAME + IPC group (group 5), the changes in Hb02, Hb and Cyt Ox Cua 

redox state during ischaemia were not significantly different from IR group (Fig.4.1 and 

Table 4.1). On reperfusion, however, levels of Hb increased and Cyt Ox Cua redox state 

further declined from ischaemic levels and both changes were significant when 

compared with IR group at the end of 2 hrs of reperfusion (Fig.4.1 and Table 4.2). The 

levels of Hb02 on reperfusion were not significantly different from IR group (Fig.4.1 

and Table 4.2). There were significant differences in Hb and Cyt Ox Cua redox state at 

the end of 2  hrs of reperfusion between this group and other groups (p<0 .0 0 0 1 ).
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Figure. 4.1 Hepatic tissue oxygenation during 45 min o f ischaemia and 2 hrs of 

reperfusion, measured by NIRS. Values are mean ± SD of 6 animals in each group. 

11= 5 mins ischaemia, R l=  10 mins reperfusion. Keys: H b02: Oxyhaemoglobin, 

Hb: Deoxyhaemoglobin, HbT: Total haemoglobin (H b02 + Hb),;Cyt Ox CuA: 

Cytochrome oxidase CuA redox changes , NS: not significant
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Table 4.1. Changes in hepatic tissue oxygenation (pmole/L) vs. baseline at end of 45 min of warm ischaemia (pre-reperfusion). 

Values are mean ± SD of 6  animals in each group.

Group 1 

(Sham)

Group 2  

(IR)

Group 3 

(IPC)

Group 4

(L-arginine ± IR)

Group 5

(L-NAME + IPC + IR)

HbOz -4.0 ±2.1 -163.9 ± 16.8* -158.4+10.8'^® -176.2 + 58.2"® -198.2 + 19.0"®

Hb 8 . 6  ±2.3 34.3 ±2.5* 68.4 + 4.1''® 42.9 + 7.0"® 33.7 ±9.7"®

HbT 4.6 ±3.8 -129.6 ±21.2* -90.0 ±28.2** -133.2 ± 82.4"® -154.5 ±45.3**

CytOx Cua 1.3 ±0.1 -12.4 ±5.8* 1 .2 + 0 .6 ** -8.7+ 0.5"® -15.3 ±7.4"®

*p<0.01 vs. Group 1; **p<0.05 vs. Group 2; ^^Not significant (p>0.05 vs. group 2) using unpaired t test.

Keys: HbO:: Oxyhaemoglobin, Hb: Deoxyhaemoglobin, HbT: Total haemoglobin, Cyt Ox Cua: Cytochrome oxidase Cua

redox state.
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Table 4.2. Hepatic tissue oxygenation in pmole/L at end of two hours of reperfusion. Values are mean ± SD of 6  animals in 

each group.

Group 1 

(Sham)

Group 2 

(IR)

Group 3 

(IPC + IR)

Group 4

(L-arginine + IR)

Group 5

(L-NAME + IPC+ IR)

HbOz -2 .1  ± 1.1 -136.8 ±27.3* -87.1 ±25 .1“ -120.2 ±53.9“ -152.6 ±44.6^^

Hb 8 . 6  ±3.3 167.8 ±69.3* 202.2 ± 79.5“ 186.9 ±103.1“ 253.9 ± 132.7**

HbT 6.5 ± 5.0 31.0 ± 26 .7“ 115.1 ±64.4** 66.7 ± 22.9'^® 101.3±31.1**

CytOx Cua 1 .0  ± 0 . 2 -14.5 ±9.9* 9.9 ±7.6** -13.8 ± 7.7“ -23.4 ±2.8**

*p<0.01 vs. Group 1; **p<0.05 vs. Group 2 ; ^^Not significant (p>0.05 vs. group 2) using unpaired t test.

Keys: HbOz: Oxyhaemoglobin, Hb: Deoxyhaemoglobin, HbT: Total haemoglobin, Cyt Ox Cua: Cytochrome oxidase Cua 

redox state.

83



4.3.2 Hepatocellular injury

IR (group 2) resulted in a significant increase in Plasma ALT measured at the end of 

both the ischaemic and reperfusion phases. Both IPC and L-arginine treatment reduced 

ALT levels measured at the end of reperfusion phase. ALT levels were not significantly 

different at the end of preconditioning period. The addition of L-NAME to IPC (group 

5) significantly increased ALT levels (Fig.4.2).

4.3.3 Nitric oxide activity

IR (group 2) resulted in significant reduction in NOx measured at the end of ischaemic 

and reperfusion phases. Both IPC and L-arginine treatment increased NOx. The levels 

of NOx were significantly increased at the end of preconditioning period. In the L- 

NAME + IPC group (group 5) NOx levels were significantly reduced. (Fig.4.2)

4.3.4 Correlation of hepatic tissue oxygenation with plasma ALT and NOx

Changes in plasma ALT correlated significantly with changes in Hb02, Hb and Cyt Ox 

Cua redox changes. Changes in NOx also correlated significantly with changes in 

Hb02, and Cyt Ox Cua redox changes, however no significant correlation was found 

with Hb. (Table 4.3)
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Table 4.3. Correlation between Hepatic tissue oxygenation (x) and, ALT and NOx (y)

Regression analysis Spearman’s Correlation 

coefficient

P value

HbO] vs. ALT y = -34.47x + 677.33 r = 0 .8 p< 0 . 0 0 1

Hb vs. ALT y = 25.85x -575.84 r = 0.9 p< 0 . 0 1

CytOx Cua vs. ALT y = -186.17x + 227.14 r = 0.9 p< 0 . 0 0 1

HbO] vs. NOx y = 0.56x + 95.42 r = 0.9 p< 0 . 0 0 1

Hb vs. NOx y = -0.34x + 106.8 r = 0.4 p> 0.05

CytOx Cua vs. NOx y = 3.11x + 71.5 r = 0.9 p< 0 . 0 0 1

Keys: HbO]: Oxyhaemoglobin, Hb: Deoxyhaemoglobin, Cyt Ox Cua: Cytochrome oxidase Cua redox state.
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4.4 Discussion

This study has investigated the association between tissue oxygenation and NO 

metabolism with IPC of the liver. A rat model of partial hepatic ischaemia with 

temporary interruption of blood flow to the left lateral and median lobes while 

maintaining normal blood flow to the right and caudate lobes was employed. This 

maintains splanchnic blood flow and, prevents the systemic hemodynamic instability 

associated with mesenteric congestion and portal bacteraemia from total inflow 

occlusion Rats with total hepatic warm ischaemia develop splanchnic congestion 

and produce TNFa which may contribute to ischaemia reperfusion injury. Total 

inflow occlusion in humans leads to increase in mean arterial pressure and systemic 

vascular resistance and decrease of the cardiac index, which may affect hepatic blood 

flow and hepatic energy metabolism In this study, the systemic hemodynamic 

parameters did not change significantly during the experiments avoiding an additional 

factor which could produce liver injury. Hemodynamic compensation due to splanchnic 

vasoconstriction was also excluded, as there was no hypovolemia during the 

experiments.

The model of 45 minutes partial hepatic ischaemia with 2 hours reperfusion was reliable 

and simple with no procedure related mortality. 45 minutes of partial hepatic ischaemia 

is nonlethal but induces substantial liver injury as indicated by the liver enzyme rises in 

the present study and found by others Experimental data suggest that IR induced
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liver injury occurs in a biphasic manner; an early phase of injury that develops over the 

course of first 2 hrs of reperfusion and, a later progressive phase that develops at 6  to 24 

hrs after reperfusion and, liver injury in the early phase modulates the development of 

the later phase In this study, therefore a period of 2 hrs of reperfusion following 

ischaemia was chosen to assess changes in the early phase of reperfusion injury. 

Preconditioning times of 5 minutes ischaemia with 10 minutes reperfusion have been 

shown to protect against liver injury in various experimental models of liver IRI 

including the present^^^ l̂ The protective role of endogenous NO in liver IRI is supported 

indirectly by studies demonstrating exacerbation of liver injury associated with failure 

of microcirculation in rats treated with nonselective NOS inhibitors In this

study, L-arginine or L-NAME was administered prior to IR to produce the effect of NO 

stimulation or inhibition.

IRI resulted in substantial liver injury as assessed by elevation in plasma ALT. Cellular 

enzymes are released into the circulation following rupture of plasma membrane due to 

cell injury and, the plasma enzyme levels correlate with the degree of cell injury 

IPC and NO stimulation with L-arginine reduced the IR induced liver injury, as both 

were associated with reduced ALT levels. In contrast, NO inhibition with L-NAME not 

only prevented the IPC associated reduction in liver injury but actually exacerbated the 

IR associated liver injury. Wang and colleagues have reported an aggravation of liver 

injury by 90%, characterized by severe vascular oxidant stress, lipid peroxidation , 

neutrophil infiltration and reduction in micro vascular blood flow after inhibition of NO



synthesis with nonselective NOS inhibitor in an experimental model of liver ischaemia 

and endotoxemia

The transient and volatile nature of nitric oxide (NO) makes it difficult to measure 

directly. However, since most of the NO is oxidized to nitrite (NO2 ) and nitrate (NO3 ), 

the concentrations of these anions (NOx) are often used as a quantitative measure of NO 

production In this study, increased NO production with L-arginine treatment and 

reduced NO production with L-NAME treatment affirms the response to 

pharmacological intervention. NO maintains perfusion of the hepatic microcirculation 

and modulates liver injury through it’s vasodilatory and anti-inflammatory 

(123,126) gffgç^g jjj this study, IRI resulted in reduced NO production. Whereas, IPC and 

L-arginine treatment significantly increased NO production, L-NAME addition to IPC 

not only prevented the IPC associated increase in NO production but also further 

reduced NOx levels. These changes in NO production in the experimental groups, 

suggest an association of NO with liver injury in relation to IRI and IPC. The significant 

increase in NOx levels at the end of preconditioning period would further support that 

NO is important in the mechanism of the protective effect of IPC. When this result is 

considered together with the significant increase in NOx at the end of 45 mins 

ischaemia, the findings would suggest that NOS induction occurs with preconditioning 

ischaemia and further NO production is induced throughout the subsequent sustained 

ischaemia.
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One of the major determinants of IR induced injury of the liver is the breakdown of 

microvascular perfusion with subsequent impairment of tissue oxygenation Hepatic

tissue oxygenation reflects the adequacy of microvascular perfusion and is the ultimate 

determinant of hepatocyte viability. It is vital for liver graft function and survival after 

liver transplantation Measurements of oxygen consumption in liver grafts after

transplantation showed that an increase in oxygen consumption was associated with 

good graft function Measurement of hepatic venous oxygen saturation showed that 

low oxygen saturation correlates with poor function of the graft and high liver enzymes 

Direct measurement of hepatic tissue oxygenation by NIRS has demonstrated that 

tissue oxygenation is significantly correlated with the microcirculatory impairment and 

the liver dysfunction induced by ERI In addition, liver graft tissue oxygenation

has been shown to provide valuable information on early graft function and survival in 

both experimental animals and human liver transplantation In this study, the 

effect of IRI on hepatic tissue oxygenation was measured directly and the effect of IPC 

on the magnitude and time course of hepatic tissue oxygenation changes was analyzed 

continuously by NIRS.

