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A bstract

This thesis focuses on ways of dynamically adapting the visual system to 

the temporal statistics of natural images. Recent experiments suggest that 

adaptation relies on a coding strategy that has the effect of normalising the 

neuronal activity with respect to the standard deviation of the stimulus. We 

investigate the hypothesis that such a nonlinear coding strategy could rep

resent a key mechanism in natural vision both for adaptation and efficient 

representation of the stimulus. We model the process of variance normali

sation in a simple way, and we train it on time series mimicking the typical 

visual input of a human photoreceptor in a natural environment. Simula

tions confirm our hypothesis; variance normalisation adapts the wide natural 

range of light intensities into the limited neuronal one and efficiently removes 

almost all the redundancy present in the temporal structure of natural im

ages. Moreover, despite the long-range correlations present in the natural 

input, the integration time corresponding to the optimal normalisation is 

surprisingly short and compatible with the one observed experimentally.



The importance of this result seems to lie in the simplicity of the model. 

In order to prove its computational power, it is shown that it efficiently 

removes the redundancy of time series of very different nature - financial time 

series - also characterised by long-range correlations. This result suggests 

that such a method efficiently removes the redundancy of a wide variety of 

data, no m atter how much correlated they are.
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Chapter 1

Introduction

1.1 Premise

Adaptation is one of the first phenomena to have been investigated in neu

roscience. Its importance stems from the basic need of every organism to 

adapt to the outside world to survive. Since the natural environment is a 

very complex, highly variable system, adaptation is not an easy task to per

form. The idea underlying most of the investigation on adaptation is that 

the early visual system has developed and evolved to process the natural 

stimuli it receives. In particular, the idea underlying the work of this the

sis is that the coding strategies of the first stages of visual processing are 

adapted to the specific statistical structure of the natural visual input.



The natural visual input can be seen as an ensemble of spatial patterns 

that continuously change in time. Its peculiarity lies in two main character

istics:

a) During the day, natural light intensities generally span more than nine 

orders of magnitude (Victor, 1999);

b) Natural light intensities are highly correlated both in space (Field, 

1987; Ruderman and Bialek, 1994; Ruderman, 1994) and in time (Dong and 

Atick, 1995a; van Hateren, 1997).

In other words, though they span a huge range of values, natural light 

intensities are highly redundant, and thus partially predictable. On the 

other hand, single neurons have a limited capacity for receiving and sending 

information, and only a finite number of them sends messages to the higher 

areas of the brain. Hence, the visual input has to be coded and transm itted 

in non trivial ways to overcome two major problems:

1) How can the neurons in the early visual system represent such a wide



range of light intensity within their limited dynamic range of activity?

2) How is the information contained in the visual input encoded to be 

clearly interpreted and exploited by the higher areas of the brain?

The aim of this thesis is to give a contribution to the understanding of 

these questions concerning the processing of the temporal structure of the 

natural visual input. So, we will focus our discussion on temporal process

ing, and discard the spatial component of the input. We will come back to 

the limits of this approach later on.

The above questions are not easy to verify experimentally because of the 

complexity of natural images: the neural response to their wide range of val

ues and their variable statistics is very difficult to characterize, both because 

it may be difficult to find neurons tha t have a decently high and continuous 

response to such widely variable stimuli, and because it is very difficult to 

correlate the response to the features of such a non-stationary input. In 

fact, in order to properly characterize the neural response, the overwhelm

ing majority of the experiments have been carried out with simple stimuli 

(moving bars, drifting gratings etc.) because they stimulate the neuronal



activity in a much clearer way, and the analyses of the relation between 

the stimulus and the response is much less ambiguous. These experimental 

results already give a deep insight on the neural strategies really performed 

during everyday vision. In particular, the knowledge about the processing 

of the temporal statistics of natural images (the subject of investigation of 

this thesis) is increasingly detailed. It is well known that the first stages of 

visual processing adapt to the mean light level by coding the visual input 

through the ’Weber-Fechner’ law (Victor, 1999). It is also known that the 

later stages of early visual processing (retinal ganglion cells in the vertebrate 

retina, large monopolar cells in the fiy) also adapt to temporal contrast by a 

non-linear contrast gain control (Shapley and Victor, 1978). More recently, 

another series of experiments suggested that contrast gain control could be a 

way to normalise the output signal with respect to the variance of the visual 

input (Brenner et ah, 2000; Fair hall et ah, 2000, 2001). The discovery of this 

neural strategy could represent a partial answer to the first question, namely 

how the visual system has developed to overcome the physical constraints of 

its neurons. Still, since the stimuli used have a range much narrower than 

the natural one, and are far less correlated, these results cannot lead to any 

certain claim about visual processing in a natural environment.



The answer to the second question still centers around the original pro

posal suggested by Attneave (1954) and Barlow (1961) more than 40 years 

ago: one of the major principles underlying the coding strategies of the early 

visual system could be the need to build the most efficient representation 

of its input, namely a representation that displays the maximum content of 

information about the input. Since the visual environment is characterised 

by a complex structure and statistical regularity, and these are reflected in 

its redundancy, one goal of the early steps in neural processing could be to 

exploit this redundancy for an informationally optimal representation. Para

phrasing a recent revisitation of this concept (Barlow, 2001), coding should 

convert hidden redundancy into a manifest, explicit, immediately recogniz

able form. This can be done by separating the predictable part from the 

unpredictable part of the input, namely, separating the redundant compo

nent from the random one. Several investigations suggest that this could 

effectively be what early neural processing does. Most of them focused on 

the reduction of spatial redundancy (Barlow, 1961; Srinivasan et ah, 1982; 

Atick and Redlich, 1992; van Hateren, 1992; Olshausen and Field, 1996; van 

Hateren and van der Schaaf, 1998), only a few focused on temporal redun

dancy (Srinivasan et ah, 1982; Dong and Atick, 1995b; Dan et ah, 1996) 

and the overwhelming majority limited their analysis to the second-order
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statistics.

The work described in this thesis attem pts to show that, concerning tem

poral processing, we already have a partial answer to both questions. The 

hypothesis we try to verify is tha t the variance normalisation tha t seems to 

be the key mechanism underlying contrast gain control is not only an effi

cient coding strategy to fit the wide natural range into the limited neuronal 

one; it is also a very efficient strategy to remove almost all the redundancy 

(not only the second-order one) present in the temporal structure of natural 

images, thus reinforcing the idea that Barlow’s proposal is realistic. We try 

to test this hypothesis by modeling the adaptation to the mean as a linear 

filtering, and the adaptation to contrast as a variance normalisation, as it 

emerges from the experiments. In order to simulate adaptation in natural 

vision, we then train the model on a data set of time series mimiking the 

input of a single photoreceptor in a natural environment. The choice of 

this data set, accurately recorded by van Hateren (1997), is not casual: van 

Hateren used it to study how the early visual system of the blowfly processes 

natural light intensities (van Hateren, 1997). In fact, he showed that the 

large monopolar cells of the fly continuosly adapt their dynamic range to 

the widely varying natural one so that the response distribution maintains
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its compact, almost Gaussian shape independently from the variability of 

the input. We will show tha t a) the output of our model shows a dynamical 

adaptation very similar to that of large monopolar cells; b) variance nor

malisation decorrelates the input almost completely, also the redundancy of 

order higher than the second; c) despite the long-range correlations in the 

natural input, the optimal integration time is surprisingly short and compat

ible with the one observed experimentally. In other words, our simulations 

show why the visual system is able to adapt to the natural input in almost 

real time.

The last chapter of the thesis shows that, while trying to model a bi

ological process, we ended up building a very simple and efficient way to 

separate the predictable from the unpredictable part of a signal. In order 

to verify the computational power of our model, we apply it to data that is 

deliberately very different from natural images - financial time series. The 

results are very similar to those obtained with natural time series.

1.2 Thesis overview

Chapter 2 is devoted to an overview of the experimental results on contrast 

adaptation and the theoretical framework that constitutes the basis of our
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work. The general properties of natural images and the specific ones of the 

natural time series we use to simulate natural vision are discussed in Chapter 

3. Chapter 4 describes how the model is built, the training on natural time 

series and the statistical analysis of the results. Finally, Chapter 5 shows the 

efficiency of our model when applied to time series of completely different 

nature - financial time series. A discussion on the overall results and further 

developments are drawn in the Conclusions.
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Chapter 2

Temporal adaptation in the  

early visual system;

Experim ental findings and a

theoretical framework

2.1 Introduction

This chapter is devoted to describing the experimental findings and the the

oretical framework that inspired our model. Hence, it will present:
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a) An overview of the biological phenomenon we wish to model. We will 

describe the main features of temporal adaptation emerging from years of 

experimental efforts, and we will try to characterise the properties of the 

coding mechanism that seems to underlie such process.

b) A theoretical framework tha t suggests the functional principles un

derlying temporal adaptation, and the mathematical tools to quantify its 

computational efficiency. We will describe some of the models of early sen

sory processing that have been based on the same theory, highlighting their 

merits, their limits and how we try to overcome them.

2.2 Temporal adaptation in the early visual sys

tem

The neural code of the early visual system is not a fixed set of rules linking 

the response to the stimulus with a static transformation independent from 

the stimulus itself. Instead, it depends significantly on the overall properties 

of the visual stimulus. In this section, we will briefly overview the current 

state-of-the-art on the adaptation of the neural code in the early visual sys-
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tern to the temporal properties of its input. We will initially focus on the 

response of the vertebrate retina to time-varying visual stimuli, but we will 

see that the adapting mechanisms that emerge are not animal specific and 

are common to the motion sensitive neurons of the fiy, suggesting that adap

tation is driven by very general principles. Most of the following overview 

on retinal adaptation is taken from the reviews by Victor (1999) and Meister 

and Berry (1999).

2 .2 .1  A d a p ta tio n  to  th e  m ea n  lig h t in te n s ity

A basic problem that the early visual system has to face is to operate over 

at least a 10^-fold range of natural light intensities. The remarkable ability 

of the retina to accomplish this task is primarily due to the properties of 

the photoreceptors. In the lower half of the intensity range, signalling is 

accomplished primarily by rods, while in the upper half it is accomplished 

primarily by cones. To a first approximation, photoreceptor responses de

pend in a linear way on their photon catch. The behaviour is very close to 

linear for dim fiashes whose intensity does not fluctuate over more than a 

decade. But even considering the subdivision in rods and cones, every pho

toreceptor should provide useful signals over a 10^-fold range. Over most
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of the operating range of the retina, contrast^ changes of one part in 100 

are readily detected. Were this to be accomplished by strictly linear pho

toreceptors, their outputs would need to be precise to within one part in 

10^. This wide dynamic range is incompatible with strict linearity. Instead, 

the sensitivity of rods and cones decrease with increasing illumination, in 

a manner in which the size of the response to a fixed change in contrast 

remains approximately constant. This relation, known as ’’Weber-Fechner 

law” of adaptation, implies that the retina produces approximately the same 

response for two visual displays that are related by a simple proportional 

scaling of all intensity values.

Such behaviour is of clear practical utility: because the intensity of the 

light illuminating the natural world changes over many orders of magnitude 

every day, so does the absolute intensity refiected by objects in the scene. 

However, the surface refiectance of these objects remains the same, and thus 

the relative ratios of intensities received from different parts of the scene are 

approximately independent of the illuminant. Through the adaptation to

^The conventional definition of contrast of a spot of light is Weber’s one:

Contrast =  ~  ^ b a c k g r o u n d

^ b a c k g r o u n d

However, contrast has been associated to many other similar measures. See (Tadmor and 
Tolhurst, 2000) for an accurate discussion on this.
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the average intensity, photoreceptors encode the invariant features of objects 

and discard, for the most part, information about the absolute light level.

