SYNTHETIC STUDIES ON THE CYCLODEPSIPEPTIDE PORTION OF ANTITUMOUR ANTIBIOTIC A83586C

by
Vern Michael Delisser

A thesis submitted for the degree of Doctor of Philosophy
in the Faculty of Science at the University of London.

University College London,
Chemistry Department,
Christopher Ingold Laboratories,
20 Gordon Street,
London,

WC1H OAJ.

ProQuest Number: 10105626

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10105626
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

This thesis is dedicated to my beloved mother.

Abstract

Chapter 1 discusses the asymmetric synthesis of (3S)-hexahydropyridazine-3-carboxylic acid [(3S)-piperazic acid]. Two procedures were developed, firstly an electrophilic hydrazination of a chiral bromovaleryl carboximide enolate with di-tert-butylazodicarboxylate, followed by intramolecular $S_{N} 2$ displacement of the bromide by the resulting aza anion. Subsequent hydrolysis and acidolysis gave (3S)-piperazic acid in an enantiomeric excess greater than 96%.

The second procedure was based on the formation of a titanium enolate from the chiral bromovaleryl carboximide at $0^{\circ} \mathrm{C}$ to form a hydrazine which was subsequently cyclised with the use of sodium hydride. Hydrolysis and acidolysis gave (3S)-piperazic acid in an enantiomeric excess of 78%.

Chapter 2 is a concise review of the synthesis of natural cyclodepsipeptides between the years 1960 and 1994.

Chapter 3 describes the evolution of a synthetic strategy for the cyclodepsipeptide portion of A83586C. A hexapeptide precursor has been prepared via a $3+2+1$ fragment condensation.

Acknowledgments

I would like to take this time to thank my supervisor Dr. K.J. Hale for the endless support and advice he has given me throughout this project. I would also like to thank my colleagues Gurpreet, John, Kuan, Soraya, Dr. S.A. Peak and Karen. Special thanks to Gill Maxwell, Steve Corker and Alan Stone for their analytical services during the course of my research. Many thanks to the ULIRS Mass Spectrometry Service at the London School of Pharmacy. Special thanks to Dr. P. Durette and Dr. C. Caldwell (Merck, Sharpe and Dohme, Rahway, USA) for supplying us with their procedure for the synthesis of $(3 S, 3 R)$-piperazic acid. Thanks are also due to Dr. S. Redshaw (Roche Products, Welwyn Garden City) for presenting us with an authentic sample of (3R)-piperazic acid.

CONTENTS

Title i
Dedication ii
Abstract iii
Acknowledgments iv
Contents V
Chapter 1: Synthesis of (3S)-Hexahydropyridazine-3-carboxylic acid (Piperazic acid)
1.1 The Azinothricin family of Antibiotics: Isolation, Structure and Biological
properties 1
1.2 Isolation and Structure Determination of Piperazic acid 4
1.3 Occurrence and Biological Properties of Piperazic acid 4
1.4 Synthesis of α-Hydrazino acids 6
1.5 Synthesis of (3S,3R)-Piperazic acid 9
1.6 Resolution of (3S,3R)-Piperazic acid 10
1.7 Asymmetric Synthesis of Piperazic acid Derivatives 12
1.8 Discussion 15
1.8.1 Retrosynthetic Analysis 15
1.8.2 Results 16
1.8.3 Determination of Configuration and Enantiomeric purity 22
1.8.4 One-pot synthesis of (3S)-N,N-bis-(t-butoxycarbonyl)-
Piperazic acid 23
1.8.5 Synthesis of $(3 S, 3 R)$-Piperazic acid Derivatives 24
1.8.6 Synthesis of (3S)-Piperazic acid via a Titanium enolate 25
1.9 0 References 28
Chapter 2: Review on the synthesis of natural-occurring cyclodepsipeptides 31
2.1 Introduction 31
2.2 Synthesis 31
2.3 Concluding Remarks 79
2.4 References 80
Chapter 3: Synthetic studies on the hexadepsipeptide portion of A83586C 87
3.1 Introduction 87
3.2 Retrosynthetic Analysis of A83586C 87
3.3 Resuits and Discussion 90
3.4 References 108
Chapter 4: Experimental 110
4.1 References 145
Appendix: Selected Spectral Data

Chapter 1: Synthesis of (3S)-Hexahydropyridazine-3-carboxylic acid (3S)-Piperazic acid

1.0 Introduction

1.1 The Azinothricin Family of Antibiotics: Isolation, Structure and Biological Properties

In 1986, Maehr and his coworkers at Hoffmann La-Roche isolated a powerful new antibiotic from the fermentation broths of Streptomyces X-14950 in crystalline form. It had an MIC values of $<0.008 \mu \mathrm{~g} / \mathrm{ml}$ against two strains of Streptococcus pneumoniae, and $<$ 0.008-0.016 $\mu \mathrm{g} / \mathrm{ml}$ against 31 strains of Staphylococcus Aureus. It was also active at $0.001 \mu \mathrm{~g} / \mathrm{ml}$ against Clostridium Septicum and Clostridium Histalyticum. They named this compound Azinothricin 1; its structure was determined by a series of chemical degradations and single crystal X-ray analysis. Azinothricin contains of a pyran side chain appended onto a 19-membered cyclohexadepsipeptide ring linked at the $\mathrm{C}-(28)$ amide bond. The cyclohexadepsipeptide ring contains six unusual amino acids: erythro-3-hydroxy-L-leucine, D-threonine, L-piperazic acid, N-methyl Dalanine, N-hydroxy-O-methyl-serine and D-piperazic acid. A lactone bond links the carboxyl of the D-threonine residue and the hydroxyl group of the erythro-3-hydroxy-L-leucine moiety. The carbonyl stretch at $1745 \mathrm{~cm}^{-1}$ in the infrared spectrum of 1 was highly diagnostic of the lactone linkage. ${ }^{1}$

A83586C 2 a closely related antibiotic to Azinothricin was isolated two years later by workers at Eli Lilly from culture filtrates of Steptomyces karnatakensis. The structure was also determined by chemical degradation and single X-ray analysis. It was active against many Grampositive bacteria and retarded the growth of a CCRF-CEM human T-cell leukaemia line with an IC. 50 of $0.0135 \mu \mathrm{~g} / \mathrm{ml}$. The only differences between 1 and 2 are the presence of an N-hydroxy-Lalanine in $\mathbf{2}$ instead of an N -hydroxy-O-methyl-L-serine, and a methyl instead of an ethyl group at C-37. ${ }^{2}$

In 1990, Japanese workers isolated Streptomyces flavidovirens from a soil sample in Brazil and found it produced an antibiotic with potent cytotoxicity which they named Citropeptin 3. The structure of $\mathbf{3}$ was elucidated on the basis of NMR spectral comparison with $\mathbf{1}$ and $\mathbf{2}$. The peptide
ring in 3 consists of a threonine, two piperazic acid residues, N -methylleucine, O -methyl-serine and 3 -hydroxyleucine. The stereochemistry and absolute configuration of Citropeptin 3 is thought to be identical to that in Azinothricin and A83586C, as the specific rotation and ${ }^{13} \mathrm{C}$ chemical shifts are similiar. Its biological activity is quite remarkable, it possessing an IC50 of 0.02 $\mu \mathrm{g} / \mathrm{ml}$ against murine P388 leukaemia cells and $0.1 \mu \mathrm{~g} / \mathrm{ml}$ against B16 melanoma cells; it also prolongs the life of mice bearing the P388 tumour at doses of $2 \mathrm{mg} / \mathrm{kg} / \mathrm{day} .^{3}$

(1) Azinothricin, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Et}, \mathrm{R}_{3}=\mathrm{CH}_{2} \mathrm{OMe}, \mathrm{R}_{4}=\mathrm{Me}$.
(2) A83586C, $R_{1}=R_{2}=R_{4}=M e, R_{2}=E t$.
(3) Citropeptin, $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Me}, \mathrm{R}_{3}=\mathrm{CH}_{2} \mathrm{OMe}, \mathrm{R}_{4}=\mathrm{CH}_{2} \mathrm{CH}(\mathrm{Me})_{2}$.

Another member of the Azinothricin family is Variapeptin 4, isolated from Streptomyces variabilis in 1990. Its structure was determined by NMR analysis using a variety of 2D techniques and by spectral comparison with citropeptin 3. This revealed the presence of N -methylphenylalanine, N-hydroxyalanine, 3-hydroxyleucine, serine and two piperazic acid residues. It showed potent in vivo activity against Gram positive bacteria but not against Gram negative bacteria or fungi. It had an IC_{50} value of $0.01 \mathrm{\mu g} / \mathrm{ml}$ against P388 leukaemia cells. When administered intraperitoneally, it was toxic to mice at $5 \mathrm{mg} / \mathrm{kg}$, but inactive in vivo against P388 lymphocytic leukemia at the highest non-toxic dose. 3,4

L-156, $602(5)$ is a compound resembling variapeptin that was isolated from a culture of Streptomyces spp. MA-6348, obtained from a Japanese plant rhizosphere soil sample. The structure of L-156,602 was determined by NMR studies and X-ray diffraction. The NMR studies, in conjunction with GC-MS analysis of the trimethylsilyl derivatives of the acid hydrolysate, indicated the presence of one glycine, one hydroxyleucine, two moles of piperazic acid and two moles of N hydroxyalanine. L-156, 602 is a competitive inhibitor of the binding of anaphylatoxin C 5 a to its
receptor on human polymorphonuclear leukocytes, and as such it may be of therapeutic value for the treatment of a variety of inflammatory diseases. 5,6

In 1993, Japanese workers isolated a new antibiotic from Actinomadura verrucosospora Q886-2 which they named verucopeptin 6 . This substance showed potent in vitro cytotoxicity and specific in vivo activity against mouse B16 melanoma. It was found to inhibit the biosynthesis of DNA and RNA, having IC_{50} values of 0.26 and $0.29 \mu \mathrm{~g} / \mathrm{ml}$ respectively, but its inhibition of protein synthesis was only marginal at $1.0 \mu \mathrm{~g} / \mathrm{ml}$. Its inhibitory action against Strepto-coccus faecalis and Bacillus subtilis was low, it showing MIC values around $100 \mu \mathrm{~g} / \mathrm{ml}$. Veruco-peptin showed no activity against other Gram-positive, Gram-negative, or anaerobic bacteria and fungi at $100 \mu \mathrm{~g} / \mathrm{ml} .{ }^{7}$ The structure of 6 was determined primarily by spectroscopic analysis and chemical degradation, which revealed a 19-membered cyclodepsipeptide similar in structure to the azinothricin family of antibiotics. However, it differed from this clan in that it contained glycine, sarcosine and only one piperazic acid. ${ }^{8}$

(6) Verucopeptin

It is interesting that the position and stereochemistry of the 3-hydroxy-leucine, D-piperazic acid and pyran region is conserved throughout all these compounds, and this could be a clue to the shape of the receptor sites.

1.2 Isolation and Structure determination of Piperazic Acid

Whilst investigating the structure of the monamycin family of cyclodepsipeptide antibiotics, Hassall and coworkers treated a complex mixture of monamycins with boiling 6 N -hydrochloric acid and separated the hydrolysate by ion exchange chromatography on Amberlite C.G. 120. From the hydrolysate mixture, three closely related α-hydrazino acids were isolated having empirical formulae of $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{CIN}_{2} \mathrm{O}_{2}$ and $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$ respectively. In order to determine their structures, they were each hydrogenated over platinum oxide and subsequently treated with 1-fluoro-2,4-dinitrobenzene (DNP-F). In one of the cases, compound $\mathbf{8}$ was obtained, and shown to be identical to an authentic sample of N^{α}, N^{δ}-bis(DNP)-D-ornithine (Scheme 1). This suggested that the structure of one of these three α-hydrazino acids was compound 7 ; it was given the name D-piperazic acid by Hassall and coworkers. ${ }^{9}$

Scheme 1

The other two α-hydrazino acids were shown to be (3R,5S)-5-chloropiperazic acid 9 and (3S,5S)-5-hydroxypiperazic acid 10, respectively, by their conversion to ornithine derivatives. ${ }^{10,11}$

1.3 Occurence and Biological Properties of Piperazic acid

(3S)-Piperazic acid 11 has been shown to be a potent inhibitor of γ-aminobutyric acid (GABA) uptake in rat brain slices, it being 25 times more active than its (3R)-enantiomer 7. Thus (3S)-piperazic acid is useful for the treatment of audiogenic seizures. ${ }^{12}$

Piperazic acid is present in a number of pharmacologically active natural products that include the Matlystatins. These are isolated from Actinomadura atramentaria and are potent inhibitors of type IV collagenases. ${ }^{13}$ Their mode of action is believed to arise through their binding to the zinc atom at the active site of these enzymes which prevents them from functioning in their normal capacity. Inhibitors of type IV collagenases may prove useful for preventing tumour cell invasion and metastasis. The structure of Matlystatin A 12^{14} and B 13^{15} has been confirmed by total synthesis.

L-156,373 14 is a cyclic depsipeptide that contains both (3S) and (3R)-piperazic acids. It possesses antagonistic properties against oxytocin/arginine vasopressin, and as a result, may prove useful for the prevention of pre-term labour, and disturbances in water balance. ${ }^{16,17}$ Piperazic acid is also present in several non-ribosomal, biologically-active depsipeptides typified by Depsidomycin 15, ${ }^{18}$ which functions as an immunosuppressive agent, and in the Azinothricin family of antibiotics. ${ }^{1-8}$

L-156,373 (14)

Depsidomycin (15)

An annulated (3S)-piperazic acid is also to be found in the commercial drug Cliazapril 16 which is currently used for the treatment of congestive heart failure and hypertension. ${ }^{19}$

1.4 Synthesis of α-Hydrazino acids

α-Hydrazino acids have aroused considerable synthetic interest in recent years due to their resemblance to α-amino acids, and their potential as pharmacologically active mimetics of these molecules. ${ }^{20 a-c}$

Several methods have therefore been developed for their asymmetric synthesis. Gennari and coworkers developed a protocol for the synthesis of α-hydrazino acids that was based on the electrophilic amination of a silyl ketene acetal. ${ }^{21}$ Enolisation of the N-methyl ephedrine ester 17 with lithium diisopropylamide (LDA) and subsequent trapping with trimethylsilyl chloride gave silyl ketene acetal 18. Addition of the ketene acetal to a $-80^{\circ} \mathrm{C}$ solution of titanium tetrachloride and di-tert-butylazodicarboxylate (DBAD) in dichloromethane gave the protected hydrazino ester 19 as essentially a single diastereoisomer (Scheme 2). Subsequent treatment with trifluoroacetic acid then excised the N - t-Boc protecting groups, while hydrolysis with aqueous lithium hydroxide in THF gave α-hydrazino acid 20, in good overall yield and ee (Table 1).

The electrophilic amination of enolates derived from chiral N -acylated oxazolidinones with DBAD was a technique for making α-hydrazino acids that was introduced by Evans 22a,b and Vederas. ${ }^{23}$ This procedure involves treating N-acylated oxazolidinones such as 21 with lithium diisopropylamide (LDA) at low temperature and trapping the resulting chiral enolates with DBAD; it

Scheme 2

Table 1. Stereoselective " Amination" of ephedrine enolates

R	19, \% yield	20, \% yield	\% ee of $\mathbf{2 0}$ (after crystallisation)	absolute config.
CH_{3}	70	78	>98	R
$\mathrm{CH}_{2} \mathrm{Ph}$	45	81	>98	R
$\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	70	81	>98	R
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}_{3}$	45	78	>98	R

leads to protected α-hydrazino adducts such as 22 in good yield. Subsequent removal of the auxiliary and acidolysis of the nitrogen protecting groups delivers the chiral α-hydrazino acids $\mathbf{2 0}$ in ee's greater than 98\% and in excellent yield (Scheme 3).

Scheme 3

Table 2. Amination of chiral N -acyl-oxazolidinone

(20)

R	22, \% yield	\% ee of 20	absolute config.
CH_{3}	92	>98	R
$\mathrm{CH}_{2} \mathrm{Ph}$	91	>97	R
$\left.\mathrm{CH}_{(\mathrm{CH}}^{3}\right)_{2}$	95	>98	R

Evans and coworkers rationalise the high levels of diastereoselectivity observed in these electrophilic aminations by invoking the highly organised, chelated pericyclic, 8-membered transition state such as the one shown in 23. Transition states 24 and $\mathbf{2 5}$, in which the azo- N atoms are also involved in chelation with the lithium enolate, were considered less likely due to the unfavourable steric interactions between the chiral enolate and DBAD Boc groups (Figure 1).

Figure 1

Oppolzer ${ }^{25 a, b}$ and Guanti ${ }^{26}$ have also developed methods for the asymmetric synthesis of α hydrazino acids that are based on the electrophilic C -amination of enolates derived from N acylated 9,10-bornyl sultams and dianions of β-hydroxy esters respectively.

An alternative approach to the synthesis of α-hydrazino acids is to construct the $\mathrm{N}-\mathrm{N}$ bond from an α-amino acid. The first such procedure to be developed was that of Yamada and coworkers. They nitrosated N-benzylated α-amino ester 26 with nitrous acid and reduced the resulting N-nitroso derivative with zinc in acetic acid to obtain the N^{β}-acyl derivative 27. Hydrogenolytic removal of the N^{2}-benzyl group in the presence of p-toluenesulfonic acid gave hydrazine $\mathbf{2 8}$, which was then acid hydrolysed to remove the N^{1}-acetyl and the ester group simultaneously to furnish α-hydrazino acid 20 (Scheme 4). ${ }^{27}$ Unfortunately, this procedure was quite laborious, inefficient, and caused a loss in optical purity.

Scheme 4

Table 3. Nitrosation of α-amino acid derivatives

R	27, \% yield	28, \% yield	20, \% yield
PhCl_{2}	80%	85	87
$(\mathrm{Me})_{2} \mathrm{CH}$			
MeO_{2}	65	83	

Several years later, Collet and coworkers developed an approach that was based on the N -amination of α-amino acids with N -methoxycarbonyl-3-phenyloxaziridine 29.28, 29 However, due to the forcing conditions required for the removal of the N-methoxycarbonyl group an alternative oxaziridine method was developed by Vederas and coworkers, which utilised N -benzyloxycarbonyl-3-phenyloxaziridine 30. Thus, treatment of the protected serine derivative 31
with 30 in dichloromethane gave the protected α-hydrazino acid 32 in $41-55 \%$ yield. Hydrogenolysis with Pd catalysis furnished α-hydrazino serine 33 in 81% yield (Scheme 5). ${ }^{30}$

Scheme 5

1.5 Synthesis of (3S,3R) Piperazic Acid

The first published synthesis of piperazic acid was in racemic form by Bevan and coworkers whilst working on the structure determination of monamycin. ${ }^{9}$ Their route was predicated on a hetero-Diels Alder reaction between the dienophile phthalazinedione 35, (generated in situ by the oxidation of 34 with lead tetraacetate) and penta-2,4-dienoic acid 36 which resulted in the cycloadduct 37. Hydrogenation of this adduct and subsequent acid hydrolysis produced (3R,3S)-piperazic acid as its hydrochloride salt 38 (Scheme 6).

The formation of cycloadduct 37 was low yielding using lead tetraacetate as the oxidant for forming the dienophile. Another problem that led to the low yield was the inherent instability of dienophile 35. Thus, a more stable and reactive dienophile was employed in the synthesis by Davies and Davies. The dienophile chosen was 4-phenyl-1,2,4-triazoline-3,5-dione 39, prepared by oxidation of 4-phenylurazole with t-butyl hypochlorite. Its Diels-Alder reaction with penta-2,4dienoic acid 36 yielded cycloadduct 40 in 90% yield (Scheme 7). Hydrogenation of the adduct
using palladium on carbon as catalyst, followed by hiydrolysis with aqueous sodium hydroxide at reflux resulted in $(3 S, 3 R)$-piperazic acid 38 after acidification in $65 \% .31$

Scheme 7

Whilst using this prodecure Adams and coworkers noted that the hydrolysis of the hydrogenated cycloadduct with the sodium hydroxide solution at reflux only gave a low yield of the desired product, with a large quantity of the partially hydrolysed product 41 being formed.

In order to obtain a good conversion to the target compound they executed the hydrolysis with 5.5 molar equivalents of a 85% potassium hydroxide solution in n-butanol at reflux. ${ }^{32}$

1.6 Resolution of (3S,3R)-Piperazic Acid

All the aforementioned procedures resulted in racemic $(3 R, 3 S)$-piperazic acid 38. However, to obtained a pure sample of each enantiomer, a resolution had to be carried out (Scheme 8). ${ }^{33}$ This was achieved by initially forming the N^{1}-benzyloxycarbonyl (Z) derivative 42 using benzyl chloroformate with aqueous sodium hydroxide; 34 the product (42) was then recrystallised from ethyl acetate in the presence of (-)-ephedrine hydrate ${ }^{35}$ to give pure (3S)- N^{1}-(Z)-piperazic acid (-)-ephedrine salt after several recrystallisations. A similar treatment of the mother liquors with $(+)$-ephedrine hydrate resulted in the opposite enantiomeric salt being isolated. Acidolysis with aqueous hydrochloric acid and subsequent deprotection of the benzyloxy-urethane group with hydrogen bromide in acetic acid gave pure ($3 R$) 7 and (3S)-piperazic acid 11 hydrobromide salts in approximately 1.5% overall yield.

Scheme 8

Several workers have developed synthetic strategies to racemic piperazic acid derivatives. Speckman have devised an approach that is based on N-acyl-hydrazonium ion intermediates. Thus, hydrazine 43 was alkylated with 2-(chloromethyl)-3-trimethylsilyl)propene 44 to give 45 in 58% yield. This was then treated with anhydrous methyl glyoxylate (20 equiv), and subsequent acylation gave the cyclisation precursor $\mathbf{4 6}$ in a yield of 79%. Treatment of $\mathbf{4 6}$ with trifluoroacetic acid resulted in the piperazic acid derivative 48 in a yield of 70% via the acylhydrazonium ion 47 (Scheme 9). ${ }^{36}$ This methodology suffered a major disadvantage in that the protecting groups could not be readily removed.

Scheme 9

Ciufolini and Xi, in1994, published a synthesis of (3S)-carboxy-(4S)-hydroxy-2,3,4,5tetrahydropyridazine ethyl ester 49, ${ }^{37}$ an analogue of piperazic acid which is found in luzopeptin A. ${ }^{38}$ Thus, the potassium enolate generated from 50 reacted with Mander's reagent to give β keto ester 51 in 90% yield. Diacetal 52 was then formed by the conjugate addition of methoxide ion to 51 , followed by reduction with sodium borohydride. Dianion formation from 52 with lithium diisopropylamide and trapping of the ester enolate with DBAD led to hydrazine 53 as the major
component of an 18:1 mixture. Cyclisation to 49 ensued upon exposure to trifluoroacetic acid (Scheme 10). 37

Scheme 10

(18:1 mixture)

1.7 Asymmetric Synthesis of Piperazic Acid Derivatives

The first asymmetric synthesis of a piperazic acid derivative was that of (3S)-carboxy-(4S)-hydroxy-2,3,4,5-tetrahydropyridazine 54 by Hughes and Clardy. ${ }^{39}$ Sharpless asymmetric epoxidation of allylic alcohol 55 , subsequent oxidation with ruthenium tetraoxide, and esterification with diazomethane gave epoxy ester 56 . This was then transformed into 57 in a one-pot reaction, involving hydrolysis of the ester with potassium hydroxide in aqueous methanol, and epoxide opening with hydrazine. This gave the α-hydrazino acid 57 , which cyclised upon acidification to pH 1.3 with trifluoroacetic acid to give 54 in 65% yield (Scheme 11).

Scheme 11

(3S)-2,3,4,5-Tetrahydropyridazine-3-carboxylic acid (Pya) 67 is found in Antrimycin A 58 and Cirratiomycin A 59 (Figure 2). The former was isolated from Streptomyces xanthocidicus 40
and the latter from Strepomyces cirratus 41 . Both are of interest on account of their marked tuberculostatic properties.

Figure 2

Antrimycin A (58)

$$
\mathrm{R}_{1}=\mathrm{Me} \quad \mathrm{R}_{2}=\mathrm{Et}
$$

Cirratiomycin A (59)
$R_{1}=i B u ; \quad R_{2}=E t$

Nakamura and Shin developed an asymmetric synthesis of 67 that was based on Evans electrophilic amination of a N-acylated oxazolidinone. ${ }^{42}$ The starting 5-dimethoxypentanoic acid 63 was synthesised in four steps from valerolactone 60 , by methanolysis of 60 , oxidation of the resulting alcohol 61, and protection of the aldehyde as its dimethyl acetal. Hydrolysis of the methyl ester with lithium hydroxide furnished acid $\mathbf{6 3}$ in 56% yield (Scheme 12).

Scheme 12

N-Acyl-oxazolidinone 65 was prepared in 96% yield by addition of the mixed pivalic acid anhydride of 63 to the N-lithiated oxazolidinone 64. Subsequent enolisation with lithium diisopropylamide (LDA) and conjugate addition to di-tert-butylazodicarboxylate (DBAD) resulted in α hydrazino adduct 66 in 93% yield. After removal of the oxazolidinone auxiliary with magnesium methoxide, subsequent acidolysis cleaved the acetal and the two tert-butyloxycarbonyl (t-Boc) groups simultaneously to give the cyclised product 67 in 95% yield (Scheme 13).

In order to determine the enantiomeric purity of 67 , and assign its absolute configuration, it was converted to the known methyl-1-(2,4-dinitrophenyl)-(3S)-piperazate (Scheme 13). This was accomplished by reduction of 67 with sodium cyanoborohydride in methanol followed by the reaction with 2,4-dinitrophenyl fluoride (DNPF); methyl DNP-piperazate 68 was isolated in 33% overall yield for the 3 steps and in 98% ee .

Scheme 13

(68)

The specific rotation of 68 was measured and found to be opposite in sign and value to the previously prepared $(3 R)$ isomer. This meant that the configuration of the synthesised derivative had to be (3S).

Schmidt and Riedl used a similar tactic to obtain 68. They enolised the protected formylbutyric derivative 69 with sodium hexamethyldisilazide (NaHMDS) and also hydrazinated with DBAD, but this time adduct 70 was the product isolated in 67% yield. Hydrolysis and reesterification afforded methyl ester 71 which underwent cyclisation when subjected to trifluoroacetic acid to give 67 in 90% yield (Scheme 14). ${ }^{43}$ a,b

Scheme 14

Stoodley and coworkers have recently disclosed an asymmetric route to the Pya derivative 67 where the key step involved an asymmetric hetero Diels-Alder reaction with the chiral diene 74.44 The latter was obtained by a Wittig reaction between $(E)-1-\left(2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}\right.$-tetra-O-acetyl-$\beta$-D-glucopyranosyloxy)-propenal 73 and stabilsed ylide 72. Heating diene 74 with di-tert-butyl-
azodicarboxylate in dichloromethane at reflux led to cycloadduct 75 being isolated as a single diastereoisomer in 77% yield. Hydrogenation with palladium gave the piperazine which was converted to 67 by reaction with trifluoroacetic acid (Scheme 15).

Scheme 15

1.8 Discussion

For our projected total synthesis of antibiotic A83586C, we required a synthetic method that would furnish us with $(3 R)$ and $(3 S)$ piperazic acid in large quantity and high ee. When we set out on this project in 1991, the only method for obtaining chiral piperazic acid was the resolution procedure of Hassall and coworkers. ${ }^{17}$ This, however, is very uneconomical to carry out on large scale, leading to each enantiomer in an overall yield of 1.5%. Development of an efficient route to these α-hydrazino acids, therefore, became an important objective in our synthetic investigations on the molecule A83586C. In the coming section, a new high-yielding synthesis of (3S)-piperazic acid will be presented.

1.8.1 Retrosynthetic Analysis

Several routes were contemplated for the synthesis of (3S)-piperazic acid. However, the most attractive one was based on a tandem electrophilic hydrazination-nucleophilic displacement of a chiral valeryl carboximide enolate of type 78 with an azodicarboxylate 77 (Scheme 16).

Scheme 16

The chiral auxiliary which would direct the stereochemical course of the electrophilic hydrazination could potentially be either of oxazolidinones 80 and 81 , the N -alkylated-ephedrine 82, or a 9,10-bornylsultam 83

(80) 83.

(81)

(82)

Treatment of 76 with a sterically hindered strong base was expected to yield the enolate 78, which we hoped would then undergo an intermolecular conjugate Michael addition to the azo compound 77 to generate the N^{1}-aza anion. The latter could then displace a suitable leaving group (L) to form 79. We felt that the leaving group L could be either a sulfonate ester, or a chloro, bromo, or iodo group. Subsequent removal of the auxiliary and the nitrogen protecting groups from 79 should then result in chiral piperazic acid.

1.8.2 Results

In light of the fact that Evans and Vederas had successfully α-hydrazinated chiral enolates derived from N -acyl oxazolidinones with di-tert-butylazodicarboxylate, we thought that a suitable chiral auxiliary for preparing (3S)-piperazic acid would be (4S)-(phenylmethyl)-2-oxazolidinone (80). We also believed that the best leaving group in Scheme 16 would be a bromide since 5bromovaleric acid and its acid chloride were commercially available. With these considerations in mind, the initial retrosynthetic concepts enunciated in Scheme 16 were reduced to the retrosynthetic plan shown in Scheme 17.

Scheme 17

(4S)-(Phenylmethyl)-2-oxazolidinone 80 was synthesised from (S)-phenylalanine by the procedure of Evans and Weber. ${ }^{45}$ The first step in our sequence to 89 entailed formation of the 5-bromovaleryl acylated-oxazolidinone 84. This was accomplished by deprotonation of the oxazolidinone 80 with n-butyllithium at $-78^{\circ} \mathrm{C}$, and addition of 5 -bromovaleryl chloride. After warming the reaction mixture to room temperature and extractive work-up, bromide 84 was isolated in 91% yield by crystallisation of the crude reaction mixture from hexanes and ether at $0^{\circ} \mathrm{C}$. Bromide 84 could also be obtained from 5-bromovaleric acid in 89% yield by forming a mixed anhydride with pivaloyl chloride in the presence of triethylamine in ether and reacting it with the lithiated oxazolidinone 64 at $-78^{\circ} \mathrm{C}$ (Scheme 18).

The infrared spectrum of 84 contained two intense absorptions at 1792 and $1701 \mathrm{~cm}^{-1}$ which corresponded to the carbonyl group stretching frequencies of the amide and the carbamate respectively. The structure of 84 was also apparent after inspection of the ${ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3} at 100 MHz , since there were two resonances at $\delta 172.5$ and 153.3 which were highly characteristic of the carbonyl groups in an N -acyloxazolidinone. Further structural proof was provided by the presence of two roughly equal $(\mathrm{M}+\mathrm{H})^{+}$ions at $\mathrm{m} / \mathrm{e} 340$ and 342 , which arose due to the ${ }^{79} \mathrm{Br}$ and ${ }^{81} \mathrm{Br}$ isotopes respectively. The high resolution mass spectrum of 84 contained an $(\mathrm{M}+\mathrm{H})^{+}$ion peak at m/e 340.0544 (Calcd. for $\left.\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{NBr}(\mathrm{M}+\mathrm{H})^{+} 340.0548\right)$. In addition, compound 84 gave a satisfactory combustion microanalysis for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{Br}$.

Electrophilic amination of 84 was carried out according to the procedure set out by Evans and coworkers..22 Thus, a precooled solution of bromide 84 at $-78^{\circ} \mathrm{C}$ in dry THF was added to a
freshly prepared and cooled solution of lithium diisopropylamide (LDA) at -78 ${ }^{\circ} \mathrm{C}$ in dry THF. The resulting yellow enolate solution was then stirred at $-78^{\circ} \mathrm{C}$ for 40 minutes prior to adding a precooled $\left(-10^{\circ} \mathrm{C}\right)$ solution of $D B A D^{46}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ via cannula. The mixture was then allowed to warm to room temperature, but only a small amount of the desired cyclised product $\mathbf{8 6}$ could be detected after quenching with glacial acetic acid. The major product was the hydrazino adduct 85 which was isolated in 84% yield (Scheme 19). The infrared spectrum of 85 contained the expected NH stretching frequency at $3360 \mathrm{~cm}^{-1}$ and also contained two carbonyl stretching absorptions at 1790 and $1697 \mathrm{~cm}^{-1}$. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum in DMSO-d6 at $100{ }^{\circ} \mathrm{C}$ revealed a broad resonance between $\delta 8.30$ and 8.00 corresponding to the NH proton and two singlets at $\delta 1.44$ and 1.43 due to the two t-Boc groups. The structure of 85 was further confirmed by its high resolution mass spectrum, which contained an $(\mathrm{M}+\mathrm{Na})^{+}$ion at $\mathrm{m} / \mathrm{e} 592.1642$ (Calcd. for $\left.\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{BrNa},(\mathrm{M}+\mathrm{Na})^{+} 592.1634\right)$. We reasoned that the desired cyclised product was not obtained because the aza anion intermediate was tightly coordinated to the lithium counterion, which considerably reduced its nucleophilicity for the subsequent intramolecular $\mathrm{S}_{\mathrm{N}} 2$ displace-ment. In order to overcome this problem, we decided to add a dipolar aprotic solvent such as hexamethylphosphoric triamide (HMPA) or 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)pyrimidinone (DMPU) which would solvate the cation, and generate a "naked" aza anion. This would then facilitate the displacement of the bromide atom by the aza anion. In view of the known carcino-genicity of HMPA, we chose to utilise DMPU for the cyclisation step. Thus, DMPU was added 30 minutes after the DBAD at $-78^{\circ} \mathrm{C}$. The DMPU addition was done slowly over 40 minutes and when complete, the reaction mixture became frozen. As the reaction mixture warmed to room temperature it melted, and as this happened, cyclisation of the N-aza anion took place. The desired cyclisation product 86 was then isolated in 68% yield after extractive work-up with $\mathrm{KH}_{2} \mathrm{PO}_{4}$ (1.25 M) and ether (Scheme 19).