NIRS uses an algorithm (developed for liver NIRS) which computes absolute changes 

in Hb02, Hb and the redox state of Cytochrome oxidase Cua NIRS assesses

changes in tissue oxygenation at the level of capillaries and intracellular uptake of 

oxygen Oxygen saturation of haemoglobin in liver tissue depends on the difference 

between oxygen supply and demand. Since the oxygen demand in the liver differs with
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the pathophysiological state, it is essential to measure the tissue oxygenation as well as 

the blood volume in the liver. NIRS measures HbT (total haemoglobin, Hb + Hb02) 

which reflects the blood volume in liver tissue The NIRS algorithm may be 

sensitive to light scattering changes since there were variations in HbT between the 

groups in this study. There are no studies investigating the relationship between changes 

in light scattering and changes in blood volume in the rat liver in the context of liver 

ischaemia reperfusion. However in the brain large changes in the cerebral energy state 

and cerebral blood flow do not cause large changes in light scattering in hypoxic- 

ischaemic piglet brains In the present model, an assumption made is that the effect 

of light scattering changes is negligible and all observed optical density changes are 

caused by changes in chromophore absorbance. Cytochrome oxidase is the terminal 

electron carrier of the mitochondrial respiratory chain that catalyses the reduction of 

oxygen to H 20 in a four electron reaction with the concomitant synthesis of adenosine 

triphosphate (ATP) through the oxidative phosphorylation process In the 

hepatocytes approximately 90% of the oxygen taken up is consumed by cytochrome 

oxidase in the mitochondria Cytochrome oxidase has 3 redox active metal sites 

which exhibit different absorption characteristics depending on their redox state. The 

copper centres are optically active in the NfR light in contrast with the haem centres that 

absorb visible light However absorption of the NfR light by cytochrome

oxidase occurs primarily at the Cua centre within cytochrome oxidase. The oxidised 

Cua centre has a characteristic shape spectrum with a broad peak centred around 845 

nm which is absent with the reduced enzyme The contribution of the haem
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centres to absorption of NIR is less than 10% of the total signal in the reduced-oxidised 

spectrum Thus the signal measured by NIRS is almost entirely due to the Cua 

centre. The signal intensity decreases on reduction of this centre. The redox state of 

cytochrome oxidase Cua is dependant on cellular oxygen availability and a linear 

correlation exists between the two In the presence of oxygen, electron transfer 

takes place and the enzyme becomes oxidised, whereas lack of oxygen results in a 

decreased flow of electrons and cytochrome oxidase becomes reduced Thus, 

assessment of the redox state of cytochrome oxidase indicates oxygen availability and 

liver tissue cytochrome oxidase redox state may reflect the viability of hepatocytes 

In this study hepatic tissue oxygenation was reduced during ischaemia and following 

reperfusion in all groups when compared with sham operated control values. NIRS 

measurement of hepatic tissue oxygenation correlates with hepatic venous blood 

oxygenation which reflects parenchymal tissue oxygenation With 45 mins 

ischaemia there was decrease in Hb02 and increase in Hb in all groups, reflecting the 

dissociation of oxygen from haemoglobin as oxygen is extracted by the hepatic tissue 

These changes reflect reduced blood and oxygen supply to the tissue. The 

reduction in cytochrome oxidase reflects severe cellular hypoxia. On reperfusion, in the 

IR group the failure of recovery of Hb02, Hb and HbT, decline in CytOx Cua redox 

state indicate persistent tissue and cellular hypoxia due to low liver blood volume and 

an inability to fulfill the oxygen demand with the reperfusion injury events. Other 

mechanisms responsible could be an increase in hepatic arterial resistance due to
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vasoconstriction, hypocapnia and alkalosis, oxygen transfer failure, decreased ATP and 

energy dependant pathways all of which accompany tissue hypoxia.

Ischaemic preconditioning significantly raised Cyt Ox Cua redox state during 45 

minutes of sustained ischaemia. This implies preservation of intracellular oxygenation 

and is likely due to reduced energy consumption during sustained ischaemia in the 

preconditioned livers. It is unlikely that there would be any increased collateral flow to 

the ischaemic lobes due to the peculiar anatomy of the rat liver, which is multilobed 

with individual blood inflow to each lobe. Furthermore, on reperfusion in 

preconditioned livers there was significant rise in Cyt Ox Cua redox state and which 

persisted throughout the 2-hr reperfusion period. There was no significant change in 

extracellular oxygenation despite recovery of HbT indicating recovery of blood volume 

during the reperfusion period in the preconditioned livers. Taken together these findings 

indicate a limitation or delay of hepatocellular injury as well as reduced cellular 

metabolism in the preconditioned livers. Studies on the myocardium have demonstrated 

that the features contributing to the anti infarct effect of preconditioned myocardium are 

slower rate of energy metabolism with decreased utilization of high-energy phosphates 

and delay of cellular ultrastructural damage

In this study, in the ischaemically preconditioned group a raised Cyt Ox Cua redox state 

was observed in the presence of NO. Recently several studies have demonstrated that 

NO controls mitochondrial respiration through cytochrome oxidase (reviewed by
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The primary effect of exogenous NO in these studies on mitochondrial activity in vitro 

was a reversible and competitive inhibition of cytochrome oxidase activity in the 

presence of physiological levels of oxygen. However, as it is not easy to measure NO 

levels and cytochrome oxidase activity in vivo accurately, direct evidence for NO 

inhibition of the oxidase in whole tissues is difficult to obtain Furthermore NO is 

also a substrate for cytochrome oxidase and the NO oxidase activity of the mammalian 

enzyme stoichiometrically converts NO to nitrite^^^^l As nitrite is a non toxic product, 

this activity might play a protective role in processes in which NO production is 

implicated (e.g., organ preconditioning in this study). Endogenous NO has a rapid but 

transient effect on the respiratory chain based on the cytochrome oxidase mediated 

catabolism, which allows a slow but continous flow of electrons through the chain even 

when a complete suppression of the 0% consumption has been accomplished

In this study the NIRS changes in redox state of cytochrome oxidase may indicate that 

cytochrome oxidase or mitochondrial electron transport chain is becoming reduced due 

to inhibition of oxygen delivery. However, cytochrome oxidase does not become fully 

reduced, because the binding of NO to haem as of cytochrome oxidase is only transient 

and reversible (excluding significant interactions to other components of respiratory 

chain- cytochromes c or b) and the NO is reduced to nitrite by cytochrome oxidase. 

Presumably the end effect of NO inhibition on haem as (in NO metabolism of haem as) 

would be apparent in all groups. The effect does not therefore alter the differences 

between the groups in terms of tissue oxygenation and hepatocellular injury.
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NO regulates sinusoidal perfusion and may thus modulate liver injury. In this study, 

using the amino acid substrate for NO biosynthesis L-arginine before IR, hepatic 

oxygenation values did not show statistically significant differences when compared 

with IR group. Treatment with L-arginine did however increase NOx and significantly 

reduce plasma ALT, comparable to IPC group. Increased NO production may have 

reduced hepatocellular injury by a direct cytoprotective effect. Use of NO synthesis 

inhibitor L- NAME with IPC, however, significantly impaired hepatic oxygenation and 

enhanced ALT levels, showing statistically significant differences when compared with 

IR group. Overall, the impairment of tissue oxygenation was greater with NO inhibition 

than that observed with IR and would suggest it may have increased cellular sensitivity 

to ischaemia. Overall, the data from this study suggests that NO is a major factor 

influencing tissue damage with IRI. However inhibition of NO synthesis blocks IPC and 

aggravates IRI. Therefore, endogenous NO may influence or be responsible for the 

preconditioning effect.

Significant correlation was found between hepatic tissue oxygenation parameters 

measured by NIRS and both, plasma ALT and NOx in the experimental groups. This 

data further emphasize that hepatic tissue oxygenation monitored by NIRS correlates 

with hepatocellular injury and that NO production influences liver oxygenation and also 

liver cell injury. The former observation may have important implications in clinical 

application of NIRS to monitor hepatic ischaemia.
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In conclusion, the data in this study suggests that IPC has an important role in limiting 

or downregulating IR induced liver injury and may thereby, increase ischaemic 

tolerance of the liver. Furthermore, NO production is associated with the hepatic 

preconditioning effect.

This study has demonstrated that IPC may mediate a hepato protective effect through 

improved hepatic tissue oxygenation via NO production. Since tissue oxygenation 

correlates with microcirculatory impairment and hepatic microcirculatory failure is a 

major determinant of hepatic IRI, the next chapter has evaluated the relationship of 

hepatic microcirculation with NO metabolism in IPC of the liver.
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Chapter 5

Changes in Hepatic Microcirculation with Ischaemic Preconditioning 

of the Liver and their Relationship to Nitric Oxide Metabolism

97



5.1 Introduction

In this chapter the effects of IPC and, NO stimulation and inhibition on hepatic 

microcirculation and liver function have been studied. Key events in the 

pathophysiology of IRI include an amplified inflammatory response and failure of 

hepatic microcirculation (HM) The postischaemic hepatic microcirculatory failure 

correlates with the degree of hepatocellular damage NO regulates perfusion of the 

HM. Because failure of the HM is a key factor of IRI, changes in HM with IPC may 

give an important indication of the effect of IPC on IRI.

Flow in the HM was continuously measured using laser Doppler flowmeter (LDF)

The use of LDF to measure the HM has been described in section 3.2.

5.2 Material and Methods

The methods used have been described in details in chapter 3 and only a brief 

description is given below.

5.2.1 Animal preparation, surgical procedure and experimental protocols

Briefly, the animals were anaesthetised and laparotomy was carried out through a 

midline incision as described in section 3.11. The ligamentous attachments from the 

liver to the diaphragm were severed and the liver was exposed. Ischaemia of the median 

and left lateral lobes of the liver was produced by clamping the corresponding vascular
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pedicle containing the portal vein and hepatic artery branches using an atraumatic 

microvascular clamp. The other hepatic lobes were not handled during the procedure. At 

the end of the ischaemia period the vascular clamp was removed and reperfusion was 

allowed. HM was measured by LDF probe placed on a fixed site on the surface of the 

left lateral lobe of the liver and held in place by a probe holder. The method is described 

in section 3.2. The experimental protocols were as described in section 3.12, and the 

study groups of 6 animals each were 1) Sham, 2) ischaemia reperfusion (IR), 3) 

Ischaemic preconditioning (IPC) + IR, 4) L-arginine + IR and, 5) L-NAME + IPC +

IR). At the end of the experiment the animals were killed by exsanguination.

5.2.2 Measurements of hepatocellular injury and nitric oxide production

At the end of 2 hrs of reperfusion, 2ml blood sample each were taken from the inferior 

vena cava for measurements of liver enzymes alanine aminotransferase (ALT) and 

aspartate aminotransferase (AST) in plasma. (See section 3.3) and, for plasma nitrite + 

nitrate (NOx) measurements. (See section 3.4).

5.2.3 Hepatic tissue ATP and cGMP measurements and, NADPH diaphorase 

histochemical staining

At the end of 2 hrs of reperfusion biopsies of the ischaemic lobes of liver were freeze 

clamped in liquid nitrogen for adenosine triphosphate (ATP) determination. (See section
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3.5). Hepatic guanosine 3’5’ cyclic monophosphate (cGMP) accumulation in liver tissue 

was determined by using a commercial ELISA kit (Cayman chemical, USA). (See

3.6). A separate liver biopsy was frozen and stored at -70° C for NADPH diaphorase 

histochemical stain which was carried out on five pm transverse sections of liver tissue 

as described in section 3.7.

5.2.4 Data collection and statistical analysis

As described in section 3.15, the data were collected continuously on a laptop computer. 

One way analysis of variance (ANOVA) and Bonferroni adjustment for multiple 

comparisons were used unless otherwise stated where unpaired Student’s t test was used 

for statistical analysis between groups. The relationships of hepatocellular injury and 

NO production with HM were tested using Spearmans correlation coefficient.

5.3 Results

Hemodynamic data are shown in Table 5.1. In all animals in the experimental groups 

the heart rate and arterial oxygen saturation did not change significantly throughout the 

experiment. In the L-arginine treated group, a transient fall in blood pressure was 

observed immediately after L-arginine administration, but this was statistically not 

significant. In the other groups blood pressure did not change significantly throughout 

the experiment.
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5.3.1 Hepatic microcirculation

Figure 5.1 illustrates the changes in mean percentage (standard deviation) of HM with 

respect to the preischaemic baseline level (100%). Table 5.1 lists the changes in HM in 

absolute values.

There was no significant change in the hepatic microcirculation at one, two or three 

hours of recording in the sham operated control group when compared with baseline (p= 

0.5). There were significant differences between this groups and groups 2,3,4 and 5 

(p<0.001) when HM changes at the end of 45 mins ischaemia and at the end of 30, 180 

mins of reperfusion were compared (Fig. 5.1 and Table 5.1).