The same kind of response (approximately linear for small fluctuations 

around the mean light intensity, and following Weber law when variations 

are larger) is found in horizontal, bipolar and ganglion cells. (Given their 

highly non-linear behaviour, the role of amacrine cells in this adaptation 

process is still unclear, but we are not interested in their function here.). 

The time course of adaptation to the mean in all these neurons is remark

ably short, being of the order of tens of milliseconds. Such a short time scale 

means that the retina is able to adapt its sensitivity to the mean light level 

in almost real time. This is an important feature of temporal adaptation, 

and will be one of the basic parameters of our model.

Along with the sensitivity, other aspects of the retinal response change 

with the average light level as well. In dim light, the time course of the 

response slows down considerably; in photoreceptors, a 20-fold decrease in 

intensity at the low end of the operating range is associated not only with 

a 5-fold increase in sensitivity, but also with a 2.5-fold lengthening of the 

latency-to-peak response; analogously, in ganglion cells, a brief flash pro-
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duces a burst of spikes with longer latency and longer duration. Thus, 

retinal cells integrate the visual input over a longer time interval before re

porting it to the brain. This averaging may be required to attenuate the 

effects of neural noise under conditions where the signal is small, but it 

comes at the cost of impaired time resolution. In the case of ganglion cells, 

spatial integration is also altered in dim light: the receptive field loses its an

tagonistic surround region, and subsequently the area in which light excites 

an ON-type ganglion cell expands somewhat. Again, this may be a strat

egy to enhance the visual signal by collecting as much light as possible, at 

the expense of some spatial resolution (Srinivasan et al., 1982). All these ef

fects are also observed in human psychophysics (Shapley and Enroth-Cugell, 

1984), suggesting that retinal processing largely accounts for the perceptual 

effects of light adaptation. However, in this thesis we will exclusively focus 

on the temporal integration of the visual stimulus, neglecting the spatial 

component. For a complete review on the subject, see Victor (1999).

2.2.2 Adaptation to contrast

The variability of the visual stimulus cannot be accounted for only by its 

mean: we expect that the early visual system has developed to adapt to the 

whole statistics of its input. In fact, it has been found that the visual sys-
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tern also adapts to the spatial and temporal contrast of the light intensity. 

Here, we will review the main experimental results on temporal contrast 

adaptation in some detail, for it will be the crucial mechanism underlying 

our model.

While adaptation to the mean begins in photoreceptors, there is evi

dence that contrast adaptation does not occur before bipolar cells (Sakai 

et ah, 1995), and is mainly implemented in the last part of the retinal path. 

Evidence for temporal contrast adaptation was found by Shapley and Vic

tor (1978) in the in vivo response of cat retinal ganglion cells to simple 

spatial patterns (sine gratings or rectangular spots) modulated in time by 

a sum of sinusoids, whose amplitude and frequency was systematically var

ied. Analysing the response in the frequency domain, they showed that it is 

significantly altered by an increase in contrast: its shape is sharpened and 

shifted to high temporal frequencies, while its amplitude grows less than 

proportionally with contrast. The time course of this process was found to 

be of the order of 100 ms only, suggesting that retinal ganglion cells adapt 

to contrast almost as fast as they adapt to the mean. Shapley and Victor 

(1978) pointed out that this mechanism, called contrast gain control^ can

not be reduced to trivial mechanisms like static saturation and adaptation

20



to the mean, clearly inconsistent with their data. They suggested instead 

that the origins of such a dynamic non-linearity could rely in the input of 

a network of (highly non-linear) amacrine cells. Recent investigations (Kim 

and Rieke, 2001) show that the anatomical basis of this process are indeed 

complex: contrast adaptation in ganglion cells includes contributions from 

mechanisms both acting on the currents reaching the ganglion cell soma 

and intrinsic to spike generation in the ganglion cell; moreover, inputs from 

bipolar cells appear to be relevant too. Despite its complex nature, contrast 

gain control seems to be an adapting mechanism that shows very similar 

properties in all vertebrate retinas.

The results described until this point all have a dramatic limit: the stim

uli used in most experiments were simple spatiotemporal patterns tha t are 

very far from the natural ones. Following Barlow’s idea (to which we will 

come back in the next section), the coding strategies of the early visual 

system have developed to adapt to the statistical properties of the natural 

environment (Barlow, 1961). So, we expect that the best way to characterise 

the neuronal response is to correlate it with the statistical properties of a 

whole distribution of signals as input, rather than with the particular fea

tures of individual stimuli. This statistical approach has been widely used

21



in the last decade, leading to results that are more easily connected with 

vision in a natural world.

W ithin this framework, new interesting results on contrast adaptation 

come from Smirnakis et al. (1997): to assess the dependence of the neural 

response to the contrast independently from the mean, they measured the 

in vitro response of rabbit and salamander retinal ganglion cells to a white 

noise stimulus (randomly refreshed every 2msec) whose mean was held con

stant, and whose standard deviation was periodically switched between two 

different values. The interval between two switches was of several tens of sec

onds. The stimulus was a single spatially uniform field. The neural response 

was characterised by the first-order (linear) Wiener kernel, computed by cor

relating the firing rate and the preceding stimulus intensity. Results show 

that immediately after an increase in contrast, the linear kernel shrinks both 

in shape and amplitude; while within a few tens of milliseconds the shape 

seems to reach a stationary state, the amplitude keeps on decreasing within 

a time scale of seconds. At the same time, the mean spiking rate shows 

an initial abrupt increase followed by a roughly exponential decrease to a 

new steady value, considerably higher than the one at lower contrast. This 

result is two-fold: while it shows a short-term effect tha t recalls the contrast
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gain control found by Shapley and Victor (1978) with very different stimuli, 

it reveals a truly new effect of long-term adaptation of the mean spiking rate.

The interpretation of the two processes has given rise to an interesting 

debate. In their paper, Smirnakis and collaborators claim tha t the slow (10- 

20 seconds) exponential decay of the mean spiking rate and the slow drop in 

evoked response amplitude are due to the same mechanism, to which they 

attribute the function of adapting to the scene statistics. They consider the 

contrast gain control a nonlinear feature of the light response too fast to be 

related to changes in the scene statistics.

Shapley gives his interpretation in a shortly following paper (Shapley, 

1997): the rapid shrinkage in the time scale of the first order response is 

analogous to the effect of contrast gain control tha t Victor and him found 

20 years before (Shapley and Victor, 1978), and contrast adaptation relies 

on this non-linear transformation; on the other hand, there is no clear evi

dence of the adaptive role of the long-term effect showed by Smirnakis et al. 

(1997), and the association between the slow decrease of the linear response 

amplitude and the exponential decay of the rate is dubious.
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A breakthrough in the comprehension of the multiple mechanisms and 

time scales of temporal contrast adaptation has been given by the recent 

work of Fairhall et al. (2000, 2001): they replicated and extended the exper

iments of Smirnakis et al. (1997) on the motion sensitive neurons of the fly 

visual system, correlating the response with the temporal properties of the 

stimulus by systematically varying its time scale and amplitude. In order 

to investigate the existence of two very different time scales, they used a 

velocity stimulus S{t) that is the product of two factors:

S{t) = s{t) ■ a{t), (2.1)

where s{t) is a normalised Gaussian white noise refreshed every Ts = 2msec 

and cr{t) is the envelope of the standard deviation, which varies on a char

acteristic time scale Ta >> Tg.

They initially repeated the experiments of Smirnakis and collaborators 

(this corresponds to choosing a piece-wise constant a{t) in Eq. 2.1) by vary

ing the intervals between high and low contrast. Besides confirming Smir

nakis et al. (1997)’s results, they showed that the time scale of adaptation of 

the rate is not absolute, but is a function of the time scale established in the
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experiment; the time constant that characterizes the rate exponential decay 

is simply proportional to the interval length between two switches. This 

effect is certainly surprising, because it reveals a long-term mechanism that 

extends over a time scale that is two orders of magnitude larger than the one 

involved in fast adaptation. Moreover, it seems to be an im portant feature 

of early neural coding because it has been found in different species (sala

mander, rabbit and fly) and modalities (intensity and velocity detection). 

Nevertheless, the functional role of this effect is still obscure, and Fairhall 

and collaborators seem to agree with Shapley (1997) on the implausibility 

of its adaptive role (we will come back to this issue later on).

They then accurately investigated the relation between the stimulus and 

the neural response by using three different input pattern (besides the piece- 

wise constant, a random one and a periodic one, so that the response didn’t 

depend on particular features of the stimulus like the abrupt variations of 

the first one). They computed the response by assuming tha t the probability 

of firing a spike depended on the previous 100msec of the stimulus history. 

Since the stimulus space would then be an intractable high-dimensional ob

ject, they projected the stimulus on its most relevant direction, the spike- 

triggered average, and computed the neural response with respect to the
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projected stimulus (see Appendix A for details). The results they find for 

the three different stimuli are shown in Figure 2.1: the response function 

varies widely with the stimulus statistics (center figures). But the plot of 

the rate response normalised by the average rate versus the stimulus nor

malised by its standard deviation shows that responses surprisingly overlap 

(bottom figures). This means that the system rapidly and continuously ad

justs its coding strategy, rescaling the input/output relation in such a way 

that the response is invariant to changes of the input variance. The data 

show tha t this variance normalisation occurs within a time scale of 200ms, 

that is almost as rapidly as the response is measurable, suggesting again 

that temporal contrast adaptation occurs almost as rapidly as adaptation 

to the mean.

Given these results, a detailed description of temporal contrast adapta

tion seems to be possible. Such adaptation appears to rely on two separate 

mechanisms involving two very different time scales and having two very 

different functions. Again, we cite Fairhall et al. (2000), who proposed that 

the neural response to a stimulus with well-separated time scales in the form 

of Eq. 2.1 could take the general form of a rate times timing code, where
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Figure 2.1: Input/output relations for (a) switching, (b) sinusoidal and (c) 
randomly modulated experiments. The three top figures show the modula
tion envelope cr(i), in log for (b) and (c) (solid), and the measured rate (dot
ted), normalised by mean and standard deviation. The three center figures 
show input/output relations calculated in non-overlapping bins throughout 
the stimulus cycle, with the input sq in units of the standard deviation of 
the whole stimulus. The three bottom figures show the input/output rela
tions with the input rescaled to units of the local standard deviation. From 
(Fairhall et ah, 2000).

the response may l)e approximately modeled as

(2 .2 )

where the function B. modulates the overall rate and depends on the slow 

dynamics of the variance envelope, while the precise timing of a given spike 

in response to fast events in the stimulus is determined by the non-linear 

input/output relation g, which depends only on the normalised quantity 

s{t). Adaptation to the input statistics seems to rely on _g, that seems to
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maximise information transmission about the fast components of the stim

ulus through the apparent normalisation by the local standard deviation. 

The same variance normalisation had been previously found with slightly 

different stimuli by Brenner et al. (2000), and seems to be a fundamental 

strategy of adaptation. Its time course and properties are compatible with 

the well-known contrast gain control, suggesting that the two processes are 

in fact the same mechanism.

The function R  modulating the rate varies on much slower time scales, 

and cannot be taken as an indicator of the extent of the system’s adaptation 

to a new ensemble. Rather, R  appears to function as an independent degree 

of freedom, capable of transm itting information, at a slower rate, about the 

slow stimulus modulations.

2.3 Temporal adaptation: An information theo

retic approach

So far, we have seen that there is evidence for several adaptation mecha

nisms characterizing temporal processing in the early visual system. At this
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point, we can come back to the questions that we posed in the Introduction 

and ask: Is it possible to individuate any general principle underlying these 

mechanisms? W hat drives the coding strategies of the early visual system? 