The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 86 in DMSO- d_{6} at $25^{\circ} \mathrm{C}$ was extensively broadened, making it difficult to assign specific proton resonances. This broadening was due to restricted rotation of the Boc groups about the respective nitrogen atoms enabling several rotamers to be observed. However, when recorded at $125{ }^{\circ} \mathrm{C}$ in DMSO-d d_{6} the spectrum became sharp as the
time-averaged spectrum was observed (Figure 3). It was clear from the ${ }^{1} \mathrm{H}$ NMR spectrum of 86 at $125^{\circ} \mathrm{C}$ that only one diastereomer had been formed.

Figure 3: $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of cycloadduct 86 in DMSO-d ${ }_{6}$ at room temperature and at $125^{\circ} \mathrm{C}$

The high resolution mass spectrum of 86 contained an $(M+H)^{+}$peak at m/e 490.255 (Calcd. for $\left.\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{7},(\mathrm{M}+\mathrm{H})^{+} 490.255\right)$. In addition, compound 86 gave a satisfactory C, H and N com-
bustion microanalysis for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{7}$ (Calcd.: C, $61.23 ; \mathrm{H}, 7.21$; $\mathrm{N}, 8.59 \%$. Found: $\mathrm{C}, 60.90 ; \mathrm{H}$, $7.35 ; \mathrm{N}, 8.59 \%$). It must be noted that a small amount of hydrolysis of oxazolidinone 86 occurs during quenching of the reaction (1-4\%).

Hydrolysis of 86 with lithium hydroxide (2.3 eq) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ at $-10^{\circ} \mathrm{C}$ gave acid 87 in 84% yield after acidification; oxazolidinone 80 was recovered in 67% yield (Scheme 20). This hydrolysis is non-destructive as the hydrolxide ion attacks selectively at the exocyclic carbonyl rather than at the endocyclic carbamate carbonyl. The $400 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of 87 in CDCl_{3} contained a broad singlet between $\delta 11.50-10.00$ which was attributable to the carboxylic acid proton. The absence of any aromatic proton signals between $\delta 7.34-7.20$ also confirmed that the oxazolidinone had been removed. The infrared spectrum of 87 contained a broad absorption at $3204 \mathrm{~cm}^{-1}$ which was due to the acid OH stretching absorption; it also contained absorptions at 1737, 1704, and $1670 \mathrm{~cm}^{-1}$ due to the remaining carbonyl groups.

In order to assess the diastereoselectivity of the electrophilic amination step, the crude acid 87 was treated with excess ethereal diazomethane to give the methyl ester $\mathbf{8 8}$ in $\mathbf{7 8 \%}$ yield (Scheme 20). The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} contained a methoxy singlet at $\delta 3.67$. The resonance at $\delta 51.9$ and the carbonyl signal at $\delta 170.4$ in the $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3} also supported the presence of a methyl ester group.

Scheme 20

(88)

Compound 88 was then applied to a Chiracel-OD high performance analytical chiral column eluting with 1.4% i-propanol in hexane at a flow rate of $1 \mathrm{ml} / \mathrm{min}$ and its purity checked with the use of a refractive index detector. A comparison of the the HPLC trace of the two separated enantiomers for the racemic $(3 R, 3 S)$ methyl ester 93 (prepared according to Scheme 25) with that obtained for compound 88 showed that the latter had been obtained in 96% ee (Figure 4).

Figure 4: HPLC traces of racemic methyl ester 93 and the asymmetric derived compound 88 .
At this juncture, both tert-butyloxycarbonyl groups were removed from 87 with trifluoroacetic acid in dichloromethane, ${ }^{47}$ providing the required piperazic acid trifluoroacetic acid salt 89 in 100\% yield after recrystallisation from ethyl acetate/ethanol (Scheme 21).

Scheme 21

Compound 89 gave a microanalysis that was fully in accord with an empirical formula of $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~F}_{3}$ (Calcd.: $\mathrm{C}, 34.43 ; \mathrm{H}, 4.54 ; \mathrm{N}, 11.47 \%$. Found: $\mathrm{C}, 34.51 ; \mathrm{H}, 4.55 ; \mathrm{N}, 11.49 \%$). In addition, the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 89 in $\mathrm{D}_{2} \mathrm{O}$ contained only seven proton resonances between $\delta 3.80$ and 1.50 as would be expected.

1.8.3 Determination of the Configuration and Enantiomeric Excess

In order to determine the configuration of the synthesised piperazic acid 89 the known 2,4-dinitrophenyl derivatives 90 and 68 were synthesised. ${ }^{9}$ Thus, 89 was treated with 2,4dinitrophenyl fluoride and sodium bicarbonate in ethanol to give N^{1}-(2,4-dinitrophenyl) piperazic acid 90 in a yield of 65% (Scheme 22). The infrared spectrum of 90 contained an NH stretching absorption at $3200 \mathrm{~cm}^{-1}$, a carbonyl stretching absorption at $1715 \mathrm{~cm}^{-1}$, and an NO_{2} stretch absorption at $1608 \mathrm{~cm}^{-1}$. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 90 in CDCl_{3} consisted inter alia of resonances at $\delta 8.40(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=2.6,9.3 \mathrm{~Hz}, 1 \mathrm{H})$ and at $6.95(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, 1 H), which are characteristic of an $0, p$-disubstituted aromatic ring.

Scheme 22

The specific rotation of 90 was measured and found to be $[\alpha]_{D}-345^{\circ}$ (c 1.0 in MeOH); the literature value for (3R) $-N^{1}$-DNP-piperazic acid is $[\alpha]_{D}+324.6^{\circ}(c 1.0$ in MeOH$) .{ }^{9}$ Since the specific rotation of 90 was of opposite sign to that for the authentic $(3 R)$-enantiomer, this confirmed that (3S)- N^{1}-DNP-piperazic acid had been prepared. The higher $[\alpha]_{D}$ value suggested that the piperazic acid obtained via the above route was of high enantiomeric purity than that obtained by the resolution procedure of Hassall and coworkers. ${ }^{33}$

Methyl N^{1}-(2,4-dinitrophenyl) piperazate 68 was synthesised by treating the acid 90 with excess ethereal diazomethane (Scheme 23). The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{C}_{6} \mathrm{D}_{6}$ contained a three proton singlet at $\delta 3.17$ which was clearly due to the MeO group of the methyl ester. The presence of the MeO was also apparent from the $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum which now contained a resonance at $\delta 51.5 \mathrm{ppm}$ due to this group. A satisfactory microanalysis was obtained for 68 which supported the empirical formula of $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{6}$ (Calcd.: $\mathrm{C}, 46.44 ; \mathrm{H}, 4.55 ; \mathrm{N}, 18.06 \%$. Found: C, 46.05; H, 4.41; N, 17.77\%).

Scheme 23

The racemic derivative 94 （prepared according to Scheme 25）was applied to a Chiracel－OD high performance analytical column eluting with 25% isopropanol in hexane at a flow rate of $1 \mathrm{ml} / \mathrm{min}$ ． UV detector set at 254 nm ．This system clearly separated both enantiomers．The ee of 68 was judged to be greater than 98%（Figure 5）．Thus，we have developed a novel asymmetric synthesis of（3S）－piperazic acid in a high enantiomeric excess．
КUH 1

ki	min 2	TYp	ibht	rue：$-\%$
3.19	$6<55$	0 \％	0.010	ล．1．
4.85	9635	Ei	0.188	－${ }^{\text {cin }}$ ？
7.72	13550	F2	1． 2 －${ }^{\text {d }}$	¢ ${ }^{\text {e }}$
19.18	2155008	ES	0．34\％	＜2．al？
［3．37	てくss9e8	E3	1.558	31．1？

（68）

RUH：5
AREA\％

MU FACTOR＝1．©OHCE + だ

Figure 5：HPLC traces of racemic ester 94 and compound 68

1．8．4 One－Pot Synthesis（3S）－N^{1}, N^{2}－bis－（t－butoxycarbonyl）hexahydropyrid－

azine－3－carboxylic acid，（87）
The acylation of oxazolidinone 80 and subsequent cyclisation can be carried out in one－ pot，using bromovaleryl chloride as the acylating agent．In this modified procedure 5－bromovaleryl chloride was added to the lithiated oxazolidinone in THF at $-78^{\circ} \mathrm{C}$ ，the reaction mixture then stirred at room temperature，recooled to $-78^{\circ} \mathrm{C}$ ，and then added to a cold solution of LDA in THF at $-78^{\circ} \mathrm{C}$ ．Subsequent addition of DBAD followed by DMPU resulted in the cyclised product 86
after aqueous work-up. Hydrolysis of the crude cyclised product with lithium hydroxide at $0^{\circ} \mathrm{C}$ resulted in acid 87 being formed in 74% yield for the three steps (Scheme 24). The methyl (3S)-N^{1}-(2,4-dinitrophenyl)-piperazate was then synthesised as above and the ee was determined and found to be 95% by the chiral HPLC on a Chiracel-OD column.

Scheme 24

This synthetic scheme can be carried out without any purification of intermediates with an overall yield of 68% for the four steps and without any loss of ee in the resulting piperazic acid. ${ }^{48}$

1.8.5 Synthesis of Racemic (3S,3R)-Piperazic acid Derivatives

In order to independently confirm the structure of the newly synthesised (3S)-piperazic acid derivative, methyl $(3 R, 3 S)-N^{1}$-(2,4-dinitrophenyl) piperazate 94 was synthesised according to the unpublished procedure supplied to us by Drs. Durette and Caldwell at Merck, Sharp and Dohme, Rahway (Scheme 25). ${ }^{49}$ Thus di-tert-butylazodicarboxylate was reacted with methyl penta-2,4-dienoate 91 in chloroform at reflux to give the tetrahydropyridazine derivative 92 in 47% yield. The $400 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} contained a broad singlet at $\delta 5.87$ integrating to two protons which was indicative of the olefinic protons, and a singlet at $\delta 1.48$ which integrated to eighteen protons and which was due to the two N-Boc groups that were present. The $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 92 in CDCl_{3} contained a resonance at $\delta 169.4$ due to the ester $\mathrm{C}=\mathrm{O}$, and a signal at $\delta 154.8$ due to the Boc-carbonyl group. There were also resonances at $\delta 125.4$ and 122.2 which indicated the presence of two olefinic carbons. The infrared spectrum contained two intense carbonyl absorptions at 1744 and $1707 \mathrm{~cm}^{-1}$ due to the ester and carbamate carbonyl groups respectively. Hydrogenation of 92 over a palladium on carbon catalyst gave the protected piperazic methyl ester 93 in a yield of 80%. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} now showed the absence of the two olefinic protons at $\delta 5.87$. In addition, the olefinic resonances at $\delta 125.4$ and 122.2 were absent, there now being two new
aliphatic resonances at $\delta 20.0$ and $\delta 24.8$ in the $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum in CDCl_{3}. Subsequent hydrolysis of 93 with potassium hydroxide and removal of the two tertbutyloxycarbonyl groups with trifluoroacetic acid resulted in (3S,3R)-piperazic acid trifluoroacetic acid salt 38 in 100\% yield. Compound 38 was transformed into 94 as discussed previously.

1.8.6 Synthesis of (3S)-Piperazic acid via a Titanium enolate

As we were hoping to develop a procedure for the synthesis of (3R) and (3S)-piperazic acids on a process plant scale, the original route was not considered commercially viable since low temperatures were required for the electrophilic hydrazination step.

Evans has recently found that chlorotitanium enolates from chiral N -acylated oxazolidinones react with Michael acceptors such as acrylonitrile with excellent levels of stereocontrol and in good yield (Scheme 26). 50

Scheme 26

Since, the electrophilic hydrazination step in our synthesis of (3S) piperazic acid can also be considered as a Michael type addition onto DBAD, we decided to reinvestigate this step at -10 ${ }^{\circ} \mathrm{C}$ using a chlorotitanium enolate rather than the lithium enolate of N -bromovaleryl oxazolidinone 84. Addition of titanium tetrachioride to bromide 84 at $-10^{\circ} \mathrm{C}$ in dichloromethane followed by diisopropylethylamine after 5 min , resulted in a dark red solution of the titanium enolate being formed. When a cooled solution of DBAD in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-5^{\circ} \mathrm{C}$ was then added and the mixture
stirred for 3 hours at $0^{\circ} \mathrm{C}$, a single product 85 was formed in 82% yield (Scheme 27). The 400 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 85 at $25^{\circ} \mathrm{C}$ in DMSO-d d_{6} was broad and largely unassignable. However at $100^{\circ} \mathrm{C}$ the spectrum became sharp and revealed a broad resonance around $\delta 8.17$ corresponding to the NH proton, a five proton multiplet between $\delta 7.38-7.21$ due to the aromatic ring, and two singlets at $\delta 1.44$ and 1.43 which integrated to eighteen hydrogens and which corresponded to the two t-butyl groups of the t-Boc protecting groups in 85 . The infrared spectrum of 85 revealed an NH stretch at $3360 \mathrm{~cm}^{-1}$ and carbonyl stretching absorptions at 1790 and $1697 \mathrm{~cm}^{-1}$. Compound 85 gave a satisfactory microanalysis for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Br}$ (Calcd.: C , 52.63; H, 6.36; N, 7.37; Br,14.01\%. Found: C, 52.43; H, 6.3; N, 7.32; Br, 14.25\%).

Scheme 27

Presumably, cyclisation of the aza-anion did not occur because of the very strong affinity of the chlorotitanium ion for the aza anion, which leads to formation of a very strong ion pair. We therefore elected to attempt deprotonation of hydrazide 85 with sodium hydride in DMF in the hope that intramolecular cyclisation reaction would then take place. A literature precedent for this type of cyclisation can be found in the synthesis of L-pipecolic acid 100 by Fujii and Miyoshi (Scheme 28). ${ }^{51}$

Scheme 28

Treatment of adduct 85 with sodium hydride (1.1 eq) in dry DMF under nitrogen at $0^{\circ} \mathrm{C}$ resulted in cycloadduct $\mathbf{8 6}$ being formed in 87% yield (Scheme 29). Compound 86 was then converted into methyl-(3S)- N^{1}-(2,4-dinitrophenyl) piperazate 68 as previously and the ee judged to be 78% by HLPC analysis on a Chiracel OD-column (Figure 6).

Figure 6: HPLC traces of racemic methyl ester 94 and the asymmetric derived compound 68.
The lower ee value is presumably the result of some partial racemisation occurring in the base-induced cyclisation step. Nevertheless, this ee value is still high enough to be useful in a future large scale industrial synthesis of (3S)-piperazic acid.

1.9 References

(1) Maehr, H.; Liu, C. M.; Palleroni, N. J.; Smallheer, J.; Todaro, L.; Williams, T. H.; Blount, J. F., J. Antibiotics, 1986, 39, 17.
(2) Smitka, T. A.; Deeter, J. B.; Hunt, A. H.; Mertz, F. P.; Ellis, R. M.; Boeck, L. D.; Yao, R. C., J. Antibiotics, 1988, 41, 726.
(3) Nakagawa, M.; Hayakawa, Y.; Furihata, K.; Seto, H., J. Antibiotics, 1990, 43, 477.
(4) Nakagawa, M.; Hayakawa, Y.; Adachi, K.; Seto, H., Agric. Biol. Chem., 1990, 54, 791.
(5) Hurley, T. R.; Bunge, R. H.; Willmer, N. E.; Hokanson, G. C.; French, J. C., J. Antibiotics, 1986, 39, 1651.
(6) Hensens, O. D.; Borris, R. P.; Koupal, L. R.; Caldwell, C. G.; Currie, S. A.; Haidri, A. A.; Homnick, C. F.; Honeycutt, S. S.; Lindenmayer, S. M.; Schwartz, C. D.; Weissberger, B. A.; Woodruff, H. B.; Zink, D. L.; Zintano, L.; Fieldhouse, J. M.; Rollins, T.; Springer, M. S.; Springer, J. P., J. Antibiotics, 1991, 44, 249.
(7) Sugawara, K.; Toda, S.; Moriyama, T.; Konishi, M.; Oki, T., J. Antibiotics, 1993, 46, 921.
(8) Nishiyama, Y.; Sugawara, K.; Tomita, K.; Yamamoto, H.; Kamei, H.; Oki, T., J. Antibiotics, 1993, 46, 928.
(9) Bevan, K.; Davies, J.S.; Hassall, C.H.; Morton, R.B.; Phillips, D.A.S., J. Chem. Soc. (C), 1971, 514.
(10) Hassall, C.H.; Morton, R.B.; Ogihara, Y.; Thomas, W.A., Chem. Commun., 1969, 1079.
(11) Hassall, C.H.; Ogihara, Y.; Thomas, W.A., J. Chem. Soc. (C), 1971, 522.
(12) Johnston, G.A.R.; Stephanson, A.L.; Twitchin, B., J. Pharmacol., 1977, 29, 240.
(13) Ogita, T.; Sato, A.; Enokita, R.; Suzuki, K.; Ishi, M.; Negishi, T.; Okazaki, T.; Tamoki, K.; Tanzawa, K., J. Antibiotics, 1992, 45, 1723.
(14) Tamaki, K.; Kurihara, S.; Sugimura, Y., Tetrahedron Lett., 1993, 34, 8477.
(15) Tamaki, K.; Ogita, T.; Tanzawa, K.; Sugimura, Y., Tetrahedron Lett., 1993, 34, 683.
(16) Pettibone, D.J.; Clineschimdt, B.V.; Anderson, P.S.; Friedinger, R.M.; Lundell, G.F.; Koupal, L.R.; Schwartz, C.D.; Williamson, J.M.; Goetz, M.A.; Hensens, O.D.; Liesch, J.M.; Springer, J.P., Endocrinology, 1989, 125, 217.

Bock, M.G.; Dipardo, R.M.; Williams, P.D.; Pettibone, D.J.; Clineschimdt, B.V.; Ball, R.G.; Veber, D.F.; Friedinger, R.M., J. Med. Chem., 1990, 33, 2321.

Isshiki, K.; Sawa, T.; Naganawa, H.; Lizumi, Y.; Matsuda, N.; Hamada, M.; Takeuchi, T.; lijima, M.; Osono, M.; Masuda, T.; Ishizuka, M., J. Antibiotics, 1990, 43, 1195.

Attwood, M.R.; Hassal, C.H.; Krohn, A.; Lawton, G.; Redshaw, S., J. Chem. Soc. Perkin Trans. 1, 1986, 1011.
(a) Hassall, C.H.; Krohn, A.; C.J.; Thomas, W.A., J. Chem. Soc., Perkin Trans. 1, 1984, 155; (b) Indelicato, J.M.; Pasini, C.E., J. Med. Chem., 1988, 31, 1227; (c)

Jungheim, L.N.; Boyd, D.B.; Indelicato, J.M.; Pasini, C.E.; Preston, D.A.; Alborn, W.E., J. Med. Chem., 1991, 34, 1732.

Gennari, C.; Colombo, L.; Bertolini, G., J. Amer. Chem. Soc., 1986, 108, 6394.
(a) Evans, D.A.; Britton, T.C.; Dorow, R.L.; Dellaria, J.F., J. Amer. Chem. Soc, 1986, 108, 6395. (b) Evans, D.A.; Britton, T.C.; Dorow, R.L.; Dellaria, J.F, Tetrahedron, 1988, 44, 5525.

Trimble, L.A.; Vederas, J.C., J. Amer. Chem. Soc., 1986, 108, 6397.
Heathcock, C.E. in Asymmetric Synthesis, Morrison, J.D., Ed.; Academic: New York, 1984, 3; Chapter 2.
(a) Oppolzer, W.; Moretti, R., Helv. Chim. Acta., 1986, 69, 1923. (b) Oppolzer, W.; Moretti, R., Tetrahedron, 1988, 44, 5541.

Guanti, G.; Banfi, J.; Narisano, E., Tetrahedron, 1988, 44, 5553.
Achiwa, K.; Yamada, S.I., Tetrahedron Lett., 1975, 31, 2701.
Vidal, J.; Drouin, J.; Collet, A., J. Chem. Soc., Chem. Commun., 1991, 435.
A review of amination with oxaziridines : Andreae, S.; Schmitz, E., Synthesis, 1991, 327.
Niedrere, D.A.; Kapron, J.T.; Vederas, J.C., Tetrahedron Lett., 1993, 34, 6859.
Davies, C.R.; Davies, J.S., J. Chem. Soc., Perkin Trans. 1, 1976, 2390.
Adams, C.E.; Aguilar, D.; Hertel, S.; Knight, W.H.; Paterson, J., Syn.Comm., 1988, 18 (18), 2225.

Hassall, C.H.; Johnson, W.H.; Theobold, C.J., J. Chem. Soc. Perkin Trans 1, 1979, 1451.
(34) Hall, M.J.; Handford, B.O.; Hassall, C.M.; Phillips, D.A.S.; Rees, A.V., Antimicrob. Chemotherapy, 1973, 3, 380.

Oki, K.; Suzuki, K.; Tuchida, S.; Saito, T.; Kotake, H., Bull. Chem. Soc. Jpn., 1970, 43, 2554.
(36) Rutjes, F.P.J.T.; Teerhuis, N.M.; Hiemstra, H.; Speckamp, W.N., Tetrahedron, 1993, 49 8605.
(37) Ciufolini, M.A.,; Xi, N., J. Chem. Soc., Chem. Commun., 1994, 1867.

Shiroza, T.; Ebisawa, N.; Furihata, K.; Endo, T.; Seto, H.; Otake, N., Agric. Biol. Chem., 1982, 46 (7), 1891.
(42) Nakamura, Y.; Shin, C., Chem. Lett., 1991, 1953.
(a) Schimdt, U.; Riedl, B., J. Chem. Soc., Chem. Commun., 1992, 1186; (b) Schimdt, U.; Riedl, B.,Synthesis, 1993, 809.
(44) Aspinall, I.H.; Cowley, P.M.; Mitchell, G.; Stoodley, R.J., J. Chem. Soc., Chem. Commun., 1993, 1179.

Evans, D.A.; Weber, A.E., J. Amer. Chem. Soc., 1986, 108, 6757.
Preparation of di-tert-butylazodicarboxylate; Carpino, L.A.; Terry, P.H.; Crowley, P.J., J. Org. Chem.,1961, 26, 4336.

Kappeler, H.; Schwyzer, R., Helv. Chim. Acta., 1960, 43, 1453.
Hale, K.; Delisser, V.M., Manaviazar, S., Tetrahedron Lett., 1992, 33, 7613.
(49) Durette, P.L.; Baker, F.; Barker, P.L.; Boger, J.; Bondy, S.S.; Hammond, M.L.; Lanza, T.L.; Pessolano, A.A.; Caldwell, C.G., Abs. $198^{\text {th }}$ ACS National Meeting, Miami Beach, Florida, September 10-15, 1990, Abstract No. 119.

Fujii, T.; Miyoshi, M., Bull. Chem. Soc. Jpn., 1975, 48 (4), 1341.

Chapter 2 A Review on the Synthesis of Naturally-Occurring Cyclodepsipeptides

2.1 Introduction

The purpose of this chapter is to give the unfamiliar reader a background on the problems associated with the synthesis of cyclodepsipeptides. It will also illustrate the various protecting group strategies and coupling reagents that are used in the synthesis of cyclodepsipeptides.

Depsipeptides are linear peptides that possess at least one ester linkage. Cyclodepsipeptides are cyclic peptides that contain α-amino acids and α-hydroxy acids and which possess a lactone bond in the sequence. Most naturally-occurring cyclodepsipeptides are neutral and insoluble in water; the majority, however, are soluble in organic solvents and tend to be crystalline. Their structures are usually determined by a combination of NMR measurements, X-ray and mass spectral analysis, and also through quantitative amino-acid analysis. The infrared spectra of cyclodepsipeptides are distinctive in that they show strong absorptions due to the ester (1755$1715 \mathrm{~cm}^{-1}$) and the amide (1680-1635 cm ${ }^{-1}$) carbonyl groups. Moreover the absence of an amide II band between $1575-1500 \mathrm{~cm}^{-1}$ and an N-H stretching band between $3360-3260 \mathrm{~cm}^{-1}$ is usually indicative of all the amino acid residues being N-alkylated. An earlier review on cyclodepsipeptides was published in 1964 by Losse and Bachmann, in which they discussed the chemistry, classification, and nomenclature of all the then known compounds. ${ }^{1}$ D.W. Russell also published a concise review on the occurrence, structure determination, and synthesis of several cyclodepsipeptides. ${ }^{2}$

2.2 Synthesis

Enniatins

The first family of cyclodepsipeptides to be isolated were enniatins $A(101-A)$ and B (101-B). They were discovered in the culture filtrates of various Fusarium species. ${ }^{3}$ The synthesis of enniatin B 101-B was achieved by Shemyakin and coworkers using a 4+2 fragment condensation strategy. This involved coupling of depsipeptide 102 with tetradepsipeptide 103 using acid chloride technology ($\mathrm{PCI} 5, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$). This led to protected hexadepsipeptide 104 in 85% yield. The p-nitrobenzyloxycarbonyl and t-butyl ester protecting groups were removed
with hydrogen bromide in acetic acid and the ring subsequently cyclised via the acid chloride to give 101 in 60% yield (Scheme 1). ${ }^{4 a}$ Vogler and coworkers ${ }^{4 b}$ have also synthesised enniatin B in an analogous way to Shemyakin, and found their synthesised material had identical antimicrobial properties to the natural compound. The enniatin A (101-A) structure was also confimed by Vogler who synthesised it in a yield of 36% by a similar route. ${ }^{5}$

Scheme 1

Enniatin $C^{6 a}$ (108), a natural analogue of enniatin B, was synthesised by Kanaoka and coworkers by coupling acid chloride 105 with tetradepsipeptide 106 in ether and triethylamine at $-15^{\circ} \mathrm{C}$ to give 107 in 47% yield. Simultaneous removal of the benzyloxycarbamate and the t butyl ester from 107 with hydrogen bromide in acetic acid and subsequent cyclisation via the acid chloride method gave 108 in 17% yield (Scheme 2). ${ }^{6 b}$

Scheme 2

Sporidesmolides

Sporidesmolides are produced by the toxic pasture fungus Pithomyces chartatum and are the causative agent of facial eczema in ruminants. The structure of sporidesmolide I (109) was confirmed through total synthesis by Shemyakin and coworkers in $1963 .{ }^{7}$ Thus, the acid chloride of tridepsipeptide 110 was coupled to 111 to give linear protected hexadepsipeptide 112 in 60% yield. Treatment of 112 with hydrogen bromide in glacial acetic acid gave the free hexadepsipeptide which was subsequently cyclised by the acid chloride protocol to give 109 in 45% yield (Scheme 3). Sporidesmolide II was synthesised in a similiar fashion, after substituting Disoleucine for the D-valine residue. ${ }^{8}$

Scheme 3

Valinomycin

Valinomycin (113) was isolated from Streptomyces fulvissimus and showed antibiotic properties. ${ }^{9}$ Several structures were proposed by Brockman and coworkers, but these were subsequently found to be incorrect after total synthesis. ${ }^{10}$ Brockman later revised the structure to be that of dodecadepsipeptide 113. Valinomycin functions as an antibiotic by altering the
permeability of biological and artificial lipid membranes to monovalent cations ${ }^{11,12}$ showing selectivity for potassium ions compared to sodium ions, in the membranes of mitochondria, ${ }^{13}$ redblood cells ${ }^{14}$ and in lipid bilayers. The structure of valinomycin was confirmed by total synthesis in 1963 by Shemyakin and coworkers. ${ }^{15}$ Their synthesis was initiated by the esterification of 114 with 115, and 117 with 118 to give depsipeptides 116 and 119 respectively, via the mixed benzenesulfonic acid anhydride method (Scheme 4). Compound 116 was treated either with trifluoroacetic acid to reveal acid $\mathbf{1 2 0}$ or hydrogenated with palladium on carbon to give amine 121. Depsipeptide 119 was hydrogenated with palladium on carbon to give amine 122 quantitatively (Scheme 4).

Scheme 4

Coupling of the acid chloride from 120 with amine 122, mediated by triethylamine, gave tetradepsipeptide 123 after acidolysis of the t-butyl ester with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$. Acid 123 was then coupled to amine 121 via the acid chloride and removal of the ester group gave hexadepsipeptide 124 , to this was coupled 122 to form the octadepsipeptide which was then converted to acid chloride 125 (Scheme 5). Condensation of 125 with tetradepsipeptide 126 in the presence of triethylamine gave the linear dodecadepsipeptide 127. Hydrogenation and subsequent cyclisation by the acid chloride protocol at high dilution gave valinomycin 113 in 10% yield (Scheme 5).

Scheme 5

The synthesis of 113 by Jouin was based on the formation of depsipeptides 130 and 133 via the isopropenyl chlorocarbonate (IPCC) activation protocol. ${ }^{16}$ Thus esterification of N -Boc-D-valine 128 with the lactate derivative 129 gave the ester in 98% yield, subsequent removal of the benzyl ester by hydrogenation gave acid 130 in a quantitative yield. N -Boc-Lvaline 131 was coupled to the hydroxyvaleric acid derivative 132 via IPCC activation to furnish after the cleavage of the Boc group, amine 133 in 98% yield (Scheme 6).

Scheme 6

Condensation of $\mathbf{1 3 0}$ with $\mathbf{1 3 3}$ was effected by the benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP) activated ester protocol ${ }^{17}$ and gave 134 in 80% yield. Tetradepsipeptide 134 was either hydrogenated to give acid 135 or hydrolysed to give amine 136 respectively in quatitative yield (Scheme 7).

Scheme 7

Coupling of 135 and 136 by the BOP method gave the linear octadepsipeptide 137 in 80% yield. Deprotection of the acid by hydrogenation and condensation with 136 gave the dodecadepsipeptide 138 in 90% yield. Deprotection of 138 by hydrogenation and acidolysis gave the free dodecadepsipeptide which was cyclised by the BOP procedure to form the hydroxyvaline-valine bond of valinomycin 113 in 30\% yield (Scheme 8).

Scheme 8

A solid-phase approach to 113 has been developed by Merrifield that is based on the coupling of depsipeptides 130 and 139 alternately. ${ }^{18}$ The depsipeptide 130 was synthesised by coupling lactate 129 and amino acid 128 with N, N^{\prime}-carbonyldiimidazole (CDI). ${ }^{19}$ Subsequent debenzylation by hydrogenolysis revealed acid 130. Depsipeptide 139 was synthesised by the same method (Scheme 9).

Depsipeptide 130 was initially coupled to the chloromethylated stryrene-divinylbenzene re $\sin ^{20}$ to give the depsipeptide resin 140. This was then chain extended using the automated instrument. The key steps entailed removal of the t-Boc group with HCl in dioxane and coupling to the appropriate depsipeptide unit using N, N-dicyclohexyicarbodiimide (DCC) ${ }^{21}$ as the activating agent. After five cycles the protected linear dodecadepsipeptide resin 144 was obtained (Scheme 10).

Scheme 10

2. $130, \mathrm{DCC}, \mathrm{Et}_{2} \mathrm{O}$

1. HCl -dioxane
3.139, DCC, $\mathrm{Et}_{2} \mathrm{O}$

(144)

After each coupling step a sample of the peptide-resin was cleaved with hydrogen bromide in acetic acid and the peptide was then eluted on a silica gel TLC plate in order to assess its homogeneity. Apart from the tetradepsipeptide of 141 which was contaminated with 5% of H -D-Val-L-Lac-OH, the other coupling products were homogeneous. In order to complete the
synthesis of 113 the dodecadepsipeptide-resin 144 was treated with hydrogen bromide in trifluoroacetic acid to give the free dodecadepsipeptide in 64% yield. This was cyclised to valinomycin 113 in 51% yield by the acid chloride method of Shemyakin ${ }^{15}$ at high dilution (Scheme 11). This particular macrolactamisation went in a higher yield than that of Shemyakin since it was attempted at the D-Lac-D-Val bond rather than the more hindered D-hydroisovaleric (Hyv)-D-Val bond.

Scheme 11

The Losse and Klengel ${ }^{22}$ synthesis of valinomycin (113) was based on the formation of linear dodecadepsipeptide 145. Cyclisation was accomplished by the acid chloride/triethylamine protocol at high dilution to furnish valinomycin in 24% yield (Scheme 12).

Scheme 12

Mellor and coworkers have developed an efficient cyclisation procedure for the synthesis of valinomycin anologues that utilises activated pentafluorophenyl esters. Slow injection of the trifluoroacetic acid salt of the pentafluorophenyl ester 146 over 36 hours to a solution of 4(dimethylamino)pyridine (DMAP) in dioxane at $90^{\circ} \mathrm{C}$ gave the desired cyclised product 148 in 14% yield (method A). In order to increase the yield of the product, 146 was generated in situ
from the corresponding benzyloxycarbonyl protected ester 147. Thus 147 was slowly injected over 6 hours to a solution of dioxane at $90^{\circ} \mathrm{C}$ containing of DMAP and palladium on charcoal, whilst bubbling hydrogen through the solution to give the desired product 148 in 70% yield (method B). This procedure minimises the formation of polymeric products (Scheme 13). ${ }^{23}$

Scheme13

Triostin A
Triostin A (149) is a dimeric cyclic octadepsipeptide isolated from Streptomyces aureus that has antibacterial and cytotoxic activity. It belongs to the quinoxaline family of antibiotics, and as such binds to DNA as a bifunctional intercalating agent, thus inhibiting RNA synthesis. Triostin A contains D-serine, L-alanine, N-methyl-L-valine and N, N '-dimethyl-L-cystine linked together by a disulfide cross-bridge. ${ }^{24}$

The first synthesis of triostin A (149) was accomplished by Olsen and Chakravorty, ${ }^{25}$ and was based on the coupling of acid 150 with amine 151 via the mixed anhydride formed from treatment with isobutylchloroformate (IBC) ${ }^{26}$; this gave 152 in 76% yield (Scheme 14). After removal of the N-methyl-Boc group of 152 with trifluoroacetic acid, cyclisation was effected by the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N -hydroxysuccinimide (HOSu) method
at high dilution (0.0025 M). Cyclodepsipeptide 153 was formed in 22% yield, and was converted into triostin A (149) in 30\% yield by a further three operation. These involved oxidation with iodine in methanol ${ }^{27,28}$ to simultaneously remove the benzamidomethyl (Bam) ${ }^{29}$ group and form the disulfide bond, hydrogenolysis with palladium on carbon to excise the benzyloxycarbonyl protecting group of the serine amine, and acylation with 2-quinoxalinylcarbonyl chloride (QxcCI). ${ }^{30}$

Scheme 14

(151)
4. $\mathrm{I}_{2}, \mathrm{MeOH},(22 \%)$
2. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
3. DCC, HOSu, THF, (22\% for 2 steps)

Shin published an alternative route ${ }^{31}$ to 149 in which the the key intermediates 154 and 155 were coupled using the DCC and HOBt protocol ${ }^{21}$ to give the linear octadepsipeptide 156 in $82-92 \%$ yield. Removal of the 2,2,2- trichloroethyl ester (Tce) group with zinc in acetic acid ${ }^{32}$ led to acid 157 which was then converted to its succinimide activated ester 158 with DCC and HOSu. ${ }^{33}$ Deprotection of the Boc group with trifluoroacetic acid, followed by treatment with N, N diisopropylethylamine (DIEA) in ethyl acetate at high dilution ($2.0 \times 10^{-4} \mathrm{M}$) gave the cyclic octadepsipeptide 159 in 58% yield. The yield of the cyclisation step was greater than that in the
original synthesis of Olsen ${ }^{25}$ since the lactamisation was attempted between the serine carboxyl and the alanine residue; the latter is less crowded than the alanine $-N$ methylcystine amide bond.