In IR group, at the end of 45 minutes of ischaemia the mean HM decreased to 20.7% of 

the preischaemic level. After removal of the micro surgical clamp the mean HM 

recovered to 31.1% during first 30 minutes of reperfusion period, thereafter slowly 

declined to reach a value of 22.5% (p=0.00 vs. baseline) at the end of 2 hours of 

reperfusion (Fig. 5.1).

In the IPC group, during the preconditioning period, the mean HM recovered rapidly to 

97.3% on declamping after 5 minutes of ischaemia, and remained steady during 10 

minutes of reperfusion. After subsequent 45 minutes of sustained ischaemia the mean 

HM decreased to 18.1% and on declamping showed a rapid recovery to 58.5% during
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initial 30 minutes of reperfusion and thereafter showed a slight decline without any 

peaks to reach a final value of 49% (p= 0.005 vs.baseline) during final 15 minutes of 

recording (Fig. 5.1 and Table 5.1). following 2 hrs of reperfusion flow in the HM was 

significantly higher in the IPC group than those undergoing IR alone (p<0.05) (Table 

5.1).

In the L-arginine treated group the mean HM decreased to 81.2 % (p= 0.01 vs. baseline) 

immediately after L- arginine injection. Subsequently after 45 minutes ischaemia the 

mean HM had decreased to 24.6 % (p<0.05 vs. baseline). On declamping the mean HM 

improved to 46.8 % (p<0.001 vs. baseline, p< 0.05 vs. IR)) and then gradually declined 

to 31.6 % (p<0.05 vs. baseline) during final 15 minutes of recording (Fig. 5.1).

However the differences were not significant when compared with IR group at the end 

of 2 hrs of reperfusion (p>0.05) (Table 5.1).

In the L-NAME treated group, at the end of the preconditioning period, the mean HM 

recovered to 89.3% (p<0.05 vs. baseline). After subsequent 45 mins of sustained 

ischaemia the mean HM had decreased to 15.8% (p<0.05 vs. baseline). On declamping 

the mean HM recovered to 26.3% and then decreased progressively to around 10.2% 

during the final 15 minutes of reperfusion (Fig. 5.1). There were significant differences 

between this group and groups 2 and 3 at the end of 2 hrs of reperfusion (p<0.001) 

(Table 5.1).
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Figure. 5.1. Hepatic microcirculation in Flux units (%) during 45 min o f ischaemia 

and 2 hrs of reperfusion, measured by laser Doppler flowmeter (LDF). Values are mean 

± SD of 6 animals in each group. 11=5 min ischaemia; R l=  10 min reperfusion.
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Table 5.1. Hepatic microcirculation (HM) (Flux units, absolute values) at end of 45 min of warm ischaemia (HM-1), at the end 

of initial 15 minutes of reperfusion (HM-2), and at end of two hours of reperfusion (HM-3), heart rate (HR) (beats/ min), 

arterial oxygen saturation (Sa02) (%), mean arterial blood pressure (MABP) (mmHg). Values are mean ± SD of 6 animals in 

each group.

Group 1 

(Sham)

Group 2 

(IR)

Group 3 

(PC )

Group 4

(L-arginine ± P )

Group 5

(L-NAME ± PC )

HM-1 154.3 ± 15.7 32.3 ± 13.9* 3& 0±12.9"^ 38.5 ± 13.9^52 26.3 ± 12.4*32

HM-2 150.2 ±21.4 42.4 ± 16.9* 95.3 ±16.5** 71.3 ±19.8^^^ 43.3 ± 16.0**

HM-3 155.0 ± 14.9 32.2 ±17.0* 78.7 ± 17.8** 47.1 ±20.8^^" 16.8 ±3.6**

HR 235.0 ± 11.9 229.6 ±7.7^^^ 230.0 ± 6.2 233.9 ±7.7*32 230.0 ±9.7*32

Sa02 98.4 ± 1.1 97.7 ±0.6^^' 9 T 2 ± 0 .9 "^ 96.9 ± 1.4*32 97.4 ± 1.6*32

MABP 55.0 ±2.2 51.0 ± 1.4^^' 53.0 ± 1.6^^^ 53.0 ±2.1*32 50.0 ±2.4*32

*p<0.01 vs. Group 1; **p<0.05 vs. Group 2; ^^^Not significant (p>0.05 vs. group 1);

^^^Not significant (p>0.05 vs. group 2) using unpaired t test.
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5.3.2 Hepatocellular injury

IR (group 2) resulted in significant increase in plasma ALT and AST. Both IPC and L- 

arginine treatment reduced ALT and AST levels. Whereas, in L-NAME + IPC group 

(group 5) ALT and AST levels were significantly increased. (Fig. 5.2)

5.3.3 Hepatic tissue ATP

IR (group 2) resulted in significant decrease in hepatic tissue ATP as compared to Sham 

values. Both IPC and L-arginine treatment increased ATP levels as compared to IR. 

Whereas, in L-NAME + IPC group (group 5) ATP levels were significantly reduced as 

compared to IR. (Fig. 5.3)

5.3.4 Nitric oxide production and hepatic cGMP

IR (group 2) resulted in significant decrease in NOx measured at the end of reperfusion 

phase. Both IPC and L-arginine treatment increased NOx and cGMP. Whereas, in the L- 

NAME + IPC group (group 5) NOx and cGMP levels were significantly reduced. (Figs.

5.4 and 5.5)

105



7000 -

6000

5000 -

4000 -

3000 -

2000

1000

0

irrrn sham 
IR

^ a i p c  
L-arg 

^  L-NAME

X

-k-k
T

X

5 i

A LT A ST

Fig. 5.2. Plasma Alanine aminotransferase (ALT) and Aspartate aminotransferase 

(AST) levels (U/L) at the end o f 2 hrs reperfusion phase. Values are mean ± SD of 6 

animals in each group. *p<0.05 vs. sham, **p<0.05 vs. IR, Students t test.

106



^  20

sham IPC L-Arg L-NAM E

Fig. 5.3. Hepatic tissue ATP levels (pmol/g wet liver tissue) at the end o f 2 hrs

reperfusion phase. Values are mean ± SD o f 6 animals in each group. *p<0.05 vs.

sham, **p<0.05 vs. IR, Students t test.
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Fig. 5.4. Changes in Plasma nitrite + nitrate (NOx) levels (|aM) at the end o f 2 hrs

reperfusion phase. Values are mean ± SD o f 6 animals in each group. *p<0.05 vs. sham,

**p<0.05 vs. IR, Students t test.
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Fig. 5.5. Hepatic cGMP levels (pmol/mg) at the end o f 2 hrs reperfusion phase. Values

are mean ± SD o f 6 animals in each group. *p<0.05 vs. sham, **p<0.05 vs. IR, N S -

not significant vs. sham. Students t test.
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5.3.5 Correlation of hepatocellular injury and NO production with HM

At the end of 2 hrs of reperflision there was a significant negative correlation between 

plasma transaminases and HM and significant positive correlations between hepatic 

ATP and HM and between NOx and HM (Table 5.2).

Table 5.2. Correlation between HM (x) and ALT, AST, ATP and NOx (y)

Regression analysis Spearmans Correlation 

coefficient

P value

HM vs. ALT y = -55.62x + 7.1 r = 0.95 p< 0.001

HM vs. AST y = -35.15x + 5.9 r = 0.91 p< 0.001

HM vs. ATP y = 0.12x - 0.32 r = 0.91 p< 0.001

HM vs. NOx y = 2.30x - 16.3 r = 0.95 p< 0.001

5.3.6 NADPH diaphorase histochemical stain

Nitric oxide synthase (NOS) appraised with NADPH diaphorase staining was associated 

with hepatocytes and vascular endothelium in centrilobular zone. The distribution of 

NOS was similar in both IPC and L-arginine treated groups (groups 3 and 4). IR and 

IPC + L-NAME groups (groups 2 and 5) did not show positive staining for NOS (Fig. 

5.6).
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Figure 5.6 Representative photomicrographs o f NOS staining using NADPH 

Diaphorase (in arrows) in hepatocytes in centrilobular zone and endothelium. The 

Groups were A) IR, B) IPC + IR, C) L-arginine + IPC + IR and D) L-NAME + IPC 
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5.4 Discussion

This study has investigated the effect of ischaemic preconditioning on hepatic 

parenchymal perfusion and how it relates to nitric oxide metabolism. The rat model of 

lobar hepatic ischaemia reperfusion and, ischaemia and reperfusion times were identical 

to those used in chapter 4. In this study, the systemic hemodynamic parameters 

including mean arterial blood pressure, heart rate, body temperature and oxygen 

saturation did not change significantly during the experiments excluding any systemic 

contributions to the altered hepatic parenchymal perfusion. Laser Doppler flowmetry is 

a reliable method for the continuous measurement of tissue blood flow and has been 

used to grade the severity of IRI by recording changes in the liver microcirculation.

LDF allows a continuous in vivo recording of the HM without directly affecting the HM 

and its use has been discussed in section 3.2. To evaluate the effect of NO on 

hepatic microcirculation following IRI, additional groups had L- arginine (amino acid 

substrate for NO biosynthesis) and L- NAME (non- specific inhibitor of NOS) 

administered prior to IR, as discussed previously.

Previously, improvement in microcirculation perfusion parameters following IPC has 

been shown by Zapletal et al but the mechanism was not addressed. The results of 

the present study also indicate that IPC is associated with an improvement in the HM 

following reperfusion. NO may be the mechanism behind IPC as L-arginine treatment 

protected against IRI similar to preconditioning, whereas L-NAME administration 

aggravated microcirculatory impairment and cellular injury in preconditioned animals.
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LDF measurements calculated as a mean of 1 -minute data at each stage of experiment 

were expressed in Flux units. The preischaemic baseline recordings of HM were 

expressed as a standard 100% in each individual experiment. LDF reflects the real blood 

flow in the hepatic tissue microcirculation, which includes the collateral flow and 

backflow from hepatic veins in addition to portal vein flow and hepatic arterial flow. All 

groups subjected to 45 minutes of ischaemia showed impairment of HM indicated by 

similar biphasic curve of initial partial recovery of blood flow followed by decline 

during 2 hrs of reperfusion. The failure of recovery of blood flow to baseline values 

reflects the cascade of events associated with reperfusion injury. Several mechanisms 

contribute to this microcirculatory failure including narrowing of the sinusoid lumens 

by endothelial cell swelling secondary to ischaemia-induced ATP deficiency and 

the consequent failure of ion transport through the cell membrane A significant 

reduction of leukocyte velocity with subsequent stasis and intrasinusoidal plugging has 

been suggested as a hindrance for blood perfusion Increased leukocyte adherence 

with increased permeability to macromolecules in postcapillary venules contributes to 

the reflow paradox

The comparison of HM changes between the groups at different time points show that 

with IPC the HM significantly improved within 30 mins of reperfusion. This suggests 

that the mechanism of preconditioning modulating flow in the microcirculation occurs 

either during the ischaemic period or starts immediately following reperfusion. This 

could be further evaluated by studying NOS induction during the ischaemic period and
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NO formation serially before or after reperflision. The effect of preconditioning is likely 

to involve modulation of immediate microcirculatory events at the level of capillaries 

and post capillary venules, as these are the primary sites of IR induced microcirculatory 

failure. This data would support the hypothesis that IPC may act through release of NO 

which has vasodilator as well as an anti inflammatory effect. Recent studies have 

indicated the contribution of altered endothelin (ET-1)/N0 balance in mediating the 

sinusoidal perfusion failure The importance of endogenously produced NO in 

counteracting the increased action of ET-1 has been demonstrated by the fact that 

blockade of endogenously produced NO during postischaemic reperflision aggravates 

microvascular and hepatocellular injury In this study, L- arginine administration

before IR improved HM when compared with the IR group at the end of the initial 30 

mins of reperflision. This again suggests that NO formation is a key factor in 

microvascular perfusion following IR. Endogenous NO may limit IRI via inhibition of 

the vasoconstrictive effects of stellate cell activation NO has a vasodilator effect 

and also inhibits neutrophil adhesion and platelet aggregation and has 

functions suggesting it to be a key player in the maintenance of the HM. In contrast, use 

of the NO synthesis inhibitor L-NAME with IPC in this study blocked the improvement 

in HM seen with IPC and further exacerbated the impairment in HM during the 2 hrs of 

reperflision. Nitric oxide synthase inhibition has been shown to increase neutrophil 

accumulation and liver injury and impair microvascular blood flow The role of 

leukocyte in IRI has been confirmed by the observation that the degree of leukocyte 

infiltration of the reperfused tissue correlates with postoperative liver function
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impairment and hepatocyte injury Also, in neutropenic animals there is a substantial 

decrease in the severity of IR injury NOS inhibition promotes leukocyte adhesion

and has been shown to decrease sinusoidal blood flow velocity using intravital 

fluorescence microscopy Both IPC and L-arginine treatment resulted in increased 

amounts of NOx and cGMP. Administration of L-NAME resulted in significant 

reductions in NOx and cGMP indicating effective inhibition of NOS. NO has been 

shown to activate cytosolic guanylate cyclase which in turn increases cGMP 

concentrations leading to vasodilatation. Recently, Ishikawa et al have shown 

improved hepatic tissue blood flow with increased hepatic cyclic nucleotides in IRI. 