By trying to answer this question, we will set the theoretical basis of our 

work.

2 .3 .1  B io lo g ic a l co n stra in ts: n o ise  and  sa tu r a tio n

One of the first, basic problems that the visual system has to face is simply 

given by its physical constraints: while the natural light intensity spans more 

than nine orders of magnitude, each neuron has a limited dynamic range of 

activity; in order to avoid both low signal-to-noise ratio and saturation, an 

efficient coding strategy should be able to continuously match such limited 

range with the wide dynamic range of light intensities. This suggests that 

the coding strategy should adapt to the statistics of its natural input in 

such a way to fully exploit all the dynamic range of the neuron. Laughlin 

(1981) was one of the first to show that this is indeed what seems to occur. 

He presented a very simple version of this problem, in which a single cell 

must encode contrast variations with a graded voltage response. Assuming 

that the range of voltages is constrained by fixed limits, the optimal coding
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strategy for information transmission would be the one that equally exploits 

all the finite range of voltages. Laughlin measured the (very skewed) distri

bution of contrasts as seen through an aperture size of a fly photoreceptor as 

it moves through the woods, and computed the static non-linear contrast- 

to-voltage conversion that would reshape such distribution into a fiat one. 

This was compared to the input/output relation of the second order neurons 

(the large monopolar cells, LMC) in the fly visual system, and the match 

was very good.

The perhaps more important limit of Laughlin’s simple experiment is 

that the response function is static. Instead, as we have seen in the previous 

section, the response continuously adjusts to the local range of activity of 

the time-varying stimulus. In a more recent experiment (briefly indicated in 

the introduction), van Hateren (1997) shows that the response adaptation 

in time is so quick that the output range is always fully exploited, no m atter 

what the range of the input is. In order to mimic natural vision, he mea

sured time series representative of what each photoreceptor of a real visual 

system would receive in a natural environment, and recorded the activity of 

the fly photoreceptors and LMCs responding to these time series. His results 

show that, while photoreceptors code the widely varying natural intensities
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with a logarithmic transformation, the distribution of the output of LMCs 

has an approximately Gaussian shape that is almost independent from the 

distribution of the input. This suggests the existence of a non-linear gain 

control that fits the response into the limited dynamic range of LMCs, by 

continuosly changing the parameters of the response. It is compelling to 

believe that such gain control relies on the same adaptation mechanism (de

scribed in the previous section) that performs variance normalisation in the 

motion-sensitive cells of the fly.

2 .3 .2  A  c o m p u ta tio n a l s tra teg y : red u n d a n cy  red u c tio n

Still, these experiments say little on the mechanisms employed to overcome 

the constraints given by the limited range. Moreover, once the input is en

coded, it has to be decoded by higher areas of the brain. In other words, 

the representation elaborated by the early visual system should be sent in 

a form that is easily used by higher neural processing. This simple observa

tion set the basis for the original proposal suggested by Attneave (1954) and 

Barlow (1961) more than 40 years ago: one of the major principles under

lying the coding strategies of the early visual system could be the need to 

build the most efficient representation of its input, namely a representation
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that displays the maximum content of information about the input. Since 

the natural visual input is highly redundant (we will see this in detail in 

the next chapter), one goal of the early steps in neural processing could be 

to exploit this redundancy for an informationally optimal representation. 

Barlow formulated this proposal specifically thinking about the early visual 

system: since each retinal ganglion cell has a limited information capacity, 

the best strategy to overcome such limitation would be to make the signals of 

the single neurons as statistically independent as possible, so that each one 

sends a different message and the overall information is maximised. Given 

that each ganglion cell codes information for the light intensity at a certain 

spatial location of the visual scene, the optimal coding strategy would be 

the one that most reduces the spatial redundancy present in natural images.

Thanks to its simple logic and high predictive power (but see the com

ments at the end of this section), the principle of redundancy reduction has 

inspired a large number of investigations on the early visual system, finding 

several experimental confirmations. For example, Srinivasan et al. (1982) 

suggested that both the center-surround receptive field and the temporal 

response of X retinal ganglion cells enable the decorrelation of the spatio- 

temporal input. Atick and Redlich (1992) investigated whether the hypoth
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esis of second order redundancy reduction could predict the contrast sensi

tivity response observed in psychophysical experiments. They constructed 

the optimal contrast response assuming that it is linear and that it would 

whiten the spatial power spectrum of natural images (that is characterised 

by a DC 1 / & 2  decay (Field, 1987)). They showed that, if quantum noise is 

included, this prediction matches very well with contrast sensitivity curves 

observed in psychophysical experiments. A similar paradigm was used to 

predict the spatiotemporal receptive fields of fiy LMCs van Hateren (1992), 

obtaining results consistent with physiological experiments.

Atick and co-workers also extended their theory to temporal process

ing, by first measuring the spatio-temporal correlation structure of visual 

scenes (Dong and Atick, 1995a), and then predicting the linear temporal fil

ter that would whiten the temporal spectrum of natural images (Dong and 

Atick, 1995b). Based on experimental results, they predicted that the lateral 

geniculate nucleus is concerned with improving efficiency of visual represen

tation through active temporal decorrelation of the retinal signal in much 

the same way that the retina improves efficiency by spatially decorrelating 

incoming images. They tested their prediction experimentally (Dan et al.,

1996) by recording the response of the cat LGN neurons to time-varying
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natural visual stimuli. Their prediction was confirmed: while the response 

to natural scenes showed no linear correlations, the response to white noise 

was not completely decorrelated. This suggests tha t the coding strategy has 

specifically adapted to decorrelate the natural visual input.

2 .3 .3  R ed u n d a n cy  red u c tio n  r e v is ite d

Though redundancy reduction is a very attractive idea, its use has been 

sometimes misleading and contradictory, to the point that, in a very re

cent paper, Barlow felt the need to revisit and partially correct the original 

proposal (Barlow, 2001). Inspired by Barlow’s new vision, we draw two im

portant observations:

a) Though the original idea was right in drawing attention to the im

portance of redundancy in sensory messages because this can often lead to 

crucially im portant knowledge of the environment, it was wrong in empha

sizing the main technical use for redundancy, which is compressive coding. 

The reason is that it is knowledge and recognition of the redundancy, not its 

reduction, that matters. Thus, coding should convert hidden redundancy 

into a manifest, explicit, immediately recognizable form, rather than reduce 

it or eliminate it. Following this idea, the spatial and temporal decorre
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lation observed in the early visual system shouldn’t be seen as a way to 

reject useless redundant information; it should rather be seen as part of a 

strategy of separation of different components of the signal, in this case the 

high frequency one from the low frequency one, where the latter is likely to 

be represented by other nerve fibers. W ithin this view, temporal adapta

tion could be seen as a way to separate the high frequency, unpredictable 

component from the low frequency, predictable one. We believe that this 

hypothesis is a realistic one.

b) Even though all the studies we cited claim to investigate redundancy 

reduction, almost all of them limit their analyses to second order redun

dancy. As we will see in the next chapter, natural scenes contain much more 

information than is captured by the power spectrum or the autocorrelation 

function. We believe that the coding strategy of the visual system is also 

influenced by the redundancy of order higher than the second. Specifically, 

we believe that the variance normalisation mechanism we have described in 

the previous section is nothing but a strategy to remove the higher order re

dundancy given by correlations in contrast. This will be the main hypothesis 

underlying our model of temporal adaptation.

35



2.4 How does adaptation work in a natural envi

ronment?

Let us summarize our knowledge on the adaptation of the retina to the tem

poral structure of its input. Given the experimental results that we have 

just described, adaptation seems to be implemented in a two-step process:

1) The retina adapts to the mean light intensity by coding the input 

with the Weber-Fechner law;

2) The retina further adapts to the contrast by a non-linear transforma

tion that has the effect of normalising the response with respect to the local 

standard deviation of the stimulus.

Unfortunately, as we pointed out in the introduction, it is very diffi

cult to characterise the neural response to natural stimuli. Thus, we don’t 

know whether such adaptive mechanisms work in the same way in a natural 

environment with a much wider range and much stronger and long-ranged 

correlations. On the other hand, the few experiments carried on with natu

ral time-varying stimuli suggest that both adaptation to a wide input range
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(van Hateren, 1997) and decorrelation indeed occur in a natural environment 

(Dan et al., 1996; van Hateren, 1997). Still, in these latter experiments, the 

complexity of the natural stimuli didn’t allow a detailed analysis of the adap

tive mechanisms performed.

The work of this thesis aims to prove that the link between the above 

results is very strong. The main hypothesis is that the two-step adapting 

strategy outlined above is sufficient not only to adapt the limited dynamic 

neuronal range to the wide range of the natural visual input, but also to ful

fill the computational goal of removing most of the redundancy of natural 

time series.

In order to understand how complex the temporal structure of natural 

images is and how natural images differ from the stimuli that were used in 

the experiments, we will analyse the statistical structure of the natural time 

series we use (Chapter 3). In Chapter 4, we will try to prove the above 

hypothesis by modeling the two-step adaptation process in a very simple 

way, and then training it on time series of natural images.
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Chapter 3

Temporal statistics o f  

natural images

3.1 Introduction

The idea that the development and evolution of the early visual system 

is strongly linked to the statistics of its input led many people to study 

the statistics of natural images. The standard approach is to analyse the 

statistical properties of large groups of natural scenes, implicitly assuming 

the existence of an image ensemble from which the single images are drawn. 

Despite the different environments from which the images were taken and 

the vast experimental differences in data collection, it has been possible to
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identify some statistical features that are surprisingly ubiquitous. The best 

known one is the robust scaling of the second-order statistics: the power 

spectrum of natural scenes (averaged over all orientations) takes the form 

of a power-law in the spatial frequency:

S(k)  = (3.1)

where k is the magnitude of spatial frequency, 77 is the ’anomalous expo

nent’ (usually small), and A is a constant which determines the overall im

age contrast (Field, 1987; van Hateren, 1992; Ruderman and Bialek, 1994; 

Ruder man, 1994). This result provides evidence for a certain symmetry 

in ensembles of natural images: scale invariance (Ruderman, 1994). Scale 

invariance implies simply that the image statistics do not change with the 

angular scale. Pictures of such an ensemble will have the same ensemble 

statistics regardless of the lens’ focal length. More generally, the new en

semble may be self-affine to the original one, meaning tha t the new images 

must also be multiplied by a suitable constant after rescaling to make the 

statistics identical to the original ones. If Q[(f){ax)] is any ensemble statistics 

of (f){x) on scale a, then scale invariance implies that

Q[(f){x)] = Q[a''(l){ax)], (3.2)
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where v is an universal exponent (i.e. it is independent of both a  and Q). 

Thus in a scale-invariant ensemble we can make the replacement (f){x) -> 

a'^(f){ax) for all instances of (p in any expectation value.

This is a strong statement. It greatly restricts the form of the image 

distribution. Such a property also gives us some intuition about natural 

scenes instead of a mere quantification of their statistics. For instance, it 

reinforces the notion that objects in the natural world can appear at any 

angular scale in an image (i.e., they can be any distance away), which is one 

plausible mechanism for producing scale invariance.

A reasonable explanation of the real cause of scaling has been given by 

Ruderman (1997): natural images are composed primarily of statistically 

independent objects which occlude one another. Further, natural environ

ments tend to arrange themselves so that the image regions corresponding 

to these objects are power-law in size. Combined, these two properties give 

rise to scaling universally.

These results concern the spatial correlations in the natural images. 