Compound 159 was then converted into Trisotin A 149 in four steps (Scheme 15).
Scheme 15

Several analogues of Triostin A have been synthesised and their mode of biological action determined. These include des- N -tetramethyltriostin A 160 which lacks the N -methyl groups on the valine and cysteine residues, ${ }^{34,35}$ bis-L-seryl-des- N-tetramethyltriostin A 161, which possess the L- rather than the D-serine residue ${ }^{34}$ and [$\mathrm{Lac}^{2}, \mathrm{Lac}^{6}$] Tandem 162 which is an analogue of nortriostin that possesses L-lactic acid instead of the normal L-alanine residue. ${ }^{36}$ The former was found to bind to DNA as a bifunctional intercalating agent while retaining the activity of the parent molecule. However, the latter two molecules were found to be inactive as intercalating agent (Figure 1).

Figure 1

Des- N-tetramethyltriostin $A(160)$

Bis-L-seryl-des-N-tetramethyltriostin A (161)

[Lac^{2}, Lac^{6} \}-Tandem (162)

Angolide

Angolide (163) is a metabolic product of a Pithomyces fungus species, that was first synthesised by Shemyakin and coworkers utilising a coupling between the acid chloride 164 and depsipeptide 165 as a key step. Simultaneous removal of the protecting groups from the product 166 with hydrogen bromide in acetic acid and macrolactamisation by the acid chloride method in benzene gave angolide 163 in an overall yield of 28% (Scheme 16). ${ }^{37}$

Scheme 16

Streptogramin

Kessler and coworkers ${ }^{38}$ have devised a synthesis of streptogramin 172. This is an analogue of virginiamycin $S_{1} \mathbf{1 6 6}-\mathrm{S}_{1}$ (Fig. 2), that contains a 19-membered cyclodepsipeptide ring in which the threonine and 4-oxopipecolic acid residues are replaced with N -Boc-serine and pipecolic acid respectively.

Figure 2

S_{1}	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}	CO	CH_{2}	$\mathrm{C}_{6} \mathrm{H}_{5}$
$\mathrm{~S}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	CHOH	CH_{2}	$\mathrm{C}_{6} \mathrm{H}_{5}$
$\mathrm{~S}_{3}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}	CO	CHOH_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$
$\mathrm{~S}_{4}$	CH_{3}	CH_{3}	CO	CH_{2}	$\mathrm{C}_{6} \mathrm{H}_{5}$
$\mathrm{~S}_{5}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}	CHOH	CH_{2}	CH_{3}

Virginiamycin (166)
Initially, dipeptides 167 and 168 were condensed using N-propylphosphonic anhydride (PPA) ${ }^{39,40}$ and 4-(dimethylamino)pyridine (DMAP) to give the tetrapeptide 169 in 37% yield after saponification. Acid 169 was coupled to depsipeptide 170 using the PPA/DMAP reagent combination to produce hexadepsipeptide 171 in 54\% yield (Scheme 17).

Scheme 17

Hydrogenation of 171 removed both benzyl protecting groups to deliver the ω-amino acid which was ring-closed with DCC/HOBt to afford 172 in 44% yield (Scheme 17).

Serratamolide

Serratamolide is a metabolite of Serratia marcescens, which possesses activity against bacteria, yeasts and pathogenic fungi. Its structure was determined by chemical degradation which revealed it to be a symmetrical cyclodepsipeptide containing L-serine and $D-\beta$-hydroxydecanoic acid. ${ }^{41}$ The first synthesis of a serratamolide analogue 176 was achieved by Shemyakin using a procedure that was based on a intriguing retro-aldol type reaction ${ }^{42}$ to simultaneously install the ester and amide linkages in 176 via the intermediate 175 in 30% yield (Scheme 18). ${ }^{43}$

Hassall also synthesised a serratamolide analogue (178) via a cyclodimerisation of two molecules of β-L-leucyloxypropionyl chloride 177 . This resulted in 178 being formed in 60% yield when carried out at high dilution with triethylamine in benzene (Scheme 19). ${ }^{44}$

Bassianolide

Bassianolide (179) is an insecticidal cyclodepsipeptide produced by the entomopathogenic fungi Beauveria bassiana and Verticillium leccanii. ${ }^{45}$ The synthesis of this C_{4}-symmetrical structure developed by Kanaoka and coworkers employed a coupling of the tetradepsipeptides 180 and 181 using the acid chloride protocol to give 182 (Scheme 20). Global deprotection of

182 with hydrogen bromide in acetic acid and subsequent cyclisation via the acid chloride in benzene at high dilution gave bassianolide 179 in 60% yield. ${ }^{6 b}$ This approach is noteworthy since it is one of the few macrocyclisations to be carried out at an N-methylated nitrogen atom.

Scheme 20

Isariin

The structure of Isariin (189), a peptide metabolite of the fungus Isaria cretacea, ${ }^{46}$ was confirmed after its total synthesis by Okada and coworkers. ${ }^{47}$ Amino acid 183 was coupled to 184 using 1,1-carbonyldimidazole (CDI) ${ }^{19}$ to give tridepsipeptide 185 after acidolysis. Condensation of 185 with acyl azide 186 afforded linear hexadepsipeptide 187 in an overall yield of 21\% (Scheme 21).

Scheme 21

Hydrogenation of 187 and reesterification with p-nitrophenol ${ }^{48}$ gave activated ester 188 in 60% yield. Deprotection of the Boc group followed by cyclisation at high dilution at $55^{\circ} \mathrm{C}$ in pyridine gave isariin 189 in a yield of 23% (Scheme 22).

Scheme 22

Rydon's studies on the synthesis of isariin 189 initially led to the assembly of linear pentadepsipeptide 190. However, macrolactonisation with DCC was unsuccessful possibly due to steric hindrance around the carboxyl terminus and the hydroxy function (Scheme 23).

Scheme 23

As a result linear pentadepsipeptide 191 was next selected as the cyclisation precursor, since the glycine residue was less hindered and its amine therefore more nucleophilic. Ring closure was achieved, albeit in 19% yield, by the acid chloride procedure. Isariin 189 was obtained pure after reverse phase HPLC (Scheme 24). ${ }^{49}$

Scheme 24

A solid phase synthesis of isariin has also been developed by Okada and coworkers. ${ }^{50}$

Didemnins

Three congeners of didemnin were isolated from the tunicate Trididemnum solidum, ${ }^{51}$ of which didemnin B (193), displays strong cancerstatic and immunosuppressive properties, and is currently undergoing human clinical trials (Figure 3). ${ }^{52}$

Figure 3

(192) Didemnin A; R $=\mathrm{H}-(\mathrm{R})$-MeLue
(193) Didemnin B; R=H-(S)-Lac- (S)-Pro-(R)-MeLeu
(194) Didemnin C ; $\mathrm{R}=\mathrm{H}-(S)$-Lac-(R)-MeLeu

The structure of didemnin B has been revised several times from the original structure proposed by Rinehart. ${ }^{51}$ These revisions include the confirmation that the N -methyl-leucine has (R)-stereochemistry, ${ }^{53}$ and that the hydroxyisovalerylpropionic acid has the (2S, $4 R$) configuration. ${ }^{54}$ In addition a (3S, 4R,5S)-isostatine residue is present rather than statine as previously thought. 55

The first synthesis of didemnin A 192 was accomplished after a coupling of pentadepsipeptide 195 with tripeptide 196 using the 1-ethyl-3-(3-dimethylaminopropyl)carbodimide (EDC) /HOBt method to obtain linear octadepsipeptide 197 in 56% yield (Scheme 25).

Subsequent removal of the β-trimethylsilylethyl ester group with tetra- n-butylammonium fluoride (TBAF), and the N-Boc group with trifluoroacetic acid in 197 revealed the cyclised precursor 198. Cyclisation with EDC/HOBt furnished the cyclised product in a rather modest 18% yield. Hydrogenolysis of the benzyloxycarbonyl (Z) group of the N-methyl leucine side chain finally afforded didemnin A (192) in 88\% yield (Scheme 26). ${ }^{56}$

Didemnin B (193) was synthesised by coupling didemnin A (192) with Bzl-(S)-Lac-(S)-Pro-OH in the presence of EDC, subsequent debenzylation by hydrogenolysis gave didemnin B 193 (Scheme 27).

Scheme 27

H-(S)-Lac-(S)-Pro(R)-MeLeu,

Didemnin A was coupled to O-benzyl-L-lactic acid with DCC, and the benzyl ether removed by hydrogenation to furnish didemnin C194 in an overall yield of 37% yield (Scheme 28). ${ }^{56}$

The Schmidt synthesis of the didemnin depsipeptide ring 19957 rested on a coupling of the tridepsipeptides 200 and 201 using the 4,6-dimethyl-2-thiopyridone-3-carbonitrile (DTC) method; 58,59 the linear hexadepsipeptide 202 was isolated in 55% yield. The trichloroethyl ester was then detached using zinc in acetic acid and the resulting acid converted to its pentafluorophenyl ester by DCC activation. This led to 203 whose Boc group was cleaved with trimethylsilyl triflate. ${ }^{60}$ Once the amine in tridepsipeptide 201 was unmasked, the molecule became unstable due to the readiness with which the isostatine residue undergoes γ-lactam-isation. As a result, a powerful method for activating the acid in 200 was needed in order to couple it to 201, without causing lactamisation. Several reagents were tested for this coupling; ${ }^{61}$ these included the pentafluorophenyl ester (33\%), the pivaloyl mixed anhydride (21\%) and the diphenylphosphoryl azide (45%). Bis(2-oxo-3-oxazolidinyl)phosphinic chloride (BOP-CI) 62,63 proved to be the reagent of choice, it leading to 202 in $\mathbf{7 0 \%}$ yield (Scheme 29).

Cyclisation was then accomplished in the presence of aqueous sodium bicarbonate in the two phase system of $\mathrm{H}_{2} \mathrm{O} / \mathrm{CHCl}_{3},{ }^{64}$ to give cyclodepsipeptide 199 as a 2.5:1 (S: R) mixture of epimers at the 2-position of the Hip residue (Scheme 30). The required (S)-isomer could be isolated by MPLC. The (R)-epimer was found to rearrange under acid or base catalysis to the thermodynamically more stable (S)-epimer. ${ }^{67}$ In order to complete the synthesis of 192 , cyclodepsipeptide 199 was hydrogenated and coupled to the thiol ester of Z-N-methyl-(R)-leucine with 4,6-dimethyl-2-thiopyridone-3-carbonitrile (DCT). Subsequent hydrogenolysis afforded didemnin A 192 in 99\% yield (Scheme 29). 61

Scheme 29

Acylation of didemnin A 192 with the acid chloride of Z-N-lactyl-(S)-proline and subsequent hydrogenolysis gave didemnin B 193 in 85\% yield. Didemnin C 194 was synthesised by the coupling of didemnin A 192 with the acid chloride of O-benzyloxycarbonyl-lactic acid, followed by hydrogenolysis in 80\% yield.

Joullie and coworkers have devised a novel synthesis of the didemnins. ${ }^{65}$ Acid 204 was condensed with amine 205 using isopropenyl chloroformate ${ }^{66}$ to provide 206 in 60% yield. In order to accomplish the macrolactamisation, the primary alcohol was oxidised to the acid. This was achieved by cleaving primary silyl ether with aqueous acetic acid in THF and oxidising using the two-stage procedure developed by Masamune. ${ }^{67}$ Hydrogenation then revealed the ω-amino acid 207 (Scheme 30).

Subsequent lactamisation using diphenylphosphoryl azide (DPPA) and sodium bicarbonate at 0.001 M concentration ${ }^{68}$ gave 208 in 40% overall yield. In order to install the isostatine residue, the MOM ether group in 208 was removed with dimethylboron bromide and the alcohol oxidised to the ketone in 92% yield. Global deprotection with hydrochloric acid in ethyl acetate then gave amine 209 in 90% yield. Didemnin A 192 was then synthesised by condensing 209 with Z-N-Me- (R)-Leu-OH using BOP as the activating reagent. Subsequent removal of the Z group by hydrogenation gave 192 in 85% yield. Didemnin B 193 was synthesised in 59% yield by coupling the tridepsipeptide, (S)-Lac-(S)-Pro-(R)-MeLeu-OH with 209 using the BOP procedure. Didemnin C was synthesised by condensing O-TBS-(S)-Lac-(R)-MeLeu-OH with 209 by the BOP protocol, followed by desilylation with hydrofluoric acid in acetonitrile to afford 194 in 89% yield.

The macrolactamisation of 207 was reinvestigated by Joullie and coworkers ${ }^{69}$ with other activating agents such as pentafluorophenyl diphenylphosphinate (FDPP), ${ }^{70} 2$-(1 H -benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate $(\mathrm{HBTu})^{71}$ and isobutyl chloroformate. ${ }^{71}$ FDPP gave the best result of the reagents tried, 68% yield (Scheme 30).

An analogue of didemnin A containing statine in place of the isostatine residue was synthesised by Shioiri and coworkers. In his synthesis the depsipeptide ring was constructed at the N -atom of N, O-dimethyl-tyrosine unit. ${ }^{72}$

Destruxins

The destruxin family of cyclodepsipeptides (Figure 4) were isolated from the culture filtrates of Metarrhizium anisopliae and were shown to possess insecticidal, antiviral, and cytotoxic properties. ${ }^{73 a, b}$

Figure 4

$\mathrm{R}_{1}=\mathrm{CH}_{3}$
$\mathrm{R}_{1}=\mathrm{CH}_{3}$
$\mathrm{R}_{1}=\mathrm{CH}_{3}$
$\mathrm{R}_{1}=\mathrm{CH}_{3}$
$\mathrm{R}_{1}=\mathrm{H}$
$\mathrm{R}_{1}=\mathrm{H}$
$\mathrm{R}_{2}=\mathrm{CH}_{3} \quad \mathrm{R}_{3}=\mathrm{CH}_{2}=\mathrm{CHCH}_{2}-$
A
$\mathrm{R}_{2}=\mathrm{CH}_{3} \quad \mathrm{R}_{3}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}-$ B
$\mathrm{R}_{2}=\mathrm{CH}_{3} \quad \mathrm{R}_{3}=\mathrm{HOH}_{2} \mathrm{C}(\mathrm{CH}) \mathrm{CH}_{3} \mathrm{CH}_{2} \quad \mathrm{C}$
$\mathrm{R}_{2}=\mathrm{CH}_{3} \quad \mathrm{R}_{3}=\mathrm{HO}_{2} \mathrm{C}(\mathrm{CH}) \mathrm{CH}_{3} \mathrm{CH}_{2}-$
D
$\mathrm{R}_{2}=\mathrm{CH}_{3} \quad \mathrm{R}_{3}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \quad$ Desmethyl destruxin
$\mathrm{R}_{2}=\mathrm{H}$
$\mathrm{R}_{3}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2}-\quad$ Protodestruxin, 212

Destruxin
(211)

To date, only two of the destruxins have been synthesised, namely, destruxin B 211-B and protodestruxin 212, which is a natural analogue of destruxin B containing no N-methyl groups. The synthesis of destruxin B 211-B is noteworthy as it is one of the first examples of a macrolactonisation being employed for the preparation of a cyclodepsipeptide. Thus, hexapeptide 210 was cyclised with DCC to give 211-B in 22% yield (Scheme 31). ${ }^{74}$

Scheme 31

The synthesis of protodestruxin 212 was attempted through three different routes. Surprisingly, the cyclisation of seco-acid 213 with DCC was unsuccessful. However, cyclisation via the D-Hmp-Pro bond in 214 was successful using either the acid chloride method (18\%) or the succinimide activated ester ${ }^{75}(22 \%)$. Cyclisation through the formation of the Pro-lle bond in 215 delivered 212 in an improved yield of 46% when the succinimide activated ester was used (Scheme 32). ${ }^{76}$

Scheme 32

Norsurfactin

Morrison and coworkers have devised a synthesis of norsurfactin 219, an analogue of surfactin, which lacks a 3-methyl group in the β-hydroxy acid side chain. It possesses haemolytic and anticoagulant properties. Their synthesis involved coupling pentapeptide 216 with depsipeptide 217 using the N, N-dicyclohexylcarbodiimide (DCC) and hydroxybenzotriazole (HOBt) protocol; ${ }^{21}$ this gave 218 in 75% yield (Scheme 33).

Hydrogenolysis of the terminal protecting groups in 218 and subsequent cyclisation in the presence of DCC and N-hydroxysuccinimide $(\mathrm{HOSu})^{77}$ at high dilution ($1.8 \times 10^{-3} \mathrm{M}$ peptide) in dichloromethane/ N, N-dimethylformamide $(34: 1 \mathrm{v} / \mathrm{v})$ for three days gave the cyclodepsipeptide in 41% yield. Subsequent treatment with trifluoroacetic acid gave norsurfactin 219 in 65% yield (Scheme 34). ${ }^{78}$

Scheme 34

AM-Toxins

AM-Toxins are host-specific phytotoxic metabolites produced by Alternaria mali which cause veinal necrosis on apple leaves. ${ }^{79}$ Each of the three congeners was shown to be a cyclotetradepsipeptide (Figure 5), containing dehydroalanine, 2-hydroxy-3-methylbutanoic acid, L-alanine and either L-2-amino-5-(p-methoxyphenyl) pentanoic acid (AM-Toxin I, 220), ${ }^{80}$ L-2-amino-5-phenyl pentanoic acid (AM-Toxin II, 221) ${ }^{80}$ or L-2-amino-5-(p-hydroxyphenyl) pentanoic acid (AM-Toxin III, 222). ${ }^{81}$

Figure 5

220 AM-Toxin I
$\mathrm{R}=\mathrm{CH}_{3} \mathrm{O}$
221 AM-Toxin I
$R=H$
222 AM-Toxin III
$\mathrm{R}=\mathrm{OH}$

The synthesis of AM-Toxin I 220 was based on the formation of tetradepsipeptide $\mathbf{2 2 3}$ by a linear approach, followed by transformation into the activated succinimide ester 224 using DCC and HOSu. ${ }^{33}$ The Boc group in activated ester 224 was removed with TFA, and the residue cyclised by the addition of pyridine in DMF to give 225 in 18\% yield after fractional recrystallisation from ethyl acetate. The serine residue was then converted into the dehydroalanine moiety by dehydration via the tosylate, with 220 being isolated in 1.7% yield (Scheme 35). ${ }^{82,83}$

The cyclodepsipeptide of AM-Toxin II 221 was synthesised in a manner similar to that of AM-toxin I, substituting L-2-amino-5-phenylpentanoic acid for L-2-amino-5-(p-methoxyphenyl) pentanoic acid. However, dehydration of 226 was this time accomplished using methanesulfonyl chloride containing sulfur dioxide, followed by treatment with triethylamine (Scheme 36). ${ }^{84}$

Scheme 36

AM-Toxin II 221 was also synthesised by cyclisation of a linear tetradepsipeptide containing the dehydroalanine residue. ${ }^{85}$ Dehydration of tetradepsipeptide 227 was achieved by the Hoffmann elimination procedure ${ }^{86}$ to give 228 in 83% yield. Acid 228 was then transformed to the activated succinimide ester, and the Boc protecting group excised with trifluoroacetic acid to afford amine 229. Cyclisation with pyridine at 0.003 M concentration resulted in AM-Toxin II 221 in a modest yield of 5.2\% after preparative TLC chromatography (Scheme 37).

Scheme 37

All the forementioned procedures for the synthesis of the AM-Toxins involved a macrolactamisation. An alternative synthesis of an AM-Toxin II analogue has been achieved using a macrolactonisation. Thus seco-acid 230 was cyclised in the presence of EDC and DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 0.01 M concentration to deliver 231 in 16% yield; unfortunately, however, a small amount of racemization occured (Scheme 38). ${ }^{87}$

Scheme 38

The key step in the synthesis of AM-Toxin III 222 was the formation of the dehydroalanine residue, by Hoffmann degradation ${ }^{86}$ of cyclodepsipeptide 232 (Scheme 39). ${ }^{88}$

Scheme 39

(+)-Jasplakinolide

(+)-Jasplakinolide 233 was isolated from a soft-bodied sponge, Jaspis sp and possessed insecticidal, antifungal, and anthelmintic properties. ${ }^{89,90}$

Its first synthesis was developed by Grieco and coworkers using a $2+2$ fragment condensation approach, between dipeptide 234 and fragment 235 using the DCC/ HOBt protocol. Selective removal of the t-butyl ester group from 236 in the presence of the acid sensitive silyl ether was achieved using TBDMSOTf and 2,6-lutidine, ${ }^{91}$ while the MOM group was excised with boron trifluoride and ethanedithiol; this resulted in the seco-acid 237. Cyclisation of the latter with DCC, DMAP•TFA and DMAP 92 in refluxing chloroform resulted in the lactonised product in 79% yield, while O-desilylation with TBAF gave (+)- jasplakinolide 233 in 95% yield (Scheme 40). ${ }^{93}$

The synthesis of (+)-jasplakinolide 233 by Konopelski and coworkers was based on a linear approach. Dipeptide 238 was coupled to 239 with DCC to give, after removal of the Boc group, the free amine $\mathbf{2 4 0}$ in 67% yield. Coupling of $\mathbf{2 4 0}$ with the lipophilic acid $\mathbf{2 4 1}$ using DCC afforded 242 in 50% yield. In order to complete the synthesis of 233, 242 was globally deprotected with aluminium tribromide and ethanethiol and the product cyclised with DCC and DMAP. Compound 233 was obtained in an overall yield of 36% (Scheme 41). ${ }^{94}$ A similar route was used by Rao and coworkers for their synthesis of (+)-jasplakinolide. However, macrolactonisation was achieved using the DCC, DMAP.TFA, DMAP combination in refluxing chloroform $(22 \%) .{ }^{92}$

Scheme 41

(+)-Jasplakinolide 233 was synthesised by Imaeda via an amide macrolactamisation. ${ }^{96}$ Thus, esterification of tripeptide 243 with alcohol 244 using the Mitsunobu reaction (DEAD, PPh3 $)^{97}$ produced 245 in 82% yield. Treatment of 245 with anisole (1 M) in trifluoroacetic acid cleaved the N-Boc group and the p-methoxyphenylmethyl (MPM) ester to afford 246 which was macrolactamised with diphenyl phosphorazidate (DPPA). ${ }^{98}$ This gave (+)-jasplakinolide after desilylation with TBAF (Scheme 42).

An efficient synthesis of the peptide portion of (+)- jasplakinolide has been developed by Shioiri and coworkers. ${ }^{99}$ The tyrosine derivative 248 was prepared in eight steps from $p-O$ -
benzyloxycarbonyl-benzaldehyde and obtained in an optically pure form via a resolution of the menthyl ester by recrystallisation. Thus, acid 247 was coupled to amine 248 using diethylphosphorocyanidate (DEPC) ${ }^{100}$ as the activating agent to give the dipeptide 249 in 79% yield. Removal of the Boc group with TFA and subsequent condensation with Boc-alanine in the presence of $\mathrm{BOP}-\mathrm{Cl}^{64}$ gave the required tripeptide 250 in $\mathbf{7 8 \%}$ yield (Scheme 43).

Scheme 43

Geodiamolides

Geodiamolides are isolated from the Carribean sponge Geodia sp. ${ }^{101}$ and are similiar to (+)- jasplakinolide in structure and biological activity (Figure 6).

Figure 6

A $X=I, \quad R=M e \quad D \quad X=I, \quad R=H$
B $\mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{Me}$
E $X=B r, \quad R=H$
C $\mathrm{X}=\mathrm{Cl}, \mathrm{R}=\mathrm{Me}$
F X=Cl, $\quad \mathrm{R}=\mathrm{H}$

The synthesis of geodiamolide A 251-A achieved by White and coworkers followed a linear strategy. ${ }^{102}$ Dipeptide 252 was treated with Boc-L-alanine in the presence of DCC and HOBt to give the tripeptide 253 in $\mathbf{7 6 \%}$ yield. Simultaneous removal of the Boc and p-methoxybenzyl ether groups with trifluoroacetic acid and subsequent coupling with the liphophilic acyl azide derived from $\mathbf{2 5 4}$ gave $\mathbf{2 5 5}$ in 57% yield. Removal of the silyl ether with hydrofluoric acid in
acetonitrile and saponification of the methyl ester with aqueous lithium hydroxide gave the free seco-acid which was finally lactonised using the DCC/ DMAP, DMAP-TFA procedure ${ }^{92}$ to give 251-A in 20\% yield (Scheme 44).

Scheme 44

The Hirai synthesis ${ }^{103}$ of geodiamolide A (251-A) was based on the halogenation of the tripeptide 256 with iodine and mercury diacetate in acetic acid and the selective removal of the Boc group in the presence of the silyl ether. The latter step was accomplished using TBSOTf and 2,6 -lutidine ${ }^{91}$ and gave amine 257 in 59% yield (Scheme 45).

(256)

Scheme 45

Coupling of amine 257 with the aliphatic acid 258 using the DCC/HOBt protocol produced 259 in79\% yield. This was then deprotected with trifluoroacetic acid and ethanedithiol to give the free tetrapeptide, which was lactonised in 18% yield by the formation of a mixed 2,4,6-trichlorobenzoyl
anhydride in refluxing benzene. Desilylation with TBAF led to 251-A in 79% yield (Scheme 46).
Geodiamolide B 251-B was synthesised by a similar procedure. ${ }^{103}$
Scheme 46

In 1994, Imaeda and coworkers published an efficient synthesis of geodiamolide A (251A), in which the macrolactone ring was assembled by macrolactamisation at the amine residue of the (S)-alanine moiety. ${ }^{96}$ The ester linkage of 263 was constructed using two novel approaches. Either the carboxyl group of $\mathbf{2 6 0}$ was activated as its acyl imidazolide, and this condensed with alcohol 261 under high pressure (74%), or alternatively a Mitsunobu reaction ${ }^{96}$ between $\mathbf{2 6 0}$ and alcohol 262 (84%) could be employed for obtaining 263 (Scheme 47).

Scheme 47

To complete the synthesis of 251-A, 263 was treated with anisole in trifluoroacetic acid, and macrolactamisation preformed with diphenylphosphoryl azide (DPPA) ${ }^{98}$ to give geodiamolide A 251-A in 34\% yield after desilylation with TBAF (Scheme 48).

Scheme 48

Grieco and coworkers synthesised of geodiamolide B 251-B was based on the formation of linear tetrapeptide 264. Simultaneous removal of the methoxymethyl ether (MOM) and the tertbutyl ester group in $\mathbf{2 6 4}$ using excess ethanedithiol and excess trifluoroacetic acid in dichloromethane resulted in the seco-acid, which was lactonised using the Keck procedure (DCC, DMAP and DMAP-TFA) in refluxing chloroform ${ }^{92}$ in a yield of 15%. Desilylation with TBAF gave geodiamolide B 251-B in 88% yield (Scheme 49). ${ }^{104}$

Scheme 49

Rao's group have achieved a total synthesis of geodiamolide D 251-D, in which the key cyclisation step was also achieved by macrolactonisation using the Keck procedure in a low 7\% yield (Scheme 50). 95

Monamycin- X

The monamycins are a family of cyclodepsipeptides having antibacterial properties. An analogue of monamycin- B_{3} containing (S)-piperazic acid in place of (3S,5S)-5-hydroxypiperazic acid has been synthesised by Hassall and coworkers utilising a $2+2+2$ fragment condensation strategy. ${ }^{105}$ Initially, dipeptides 266 and 267 were unified employing N-ethyl-morpholine (NEM) as base. The trifluoroacetyl group protecting the (R)-piperazic residue in this tetrapeptide was then hydrolysed with sodium hydroxide in methanol to produce 268. Acid chloride 269 was then coupled to $\mathbf{2 6 8}$ to produce linear protected hexadepsipeptide $\mathbf{2 7 0}$ in 68% yield (Scheme 51).

Scheme 51

Compound $\mathbf{2 7 0}$ was hydrogenated and treated with hydrogen bromide in acetic acid. The linear hexadepsipeptide was cyclised by the DCC/HOSu method to give monamycin-X (271) in 40\% yield (Scheme 52).

Luzopeptin

The luzopeptin antibiotics (272, A-C) were isolated from Actinomadura luzonesis. ${ }^{106}$ Their structures were determined by a combination of chemical degradation studies by Konishi and coworkers ${ }^{107}$ and single X-ray diffraction by Clardy and coworkers. ${ }^{108}$ They are dimeric cyclic decadepsipeptides, containing the unusual amino acid, 2-(S)-carboxy-3-(S)-hydroxy-2,3,4,5-tetrahydropyridazine and a substituted quinoline-2-carbonyl moiety attached to the depsipeptide ring. Luzopeptin A is a bis-intercalating agent towards DNA ${ }^{109,110}$ and displays antitumour properties against several tumors. ${ }^{111,112}$

Luzopeptin, (272)
A, $R=R_{1}=A c$
B, $R=A c, R_{1}=H$
C, $R=R_{1}=H$

Olsen's group have devised a synthesis of a luzopeptin A analogue 279 that contains an Lproline unit in lieu of the tetrapyridazine moiety. They also installed an L-valine in place of the N -methyl- β-hydroxyl-L-valine unit, and replaced the quinoline unit with an unsubstituted quinoline-2-carbonyl moiety. ${ }^{113}$ Analogue 279 was synthesised from 273 by two separate routes. Pentadepsipeptide 273 was itself prepared in a stepwise fashion from p-chlorophenacyl N -(benzyloxycarbonyl)-D-serinate utilising the $\mathrm{DCC} / \mathrm{HOBt}$ coupling protocol. In the first route, 273 was treated with zinc in acetic acid to remove the 2,2,2-trichloroethyl ester (Tce) and reveal acid 274. A sample of 273 was also treated with trifluoroacetic acid to obtain amine $\mathbf{2 7 5}$ (Scheme 53).

Subsequent coupling of 274 and 275 using EDC/HOBt afforded the linear decadepsipeptide 276 in 80% yield. Removal of the Tce and Boc protecting groups and subsequent cyclisation via the sarcosine-valine amide bond mediated by EDC and HOBt at high dilution ($6.7 \times 10^{-4} \mathrm{M}$ in THF) gave $\mathbf{2 7 7}$ in 66% yield. The synthesis of $\mathbf{2 7 9}$ was completed by the removal of the benzyloxycarbonyl group and acylation with p-nitrophenyl quinoline-2-carboxylate (Scheme 54). ${ }^{113}$

Scheme 54

4. $\mathrm{Zn}, \mathrm{AcOH},(95 \%)$
5. TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (90%)
6. EDC, HOBt, NMM, THF, $0^{\circ} \mathrm{C},(60 \%)$

The second route (Scheme 55) to 279 was based on a macrolactamisation at the serine-proline bond. The removal of the p-chlorophenacyl ester of linear decadepsipeptide $\mathbf{2 8 0}$ with zinc in acetic acid 34,35 proved problematic, giving only a modest yield (42%) of the product along with recovered starting material. Removal of the N-Boc group from the prolyl amino function and cyclisation with EDC/HOBt gave the cyclic peptide 277 in 55% yield, which was subsequently transformed into 279 as shown in Scheme 54.

Scheme 55

Viscosin

Viscosin 281 was isolated from a culture of Pseudomonas viscosa and was found to have antiviral and antimicrobial activity against various mycobacteria. ${ }^{114}$ Its structure was confirmed through total synthesis by Burke and coworkers. ${ }^{115}$ Their solid-phase synthesis relied on fluorenylmethoxycarbonyl (Fmoc) and Boc amine protecting groups and adopted the acid-sensitive alkoxy-benzyl alcohol resin of Wang. After coupling the Fmoc-OBzl-Ser to the resin with DCC/ DMAP in DMF, the synthesis of the requisite amino acid sequence was achieved by the following strategy. The Fmoc protecting group was detached with piperidine and the resulting amine coupled with another appropriate Fmoc-amino acid activated by DCC/HOBt ${ }^{21}$ in DMF. This approach was repeated to give 282. Subsequent coupling of $\mathbf{2 8 2}$ with the pentafluorophenyl activated ester (Pfp) 283 furnished alcohol $\mathbf{2 8 4}$ after removal of the Fmoc group. Use of the pentafluorophenyl activated ester dispensed with the need for protecting of the OH group in the threonine residue of $\mathbf{2 8 4}$ since these esters only react with amines (Scheme 56).