Thus, in this study the alterations in NOx measurements when considered together with 

the changes in HM between the groups would suggest that NO metabolism is strongly 

associated with modulation of hepatic parenchymal perfusion with preconditioning.

This is demonstrated by the significant positive correlation between HM and NOx.

It is unlikely that the immediate increase in HM with IPC is a result of increased 

collateral flow to the postischaemic lobes since the rat liver is multilobed with 

individual blood inflow to each lobe. Studies on the myocardium have demonstrated 

that preconditioning decreased the infarct size with no significant difference on 

collateral blood flow in the preconditioned and control groups The results of this 

study also show that with IPC flow in the HM did not increase after 30 mins of 

reperfusion. That the microcirculatory benefit of IPC is evident within 30 mins of 

reperfusion would suggest that the mechanism is influencing the liver parenchyma
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during or immediately after liver ischaemia. It would also suggest that IPC causes only 

a limitation of the microcirculatory damage in early IRI. The severity of the sinusoidal 

perfusion failure is dependent on the ischaemia time and experimental studies using 

intravital microscopy have shown incomplete recovery of microvascular perfusion 24 

hrs following prolonged ischaemia

ATP levels measured at the end of reperfusion phase were significantly higher in 

preconditioned as well as L-arginine treated groups. This could either be a result of 

reduced cellular metabolism in the preconditioned livers or an increased ATP synthesis 

once oxygen levels have returned on reperfusion. Wang et al have shown that 

during myocardial ischaemic preconditioning NO which is generated upon ischaemic 

stress triggers the opening of mitochondrial ATP-sensitive potassium channels which 

augments ATP synthesis in the ischaemic myocytes. In a speculative review Stefano et 

al have surmised that the drop in ATP levels during ischaemic episode leads to an 

increase in intracellular calcium and release of NO. The NO so produced downregulates 

the cells excitatory state to protect itself until return of oxygen levels and increase in 

ATP levels, akin to physiological processes such as exercise A slowed down or 

suspended cell metabolism with slowing of ATP depletion and reduced accumulation of 

ischaemic catabolites is a feature of the preconditioned myocardium Further, ATP 

itself can release NO via P]y purinoreceptors located on vascular endothelial cells, to 

induce vasodilatation of the hepatic vasculature In rabbits, ATP- induced 

vasodilatation in the hepatic vascular bed was readily attenuated by both L-NMMA and
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L-NAME The ATP induced vasodilatation may contribute to improving the 

microcirculation in the preconditioning response. The association of preconditioning 

induced improvement in HM with reduced hepatocellular injury is demonstrated by the 

significant negative correlation between HM and plasma transaminases and the 

significant positive correlation between HM and ATP.

The results of NADPH diaphorase histochemical stain demonstrated a differential 

regional distribution of nitric oxide synthase (NOS). This is a rapid technique that 

localizes NOS on tissue sections. Diaphorases are a group of redox enzymes, which are 

able to reduce various chromagen in the presence of a reduced co-factor. A diaphorase 

with absolute dependence on NADPH previously used to stain neurons in the brain was 

found to be related to NOS All isoforms of NOS have since been found to have 

NADPH diaphorase activity. Non- NOS NADPH diaphorase activity is present in 

tissues. However, when tissues are cross linked with fixative as done in this study, the 

non- NOS NADPH diaphorase is denatured and what remains is usually specific for 

NOS isoenzymes. NADPH diaphorase is therefore recognized as a simple, convenient 

and reliable marker for detecting NOS. In liver, as in many other organs, NO has many 

cellular sources. In the liver NO is produced by most cell types including endothelial 

cells hepatocytes hepatic stellate cells and macrophages In this study 

light microscopy demonstrated positive NADPH diaphorase staining in the hepatocytes 

and vascular endothelium with IPC and L-arginine treatment. There was absence of 

positive staining with IR and NO inhibition. These data suggest an increased NOS
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content in the liver with IPC and emphasize the participation of NO in IRI and IPC. 

Considering the hypothesis presented, the NO is likely to be derived from the 

constitutive isoform of NOS since induction of inducible isoform of NOS requires 

several hours.

In conclusion, IPC improves flow in the HM and reduces hepatocellular injury. 

Inhibition of NO synthesis blocks the HM improvement seen with preconditioning and 

exacerbates liver injury. These observations are in keeping with the known association 

between the severity of IR and reduction in HM post reperfusion and would support NO 

metabolism as a key mediator of the microcirculatory effect of IPC.
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Chapter 6

Nitric Oxide Synthase Distribution and Expression with Ischaemic

Preconditioning of the Liver
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6.1 Introduction

In chapters 4 and 5, the association of NO with improved hepatic oxygenation and 

microcirculation after IPC has heen demonstrated. Peralta et al have also have 

suggested NO is a central mediator of IPC both in normal (41,45,49, steatotic livers

In addition, other NO donors had similar effects to IPC in increasing post transplant 

survival in a rat model of cold preservation and reperfusion injury Thus, there is 

increasing evidence for the role of NO in the IPC effect and it is attractive to 

hypothesize this experimental evidence may eventually lead to pharmacological 

strategies using NO for protecting the liver from ischaemic injury. NO in the liver is 

produced by various isoforms of the enzyme nitric oxide synthase and so far isoform 

specific studies in relation to NO production with IPC have not been studied. Defining 

the isoform specific pathway for NO production with IPC will allow a better 

understanding for the development of drug targeting to induce or enhance the 

preconditioning response.

In this chapter, the study described has attempted to identify the NOS isoforms 

responsible for generation of the cytoprotective effect of NO during liver IPC.
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6.2 Material and Methods

6.2.1 Animal preparation, surgical procedure and experimental protocols

These methods were identical to those used in chapters 4 and 5. Briefly, the animals 

were anaesthetised and laparotomy was carried out through a midline incision as 

described in section 3.11. The ligamentous attachments from the liver to the diaphragm 

were severed and the liver was exposed. Ischaemia of the median and left lateral lobes 

of the liver was produced by clamping the corresponding vascular pedicle containing 

the portal vein and hepatic artery branches using an atraumatic microvascular clamp. 

The other hepatic lobes were not handled during the procedure. At the end of the 

ischaemia period the vascular clamp was removed and reperfusion was allowed. The 

experimental protocols were as described in section 3.12, and the study groups of 6 

animals each were 1) Sham, 2) ischaemia reperfusion (IR), 3) Ischaemic 

preconditioning (IPC) + IR, 4) L-arginine + IR and, 5) L-NAME + IPC + IR). At the 

end of the experiment the animals were killed by exsanguination.

6.2.2 Measurements of hepatocellular injury and nitric oxide production

At the end of 2 hrs of reperfusion, 2ml blood sample each were taken from the inferior 

vena cava for measurements of liver enzymes alanine aminotransferase (ALT) in 

plasma (See section 3.3) and plasma nitrite + nitrate (NOx) measurements (See 

section 3.4).

121



6.2.3 NOS immunohistochemistry and western blotting

At the end of 2 hrs of reperfusion biopsies of the ischaemic lobes of liver were collected 

on dry ice, frozen and immediately stored at -70° C. NOS immunohistochemistry was 

performed on Cryostat-cut sections thaw-mounted onto polylysine-coated slides 

according to the method described in section 3.8. The preparation of protein extracts 

and, SDS gel electrophoresis and Western blotting were performed according to the 

method described in section 3.9.

6.2.4 Statistical analysis

As described in section 3.15, the experimental results are expressed as mean ± SD of 6 

animals in each group. Data was analyzed using analysis of variance (ANOVA) for 

multiple comparisons. Analysis between two groups was performed using unpaired 

Student’s t test (two- tailed) where ANOVA indicated significance for the multiple 

comparison. Statistical significance was accepted when p < 0.05.

6.3 Results

The changes in ALT and NOx are shown in fig. 6.1. Both IPC and L-arginine treatment 

produced similar decrease in plasma ALT and increase in NOx. L-NAME treatment 

with IPC aggravated the increase in ALT and decreased NOx.
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The expression of NOS was investigated in liver biopsy samples taken at the end of 2 

hrs reperfusion period. With eNOS and iNOS immunohistochemistry, the negative 

controls had no positive staining. Both immunohistochemistry (fig.6.2.) and western 

blotting (fig.6.3.) showed increased eNOS expression with IPC and L-arginine 

treatment. The immunostaining was localized to hepatocytes and vascular endothelium. 

There was no eNOS expression in IR and L-NAME + IPC groups. There was no iNOS 

expression within the experimental groups (fig.6.3.).

6.4 Discussion

This study has addressed the relationship of endothelial isoform (e-NOS) and inducible 

isoform (i-NOS) of nitric oxide synthase with the ischaemic preconditioning effect on 

early (< 2 hrs) ischaemia reperfusion injury of the liver. The major finding of the study 

is that cytoprotective nitric oxide is produced by eNOS during ischaemic 

preconditioning of the liver.

In liver, as in most tissues, NO production is complex, in that NO is produced by 

various cell types and its rate of production can vary enormously NO is produced 

from L-arginine by the enzyme nitric oxide synthase (NOS). Three isoforms of the 

enzyme exist and all three types are present in liver tissue The chemistry of NO is 

also complex in that it reacts with many cellular components such as oxyhaemoglobin 

(HbOz), superoxide (O2 ), thiols and various intracellular enzymes The steady- 

state concentration of NO in liver will therefore depend on the rate of NO production.
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Fig. 6.1. Plasma Alanine aminotransferase (ALT) and nitrite + nitrate, NOx (pM). 

Values are mean ± SD o f 6 animals in each group. *p<0.05 vs. sham, **p<0.05 vs. IR, 

Students t test.
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Figure 6.2. Representative photomicrographs o f eNOS immunostaining. The brown 

stain in hepatocytes and vascular endothelium indicates eNOS expression. Tlie groups 

were A) Sham, B) IR, C) IPC + IR, D) L-arginine + IR, and E) L-NAME + IPC + IR
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Figure 6.3. Western blotting for eNOS and iNOS
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the cellular location of that production and also the rate of NO metabolism as it 

combines with other species. NO production in liver comes mainly from endothelial 

NOS (e-NOS) and inducible NOS (i-NOS). e-NOS derived NO is mainly produced in 

sinusoidal endothelial cells where it may contribute to local perfusion distribution 

(2̂ *) and portal pressure NO from i-NOS can generally be produced from most 

liver cell types, including endothelial cells hepatocytes hepatic stellate cells 

and macrophages

This study has suggested that eNOS activity was upregulated and iNOS activity was 

absent in the context of IPC during early ischaemia reperfusion injury. This is not 

surprising since the potential levels of NO resulting from NOS isoforms can be very 

different in that e-NOS is constitutively expressed and directly regulated by calcium 

and therefore NO production from e-NOS is quicker but the production is generally 

short-term. eNOS mRNA or western blot at variable time periods were not measured in 

this study, but these could determine the time points during ischaemia or the reperfusion 

phase at which eNOS is expressed. i-NOS activity is protein expression dependent and 

requires several hours for induction but produces larger quantities of NO and for 

longer periods of time because NO production continues until the i-NOS protein is 

degraded or the substrate becomes limiting. The transient ischaemia of IPC induces 

protection for subsequent prolonged ischaemia; given this short time course for 

triggering IPC, it is therefore not surprising that transient ischaemia should result in up 

regulation of e-NOS activity. The short time course suggests that IPC events are
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triggered at posttranslational level since transcriptional activity takes several hours. A 

precedent exists for this hypothesis; in the myocardium, transcription of new proteins 

and subsequent i-NOS generation has been linked to the late effect of preconditioning

(224)

The ALT and NOx measurements indicate that the IPC induced hepatoprotection was 

effective for a time course of 2 hrs reperfusion following 45 mins ischaemia. Given the 

fact that e-NOS production is only short term, the sustained protection found in this 

study raises the possibility that molecules in addition to e-NOS contribute to the 

preconditioning signal. The possibility of compensatory up-regulation of i-NOS iso form 

is excluded by the results. The other possibility is enzymatic products of e-NOS activity 

may contribute towards the multi factorial trigger/ mediator of IPC. Exogenous nitric 

oxide (L-arginine treated group) produced similar rise in NOx and up-regulation of e- 

NOS as with IPC. NO is not the sole product of e-NOS; under conditions of L-arginine 

depletion free radicals may be generated Recent evidence suggests that free 

radicals are essential for preconditioning Whilst L-arginine depletion is unlikely to 

occur during the short duration of these experiments, free radicals were not measured in 

this study. The possibility of free radicals synthesized as a by product of e-NOS activity 

contributing to the preconditioning effect cannot be excluded in this study.