Much less is known about the temporal part, that is the part in which we
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are interested. Dong and Atick (1995a) showed that spatial and temporal 

correlations are strongly intertwined: the general form of the spatiotemporal 

power spectrum is

S { k ,w )o c k - ' ^ - ^ F (u / k ) ,  (3.3)

where k is the spatial frequency, w is the temporal frequency, F{uj/k) is a 

non-trivial function of the ratio uj/k, and m  is the exponent of the static 

power spectrum (if we compare it with Eqn. (3.1), m  = 2 — rj).

The link between this result and the temporal structure of the light in

tensity hitting a single photoreceptor is non-trivial, because it depends on 

many factors: the velocity of objects, that of the eyes, the acceptance angle 

of the photoreceptor. However, the intertwining between spatial and tempo

ral components suggests that the temporal structure of the photoreceptor’s 

input should also be influenced by the overall scaling of natural scenes in 

some way. van Hateren (1997) directly investigates the temporal structure of 

the light intensity hitting a photoreceptor by recording time series of natural 

intensities as it is described in the next section. He shows that the power 

spectrum of the time series is also a power-law function, claiming that it 

could be derived from Eqn. (3.3). This result confirms the scaling structure 

of the second-order statistics.: the scaling of natural scenes strongly influ
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ences the temporal structure of the visual input.

In the following of the chapter, we will give a detailed description of the 

statistical properties of the time series recorded by van Hateren, and we will 

show, starting from his result, that the scaling of natural scenes strongly 

influences the second- as well as the higher-order temporal structure of the 

visual input.

3.2 Time series of natural images

3 .2 .1  H ow  th e y  w ere record ed

The natural time series we will use consist of 12 recordings of natural inten

sities, each 45 minutes long, kindly made available by van Hateren on his 

web site (http://hlab.phys.rug.nl/tslib/index.htm l) The 12 time series 

were recorded by a photodetector that has a spectral sensitivity similar to 

the photopic sensitivity of the human eye, an angular resolution of a few 

arcminutes, i.e., comparable to that of human foveal and parafoveal vision, 

and a temporal resolution of 1.2kHz. The total system is linear in intensity 

over more than four orders of magnitude. The optical system was mounted

^For the technical details of the recordings, see (van Hateren, 1997).
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on a headband and worn by a freely walking person. Since the device follows 

the direction of the gaze of the head (and not tha t of the eyes), the subject 

wore marked glasses, and was told to keep the markers at a fixed position 

in the visual field. Recordings were made by different subjects walking in 

various environments (woods, fields, near lakes, and residential areas) un

der various weather conditions (sunny, overcast and foggy). Obviously, they 

must be considered as only a crude approximation of what would result 

when real eye dynamics are taken into account. Yet, such time series are 

likely to be close enough to the natural input of photoreceptors to enable a 

meaningful analysis of light adaptation in a natural environment^.

3 .2 .2  S ta t is t ic a l s tru c tu re  o f  th e  t im e  ser ies

Photoreceptors are known to have a sensitivity tha t is approximately pro

portional to the logarithm of the light intensity (Bownds and Arshavsky,

^Reinagel and Zador (1999) studied how voluntary eye movements in humans change 
the statistics of the foveal photoreceptors’ input. They observed that image patches se
lected for viewing had a higher spatial contrast and a steeper two-point correlation function 
than patches selected at random. However, it is evident from the figures they show that 
such an effect is quite weak and doesn’t substantially modify the shape of the correlation 
function. This suggests that the main difference between van Hateren’s time series and 
the real input of the subject’s photoreceptors could be that the real input is slightly less 
correlated than the recorded one, but its correlational structure shouldn’t be substantially 
altered. The difference is likely to be even smaller than the one measured by Reinagel and 
Zador because van Hateren sampled the natural scenes following the position of the head 
rather than randomly.
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1995). This is the main reason why we study the statistical properties of 

the logarithm of the light intensity,

x(i) =  log(/(t)), (3.4)

rather than the intensity itself. Here time t is a discrete variable taking 

the values =  /cA, where A: is a positive integer and A =  0.8333 msec is 

the time interval between two consecutive data recordings. In most of the 

following analyses, we show the statistical properties of three of the 12 time 

series. This to show that, while some statistics are shared among the time 

series, some others aren’t, and the eye has to cope with all of them. In order 

to show the differences, the three time series were among the most different 

ones, and can be considered representative of the other nine.

P robability  d istribution

Figure 3.1 shows the log-intensity histograms of three of the 45 minutes 

long time series. As can be seen, the histograms are significantly different 

from zero for a broad range of values, up to seven log-units. Their roughly 

uniform distribution over this logarithmic range means that the original data 

are very skewed to low values. More importantly, the shape and width of the 

histograms vary significantly among different time series. This is an evident
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sign of noil stationarity: the data are far from being drawn independently 

from a single probability distribution.

0.6
  t.s. 1
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Figure 3.1: Histograms of the log-intensity of the first, second and seventh 
time series (45 minutes each).

45



Second-order sta tistics

We study the second-order statistics beginning from the power spectrum, 

defined as

Sifn)  = ■ H fn T ) :  (3.5)

where x{fn)  is the Fourier transform of the log-intensity,

=  (3,6)
k = l

tk = fcA, fn = n / { N A ) ,  0 < n < 7V/2, and A =  0.8333 msec is the sampling 

interval of the time series; the brackets (. . .) denote averaging over segments 

of length N  overlapping by one half of their length. This procedure signifi

cantly reduces the variance of the power spectrum estimate with respect to 

taking a very long single segment (Press et ah, 1987). As in (van Hateren,

1997), power spectrum was evaluated by the periodogram estimate (3.5) 

without any prior windowing.

Figure 3.2 shows that the power spectrum of three time series has a 

power-law decay, with a power very close to 1. This result confirms the 

temporal scaling already shown by van Hateren (1997) for the first time se

ries, and previously suggested by Dong and Atick (1995a). For frequencies
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higher than approximately 100 Hz, the power spectrum starts to deviate 

from a power law; as suggested by van Hateren (1997), this is due to the 

low-pass filtering effect of the spatial aperture of the light detector, in com

bination with the upper limit of angular velocities produced by the subject 

carrying the detector. The homogeneity of the decay among different time 

series is quite striking.

t.s. 1
  t.s. 2
  t.s. 7

®10

-6

0.1 1 10 100
frequency (Hz)

Figure 3.2: Log-log plot of the power spectrum of the log-intensity of the 
first, second and seventh time series (45 minutes each), averaged over seg
ments of 20.48 seconds (24576 time steps).
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Does the square windowing intrinsic in the periodogram estimate intro

duce any artifacts? In Figure 3.3, we compare the periodogram estimate 

with the power spectrum estimate obtained by preliminarly windowing the 

data with a Welch and a Hanning window: while they look indistinguish

able for high frequencies, the Welch and Hanning estimates deviate from a 

power law at very low frequencies. As shown in the same figure, this effect 

tends to disappear when the estimate is calculated over a longer segment 

so that sampling at lower frequencies is allowed. This suggests that such 

effect is presumably due to the presence of a peak of the power spectrum 

around zero frequency which alters the Welch and Hanning estimates at im

mediately higher frequencies because their smooth leakage function is not 

zero one frequency bin away from its center. This does not happen with 

the periodogram estimate because its leakage function is exactly zero one 

bin away. This is the reason why we showed the periodogram estimate. 

The effect remains after subtracting the mean, suggesting that the peak at 

very low frequencies is due to correlations extending over a very long range.

Since we will mostly deal with time rather than frequency, we show the
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autocorrelation function, Cx{s), defined as

where (• ■ •) indicates temporal averaging. The autocorrelation function has 

a very slow decay, even if in this case the decay is not uniform neither within, 

nor among the time series (Figure 3.4). In particular, the decay for the time 

series 2 and 7 seems to be characterised by a transition between two dif

ferent power laws. Despite this non-uniformity, however, the decay is of a 

power-law kind up to a very long range for all the time series, indicating the 

presence of correlations extremely extended in time.

H igher-order statistics

Although they are ignored in most of the literature, higher order statistics 

also give very important information: Figure 3.5 shows tha t the quadratic 

correlation function of the log-intensity, Cxx{s), defined as
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decays very slowly, again approximately as a piece-wise power-law, reveal

ing that statistics of order higher than two are also long-range correlated. 

Though the correlation function in Figure 3.4 and Figure 3.5 look quite sim

ilar, we will see in the next chapter that the long-range correlated structure 

of the quadratic fluctuations around the mean light level is non-trivial since 

it is only partially reduced when the second-order correlations are removed.

M utual inform ation

In order to have a more general measure of the two-point correlations, we 

analyse the mutual information of the signal at a single time with respect 

to the same signal s time steps before:

i{x,s)= j:p(x{t)Mt -  (3.9)

This gives us a measure of the two-point correlation at any delay or, in other 

words, how predictable is the signal at time t from the signal at time t — s.

In order to calculate the mutual information, the data for every time se

ries were binned in 100 bins of the same size, and the distributions p{x) and 

p{x{t),x{t — s)) were evaluated. Even with our large data set (3240000 data
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points for each time series), Eqn. (3.9) gives a biased estimate for the mu

tual information, due to the finite sample size. An idea of this finite-size bias 

can be given by the mutual information obtained after randomly reshuffling 

the data, that should be zero for an infinite data set. Evaluating it over the 

time series, this bias turns out to be of the order of 10~^ nats, which is more 

than two orders of magnitude smaller than the mutual information of the 

original data; therefore, we can be quite confident tha t the finite-size effect 

is very small. Since in the next chapter we will compare the mutual informa

tion of different variables for which the bias can be different, we subtract it 

from the mutual information, obtaining the unbiased mutual information

Figure 3.6 shows the results. The unbiased mutual information of the 

original signal, s), is very high, and decays as a power law. Such 

power-law decay has been found in the mutual information between two 

pixel values versus their distance in natural images (Ruderman, 1994), and 

between two letters as a function of distance in English texts (Ebeling and 

Poschel, 1994): it is - again - common to systems characterised by infinitely 

extended correlations.
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Com parison am ong the d istributions

The amount of data needed to get a reasonably good approximation of the 

equilibrium distribution of a variable depends on the correlation between 

consecutive data points. The more (positive) correlation, the longer one 

needs to measure before the estimated distribution approaches the true one. 

A measure of how well the distribution of a variable, based on binned data, 

approaches the true distribution will therefore give an indication of how 

much correlated this variable is. We measured how the distance between 

estimated distributions from different time series decreases with the length 

of the data segment from which they are estimated. The reason why we also 

used this method is because it gives an estimate of the correlations between 

consecutive data points at all orders, and not only the pair-wise ones. Such 

estimate could not be measured with the mutual information because even 

the three-point mutual information (how the signal at time t depends on the 

signal at times t — t\ and t — t2 for any time lags and 2̂ ) would require a 

data set much larger than ours.

The values of each time series were binned, and the probability of a data- 

point falling in bin z, p(z), estimated as p{i) = n^/T, where ni is number of 

observed data points falling in bin z, and T  is the total measuring time, or
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the total number of data points. To correct for the non-uniform shape of 

the overall distribution, the data were binned in K  bins of variable width 

chosen such that a data point had equal probability to end up in any of the 

bins. Bin i was given by x  being between Xi-\  and rCf, where a:o =  — oo and 

J J ' ^p{x)dx = 1/K,  where we used the data of all time series to estimate 

p ( z ) .

As measure for the distance, D, we used the sum of the square of the 

difference between the estimated distributions.