Scheme 56

Esterification of 285 with Boc-Ile-OH in the presence of DCC and HOBt , and subsequent deblocking and coupling to the D-3-hydroxydecanoyl activated ester $\mathbf{2 8 6}$ gave the fully assembled depsipeptide resin. The peptide was cleaved from the resin with trifluoroacetic acid; this also removed the Boc group to give the cyclised precursor 287 in an overall yield of 25% based on the resin. Cyclisation was then achieved using BOP-Cl ${ }^{63,64}$ and gave the desired cyclic product in 24% yield. Hydrogenolysis with ammonium formate and Pd / C in methanol gave viscosin 281 in 78% yield (Scheme 57).

Scheme 57

1. t-Boc-L-Ile, DCC, DMAP
2. (i) piperidine, DMF
(ii) Fmoc-leu-OH, DCC, HOBt
$285 \frac{\text { (ii) Fmoc-leu-OH, }}{\text { 3. (i) piperidine, DMF }}$

(287)
3. TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$,
(25\% from Resin)

Dolastatin D

Dolastatin D 288 is a cyclodepsipeptide isolated from the Japanese sea hare Dolabella auricularia; it was found to have antineoplastic and cytostatic properties. ${ }^{116} \mathrm{~A}$ linear synthesis of 288 has been developed by Japanese workers. ${ }^{116}$ This involved esterifying 289 with 290 using DCC to obtain depsipeptide 291 in 88% yield. Deprotection of the N-Boc protecting group of 291 with trifluoroacetic acid revealed the amine which was condensed with acid 292 using diethylphosphorocyanidate (DEPC). ${ }^{100}$ Tridepsipeptide 293 was obtained in 89% yield. The latter underwent N-methylation in 75% yield, with sodium hydride and iodomethane, O desilylation, and esterification with 294 to give tetradepsipeptide 295 in 98% yield. After removal of the Boc group from 295 and coupling with Z-lle using DEPC, pentadepsipeptide 296 was obtained in 82% yield. Deprotection of the amino and carboxy termini was achieved by hydrogenation, and cyclisation to 288 subsequently investigated with various activating agents. These included bis(2-oxo-3-oxazolidinyl) phosphinic chloride [BOP-Cl] (13\%), N-hydroxysuccinimide (41\%), diphenylphosphoryl azide (47\%). However, benzotriazol-1-yloxy-tris (dimethylamino)phosphonium hexafluorophosphate (BOP) gave the best result, it proceeding in 66% yield (Scheme 58).

Scheme 58

Doliculide

Doliculide 297 was isolated from the Japanese sea hare D. auricularia and observed to have potent cytotoxic activity against HeLa-S3 cells with an IC_{50} of $0.001 \mu \mathrm{~g} / \mathrm{ml} .{ }^{117}$ Its synthesis was completed by Yamada and coworkers in 1994. Their initial plan was to instigate macrolactonisation of 298 with the Yamaguchi (2,4,6-trichlorobenzoyl chloride, DMAP) ${ }^{118}$ or Keck (DCC, DMAP) ${ }^{92}$ reagents. However, both methods caused complete epimerisation in the tyrosine moiety and instead led to 299 being isolated (Scheme 59).

Scheme 59

These workers therefore investigated an alternative route to 297 which featured a
macrolactamisation step. Aliphatic acid $\mathbf{3 0 0}$ was coupled to glycine t-butyl ester with DEPC to give peptide 301. After hydrogenation of the benzyl ether, esterification with the tyrosine derivative 302 was accomplished with DCC/DMAP to deliver linear tridepsipeptide 303 in 94% yield. Simultaneous removal of the N-Boc and t-butyl ester groups with TFA gave the free tridepsipeptide which was lactamised in 74% using BOP-CI. The final step involved O-desilylation with TBAF to provide doliculide 297 in 99% yield (Scheme 60). ${ }^{119}$

PF1022A
PF1022, (A-E) was discovered in the mycelial cake of Mycelia sterilia and has a structure similiar to that of bassianolide (Figure 7). PF1022A 304-A displays anthelmintic properties, it completely eradicating Ascaridia galli in chickens at a dosage of $2 \mathrm{mg} / \mathrm{Kg} .{ }^{120}$

Figure 7

The synthesis of PF1022A 304-A (Scheme 61) was achieved by coupling tetradepsipeptides 305 and 306 with DCC/HOBt to give the linear octadepsipeptide 307 in 75% yield. Standard deprotections led to an intermediate which cyclised to PF1022A 304-A in 80\% yield when reacted with EDC- HCl and $\mathrm{HOBt} .{ }^{121}$

Scheme 61

Leualacin

Leualacin 314 was isolated from Hapsidospora irregularis and was found to inhibit the specific binding of nitrendipine to porcine heart microsomes, thus blocking calcium uptake. ${ }^{122}$ The synthesis of 314 was initiated by the coupling of depsipeptide 308 and amine 309 using BOP-Cl to furnish the tridepsipeptide 310 in 77% yield. The 2,2,2-trichloroethyl ester was excised with zinc in acetic acid and the resulting acid condensed with 311 using \mathbf{O}-(1,2-dihydro-2-oxo-1-pyridyl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TPTU) and HOBt to provide linear depsipeptide 312 in 92% yield (Scheme 62). The N-Boc and benzyl ester protecting groups were removed and macrolactamisation attempted with various activating reagents that included O -(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluroborate ${ }^{123}(50 \%)$, and pentafluorophenyl diphenylphosphinate (60%). However, cyclisation via the pentafluorophenyl ester 313 in the two-phase system of chloroform and aqueous sodium bicarbonate gave 314 in an optimium yield of 85% (Scheme 62). ${ }^{124}$

Aureobasidin A

Aureobasidin A 321 is the major component of the culture medium of Aureobasidium pullulans R106. It exhibits potent antifungal activity against pathogenic fungi such as Canidida albicans and Cryptococcus neoformans. ${ }^{125}$ A synthesis has been achieved that is based on a $4+3+2$ fragment condensation strategy (Scheme 63). Thus tridepsipeptide 315 was coupled to tetradepsipeptide 316 using bromotris(pyrrolidino)phosphonium hexafluorophosphate (Py-BroP) ${ }^{126}$ as the activating agent giving heptadepsipeptide 317 in 79% yield. Acidolysis of 317 with trifluoroacetic acid and subsequent coupling with dipeptide 318, followed by deprotection of the phenylacyl ester (Pac) with zinc in acetic acid, and the t-Boc group with trifluoroacetic acid gave the free linear nanodepsipeptide 320. Cyclisation with PyBroP in dichloromethane at high dilution ($10^{-3} \mathrm{M}$) led to 321 in 45% yield (Scheme 63). ${ }^{127}$

Scheme 63

L-156,602

In 1990 workers at Merck Sharp \& Dohme developed the first total synthesis of a member of the Azinothricin family namely, L-156,602,5. ${ }^{128}$ Their initial strategy was based on the coupling of activated ester 322 with protected cyclodepsipeptide 323 (Scheme 64). However, this strategy was not successful, as removal of the Fmoc group from the protected cyclohexadepsipeptide 324 resulted in an O, N-acyl migration to give 325, rather than the required depsipeptide 323 (Scheme 65). ${ }^{129}$

Scheme 64

Scheme 65

An alternative synthetic plan was therefore developed which was based on a $2+2+2$ fragment condensation strategy. Partially protected (2S, 3S)-hydroxyleucine 326 was coupled to O-benzylhydroxy-(S)-alanine 327 using 1,1-carbonyldiimidazole ${ }^{19}$ to produce depsipeptide 328 in 67% yield. It should be noted that this coupling was accomplished without protecting the amine group in 327 , it being less nucleophilic than the hydroxyl group in 326 due to the -1 effect of the adjacent benzyloxy group (Scheme 66).

Dipeptide 331 was accessed in 98% overall yield by joining t-butyl-(3S)- N^{1}-benzyloxy-carbonyl-piperazate 329 with the acid chloride 330 obtained from N-Alloc-glycine, and cleaving
the t-butyl ester group with trifluoroacetic acid. Acid 331 was then converted to its acid chloride and this condensed with depsipeptide 328 in the presence of silver cyanide ${ }^{130,131}$ in toluene at $90^{\circ} \mathrm{C}$ to give the tetradepsipeptide in 77% yield. Subsequent cleavage of the t-butyl ester gave acid 332 in a yield of 84% (Scheme 67).

Scheme 67

Dipeptide 335 was synthesised from the N^{1}-fluorenylmethoxycarbonyl-(3R)-piperazic acid chloride 333 and the allyl ester derivative of N-benzyloxy-(S)-alanine 334 under the Schot-ten-Bauman conditions to give the dipeptide in 83% yield. Removal of the Fmoc group with diethylamine resulted in the partially protected hydrazine 335 in 63% yield (Scheme 68).

Scheme 68

The acid chloride of tetradepsipeptide 332 and the partially-protected hydrazine 335 werecoupled using 10\% aqueous sodium bicarbonate as base to give hexapeptide 336. This product was treated with zinc in acetic acid to remove the Troc group and coupled to the benzotriazole activated ester $\mathbf{3 2 2}{ }^{132}$ in DMF to furnish $\mathbf{3 3 7}$ in 56% yield. The product was subsequently deprotected at the N and C termini using palladium(0)-catalysed hydrostannolysis. ${ }^{133}$ These conditions also caused hydrolysis of the methyl pyranoside and led to the cyclised precursor338. To complete the synthesis, 338 was macrolactamised by the mixed phosphonic anhydride
method ${ }^{39}$ in 57% yield and the product hydrogenated in methanol to give L-156,602 (5) in 53% yield (Scheme 69).

Scheme 69

Having completed a total synthesis of L-156,602 (5), the Merck group embarked on a programme of investigating the selective chemical modification of this natural product. ${ }^{134}$ It was observed that the piperazic moiety could be oxidised to the mono-dehydro 339 or the bisdehydro product 340 using 1.2-2.0 eqs. and 4.0 eqs. of m-chloroperbenzoic acid (m-CPBA) respectively. The N^{1}-piperazic acids atoms in 5 could not be acylated even under forcing
conditions. However, they could be methylated under the Borch conditions (NaCNBH_{3}, $\mathrm{HCHO})^{135}$ to give 341 (Scheme 70).

Scheme 70

Treatment of 5 with phenyldiazomethane resulted in 342 chemoselectively. This selective O -alkylation was attributed to hydrogen bonding between the $\mathrm{N}-\mathrm{OH}$ of the (R)- N -OHAla and the hydroxy group of the lactic acid side chain. The latter resides under the peptide ring and the glycine amide carbonyl group, and thus shields the N-hydroxy group. Reducing agents such as titanium trichloride ${ }^{136}$ deoxygenated both $\mathrm{N}-\mathrm{OH}$ alanine residues to give the bis-alanine derivative 343 (Scheme 71).

2.3 Concluding Remarks

There are several new cyclodepsipeptides whose structures have recently been determined by NMR methods. However, confirmation of these structures by total synthesis has not yet been achieved. These include the discokiolides ${ }^{137}$ and theonellapeptolides ${ }^{138}$ which are isolated from sponges. A83586C, a member of the Azinothricin family of antibiotics has also been the subject of synthetic investigation by the Hale group. ${ }^{139-141}$

2.4 References

(1) Losse, G.; Bachmann, G., Z. Chem., 1964, 4, 204, 241.
(2) Russell, D. W., Quart. Rev., 1966, 20, 559.
(3) (a) Plattner, PI. A.; Nager, U., Helv. Chim. Acta., 1948, 31, 2192. (b) Plattner, PI. A.; Nager, U., Helv. Chim. Acta., 1948, 31, 665.
(4) (a) Shemyakin, M. M.; Ovchinnikov, Y. O.; Ivanov, V. T.; Kiryushkin, A. A., Tetrahedron Lett., 1963, 14, 885. (b) Plattner, Pl. A.; Vogler, K.; Studer, P. O.; Quitt, P.; KellerSchlierlei, W., Helv. Chim. Acta., 1963, 46, 927.
(5) Quitt, P.; Studer, R.O.; Vogler, K., Helv. Chim., Acta., 1963, 46, 1715.
(6) (a) Mikhaleva, I. I.; Ryabova, I. D.; Romanova, T. A.; Tarasova, T. I.; Ivanov, V. T.;

Ovchinnikov, Y. A.; Shemyakin, M. M., Zh. Obsch. Khim., 1968, 38, 1229. (b) Kanaoka, M.; Isogai, A.; Suzuki, A., Agric. Biol. Chem., 1979, 43 (5), 1079.
(7) Shemyakin, M. M.; Ovchinnikov, Y. A.; Ivanov, V. T.; Kiryushkin, A. A., Tetrahedron, 1963, 19, 995.
(8) Shemyakin, M. M.; Ovchinnikov, Y. A.; Ivanov, V. T.; Kiryushkin, A. A. ,Tetrahedron Lett.,1963, 4, 1927.
(9) Brockmann, K.; Schmidt-Kastner, G.,Chem. Ber.,1955, 88, 57.
(10) Shemyakin, M. M.; Vinogradova, E. I.; Feigina, M. Y.; Aldonova, N. A. ,Tetrahedron Lett., 1963, 4, 351.
(11) Mueller, P.; Rudin, D. O., Biochem. Biophys. Res. Commun., 1967, 26, 398.
(12) Tosteson, D. C.; Andreoli, T. E.; Tieffenberg, M.; Cook, P., J. Gen. Physiol.,1968, 51, 373.
(13) Moore, C.; Pressmann, B. C. , Biochem. Biophys. Res. Commun.,1964, 15, 562.
(14) Tosteson, D. C.; Andreoli, T. E.; Tieffenberg, M.; Cook, P., J. Gen. Physiol., 1967, 50, 2513.
(15) Shemyakin, M. M.; Aldanova, N. A.; Vinogradova, E. I.; Feigina, M. Y., Tetrahedron Lett., 1963, 4, 1921.
(16) Zeggaf, C.; Poncet, J.; Jouin, P.; Dufour, M. N.; Castro, B., Tetrahedron, 1989, 45, 5039.
(17) Castro, B.; Dormoy, J.; Evin, G.; Selve, C., Tetrahedron Lett., 1975, 141219.
(18) Gisin, B. F.; Merrifield, R. B.; Tosteson, D. C., J. Am. Chem. Soc., 1969, 2691.
(19) Staab, H. A., Justus Liebigs Ann. Chem., 1957, 75, 609.
(20) Merrifield, R. B.,J. Amer. Chem. Soc., 1964, 86, 304.
(21) Konig, W.; Geiger, R.,Chem. Ber.,1970, 103, 788.
(22) Losse, G.; Klengel, H., Tetrahedron ,1971, 27, 1423.
(23) Dory, Y. L.; Mellor, J. M.; McAleer, J. F., Tetrahedron Lett., 1989, 30, 1695.
(24) Kuroya, M.; Ishida, N.; Katogiri, K.; Shaji, J.; Yashida, T.; Mayama, M.; Sato, K.; Matsura, S.; Niinomi, Y.; Shiratori, O., J. Antibiotics, 1961, A14, 324.
(25) Chakravorty, P. K.; Olsen, R.,Tetrahedron Lett.,1978, 19, 1613.
(26) Anderson, G. W.; Zimmerman, J. E., J. Amer. Chem. Soc., 1967, 89, 5012.
(27) Kamber, B., Helv. Chim. Acta., 1972, 55, 2052.
(28) Ludescher, U.; Schwyzer, R., Helv. Chim. Acta., 1971, 54, 927.
(29) Chakravorty, P. K.; Olsen, R. K.,J. Org. Chem., 1978, 43, 1270.
(30) Koppel, H. C.; Honigberg, I. L.; Springer, R. H.; Chen, C. C., J. Org. Chem.,1963, 28, 1119.
(31) Shin, M.; Inouye, K.; Otsuka, H.,Bull. Chem. Soc. Jpn., 1984, 57, 2203.
(32) Marinier, B.; Kim, Y. C.; Navarre, J. M., Can. J. Chem.,1973, 51, 208.
(33) Anderson, G. W.; Zimmerman, J. E.; Callahan, F. M., J. Amer. Chem. Soc., 1963, 85, 3039.
(34) Ciardelli, T. L.; Chakravarty, P. K.; Olsen, R. K., J. Am. Chem. Soc., 1978, 100, 7684.
(35) Dhaon, M. K.; Gardner, J. H.; Olsen, R. K., Tetrahedron ,1982, 38, 57.
(36) Olsen, R. K.; Ramasamy, K.; Bhat, K. L.; Low, L. C. M.; Waring, M. J., J. Am. Chem. Soc., 1986, 108, 6032.

Kiryushkin, A.; Ovchinnikov, Y.; Shemyakin, M.,Tetrahedron Lett., 1964, 5, 3313.
Kessler, H.; Kutscher, B.; Mager, G.; Grell, E., Liebigs Ann. Chem., 1983, 1541.
(39) Wissmann, H.; Kleiner, H., Angew. Chem., Int. Ed., Engl.,1980, 19, 133.
(40) Wissmann, H.; Kleiner, H., Angew. Chem.,1980, 92, 129.

Wasserman, H. H.; Keggi, J. J.; McKeon, J. E.,J. Am. Chem. Soc., 1962, 84, 2978.
(42) Shemyakin, M. M.; Antonov, V.; Shkrob, A.; Shchelokov, V. I., Tetrahedron, 1965, 21, 3537.

Shemyakin, M. M.; Ovchinnikov, Y. A.; Antonov, V. K.; Kiryushkin, A. A.; Ivanov, V. T.; Schelokov, V. I.; Shkrob, A. M., Tetrahedron Lett., 1964, 5, 47.
(44) Hassall, C. H.; Martin, T. G.; Schofield, J. A.; Thomas, J. O., J. Chem. Soc. (C), 1967, 997.
(45) Suzuki, A.; Kanaoka, M.; Isogai, A.; Murakoshi, S.; Ichinoe, M.; Tamura, S., Tetrahedron Lett., 1977,18, 2167.
(46) Vining, L. C.; Taber, W. A., Can. J. Chem., 1962, 40, 1579.
(47) Okada, K.; Kurosawa, Y.; Hiramoto, M.,Tetrahedron Lett.,1972, 13, 2693.
(48) Bodanszky, M.; Vigneaud, V.,J. Amer. Chem. Soc., 1959, 81, 5688.
(49) Hardy, P. M.; Prout, R. A.; Rydon, H. N. , J. Chem. Soc., Perkin Trans. I, 1974, 802.
(50) Okada, K.; Kurosawa, Y.; Hiramato, M. , Chem. Pharm. Bull., 1974, 22 (9), 2136.
(51) Rinehart, K. L.; Gloer, J. B.; Cook, J. C., J. Amer. Chem. Soc., 1981, 103, 1857.
(52) Chun, H. G.; Davies, B.; Hogh, D.; Suffness, M.; Plowman, J.; Flora, K.; Grieshaber, C.; Leyland-Jones, B., New Drugs, 1986, 4, 279.

Rinehart, K. L., Anal. Chem. Symp. Ser., 1985, 24, 119.
Ewing, W. R.; Bhat, K. L.; Joullie, M. M., Tetrahedron, 1986, 42, 5863.
Castro, B., $10^{\text {th }}$ Amer. Peptide Symp., 1987, St. Louis, MO, Paper P-292.
Rinehart, K. L.; Kishore, V.; Nagarajan, S.; Lake, R. J.; Gloer, J. B.; Bozich, F. A.; Li, K. M.;
Maleczka, R. E.; Todsen, W. L.; Munro, M. H. G.; Sullins, D. W.; Sakai, R., J. Am. Chem. Soc.,1987, 109, 6846.
(57) Schmidt, U.; Kroner, M.; Griesser, H., Tetrahedron Lett., 1988, 29, 3057.
(58) Schmidt, U.; Schefenacker, K., Liebigs Ann. Chem., 1985, 1254.
(59) Schmidt, U.; Potzolli, B., Liebigs Ann. Chem., 1987, 935.
(60) Fujii, N.; Otaka, A.; Ikemura, O.; Akaji, K.; Funakoshi, S.; Hayashi, Y.; Kurada, Y.; Yajima, H., J. Chem. Soc., Chem. Commun.,1987, 274.
(61) Schmidt, U.; Kroner, M.; Griesser, H. , Synthesis, 1991, 294.
(62) Diago-Meseguer, J.; Palomo-Coll, A. L.; Fernandez-Lizarde, J. R.; Zugaza-Bilbao, A., Synthesis, 1980, 547.
(63) Tung, R. D.; Rich, D. H., J. Am. Chem. Soc., 1985, 107, 4342.
(64) Schimdt, U.; Lieberknecht, A.; Griesser, H.; Talbiersky, J., J. Org. Chem., 1982, 47, 3261.
(65) Li, W.-R.; Ewing, W. R.; Harris, B. D.; Joullie, M. M., J. Amer. Chem. Soc., 1990, 112, 7659.
(66) Chen, F. M. F.; Lee, Y.; Steinaver, R.; Benoiton, N. L., Can. J. Chem., 1987, 65, 613.
(67) Abiko, A.; Roberts, J. C.; Takemasa, T.; Masamune, S., Tetrahedron Lett., 1986, 27, 4537.
(68) Brady, S. F.; Freidinger, R. M.; Paieveda, W. J.; Cotton, C. D.; Homnick, C. F.; Whittier, W. L.; Curley, P.; Nutt, R. F.; Veber, D. F., J. Org. Chem., 1987, 52, 764.
(69) Dudash, J.; Jiang, J.; Mayer, S. C.; Joullie, M. M., Syn. Comm., 1993, 23, 349.
(70) Chen, S.; Xu, J., Tetrahedron Lett., 1991, 32, 6711.
(71) Knorr, R.; Trzeciak, A.; Bennworth, W.; Gillessen, D., Tetrahedron Lett., 1989, 30, 1927.
(72) Shioiri, T., Jpn. Symp. Peptide Chem., 1987, Kobe, Japan, 111.
(73) (a) Destruxin A and B: Tamura, S.; Kuyama, S.; Kodaira, Y.; Higashikawa, S. , Agric. Biol. Chem., 1964, 28, 137. (b) Destruxins C, D and desmethyldestruxin: Suzuki, A.; Taguchi, H.; Tamura, S., Agric. Biol. Chem., 1970, 34, 813.
(74) Tamura, S.; Kuyama, S.,Agric. Biol. Chem., 1965, 29, 168.
(75) Lee, S.; Izumiya, N., Tetrahedron Lett.,1975, 16, 883.
(76) Lee, S.; Izumiya, N.,Int. J. Peptide Protein Res., 1977, 10 (3), 206.
(77) Wunsch, E.; Dress, F.,Chem. Ber.,1966, 99, 110.
(78) Morrison, J. D.; Ciardelli, T. L.; Husman, J. R., Tetrahedron Lett., 1976, 17, 1773.
(79) Okuno, T.; Ishita, Y.; Sawai, K.; Matsumoto, T.,Chemistry Lett., 1974, 635.
(80) Ueno, T.; Nakashima, T.; Hayashi, Y.; Fukami, H., Agric. Biol. Chem.,1975, 39, 1115.
(81) Ueno, T.; Nakashima, T.; Hayashi, Y.; Fukami, H. , Agric. Biol. Chem., 1975, 39, 2081.
(82) Lee, S.; Aoyagi, H.; Shimohigashi, Y.; Izumiya, N., Tetrahedron Lett., 1976, 17, 843.
(83) Shimohigashi, Y.; S., L.; Aoyagi, H.; Kato, T.; Izumiya, N., Int. J. Peptide Protein Res, 1977, 10, 323.
(84) Shimohigashi, Y.; Izumiya, N., Int. J. Peptide Protein Res.,1978, 12, 7.
(85) Kozono, T.; Mihara, H.; Aoyagi, H.; Kato, T.; Izumiya, N., Int. J. Peptide Protein Res., 1984, 24, 402.
(86) Nomoto, S.; Sano, A.; Shiba, T., Tetrahedron Lett., 1979, 20, 521.
(87) Ueda, K.; Waki, M.; Izumiya, N., Int. J. Peptide Protein Res., 1987, 30, 33.
(88) Kanmera, T.; Izumiya, N., Int. J. Peptide Protein Res., 1982, 19, 79.
(89) Crews, P.; Manes, L. V.; Boehler, M., Tetrahedron Lett.,1986, 27, 2797.
(90) Zabriskie, T. M.; Klocke, J. A.; Ireland, C. M.; Marcus, A. H.; Molinski, T. F.; Faulkner, D. J.; Xu, C.; Clardy, J. C., J. Amer. Chem. Soc., 1986, 108, 3123.
(91) Ohfune, Y.; Sakaitani, M., Tetrahedron Lett.,1985, 26, 5543.
(92) Boden, E. P.; Keck, G. E., J. Org. Chem., 1985, 50, 2394.
(93) Grieco, P. A.; Hon, Y. S.; Perez-Medrano, A., J. Am. Chem. Soc., 1988, 110, 1630.
(94) Chu, K. S.; Negrete, G. R.; Konopolski, J. P., J. Org. Chem., 1991, 56, 5196.
(95) Rao, R. A. V.; Gurjar, M. K.; Nallaganchu, B. R.; Bhandari, A.,Tetrahedron Lett., 1993, 34, 7085.
(96) Imaeda, T.; Hamada, Y.; Shioiri, T.,Tetrahedron Lett., 1994, 35, 591.
(97) Mitsunobu, O.,Synthesis ,1980, 1.
(98) Shioiri, T.; Ninomiya, K.; Yamada, S., J. Amer. Chem. Soc., 1972, 94, 6203.
(99) Kato, S.; Hamada, Y.; Shioiri, T.,Tetrahedron Lett., 1988, 29, 6465.
(100) Shioiri, T.; Yokoyama, Y.; Kasai, Y.; Yamada, S., Tetrahedron ,1976, 32, 2211.
(101) Chan, W. R.; Tinto, W. F.; Manchand, P. S.; Todaro, L. J., J. Org. Chem., 1987, 52, 3091.
(102) White, J. D.; Amedio, J. C., J. Org. Chem., 1989, 54, 736.
(103) Hirai, Y.; Yokata, K.; Yamazaki, T.; Mamase, T., Heterocycles, 1990, 30, 1101.
(104) Grieco, P. A.; Perez-Medrano, A., Tetrahedron Lett., 1988, 29, 4225.
(105) Hassall, C. H.; Johnson, W. H.; Theobald, C. J., J. Chem . Soc., Perkin Trans I,1979, 1451.
(106) Konishi, M.; Ohkuma, H.; Sakai, F.; Tsuno, T.; Koshiyama, H.; Naito, T.; Kawaguchi, H., J. Antibiotics, 1981, 34, 148.
(107) Konishi, M.; Ohkuma, H.; Sakai, F.; Tsuno, T.; Koshiyana, H.; Naito, T.; Kawaguchi, H., J. Amer. Chem. Soc., 1981, 103, 1241.
(108) Arnold, E.; Clardy, J., J. Amer. Chem. Soc., 1981, 103, 1243.
(109) Huang, C.-H.; Mong, S.; Crooke, S. T., Biochemistry, 1980, 19, 5537.
(110) Huang, C.-H.; Prestayko, A. W.; Crooke, S. T., Biochemistry, 1982, 21, 3704.
(111) Okuma, H.; Sakai, F.; Nishiyama, Y.; Ohbayashi, M.; Imanishi, H.; Konishi, M.; Miyaki, T.; Koshiyama, H.; Kawaguchi, H., J. Antibiotics, 1980, 33, 1087.
(112) Rose, W. C.; Schurig, J. E.; Huftalen, J. B.; Bradner, W. T., Cancer Res., 1983, 43, 1504.
(113) Olsen, R. K.; Apparao, S.; Bhat, K. L., J. Org. Chem., 1986, 51, 3079.
(114) Groupe, V.; Pugh, L. H.; Weiss, D.; Kochi, M., Proc. Soc. Exptl. Biol. Med., 1951, 78, 354.
(115) Burke, T. R.; Knight, M.; Chandrasekhar, B., Tetrahedron Lett., 1989, 30, 519.
(116) Sone, H.; Nemoto, T.; Ishiwata, H.; Ojika, M.; Yamada, K., Tetrahedron Lett., 1993, 34, 8449.
(117) Ishiwata, H.; Nemoto, T.; Ojika, M.; Yamada, K., J. Org. Chem., 1994, 59, 4710.
(118) Inanoga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M., Bull. Chem. Soc. Jpn., 1989, 52, 1979.
(119) Ishiwata, H.; Sone, H.; Kigoshi, H.; Yamada, K., J. Org. Chem., 1994, 59, 4712.
(120) Sasaki, T.; Takagi, M.; Yaguchi, S.; Miyadoh, S.; Okada, T.; Koyama, M., J. Antibiotics , 1992, 45, 692.
(121) Ohyama, M.; linuma, K.; Isogai, A.; Suzuki, A., Biosci. Biotech. Biochem.,1994, 58 (6), 1193.
(122) Hamano, K.; Kinoshita, M.; Furuya, K.; Miyamato, M.; Takamatsu, Y.; Hemmi, A.; Tanzawa, K., J. Antibiotics, 1992, 45, 899.
(123) Carpino, L. A., J. Amer. Chem. Soc., 1993, 115, 4397.
(124) Schmidt, U.; Langner, J., J. Chem. Soc., Chem. Commun., 1994, 2381.
(125) Takesako, K.; Ikai, K.; Huruna, F.; Endo, M.; Shimanaka, K.; Sono, E.; Nakamura, T.; Kato, I.; Yamaguchi, H., J. Antibiotics, 1991, 44, 919.
(126) Coste, J.; Frerot, E.; Jouin, P.; Castro, B., Tetrahedron Lett., 1991, 32, 1967.
(127) Kurome, T.; Inami, K.; Inoue, T.; Ikai, K.; Takesako, K.; Kato, I.; Shiba, T.,Chem. Lett., 1993, 1873.
(128) Durette, P. L.; F., Baker, F; P.L, Boger, J.; Bondy, S. S.; Hammond, M. L.; Pessolano, A. A.; Caldwell, C. G., Tetrahedron Lett.,1990, 31, 1237.
(129) Durette, P. L.; Baker, F.; Barker, P. L.; Boger, J.; Bondy, S. S.; Hammond, M. L.; Lanza, T. L.; Pessolano, A. A.; Caldwell, C. G., Abs. $198^{\text {th }}$ ACS National Meeting 1989, Miami Beach, Florida, September 10-15, Abstract No.119.
(130) Tung, R.; Dhaon, M. K.; Rich, D. H., J. Org. Chem., 1986, 51, 3350.
(131) Williams, E.A., J. Med. Chem., 1992, 35, 3905.
(132) Caldwell, C. G.; Ruprecht, K. M.; Bondy, S. S.; Davis, A. A., J. Org. Chem., 1990, 55, 2355.
(133) Dangels, O.; Guibe, F.; Balavoine, G.; Laveielle, S.; Marquet, A., J. Org. Chem., 1987, 52, 4984.
(134) Kopka, I. E., Tetrahedron Lett., 1990, 31, 4711.
(135) Borch, R. F.; Dernstein, M. D.; Durst, H., D., J. Amer. Chem. Soc.,1971, 93, 2897.
(136) Mattingly, P. G.; Miller, M. J., J. Org. Chem., 1980, 45, 410.
(137) Tada, H.; Tozyo, T.; Terui, Y.; Hayashi, F., Chem. Lett., 1992, 431.
(138) Kitagawa, I.; Lee, N.K.; Kobayashi, M.; Shibuya, H., Tetrahedron, 1991, 47, 2169.
(139) Hale, K.J., Delisser, V.M.; Manaviazar, S., Tetrahedron Lett., 1992, 33, 7613.
(140) Hale, K.J., Bhatia, G.S.; Peak, S.A.; Manaviazar, S., Tetrahedron Lett., 1993, 34, 5343.
(141) Hale, K.J.; Delisser, V.M.; Yeh, L-K, Peak, S.A., Manaviazar, S.; Bhatia, G.S., Tetrahedron Lett., 1994, 35, 7685.

Chapter 3. Synthetic Studies on the Hexadepsipeptide Portion of A83586C.

3.1 Introduction

Aware of these synthetic findings on L-156,602, we decided to embark on the total synthesis of the antitumour antibiotic, A83586C (2). Our main reason for initiating this venture was to use the total synthesis to create a library of analogues that could be used to probe the biological mechanism of antitumour action. We also hoped to identify simplified analogues that might have reduced toxicity compared to A83586C itself, and thus be of greater potential use as new anticancer treatments.

A83586C (2) is a very sensitive molecule towards the action of strong nucleophiles such as thiols and amines, since conjugate addition can occur on the isolated α, β unsaturated ketone present in the pyran side chain. These nucleophiles, along with bases, could also potentially cleave the lactone bond, and thus destroy the cyclodepsipeptide ring. Under strongly basic or acidic conditions the $\mathrm{C}(35)$ and $\mathrm{C}(36)$ double bond also runs the risk of moving into conjugation with $C(38)$ ketone, to create a new stereocentre at C (35) while destroying one at $C(37)$. Another possibility under strong acid conditions is a retro-aldoi cleavage in the threonine and the hydroxyleucine residues. Thus, when considering a potential retrosynthetic analysis of $\mathbf{2}$ it is critical that a correct choice of protecting groups is made. in our view, the protecting groups required for a synthesis of A83586C will need to be capable of being cleaved under mildly acidic or preferably neutral conditions.

3.2 Retrosynthetic Analysis of A83586C

A key step in our retrosynthetic analysis of A83586C is the ring closure of seco-acid 344 (Scheme 1). Several methods are available for this transformation, most notably those due to Corey ((PyS$)_{2}, \mathrm{Ph}_{3} \mathrm{P}$), ${ }^{1,2}$ Mitsunobu (DEAD, $\mathrm{Ph}_{3} \mathrm{P}$), ${ }^{3}$ Masumune (DCC, PPTS, Py) ${ }^{4,5}$ and Mukaiyama (2-chloro-6-methyl-1,3-diphenylpyridinium tetrafl ${ }^{\circ}$ (̂oborate, $2,4,6$-triphenylpyridine). ${ }^{6} \mathrm{Global}$ deprotection of the resuling macrolactone with mild acid and subsequent selective oxida-tion of the allylic alcohol at $\mathrm{C}(38)$ with DDQ or $\mathrm{O}_{2} / \mathrm{Pt}$ black ${ }^{7}$ should then lead to the natural product. Our next disconnection is across the $C(28)$-amide bond in 344; it potentially, could arise from a condensation of amine 345 with the hydroxybenzotriazole activated ester 346. We opted for a
strategy proceeding via the linear hexapeptide 345, rather than one utilising a fully-elaborated cyclodepsipeptide, bearing a free amine at $\mathrm{C}(18)$, so as to minimise the risk of macrolactone destruction through intramolecular N-acyl migration as was encountered in the Merck synthesis of L-156,602. ${ }^{8}$

Scheme 1

Next we hoped to excute a chemoselective coupling between amine 345 and activated ester 346 to establish the $C(28)$ amide linkage. The $C(18)$-amine of hexapeptide 345 was considered to be the most nucleophilic site in this molecule, since the piperazic acid N^{1}-atoms and the hydroxamic acid hydroxyl would be deactivated by virtue of being attached to electronwithdrawing groups. They would also be sterically hindered.