The NOS inhibition used in this study was not isoform spécifié. It was assumed that the 

role of iNOS would be negligible since the enzyme takes several hours to be induced
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and the results indicate that NOS inhibition was complete and effective for eNOS as 

well as iNOS. The observation from this study that eNOS may contribute to early 

preconditioning may have potential importance in the clinical application of 

preconditioning in man. Patients who develop acute myocardial infarction have 

increased eNOS polymorphisms Such polymorphism may adversely affect the 

nitric oxide generation resulting from a transient ischaemic insult and may therefore 

attenuate protection potentially afforded by IPC. There is no evidence that such 

polymorphism exists in liver ischaemia reperfusion injury so far and this area warrants 

further investigation. Nonetheless, eNOS may prove to be a useful target in 

hepatoprotection from ischaemia reperfusion injury.
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Chapter 7

The Effect of Ischaemic Preconditioning on Hepatic Oxygenation, 

Microcirculation, and Function in a Rat Model with Moderate Hepatic

Steatosis
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7.1 Introduction

T h e steato tic  liv er  is particu larly  su scep tib le  to  isch a em ia  rep erfu sion  in jury (IR I) 

resu ltin g  in  p o o r  ou tco m e fo llo w in g  liv er  surgery and transplantation  

Im paired m icroc ircu la tion  decreased  m itoch on d ria l A T P  sy n th esis  ^^^^̂ and 

in creased  n eutroph il ad h esion  are so m e o f  the p ostu la ted  m ech a n ism s o f  injury in  

steatotic  livers. Further, in creased  rep erfu sion  injury in  liv ers  o f  fa tty  rats w a s  

a sso c ia ted  w ith  a ch an ge from  ap op totic  form  o f  c e ll d eath  to n ecro sis  E x c e ss iv e  

fat a ccu m u la tion  in  the liver  (stea to sis) is  a co m m o n  m eta b o lic  d isorder seen  in  hum ans  

w ith  an in c id en ce  ranging  from  6%  to 24%  in  au top sy  ser ies  (230, 231) ca u sed  b y  a 

w id e  variety  o f  co n d itio n s and d isea ses  su ch  as a lco h o l, o b es ity , m alnutrition , 

hyp era lim en tation , d iab etes, p regn an cy  and h epatitis but m a n y  are id iop ath ic  

T here is  an in creased  risk  o f  in itia l p o o r  fu n ction  and p rim ary n o n -fu n ctio n  o f  the graft 

after transplantation  o f  a fatty  liver  and the risk  in creases w ith  the sev er ity  o f  stea tosis  

(234,235) the in creasin g  num bers o f  orthotop ic liv er  transplantations and the  

con co m ita n t lack  o f  su itab le  donors, m a n y  liver  transplant program s in crea sin g ly  u se  

don or livers o f  “m arg in a l” q u a lity  su ch  as fatty  livers T h e graft as w e ll  as

patien t su rv iva l is  d im in ish ed  after u se  o f  su ch  organs T here is  therefore, an

urgent n eed  for strateg ies against IR I to in crease  the num ber o f  organ s a va ilab le  for  

liv er  transplantation and m oreover , im p rove the o u tco m e after transplantation  o f  fatty  

livers.
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Clavien and co-workers have demonstrated significantly decreased serum transaminase 

levels after IPC in a group of patients with steatotic livers (20 to 50% steatosis) 

undergoing hemihepatectomy under inflow occlusion In a recent report, Serafin et al 

have shown decreased liver injury and increased animal survival in ischaemically 

preconditioned obese Zucker rats. Clearly, the effect of preconditioning response on 

fatty livers will have potential clinical implications for the future.

In previous chapters, relationship of IPC with improved hepatic oxygenation, 

microcirculation and function has been demonstrated. In this chapter, the aim of the 

study was to investigate whether IPC has similar effects in the steatotic liver. Since this 

was only a preliminary study designed to evaluate the effects of IPC on hepatic 

oxygenation and microcirculation in steatotic livers, the mechanism has not been 

addressed.

7.2 Material and Methods

7.2.1 Animal model, anaesthesia and surgical procedure

Male Sprague- Dawley rats, each weighing 250- 300g were used for the experiments.

To induce fatty liver, all animals were fed with commercial high cholesterol (2%) diet, 

for 12 weeks. The changes in body weight of the animals were monitored weekly. The 

development of the steatosis was examined macroscopically and confirmed by 

histological examination.
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Animals were anaesthetised by inhalation of 4-5% isoflurane in 50% oxygen and air in 

an induction chamber and then maintained by inhalation of 1-2% isoflurane in oxygen 

and nitrous oxide (1:2) via a face mask in a standard anaesthetic circuit, and prepared 

for aseptic surgery. The surgical procedure was carried out as described in section 3.3. 

Hepatic tissue oxygenation and hepatic microcirculation were continuously measured 

over the surface of median and left lateral lobes respectively, throughout the procedure 

as described in sections 3.1 and 3.2, respectively.

7.2.2 Measurement of hepatocellular injury

At the end of 2 hrs reperfusion period, 2 mis blood sample was taken from the inferior 

vena cava for measurement of plasma concentrations of aspartate aminotransferase 

(AST), alanine aminotransferase (ALT) (see section 3.3) as markers of hepatocellular 

injury.

7.2.3 Hepatic tissue ATP measurement and histology

At the end of 2 hrs reperfusion period biopsies of ischaemic lobes of liver were freeze 

clamped in liquid nitrogen for adenosine triphosphate (ATP) determination (See section 

3.5). Separate liver biopsies of ischaemic lobes were fixed in 10% formalin for 

histological examination (see section 3.10).
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7.2.4 Experimental groups and protocol

Three groups of animals (n= 6, each) were used

Group 1 : Sham: The liver was exposed for 3 hours. There was no liver ischaemia.

Group 2: Ischaemia-reperfusion (IR): Ischaemia was induced in the median and left 

lateral hepatic lobes for 45 minutes, followed by a 2 hour period of 

reperfusion.

Group 3: Ischaemic preconditioning (IPC) + IR: The median and left lateral lobes were 

preconditioned with 5 minutes ischaemia followed by 10 minutes of 

reperfusion. This was followed by IR (group 2 procedure).

7.2.5 Data collection and Statistical analysis

As described in section 3.15 the data were collected continuously on a laptop computer 

and a NIRS algorithm specifically developed for liver NIRS (149) was used. One way 

analysis of variance (ANOVA) and Bonferroni adjustment for multiple comparisons 

were used unless otherwise stated where unpaired Student’s t test was used for 

statistical analysis between groups. The relationship of hepatocellular injury with Cyt ox 

Cua redox changes and HM was tested using Spearmans correlation coefficient.
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7.3 Results

7.3.1 Induction of fatty liver

All animals tolerated the high cholesterol diet with no mortality. The animals 

maintained a normal body weight during the cholesterol feeding periods, with no 

significant difference between the groups. The liver weight and the liver weight/ body 

weight ratio were not significantly different between the groups.

At laparotomy the animals showed fat deposition in the skin, liver and spleen. The liver 

was enlarged, yellowish in colour, with rounded edge and firm consistency (Fig. 7.1). 

Some animals had mimimal ascites but abdominal varices were not seen.

7.3.2 Liver histological examination

Moderate grade, macrovesicular steatosis was seen under light microscopy examination 

of liver biopsies after 12 weeks of high cholesterol feeding (Figure 7.2).

7.3.3 Systemic hemodynamic parameters

In all animals in the three experimental groups the heart rate, mean arterial blood 

pressure, body temperature and oxygen saturation did not change significantly 

throughout the experiments.
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Figure 7.1 With steatosis the liver was enlarged, yellowish in colour with a rounded 

edge

136



,  V •'*- .   ̂ /"  -' ■
• „ . '• -.V',* • , > . ,  * . ^

m m m

E<?

. . 4

y  i ,  ~:

#'

20 X

Figure 7.2. Photomicrographs of liver demonstrating macrovesicular fat 

accumulation in hepatocytes
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7.3.4 Hepatic tissue oxygenation

Figure 7.3 illustrates the pattern of changes and Tables 7.1 and 7.2 list the changes in 

extracellular oxygenation indicated by hepatic oxyhaemoglobin (Hb02), 

deoxyhaemoglobin (Hb) and total haemoglobin (HbT, which indicates blood volume) 

and, mitochondrial oxygenation indicated by reduction oxidation (redox) changes of the 

copper centre (C ua) of cytochrome oxidase (Cyt Ox C ua redox state) in all experimental 

groups.

In the sham laparotomy (group 1) there were no significant differences in Hb02, Hb 

and Cyt Ox Cua redox state during the 3-hour period of recording (all p > 0.05 vs. 

baseline) (Fig.7.3. and Tables 7.1 and 7.2)

In the IR group (group 2), at the end of 45 mins of ischaemia (before unclamping) IR 

resulted in significant decreases in Hb02 and Cyt Ox Cua redox state and HbT (Fig.7.3. 

and Table 7.1) with no significant difference in Hb when compared with respective 

sham group values. On reperfusion (after unclamping) Hb02 further decreased and Hb 

increased and, there were significant differences in these values when compared with 

respective sham group values at the end of 2 hrs of reperfusion (Fig.7.3. and Table 7.2). 

HbT failed to improve and Cyt Ox Cua redox state remained significantly reduced 

following reperfusion when compared with sham group value at the end of 2 hrs of 

reperfusion.
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In the IPC group (group 3), at the end of 45 mins of ischaemia (before unclamping) the 

Hb02 and HbT levels were significantly different from sham group but not significantly 

different from IR group. Hb was not significantly altered (Fig.7.3. and Table 7.1). Cyt 

Ox Cua redox state, was significantly decreased when compared with sham group but 

not significantly different from IR group at the end of 45 mins of ischaemia (before 

unclamping). On reperfusion (after unclamping), the Hb02, Hb and HbT levels 

improved significantly. Hb02 and HbT were significantly higher and Hb significantly 

lower when compared to IR group at the end of 2 hrs of reperfusion (Fig.7.3. and Table 

7.2). Cyt Ox Cua redox state showed a downward trend in the initial 30 minutes of 

reperfusion, but later showed significant increase to above baseline values and at the 

end of 2 hrs of reperfusion was significantly higher then the sham and IR groups 

(Fig.7.3. and Table 7.2).
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Figure 7.3. Hepatic tissue oxygenation during 45 min of ischaemia and 2 hrs of 

reperfusion, measured by NIRS. Values are mean ± SD of 6 animals in each group. 

11=5 min ischaemia; Rl = 10 min reperfusion. Keys: Hb02, Oxyhaemoglobin;

Hb, Deoxyhaemoglobin; HbT, Total haemoglobin; Cyt Ox CuA , Cytochrome 

oxidase CuA redox state.
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T able 7.1. Hepatic tissue oxygenation (pmole/L) and Hepatic M icrocirculation (Flux units, absolute values) end o f 45 min o f

warm ischaemia (pre-reperfusion). Values are mean ± SD o f 6 animals in each group.