K

Da,b = ' ^ [pa{k )  -  Pb(k)f , (3.10)

where pa and pb indicate the estimated distribution for the and time 

series respectively. The only reason why we choose a quadratic distance is 

its analytical simplicity, but we expect our results to hold for a different 

distance measure. This distance was measured for estimated distributions 

based on T consecutive data points from different time series for different 

values of T. Figure 3.7 shows D{x), computed by averaging Da,b over all 

66 pairs of time series, plotted against T. Also plotted is D{rnd{x)),  com

puted as D{x) after randomly reshuffling x. In appendix B, it is shown
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that, under the assumption that each data point is drawn independently 

from the equilibrium distribution, the expected value of -Da,6? -Da,b, satis

fies Da,b = — 1)/{KT).  Figure 3.7 shows tha t the agreement between

D{rnd{x))  and the analytical prediction Da,b is very good.

As the figure shows, the distance between the estimates of log-intensity 

distribution is larger than that for the independently drawn one. Moreover, 

it falls off more slowly than 1/T. This reflects the long-range correlation 

structure in the statistics of x. The fact that for any length T  the slope in 

the log-log plot of distance versus time is larger than -1 is due to the power- 

law decay of the temporal correlations in x. Correlations with a finite time 

scale would give rise to a slope of -1 for T  larger than that time scale.

3.3 Discussion

The main result of this statistical analysis is that van Hateren’s time series 

have long-range correlations that extend on a very long temporal scale (at 

least tens of seconds). The power-law decay of the mutual information im

plies that light intensity at time t is highly predictable from light intensity 

at previous times. At the same time, as it is evident from the variety of the 

distributions of the single time series, light intensities span a huge range of
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values. These two characteristics - wide range of intensities and long-range 

correlations - distinguish the natural time series from the standard experi

mental stimuli.

W hat is the optimal strategy to code such a complex stimulus into a 

limited range of response? A suggestion comes again from Ruderman and 

Bialek (1994), who investigate the non-Gaussian nature of the histogram 

of local contrast, defined as =  log[/(a;)//o], where 7q is chosen for 

each image so that the average contrast is zero. They show that, while no 

linear transformation on the images produces Gaussian distributions, the 

histogram distribution of the local contrast normalised by the local mean 

and the local standard deviation produces a distribution that is very close 

to a Gaussian.

In the next chapter, we will model the neuronal adaptation to the tem

poral structure of natural time series through a transformation similar to the 

spatial normalisation proposed by Ruderman and Bialek to have a Gaussian 

distribution. It will be shown that the long-range correlations that emerge in 

the higher-order statistics do not depend on the second-order statistics only, 

but contain information that the power spectrum and the autocorrelation
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function cannot describe.
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Figure 3.3: Log-log plot of the power spectrum of the log-intensity of the first 
time series, calculated using the periodogram (square windowing), Welch 
windowing and Hanning windowing. The three top curves refer to the es
timates averaged over segments of 20.48 seconds (24576 time steps), while 
the three bottom curves show the estimates averaged over segments of 40.96 
seconds (49152 time steps), at the same frequency values of the estimates 
evaluated over the shorter segments.
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Figure 3.4: Log-log plot of the autocorrelation function of the log-intensity 
of the first, second and seventh time series (45 minutes each).
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Figure 3.5: Log-log plot of the correlation function Cxx{s) of the first, second 
and seventh time series (45 minutes each) .
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Figure 3.6: Log-log plot of the unbiased mutual information, averaged over 
all time series.
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Figure 3.7: Log-log plot of the distance between the distributions of x  for 
increasing length of the segment from which they were estimated, randomly 
reshuffled x {rnd{x)) averaged over all time series, and expected distance 
for independently drawn data.
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Chapter 4

Variance normalisation

4.1 Introduction

In Chapter 2, we saw that adaptation to the temporal statistics of light in

tensity seems to be implemented in a two-step process:

1) The retina adapts to the mean light intensity by coding the input 

with the Weber-Fechner law;

2) The retina further adapts to light contrast by a non-linear transfor

mation that has the effect of normalising the response with respect to the 

local standard deviation of the stimulus.
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As we already pointed out, we don’t know whether such adaptive mech

anisms are sufficient to adapt to the natural environment where the light 

intensity has a much wider range and much stronger and long-ranged corre

lations than the standard stimuli used in a laboratory.

In this chapter, we will try to prove that they indeed do. The main hy

pothesis is that the two-step adapting strategy outlined above is sufficient 

not only to adapt the limited dynamic neuronal range to the wide range of 

the natural visual input, but also to fulfill the computational goal of remov

ing most of the redundancy of natural time series.^

We will test this hypothesis by building a simple model tha t accounts for 

both mean and contrast adaptation, and by studying the statistical prop

erties of its output taking the time series of natural images described in 

the previous chapter as input. The basic idea underlying the model is that 

neurons can filter out the predictable part of their input by predicting it 

from the history of the same input in the past. In this way, they only have 

to transm it the unpredictable part of the input, that has a much narrower

^The work presented in this chapter has been written in an article form to be submitted 
for publication (Buiatti and van Vreeswijk, 2002).
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range of values and is therefore easier to code. This idea of predictive cod

ing was first introduced by Srinivasan et al. (1982) as a strategy employed 

by the early visual system to encode a signal in a way tha t minimizes the 

effects of intrinsic noise. We use the same idea to simulate the two steps 

of adaptation mentioned above: linear predictive coding (the same strategy 

adopted by Srinivasan et al. (1982)) simulates adaptation to the mean light 

intensity, while a successive nonlinear coding strategy - variance normalisa

tion, equivalent to the prediction of the variance from the signal’s history 

- simulates adaptation to contrast. Unlike Srinivasan et al. (1982), in this 

study we ignore the effect of noise; the consequences of its unavoidable pres

ence are discussed at the end of this chapter.

4.2 Adaptation to the mean light level

As we have seen in Chapter 2, the most pronounced adaptive response to 

a change in the mean light level is characterised by the so-called Weber- 

Fechner law: the retina produces approximately the same response for two 

visual displays that are related by a simple proportional scaling of all inten

sity values (Meister and Berry, 1999). In order to keep our model simple, 

we assume that this process fully describes the adaptation to the mean. We
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model such process by assuming that the early visual system

(a) performs a logarithmic transformation of the light intensity 7(f), and

(b) transmits the difference between the current log-intensity, x{t)^ and 

its best linear prediction estimated over its past values, Xp{t)^ defined as

tl
X p { t )  = ' ^ a { k ) x { t  -  k), (4.1)

k = l

where a{k) is the optimal linear filter and tl its length. The transm itted 

signal is just the prediction error, y{t), given by

tl
y{t) = x{t) -  ^  a{k)x{t -  k). (4.2)

jfc=i

We estimate the optimal filter, a{k), by minimizing the average square pre

diction error, e, on van Hateren’s time series:

e =  (2/^(4), (4.3)

where (• • •) indicates temporal averaging. This is the least-square criterion

for the linear regression of Eq. (4.2), and can be performed analytically, as
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it is shown in the next section.

Given that the filter a{k) is normalised, it is easy to verify that the 

response satisfies the Weber-Fechner law: If all the light intensity in the 

visual scene changes by a factor G, the new response yoit)  will be given by

tl
ycit) = log{G- I{t)) -  ^  a{k)log{G- I{t  -  k))

k=l
t l  t l

= x{t) + log{G) — ^ 2  — k) — log{G)- ^  a{k)
k = l  / c = l

=  y{t)- (4.4)

4.2.1 How to calculate the optimal filter

The analytic solution of the minimization of (4.3) is obtained by solving the 

set of equations for a{k)

t l

{x{t)x{t -  s)) — ' ^ { x { t  -  k)x{t -  s))a{k) (4.5)
k=l
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where 1 < =  s < =  tl■ This is solved by a matrix inversion. We evaluated 

it numerically with a program that implements the Levinson-Durbin algo

rithm  (Press et ah, 1987). We accurately checked tha t such matrix inversion 

doesn’t introduce any artifact, namely that the m atrix is always full-rank 

(the condition number, defined as the ratio of largest to smallest singular 

value of the matrix, is always smaller than 10^, whose reciprocal is far larger 

than the computer’s fioating point precision) and that the residual of the 

solution of Eq. (4.5) is negligible, being of the order of 10“ ^̂ . Moreover, 

other algorithms (LU, Gaussian elimination) give exactly the same result.

4.2.2 The filter’s structure

The value of ti, represents the time interval over which the neuron inte

grates the past signals to predict the new one. In other words, it represents 

the time scale over which the prediction is performed. We estimate by 

studying how it influences the error in (4.3) and the structure of the filter 

a{k).

It is evident from Figure 4.1 that, while for low values of r^, an increase 

in Ti, significantly improves the prediction, the error reaches an almost sta-
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tionary value for t l  > 20 time steps, corresponding to ~  17 msec.

0.023

0.022

0.021

0.02

0.019

0.018
30 40 

(msec)
50 60 70 80

Figure 4.1: Prediction error {y‘̂ {t)) versus t^. The average is performed on 
the whole first time series (45 minutes).

Figure 4.2 shows the optimal filter obtained by minimizing (4.3) with 

different values of It is evident that the main structure of the filter a{k) 

is given by its first components, while the ones with larger k quickly tend 

to zero. The apparently anomalous high value of the last component is an 

artifact due to the finite length of the filter. While for t i  =  10 time steps 

(~  8 msec) this effect still alters significantly the filter, it quickly becomes
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  ~ 8 ms6C
 T ^ ~  ^7 msec
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-0.4
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Figure 4.2: Linear filter a{k) vs k for ti  = 10, 20, 30 time steps, respectively 
corresponding to roughly 8,17,25 msec. First time series.

irrelevant for higher values of r/ .̂ In fact, the relevant components of the 

filters for r/, =  20 time steps (~ 17 msec) and r i  =  30 time steps (~  25 

msec) are almost indistinguishable.

Given these observations, we conclude that the linear prediction (4.1) 

can be performed almost at its best with an integration time as short as 20 

time steps, corresponding to roughly 17 msec. This time scale is consistent
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with the very short time scale within which adaptation to the mean occurs 

in the retina (Victor, 1999). Therefore, we set tl — 20 time steps (~  17 

msec) for all the analyses carried out in the rest of the paper, always check

ing that our results continue to be valid for larger values of r^. Surprisingly, 

considering the difference in statistics between intensity series of as much as 

45 minute, the same filter, a{k)^ is obtained, except for estimation errors, 

using arbitrarily chosen stretches of as little as 1 second of data. The filter 

uncovers structures in the input that are constant in time.

It is worth observing that our procedure is the same one adopted by 

Srinivasan et al. (1982) when they consider the noise-free case. In spite of 

that, the optimal filter that we found has a longer time scale and a more com

plex structure. This difference is due to the different statistical properties 

of the input. They used an exponentially correlated signal, characterised by 

a finite correlation time: the information between the past and the present 

signal decays very quickly with time, and the best prediction of the present 

signal is made on the immediately preceding ones. We used van Hateren’s 

natural time series that, as we showed in the previous chapter, are charac

terised by a very slow, power-law like decay of the correlations with time 

lag, i.e. a virtually infinite correlation time: in this case, it seems to make

70



sense to perform the prediction on a larger stretch of the signal’s history.