Activated ester 346 was potentially derivable from ketone 347 , by debenzylation, Fischer glycosidation with methanol and PPTS, oxidation of the primary alcohol to the acid, and treatment with benzotriazolyl- N-oxytridimethylaminophosphonium hexafluorophosphate (BOP). Ketone 347 could arise from a condensation between the α-phenylsulfonyl anion of 348 and aldehyde 349. We were hoping to control the (E)-stereochemistry in the $C(35)-C(36)$ trisubstituting olefin of $\mathbf{3 4 8}$ by a chelation-controlled Grignard addition of MeMgBr to $\mathbf{3 5 0}$ followed by dehydration. Disconnection of $\mathbf{3 5 0}$ led us to sulfone $\mathbf{3 5 1}$ and aldehyde $\mathbf{3 5 2}$ as sub-targets.

The stereocentre bearing the $C(37)$ methyl group in 351 could be set by an Evans asymmetric aldol reaction ${ }^{9,10}$ between the (Z)-di- n-butylboron enolate of 353 and tiglic aldehyde 354 . The stereocentres at $\mathrm{C}(33)$ and $\mathrm{C}(34)$ in 352 could be created by a chelation-controlled ring opening of the 2,3-epoxy alcohol 355 with trimethylaluminium, since there were no electron-withdrawing substituents adjacent to the $\mathrm{C}(3)$-position of the epoxide. ${ }^{11} \mathrm{~A}$ concise genesis of aldehyde 349 was envisaged to be from asymmetric dihydroxylation of alkene 357 wih AD-mix- α^{12} (Scheme 2).

Scheme 2

Since this initial retrosynthetic analysis an asymmetric synthesis of ketone 347 has been developed by the Hale group. ${ }^{13}$ The results are discussed more fully by Bhatia ${ }^{14}$ and Manaviazar. ${ }^{15}$

(347)

Interestingly, whilst synthesising aldehyde 349 via asymmetric dihydroxylation, it was observed that alkene 357 did not conform to the Sharpless mnemonic device in the AD reaction with AD-mix- α, and led to a product that had opposite stereochemistry to that predicted. Several other 1,1-disubstituted alkenes were examined and observed to give the opposite stereochemistry to that predicted (Scheme 3). ${ }^{16}$

Scheme 3

Predicted

$$
\begin{aligned}
& \mathrm{R}= \mathrm{SiPh}_{2} \mathrm{Bu}-t, \mathrm{SiMe}_{2} \mathrm{Bu}-t, \\
& \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Me})_{3}, \mathrm{CH}_{2} \mathrm{Ph}
\end{aligned}
$$

3.3 Results and Discussion

From here on I shall be discussing our synthetic studies on the cyclodepsipeptide portion of A83586C. The first attempt at constructing hexapeptide 345 was based on the linear app-roach shown in Scheme 4. The numbers represents the order of the proposed couplings of the suitably protected α-amino and α-hydrazino acids.

In order to accomplish the first coupling (3R)-piperazic acid trifluoroacetic acid salt, 361^{17} was protected as its N^{1}-benzyloxycarbonyl derivative by treatment with benzyl chloroformate in toluene under the Schotten-Bauman conditions to give 362 in 100% yield. The infrared spectrum of 362 contained a sharp absorption at $3262 \mathrm{~cm}^{-1}$ which suggested the presence of a
free NH group. There was also a broad acid carbonyl stretch at $1751 \mathrm{~cm}^{-1}$ and a carbamate carbonyl stretch at $1691 \mathrm{~cm}^{-1}$. The structure of the product was further confirmed by the presence of a five proton multiplet between $\delta 7.38-7.29$ in the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}, which was due to the aromatic protons. By keeping the reaction at $0^{\circ} \mathrm{C}$ and the reaction time below 2 h , the yield of the bis protected piperazic acid could be reduced to a negligible amount. The N^{2} of the N^{1}-Z-piperazic acid 361 was also protected prior to its coupling. Thus, treating 362 with trifluoroacetic anhydride in trifluoroacetic acid resulted in 363 in a yield of 94% (Scheme 5). ${ }^{18}$ The absence of an NH stretch at $3262 \mathrm{~cm}^{-1}$ and the appearance of an additional carbonyl stretch at $1827 \mathrm{~cm}^{-1}$ corroborated the presence of a trifluoroacetyl group. The meas ured accurate mass was in accord with the structure calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~N}_{2} \mathrm{~F}_{3}(\mathrm{M}+\mathrm{H})^{+}$, 361.1011; Found: 361.1024.

N-Hydroxy alanine derivative 367 was synthesised by the procedure of Ottenheijm and coworkers. ${ }^{19}$ Methyl-D-lactate 364 was converted to its triflate ester and this displaced with O benzylhydroxylamine in an $S_{N} 2$ reaction to give 365 in 74% yield (Scheme 6). The structure of the product was apparent from its $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} since there was a multiplet between $\delta 7.24-7.35$ which integrated to five protons, and which was due to the aromatic hydrogens; in addition, there was a methyl ester singlet at $\delta 3.65$. The infrared spectrum of 365 contained a weak but sharp absorption at $3262 \mathrm{~cm}^{-1}$ which corresponded to the NH group. Hydrolysis of 365 with 1 M aqueous sodium hydroxide in THF at $0^{\circ} \mathrm{C}$ gave acid 366 in 66% yield after acidification (Scheme 6). The absence of a singlet at $\delta 3.65$ confirmed that the methoxy group was now absent from product 366 . The infrared spectrum of 366 also possessed a broad absorption between 3200 and $2000 \mathrm{~cm}^{-1}$ which was indicative of a carboxylic acid group. This observation was further consolidated by a shift of the carbonyl absorption from $1742 \mathrm{~cm}^{-1}$ for the methyl ester 365 to $1574 \mathrm{~cm}^{-1}$ in 366 which again was indicative of a carboxylate ion.

Scheme 6

Reesterification of 366 with isobutene and a catalytic amount of concentrated sulfuric acid in dioxane resuited in the t-butyl ester 367 being formed in a yield of 62%. The structure of 367 was apparent from the nine proton singlet at $\delta 1.46$. Furthermore, the high resolution mass spectrum of 367 contained an $(\mathrm{M}+\mathrm{H})^{+}$peak at m/e 252.1608 (Calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N},(\mathrm{M}+\mathrm{H})^{+}$ 252.1600) which was in accord with the postulated structure.

The bis-protected piperazic acid 363 was now converted to its acid chloride by treatment withphosphorus pentachloride in ether, and coupled to α-hydroxamic acid derivative 367 in a mixture of dichloromethane and 12% aqueous sodium bicarbonate. This furnished dipeptide 368 in 64\% yield (Scheme 7).

Scheme 7

The infrared spectrum of 368 contained carbonyl absorptions at 1738,1724 and $1674 \mathrm{~cm}^{-1}$ the latter clearly being due to an amide $\mathrm{C}=\mathrm{O}$ stretch. The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 368 at 135 ${ }^{\circ} \mathrm{C}$ in DMSO-d 6 consisted inter alia of a multiplet between $\delta 7.49$ and 7.29 which corresponded to the benzyl groups of the benzyloxycarbonyl and the benzyl ether of the O-benzylhydroxyalanine derivative. The presence of two singlets at $\delta 1.43$ and 1.42 due to the t-butyl ester group and the
doublet at $\delta 1.38(J=7.2 \mathrm{~Hz})$ due to the methyl group of the α-hydroxamic residue supported the postulated structure. Quantitative cleavage of the t-butyl ester of 368 with trifluoroacetic acid resulted in acid 369 (Scheme 7). The absence of the t-butyl resonances at $\delta 1.43$ and 1.42 in the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} and the presence of a broad singlet at $\delta 12.90$ was good evidence for formation of the acid. Further confirmation came from the broad absorption observed between 3478 and $3219 \mathrm{~cm}^{-1}$ in the IR spectrum of 369.
N-Methyl-D-alanine 371 was synthesised by the chemoselective methylation method of Benoiton and coworkers ${ }^{20,21}$ starting from N-benzyloxycarbonyl-D-alanine 370. Subsequent esterification with isobutene and a catalytic amount of concentrated sulfuric acid resulted in the t butyl ester 372 being formed in 74% yield. The infrared spectrum of 372 contained two carbonyl stretches at 1735 and $1708 \mathrm{~cm}^{-1}$ due to the ester and the carbamate carionyl groups. The 400 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 372 in CDCl_{3} revealed two singlets at $\delta 2.88$ and 2.85 which were assignable to the N-methyl protons, and two singlets at $\delta 1.41$ and 1.37 due to the t-butyl ester group. In order to complete the synthesis of the tripeptide 375,372 was hydrogen-ated in the presence of 10% palladium on carbon in ethyl acetate and the resulting amine 373 concentrated in vacuo at $25^{\circ} \mathrm{C}$ before being diluted with dry dichloromethane (Scheme 8). The amine

Scheme 8

solution was then added to a solution of the mixed phosphinic acid anhydride of dipeptide 369 formed after reaction with bis(2-oxo-3-oxazolidinyl)phosphinic chloride (BOP-CI) ${ }^{22-24}$ and triethylamine in dichloromethane at $-20^{\circ} \mathrm{C}$; compound 374 was isolated in 68% yield (Scheme 8).

The constitution of 374 was suggested by its high resolution mass spectrum which contained an $(\mathrm{M}+\mathrm{H})^{+}$peak at m/e 679.2959 (Calcd. for $\left.\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~F}_{3},(\mathrm{M}+\mathrm{H})^{+} 679.2955\right)$. Cleavage of the t-butyl ester from 374 with trifluoroacetic acid gave 375 in 80% yield (Scheme 8). The infrared spectrum of 375 contained a broad absorption between 3690 and $2400 \mathrm{~cm}^{-1}$ which was indica-tive of an acidic OH group. Structure 375 was further proven by its high resolution mass spectrum which contained an $(M)^{+}$peak at $m / e 622.2243$ (Calcf.for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~F}_{3},\left(\mathrm{M}^{+}\right)$622.2250).

At this point, its coupling partner (3S)- N^{1}-Z-piperazic acid methyl ester 377 was prepared from 376 by treatment with ethereal diazomethane in chloroform (Scheme 9).

Scheme 9

With tripeptide 375 in hand, we next attempted to couple it with 377, to form tetrapeptide 378 (Scheme 10). A range of methods for carboxyl activation were evaluated for obtaining tetrapeptide 378 from acid 375 . These included the acid chloride ${ }^{25}$ and acid fluoride ${ }^{26}$ procedures. A variety of bases were used for the coupling of 377 with the acid chloride from $\mathbf{3 7 5}$; these included N -methylmorpholine, diisopropylethylamine, and 10% aqueous NaHCO_{3} in dichloromethane. Silver cyanide in toluene at $90^{\circ} \mathrm{C}$ was also tried, unsuccessfully. ${ }^{27}$ Direct coupling of tripeptide 375 to 377 using reagents such as 2,2-dipyridyldisulfide/triphenylphosphine, ${ }^{28}$ the Steglich reagent, ${ }^{29}$ dicyclohexylcarbodiimide/hydroxybenzotriazole, ${ }^{30}$ and 1,1-carbonyldiimidazole ${ }^{31,32}$ were also futile. The failure of these reactions was presumably due to the poor nucleophilcity of the $N(2)$-atom in N^{1} acylated α-hydrazino acid derivatives, which is caused by the strong electron-withdrawing effect of the $N(1)$-acyl residue and the sterically hindered enviroment it creates around the $N(2)$-atom. The bulkiness of acid $\stackrel{375}{\sim}$ may also be a reason for the failure of this coupling

In light of this set-back, we elected to follow a [2+2] fragment condensation strategy between 369 and 379 to obtain 378 (Scheme 11). We envisaged that 379 would be formed by a coupling of 380 with $\mathbf{3 7 7}$, followed by removal of the Fmoc protecting group.

Scheme 11

Acid 380 is a known compound that was prepared according to the literature method developed by Freidinger and coworkers (Scheme 12). ${ }^{33}$ This involved treatment of Fmoc-Dalanine 381 with paraformaldehyde to obtain the oxazolidinone ${ }^{34} 382$ in 74% yield. Ionic reduction ${ }^{35}$ of $\mathbf{3 8 2}$ with triethylsilane in trifluoroacetic acid gave the required acid $\mathbf{3 8 0}$ in 80% yield.

Scheme 12

The acid chloride of 380 was formed by treatment with oxalyl chloride in benzene at 50 ${ }^{\circ} \mathrm{C}$ for 1 h , and concentration in vacuo. The crude acid chloride was used immediately for the coupling with methyl (3S)-Z-piperazate 377 mediated silver cyanide 36,37 in toluene at $90^{\circ} \mathrm{C}$ for 1 h; this resulted in the desired dipeptide 383 being formed in 54% yield. The structure of 383 was apparent from its $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} since there were a pair of sharp singlets at $\delta 3.74$ and 3.73 which strongly supported the presence of a methyl ester. There were also two broad singlets at $\delta 2.87$ and 2.83 which were attributable to the N-methyl hydrogens. The infrared spectrum of 383 contained carbonyl stretches at 1740 and $1687 \mathrm{~cm}^{-1}$. The high resolution mass spectrum displayed an $(\mathrm{M}+\mathrm{H})^{+}$peak at m/e 586.2559 (Calcd. for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{~N}_{3}$, $\left.(\mathrm{M}+\mathrm{H})^{+} 586.2553\right)$. The Fmoc group was cleaved ${ }^{38,39}$ from 383 by reaction with diethylamine in
acetonitrile at room temperature. Unfortunately, this did not lead to the desired amine 379, but rather, to a cyclised product 384 within about five minutes (Scheme 13).

Scheme 13

The disappearance of the methyl ester singlets at $\delta 3.74$ and 3.73 in the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 384 in CDCl_{3} strongly pointed to the cyclised product. Moreover, the infrared spectrum showed no NH stretch in the region of $3200 \mathrm{~cm}^{-1}$ and the presence of two tertiary amide carbonyl stretches at 1694 and $1661 \mathrm{~cm}^{-1}$ which lended additional support to this proposal. The high resolution mass spectrum of 384 further confirmed the proposed structure since there was an $(\mathrm{M}+\mathrm{H})^{+}$peak at $\mathrm{m} / \mathrm{e} 332.1615$ (Calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}_{3}, 332.1610$). In our view, 384 was likely to be formed whatever amine protecting group was selected for the N-methyl alanine residue, and so the $2+2$ fragment condensation route to tetrapeptide 378 was abandoned.

Our next strategy for obtaining 385 was through a $3+2+1$ fragment condensation between 387, 388 and 389 (Scheme 14).

Scheme 14

The synthesis of dipeptide 388 commenced with the synthesis of N^{1}-benzyloxycarbonyl $-N^{2}$-fluorenymethoxycarbonyl-(3R)-piperazic acid 390. This was achieved by reacting 362 with chlorotrimethysilane (2 equiv, TMS-CI) and diisopropylethylamine in dichloromethane at reflux to form 391. The formation of 391 serves two functions. Firstly, it prevents the formation of any dipeptide impurities by preventing mixed anhydride formation. Secondly, preparing the N-silyl amine increases the reactivity of the amine due to the silicon moiety donating electron density towards the nitrogen. Without isolation, 9-fluorenylmethyl chloroformate (Fmoc-Cl) ${ }^{40,41}$ was added to 391 at $0^{\circ} \mathrm{C}$ to obtain 390 in 85% yield (Scheme 15)..42 The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 390 in DMSO- d_{6} at $100^{\circ} \mathrm{C}$ contained apparent doublets at $\delta 7.80(J=7.6 \mathrm{~Hz})$ and $7.60(J=7.1 \mathrm{~Hz})$ due to the Fmoc aromatic protons. The absence of the sharp NH stretch at 3262 cm^{-1} in the infrared spectrum of 390 was taken as further evidence that acylation of the N^{1}-atom of 362 had taken place. The structure of 390 was confirmed by its high resolution mass spectrum, which revealed an $(M+H)^{+}$peak at $m / e 487.1853$ (Calcd. for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6},(\mathrm{M}+\mathrm{H})^{+}$ 487.1869).

Compound 390 was converted to its acid chloride with oxalyl chloride (10 equiv) in benzene at $60^{\circ} \mathrm{C}$ and coupled to α-hydroxamic acid derivative 367, using the Carpino twophase aqueous $\mathrm{NaHCO}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ conditions ${ }^{25}$ to deliver dipeptide 392 in 96% yield (Scheme 15). This compound had previously been prepared by Durette and Caldwell ${ }^{8}$ but no spectra were available for comparision. It was apparent from the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 392 at $125^{\circ} \mathrm{C}$ in DMSO- d_{6} that the coupling had given the correct product since there were resonances between $\delta 7.88-7.15$ that integrated to eighteen protons, which were due to the aromatic protons. Moreover, there was a singlet superimposed on a multiplet between $\delta 1.41-1.36$ which was attributable to the t-butyl ester group in the structure. HPLC analysis showed that the product was 99\% pure (Figure 1).

Treatment of 392 with trifluoroacetic acid in dichloromethane afforded acid 388 in 93% yield (Scheme 15). The absence of the t-butyl singlet in the region $\delta 1.41-1.36$ and the appearance of a broad singlet at $\delta 9.65$ in the $400 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of 388 in CDCl_{3} confirmed that deprotection of the t-butyl ester group had occurred. The IR spectrum of 388 contained a broad absorption between 3431 and $3034 \mathrm{~cm}^{-1}$ which pointed to a carboxylic group.

Acid 388 gave a satisfactory C, H and N combustion microanalysis for empirical formula $\mathrm{C}_{38} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{8}$ (Calcd.: $\mathrm{C}, 68.77 ; \mathrm{H}, 5.62 ; \mathrm{N}, 6.33 \%$. Found: $\mathrm{C}, 68.89 ; \mathrm{H}, 5.55 ; \mathrm{N}, 6.17 \%$).

Conditions

Solvent: 20\% EtOAc in hexane Flow rate: $1 \mathrm{ml} / \mathrm{min}$
U.V. Detector set at 254 nm Column:Kromasil- silica

Figure 1: HPLC trace of dipeptide 392.
The synthesis of tripeptide 387 was initiated by preparing diphenylmethyl ester 393. Thus, treatment of 376 with excess diphenyldiazomethane 43,44 in acetone gave 393 in 93% yield (Scheme 16). Evidence for the structure of 393 was provided by the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} which displayed a multiplet from $\delta 7.36-7.24$ that integrated to the fifteen aromatic protons, and a singlet at $\delta 6.92$ which was due to the tertiary benzylic proton of the diphenylmethyl ester.

Scheme 16

Acid 380 was converted to its acid chloride with oxalyl chloride (10.0 equiv) in dichloromethane at $25^{\circ} \mathrm{C}$ for 2 h . The acid chloride was then treated with a solution of 393 in toluene and silver cyanide (1.61 equiv.) at $70^{\circ} \mathrm{C}$ to give dipeptide 394 in 92% yield after 1 h (Scheme 17). The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 394 in CDCl_{3} contained resonances for twenty three aromatic protons and showed the expected singlet at $\delta 6.90$ for the tertiary proton of the diphenylmethyl ester. It also exhibited two singlets at $\delta 2.74$ and 2.57 due to the N-methyl protons. HPLC analysis showed that coupling had occurred with minimal racemisation, compound 394 being obtained with 99% purity (Figure 2).

Scheme 17

(394)

Conditions
Solvent: $10 \% \mathrm{H}_{2} \mathrm{O}$ in MeOH Flow rate: $1 \mathrm{ml} / \mathrm{min}$
U.V. Detector set at 254 nm

Column: Hichrom (KR-SC-18-2735)
(reverse-phase)

Figure 2: HLPC trace of dipeptide 394
Removal of the diphenylmethyl ester from 394 was accomplished readily with trifluoro-acetic acid (12.5 equiv) and phenol (2.34 equiv) in dichloromethane ${ }^{45}$ producing acid 395 in 99% yield.

The absence of a singlet at $\delta 6.90$ in the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 395 in DMSO-d 6 at 100 ${ }^{\circ} \mathrm{C}$ and the presence of a broad singlet at $\delta 12.20$ confirmed the identity of acid 395 (Scheme 17).

The D-threonine derivative 399 was synthesised in 3 steps starting from N-benzyloxy-carbonyl-D-threonine 396. The sequence involved esterification with diazomethane, O-silylation with t-butyldimethyl-silyl chloride, and hydrogenation. This provided amine 399 in an overall yield of 94% as shown in Scheme 18.

Several coupling protocols were investigated for the synthesis of tripeptide 400 from dipeptide 395 and threonine derivative 399 . These included the oxidation-reduction condensation of Mukaiyama with triphenylphosphine and $2,2^{\prime}$-dipyridyldisulphide, ${ }^{28}$ the diphenylphosphinic mixed anhydride protocol of Kenner ${ }^{46,47}$ and the N, N-diisopropylcarbodiimide method. However, the best results were obtained when dicyclohexylcarbodiimide (1.1 equiv), N-hydroxybenzotriazole (2.1 equiv) and cupric chloride (0.11 equiv) were employed in THF; ${ }^{48}$ this regimen furnished 400 in 85% yield as a foam (Scheme 19). Reverse-phase HPLC showed that racemisation was negligible and the desired product was obtained in 98% purity (Figure 3). The IR spectrum of 400 contained an absorption at $3400 \mathrm{~cm}^{-1}$ which was reminiscent of a secondary amide NH stretch and one at $1531 \mathrm{~cm}^{-1}$ which was indicative of a secondary amide carbonyl group. It was apparent from the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 400 in DMSO- d_{6} at $75^{\circ} \mathrm{C}$ that the tripeptide had been prepared since there were singlets at $\delta 3.64$ and 3.55 attributable to the methyl ester, a broad singlet at $\delta 2.67$ due to the N-methyl protons, and singlets at $\delta 0.81,0.00$ and -0.02 from the t-butyldimethylsilyl ether. Further proof of the structure was provided by the high resolution mass spectrum of 400 , which contained an $(\mathrm{M}+\mathrm{Na})^{+}$peak at $\mathrm{m} / \mathrm{e} 823.3709$ (Calcd. for $\left.\mathrm{C}_{43} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{SiNa},(\mathrm{M}+\mathrm{Na})^{+} 823.3714\right)$.

Scheme 19

(395)

THF, $0{ }^{\circ} \mathrm{C}$, (85%)

Conditions

Solvent: $10 \% \mathrm{H}_{2} \mathrm{O}$ in MeOH
Flow rate: $1 \mathrm{ml} / \mathrm{min}$
U.V. Detector set at 254 nm

Column: Hichrom (KR-SC-18-2735)
(reverse-phase)

Figure 3: HPLC trace of tripeptide 400.
Removal of the Fmoc group in 400 with the use of diethylamine in acetonitrile ${ }^{39}$ gave amine 387 , which was then coupled with dipeptide 388 using freshly recrystallised bis(2-0xo-3oxazolidinyl)phosphinic chloride $(\mathrm{BOP}-\mathrm{Cl})^{24}$ and triethylamine in dichloromethane at $-20^{\circ} \mathrm{C}$ (Scheme 20). Compound 401 gave a satisfactory C, H and N combustion microanalysis for $\mathrm{C}_{66} \mathrm{H}_{81} \mathrm{~N}_{7} \mathrm{O}_{14} \mathrm{Si}$ (Calcd.: C, 64.74; H, 6.67; N, 8.01\%. Found: C, 64.41; H, 6.74; N, 7.82\%). HPLC analysis of 401 indicated it to be of 95% purity (Figure 4).

Scheme 20

Figure 4: HPLC trace of pentapeptide 402.
In order to complete the synthesis of the linear hexapeptide 385 we needed to synthesise the protected (2S,3S)-3-hydroxyleucine acid chloride 389. Several elegant asymmetric synthesis of $(2 S, 3 S)$-3-hydroxyleucine acid 408 has been reported over the years. $49-53$ However, the most convenient route currently available to 408 is the one was developed in these laboratories. ${ }^{54}$ The key steps in this new route are Sharpless asymmetric dihydroxylation ${ }^{12}$ of $\alpha, \beta-$ unsaturated ester 403, formation of cyclic sulphate 405 and $S_{N} 2$ displacement with sodium azide to form the α-azido ester 406. ${ }^{12,55}$ Hydrolysis of the ethyl ester with aqueous sodium hydroxide and subsequent hydrogenolysis with Pearlman's catalyst ${ }^{56}$ typically furnish erythro-3hydroxyleucine 408 in an overall yield of $57-67 \%$ and in an enantiomeric excess of 97% (Scheme 21).

Scheme 21

(2S,3S)-3-Hydroxyleucine 408 was protected as its N-fluorenylmethoxycarbonyl derivative 409 by treatment with $\mathrm{Fmoc}-\mathrm{Cl}$ and aqueous sodium carbonate in dioxane in 88% yield. The
$400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 409 in DMSO-d 6 contained a multiplet between $\delta 7.88-7.23$ which was assignable to the Fmoc aromatic protons. The $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of 409 in DMSO-d d_{6} contains two carbonyl resonances at $\delta 172.8$ and 155.8 ppm . The accurate mass spectrum of 409 contained an $(\mathrm{M}+\mathrm{H})^{+}$peak at 370.1666 (Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N},(\mathrm{M}+\mathrm{H})^{+}$ 370.1654). Silylation of 409 to obtain 412 directly was unsuccessful when t-butyldimethysilylchloride and imidazole or N-methylimidazole were employed. ${ }^{57}$ Possibly, this may due to steric hindrance around the hydroxyl group from the i-propyl group. In order to O-silylate this hydroxy group, we had to first protect the acid as its diphenylmethyl ester 410 (Scheme 22). The presence of a singlet at $\delta 6.95$ in the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 410 in CDCl_{3} confirmed its identity.

Silylation was then achieved in 82% yield by treatment of alcohol 410 with t-butyldimethylsilyl trifluromethanesulfonate (TBS-OTf, 1.2 equiv) and diisopropylethylamine (1.2 equiv) in dichloromethane (Scheme 22). The structure of 411 was apparent from the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}, there now being resonances at $\delta 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$ and $0.07(\mathrm{~s}, 3 \mathrm{H})$ which were attributable to the silyl ether group. The $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum reveal inter alia resonances at $\delta-3.97$ and -4.34 which were also due to the silyl ether group. The cleavage of the diphenylmethyl ester by hydrogenolysis was of concern as the stability of the Fmoc group under these conditions can sometimes be a problem. ${ }^{58,59}$ However, hydrogenation of 411 with 10% palladium on carbon in ethyl acetate gave the required acid $\mathbf{4 1 2}$ in a yield of 89% after column
chromatography. The absence of the singlet at $\delta 6.95$ and the presence of a broad singlet at δ 10.30 in the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 412 in CDCl_{3} indicated the carboxylic acid unit had been unmasked. The high resolution mass spectrum of 412 contained an $(M+H)^{+}$peak at m / e 484.2525 (Calcd. for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{1} \mathrm{O}_{5} \mathrm{Si},(\mathrm{M}+\mathrm{H})^{+} 484.2519$). Acid 414 was then treated with oxalyl chloride in benzene at room temperature to give the acid chloride 389 (Scheme 22).

The desired hexapeptide 413 was synthesised in 56% yield by reacting the partially exposed acyl hydrazine 386 with acid chioride 389 , mediated by silver cyanide ${ }^{36}$ in toluene at $80^{\circ} \mathrm{C}$ (Scheme 23). However, this product was shown to be only 85% pure after reverse-phase preparative HPLC, eluting with 10% water in methanol (Figure 5). From the $400 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum in CDCl_{3} the gross structure of 413 could be identified. There was a multiplet around δ 7.85 attributable to the Fmoc group, a singlet at $\delta 3.65$ for the methyl ester, and singlets at $\delta 0.9$ and 0.1 due to the silyl protecting groups. The structure of hexapeptide 413 was further confirmed by its high resolution mass spectrum, which contained an $(\mathrm{M}+\mathrm{Na})^{+}$peak at m/e 1489.7155 (Calcd. for $\left.\mathrm{C}_{78} \mathrm{H}_{106} \mathrm{O}_{16} \mathrm{~N}_{8} \mathrm{Si}_{2} \mathrm{Na},(\mathrm{M}+\mathrm{Na})+1489.7163\right)$.

Scheme 23

(413)

Figure 5: HPLC trace of hexapeptide 413.

Due to our inability to completely purify 413, we decided to investigate an alternative route to 345 commencing from alkene 414. We hoped to dihydroxylate 414 with AD-mix- α, convert the resulting diol to its cyclic sulfate, displace with azide ion α - to the amide carbonyl, and hydrogenate the azide to obtain amine 345 (Scheme 24).

Scheme 24

Acid 416 was converted to its acid chloride by treatment with oxalyl chloride (10 equiv) in benzene at room temperature for 1 h . This was then reacted with the pentapeptide acyl hydrazine 386 in the presence of silver cyanide (2 equiv) in toluene at $80^{\circ} \mathrm{C}^{36}$ to give $\mathbf{4 1 4}$ in 53% yield after reverse-phase HPLC (Scheme 25). The $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of 414 in DMSO-d 6 at $125^{\circ} \mathrm{C}$ contained two double-doublets at $\delta 6.80(J=6.6,15.5 \mathrm{~Hz})$ and $6.13(J=15.5,1.0 \mathrm{~Hz})$ which supported the presence of an (E)- α, β-unsaturated amide linkage. From the reverse-phase HPLC trace, compound 414 was 96.7% pure (Figure 6). Compound 414 also gave a satisfactory C, H and N combustion microanalysis for $\mathrm{C}_{57} \mathrm{H}_{79} \mathrm{~N}_{7} \mathrm{O}_{13} \mathrm{Si}$ (Calcd.: $\mathrm{C}, 62.33 ; \mathrm{H}, 7.25 ; \mathrm{N}, 8.93 \%$. Found: C, 62.07; H, 7.29; N, 8.86\%), thus confirming the structure of the hexapeptide precursor $414 .{ }^{60}$

Scheme 25

Figure 6: HPLC trace, accurate mass and $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of

In conlusion, we have completed an efficient enantiospecific synthesis of an advance hexapep-tide precursor for A83586C. Other workers in the group are currently attempting to convert 414 into amine 345 with a view to completing the synthesis of A83586C.

3.4 References

(1) Corey, E. J.; Nicolaou, K. C., J. Amer. Chem. Soc., 1974, 96, 5614.
(2) Corey, E. J.; Brunelle, D. J., Tetrahedron Lett.,1976, 3409.
(3) Kurihara, T.; Nakajima, Y.; Mitsunobu, O., Tetrahedron Lett., 1976, 2455.
(4) Masamune, S., Aldrichimica Acta., 1978, 11, 23.
(5) Kageyama, M.; Tamura, T.; Nantz, M. H.; Roberts, J. C.; Somfai, P.; Whritenour, D.;

Masamune, S., J. Amer. Chem. Soc., 1990, 112, 7407.
(6) Mukaiyama, T., Angew. Chem. Int. Ed. Engl., 1979, 18, 707.
(7) Heyns, K.; Paulsen, H., Adv. Carbohydrate Chem., 1962, 17, 169.
(8) Durette, P. L.; Baker, F.; Barker, P. L.; Boger, J.; Bondy, S. S.; Hammond, M. L.; Lanza, T. L.; Pessolano, A. A.; Caldwell, C. G. , Abs. $198^{\text {th }}$ ACS National Meeting 1989, Miami Beach, Florida, September 10-15, Abstract No. 119.
(9) Evans, D. A.; Bartroli, J.; Shih, T. L., J. Amer. Chem. Soc., 1981, 103, 2127.
(10) Baker, R.; Castro, J. L., J. Chem. Soc., Perkin Trans. 1, 1990, 47.
(11) Takano, S.; Akiyama, M.; Sato, S.; Ogasawara, K., Chem. Lett., 1983, 1593.
(12) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.; Hartung, J.; Jeong, K.-S.;

Kwong, H.-L.; Morikawa, K.; Wang, Z.-W.; Xu, D.; Zhang, X.-L., J. Org. Chem., 1992, 57, 2768.
(13) Hale, K. J.; Bhatia, G. S.; Peak, S. A.; Manaviazar, S., Tetrahedron Lett., 1993, 34, 5343.
(14) Bhatia, G. S. Ph.D Thesis, 1995, University of London.
(15) Manaviazar, S. Ph.D Thesis, 1995, University of London.
(16) Hale, K. J.; Manaviazar, S.; Peak, S. A., Tetrahedron Lett., 1994, 35, 425.

Hale, K. H.; Delisser, V. M.; Manaviazar, S., Tetrahedron Lett., 1992, 33, 7613.
(18) Hassall, C. H.; Johnson, W. H.; Theobald, C. J., J. Chem. Soc., Perkin Trans I, 1979, 1451.

Feenstra, R. W.; Stokkingreef, E. H. M.; Nivard, R. J. F.; Ottenheijm, H. C. J., Tetrahedron Lett., 1987, 28, 1215.
(20) McDermott, J. R.; Benoiton, N. L., Can. J. Chem., 1973, 51, 1915.
(21) Chen, F. M. F.; Benoiton, N. L., Can. J. Chem., 1977, 55, 906.
(22) Diago-Meseguer, J.; Palomo-Coll, A. L.; Fernandez-Lizarde, J. R.; Zugaza-Bilbao, A., Synthesis, 1980, 547.
(23) Tung, R. D.; Rich, D. H., J. Am. Chem. Soc., 1985, 107, 4342.