Group 1 

(Sham)

Group 2 

(IR)

Group 3 

(IPC + IR)

HbO] 11.6±11.5 -269.2 ± 46.4* -209.9 ± 57.7 *

Hb 20.4 ± 7.6 51.7 ±6.0^^ 41.9 + 3.8'^®

HbT 32.0 ± 16.1 -217.4 ±82.0* -168.5 + 63.5**

Cyt Ox Cua -6.8 ±1.7 -22.2 ± 6.2* 20.9 ±4.5**

HM 84.9 ± 5.7 19.9 ±4.5* 15.5 ±2.8***®

*p<0.05 vs. Group 1; ^p<0.05 vs. Group 2; ^^Not significant (p>0.05 vs. group 2) using unpaired t test.

Keys: HbOz : Oxyhaemoglobin; Hb: Deoxyhaemoglobin; HbT: Total haemoglobin, Cyt Ox Cua : Cytochrome oxidase Cua

redox state; HM: Hepatic microcirculation

141



T able 7.2. Hepatic tissue oxygenation (pmole/L) and Hepatic Microcirculation (Flux units, absolute values) end o f  2-hrs o f

reperfusion. Values are m ean ± SD o f 6 animals in each group.

Group 1 

(Sham)

Group 2 

(IR)

Group 3 

(IPC + IR)

HbOz 10.3 ±9.8 173.9 ±85.3* 264.6 ± 29.7

Hb 14.2 ±5.7 615.0 ±57.3* 465.0 ± 47.8

HbT 24.4 ± 13.8 789.8 ± 127.1* 730.0 ±30.5*'^^

Cyt Ox Cua -6.9 ±1.8 -33.2 ±8.0* 25.5 ± 6.7**

HM 76.0 ±4.3 17.4 ±4.0* 50.5 ± 2.2**

*p<0.05 vs. Group 1; ^p<0.05 vs. Group 2; ^^Not significant (p>0.05 vs. group 2) using unpaired t test.

Keys: HbOz : Oxyhaemoglobin; Hb: Deoxyhaemoglobin; HbT: Total haemoglobin, Cyt Ox Cua : Cytochrome oxidase Cua 

redox state; HM: Hepatic microcirculation
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7.3.5 Hepatic microcirculation

Figure 7.4 illustrates the changes in mean percentage (standard deviation) of HM with 

respect to the preischaemic baseline level (100%). Tables 7.1 and 7.2 lists the changes 

in HM in absolute values.

In the Sham laparotomy group (group 1), mean HM did not change significantly with 

respect to baseline throughout the 3 hour period of recording.

In IR group (group 2), at the end of 45 mins of ischaemia (before unclamping) mean 

HM had decreased to 21.7 % (SD: 10.1). On reperfusion (after unclamping) mean HM 

failed to recover and at the end of 2 hrs of reperfusion the mean HM recorded was 21.1 

% (SD: 14.4). There were significant differences between this group and group 1 (p< 

0.001) (Fig.7.4.)

In IPC group (group 3), mean HM during the preconditioning period of 5 mins of 

ischaemia, decreased to 40.2 % (SD: 15.0) and after 10 mins reperfusion recovered to

134.4 % (SD: 30.9). At the end of subsequent 45 mins of ischaemia (before 

unclamping) mean HM decreased to 22.3 % (SD: 11.3). On reperfusion, mean HM 

progressively recovered to reach a final value of 70.9 % (SD: 17.1) at the end of 2 hrs of 

reperfusion. There were significant differences between this group and groups 1 and 2 at 

the end of 2 hrs of reperfusion (p< 0.001).
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Fig. 7.4. Hepati: microcirculation in Flux units (%) during 45 min of ischaemia and 

2 hrs of reperfu.ion, measured by laser Doppler flowmetery (LDF). Values are mean 

± SD of 6 animds in each group. 11=5 min ischaemia; Rl= 10 min reperfusion.
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7.3.6 Hepatocellular injury

IR resulted in significant increased ALT and AST levels measured at the end of 2 hrs of 

reperfusion (both p < 0.05 vs. sham). IPC resulted in decreased ALT and AST levels 

(both p < 0.05 vs. IR; p > 0.05 vs. sham). (Fig. 7.5)

7.3.7 Hepatic tissue ATP

IR resulted in significantly decreased ATP levels measured at the end of 2 hrs of 

reperfusion (p < 0.05 vs. sham). IPC resulted in increased ATP levels in comparison to 

IR (p < 0.05). (Fig. 7.6.)

7.3.8 Correlation of hepatocellular injury with Cyt ox Cua redox changes and HM

At the end of 2 hrs of reperfusion there was a significant negative correlation of plasma 

transaminases with cyt ox cua redox changes and HM (Table 7.3.).
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Fig. 7.5. Serum Alanine aminotransferase (ALT) and aspartate aminotransferase levels 

(U/L). Values are mean ± SD of 6 animals in each group. *p<0.05 vs. sham, **p<0.05 

vs. IR, Students t test.
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Fig. 7.6. Hepatic tissue ATP levels (pMol/g liver tissue). Values are mean ± SD of 6 

animals in eaeh group. *p<0.05 vs. sham, **p<0.05 vs. IR, Students t test.
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Table 7.3. Correlation between hepatic tissue Cytochrome oxidase Cua redox state (Cyt Ox Cua) and

hepatic microcirculation (HM) (x) and, liver enzymes (y)after 2 hrs of reperfusion following 45 mins of ischaemia.

Regression analysis Spearmans Correlation 

coefficient

P value

CytOx Cua v s . ALT y = -67.094X + 1656.5 R = 0.9531 p< 0.01

CytOx Cua v s . AST y = -34.697x+ 1115.1 R = 0.9457 p< 0.01

HM vs. ALT y = -65.762x + 5912.6 R = 0.9722 p< 0.001

HM vs. AST y = 38.032X + 3556.4 R = 0.9038 p< 0.001
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7.4 Discussion

This study has investigated the effects of ischaemic preconditioning in fatty livers 

subjected to ischaemia reperfusion injury. Rabbits given a high cholesterol diet together 

with diethylstilbestrol develop a rapid and extensive hepatic fibrosis with fatty 

infiltration, but this model is associated with 27% mortality after 8 weeks treatment 

We simplified the method by feeding the rats with cholesterol rich diet alone for 12 

weeks. All animals tolerated high cholesterol feeding with no mortality. At laparotomy 

the liver was enlarged, yellowish in colour with rounded edge and firm consistency 

suggestive of fatty change. High cholesterol feeding induces the formation of 

cholesterol fatty liver in which there is accumulation of triglyceride and cholesterol in 

the liver Morphological changes in cholesterol fatty livers have been

investigated in rabbits and in this species high cholesterol diet for 12 weeks led to 

macrovesicular fat accumulation with periportal inflammation and necrosis In the 

present study model, rats fed with high cholesterol diet developed moderate grade 

steatosis with macrovesicular fat accumulation. The patchy distribution of inflammation 

around centrilobular veins mainly in IR and IPC groups would be consistent with 

hepatocyte injury following ischaemia and reperfusion.

All animals had a normal body temperature throughout the experiments. The systemic 

hemodynamic parameters including mean arterial blood pressure, heart rate, body 

temperature and oxygen saturation were not significantly different in the experimental 

groups thus excluding any systemic contributions to IRI. The model employed was of
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partial ischaemia and involved clamping the arterial and portal inflow to the median and 

left lateral lobes and maintaining the blood flow to the caudate and right lateral lobes. 

This prevents mesenteric ischaemia thus circumventing hemodynamic instability due to 

portal congestion and subsequent bacteremia

Both tissue oxygenation and HM were measured in this study. Good tissue oxygenation 

is vital for liver graft function and survival Liver graft tissue oxygenation 

correlated with early graft function and survival in both experimental animals and

human liver transplantation Furthermore, tissue oxygenation has been shown to 

correlate significantly with the microcirculatory impairment and liver dysfunction 

induced by IRI Thus, direct measurement of hepatic tissue oxygenation and HM 

would be good indicators of hepatocyte viability. The use of NIRS to monitor liver 

oxygenation and LDF to monitor HM have been discussed previously in sections 3.1 

and 3.2.

This study showed significant differences in extracellular and intracellular oxygenation 

with IPC. It is noteworthy that with IPC the intracellular oxygenation (Cyt Ox Cua 

redox state) showed a full recovery at the end of reperfusion phase. This result suggests 

an improvement in mitochondrial function or a decreased mitochondrial metabolism and 

ATP preservation in the preconditioned livers. Further insight may have been obtained 

by tissue ATP levels at earlier time points through the study. In studies on myocardial 

preconditioning, slowing of metabolism was a feature of the preconditioned
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myocardium The results also show an increase in blood volume (HbT) with IPC, 

which was significantly different from IR group. The concomitant failure of 

improvement in Cyt Ox Cua redox state and HbT in the IR group suggests decreased or 

no flow in the hepatic parenchyma with decreased tissue oxygen availability. This could 

occur due to tissue oedema, decreased ATP and impaired mitochondrial function or 

hepatocyte death following IR. Whereas the increased Cyt Ox Cua redox state with IPC 

indicates viable hepatocytes suggesting a reduced hepatocellular injury in the 

preconditioned livers. Viable hepatocytes could be confirmed by methods such as 

TUNEL assay demonstrating decreased apoptosis.

All animals had a reduction in the baseline HM when compared with normal livers (data 

not shown). The reduction in HM associated with steatosis has been reported in other 

studies with fatty livers The reduction in HM occurs due to sinusoidal

compression and decrease in sinusoidal diameter by the enlarged fat laden hepatocytes 

(243) Yhis alteration in HM by the enlarged hepatocytes is augmented by an increase in 

fibroblast numbers with the formation of collagen bundles in the perisinusoidal space 

which causes further narrowing of the sinusoids Vascular congestion in the

narrow and irregular sinusoids, and leukocyte adhesion to the sinusoidal walls 

contributes significantly to the reduction of HM in fatty liver grafts In this study, 

HM changes were measured at different time points. LDF signal was recorded during 

ischaemia despite total lobar ischaemia. This has been reported in other studies and can 

be caused by random motion of residual blood cells, the influence of breathing

151



movements and back flow from hepatic veins. With 45 minutes ischaemia there were no 

differences between IR and IPC groups. In IR group, flow in the HM during the 2-hrs 

reperfusion phase was not significantly different from ischaemic levels, consistent with 

failure of the microcirculation. The pathophysiological mechanisms of primary 

microcirculation failure are no reflow and reflow paradox No reflow is a result

of postischaemic capillary perfusion failure due to sinusoidal endothelial cell 

swelling^^^^\ Recent evidence also supports the contribution of endothelin /nitric oxide 

balance in mediating sinusoidal perfusion failure Reflow paradox is a result of 

leukocyte adherence and increased macromolecular permeability in post capillary 

venules The fatty liver tolerates ischaemic insult poorly and this evidence is 

supported by the results of this study. On the other hand with IPC, the increase in HM 

was evident within initial 30 mins of reperfusion following which there was linear 

increase in HM until the end of reperfusion phase. This suggests that IPC has an 

immediate effect on reperfusion.

This study has not investigated the mechanism for the preconditioning effect. Since the 

effect of IPC were evident immediately on reperfusion, the possible mechanism is likely 

to be triggered during the preconditioning phase. The preservation of intracellular 

oxygenation during the subsequent sustained ischaemic phase in this study would 

support this hypothesis Based on the findings of chapters 4 and 5 we tentatively 

support that preconditioning might be mediated through nitric oxide modulation of 

microcirculation during IRI.
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In this study plasma liver enzymes measured at the end of reperfusion phase were 

markers of hepatocellular injury. The enzyme levels correlate with the severity of 

hepatocyte injury IR resulted in a severe increase in serum ALT and AST. Since 

the fatty liver is particularly susceptible to IRI severe hepatocyte injury is to be 

expected. In this study the failure of microcirculation and tissue oxygenation with IR is 

consistent with the severe hepatocyte injury or hepatocyte death indicated by the 

significant increases in liver enzyme levels. With IPC there was a significant decrease in 

liver enzyme levels. This suggests a reduced hepatocellular injury in the preconditioned 

livers. This result is consistent with the decreased cellular hypoxia secondary to 

increased flow in HM with IPC and viable hepatocytes indicated by increased 

intracellular oxygenation in the preconditioned livers.