4 .2 .3  S ta t is t ic a l p ro p ertie s  o f  th e  resp o n se

Is this adaptation process effectively decorrelating the input? We answer to 

this question by analysing the statistical properties of the response y{t):

a) Figure 4.3 shows that the error autocorrelation function C y { s ) ,  defined

as

{yjt)y{t + s)) -  {y{t))2
(ŷ W) -  {y{t)y

is around zero for almost all s 7  ̂ 0. The tiny bump that is visible for 5  ~  17 

msec is due to the finite order of the linear filter; if we use tl = 30 time steps 

(~  25 msec), the bump at s ~  17 msec is replaced by an even smaller one 

around 5  ~  25 msec. In fact, in the limit tl = 0 0 , linear correlations in the 

prediction error y{t) completely disappear for any time lag Thus, linear

^This result can be demonstrated analytically as follows:

{ y{ t ) y { t - s ) )  =  - ' ^ a { k ) x { t - k ) )  ■ ( x { t - s ) - ' ^ a { j ) x { t - j  -  s)))
k —l j —1

=  {x{t)x{t — s)) — ^ ^{x{t — k)x{t — s))a{k) +
fc = l

-  -  j -  s)) -  -  k)x{t - j -  s))] • a(j),
3 = 1  f c = i
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filtering is able to remove all the second order correlations of the input (also 

shown in Figure 4.3).

40 60
time lag (msec)

100

Figure 4.3: Linear correlation functions Cx of the log-intensity and Cy of the 
response from linear filtering, versus time lag (in msec). First time series.

(X S { s )

(4.7)

where the last equality comes from the fact that, since t l  =  oo, equation (4.5) holds 
for any s > 0, and from the assumption of invariance of the autocorrelation function to 
translations.
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b) Figure 4.4 shows the quadratic correlation function Cyy[s)^ given by

' (y4(t)) -  (î/2(t))2 (

that indicates the correlations between the fluctuations around the mean. In 

this case, after an initial abrupt decrease, the quadratic correlation function 

decays very slowly for increasing time lag s: linear filtering is not sufficient 

to remove the higher-order redundancy of the input.

In order to understand how fourth order correlations influence the dis

tribution of the output y(t), we examine the probability distribution of the 

variable

^  V (W ) -  m h Y ) T

where (.. .) r  indicates the average over a window from time t — T  to time 

The probability distribution p(^T(^)) is obtained by sliding the window 

along the whole time series. The variable ÿr(^) indicates the statistical 

behaviour of the variable y{t) within the time scale T. Figure 4.5 shows 

that for T  = 10 time steps (~  8 msec), the distribution of yr i t)  is very 

close to a Gaussian; this means that up to this very short time scale, linear 

filtering is sufficient to substantially decorrelate the signal, and code it in
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Figure 4.4: Quadratic correlation functions Cxx of the log-iiitensity and Cyy 
of the response from linear filtering, versus time lag (in msec). First time 
series.

a fairly compact distribution. But the same figure shows that already for 

T = 100 time steps (~ 83 msec), the distribution’s peak becomes narrower, 

and the tails lengthen. This effect is caused by the strong fluctuations in 

the variance of the input that, as we showed above, linear filtering cannot 

completely decorrelate. A further increase in T  causes the distribution to 

get closer and closer to p{y), characterised by a very high central peak and 

very long tails. Such a sparse distribution is indeed not optimal to fully
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exploit a limited range of sensitivity.

 T~ 8 msec
  T~ 80 msec
—  p(y)
  Gaussian

-2

Q.

-3

-6 -4 -2 0 2 4 6
'T

Figure 4.5: Histograms of the prediction error y and of the scaled variable 
yr  for varying T, compared to a Gaussian. Abscissa in units of standard 
deviation. First time series.

4.3 Variance normalisation

As we have seen in Chapter 2, the early visual system seems to adapt to 

changes in temporal contrast in such a way that the form of the response
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function depends only on the stimulus normalised by its local standard devi

ation, rather than on the stimulus itself (Brenner et al., 2000; Fair hall et al., 

2000, 2001). Our aim is to model this mechanism in a very simple way, and 

to study whether it is sufficient to code the natural input in an efficient and 

compact way and to remove its higher order redundancy.

In this section, we will first describe our model. We will then set the 

value of its main parameter (the integration time of the normalisation) by 

maximising information transmission. We will finally show that it efficiently 

codes the widely variable range of the input into a compact output distri

bution in almost real time, and that it removes most of the redundancy of 

the natural time series.

4 .3 .1  V arian ce n o rm a lisa tio n  in  tim e: th e  m o d e l

The model is directly inspired by the experimental results on contrast adap

tation: the response, r(Z), is given by the filtered signal, y{t), normalised by 

an estimate of the local standard deviation, C{t):

r(i) =  § | .  (4.10)
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The estimate C{t) is evaluated by performing a weighted sum of the square 

of the filtered signal y{t') at times t' < t:

oo n
C^(t) = A y ^  exp{ ) - y ^ { t - n ) .  (4.11)

The time constant corresponds to the integration time of the normali

sation, and represents the time scale of variance adaptation. The choice of 

decreasing exponential weights comes from the idea that normalisation relies 

more on the recent values than on the later ones. However, this choice is not 

crucial, since a uniform normalising window (a finite set of equal weights) 

yields to very similar results. The constant A  is chosen such that

(r^) =  1. (4.12)

This constraint corresponds to a biologically plausible constraint on the total 

power of the signal.

4 .3 .2  H ow  to  se t th e  in teg ra tio n  t im e  o f  var ia n ce  n o rm a lisa 

t io n

In the language of information transmission, the requirement of matching 

the wide range of light intensities with the limited range of neuronal activity
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corresponds to maximising the information transmission between x  and r. In 

order to have maximum information transmission, we should maximize the 

mutual information between the stimulus and the response. Since our model 

is noise free, maximizing mutual information is equivalent to maximizing 

the entropy of the overall response. Since this calculation is practically 

impossible, we limit ourselves to setting the value of r^v that maximizes the 

entropy of the single-valued probability distribution,

Sr{TN) = -^p(r,T yv)log(p(r,T A r)). (4.13)
r

The evaluation of (4.13) on the natural time series shows that the value 

of Tjv for which the entropy is maximum is very small, and even though it 

varies from one time series to another, it mostly lies in the range between 10 

and 20 time steps (~  8 to ~  17 msec). Thus, we can set rjv to the value that 

maximizes the entropy averaged over all time series. As shown in Figure 4.6, 

the averaged entropy is maximum for =  16 time steps, corresponding to 

~  13 msec, and further on we will use this value in our simulations. We also 

checked that the entropy value for =  16 time steps computed on every 

single time series is always very close to the maximum value.
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Figure 4.6: Entropy Sr{TN) vs tat (average over all time series).

Given the constraint (4.12), the distribution that maximizes the entropy 

is the Gaussian distribution. Is variance normalisation going in the same 

direction? In order to answer this question, we measure how the kurtosis 

Kr(^), defined as
/  (  - t W

(4.14)
(r2(«))2

varies with r/v- In this case, results are more heterogeneous from one time 

series to another. However, for most of the time series, the value of tj\j 

for which the entropy is maximized is approximately the same for which the
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kurtosis is doser to that of a Gaussian distribution, i.e. zero (this is shown in 

Figure 4.7 for the first time series). When we depart from that value, either 

decreasing or increasing, the kurtosis rapidly increases. Correspondingly, 

the tails of the distribution get longer and longer and the shape is more 

and more peaked, eventually becoming for high very similar, up to a 

multiplicative constant, to the distribution of the linearly filtered signal xj.
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Figure 4.7: Kurtosis vs of the first time series. The minimum corre
sponds to Tyv — 12 msec, while Srir^)  of the same time series reaches its 
maximum for ryv ~  11 msec.
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4 .3 .3  R e su lt  1: D y n a m ica l a d a p ta tio n  o f  th e  resp o n se

Is variance normalisation sufficient to adapt the response to the widely vary

ing natural stimulus in real time, as it is suggested from van Hateren (1997) 

experiment? Figure 4.8 shows the histograms of the natural input x  and of 

the responses y and r  for three segments of 1 minute each. As expected, 

the histograms of the natural input vary considerably in width and shape. 

The histograms of the response y all have a similar shape, characterised by 

a high peak and long tails; moreover, the width is highly variable. As dis

cussed before, this is due to the inefficiency of the linear filtering to adapt to 

the wide variations of the local variance. On the contrary, the distributions 

of the variance normalised response almost overlap: variance normalisation 

efficiently adapts to the varying stimulus by exploiting at best the limited 

dynamical range of the response in a very short time. So, our model suc

cessfully reproduces the same kind of dynamical adaptation that occurs in 

the LMC’s of the fly when stimulated with the same natural input, as shown 

by van Hateren (1997) in Figure 4.

In order to show the efficiency of the dynamical adaptation of r across 

different time scales, we show in Figure 4.9 the distributions of y and r com

puted on one second stretch and on a whole time series. While the distribu
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Figure 4.8: Probability density of a:, y and r for three segments of 1 minute 
extracted from the first time series. Segments correspond to minute 15 (solid 
lines), 33 (dashed lines) and 43 (dotted lines) of the first time series. The 
abscissa is in log-intensity units for x, and in units of standard deviation for 
y and r.

tions for one second are quite similar and quite compact, the distributions 

of the whole time series are strikingly different: while p(y) is long-tailed and 

highly-peaked, p{r) is very similar to a Gaussian in the central part, and 

slowly departs from a Gaussian only in the extreme part of the tails (note 

that the plots are in semi-logarithmic scale). Dynamical adaptation occurs 

up to very long time scales.

82



10

10

-210

-3
10

-4
10

- 4  - 2 - 5 0 5
—  p(y)
  p(r)

Figure 4.9: Seini-logarithinic plot of tlie probability densities of y and r for 
T  = \ second (left) and T =  45 minutes (right). The abscissa is in units 
of standard deviation. The dashed curve in the right figure is a Gaussian 
distribution. First time series.

4 .3 .4  R e s u l t  2: H ig h -o rd e r  r e d u n d a n c y  r e d u c t io n

The second important result concerns the efficiency of variance normali

sation in removing the high-order redundancy still present in the linearly 

filtered response y. We begin our analysis by showing the quadratic corre

lation function, defined as in the previous chapter:

C r r i s )  = (4.15)
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Figure 4.10: Quadratic correlation functions Cyy of the response from linear 
filtering, and Crr{s) of the response from variance normalisation versus time 
lag (in msec). First time series. Note that both correlation functions are 
normalised to one at zero time lag.

It is evident from Figure 4.10 that, while the linearly filtered signal y 

still has slow-decaying 4̂ ^̂  order correlations, the fluctuations of r  are al

most uncorrelated. This is a very important result: despite the very long 

correlation time of the fluctuations around the mean in the input, variance 

normalisation completely decorrelates them, and does it by integrating over
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a very short time scale.

M utual inform ation

In order to have a more general measure of the pair-wise redundancy, we 

analyse the mutual information of the signal at a single time with respect to 

the same signal s time steps before, using the same definition of the previous 

chapter:

/(X, a) = *(< -  4 ) log (4.16)

and similarly for y and r. As in the previous chapter, the distributions are 

evaluated on every time series (3240000 data points) by binning the data set 

in 100 bins of the same size, and we correct for the finite sample effect by 

subtracting from the calculated mutual information the mutual information 

obtained after randomly reshuffling the data. It is worth observing that the 

finite-size bias for the variables y and r  is even smaller (between 10“  ̂ and 

10“ ^nats) than the one for x.

Figure 4.11 shows the resulting unbiased mutual information lu for the 

three variables. As shown before, the unbiased mutual information of the
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Figure 4.11: Log-log plot of the unbiased mutual information vs time lag, 
averaged over all time series.

original signal, 7u(.t,s), is very high, and decays as a power law. The unbi

ased mutual information of the linearly filtered signal, luiv-, s), is much lower 

(i.e. the mutual information is much closer to that of the randomly reshuffled 

data), but it still decays very slowly, scaling again approximately as a power 

law: long-range correlations are still there. However, the unbiased mutual 

information of the normalised signal, /^(r, a), collapses to values very close 

to zero in a very sfiort time interval: variance normalisation decorrelates

86



the pair-wise redundancy at any order, getting rid of virtually all long-range 

correlations.