Auwera, C. V.; Anteunis, M. J. O., Int. J. Peptide Protein Res., 1987, 29, 574.
Carpino, L. A.; Cohen, K. E.; Stephens, K. E.; Sadat-Aalaee, S. Y.; Tien, J.-H.;
Langridge, D. C., J. Org. Chem., 1986, 51, 3732.
(26) Carpino, L. A.; El-Sayed, M. E.; Sadat-Aalaee, D.; Sadat-Aalaee, M., J. Org. Chem., 1991, 56, 2611.

Tung, R.; Dhaon, M. K.; Rich, D. H., J. Org. Chem., 1986, 51, 3350.
Mukaiyama, T.; Matesueda, R.; Suzuki, M., Tetrahedron Lett., 1970, 1901.
Kirtgen, R.; Sheppard, R. C.; Steglich, W., J. Chem. Soc. Chem. Commun., 1987, 1870.
(30) Konig, W.; Geiger, R., Chem. Ber., 1970, 103, 788.

Williams, P. D.; Bock, M. G.; Tung, R. D.; Garsky, V. M.; Perlow, D. S.; Erb, J. M.; Lundell, G. F.; Gould, N. P.; Whitter, W. L.; Hoffman, J. B.; Kaufman, M. J.; Clineschmidt, B. V.; Pettibone, D. J.; Freidinger, R. M.; Veber, D. F., J. Med. Chem., 1992, 35, 3905.
(37) Durette, P. L.; Baker, F.; Barker, P.L.; Boger, J.; Bondy, S.; Hammond, M.L.; Lanza, T. J.;Pessolano, A. A.; Caldweli, C. G., Tetrahedron Lett., 1990, 31, 1237.
(38) Carpino, L. A.; Han, G. Y., J. Amer. Chem. Soc., 1970, 92, 5478.
(39) Carpino, L. A.; Han, G. Y., J. Org. Chem., 1973, 38, 4318.
(40) Brown, W. G.; Bluestein, B. A., J. Amer. Chem. Soc., 1943, 65, 1082.
(41) Carpino, L. A.; Han, G. Y., J. Org. Chem., 1972, 37, 3404.
(42) Bolin, D. R.; Sytwu, I. I.; Humiec, F.; Meienhofer, J., Int. J. Peptide Protein Res., 1989, 33, 353.
(43) Smith, C. I.; Howard, K. L., Org. Synthesis III, 1943, 351.
(44) Miller, J. B., J. Org. Chem., 1959, 24, 560.

Stelakatos, G. C.; Paganou, A.; Zervas, L., J. Chem. Soc. (C), 1966, 1191.
Galpin, I. J.; Hancock, F. E.; Handa, R. B.; Jackson, A. G.; Kenner, G. W.; McDowell, P.; Noble, P.; Ramage, R., Tetrahedron, 1981, 37, 979.

Jackson, A. G.; Kenner, G. W.; Moore, G. A.; Ramage, R.; Thrope, W. D., Tetrahedron Lett.,1976, 17, 3627.
(48) Miyazawa, T.; Otomatsu, T.; Fukui, Y.; Yamada, T.; Kuwata, S., Int. J. Peptide Protein Res., 1992, 39, 237.

Jung, M. E.; Jung, Y. H., Tetrahedron Lett., 1989, 30, 6637.
(50) Caldwell, C. G.; Bondy, S. S., Synthesis, 1990, 34.
(51) Corey, E. J.; Lee, D.-H.; Choi, S., Tetrahedron Lett., 1992, 33, 6735.
(52) Sunazuka, T.; Nagamitsu, T.; Tanaka, H.; Omura, S.; Sprengeler, P. A.; Smith, I., A.B., Tetrahedron Lett., 1993, 34, 4447.
(53) Kanemasa, S.; Mori, T.; Tatsukawa, A., Tetrahedron Lett., 1993, 34, 8293.
(54) Hale, K. J.; Manaviazar, S.; Delisser, V. M. ,Tetrahedron, 1994, 50, 9181.
(55) Oi, R.; Sharpless, K. B., Tetrahedron Lett., 1991, 32, 999.
(56) Pearlman, W. M., Tetrahedron Lett., 1967, 1663.

Fischer, P. M., Tetrahedron Lett., 1992, 33, 7605.
(58) Atherton, E.; Bury, C.; Sheppard, R. C.; Williams, B. J., Tetrahedron Lett., 1979, 3041.
(59) Martinez, J.; Tolle, J. C.; Bodanszky, M., J. Org. Chem., 1979, 44, 3596.
(60) Hale, K. J.; Delisser, V. M.; Yeh, L.-K.; Peak, S. A.; Manaviazar, S.; Bhatia, G. S.,

Tetrahedron Lett., 1994, 41, 7685.

Chapter 4. Experimental

Apparatus and Materials

The reactions were carried out under an inert atmosphere $\left(\mathrm{N}_{2}\right)$ with freshly distilled solvents which were dried with CaH_{2} under nitrogen. Reaction progress was monitored with precoated silica gel plates $(250 \mu \mathrm{~m})$ with a fluorescent indicator (E. Merck). Flash chromatography was carried out with Sorbsil C60 40/60A (230-400 mesh) silica gel. Melting points were recorded on a Kofler hot stage melting point apparatus and are not corrected. The infrared spectra were recorded on a Nicolet model 205 FT-IR spectrometer and absorptions were recorded in terms of frequency ($v_{\max }$) in cm^{-1}.

Proton and carbon-13 nuclear magnetic resonance (NMR) spectra were recorded on a Varian AX-400 $(400 \mathrm{MHz})$ spectrometer and are reported in δ values relative to tetramethylsilane. The signals were assigned as follows singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), broad (br) and double doublet (dd). The spectra were recorded in deuterochloroform (CDCl_{3}), deuterated dimethylsulphoxide (DMSO-d ${ }_{6}$) or deuterated benzene $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ solution. High resolution mass spectra were measured at the London School of Pharmacy on a V.G. 7070 H or VG-ZAB with a Finnigan Incos II data system.

Optical rotations were measured on either an Optical Activity AA10 automatic polarimeter or a Perkin Elmer 141 polarimeter. Microanalysis were carried out on a Perkin Elmer 2400 CHN Elemental Analyser in the Microanalytical Laboratory at University College London.

High pressure liquid chromatography (HPLC) was performed on a Gilson analytical chromatograph equipped with a Gilson 303 and 305 pump system, a Gilson 811b dynamic mixer, a Gilson 805 s manometric module and a Gilson 115 U.V. absorbance detector set at 254 nm , or a refractive index detector. The columns used are either Chiracel-OD (chiral), a Hichrom (KR-SC182735) (reverse-phase) or a Kromasil-silica.

1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU) was dried over activated 4A molecular sieves and stored under nitrogen.

Bis(2-oxo-3-oxazolidinyl)phosphinic chloride (BOP-CI) was recrystallised from dry MeCN prior to use for coupling reactions.

(4S)-5-(5-Bromovaleryl)-4-(phenylmethyl)-2-oxazolidinone

To a stirred solution of (4S)-4-(phenylmethyl)-2-oxazolidinone $80(15.0 \mathrm{~g}, 84.8 \mathrm{nmol})$ in dry THF (150.0 ml) under nitrogen at $-78^{\circ} \mathrm{C}$ was added n-butyllithium ($58.3 \mathrm{ml}, 1.6 \mathrm{M}$ in hexanes, 93.2 mmol) dropwise over 5 min and the resulting yellow solution stirred for 40 min . 5-Bromovaleryl chloride ($14.7 \mathrm{ml}, 110 \mathrm{mmol}$) was then added dropwise over 10 min . After 15 min , the cooling bath was removed and the reactants allowed to warm to room temperature and stirred for a further 2 h . The mixture was then diluted with EtOAc (100 ml) and saturated aqueous ammonium chloride and the EtOAc layer removed. The aqueous layer was extracted with EtOAc $(3 \times 80 \mathrm{ml})$ and the combined organic extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The syrupy residue crystallised from cold hexanes when left overnight at $4^{\circ} \mathrm{C}$ to give $84(26.0 \mathrm{~g}, 91 \%)$ as a white solid. An analytical sample of 84 was obtained by recrystallisation from hexanes/ EtOAc; m.p. 66-67 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+88^{\circ}(c 1, \mathrm{MeOH}) ;$ IR (KBr): 3552 (w), 3323 (w), 3071 (w), 3032 (w), 2956 (w), 1792 (s), 1701 (s), 1441 (m), 1377 (s), 1307 (m), 1244 (s), 1248 (s), 1202 (s), 1144 (m), 1100 (m), 1052 (m), 1020 (m), 951 (m), 761 (w), $\left.750(\mathrm{~m}), 544(\mathrm{~m}), 488(\mathrm{w}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl}_{3}\right): \delta 7.35-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.68-4.62(\mathrm{~m}, ~$ $1 \mathrm{H}), 4.22-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=6.4,13.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{dd}, J=3.2,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.87$ (m, 2H), $\left.2.75(\mathrm{dd}, \mathrm{J}=9.61,3.48 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.82(\mathrm{~m}, 4 \mathrm{H}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}\right): ~ \delta$ $172.5,153.3,135.1,129.3,128.9,127.3,66.3,55.0,37.8,34.5,33.1,31.9,22.7$; Acc. Mass Calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Br}(\mathrm{M}+\mathrm{H})+340.0548$; Found: 340.0544; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{Br}$: C, $52.95 ; \mathrm{H}, 5.33 ; \mathrm{N}, 4.12 ; \mathrm{Br}, 23.49 \%$. Found: C, 52.78 ; H, $5.16 ; \mathrm{N}, 3.95 ; \mathrm{Br}, 23.27 \%$.

(4S)-3-(5-Bromovaleryl)-4-(phenylmethyl)-2-oxazolidinone 84 via a mixed

 anhydride

To a stirred solution of 5-bromovaleric acid ($6.0 \mathrm{~g}, 36.4 \mathrm{mmol}$) in $\mathrm{dry}_{\mathrm{Et}}^{2} \mathrm{O}$ (150 ml) under nitrogen was added dry triethylamine ($5.1 \mathrm{ml}, 36.0 \mathrm{mmol}$). The mixture was cooled to $-78^{\circ} \mathrm{C}$ and trimethylacetyl chloride ($4.4 \mathrm{ml}, 36.0 \mathrm{mmol}$) added dropwise over 4 min . The cooling bath was removed and the white suspension allowed to warm to room temperature with vigorous stirring for 1 h . In a separate flask charged with a solution of (4S)-4-(phenylmethyl)-2-oxazolidinone 80 (5.32 $\mathrm{g}, 30.0 \mathrm{mmol})$ in dry THF (40 ml) at $-78^{\circ} \mathrm{C}$ was added dropwise n-BuLi $(21.0 \mathrm{ml}, 1.6 \mathrm{M}$ in hexanes, 33.0 mmol) and the reaction mixture stirred at $-78^{\circ} \mathrm{C}$ for 40 min . The lithiated oxazolidinone solution was then added to the recooled $\left(-78^{\circ} \mathrm{C}\right)$ mixed anhydride solution via cannula. The reaction mixture was warmed to room temperature, stirred for 1 h , and then quenched with saturated aqueous ammonium chloride and extracted with EtOAc ($3 \times 60 \mathrm{ml}$). The combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The syrupy residue crystallised from cold hexanes/EtOAc when left overnight in the refrigerator to give $84(9.0 \mathrm{~g}, 89 \%)$ as a white solid.

Bromovaleryl Hydrazide 85

To a stirred solution of N, N-diisopropylamine ($0.44 \mathrm{ml}, 3.0 \mathrm{mmol}$) in dry THF (5 ml) under nitrogen at $-60^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(1.24 \mathrm{ml}, 1.6 \mathrm{M}$ in hexanes, 3.0 mmol) dropwise over 5 min and the solution stirred for 1 h . The resulting LDA solution was then cooled to $-78^{\circ} \mathrm{C}$ whereupon a precooled solution of bromide $84(1.0 \mathrm{~g}, 3.0 \mathrm{mmol})$ in dry THF (5 ml) at $-78^{\circ} \mathrm{C}$ was added via cannula over 5 min . After 30 min at $-78^{\circ} \mathrm{C}$, a precooled solution of di-tert-butylazodicarboxylate
($820 \mathrm{mg}, 3.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{ml})$ at $-10^{\circ} \mathrm{C}$ was added via cannula to the enolate solution at $-78^{\circ} \mathrm{C}$ over 10 min . The mixture was stirred for 40 min at $-78^{\circ} \mathrm{C}$ and then quenched with glacial acetic acid ($0.45 \mathrm{ml}, 7.8 \mathrm{mmol}$). The mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}(75 \mathrm{ml})$ and 1.25 M aqueous $\mathrm{KH}_{2} \mathrm{PO}_{4}(50 \mathrm{ml})$, the $\mathrm{Et}_{2} \mathrm{O}$ layer was removed, and the aqueous layer,extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}, 40 \mathrm{ml})$. The combined ethereal extracts were washed successively with $\mathrm{H}_{2} \mathrm{O}$, and brine, dried over MgSO_{4}, filtered and concentrated in vacuo. Purification of the residue by flash chromatography using $\mathrm{Et}_{2} \mathrm{O} /$ hexanes (3:2) gave 85 ($1.43 \mathrm{~g}, 84 \%$) as a foam; $\mathrm{IR}(\mathrm{KBr}): 3360(\mathrm{br} \mathrm{m})$, 2979 (s), 2933 (s), 1790 (br s), 1697 (br s), 1479 (m), 1455 (m), 1392 (br s), 1354 (br s), 1110 (m), $1052(\mathrm{~m}), 1012(\mathrm{w}), 853(\mathrm{w}), 762(\mathrm{~m}), 704(\mathrm{~m}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (DMSO-d6, at $10{ }^{\circ} \mathrm{C}$): δ 8.34-8.00 (br s, 1H, NH), 7.38-7.21 (m, 5H, ArH), 5.67-5.54 (m, 1H), 4.71-4.61 (m, 1H), 4.35 (t, J $=8.2,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=3.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.96-$ $2.87(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$; Acc. Mass Calcd. for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{BrNa}$ $(\mathrm{M}+\mathrm{Na})^{+}, 592.1634$; Found: 592.1642.
(4S)-3-(3S-N,N'-bis-(t-butoxycarbonyl)hexahydropyridazine-3-carboxy)-4-phenylmethyl)-2-oxazolidinone 86

To a stirred solution of N, N-diisopropylamine ($8.69 \mathrm{ml}, 60.0 \mathrm{mmol}$) in dry THF (100 ml) under nitrogen at $-60^{\circ} \mathrm{C}$ was added n - BuLi ($24.8 \mathrm{ml}, 1.6 \mathrm{M}$ in hexanes, 60.0 mmol) dropwise over 5 min and the solution stirred for 1 h . The resulting LDA solution was then cooled to $-78{ }^{\circ} \mathrm{C}$ whereupon a precooled solution of bromide $84(20.0 \mathrm{~g}, 60.0 \mathrm{mmol})$ in dry THF (100 ml) at $-78^{\circ} \mathrm{C}$ was added via cannula over 5 min . After 30 min at $-78^{\circ} \mathrm{C}$, a precooled solution of di-tert-butylazodicarboxylate ($16.3 \mathrm{~g}, 70.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{ml})$ at $-10^{\circ} \mathrm{C}$ was added via cannula to the enolate solution at $-78^{\circ} \mathrm{C}$ over 10 min . The mixture was then stirred for 40 min at $-78{ }^{\circ} \mathrm{C}$ whereupon 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU) (150 ml) was added dropwise over 1 h . By the time the DMPU addition was complete, the reaction mixture had become frozen. The frozen reactants were then allowed to warm to room temperature and stirred
for an additional 2 h before being poured into a mixture of $\mathrm{Et}_{2} \mathrm{O}$ and a 1.25 M solution of $\mathrm{KH}_{2} \mathrm{PO}_{4}$. The $\mathrm{Et}_{2} \mathrm{O}$ layer was removed and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 100 \mathrm{ml})$. The com-bined ethereal extracts were washed successively with $\mathrm{H}_{2} \mathrm{O}(3 x, 70 \mathrm{ml})$ and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification of the residue by flash chromatography with hexanes/ $\mathrm{Et}_{2} \mathrm{O}(2: 3)$ gave $86(17.9 \mathrm{~g}, 63 \%)$ as a foam; $[\alpha] \mathrm{D}+35.8^{\circ}(c 0.5$, MeOH); IR (KBr): 2979 (m), 2943 (w), 2933 (w), 1784 (s), 1700 (s), 1477 (w), 1450 (w), 1393 (s), 1367 (m), 1254 (w), 1165 (m), 1102 (m), $720(\mathrm{w}), 657(\mathrm{w}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6} at $\left.125^{\circ} \mathrm{C}\right):$: 7.34-7.20 (m, 5H, ArH), $5.91(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.73-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.27(\mathrm{~m}, 1 \mathrm{H})$, 4.22$4.10(\mathrm{~m}, 1 \mathrm{H}), 4.08-3.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.14-3.05(\mathrm{br} \mathrm{d}, 1 \mathrm{H}), 3.00-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.72(\mathrm{br} \mathrm{m}, 3 \mathrm{H})$ 1.68-1.51 (br m, 1H) $1.47(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$; Acc. Mass Calcd. for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}$, 490.255; Found: 490.255; Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{7}$: C, $61.23 ; \mathrm{H}, 7.21$; $\mathrm{N}, 8.59$ \%; Found: C, 60.90; H, 7.35; N, 8.59\%.
(3S)- N, N^{\prime}-Bis-(t-butoxycarbonyl)hexahydropyridazine-3-carboxylic acid 87

To a solution of $86(15.2 \mathrm{~g}, 30.0 \mathrm{mmol})$ in $\mathrm{THF}(123.0 \mathrm{ml})$ at -10° was added via a pipette a chilled $\left(-5^{\circ} \mathrm{C}\right)$ suspension of lithium hydroxide monohydrate $(3.0 \mathrm{~g}, 70.0 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(61 \mathrm{ml})$ over 7 min . The mixture was vigorously stirred between $-10^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$ for 2 h . The aqueous layer was then extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 80 \mathrm{ml})$ and the combined organic layers washed with $\mathrm{H}_{2} \mathrm{O}$ ($2 \times 15 \mathrm{ml}$) dried over MgSO_{4}, filtered, concentrated in vacuo and the oxazolidinone was recovered after flash chromatography and recrystallisation (67\%). All the aqueous fractions containing 87 as its lithium carboxylate salt were combined, cooled in an ice bath, and acidified with aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{M})$ to pH 2 . Compound 87 was extracted with EtOAc ($3 \times 100 \mathrm{ml}$). The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo to give 87 ($8.6 \mathrm{~g}, 84 \%$) as a white solid. An analytical sample was obtained by recrystallisation with hexanes/EtOAc; m.p. $112-115^{\circ} \mathrm{C} ;[\alpha] \mathrm{D}-13^{\circ}(c 1, \mathrm{MeOH}) ; \operatorname{IR}(\mathrm{KBr}): 3204$ (br m), 2986 (w), 1737 (br m), 1704 (br m), 1670 (br m), 1456 (br m), 1431 (br w), 1394 (br w), 1371
(w), 1153 (br m), 1136 (br m), 1090 (m), 880 (s), 753 (m), 738 (m) $\mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 11.50-10.0\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{CO}_{2} \mathrm{H}\right), 5.21-6.64(\mathrm{~m}, 1 \mathrm{H}), 4.17-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.38-2.78(\mathrm{br} \mathrm{m}$, 1H), 2.43-1.45 (complex m, 22H); $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 171.8,170.5,152.4,83.6$, 83.59, 83.2, 44.15, 42.1, 28.5, 28.4, 28.1, 28.06, 28.0, 23.8, 20.63, 20.6, 20.55, 20.2; Acc. Mass Calcd. for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}$, 331.1869; Found: 331.1868; Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6}: \mathrm{C}, 54.53 ; \mathrm{H}, 7.93 ; \mathrm{N}, 8.48 \%$; Found: C, 54.5, 8.07; N, 8.37\%.
(3S)-N,N'-Bis-(t-butoxycarbonyl)hexahydropyridazine-3-carboxylic acid methyl ester 88

To a solution of $87(200.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in chloroform (4 ml) at $0^{\circ} \mathrm{C}$ was added dropwise ethereal diazomethane until the reaction mixture went pale yellow. The mixture was then purged with nitrogen and concentrated in vacuo. The oily residue was purified by flash chromatography with hexanes/EtOAc (7:1) to give $88(160.0 \mathrm{mg}, 78 \%)$ as a clear oil; $[\alpha] \mathrm{D}-35.1^{\circ}\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (neat film): 2979 (s), 2934 (w), 1739 (s), 1703 (s), 1478 (w), 1456 (w), 1394 (m), 1367 (m), 1315 (w), 1280 (w), 1253 (m), 1169 (m), 1129 (m), 1086 (m), $880(\mathrm{~m}), 750(\mathrm{~m}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 85.02-4.85(\mathrm{br} \mathrm{m}), 4.80-4.67(\mathrm{br} \mathrm{s}), 4.17-3.84(\mathrm{br} \mathrm{m}), 3.67(\mathrm{br} \mathrm{s}), 2.98-2.69(\mathrm{br} \mathrm{m}, 1 \mathrm{H})$, 2.14-1.62 (complex m), 1.44 (s), 1.41 (s); $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 170.4,154.5,81.6,80.2$, 54.4, 51.9, 42.6, 28.3, 27.9, 24.8, 20.0; Acc. Mass Calcd. for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})+345.2026$; Found, 345.2021; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 55.80; H, 8.19; $\mathrm{N}, 8.13 \%$; Found: $\mathrm{C}, 55.58$; H, 8.10; N, 8.08\%.

(3S)-Hexahydropyridazine-3-carboxylic acid trifluoroacetic acid salt 89

To a solution of acid $87(8.57 \mathrm{~g}, 30.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(86 \mathrm{ml})$ under nitrogen was added $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ ($86 \mathrm{ml}, 1.11 \mathrm{~mol}$) via syringe and the mixture stirred for 2 h . The reaction mixture was then concentrated in vacuo. $\mathrm{Et}_{2} \mathrm{O}$ was then added to the solid residue and the resulting suspension placed in the fridge for 2 h . Filtration and washing of the precipitate with cold $\mathrm{Et}_{2} \mathrm{O}$ gave 89 ($6.30 \mathrm{~g}, 100 \%$) as a white solid. An analytical sample was obtained by recrystallisation from EtOAc/EtOH; m.p. $139-141^{\circ} \mathrm{C}$; $[\alpha] \mathrm{D}+18.7^{\circ}$ (c 0.48, MeOH); IR (KBr): 3634-2250 (br), 3464 (br), 3178 (m), 2980 (m), 2914 (w), 2751 (w), 1722 (s), 1666 (s), 1590 (m), 1514 (m), 1422 (m), 1205 (br m), 1133 (w), 1061 (w), $934(\mathrm{w}), 900(\mathrm{~m}), 844(\mathrm{~m}), 785(\mathrm{~m}), 723(\mathrm{w}), 607(\mathrm{w}), 523(\mathrm{w})$ $\mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right): \delta 3.75-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.86(\mathrm{~m}, 1 \mathrm{H}), 1.97-$ $1.87(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.55(\mathrm{~m}, 3 \mathrm{H}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right): \delta 176.5,58.4,47.3,26.8,21.9 ;$ Anal. Calcd. for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~F}_{3}$: C, 34.43; H, 4.54; $\mathrm{N}, 11.47 \%$; Found: $\mathrm{C}, 34.51$; $\mathrm{H}, 4.55 ; \mathrm{N}, 11.49 \%$; Acc. Mass Calcd. for $\mathrm{C}_{5} \mathrm{H}_{11}-\mathrm{O}_{2} \mathrm{~N}_{2}\left(\mathrm{M}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)+131.0821$; Found: 131.0830.

(3S)- N^{1}-(2,4-dinitrophenyi)-hexahydropyridazine-carboxylic acid 90

To a solution of (3S) piperazic acid trifluoroacetic acid salt $89(650 \mathrm{mg}, 3.0 \mathrm{mmol})$ in ethanol (13.5 ml) was added sodium bicarbonate ($1.30 \mathrm{~g}, 15.0 \mathrm{mmol}$) followed by 1-fluoro-2,4dinitrobenzene ($1.3 \mathrm{ml}, 13.0 \mathrm{mmol}$) and the mixture stirred for 12 h at room temperature. The reaction mixture was then diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{ml})$. The aqueous layer was then cooled in an ice bath and acidified with 10% hydrochloric acid to pH 2 and then extracted with EtOAc $(4 \times 30 \mathrm{ml})$. The combined organic layers were dried over MgSO_{4}, filtered,
and concentrated in vacuo to give $90(530 \mathrm{mg}, 65 \%)$ as a yellow solid. An analytical sample was obtained by recrystallistion from toluene; m.p. $151-152^{\circ} \mathrm{C}$, Lit. ${ }^{1} \mathrm{~m} . \mathrm{p} \cdot 150 \cdot 5-151.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-345^{\circ}$ (c 1, MeOH), Lit. ${ }^{1}[\alpha]_{D}+324.6$ (c 1, MeOH); IR (KBr): 3622-2950 (br), 3200 (w), 2963 (w), 2909 (w), 2825 (w), 1715 (s), 1608 (s), 1527 (m), 1447 (w), 1337 (s), 1267 (m), 1127 (m), 903 (m), 861 (m), $800(\mathrm{~m}), 725(\mathrm{~m}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.40(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=$ 2.6, $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.01-3.9(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.85(\mathrm{ddd}, J=3.7,7.4,12.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.72 (dd, $J=3.5,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{ddd}, J=3.4,12.1,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~m}, 2 \mathrm{H})$, $1.65(\mathrm{~m}, 1 \mathrm{H}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 175.5,147.4,138.4,127.4,122.3,115.0,114.7$, 57.3, 47.6, 27.6, 22.8; Acc. Mass Cacld. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 297.08351$; Found: 297.08348.

Methyl (3S)- N^{\prime}-(2,4-dinitrophenyl)-hexahydropyridazine-3-carboxylate 68

To a solution of acid $90(50.0 \mathrm{mg}, 0.17 \mathrm{mmol})$ in chloroform (2 ml) was added ethereal diazomethane until the reaction was judge to be complete by TLC. nitrogen gas was then bubbled through the reaction mixture for 15 min . Concentration in vacuo and trituration with $\mathrm{Et}_{2} \mathrm{O}$ gave 68 ($49.0 \mathrm{mg}, 95 \%$) as a yellow solid. An analytical sample was obtained by recrystallisation from toluene; m.p. $96-97^{\circ} \mathrm{C}\left[\mathrm{Lit}^{2}\right.$ m.p. $\left.96-97^{\circ} \mathrm{C}\right] ;[\alpha]_{\mathrm{D}}-289.2^{\circ}$ (c 1, $\left.\mathrm{CHCl}_{3}\right)$, $\mathrm{Lit}^{2}[\alpha]_{\mathrm{D}}-296.3^{\circ}(c$ $0.3, \mathrm{CHCl}_{3}$); IR (KBr): 3232 (w), 3100 (w), 2952 (w), 1742 (s), 1609 (s), 1581 (m), 1541 (s), 1489 (w), 1481 (w), 1367 (w), 1331 (s), 1320 (s), 1259 (w), 1227 (w), 1150 (w), 1147 (w), 1050 (m), 840 (w), 751 (w) $\mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 8.12(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=2.7,9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.84(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{td}, J=3.4,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.63(\mathrm{dt}, J=3.9,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 1.13-0.85$ (complex $\mathrm{m}, 3 \mathrm{H}$); 100 $\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 171.2,147.0,139.5,127.8,127.6,126.5,122.1,114.5,57.4,51.5$, 46.6, 27.5, 22.3; Acc. Mass Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 311.0992$; Found: 311.0990; Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{6}: \mathrm{C}, 46.44 ; \mathrm{H}, 4.55 ; \mathrm{N}, 18.06 \%$. Found: $\mathrm{C}, 46.05 ; \mathrm{H}, 4.41 ; \mathrm{N}, 17.77 \%$.

One-pot synthesis of compound 87

To a solution of (4S)-4-(phenylmethyl)-2-oxazolidinone $80(2.0 \mathrm{~g}, 11.0 \mathrm{mmol})$ in dry THF (20 ml) under nitrogen at $-78^{\circ} \mathrm{C}$ was added n-BuLi ($4.80 \mathrm{ml}, 2.5 \mathrm{M}$ in hexanes, 12.0 mmol) and the mixture stirred for 40 min . 5-Bromovaleryl chloride ($1.56 \mathrm{ml}, 12.0 \mathrm{mmol}$) was then added over 10 min and the reaction mixture warmed to room temperature for 1 h . The reaction mixture was then recooled to $-78^{\circ} \mathrm{C}$ and added to a freshly prepared solution of lithium diisopropylamide (13 mmol) in dry THF (10 ml) at $-78^{\circ} \mathrm{C}$ via a cannula. After 45 min , a precooled solution of di-tertbutylazodicarboxylate $(3.22 \mathrm{~g}, 14.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ at $-10^{\circ} \mathrm{C}$ was added into the enolate solution at $-78^{\circ} \mathrm{C}$ via cannula and the reactants stirred for 30 min . DMPU (80 ml) was then added dropwise over 40 min . The resulting frozen solution was allowed to melt by warming to room temperature. After stirring for 1 h , it was poured into a mixture containing $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{ml})$ and $\mathrm{KH}_{2} \mathrm{PO}_{4}(1.25 \mathrm{M}, 25 \mathrm{ml})$ and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 75 \mathrm{ml})$. The combined ethereal layers were washed sequentially with $\mathrm{H}_{2} \mathrm{O}(3 \times 40 \mathrm{ml})$, brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude cyclised product 86 was dissolved in THF (45 ml), cooled to $-5^{\circ} \mathrm{C}$ and added to a chilled $\left(0^{\circ} \mathrm{C}\right)$ suspension of lithium hydroxide monohydrate $(1.10 \mathrm{~g}, 26$ $\mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(22 \mathrm{ml})$ and the mixture stirred at $-5^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was then diluted with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{x})$ and the aqueous layers combined, cooled in an ice bath, acidified to pH 2 using aqueous $\mathrm{NaHSO}_{4}(1.0 \mathrm{M})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 60 \mathrm{ml})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated in vacuo to give 87 ($2.67 \mathrm{~g}, 74 \%$ for 3 steps) as a white solid.
(3S,3R)- N, N '-Bis-(t-butoxycarbonyl)-1,2,3,6-tetrahydropyridazine-3-carboxylic acid methyl ester 92

The Diels Alder reaction between methyl penta-2,4-dieneoate
91 (3.0 g, 30.0 $\mathrm{mmol})$ and di-tert-butylazodicarboxylate ($3.0 \mathrm{~g}, 13.0 \mathrm{~mol}$) gave $92(2.10 \mathrm{~g}, 47 \%)$ as white crystals; ${ }^{3}$ m.p. $79-80^{\circ} \mathrm{C}$; IR (KBr): 3004 (w), 2979 (m), 2932 (w), 1744 (s), 1707 (s), 1479 (m), $1441(m), 1415(m), 1396(w), 1363(w), 1316(w), 1200(w), 1178(m), 1127(w), 1077(m) \mathrm{cm}^{-1}$; $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 5.87\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H},=\mathrm{CHCH}_{2} \mathrm{~N}\right), 5.34-5.04(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CHCH}=\mathrm{CH})$, 4.46-4.20 (br d, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}$), 3.81-3.48 (br s, $4 \mathrm{H}, \mathrm{CHCO}_{2} \mathrm{CH}_{3}$), $1.48(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{x} t$ - Boc); $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 169.4,154.8,125.4,122.2,81.9,80.6,55.4,52.2,41.3,28.1$; Acc. Mass Calcd. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})+343.1869$; Found: 343.1865. (3S,3R)-N, N^{\prime}-Bis-(t-butoxycarbonyl)hexahydropyridazine-3-carboxylic acid methyl ester 93

Hydrogenation of $92(1.6 \mathrm{~g}, 5.0 \mathrm{mmol})$ in THF (4 ml) gave $93(1.4 \mathrm{~g}, 80 \%)$ as a clear oil. ${ }^{3}$ An analytical sample was obtained by flash chromatography eluting with hexanes/EtOAc (6:1); 400 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta 5.02-4.85(\mathrm{br} \mathrm{m}), 4.80-4.67(\mathrm{br} \mathrm{s}), 4.17-3.84(\mathrm{br} \mathrm{m}), 3.67(\mathrm{br} \mathrm{s}), 2.98-2.69$ (br m, 1H), 2.14-1.62 (complex m), 1.44 (s), 1.41 (s); $100 \mathrm{MHz}{ }^{13} \mathrm{C}^{\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): ~} \delta 170.4,154.5$, 81.6, 80.2, 54.4, 51.9, 42.6, 28.3, 27.9, 24.8, 20.0; Acc. Mass Calcd. for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}(M+H)^{+}$ 345.2026; Found: 345.2021.
(3S, 3R)-Hexahydropyridazine-3-carboxylic acid trifluoroacetic acid salt 38

Saponification of $93(1.0 \mathrm{~g}, 3.0 \mathrm{mmol})$ in THF (3 ml) with potassium hydroxide and subsequent acidolysis with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ gave 38 ($462 \mathrm{mg}, 64 \%$ for 2 steps) as a white solid; m.p. 142-145 ${ }^{\circ} \mathrm{C} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): ~ \delta 3.75-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.86(\mathrm{~m}, 1 \mathrm{H}), 1.97-$ $1.87(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.55(\mathrm{~m}, 3 \mathrm{H}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}\right): \delta 176.5,58.4,47.3,26.8,21.9 ;$ Acc. Mass Calcd. for $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~N}_{2}\left(\mathrm{M}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)^{+} 131.082$; Found: 131.0825.