In conclusion, this study has shown modulation of severe ischaemia reperfusion injury 

in moderately fatty livers with ischaemic preconditioning. This study provides evidence 

that ischaemic preconditioning has a hepatoprotective mechanism in the ischaemic fatty 

liver and this is associated with modulation of liver oxygenation and microcirculation 

akin to normal livers. These data may have important clinical implications in liver 

surgery and transplantation, as the technique is easily applicable in clinical situations.
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Chapter 8

General Discussion of the Thesis and Future Plans
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8.1 Methodological considerations

8.1.1 The Experimental model

The study of the cascade of phenomena related to ischaemia and reperfusion in the liver 

is of particular interest due to the importance of liver ischaemia to the results of liver 

surgery and transplantation. The analysis of liver ischaemia in the light of information 

obtained from other organs must be careful, due to the particular physiology of the 

blood circulation to the liver. The complexity of the hepatic circulation is also a major 

obstacle to reproduce and analyze-pathophysiological mechanisms under experimental 

conditions.

The experimental model employed in this study offered the opportunity of assessment 

of both haemodynamic and functional parameters in the rat liver, both under normal 

conditions and also when it is submitted to ischaemia and reperfusion.

The current model has several advantages over a liver transplant model for the study of 

warm IRI. In contrast with preservation of organs at low temperatures, normothermic 

ischaemia produces rapid injury to the liver, with the possibility of in-vivo study 

without the systemic effect of transplantation itself, which represents a major 

disturbance for physiological investigation. The technical difficulty of reestablishing 

portal and arterial blood flow, the denervation of the organ, artifacts due to organ
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cooling, and the possibility of immunological involvement make experimental liver 

transplantation a complex experimental model. Normothermic ischaemia of the liver is, 

to some extent, a simulation of the main circulatory and metabolic changes during 

transplantation, whilst remaining a simple, reproducible and efficient experimental 

method, with low mortality and morbidity.

The use of the liver as a whole organ in an in vivo model is ideal to study the 

relationship between post ischaemic liver blood flow and post ischaemic liver function. 

The experimental reproduction of these phenomena at others levels is only possible with 

the application of sophisticated methods of isolated perfused organs or cell and tissue 

cultures.

The rat was selected as the experimental animal due to its resistance to surgical trauma 

and infection, the advantage of size and liver anatomy which makes the technical 

procedure possible, compared with other laboratory animals; the availability and the 

relative economy of maintenance. Sprague Dawley is a very docile outbred albino rat 

(Rattus norvergicus), originated in Madison, Wisconsin in 1925, by R. Dawley. The 

original colony was closed shortly after its development and no new stock has been 

introduced since then, producing stable colonies which are descended directly from the 

original stock.

The rat fatty liver model was developed in-house by feeding the rats with cholesterol
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rich diet for 12 weeks. The fatty liver is more susceptible to warm IRI than normal 

livers. The exact reasons for the increased IRI seen with the fatty livers is poorly 

understood. Further progress in understanding has been hampered by the lack of 

suitable experimental models. Further, in humans with fatty liver, the spectrum of 

histological changes varies widely and animal models may not closely simulate these 

changes. The model used in this study was simple, reproducible and with no associated 

mortality. A shortcoming of this model as with other diet induced animal models of 

steatosis including ethanol ingestion and choline-deficient diet is the development 

of inflammatory changes in addition to steatosis This would make the model 

unsuitable to study inflammatory changes secondary to IR. In the present study, 

inflammatory changes on histology as a marker of ischaemic injury was not used.

The rat model of segmental liver ischaemia and reperfusion is a useful procedure for the 

study of the local and systemic effects of IRI. This model offers a well defined volume 

of tissue that can be easilv rendered ischaemic with little or no alteration of systemic 

haemodynamics. The anatomy of the rat liver, with separate lobes makes easy the 

identification of vascular elements and selective interruption of the blood supply. The 

down side is that it may overlook changes found with global ischaemia as a healthy well 

perfused liver lobe remains.

In this study, blood flow to the medial and left lateral lobes was interrupted, leaving the 

right and caudate lobes with normal circulation. In this procedure, approximately 70%
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of the liver becomes ischaemic During the occlusion period, the right lateral and 

caudate lobes, not subjected to ischaemia, accommodate the splanchnic blood flow 

without major changes in the portal pressure. After the clamp is removed, the ischaemic 

lobes are therefore exposed to a constant, normal portal blood pressure. This is a 

particular feature of liver lobar ischaemia, which allows the assessment of small 

changes in the liver vascular bed due to ischaemia and reperfusion. An important aspect 

of this model of lobar ischaemia is that the portal blood flow is not totally interrupted. 

Total crossclamping of the portal vein produces haemodynamic deterioration of the 

animal, which often dies upon reperfusion after 20 or 30 minutes of ischaemia The 

down side again is that the conclusions may not be relevant to global ischaemia which is 

of more clinical relevance.

The ischaemic times (preconditioning + subsequent ischaemia) utilized in this study 

were selected on the basis of published information. Repeated experiments using 

different ischaemic times showed consistent time-related changes in the post­

reperfusion liver transaminases values and thus providing an indicator of any beneficial 

(or adverse) effects of ischaemia It must be emphasized that this is rodent data 

and may not be directly extrapolated to human IR. The relevance of this data to human 

IR has been shown in only one clinical study by Clavien et al where the 

preconditioning times established in a mouse model were used for the human study with 

a beneficial effect. More clinical studies will be required to prove unequivocally the 

optimal preconditioning time. The same range of ischaemic times has also been reported
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in the literature as useful in a model of normothermic rat liver ischaemia 45 

minutes of partial hepatic ischaemia is nonlethal but induces substantial liver injury 

The periods of observation after ischaemia were defined originally from published 

information, and evolved thereafter in the course of the study. A period of 2 hrs of 

reperftision following ischaemia was chosen to assess changes in the early phase of 

reperftision injury. The changes during the early reperfusion period do not reflect late 

changes, but have been shown to modulate the development of late reperftision injury. 

This technique of liver ischaemia and reperftision in the rat is easily performed and can 

always be reproduced; the initial ischaemic changes in the liver are evident and leave no 

doubt of the proper positioning of the clamp. In addition, the procedure can be 

performed rapidly, and the mortality is low.

The pharmacological manipulations of nitric oxide utilized in this study were selected 

from published information. Nitric oxide is produced by Nitric oxide synthase, the 

mammalian enzyme catalyzing the oxidation of L-arginine to L-citrulline and nitric 

oxide. Therefore the use of L-arginine (amino acid substrate for NO biosynthesis) is 

ideal to produce effects of NO stimulation Non specific NOS inhibition was chosen 

to fit in with the design of the study since both constitutive and inducible isoforms were 

being evaluated in the study. L-NAME is effective against eNOS and has variable 

inhibition of iNOS but considering the hypothesis presented, the NO was likely to 

be derived from the constitutive isoform of NOS since induction of inducible isoform 

NOS requires several hours and there was no evidence of upregulation of iNOS.
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The next section addresses the application of various tests to assess the pathophysiology 

of liver ischaemia and reperftision in this in vivo rat model.

8.1.2 Near infrared spectroscopy

NIRS is a non-invasive technique to assess hepatic tissue oxygenation, blood volume 

and function. A commercially available near infi-ared spectrophotometer that was 

developed for measurement of brain tissue oxygenation was used An algorithm 

designed specifically to measure hepatic tissue oxygenation was used.

During the application of NIRS a few problems were encountered. Variations in 

measurements were found with the reapplication of the probes even on the same site. 

This may be caused by variation of the optical properties of the area under investigation 

which are tested and accounted for by the spectroscopy with the initial setting. This 

could also be due to light scattering when probe is taken off tissues. This problem 

restricts the NIRS application as the probes must be applied and maintained in the same 

site without movement during the whole procedure. This may be tedious in clinical 

situation but with patience can be applied in the operating room. Absolute quantitation 

of the measurement will make use of NIRS easier.

The volume of blood passing through the liver tissue changes during ischemia and
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reperfusion which may affect the amount of light scattering. In theory, this may 

influence both NIRS as well as LDF measurements. As far as we know there are no 

reports of studies investigating the relationship between changes in light scattering and 

changes in blood volume in the rat liver in the context of liver ischemia reperfusion. In 

the brain however, large changes in the cerebral energy state and cerebral perfusion do 

not cause large changes in light scattering in hypoxic-ischemic piglet brains. NIRS has 

been compared with other techniques for assessing tissue oxygenation including 

Magnetic resonance spectroscopy and partial oxygen pressure (chapter 4, discussion and 

references included therein) and reported significant correlation. We have assumed in 

these studies that the observed optical density changes are caused by altered 

chromophore absorbance and not light scattering. To determine absolute changes in 

chromophore concentration, the optical path length in the tissue must be known as a 

function of wavelength. The differential path length factor has been determined 

specifically for the liver by measuring the absorption coefficient as a function of 

wavelength. The differential path length factor of the liver is 2.7, and this value was 

used to adjust the NIRS algorithm for calculating the changes in the chromophore 

concentration

8.1.3 Laser Doppler Flowmetry

The estimation of microcirculatory blood flow is of crucial interest for the analysis of 

the events that occur during organ ischaemia and reperflision. Changes in the tissue
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blood flow of different organs during reperfusion have been described, and in case of 

the liver, there is now increasing evidence that impairment of hepatic microcirculation 

is a major determinant of ischaemia reperfusion injury.

Laser Doppler Flowmetry is a reliable method for the continuous measurement of tissue 

blood flow and has been used in the study of the microcirculation in a number of 

different organs and under a variety of different conditions In this study, LDF

was utilized to measure blood flow in capillaries and sinusoids rather than in major 

vessels running deeply inside the liver substance, thus the described range of 

penetration was considered sufficient to study blood flow in a liver lobe with a 

maximum thickness of less than 10 mm. This method does not measure the 

microcirculatory blood flow of the liver as a whole, which would be ideal, however, the 

location of the probe in a fixed point of the liver surface throughout the experiment 

allows the continuous record of the flow signal to be considered representative of the 

microcirculatory changes on that point during the different stages of the procedure, 

using the same place as a control. We have previously looked at the intersite variability 

of LDF measurements and found a co-efficient of variation of « 4% This would

suggest that one point is satisfactory to reflect what is happening over the affected lobe. 

Parenchymal perfusion measured by LDF correlates well with total liver blood flow and 

surface LDF measurements are representative of deep parenchymal perfusion d 63,252) ^  

baseline recording of flow as a standard (100%) was used in each individual
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experiment; nevertheless, the absolute perfusion values in pre-ischaemic, anaesthetized 

rats are rather constant, being around 220 LDF Flux Units.

A few problems were encountered with use of LDF. Motion artifact remains a problem. 

The Laser Doppler Monitor can produce artifact signals due to vibration or other 

movements of the fiberoptic probe itself and due to relative movements between the 

probe and the explored tissue. In the case of the rat liver, there is a considerable amount 

of respiratory movement. In the experimental model described in this work, it was 

possible to obtain reasonably artifact-free readings with a good level of anaesthesia, 

good mobilization of the liver to avoid diaphragmatic movements and leaving the probe 

loosely in contact with the liver (instead of firmly attached to a manipulator), allowing it 

to move with the liver if there is any slight movement.

The low Backscattered Light Level due to excessive light absorption in dark coloured 

organs is a further characteristic feature in liver ischaemia. During the initial reperfusion 

period in this model of rat liver ischaemia, the liver can become dark to an extent were 

the level of backscattered light drops below the critical level of detection and the system 

stops reading the blood flow. This effect often occurs when the period of ischaemia is 

longer than 90 minutes.

The value of the blood flow measured with this instrument was expressed in Flux units. 