C om parison am ong the distributions

Finally, we measured the distance between the distributions estimated from 

different time series for the variables x, as well as r, to have an estimate of 

their redundancy at any order (as explained in detail in the previous chap

ter).

We measured the distance, D, between the distribution using the same 

form introduced in Chapter 3:

K

Da,b = Y . [ P a ( k ) - p i ( k ) ] \  (4.17)
k=l

where pa and pj, indicate the estimated distribution for the and time 

series respectively. The variables x, y and r were binned using the same 

method described in Chapter 3. Figure 4.12 shows Da^bi averaged over all 

66 pairs of time series, plotted against T, for all three variables. Also plotted

is the expected value of Da^bi Da,bi for two time series, under the assumption 

that each data point is drawn independently from the equilibrium distribu

tion. In appendix B, it is shown that, for independently drawn data, D
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satisfies D — 2{K — 1)/{KT).  As for x, the figure shows that the agreement

between D{rnd{r)) and the analytical prediction Da,b is very good.
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Figure 4.12: Log-log plot of the distance between distributions for data x, y, 
r, randomly reshuffled r {rnd{r)) for increasing length of the segment from 
which they were estimated, and expected distance for independently drawn 
data.

As we have seen in the previous chapter, the long-range correlation struc

ture in the statistics of x causes the distance between the estimates of log- 

intensity distribution to fall off more slowly than 1/T.



The distance between the estimates for the y distribution are smaller, 

and for T  less than 100 msec it falls of roughly as 1/T; for large T  however, 

it falls of more slowly. This is a signature for the fact tha t the linear filter

ing is able to approximately decorrelate the input only for short stretches. 

Since for longer segments the long-range, higher order correlations affect the 

statistics significantly, the distance between estimates of the distribution of 

y based on longer series are much larger than expected from the assumption 

of independence.

The distance of the estimates of the distribution of r  follows the theoret

ical distance much more closely. For up to 1 second there is no significant 

difference between these two. Only for longer time series do the residual 

correlations contribute sufficiently to increase the distance between the esti

mates markedly from that between estimates based on independently drawn 

samples. Still, even for the largest T  shown here, the distance between es

timates of r  are more than an order of magnitude smaller than those of 

the estimates of y, showing that the variance normalisation has eliminated 

almost all residual correlation in y.
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4.4 Discussion

The main result of the work presented in this chapter is that our initial 

hypothesis is substantially confirmed. While linear filtering decorrelates 

second-order correlations, it cannot adapt to fluctuations in variance. There

fore, its distribution results to be long-tailed and highly-peaked. This ef

fect, as it has been shown by Baddeley (1996), can be simply caused by the 

variability of the local intensity variance. On the other hand, the simple 

nonlinear transformation given by variance normalisation yields surprising 

results;

1) The variance normalised response dynamically adapts to the widely 

varying natural input by coding it into a compact, almost Gaussian distribu

tion in almost real time, reproducing the adaptation of the large monopolar 

cells of the fly stimulated with the same signal (van Hateren, 1997);

2) Variance normalisation effectively removes not only the redundancy 

given by the correlations of the fluctuations around the mean, but also al

most all the temporal redundancy of natural images. This is shown by the 

vanishing mutual information, that gives an estimate of the overall pair-wise 

correlations, and by the distance measure among distributions, that gives a
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general estimate of the overall redundancy at any order.

The other important result concerns the estimate of the time scales of 

the two adaptations given by the optimisation of the two steps. Despite the 

long-range correlations in the natural input, both optimal integration times 

are very short, being in the range between 10 and 20 msec. Despite the 

simplicity of the model, both estimates appear to be very consistent with 

the time scales of adaptation measured in the experiments. In particular, 

the optimal time scale of variance normalisation is compatible with the fast 

one identified in (Fairhall et al., 2000, 2001).

In order to verify that this is the only time scale involved in this process, 

we performed a second variance normalisation on the signal r. Simulations 

show that a second normalisation has substantially no effect on the statistics 

of r, no m atter what the integration time is. This result reinforces the idea 

that the slow adaptation of the rate to changes in input statistics identified 

in (Smirnakis et al., 1997) and (Fairhall et al., 2000, 2001) has little to do 

with adaptation to the rapid, unpredictable variations in the input; rather, 

it is more likely to act as an independent process, transm itting information 

about the slow modulations of the long-range correlated, predictable part of
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the signal (see (Fairhall et ah, 2001) for a detailed discussion of this aspect).

Finally, there are a few issues that are worth to be discussed, and that 

potentially lead to further interesting investigations:

1) We showed that variance normalisation produces an almost Gaussian 

output. We claimed that this is consistent with an optimal coding strategy 

because the Gaussian distribution is optimal if we assume a constraint on the 

overall power of the neural activity. This assumpion seems to be plausible, 

and the experimental results of van Hateren (1997) on the Gaussian response 

of large monopolar cells seem to confirm it. However, other constraints can 

be taken into account, yielding to very different optimal response distribu

tions. For example. Levy and Baxter (1996) argue tha t coding schemes with 

the largest representational capacity are not, in general, optimal when en

ergy expenditures are taken into account, while a plausible constraint could 

be set on the average firing rate, giving rise to exponential distributions. 

Baddeley et al. (1997) show that such coding strategies can be found in the 

primary visual cortex of anaesthetised cat and in inferior temporal areas of 

awake monkey. It seems to be hard to identify a universal constraint that 

models the biological ones at best. The idea is that the most relevant con
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straint depends on the area and the function of the neurons we are trying 

to model. In this sense, our model seems to fit fairly well what happens in 

the early stages of visual processing, but should be modified if higher areas 

of the brain are taken into account.

2) Given its simplicity, the model does not account for some basic fea

tures of neuronal signals. As pointed out in the beginning of this chapter, 

noise is a fundamental factor to be accounted for. Srinivasan et al. (1982)) 

showed that noise significantly alters the coding mechanism by lengthen

ing the neural temporal response. We expect tha t noise would lengthen 

and smoothen the linear filter of our model, worsening the efficiency of the 

adaptation mechanism that we proposed. Further investigation is indeed 

required in this direction.

3) The mechanism that we proposed to simulate the variance normalisa

tion shown by Fairhall et al. (2001) is to let the amplitude of the linear filter 

vary in time with the local variance. However, Smirnakis et al. (1997) showed 

that the temporal response changes both in amplitude and time scale when 

the variance changes. Another future investigation could then be model the 

adaptation to the local statistics by also letting the integration time of the
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response vary in time. The combination of the two adapting mechanisms 

(varying amplitude and varying integration time) could compensate the ef

fect of noise to give results very similar to what we obtained with our model.

4) Variance normalisation has already been suggested as an adaptation 

strategy implemented in the primary cortex to normalise the signals about 

the light intensity coming from neighbouring spatial locations signalled by 

neighbouring neurons (Carandiniet al., 1997; Simoncelli and Schwartz, 1999; 

Schwartz and Simoncelli, 2001). The final task is to build a model that 

integrates temporal adaptation with spatial coding. We believe tha t this 

work is an im portant starting point to investigate in this direction.
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Chapter 5

Redundancy reduction in

financial tim e series

5.1 Introduction

The previous chapter showed that variance normalisation is a very good 

way to model temporal adaptation in the early visual system. Besides the 

biological result, it also showed that we ended up building a very simple and 

efficient method to separate the predictable part from the unpredictable 

part of a signal. In order to verify the computational power of our model, 

we apply it to data that is deliberately very different from natural images 

- financial time series. We will first present a brief introduction to the
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statistical properties of the financial data. We will then apply our method 

to the analysis of a financial index of the Italian stock exchange. We will 

show that, similarly to what has been obtained with natural time series, 

our method efficiently separates the random component from the correlated 

component of the financial data, suggesting that it can be considered a useful 

tool for the statistical analysis of any time series.

5.2 The statistical properties of financial tim e se

ries

Since the 1950s, the analysis and modeling of financial markets have become 

an important research area of economics and financial mathematics. The 

researches pursued have been very successful, and nowadays a robust the

oretical framework characterizes these disciplines. More recently, a group 

of physicists became interested in the analysis and modeling of financial 

markets by using tools and paradigms of their own discipline. Here we sum

marise the main results of their investigations.

Despite the huge variety of the financial data, there are some general 

statistical properties that are surprisingly ubiquitous. In any financial mar
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ket, the autocorrelation function of returns^ is a monotonie decreasing func

tion with a very short correlation time. High-frequency data analyses have 

shown that correlation times can be as short as a few minutes in highly 

traded stocks or indices (Mantegna and Stanley, 1996; Liu et al., 1999). A 

fast decaying autocorrelation function is also observed in the empirical anal

ysis of data recorded transaction by transaction. By using as time index the 

number of transactions emanating from a selected origin, a time memory as 

short as a few transactions has been detected in the dynamics of most traded 

stocks of the Budapest emerging financial market (Palagyi and Mantegna, 

1999).

The short-range memory between returns is directly related to the ne

cessity of absence of continuous arbitrage opportunities in efficient financial 

markets. In other words, if correlations were present between returns (and 

then between price changes), this would allow one to devise trading strate

gies that would provide a net gain continuously and without risk. The 

continuous search for and the exploitation of arbitrage opportunities from 

traders focused on this kind of activity drastically reduce the redundancy 

in the time series of price changes. Another mechanism that lowers the

^Returns are defined as the logarithm of price changes. See also Eq. (5.1).
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redundancy of stock price time series is related to the presence of the so- 

called “noise traders” . W ith their action, noise traders add into the time 

series of stock price information which is unrelated to the economic infor

mation, decreasing the degree of redundancy of the price changes time series.

It is worth pointing out that not all the economic information present 

in stock price time series disappears due to to these mechanisms. Indeed 

the redundancy that needs to be eliminated concerns only price changes and 

not any of its nonlinear functions. The absence of time correlations between 

returns does not mean that returns are identically distributed over time. In 

fact, different authors have observed that nonlinear functions of return such 

as the absolute value or the square are correlated over a time scale much 

longer than a trading day. Moreover, the functional form of this correlation 

seems to be power-law up to at least 20 trading days approximately (Liu 

et al., 1997, 1999; Raberto et al., 1999).

5.3 Redundancy reduction on the FIB 30 index

The financial data that are the object of our analysis consist of time series 

of a financial index of the Italian stock exchange, the FIB 30. Technically, 

it indicates the value of the future on the index MIB 30, an index linked to
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the 30 most im portant titles traded in the Milan stock exchange. The time 

series contain the value of the index at every minute for 197 consecutive 

working days during the year 1999. Since a working day consists of 496 

minutes, the overall length of the time series is of 97712 values.

As it is common in the literature (Liu et ah, 1997; Mantegna et ah, 1999), 

rather than studying the index z{t), we analyse the statistical properties of 

the logarithmic increments g{t) of the index (usually called returns),

g{t) = I n z { t A t ) — Inz{t), (5.1)

where A t  is the time lag and time t is a discrete variable taking the values 

tk =  kA,  where k is a, positive integer and A =  1 minute is the time interval 

between two consecutive data recordings. g{t) can be seen as the relative 

price change Ag/g  in the limit A t  —> 0. Here we set A t  = 1 minute; we 

accurately checked that we obtain similar results for other choices of At.

Over the day, the market activity shows a strong “U-shape” dependence 

with high activity in the morning and in the afternoon, and much lower 

activity over noon. Since we are interested in the long-range redundancy
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rather than in this specific intra-day pattern of the market activity, we 

analyse the normalised function

G{t) = g{t)IA{t), (5.2)

where A{t) is the mean value of \g{t)\ at the same time of the day averaged 

over all days of the data set.

5 .3 .1  S ta t is t ic a l a n a ly sis  o f  th e  fin an cia l t im e  ser ies

Figure 5.1 shows the autocorrelation function C g { s ) ,  defined by substituting 

x{t) with G{t) in Eq. (3.7). As expected from the previous results described 

in the introduction, it is very close to a J function: returns are linearly 

decorrelated already within two minutes of transactions.

Figures 5.2 and 5.3 show the square correlation function C g g { s ) ,  de

fined by substituting x ‘̂{t) with G^{t) in Eq. (3.8), and the autocorrelation 

function of the absolute value of G{t), C|G|(s), defined by substituting x{t) 

with \G{t)\ in Eq. (3.7). As expected, they are both long-range correlated 

over at least two days of transactions. In fact. Figures 5.2 and 5.3 show that 

they can be fitted surprisingly well by power-law functions with a unique 

exponent. This is not always the case (see for example (Liu et ah, 1997)).
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Figure 5.1: Autocorrelation function CG(g), versus time lag s in minutes.

5 .3 .2  R e d u n d a n c y  r e d u c t io n  t h r o u g h  v a r ia n c e  n o r m a l i s a t i o n  

L inear filtering and  variance norm alisa tion

We compute the variable indicating the residual from the predicted mean, 

y{t), by substituting x{t) with G{t) in Eq. (4.1), where the linear filter 

a{k) is estimated by minimising the average square prediction error over the 

entire FIB 30 time series. Following the same procedure used to set the
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Figure 5.2: Quadratic correlation fuuctioii Cgg{s ) versus time lag s in min
utes.

integration time of the linear filter in the previous chapter, we estimate that 

— 20 minutes allows a linear prediction very close to the optimal one, 

and we set t/  ̂ =  20 minutes in all the simulations presented in this chapter.

Analogously, we compute the normalised variable r{t) as in Eq. (4.10). 

Following the method described in the previous chapter, we set to the 

value that maximizes the entropy 5'r(ryv) defined as in Eq. (4.13). As it is
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Figure 5.3: Correlation function of the absolute value of G{t)^ C|g|(s) versus 
time lag s in minutes.

evident from Figure 5.4, the entropy maximum is very close to the kurtosis 

minimum: in fact, the value r/v = 39 minutes that maximizes the entropy is 

exactly the same value that minimizes the kurtosis Kr(ryv). Thus, we com

pute r{t) by setting r/v =  39 minutes.
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Figure 5.4: Kurtosis Kr('T'Ar) and entropy versus integration time of
variance normalisation Tyy.

R esu lts

Since G{t) is already linearly decorrelated, we expect that linear filtering 

doesn’t substantially alter the original time series. We expect that redun

dancy will be removed only by variance normalisation.

Figure 5.5 shows that both linear filtering and variance normalisation
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remove the already tiny linear correlations present in the variable G{t).
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Figure 5.5: Autocorrelation function Cg [s )̂  Cy{s) and Cr{s) versus time 
lag s in minutes.

Figure 5.6 clearly shows that the redundancy present in the data has a 

very small second-order component: the linearly filtered variable y{t) has 

almost the same amount of quadratic correlations as the original data G{t). 

On the other hand, quadratic correlations in r{t) fade away after a few min

utes: variance normalisation efficiently removes them.
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Figure 5.6: Quadratic correlation function Cq g{s ) i Cyy{s) and Crr{s) versus 
time lag s in minutes.

Figure 5.7 shows the unbiased mutual information as defined in Eq. (3.9) 

and corrected for the finite sampling size as in Chapter 3. Similarly to what 

happens for van Hateren’s time series, Iu{G) decays very slowly, approxi

mately as a power law. Iu[y) is just a bit smaller than Iu{G), and follows 

the same approximate power-law decay: linear filtering hardly removes any 

redundancy. Instead, Iu{r) decays very quickly to negligible values, so low
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that they are indistinguishable from those computed from the reshuffled 

data (in fact, some values are not represented in the figure because they are 

negative): variance normalisation removes almost all the pair-wise redun

dancy.

—o — I (y)

time lag (min)

Figure 5.7: Unbiased mutual information Iu{y) and /^(r) versus time
lag s in minutes.
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5.4 Discussion

In order to prove the computational power of our normalisation method, we 

deliberately chose a data set whose origin is very different from that of time 

series of light intensities. The main feature shared by the two data sets is 

that they are highly correlated. The extended correlations present in the 

financial time series were a good test for our simple redundancy reduction 

scheme. Our method proved that even long-range power-law correlations 

persisting over very long periods of time can be removed by a normalisation 

based on a “memory” of only approximately 40 minutes of data. In other 

words, despite the long-range correlations, the magnitude of the price change 

can be significantly predicted by using as little as 40 minutes of its past 

history. Though further investigation is needed to generalise this variance 

normalisation method, we hope that this very simple result can be of some 

use in the analysis of time series of any nature.
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Chapter 6

Conclusions

The main aim of the work presented in this thesis was to investigate the key 

mechanisms underlying adaptation of the early visual system to the tem

poral statistics of its input. The hypothesis that we tried to prove is that 

the coding strategy based on variance normalisation tha t seems to underlie 

the later stages of adaptation (Fairhall et ah, 2000, 2001) is sufficient to 

overcome two major problems that the visual system has to face:

1) Fitting the wide range of natural intensities into the limited dynamic 

range of neuronal activity almost in real time;

2) Separating the unpredictable part from the redundant part of the
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natural input by removing almost all its correlations.

By modeling variance normalisation with a very simple coding scheme, 

we were able to prove that both results are achieved, even when the input 

is widely varying and highly redundant as natural time series are, more

over reproducing some experimental findings on the visual system of the fiy 

(van Hateren, 1997). Moreover, we proved that, despite the long-range cor

relations of the input, the “memory” needed for an optimal normalisation 

is very short. This is consistent with the very short adaptation time scales 

found in the literature (Shapley and Victor, 1978; Fairhall et al., 2000, 2001).

As pointed out in the discussion of Chapter 4, these results stimulate 

further investigations in many directions. In order to represent more accu

rately the neuronal activity, the model should account for the generation 

of spikes, noise should be included, and a time-varying integration time of 

the filter could be taken into account. Moreover, analogous results on spa

tial variance normalisation in the primary cortex (Simoncelli and Schwartz, 

1999; Schwartz and Simoncelli, 2001) suggest that such a strategy is likely 

to be widely implemented in the brain; a next step could be to investigate 

the possible combination of spatial and temporal adaptation.
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Nevertheless, the importance of this result seems to lie in the simplicity 

of the model: variance normalisation alone can remove the redundancy of 

highly correlated data. In other words, the redundant part of highly corre

lated time series can be efficiently represented by estimating the mean and 

the variance over a very short history. This result is confirmed by train

ing the model on time series of very different origin - financial time series - 

suggesting that time series of any nature can be analysed in the same way.
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A ppendix A: The 

input/ output relation

This appendix describes the method as illustrated by Fairhall et al. (2001) to 

compute the input/output relation between the stimulus and the neuronal 

response. The idea is to identify features of the stimulus that modulate the 

probability of occurrence of individual spikes, P{spike\stimulus)\ they do 

not consider patterns of spikes, although the same methods can be easily 

generalised. The space of stimulus histories of length ~  100 msec, discretised 

at 2 msec (as the stimulus was in the experiment of Fairhall and collabo

rators), leading up to a spike has a dimensionality ~  50, too large to allow 

adequate sampling of P{spike\stimulus)  from the data, so the dimension

ality of the stimulus description must be reduced.
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The simplest way to do so is to find a subset of directions in stimulus 

space determined to be relevant for the system, and to project the stimu

lus onto that set of directions. These directions correspond to linear filters. 

Such a set of directions can be obtained from the moments of the spike- 

conditional stimulus: the first such moment is the spike-triggered average, 

or reverse correlation function (Rieke et al., 1997). It has been shown (Bren

ner et al., 2000) that for HI, under these conditions, there are two relevant 

dimensions: a smoothed version of the velocity, and also its derivative. The 

rescaling observed in steady state experiments was seen to occur indepen

dently in both dimensions, so without loss of generality they use as filter the 

single dimension given by the spike-triggered average. The stimulus pro

jected onto this filter will be denoted by sq.

The filtered stimulus is passed through a nonlinear decision process akin 

to a threshold. The input/output relation P{spike\so) (Brenner et al., 2000) 

is calculated by using Bayes’ rule:

P(spike\so) _  P{so\spike)
P{spike) P(so)

The spike rate r(so) is proportional to the probability of spiking, r(so) oc
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P{spike\sQ), leading to the relation

r(5o) _  P{sQ\spike) 
r  P(so)

01-2)

where r  is the mean spike rate. P {sq )  is the prior distribution of the pro

jected stimulus, which we know. The distribution P{sQ\spike) is estimated 

from the projected stimulus evaluated at the spike times, and the ratio of 

the two is the nonlinear input/output relation.
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A ppendix B: D istance

between two estim ates w ith

independently drawn 

samples.

Here we derive the square distance between two estimates of a distribution 

where the events are independently drawn.

The events take values z, with i G [1,-f^], with a probability qi for the 

value I. The first estimated distribution is constructed from N  samples, 

with rii samples having value i. For the second distribution M  samples are 

used, with rrii samples taking the value i. The estimated probabilities, pi^i
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and p 2 ,ii are given by p\ î =  Ui/N and p2,% =  m^/M respectively.

We now calculate the average square distance, Di^2 {N, M ), between two 

estimated distributions based on N  and M  samples respectively. Di^2 {N, M)  

is given by
K

D i.2(JV , M ) = -  p 1 Ÿ ) n ,m - (B -1 )

Here the brackets denote averaging over all possible outcomes {n^} and 

{rrii] with probability qi that a sample takes value i, and the constraints 

Y^iUi = N  and rrii = M. Defining U{N) and V  (iV, M) as

U(N)  =  ( I )  V  (B-2)

and

V {N ,M )  = { ^ ' ^ ) m.m , (B-3)
Z=1

Di^2 {N, M)  can be rewritten as

Di,2(iV,M) = T 2 (A ^ )+ T 2 (M )-2 Ti (A^,M). (B-4)
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u  {N)  and V{ N < M)  are given by

K oo rii ^  2
U(N) =  AT! ]][ ^  AT ( ^ )  (B-5)

i = l  r i i= 0  k —1

and

K  oo m oo rfjii K

V(N,  M)  =  N\M\  n  E !ïï E E S -  (B-G)

Here is the Kronecker delta and we have used En and Em to denote n* 

and 'Y2i respectively.

Because of the constrains U and V  are not easily calculated, but one can 

obtain them from the characteristic functions. U can be evaluated using the 

characteristic functions [/, defined by

=  (B -n
N

For every x  this characteristic function satisfies

  ------- l^k-  — "L T ljk—l n k = 0  j ^ k r i j = 0  ^
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K  oo {xqkT'̂
Tllc-k=l rik=0

=  +  (B-8)

where we have used == 1 and is given by ql- Combin

ing this with the definition of U and collecting terms with the same powers 

in X one obtains that

U{N) = Q(2) +  _  q(2)). (B-9)

Similarly, using V{x,y) = Xliv,M one shows that

V {N ,M )  (B-10)

Combining these results we obtain that, average over sampling of the 

distribution, the distance between two estimated probability distribution, 

based on N  and M  samples respectively, is given by
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