Methyl (3S,3R)- N^{\prime}-(2,4-dinitrophenyl)-hexahydropyridazine-3-carboxylate

The compound was prepared from acid 38 ($300.0 \mathrm{mg}, 1.2 .4 \mathrm{mmol}$) as described for 68 , to give 94 ($232 \mathrm{mg}, 60 \%$ for 2 steps) as a yellow solid; m.p. $145-146^{\circ} \mathrm{C} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$: δ $8.12(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=2.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{td}, J=3.4,11.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dt}, J=3.9,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~m}$, 1 H), 1.13-0.85 (complex m, 3H); 100 MHz ; Acc. Mass Calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})+311.0992$; Found: 311.0996.

Bromovaleryl Hydrazide 85

To a stirred solution of bromide $84(3.13 \mathrm{~g}, 9.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{ml})$ at $-10^{\circ} \mathrm{C}$ under nitrogen was added titanium tetrachloride ($10.0 \mathrm{ml}, 1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10.0 \mathrm{mmol}$). After 10 min , diisopropylethylamine ($1.8 \mathrm{ml}, 10.0 \mathrm{mmol}$) was added and the resulting deep red solution stirred at
$-10^{\circ} \mathrm{C}$ for 1.5 h . A precooled solution of di-tert-butylazodicarboxylate ($3.18 \mathrm{~g}, 14.0 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ at $-5^{\circ} \mathrm{C}$ was added via cannula over 10 min and the mixture then stirred for 3 h at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was poured into a mixture of $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{ml})$ and $\mathrm{KH}_{2} \mathrm{PO}_{4}(20 \mathrm{ml}, 1.25 \mathrm{M})$ and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 60 \mathrm{ml})$. The combined ethereal layers were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{ml})$, brine, dried over MgSO_{4}, filtered and concentrated in vacuo. Purification of the residue by flash chromatography with hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1)$ gave $85(4.32 \mathrm{~g}, 82 \%)$ as a foam; $[\alpha]_{\mathrm{D}}$ $+59.7^{\circ}$ (c 1, MeOH); Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Br}: \mathrm{C}, 52.63 ; \mathrm{H}, 6.36 ; \mathrm{N}, 7.37 ; \mathrm{Br}, 14.01 \%$. Found: C, 52.43; H, 6.3; N, 7.32; Br, 14.25\%. Spectral data for 85 matched those obtained previously.

(4S)-3-(3S-N, N^{\prime}-bis-(t-butoxycarbonyl)hexahydropyridazine-3-carboxy)-4-

 phenylmethyl)-2-oxazolidinone 86

To a stirred solution of $85(3.96 \mathrm{~g}, 7.0 \mathrm{mmol})$ in dry DMF (15 ml) under nitrogen at $0^{\circ} \mathrm{C}$ was added sodium hydride ($300.0 \mathrm{mg}, 60 \%$ in mineral oil, 8.0 mmol) and the mixture maintained at $0^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was then carefully poured into a mixture of $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{ml})$ and $10 \% \mathrm{HCl}(10 \mathrm{ml})$. The ethereal layer was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(4 x, 70 \mathrm{ml})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over MgSO_{4}, filtered and concentrated in vacuo. Purification of the residue by flash chromatography with $E t_{2} \mathrm{O} /$ hexanes (3:2) gave $86(2.94 \mathrm{~g}, 87 \%)$ as a foam. The spectral data for 86 match those obtained previously.

(3R)- \boldsymbol{N}^{1}-Benzyloxycarbonylpiperazic acid 362

A stirred solution of (3R)-piperazic trifluoroacetic acid salt $361(7.0 \mathrm{~g}, 30.0 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}$ (10 ml) at $0^{\circ} \mathrm{C}$ was neutralised with sodium hydroxide ($14.5 \mathrm{ml}, 2.0 \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}, 30.0 \mathrm{mmol}$)) To this mixture at $0^{\circ} \mathrm{C}$ was simultaneously added dropwise over 45 min a solution of benzyl chloroformate ($4.8 \mathrm{ml}, 30.0 \mathrm{mmol}$) in toluene $(11 \mathrm{ml})$ and sodium hydroxide $\left(14.5 \mathrm{ml}, 2.0 \mathrm{M}\right.$ in $\mathrm{H}_{2} \mathrm{O}, 30.0$ mmol) with stirring. After the additions were complete the biphasic mixture was stirred for a further 2 h at $0^{\circ} \mathrm{C}$. The reaction mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the aqueous layer removed and cooled in an ice bath, where it was brought to pH 2 with concentrated hydrochloric acid. The white suspension that formed was then left at $0^{\circ} \mathrm{C}$ for 2 h , filtered, and washed with a cold solution of $E t_{2} \mathrm{O}$ / acetone (1:1) to give $362(7.90 \mathrm{~g}, 100 \%$) as a white solid. An analytical sample of 362 was obtained by recrystallisation from $\mathrm{EtOAc} / \mathrm{MeOH} ;[\alpha]_{\mathrm{D}}+32.8^{\circ}\left(c\right.$ 1, $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$, $\mathrm{Lit}^{1}[\alpha]_{D}$ $+35^{\circ}\left(\mathrm{c} 0.5, \mathrm{CH}_{3} \mathrm{OH}\right)$; IR (KBr): 3445 (br w), $3262(\mathrm{~m}), 2966(\mathrm{~m}), 2947(\mathrm{~m}), 2919(\mathrm{~m}), 2858(\mathrm{~m})$, 1751 (s), 1691 (s), 1498 (m), 1416 (s), 1368 (m), 1262 (s), 1236 (m), 1193 (s), 1117 (m), 755 (m), $696(\mathrm{~m}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.09$ (apparent $\mathrm{s}, 2 \mathrm{H}$), 4.90$4.00(\mathrm{br} 1 \mathrm{H}), 3.83($ apparent br d, 1H), 3.38 (apparent br d, 1H), $3.05(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 1.89(\mathrm{~m}, 1 \mathrm{H}), 1.67$ $(\mathrm{m}, 1 \mathrm{H}), 1.60-1.42(\mathrm{~m}, 2 \mathrm{H}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR (DMSO-d d_{6}): $\delta 173.2,155.6,137.5,128.9,128.3$, 128.1, 66.8, 58.4, 44.6, 44.5, 27.6, 23.4; Acc. Mass Calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}$, (M+H)+265.1188; Found: 265.1180
(3S)- \mathbf{N}^{1}-Benzyloxycarbonylpiperazic acid 376

Procedure as above
$[\alpha]_{D}-32^{\circ}\left(c\right.$ 1, $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$

N^{1}-Benzyloxycarbonyl- N^{2}-trifluoroacetyl (3R)-piperazic acid 363

To a stirred solution of (3R)-Z-piperazic acid 362 ($810 \mathrm{mg}, 3.10 \mathrm{mmol}$) in trifluoroacetic acid (6 ml) under nitrogen at $-10^{\circ} \mathrm{C}$ was added trifluoroacetic anhydride ($0.51 \mathrm{ml}, 3.60 \mathrm{mmol}$) and the mixture maintained at that temperature for 1 h . The reaction mixture was then concentrated in vacuo and the residue diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$, washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 6 \mathrm{ml})$, dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash chromatography with hexanes/ EtOAc (6:1) as eluent to give $363(1.04 \mathrm{~g}, 94 \%)$ as an oil; $[\alpha]_{\mathrm{D}}+80^{\circ}\left(c 1 \mathrm{CH}_{3} \mathrm{OH}\right)$, Lit ${ }^{1}$ $[\alpha]_{D}+72^{\circ}\left(c\right.$ 1, $\mathrm{CH}_{3} \mathrm{OH}$); IR (neat film): 3204 (br s), 2966 (s), 2650 (br w), 1827 (w), 1721 (br s), 1588 (w), 1497 (w), 1454 (s), 1405 (s), 1349 (s), 1264 (s), 1187 (br s), 1026 (m) cm ${ }^{-1} ; 400 \mathrm{MHz}$ ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 7.42-7.25(\mathrm{~m}), 5.22(\mathrm{~m}), 4.94(\mathrm{~m}), 4.12(\mathrm{br} \mathrm{d}), 3.70-3.00(\mathrm{br}), 1.9(\mathrm{~m}, 2 \mathrm{H})$, 2.08-1.43 (m); $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$): $\delta 169.7,157.0,155.4,135.5,128.5,128.4$, 128.2, 127.9, 127.7, 117.2, 114.3, 68.7, 68.0, 52.9, 40.1 (br), 38.9, 23.7, 18.0 (br); Acc. Mass Calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{5}-\mathrm{N}_{2} \mathrm{~F}_{3}(\mathrm{M}+\mathrm{H})^{+}$361.1011; Found: 361.1024.

(S)-N -Benzyloxyalanine methyl ester 365

To a stirred solution of $R(+)$-methyl lactate 364 ($2.33 \mathrm{ml}, 24.0 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (73 ml) under nitrogen at $0^{\circ} \mathrm{C}$ was added trifluoromethanesulfonic acid anhydride ($4.44 \mathrm{ml}, 26.0$ $\mathrm{mmol})$ in one portion and the resulting mixture stirred for $10 \mathrm{~min} 2,6$-Lutidine ($3.22 \mathrm{ml}, 0.028 \mathrm{~mol}$) was then added in one portion. After 10 min , a solution of O-benzylhydroxylamine $(6.0 \mathrm{~g}, 49.0$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (35 ml) was added dropwise over 7 min and the now yellow-coloured reaction mixture stirred for 5 min at $0^{\circ} \mathrm{C}$ before warming to room temperature for 1 h . The residue was then
concentrated in vacuo and purified by flash chromatography eluting with hexanes/Et2O (4:1) as eluent. Compound 365 was obtained ($3.70 \mathrm{~g}, 74 \%$) as a pale yellow oil; $[\alpha]_{\mathrm{D}}-57.4^{\circ}$ (c 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), Lit. ${ }^{4}[\alpha]_{\mathrm{D}}-30.15^{\circ}$ (c 2, EtOH); IR (neat film): 3262 (w), 3030 (m), 2994 (m), 2952 (s), 2910 (m), 1742 (s), 1454 (s), 1436 (s), 1215 (s), 1172 (s), 1038 (m), 735 (s), 600 (s) cm-1; 400 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.24-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 4.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.65$ (s, 3H, OMe), $3.61\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.11\left(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 174.7,137.7,128.33,128.31,127.8,76.3,58.9,58.8,52.12,52.1,14.9$; Acc. Mass Calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}(M)^{+}$209.10519; Found: 209.10510.
(S)-N-Benzyloxyalanine 366

To a vigorously stirred solution of methyl ester 365 ($2.42 \mathrm{~g}, 12.0 \mathrm{mmol}$) in THF (19 ml) at $0^{\circ} \mathrm{C}$ was added sodium hydroxide ($13.2 \mathrm{ml}, 1 \mathrm{M}$ in $\mathrm{H}_{2} \mathrm{O}, 13.2 \mathrm{mmol}$). After 2 h , the reaction mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{ml})$ and the aqueous layer separated and cooled to 0 ${ }^{\circ} \mathrm{C}$, where-upon it was adjusted to pH 2 with concentrated hydrochloric acid. The white suspension was placed in the fridge overnight, the precipitate removed by filtration and washed with cold $\mathrm{Et}_{2} \mathrm{O}$ to give 366 ($1.56 \mathrm{~g}, 66 \%$) as a white solid. An analytical sample was obtained by recrystallisation from hexanes/EtOAc; m.p. 112-114 ${ }^{\circ} \mathrm{C}$, Lit. ${ }^{5} 113-114^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-36.7^{\circ}\left(c 1, \mathrm{CH}_{3} \mathrm{OH}\right)$, Lit. ${ }^{5}[\alpha]_{\mathrm{D}}-25.1^{\circ}$ (c 2, EtOH); IR (KBr): 3200-2000 (br m), 2945 (m), 2727 (m), 1574 (br s), 1392 (s), 1358 (s), 1271 (m), 1096 (m), 1009 (m), 963 (m), 916 (m), 857 (m), 759 (s), 702 (s), 673 (m) $\mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.37-7.26(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 4.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.72(\mathrm{q}, \mathrm{J}=7.1$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.25\left(\mathrm{~d}, \mathrm{~J}=7.14 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right) ; 100 \mathrm{MHz}{ }^{13} \mathrm{CNMR}^{\left(\mathrm{CDCl}_{3}\right): ~} \delta 179.1,137.3$, 128.5, 128.4, 128.0, 76.4, 58.7, 14.7; Acc. Mass Calcd. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+} 196.0974$; Found: 196.0982.

(S)-N-Benzyloxyalanine t-butyl ester 367

To a stirred solution of acid 366 (10.72 g, 55.0 mmol) in dioxane (100 ml) at $-20^{\circ} \mathrm{C}$ was added concentrated sulfuric acid (5 ml) followed by isobutene (80 ml) and the reaction vessel then securely sealed with a rubber septum and stirred at room temperature for 5 days. The reaction mixture was then recooled to $-20^{\circ} \mathrm{C}$ and the septum removed, allowing the excess isobutene to escape as the reaction mixture warmed to room temperature. The reaction mixture was then adjusted to pH 9 with saturated aqueous sodium bicarbonate, and extracted with EtOAc $(4 \times 80 \mathrm{ml})$. The combined organic layers were then washed successively with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash chromatography eluting with hexanes/Et $\mathrm{t}_{2} \mathrm{O}(10: 1)$ to give $367(8.54 \mathrm{~g}, 62 \%)$ as a clear oil; $[\alpha]_{\mathrm{D}}-49.4^{\circ}$ (c 1 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), Lit. ${ }^{4}[\alpha]_{D}-26.8^{\circ}$ (c 2, EtOH); IR (neat film): 3451(br w), 3254 (w), 3030 (w), 2980 (s), 2938 (m), 1728 (s), 1447 (s), 1370 (s), 1225 (s), 1156 (s), 1098 (m), 1029 (m), 849 (m), 745 (m), $698(\mathrm{~s}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.33-7.24(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 4.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.58(\mathrm{q}, \mathrm{J}$ $\left.=7.1 \mathrm{~Hz}, \mathrm{CHCH}_{3}, 1 \mathrm{H}\right), 1.46(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}-\mathrm{Bu}), 1.16\left(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 173.5,137.9,128.3,128.2,127.7,81.2,76.1,59.5,28.0,14.9 ;$ Acc. Mass Calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{1} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}$252.1600; Found: 252.1608.

N^{1}-Benzyloxycarbonyl- N^{2}-trifluoroacetyl-(3R)-piperazyl-(S)- \boldsymbol{N}-benzyloxyalanine t-butyl ester 368

To a solution of acid $363(1.55 \mathrm{~g}, 4.30 \mathrm{mmol})$ in dry $\mathrm{Et} 2 \mathrm{O}(7 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ under nitrogen was added phosphorus pentachloride ($1.00 \mathrm{~g}, 4.70 \mathrm{mmol}$) and the mixture stirred for 30 min . The reaction mixture was then stirred for a further 40 min at room temperature, then concentrated in
vacuo. The residue was diluted with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ and added dropwise over 5 min to a mixture of (S)-N-benzyloxyalanine t-butyl ester 367 ($1.06 \mathrm{~g}, 4.20 \mathrm{mmol}$) and sodium bicarbonate ($780.0 \mathrm{mg}, 9.30 \mathrm{mmol}$) in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. After 2 h , the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{ml})$ and the combined organic layers washed with saturated aqueous sodium bicarbonate, dried over MgSO_{4}, filtered and concentrated in vacuo. Purification of the residue by flash chromatography eluting with hexanes/ $\mathrm{Et}_{2} \mathrm{O}(3: 1)$ gave 368 (1.61 g, 64\%) as an oil; IR (neat film): 3037 (w), 2981 (w), 2931 (w), 1738 (s), 1724 (s), 1674 (m), 1497 (w), 1455 (m), 1256 (m), 1211 (m), 1161 (s), 1124 (m), 745 (w), $688(\mathrm{w}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}$ ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6} at $135^{\circ} \mathrm{C}$): $\delta 7.49-7.29(\mathrm{~m}), 5.48(\mathrm{~m}), 5.24-4.94(\mathrm{~m}), 4.83(\mathrm{~m}), 4.58(\mathrm{~m}), 4.22$ $(\mathrm{m}), 3.44(\mathrm{~m}), 3.20(\mathrm{~m}), 2.21(\mathrm{~m}), 2.02(\mathrm{~m}), 1.89(\mathrm{~m}), 1.75(\mathrm{~m}), 1.70-1.50(\mathrm{~m}), 1.43(\mathrm{~s}), 1.42(\mathrm{~s})$, $1.38(d, J=7.2 \mathrm{~Hz})$; Acc. Mass Calcd. for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~F}_{3}(\mathrm{M}+\mathrm{H})+594.2427$; Found: 594.2416.

\boldsymbol{N}^{1}-Benzyloxycarbonyl- \boldsymbol{N}^{2} trifluoroacetyl-(3R)-piperazyl-(S)- \mathbf{N}-benzyloxyalanine 369

To t-butyl ester 368 ($1.61 \mathrm{~g}, 2.70 \mathrm{mmol}$) under nitrogen was added trifluoroacetic acid (10 ml). The mixture was stirred for 2 h and then concentrated in vacuo. Purification of the residue by flash chromatography with hexanes/EtOAc (3:1) as eluent gave $369(1.44 \mathrm{~g}, 100 \%)$ as a colourless oil; IR (neat film): 3478-3219 (br w), 3030 (w), 2948 (w), 1714 (br s), 1676 (m), 1673 (s), 1454 (m), 1400 (m), 1350 (m), 1312 (w), $1270(\mathrm{~m}), 1208$ (s), 1129 (w), 1116 (s), $913(\mathrm{w}), 789$ (m), $753(\mathrm{~m}), 699(\mathrm{~m}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (DMSO-d 6): $\delta 12.90(\mathrm{br} \mathrm{s}), 7.64-7.19(\mathrm{~m}), 5.70-$ 4.40 (complex m), $4.18(\mathrm{~m}), 3.20-2.98(\mathrm{~m})$, 2.24-1.05 (m); Acc. Mass Calcd. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~F}_{3}$ $(M)+537.1723 ;$ Found: 537.1724.

N-Benzyloxycarbonyl-N-methyl-(R)-alanine t-butyl ester 372

To a $0{ }^{\circ} \mathrm{C}$ solution of benzyloxycarbonyl- N -methyl-(R)-alanine 371 ($1.58 \mathrm{~g}, 7.03 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 ml) was added concentrated sulfuric acid (0.5 ml) followed by isobutene (12 ml). The reaction flasked was then securely sealed with a rubber septum and allowed to stir at room temperature for 5 days. The flask was then cooled to $-20^{\circ} \mathrm{C}$ and the septum removed. The excess isobutene was then allowed to escape at room temperature and the mixture adjusted to pH 10 by adding it to 10% aqueous sodium carbonate. The solvent was removed in vacuo and the residue diluted with EtOAc (25 ml), washed successively with aqueous 1 M sodium bicarbonate, $\mathrm{H}_{2} \mathrm{O}$, brine, and dried over MgSO_{4}. After filtration and concentration in vacuo, the residue was purified by flash chromatography eluting with hexanes/Et2O (8:1) as eluent. This gave 372 (1.45 g, 74\%) as a pale yellow oil; IR (neat film): 3066 (w), 2980 (m), 2938 (w), 1735 (s), 1708 (s), 1455 (m), 1369 (m), $1310(\mathrm{~m}), 1154(\mathrm{~s}), 1096(\mathrm{w}), 849(\mathrm{~m}), 749(\mathrm{~m}), 698(\mathrm{~m}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 7.3-7.24 (m, Ph), $5.18(1 / 2 A B q, J=12.6 \mathrm{~Hz}), 5.13(\mathrm{~s}), 5.06(1 / 2 \mathrm{ABq}, J=121.6 \mathrm{~Hz}), 4.77(\mathrm{q}, J=$ $7.5 \mathrm{~Hz}), 4.57(\mathrm{q}, J=7.3 \mathrm{~Hz}), 2.88(\mathrm{~s}), 2.85(\mathrm{~s}), 1.41(\mathrm{~s}), 1.37(\mathrm{~s}), 1.34(\mathrm{~d}, J=7.3 \mathrm{~Hz}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 171.2,136.7,136.6,128.4,127.9,127.7,81.3,67.2,54.8,54.7,30.6,30.1$, 27.9, 15.1, 14.7; Acc. Mass Calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~N}(\mathrm{M}+\mathrm{H})^{+}$294.1705; Found: 294.1715.

\mathbf{N}-Methyl-(R)-alanine t-butyl ester 373

A solution of compound 372 ($1.46 \mathrm{~g}, 5.20 \mathrm{mmol}$) in EtOAc (12 ml) was hydrogenated for 2 h in the presence of $10 \% \mathrm{Pd} / \mathrm{C}(70 \mathrm{mg})$ in EtOAc (12 ml). The catalyst was then removed by filtration and the solvent removed in vacuo. The crude N-methyl amine 373 was then used directly for the next step.

\mathbf{N}^{1}-Benzyloxycarbonyl- \mathbf{N}^{2}-trifluoroacetyl-(3R)-piperazyl-(S)- \mathbf{N}-benzyloxyalanyl-\boldsymbol{N}-(methyl)-(R)-alanine t-butyl ester 374

To a stirred solution of acid $369(1.4 \mathrm{~g}, 2.60 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ at -20° Cunder nitrogen was added triethylamine ($0.44 \mathrm{ml}, 3.10 \mathrm{mmol}$) followed by bis(2-oxo-3-oxazolidinyl)phosphinic chloride ($800 \mathrm{mg}, 3.10 \mathrm{mmol}$) and the reaction mixture stirred for 1 h . Crude amine 373 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was then added to the mixed anhydride solution dropwise over 5 min and the reaction mixture maintained at $-20^{\circ} \mathrm{C}$ for a further 1 h before being warmed to $0^{\circ} \mathrm{C}$ for a further 2 h . The reaction mixture was then washed successively with 10% sodium bicarbonate solution, 10% hydrochloric acid solution, brine, dried over MgSO_{4} and filtered. The filtrate was concen-trated in vacuo, and the residue purified by flash chromatography with hexanes/EtOAc (5:1) as eluent. This gave 374 ($1.20 \mathrm{~g}, 68 \%$) as a foam; IR (KBr): 2981(br w), 2938 (m), 2827 (s), 1734 (br s), 1717 (br s), 1658 (m), 1456 (m), 1396 (w), 1264 (m), 1248 (m), 1214 (w), 1163 (w), $1084(\mathrm{~m}), 789(\mathrm{~s}), 754(\mathrm{~s}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (DMSO-d 6 at $70^{\circ} \mathrm{C}$): $87.50-7.25(\mathrm{~m}), 5.58(\mathrm{br})$, 5.38-5.10 (complex m), 5.08-4.65 (m), 4.2-4.08(m), $3.45(\mathrm{~m}), 3.20(\mathrm{~m}), 2.99(\mathrm{~s}), 2.90-2.65(\mathrm{br}$ m), 2.10 (br), 2.00 (br), 1.88 (br), 1.76 (br), 1.65 (br), 1.55 (br), 1.40-1.10 (complex m); Acc. Mass Calcd. for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~F}_{3}(\mathrm{M}+\mathrm{H})+679.2955$; Found: 679.2959.

N^{1}-Benzyloxycarbonyl- \mathbf{N}^{2}-trifluoroacetyl-(3R)-piperazyl-N-benzyloxy-(S)-alanyl-

 \mathbf{N}-(methyl)-(R)-alanine 375

A solution of the t-butyl ester $374(980 \mathrm{mg}, 1.40 \mathrm{mmol})$ in $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(5 \mathrm{ml})$ was stirred for 2 h under a nitrogen atmosphere and the solvent removed in vacuo. The residue was then diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 7 \mathrm{ml})$, dried over MgSO_{4}, filtered and
concentrated in vacuo. The residue was purified by flash chromatography eluting with hexanes/ EtOAc (3:1) to give 375 ($720 \mathrm{mg}, 80 \%$) as a foam; IR (KBr): 3690-2400 (br), 3030 (w), 2943 (m), 1745 (s), 1717 (s), 1659 (s), 1503 (w), 1456 (m), 1404 (m), 1349 (w), 1266 (m), 1249 (m), 1205 (s), 1163 (s), $1082(\mathrm{w}), 752(\mathrm{~m}), 702(\mathrm{~m}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): 8 7.50-7.23 (complex $\mathrm{m}), 5.80-5.63(\mathrm{~m}), 5.42-4.65$ (complex m), 4.56-4.06(m), 3.55 (br m), 3.24-2.40 (complex m), 2.22-1.15 (complex m); Acc. Mass Calcd. for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~F}_{3}(\mathrm{M})^{+}$622.2250; Found: 622.2243.

Methyl (3S)- $\boldsymbol{N}^{\mathbf{1}}$-benzyloxycarbonylpiperazate 377

To a solution of $376(360 \mathrm{mg}, 1.40 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(5 \mathrm{ml})$ and $\mathrm{EtOH}(5 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added a solution of diazomethane in $\mathrm{Et}_{2} \mathrm{O}$ until the reaction mixture became pale yellow. Excess diazomethane was then expelled with nitrogen and the solvent removed in vacuo to give 377 ($330 \mathrm{mg}, 85 \%$) as an oil. An analytical sample was obtained by flash chromatography eluting with hexanes/EtOAc (4:1); IR (neat film): 3472 (br w), 3297 (w), 3037 (w), 2952 (s), 2860 (w), 1750 (s), 1704 (s), 1507 (m), 1452 (s), 1403 (s), 1357 (s), 1332 (m), 1262 (s), 1173 (s), 1108 (m), 1028 (m), $987(\mathrm{~m}), 755(\mathrm{~m}), 700(\mathrm{~s}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{\dagger} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.15(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Ph}$), 3.97 (br m, 1H), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 3.5 (br m, 1H), $3.10($ br m, 1H), $2.04(\mathrm{~m}, 1 \mathrm{H}), 1.8-$ $1.50(\mathrm{~m}, 3 \mathrm{H}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 171.4155 .2,153.8,136.4,128.5,128.4,128.3$, 128.2, 128.1, 127.9, 67.6, 58.3, 52.1, 44.7, 33.6, 27.4, 23.3; Acc. Mass Calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}$ $\left(\mathrm{M}^{+}\right)$279.1345; Found: 279.1345.

N-Fluorenymethoxycarbonyl- N-methyl-(R)-alanyl- \mathbf{N}^{1}-benzyloxycarbonyl-(S)-

piperazic acid methyl ester 383

To a stirred solution of $380(1.90 \mathrm{~g}, 4.60 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(5 \mathrm{ml})$ under nitrogen was added oxalyl chloride ($4.0 \mathrm{ml}, 46.0 \mathrm{mmol}$) and the mixture stirred in an oil bath at $50^{\circ} \mathrm{C}$ for 1 h . The solvents were then removed in vacuo and the residue coevaporated with $\mathrm{C}_{6} \mathrm{H}_{6}$ ($2 \times 6 \mathrm{ml}$). A solution of 377 ($860.0 \mathrm{mg}, 3.10 \mathrm{mmol}$) in toluene (3 ml) was then added to the acid chloride under nitrogen followed by silver cyanide ($950.0 \mathrm{mg}, 7.13 \mathrm{mmol}$). The flask was heated in darkness at $90^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was then cooled to room temperature, filtered through Celite, and concentrated in vacuo. The residue was diluted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{ml})$ washed successively with 10% aqueous sodium bicarbonate solution, $\mathrm{H}_{2} \mathrm{O}$, brine, and then dried over MgSO_{4}. It was then filtered and concentrated in vacuo. The crude residue was purified by flash chromatography eluting with hexanes/EtOAc (4:1) to give 383 ($980 \mathrm{mg}, 54 \%$) as a foam; IR (KBr): 3072 (w), 3037 (w), 2952 (s), 1740 (s), 1687 (s), 1451 (m), 1400 (m), 1263 (m), 1245 (m), $1156(\mathrm{~m}), 788(\mathrm{~s}), 759(\mathrm{~s}), 741(\mathrm{~m}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.73(\mathrm{~m}), 7.55$ (complex m), 7.45-7.00 (complex m), 5.45-4.80(m), $4.65(\mathrm{br}), 4.50-3.85$ (complex m), $3.74(\mathrm{~s}), 3.73(\mathrm{~s}), 3.69$ (s), 2.87 (br s), 2.83 (br s), 2.24-1.10 (complex m), 1.31 (d, superimposed on m, $J=7.0 \mathrm{~Hz}$), 1.02 (d, $J=6.8 \mathrm{~Hz}$); Acc. Mass Calcd. for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H})+586.2553$; Found: 586.2559.

Diketopiperazine 384

To a solution of 383 ($910.0 \mathrm{mg}, 1.60 \mathrm{mmol}$) in acetonitrile (8 ml) at room temperature was added diethylamine (8 ml) and the reaction mixture stirred for 5 min . It was then concentrated in
vacuo, and the residue purified by flash chromatography eluting with hexanes/EtOAc (1:2) to give 384 ($420.0 \mathrm{mg}, 79 \%$) as an oil; IR (neat film): 2931 (w), 2854 (w), 1720 (s), 1694 (s), 1661 (s), 1490 (w), 1453 (m), 1404 (m), 1259 (m), 1186 (m), 1131 (w), $1040(\mathrm{w}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 7.42-7.18$ (complex m), 5.29-5.04 (m), 4.33-3.78 (complex m) 3.15-2.75 (br m), 2.96 (s), 2.87 (s), 1.89-1.51 (br m), 1.57 (d, $J=6.8 \mathrm{~Hz}$), 1.17 ($\mathrm{d}, J=6.7 \mathrm{~Hz}$); $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 164.7,164.3,154.0,128.5,128.4,128.3,68.7,68.6,58,6,57.7,57.5,46.0,44.4$, 32.2, 29.9, 29.4, 23.7, 23.2, 19.2, 19.0; Acc Mass Calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H})^{+} 332.1610$; Found: 332.1615.

N^{1}-Benzyloxycarbonyl- \boldsymbol{N}^{2}-9-fluorenylmethoxycarbonyl-(3R)-piperazic acid $\mathbf{3 9 0}$

To a suspension of (3R) Z-piperazic acid $\mathbf{3 6 2}$ ($7.0 \mathrm{~g}, 26.0 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})$ under nitrogen was added diisopropylethylamine ($7.90 \mathrm{ml}, 45.0 \mathrm{mmol}$) followed by chlorotrimethylsilane ($6.6 \mathrm{ml}, 52.0 \mathrm{mmol}$). The resulting solution was heated at reflux for 2 h . The mixture was then cooled to $0^{\circ} \mathrm{C}$ and with stirring 9-fluorenylmethyl chloroformate ($8.75 \mathrm{~g}, 34.0 \mathrm{mmol}$) was added in one portion. After 30 min , the reaction mixture was allowed to warm to room temperature and stirred for 12 h . The mixture was then concentrated in vacuo and diluted with $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{ml})$. The slurry was then extracted with 2.5% aqueous sodium bicarbonate ($3 \times 40 \mathrm{ml}$) and the combined aqueous layers were washed with $\mathrm{Et}_{2} \mathrm{O}$. The aqueous layer was then acidified to pH 2 with concentrated hydrochloric acid and extracted with EtOAc. The combined EtOAc extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. Purification of the residue by flash chromatography eluting with hexanes/EtOAc (4:1) gave 390 ($10.74 \mathrm{~g}, 85 \%$) as a foam; $[\alpha]_{D}+2.5^{\circ}$ (c 1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (KBr): 3400-2400(br), 3067 (m), 3039 (m), 2956 (m), 1733 (s), 1712 (s), 1451 (s), 1423 (s), 1359 (m), 1306 (s), 1252 (s), 1193 (m), 1129 (m), 1090 (m), 1048 (m),758(s), $742(\mathrm{~s}), 698(\mathrm{w}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6} at $100^{\circ} \mathrm{C}$): $\delta 7.80$ (apparent d, J $=7.6 \mathrm{~Hz}$), 7.60 (apparent d, $J=7.1 \mathrm{~Hz}$), 7.41-7.19 (complex m), $5.03(1 / 2 \mathrm{ABq}, J=12.7 \mathrm{~Hz}$),
4.98 ($1 / 2 \mathrm{ABq}, \mathrm{J}=12.8 \mathrm{~Hz}$), 4.76 (br s), 4.58-4.28 (m), 4.20 (br s), 3.95 (br d, $J=12.7 \mathrm{~Hz}$), 2.78 (br m), 1.89-1.41 (complex m); Acc. MAss Calcd. for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+} 487.1869$; Found: 487.1853.

N^{1}-Benzyloxycarbonyl- \boldsymbol{N}^{2}-9-fluorenymethoxycarbonyl-(3R)-piperazyl-(S)- N benzyloxyalanine \boldsymbol{t}-butyl ester 392

To a solution of acid $390(9.48 \mathrm{~g}, 20.0 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ (144 ml) under nitrogen was added oxalyl chloride ($17.1 \mathrm{ml}, 200.0 \mathrm{mmol}$) and the mixture stirred for 1 h at $50^{\circ} \mathrm{C}$. The mixture was then concentrated in vacuo and the residue coevaporated twice with $\mathrm{C}_{6} \mathrm{H}_{6}$ before being diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 ml). The acid chloride solution was then added dropwise to a mixture of amine 367 ($4.44 \mathrm{~g}, 18.0 \mathrm{mmol}$) and sodium bicarbonate ($3.22 \mathrm{~g}, 39.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(57: 19 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for $2 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{ml})$ was then added and the mixture was washed with saturated aqueous sodium bicarbonate and dried over MgSO_{4}. Filtration, followed by concentration in vacuo and flash chromatogarphy with hexanes/EtOAc (5:1) gave 392 (12.22 g, 96\%) as a foam; [$\alpha]_{\mathrm{D}}-6.1^{\circ}\left(\mathrm{c} 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR (KBr): 3065 (w), 3044 (w), 2976 (m), 2946 (m), 1736 (s), 1710 (s), 1676 (s), 1452 (s), 1406 (s), 1367 (s), 1296 (s), 1254 (s), 1156 (s), $741(\mathrm{~s}), 698(\mathrm{~m}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}^{1} \mathrm{H}$ NMR (DMDO- d_{6} at $125^{\circ} \mathrm{C}$): $\delta 7.88-7.15$ (complex $\mathrm{m}, 18 \mathrm{H}$), 5.20 (br s, 1H), 5.10 (br d, 1H), 4.99 (br d, 1H), 4.91 (br s, 2H), 4.51 (apparent br d, 3H), 4.19 (apparent t, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.00(\mathrm{br} \mathrm{d}, 1 \mathrm{H}), 2.85(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 2.10(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 1.80(\mathrm{br}, 1 \mathrm{H}), 1.65$ (br, 1H), 1.41-1.36 (s superimposed on m, 13 H); Acc. Mass Calcd. for $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{8}(\mathrm{M}+\mathrm{H})^{+}$ 720.3285; Found: 720.3280; Anal. Calcd. for $\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{8}$: $\mathrm{C}, 70.08 ; \mathrm{H}, 6.30 ; \mathrm{N}, 5.84 \%$. Found: C, 69.96; H, 6.17; N, 5.78\%.