The backscattered light varies from one organ to another depending on factors including 

light absorption and red cell fraction of different tissues and it is not possible to translate
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the values into a unit of flux that can be utilized for different organs; nevertheless, when 

applied to the same organ the signal is reproducible within a narrow range of variation. 

Laser Doppler flowmetry is now recognized as a well validated method for the 

estimation of liver blood flow.

8.1.4 Liver transaminases

The quantitative assessment of hepatic function remains a problem due to the 

complexity of the multiple metabolic and excretory mechanisms of the liver. The 

functional reserve of this organ allows it to sustain even severe damage without 

evidence of metabolic derangement. Quantitative measurement of liver function is not 

possible fundamentally as it entails measurement of all processes which take place in 

the liver.

True function tests quantitate specific hepatic functions, such as the synthesis or 

degradation rate of a product metabolized exclusively by the liver.

Serum levels of albumin and clotting factors are important indicators of liver function; 

clearance of indocyanine grren, aminoacids, antipyrine, galactose, lignocaine 

metabolites and rate of urea synthesis have been proposed as quantitative function tests. 

Serum levels of bilirubin, transaminases and alkaline phosphatases are of unquestioned
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value in defining the severity of liver injury, but these are measures of liver dysfunction 

rather than function.

ALT (alanine aminotransferase, glutamate pyruvate transaminase, GPT) occurs virtually 

exclusively in the liver and AST (aspartate aminotransferase, glutamate oxalate 

transaminase, GOT) occurs partly in the liver. They are only present in the cytoplasm of 

the parenchymal cells, and provide valuable diagnostic information on the presence of 

severe liver parenchymal cell damage. The level of intracellular enzyme released into 

plasma is an index of integrity of the cell membrane, and hence, indirectly, of damage to 

hepatocytes. ALT and AST may be of value to estimate the extent of the liver cell 

destruction but give no information about the function of the living liver cells.

Despite their limitations, ALT and AST are an indicator of major alterations of liver 

integrity, and were utilized in this study as a marker of hepatocellular injury.

8.1.5 Hepatic adenosine triphosphate

Ischaemia is associated with progressive loss of ATP. This is accompanied by only a 

small rise in ADP as the adenine nucleotides are degraded to nucleosides and base 

There is therefore a net loss of adenine nucleotides. It has been shown that 

conditions of low ATP, high Ca2+ and an oxidised redox state unfold during ischaemia 

and reperfusion and may have an important role in the pathogenesis of necrotic cell
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death following ischaemia and reperfusion In this study ATP measurements were 

used as marker of hepatocellular integrity. The assay used in this study for measuring 

ATP is well established and of proven efficacy The limitation is its analyzing ATP 

alone and not evaluating precursors and breakdown products which would provide 

indication of mechanism e.g., is low ATP due to lack of precursors or increased ATP 

metabolism?

8.1.6 Nitric oxide studies

The transient and volatile nature of nitric oxide (NO) makes it difficult to measure 

directly. However, since most of the NO is oxidized to nitrite (NO2 ) and nitrate (NO3 ), 

the concentrations of these anions (NOx) are often used as a quantitative measure of NO 

production In this study NOx measurements were used as marker of NO production 

and to affirm the response to pharmacological manipulation with L-arginine and L- 

NAME. The assay described by Zeballos is well established and of proven efficacy.

NADPH diaphorase histochemistry is a rapid technique that localizes NOS on tissue 

sections. Diaphorases are a group of redox enzymes, which are able to reduce various 

chromagen in the presence of a reduced co-factor. A diaphorase with absolute 

dependence on NADPH previously used to stain neurons in the brain was found to be 

related to NOS All iso forms of NOS have since been found to have NADPH 

diaphorase activity and no other enzyme unrelated to NOS have shown the same
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activity. NADPH diaphorase is therefore recognised as a simple, convenient and reliable 

marker for detecting NOS.

NADPH diaphorase staining, however, does not differentiate between the 3 isoforms of 

NOS. Polyclonal antibodies against the specific NOS isoforms are commercially 

available (e.g. Santa Cruz Biotechnology) and can identify the isoforms on tissues 

sections and these were used for immunohistochemistry and western blotting in this 

study. Immunohistochemistry was used to study the distribution and localisation of 

NOS isoforms, western blotting to study protein expression. Both methods are 

qualitative analyses and hence no attempt was made to quantify these. Although the 

protein levels can be quantified by semiquantitative methods, these are not reliable for 

their absolute values given the qualitative nature of molecular biology techniques. A 

further limitation of molecular biology techniques is that they only indicate the presence 

of protein and as such may indicate synthesis of new protein. These techniques do not 

give an indication of protein phosphorylation and therefore enzymatic activity (173).

The other option is to use enzyme phosphorylation assays, but these are indirect 

measurements and again do not help in establishing a direct link between protein and 

enzymatic activity In theory, a combination of specific NOS isoform genetic 

knockout model and molecular biology techniques would give a better understanding of 

NOS activity in a given setting.
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8.1.7 Histology

In the fatty liver model, light microscopy examination was chosen because 

histopathological examination allows excellent appraisal of degree of steatosis. Many 

studies choose the end points of hepatocyte necrosis, endothelial injury and neutrophil 

infiltration as histologic markers, realizing that more detailed ultrastructural studies may 

be useful either to confirm or to explain histological findings in some cases. In this 

study histology was not used to appraise ischaemic tissue injury because the obvious 

limitation is that a lethally damaged cell may appear normal on gross histology at an 

early stage. Also, histology was performed at 2 hrs post reperfusion and would overlook 

the late phase changes of IR. In this study, clear differences were found between groups, 

and histology was of great help to understand the nature of steatosis.

8.2 Overall conclusions arising from the thesis and future plans

The results of the study have been discussed in detail in each chapter detailing the 

experiments (Chapters 4 to 7). This section addresses an appraisal of the overall 

conclusions and the neccessity and design of future studies are discussed.

The major findings of this study in the rat model of lober liver ERJ were:

1. The hepatoprotective effect of ischaemic preconditioning was associated with an
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increase in nitric oxide production.

2. The increase in nitric oxide was observed immediately after preconditioning 

period and continued through the subsequent ischaemia and reperftision periods.

3. With ischaemic preconditioning, nitric oxide synthase was expressed by 

hepatocytes and vascular endothelium; eNOS was upregulated whereas iNOS 

expression remained absent suggesting that eNOS derived nitric oxide was 

associated with the ischaemic preconditioning effect.

4. The protective effect of ischaemic preconditioning was applicable to the fatty 

liver.

The above conclusions support the hypothesis presented in this study and strongly 

suggest a role for eNOS derived NO in hepatoprotection by IPC in early ischaemia 

reperfusion induced liver injury. The potential clinical application of the IPC effect is 

during liver surgery for tumors and during liver transplantation if the lobar rat data 

correlates with global human data. Although the technique of IPC is simple and easily 

applicable there would be concerns such as the increased operative time (due to period 

of time involving brief ischaemia and reperfusion) which may not be tolerated well in 

many operating theatres. Also other concerns such as, what is the ideal preconditioning 

time?, could IPC exacerbate damage in diseased liver (such as post chemotherapy, 

hepatic artery thrombosis, shock states), these questions largely remained answered 

since critical ischaemia times for the liver particularly with the trauma of surgery and 

disease are not known. Perhaps a better option is to use IPC to evaluate the mechanism
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and allow the development of pharmacological manipulation for targeted drug 

intervention. Although it may be debatable whether preconditioning will ever fulfill its 

clinical expectations, the hope that a new therapeutic modality may emerge from this 

fascinating phenomenon has given great impetus to the search for its underlying 

mechanism. Clearly, identifying the mechanism of IPC will allow development of 

pharmaceutical agents that conduct the IPC réponse. Such agents will vastly assist 

resection of liver for tumors and preservation of livers for transplantation. The overall 

conclusions of this study suggest a central role for NO in the IPC cascade. Further 

mechanistically descriptive studies would allow the development of therapeutic 

regimens involving NO e.g., regime for NO donors administration prior to hepatectomy 

or liver preservation. The disadvantage of this strategy is clearly the diverse functions of 

NO and that NO donors may have many unwanted systemic side effects. There are no 

clinical studies on therapeutic evaluation using NO donors at present but it should be 

realized that it just might turn out to be the case where it may be better to stick with 

simple and reproducible technique of IPC.

This study has shown that liver eNOS is upregulated during the IPC effect. There are 

many questions which require further investigation. Firstly, this study has addressed 

effects in early IRI (2 hour reperfusion period). Since the effect of eNOS is short 

lasting, how will NO contribute if at all, to the protection in late IRI? It is therefore 

likely that if NO is responsible for late preconditioning in liver then the source of NO is 

likely to be iNOS derived. Since the induction of iNOS takes upto 4 to 6 hours it
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could be that iNOS is important in the late phase of IRI and this would fit in with the 

time course of late IRI. Further studies require to analyse iNOS and eNOS expression in 

late IRI. Survival models would further clarify this issue. In the heart there is increasing 

evidence for role of NO in the late phase of preconditioning.

The other question that will require further investigation is if there is any evidence that 

NOS induction with IPC is a liver alone effect. Could this be systemic NOS induction 

secondary to IPC? Biopsy from other organs at both early and late phase including 

contralateral liver biopsy would clarify whether the induction is a direct or indirect 

effect of IPC and whether there is systemic induction of NOS.

Another important avenue is the long term effect of IPC on microvascular perfusion. 

This study demonstrated that IPC caused only a limited or delayed microcirculatory 

damage in early IRI. Also, there was only a partial recovery of oxygenation parameters 

and microcirculation at the end of the 2 hrs reperfusion phase. Experimental studies by 

other researchers using intravital microscopy in rat liver IR have shown incomplete 

recovery of HM 24 hrs after prolonged ischaemia Therefore the question that 

remains unanswered is whether the protective effect of IPC is continued over several 

hours and days. IPC is associated with improved survival in animals. However the link 

between IPC and the improved survival remains unexplained. Although whether these 

explanations would ever be discovered remains debatable, but would be of enormous 

value in predicting patient outcome in the clinical situation. Recovery models after IR
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looking at liver oxygenation and microcirculation and, NO activity would therefore be 

an interesting study for the future. The results of such a study would directly influence 

the potential clinical application of IPC. Another limitation of the present study was the 

direct measurement of HM. Although this study showed that IPC modulated HM, it 

would be of new interest to elucidate why the microcirculation is altered by IPC and 

which componenets of the HM are modulated by IPC. Experimental studies using 

intravital or confocal microscopy would allow vessel measurements and assessment of 

various perfusion parameters including sinusoidal perfusion, leukocyte adhesion, 

capillary permeability and shunting. This would clarify the effect of IPC on HM and 

help in development of drug targeting strategies. Recently developed physio- 

pharmacological models such as the dual-perfused rat liver may allow assessment

of the overall HM in finite detail to evaluate the role of NO following IRI and IPC.

There is also evidence that human liver tissue can be preconditioned. To date, in the 

English literature, one study has demonstrated clinical benefits of hepatic IPC in 

humans Research in liver IPC is now 10 years old and although little is known 

about the mechanisms involved, it would be widely accepted that there is now enough 

animal data to justify conducting clinical research into this phenomenon.More human 

studies alone will prove unequivocally that IPC exists in human liver.

Three aspects can be distinguished in the process of preconditioning. The initial trigger 

(1), that is included in the short periods of ischemia and reperfusion, activates signalling
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pathways (2), which in turn act upon an end-effector inducing the delay of lethal 

ischemic damage during sustained ischemia (3). To mechanistically define the causal 

relationship between these processes and NO, studies could be done using genetic 

knockout models and, eNOS and iNOS deficient models are now readily available^^^^\

Finally, although current research on the mechanisms of preconditioning seems to 

diverge more and more, it is possible that all these mechanisms converge into an as yet 

unidentified final common pathway. This conclusion is based not so much on the 

negative studies and observations discussed above but on the belief that a powerful 

adaptive phenomenon that is induced so easily and reproducibly in so many models, 

laboratories, and species is almost certain to be mediated by a universal mechanism. 

The data from this study suggests that nitric oxide is the key factor in hepatic ischaemic 

preconditioning.
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