N^{1}-Benzyloxycarbonyl- $\mathbf{N}^{\mathbf{2}}$-9-fluorenymethoxycarbonyl-(3R)-piperazyl-(S)-N-
 benzyloxyalanine 388

To a solution of t-butyl ester $392(2.0 \mathrm{~g}, 3.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.5 \mathrm{ml})$ under nitrogen was added $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(3.2 \mathrm{ml}, 42.0 \mathrm{mmol})$ and the mixture stirred for 1.5 h . After concentration in vacuo the residue was diluted with $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{ml})$, washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{ml})$, dried over MgSO_{4}, filtered and concentrated in vacuo. Purification of the residue by flash chromatography with hexanes/ EtOAc (3:1) gave 388 (1.85 g, 93\%) as a foam; [α]D $-24.5^{\circ}\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (KBr): 3431 (br w), 3191 (br m), 3065 (m), 3034 (m), 2949 (m), 1711 (br s), 1680 (s), 1452 (s), 1452 (s), 1409 (s), 1295 (s), 1255 (s), 1195 (br s), 741 (s), 698 (m) cm ${ }^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): δ 9.65 (br s), 7.8-7.0 (complex m), 5.49 (br), 5.3- 3.80 (complex br m), 2.85 (br), 2.40-1.00 (complex br m); Acc. Mass Calcd. for $\mathrm{C}_{38} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{8}(\mathrm{M}+\mathrm{H})^{+}$664.2659; Found: 664.2653; Anal. Calcd. for $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{8}$: $\mathrm{C}, 68.77 ; \mathrm{H}, 5.62 ; \mathrm{N}, 6.33 \%$. Found: $\mathrm{C}, 68.89 ; \mathrm{H}, 5.55 ; \mathrm{N}, 6.17 \%$.

\mathbf{N}^{1}-Benzyloxycarbonyl-(3S)-piperazic acid diphenyimethyl ester 393

To a stirred solution of (3S)- N^{1} - Z-piperazic acid 376 ($4.40 \mathrm{~g}, 16.7 \mathrm{mmol}$) in acetone (80 ml) and ethanol (25 ml) at room temperature was added dropwise a solution of diphenyldiazomethane $(6.00 \mathrm{~g}, 40.0 \mathrm{mmol})$ in acetone (42 ml) and the resulting purple solution stirred for 3 h . The mixture was then concentrated in vacuo and the residue purified by flash chromatography with hexanes/EtOAc (6:1) to give $393(6.67 \mathrm{~g}, 9.3 \%)$ as a white solid; m.p. $76-77^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-21^{\circ}$ (c 0.5, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (KBr): 3242 (m), 3033 (w), 2948 (w), 2921 (w), 2854 (s), 1738 (s), 1669 (s), 1524 (m), 1496 (m), 1447 (m), 1410 (s), 1288 (m), 1272 (s), 1172 (s), 1147 (s), 755 (m) cmr$; 400$ $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.36-7.24(\mathrm{~m}, 15 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 5.60-4.20$ (very br, 1 H$) 5.16(\mathrm{~s}, 2 \mathrm{H})$,
$3.98(\mathrm{brd}, 1 \mathrm{H}), 3.64(\mathrm{br} \mathrm{d}, 1 \mathrm{H}), 3.10(\mathrm{br}, 1 \mathrm{H}), 2.13(\mathrm{~m}, 1 \mathrm{H}), 1.9-1.48(\mathrm{~m}, 3 \mathrm{H}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 170.0,155.2 ., 139.6,139.5,136.3,128.5,128.0,127.9,127.1,126.9,77.4,67.5$, 58.3, 44.7, 27.3, 23.8; Acc. Mass Calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 453.1790$; Found: 453.1793; Anal Calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~N}_{2}$: C, 72.54; $\mathrm{H}, 6.09 ; \mathrm{N}, 6.51 \%$. Found: $\mathrm{C}, 72.32 ; \mathrm{H}, 6.18$; N, 6.48\%.

N-Fluorenymethoxycarbonyl- \mathbf{N}-methyl-(R)-alanyl- $\mathbf{N}^{\mathbf{1}}$-benzyloxycarbonyl-(S)piperazic acid diphenylmethyl ester 394

To a stirred solution of acid $\mathbf{3 8 0}\left(1.8 \mathrm{~g}, 6.0 \mathrm{mmol}\right.$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (18 ml) under nitrogen was added oxalyl chloride ($4.7 \mathrm{ml}, 60.0 \mathrm{mmol}$) and the mixture maintained at room temperature for 2 h . The mixture was then concentrated in vacuo and the residue coevaporated twice with $\mathrm{C}_{6} \mathrm{H}_{6}$. To this crude acid chloride was added a solution of 393 ($1.8 \mathrm{~g}, 4.0 \mathrm{mmol}$) in dry toluene (18 ml) under nitrogen, followed by silver cyanide ($880.0 \mathrm{mg}, 6.6 \mathrm{mmol}$). The reaction vessel was then wrapped in foil and placed in an oil bath at $80^{\circ} \mathrm{C}$ for 2 h . The mixture was then cooled to room temperature and filtered through Celite and the solvent removed in vacuo. The residue was then diluted with EtOAc (30 ml) and washed sequentially with saturated aqueous sodium bicarbonate and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification by flash chromatography eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(40: 1)$ gave $394(2.80 \mathrm{~g}, 91 \%)$ as a foam; $[\alpha] \mathrm{D}+11^{\circ}$ (c 1 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (KBr): 3065 (w), 3030 (w), 2945 (w), 1736 (s), 1726 (s), 1687 (s), 1496 (w), 1452 (s), 1399 (s), 1309 (s), 1245 (s), 1167 (s), 1126 (m), 1079 (m), 759 (s), 740 (s), 699 (s) $\mathrm{cm}^{-1} ; 400 \mathrm{MHz}$ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 7.82-7.00$ (complex m), 6.90 (s), 6.50 (br), 5.43-3.70 (complex m), 3.30-2.85 (complex m), 2.74 (br s), 2.57 (br s), 2.25-0.90 (complex m), 1.29 (d, $J=7.0 \mathrm{~Hz}$); Acc. Mass Calcd. for $\mathrm{C}_{45} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H})^{+} 738.3179$; Found: 738.3174; Anal. Calcd. for $\mathrm{C}_{45} \mathrm{H}_{43} \mathrm{O}_{7} \mathrm{~N}_{3}$: $\mathrm{C}, 72.35$; H, 6.07; N, 5.89\%. Found: C, 72.08; H, 5.89; N, 5.64\%.

\mathbf{N}-Fluorenymethoxycarbonyl- \mathbf{N}-methyl-(R)-alanyl- $\mathbf{N}^{\mathbf{1}}$-benzyloxycarbonyl-(S)-

piperazic acid 395

To a stirred solution of ester 394 ($3.76 \mathrm{~g}, 5.1 \mathrm{mmol}$) and phenol ($1.13 \mathrm{~g}, 12.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})$ at room temperature was added in one portion $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(4.9 \mathrm{ml}, 64.0 \mathrm{mmol})$ and the resulting solution stirred for 20 min . The mixture was then concentrated in vacuo and the residue purified by flash chromatography with hexanes/EtOAc (2:1) to give 395 ($2.90 \mathrm{~g}, 99 \%$) as a foam; $[\alpha] \mathrm{D}+40^{\circ}\left(c \operatorname{0.5}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (KBr): 3800-2600 (br), 3466 (br m), 3954 (m), 1742 (s), 1689 (s), 1473 (m), 1404 (m), 1357 (s), 1314 (m), 1249 (m), 1158 (m), 759 (s), 741 (s) cm-1; 400 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6} at $\left.100^{\circ} \mathrm{C}\right): \delta 12.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 7.57(\mathrm{~d}, J=6.9 \mathrm{~Hz})$, 7.41-7.20 (complex m), 5.17 (br m), 4.95 (br s), 4.50-3.80 (complex m), 3.05 (br m), 2.67 (br s), 2.61 (br s), 2.00-1.23 (complex m), $1.13(d, J=5.65 \mathrm{~Hz}), 1.07(d, J=5.5 \mathrm{~Hz})$; Acc. Mass Calcd. for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{~N}_{3}(\mathrm{M}+\mathrm{H})^{+}$572.2397; Found: 572.2393; Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{O}_{7} \mathrm{~N}_{3}: \mathrm{C}, 67.24 ; \mathrm{H}$, 5.82; N, 7.35\%. Found: C, 66.93; H, 5.83; N, 7.18\%.

N-Benzyloxycarbonyl-(R)- threonine methyl ester 397

To a cool solution of acid $396(2.00 \mathrm{~g}, 8.0 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(15 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added ethereal diazomethane until the solution became pale yellow. The reaction mixture was then purged with nitrogen gas and concentrated in vacuo to give 397 ($2.06 \mathrm{~g}, 96 \%$) as a white solid. An analytical sample was obtained by recrystallisation from hexanes/EtOAc; m.p. 84-85 ${ }^{\circ} \mathrm{C}$; IR (KBr): 3473 (s), 3315 (s), 3041 (m), 2945 (m), 1719 (s), 1651 (s), 1546 (m), 1441 (w), 1336 (m), $1282(\mathrm{w}), 1247(\mathrm{~m}), 1075(\mathrm{~m}), 752(\mathrm{~m}), 698(\mathrm{~s}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.34-7.28(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ph}), 5.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.37(\mathrm{br}$
$\mathrm{s}, 1 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 171.7,156.7,136.1,128.5,128.2$, 128.0, 67.9, 67.2, 59.1, 52.6,52.57, 19.8; Acc. Mass Calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{5}(\mathrm{M}+\mathrm{H})+268.1185$; Found: 268.1180.

N-Benzyloxycarbonyl-O-t-butyldimethylsilyl-(R)-threonine methyl ester 398

To a solution of alcohol $397(2.00 \mathrm{~g}, 7.50 \mathrm{mmol})$ in dry DMF (6 ml) under nitrogen was added imidazole ($620.0 \mathrm{mg}, 9.0 \mathrm{mmol}$) and t-butyldimethylsilyl chloride ($1.36 \mathrm{~g}, 9.0 \mathrm{mmol}$) and the reaction mixture stirred for 5 h . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ and saturated aqueous sodium bicarbonate. The $\mathrm{Et}_{2} \mathrm{O}$ layer was removed and the aqueous phase further extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 50 \mathrm{ml})$. The combined ethereal layers were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by flash chromatography eluting with hexanes/Et2O (7:1). Compound $398(2.64 \mathrm{~g}, 92 \%)$ was obtained as an oil; IR (neat film): 3452 (w), 3353 (w), 2952 (m), 2924 (m), 1755 (s), 1731 (s), 1508 (s), 1321 $(\mathrm{m}), 1258(\mathrm{~m}), 1208(\mathrm{~m}), 1100(\mathrm{~m}), 1071(\mathrm{~s}), 963(\mathrm{~m}), 838(\mathrm{~m}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 7.37-7.25 (m, 5H, Ph), $5.43(\mathrm{br} \mathrm{d}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=1.8$ and 9.8 Hz , $1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 1.18(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.81\left(\mathrm{~s}, 9 \mathrm{H}, 0.01(\mathrm{~s}),-0.04(\mathrm{~s}, 3 \mathrm{H}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}\right.$ NMR (CDCl_{3}): $\delta 171.2,156.7,136.2,128.5,128.1,68.7,67.1,59.9,52.3,25.6,20.8,17.8$, -4.5, -5.4; Acc. Mass Calcd. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H})+382.2050$; Found: 382.2046.

O- t-Butyldimethylsilyl-(R)-threonine methyl ester 399

A solution of 398 ($2.64 \mathrm{~g}, 7.0 \mathrm{mmol}$) in THF (15 ml) was hydrogenated with 10% palladium on charcoal $(67.0 \mathrm{mg})$ for 12 h . The reaction mixture was then filtered the catalyst washed with EtOAc and the filtrate concentrated in vacuo to give 399 ($1.67 \mathrm{~g}, 97 \%$) as an oil. An analytical sample of 75 was obtained by flash chromatography eluting with hexanes/ $E t_{2} \mathrm{O}$ (6:1); IR (neat film): 3395 (w), 3332 (w), 2956 (s), 2932 (s), 2858 (s), 1748 (s), 1602 (w), 1472 (m), 1375 (m), 1254 (s), 1160 (s), 1077 (s) $\left.\mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl}_{3}\right): ~ \delta 4.3$ (qd, $\left.J=2.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.70$ (s, 3H, OMe), $3.27(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 2 \mathrm{H}), 1.23(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}$, $3 \mathrm{H}),-0.03(\mathrm{~s}, 3 \mathrm{H}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 174.8,69.4,60.7,51.8,25.6,20.9,17.8,-4.4$, -5.3; Acc. Mass Calcd. for $\mathrm{C}_{11} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{H})+248.1682$; Found: 248.1675.

N-Fluorenymethoxycarbonyl- \mathbf{N}-methyl-(R)-alanyl- \mathbf{N}^{1}-benzyloxycarbonyl-(3S)-piperazyl-(O-t-butyldimethylsilyl)- (R)-threonine methyl ester 400

To a stirred solution of acid $395(1.00 \mathrm{~g}, 1.80 \mathrm{mmol})$ and amine $399(440.0 \mathrm{mg}, 1.80$ mmol) in dry THF (7 ml) at $0^{\circ} \mathrm{C}$ was added 1 -hydroxybenzotriazole hydrate ($260.0 \mathrm{mg}, 1.80$ mmol), copper (II) chloride ($10.0 \mathrm{mg}, 1.80 \mathrm{mmol}$) and 1,3-dicyclohexylcarbodiimide (430.0 mg , $1.80 \mathrm{mmol})$. The reaction mixture was then stirred at $0^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was then filtered through Celite and the solvent evaporated in vacuo. The residue was diluted with EtOAc (25 ml) and washed sequentially with saturated aqueous sodium bicarbonate, $\mathrm{H}_{2} \mathrm{O}$, brine, dried over MgSO_{4}, filtered and concentrated in vacuo. Purification of the residue by flash
chromatography with hexanes/EtOAc (3:1) gave 400 (1.20 g, 85\%) as a foam; $[\alpha]_{D}+21.6^{\circ}$ (c $0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (KBr): 3400 (br w), 3325 (m), 2952 (m), 2924 (m), 1753 (m), 1720 (s), 1688 (s), 1531 (m), 1451 (m), 1404 (m), 1249 (s), 1156 (m), 1091 (m), $838(\mathrm{~m}), 740(\mathrm{~m}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}^{1} \mathrm{H}$ NMR (DMSO-d 6 at $75^{\circ} \mathrm{C}$): $\delta 8.24$ (s), 7.85 (d), 7.79-7.22 (complex m), 5.00 (br), 4.75 (br), 4.554.15 (br), 3.96 (br), 3.64 (small s, OMe), 3.55 (s, OMe), 2.67 (br s, NMe), 1.96-1.30 (br), 1.3-0.94 (br), $1.05(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, \mathrm{Me}), 0.82(\mathrm{~d}, \mathrm{Me})$ partially superimposed on $0.81(\mathrm{~s}, 1), 0.00(\mathrm{~s}, \mathrm{TBS}-\mathrm{Me})$, -0.02 (s, TBS-Me); Acc. Mass Calcd. for $\mathrm{C}_{43} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})+823.3714$; Found: 823.3709; Anal Calcd. for $\mathrm{C}_{43} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{Si}: \mathrm{C}, 64.48 ; \mathrm{H}, 7.05 ; \mathrm{N}, 6.99 \%$. Found: $\mathrm{C}, 64.22 ; \mathrm{H}, 7.10 ; \mathrm{N}, 6.90 \%$.

\mathbf{N}^{1} Benzyloxycarbonyl- $\mathbf{N}^{\mathbf{2}}$-9-fluorenymethoxycarbonyl-(3R)-piperazyl-N-benzyl-oxyalanyl- N-methyl-(R)-alanyl- N^{1}-benzyloxycarbonyl-(3S)-piperazyl-(O-t-butyldimethylsilyl)-(R)-threonine methyl ester 401

A solution of tripeptide $400(300.0 \mathrm{mg}, 0.38 \mathrm{mmol})$ in acetonitrile (4.5 ml) was added diethylamine (3 ml) and the mixture stirred at room temperature for 1.5 h . The mixture was then concentrated in vacuo and the residue coevaporated twice with benzene before being diluted with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$. In a separate flask charged with the dipeptide $388(270.0 \mathrm{mg}, 4.50 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{ml})$ at $-20^{\circ} \mathrm{C}$ was added dry triethylamine ($0.06 \mathrm{ml}, 0.45 \mathrm{mmol}$) followed by bis(2-oxo-3-oxazolidinyl)phosphinic chloride ($120.0 \mathrm{mg}, 4.50 \mathrm{mmol}$) in one portion and the solution stirred for 1 h . The amine solution then added to this solution of the mixed anhydride, followed by triethylamine $(0.06 \mathrm{ml}, 0.45 \mathrm{mmol})$ and the resulting mixture stirred for 1 h at $-20^{\circ} \mathrm{C}$ then at $0^{\circ} \mathrm{C}$ for 4 h . The mixture was then diluted with EtOAc (20 ml) and washed successively with a (1M) aqueous solution of hydrochloric acid, $\mathrm{H}_{2} \mathrm{O}, 10 \%$ sodium bicarbonate solution and brine. The organic layer was dried over MgSO_{4}, filtered and concentrated in vacuo. Purification of the
residue by flash chromatography with hexanes/EtOAc (2:1) gave 401 ($290.0 \mathrm{mg}, 64 \%$) as a foam; $[\alpha]_{D}-37.8^{\circ}\left(c \quad 0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR (KBr): 3395 (br w), 3318 (w), 3072 (w), $3030(\mathrm{w}), 2952(\mathrm{~m})$, 2924 (m), 2854 (w), 1722 (br s), 1673 (s), 1652 (s), 1525 (w), 1447 (m), 1405 (m), 1356 (m), 1349 (m), 1286 (m), 1244 (s), 1194 (m), 1131 (m), 1082 (m), 1040 (m), 836 (w), 751 (m), 737 (m), 688 (m) $\mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 8.65(\mathrm{~m}), 8.25(\mathrm{br} \mathrm{m}), 7.80-7.00$ (complex m$)$), 5.60-3.90 (complex m), 3.80-3.30 (complex m), 3.30-1.00 (complex m), 0.08 (s), 0.05 (s), 0.04 (s), 0.03 (s), 0.02 (s); Acc. Mass Calcd. for $\mathrm{C}_{66} \mathrm{H}_{81} \mathrm{~N}_{7} \mathrm{O}_{14} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})+1246.5508$; Found: 1246.5504; Anal. Calcd. for $\mathrm{C}_{66} \mathrm{H}_{81} \mathrm{~N}_{7} \mathrm{O}_{14} \mathrm{Si}: \mathrm{C}, 64.74 ; \mathrm{H}, 6.67 ; \mathrm{N}, 8.01 \%$. Found: C, 64.41; H, 6.74; $\mathrm{N}, 7.82 \%$.

N-9-Fluorenymethoxycarbonyl-(2S,3S)-3-hydroxyleucine 409

To a stirred solution of (2S,3S)-3-hydroxyleucine 408 ($330.0 \mathrm{mg}, 2.31 \mathrm{mmol}$) in 10% aqueous sodium carbonate solution $(6 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added a solution of 9 -fluorenylmethyl chloroformate ($660.0 \mathrm{mg}, 2.55 \mathrm{mmol}$) in dioxane (4 ml) over 5 min . When the addition was complete, the ice bath was removed and the mixture stirred for 2 h at room temperature. The mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 15 \mathrm{ml})$, acidified to pH 2 with concentrated hydrochloric acid, and extracted with EtOAc ($3 \times 35 \mathrm{ml}$). The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo to give 409 ($750.0 \mathrm{mg}, 88 \%$) as a white solid. An analytical sample was obtained by recrystallisation with hexanes/EtOAc; IR (KBr): 3395 (m), 3376 (m), 2965 (w), 1759 (s), 1740 (w), 1690 (s), 1514 (s), 1448 (m), 1321 (m), 1297 (m), 1212 (s), 1129 (m), 1064 (m), 1040 (m), 761 (m), 741 (s), 538 (w) $\mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (DMSO-d $)_{6}$: $\delta 12.43(b r s), 7.88(d, J=7.4 H z), 7.71(d, J=7.4 H z), 7.50(d, J=8.8 \mathrm{~Hz}), 7.42-$ $7.23(\mathrm{~m}), 4.88(\mathrm{br} s), 4.39-4.19(\mathrm{~m}), 4.03(\mathrm{~m}), 3.45(\mathrm{~m}), 1.80(\mathrm{~m}), 0.89(\mathrm{~d} J=6.7 \mathrm{~Hz}), 0.80(\mathrm{~d}, J=$ 6.6 Hz); $100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 172.8,155.8,143.8,140.7,127.7,127.0,125.3$, $120.1,75.1,65.7,57.0,46.7,29.2,19.7,16.6$; Acc. Mass Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}(M+\mathrm{H})^{+}$ 370.1654; Found: 370.1666.

N-9-Fluorenymethoxycarbonyl-(2S,3S)-3-hydroxyleucine diphenylmethyl ester

410

To a solution of $409(200.0 \mathrm{mg}, 0.54 \mathrm{mmol})$ in acetone $(1.5 \mathrm{ml})$ at room temperature was added a solution of diphenyldiazomethane ($150.0 \mathrm{mg}, 0.77 \mathrm{mmol}$) in acetone (2 ml) and the resulting purple solution stirred for 1 h . The reaction mixture was then concentrated in vacuo and the residue purified by flash chromatography eluting with hexanes/EtOAc (5:1) to give 410 ($280.0 \mathrm{mg}, 97 \%$) as a white solid; IR (KBr): 3634 (w), 3585 (w), 3332 (m), 3030 (w), 2966 (m), 2875 (w), 1724 (s), 1537 (s), 1450 (m), 1317 (m), 1249 (s), 1221 (m), 1001 (s), 757 (s), 743 (s), $703(\mathrm{~s}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.76(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 7.58(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 7.45-7.19$ (complex m), $6.95(\mathrm{~s}), 5.85(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}), 4.66(\mathrm{~m}), 4.40(\mathrm{~m}), 4.19(\mathrm{~m}), 3.52(\mathrm{br} m), 2.52(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}), 1.66(\mathrm{~m}), 0.93(\mathrm{~m}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right): \delta 170.1,156.1,143.7,143.6,141.2,139.2$, $128.5,128.2,128.0,127.7,127.4,127.0,126.8125 .0,119.9,78.7,78.4,67.2,56.7,47.1$, 31.0, 19.1, 18.6; Acc. Mass Calcd. for $\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{O}_{5} \mathrm{~N}\left(\mathrm{M}^{+}\right)$535.2359; Found: 535.2354.

N-9-Fluorenymethoxycarbonyl-O-t-butyldimethylsilyl-(2S,3S)-3-hydroxyleucine

 diphenylmethyl ester 411

To a solution of $410(250.0 \mathrm{mg}, 0.47 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$ under nitrogen was added diisopropylethylamine $(0.10 \mathrm{ml}, 0.57 \mathrm{mmol})$ followed by t-butyldimethylsilyl trifluoromethanesulfonate ($0.13 \mathrm{ml}, 0.57 \mathrm{mmol}$) and the mixture stirred at room temperature for 12 h . The reaction mixture was then quenched with saturated aqueous sodium bicarbonate and the product extra-cted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 25 \mathrm{ml})$. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was then purified by flash chromatography eluting with hexanes/Et2O (10:1) to give 411 ($250.0 \mathrm{mg}, 82 \%$) as an oil; IR (neat
film): 3445 (w), 3374 (br w), 3072 (w), 3030 (w), 2959 (m), 2931 (m), 1725 (s), 1498 (s), 1451 (m), 1362 (m), 1254 (s), 1196 (m), 1082 (s), 1057 (m), 838 (m), 778 (s), 740 (s), 699 (s) cm ${ }^{-1} ; 400 \mathrm{MHz}$ ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.24(\mathrm{~m}, 14 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 5.70$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=2.2$ and $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.66(\mathrm{dd}, J=2.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86$ $(\mathrm{s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 169.1,155.4,143.9,143.6$, $141.3,139.5,139.4,128.6,128.4,128.1,128.0,127.7,127.4,127.1,125.2,125.0,120.0$, 80.5, 78.3, 67.0, 57.6, 47.1, 31.5, 25.9, 19.7, 19.5, 18.2 -3.97, -4.34; Acc Mass Calcd. for $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{O}_{5} \mathrm{NSi}(\mathrm{M}+\mathrm{H})^{+} 650.3302$; Found: 650.3311.

N-9-Fluorenymethoxycarbonyl-O-t-butyldimethylsilyl-(2S,3S)-3-hydroxyleucine

412

A mixture of 411 ($250.0 \mathrm{mg}, 0.38 \mathrm{mmol}$) and 10% palladium on carbon (21 mg) in EtOAc (5 ml) was stirred under an atmosphere of hydrogen for 12 h . The catalyst was then removed by filtration, and the filtrate concentrated in vacuo. The residue was purified by flash chromatography with hexanes/EtOAc (3:1) to give 412 (160.0 mg, 89\%) as a foam; IR (KBr): 3600-2300 (br), 3445 (w), 3058 (w), 2959 (s), 2932 (s), 2858 (m), 1721 (br s), 1513 (m), 1448 (m), 1473 (m), 1255 (s), 1213 (m), 1255 (s), 1082 (s), 1058 (s), 838 (s), 776 (s), 739 (s) $\mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 10.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}), 5.50$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=2.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{dd}, J=7.0,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.60(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}$, $3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ; 100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 175.4,155.53,143.8,143.6,141.3,127.7$, $127.0,125.1,125.0,120.0,79.9,67.1,57.2,47.1,31.4,25.9,19.5,19.4,18.2,-4.1,-4.2 ;$ Acc Mass Calcd. for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{NSi}(\mathrm{M}+\mathrm{H})+484.2519$; Found: 484.2525.

N-9-Fluorenymethoxycarbonyl-O-t-butyldimethylsilyl-(2S,3S)-3-hydroxyleucyl-\boldsymbol{N}^{1}-benzyloxycarbonyl-(3R)-piperazyl- \mathbf{N}-benzyloxyalanyl- \boldsymbol{N}-methyl-(R)-alanyl- \boldsymbol{N}^{1} -benzyloxycarbonyl-(3S)-piperazyl-(O-t-butyldimethylsilyl)-(R)-threonine methyl ester 413

To a stirred solution of pentapeptide $401(82.0 \mathrm{mg}, 0.067 \mathrm{mmol})$ in acetonitrile (2 ml) was added diethylamine (1 ml) and the mixture stirred at room temperature for 1.5 h . The mixture was then concentrated in vacuo and the residue coevaporated with dry benzene (2x). The crude acyl hydrazine 386 was then diluted with toluene $(1 \mathrm{ml})$ and added to acid chloride 389 [prepared from 412 ($49.0 \mathrm{mg}, 0.1 \mathrm{mmol}$) by treatment with oxalyl chloride ($0.1 \mathrm{ml}, 1.0 \mathrm{mmol}$) in $\mathrm{C}_{6} \mathrm{H}_{6}$ (1 ml) for 1.5 h] followed by silver cyanide ($18 \mathrm{mg}, 0.13 \mathrm{mmol}$). The reaction flask was then covered with foil and placed in an oil bath at $80^{\circ} \mathrm{C}$ for 40 min . The reaction mixture was cooled to room tempera-ture and filtered through Celite. The filtrate was washed with 10% aqueous sodium bicarbonate, brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification of the crude residue by flash chromatography with hexanes/EtOAc (6:1) as eluent gave 413 (55.0 mg , 56\%) as a foam; HPLC analysis indicated 413 was 85% pure; Acc. Mass Calcd. for $\mathrm{C}_{78} \mathrm{H}_{106} \mathrm{O}_{16} \mathrm{~N}_{8} \mathrm{Si}_{2} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$1489.7163; Found: 1489.7155.

Hexapeptide Precursor 414

To a stirred solution of pentapeptide 401 ($120.0 \mathrm{mg}, 0.1 \mathrm{mmol}$) in acetonitrile (1.5 ml) was added diethylamine (0.90 ml) and the mixture stirred at room temperature for 1.5 h . The mixture was then concentrated in vacuo and the residue coevaporated twice with dry benzene. The crude acyl hydrazine 386 was then diluted with toluene (1 ml) and added to the acid chloride [prepared from 417 ($22.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) by treatment with oxalyl chloride ($0.17 \mathrm{ml}, 2.0 \mathrm{mmol}$) in $\mathrm{C}_{6} \mathrm{H}_{6}(1.5 \mathrm{ml})$ at room temperature for 1 h$]$ followed by silver cyanide ($10 \mathrm{mg}, 0.2 \mathrm{mmol}$). The reaction flask was then covered with foil and placed in an oil bath at $90^{\circ} \mathrm{C}$ for 1 h The reaction mixture was cooled to room temperature and filtered through Celite. The filtrate was washed with 10% aqueous sodium bicarbonate, brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. Purification of the crude residue by flash chromatography with hexanes/EtOAc (2:1) as eluent gave 414 ($58.0 \mathrm{mg}, 54 \%$) as a foam; [$\alpha]_{\mathrm{D}}-55^{\circ}\left(\mathrm{c} 0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR (KBr): 3325 (s), 2959 (m), 2933 (m), 2858 (m), 1724 (s), 1664 (s), 1523 (m), 1500 (m), 1457 (m), 1403 (m), 1359 (m), 1254 (s), 1195 (m), 838 (s), $698(\mathrm{~s}) \mathrm{cm}^{-1} ; 400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6} at $125^{\circ} \mathrm{C}$): $\delta 7.85$ (br), 7.43-7.30 (complex m, Ph), 6.80 ($2 \times \mathrm{dd}, J=15.5,6.6 \mathrm{~Hz}$), 6.71 (smaller dd), 6.13 (dd, $J=15.5,1.0 \mathrm{~Hz}$, superimposed on small d), 5.76 (br m), 5.4-4.64 (complex br m), 4.47 (br m), 4.37 (br m), 4.343.74 (complex br m), 3.62 (s, OMe), 3.58 (s, OMe), 3.06 (br m), 2.93 (s), 2.4 (m), 2.08 (br), 1.82 (br m), 1.73 (br m), 1.46 (br m), 1.31 (br), 1.22 (d, $J=7.0 \mathrm{~Hz}$), 1.10 ($\mathrm{d}, J=6.0 \mathrm{~Hz}$), 1.04 (d, $J=6.2$ Hz), 0.96 (apparent t), 0.86 (large s, Bu-f), 0.04 (large s, TBS-Me), 0.03 (small s, TBS-Me), 0.02 (small s, TBS-Me); Acc. Mass Calcd. for $\mathrm{C}_{57} \mathrm{H}_{79} \mathrm{~N}_{7} \mathrm{O}_{13} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+} 1120.5403$; Found: 1120.5400; Anal. Calcd. for $\mathrm{C}_{57} \mathrm{H}_{79} \mathrm{~N}_{7} \mathrm{O}_{13} \mathrm{Si}: \mathrm{C}, 62.33, \mathrm{H}, 7.25 ; \mathrm{N}, 8.93 \%$. Found: $\mathrm{C}, 62.07$; H , 7.29; N, 8.86\%.

4.2 References

(1) Hassall, C.H.; Johnson, W.H.; Theobald, C.J., J.Chem. Soc., Perkin Trans. I, 1979, 1451.
(2) Nakamura, Y.; Shin, C., Chem. Lett., 1991, 1953.
(3) Durette, P. L.; Baker, F.; Barker, P. L.; Boger, J.; Bondy, S. S.; Hammond, M. L.; Lanza, T. L.; Pessolano, A. A.; Caldwell, C. G. , Abs. $198^{\text {th }}$ ACS National Meeting, 1989, Miami Beach, Florida, September 10-15, Abstract No. 119.
(4) Kolasa, T.; Chimiak, A.; Kitowska, A., J. Prakt. Chemie., 1975, 252.
(5) Kolasa, T.; Chimiak, A. Tetrahedron, 1975, 30, 3591.

Appendix 1: Selected Spectral Data

Temperature $=100^{\circ} \mathrm{C}$ in DMSO- d_{6}

[^0]

Temperature $=125^{\circ} \mathrm{C}$ in DMSO- d_{6}

OWdd 0Z Ot 09 08 001 02l 0ヵ1 091 081 002 02z 0カて
мй

Temperature $=135^{\circ} \mathrm{C}$ in DMSO- d_{6}

Temperature $=70^{\circ} \mathrm{C}$ in DMSO $-\mathrm{d}_{6}$

 1081 98 89. 70.
 $P T=8 \quad C D: F A C A$ 6% 20.30

| 240 | 220 | 200 | 180 | 160 | 140 | 120 | 100 | 80 | 60 | 40 | 20 | PPMO |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 $\begin{array}{lllllllllllllllllll}220 & 200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & 0 & \text { PPM }\end{array}$

Temperature $=125^{\circ} \mathrm{C}$ in DMSO- d_{6}

[^0]:

