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Abstract: Geodemographics, providing the information of population’s characteristics in the regions on a 

geographical basis, is of immense importance in urban studies, public policy-making, social research and 

business, among others. Such data, however, are difficult to collect from the public, which is usually done via 

census, with a low update frequency. In urban areas, with the increasing prevalence of public transit equipped 

with automated fare payment systems, researchers can collect massive transit smart card (SC) data from a 

large population. The SC data record human daily activities at an individual level with high spatial and 

temporal resolutions. It can reveal frequent activity areas (e.g., residential areas) and travel behaviours of 

passengers that are intimately intertwined with personal interests and characteristics. This provides new 

opportunities for geodemographic study. This paper seeks to develop a framework to infer travellers’ 

demographics (such as age, income level and car ownership, et. al.) and their residential areas for 

geodemographic mapping using SC data with a household survey. We first use a decision tree diagram to 

detect passengers’ residential areas. We then represent each individual’s spatio-temporal activity pattern 

derived from multi-week SC data as a 2D image. Leveraging this representation, a multi-task convolutional 

neural network (CNN) is employed to predict multiple demographics of individuals from the images. Combing 

the demographics and locations of their residence, geodemographic information is further obtained. The 

methodology is applied to a large-scale SC dataset provided by Transport for London. Results provide new 

insights in understanding the relationship between human activity patterns and demographics. To the best of 

our knowledge, this is the first attempt to infer geodemographics by using the SC data. 

Keywords: Geodemographic inference, smart card data, multi-task CNN, spatio-temporal activity pattern, 

residential area detection 

1 Introduction 

Geodemographics is usually defined as the study of people’s characteristics (e.g., age and income) by where 

they live. Obtaining geodemographics of large population is of great significance in social research, business 

intelligence, public policy, and so on (Martin, Gale, Cockings and Harfoot, 2018).  For example, 
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geodemographic information can increase the predictability of the market demand in different locations and 

help commercial sectors to site their stores. It also has considerable use within public service organisations 

for planning and facilitating resource allocation (Liu and Cheng, 2020). However, geodemographic 

information is conventionally collected from the census or survey, which is very expensive and time-

consuming. Besides, geodemographics is not easy to be obtained on a large scale due to privacy concerns.  

To obtain geodemographics, the primary task is to answer the question about ‘who you are’, which is usually 

termed as demographic prediction. In the era of big data, with the development of information technology, 

studies have shown that demographic information can be inferred through many online data sources, such as 

web browsing logs (Hu, Zeng, Li, Niu and Chen, 2007, Carmel, Lewin-Eytan, Libov, Maarek and Raviv, 2017), 

mobile phone APP usage data (Zhong, Tan, Mo and Yang, 2013, Dong, Chawla, Tang, Yang and Yang, 2017), 

and online social network (Perozzi and Skiena, 2015, Volkova, Bachrach and Van Durme, 2016).  However, 

most of the existing literature focuses on predicting demographics based on user’s online digital traces, while 

the discriminative power of human mobility in the physical world has received limited attention. The 

widespread use of smart devices has been bringing us massive geo-tagged data that record the daily 

behaviours of individuals, such as GPS trajectories. Many works have reported that human activity patterns 

are highly intertwined with personal demographic factors (Riederer, Zimmeck, Phanord, Chaintreau and 

Bellovin, 2015, Zhang, Cheng and Aslam, 2019).  

Given the relationship between activity patterns and demographics, researchers have attempted to infer 

demographics from geo-located data, mainly including GPS trajectories (Ghosh and Ghosh, 2017, Wang et al., 

2017) and check-in data (Riederer, Zimmeck, Phanord, Chaintreau and Bellovin, 2015, Zhong, Yuan, Zhong, 

Zhang and Xie, 2015). For instance, Wu et al. (2019) extracted spatio-temporal and semantic features from 

GPS trajectories and employed a supervised classification model to infer multiple demographics (e.g. age, 

gender, and education), separately. Beyond that, another unignorably geotagged data source is public transit 

smart card (SC) data. Compared to other transport data sources, SC data can provide continuous trip data 

covering a longer period of time and it is able to link SC data to the individual cardholders (Bagchi and White, 

2005). However, existing works about demographic inference based on SC data are rare.  

Besides demographic inference, the other key task to obtain geodemographics is to identify ‘where you live’, 

namely home location detection. Although a large and growing body of work has studied using various data 

sources for home location detection (Sari Aslam, Cheng and Cheshire, 2019) or demographic inference  (Zhang 

and Cheng, 2020) in isolation, little attention has been paid to combine them to produce geodemographic 

mappings. This is because that many data sources (e.g. online digital sources or check-ins) might be suitable 

to predict demographics but hardly provide sufficient home location information of individuals, and vice versa. 

In addition, due to privacy concern, increasing people prefer to turn off the smartphone location services, 

making it challenging to collect geo-tagged data (e.g. GPS) on a large scale for home location inference. 



In terms of geodemographic inference, SC data has its unique advantages compared to other data sources. As 

the modern public transport system plays an increasingly significant role in people’s daily life, the equipped 

Automated Fare Collection (AFC) system can collect massive SC data to reveal activity patterns of individuals. 

It hence provides an excellent opportunity to explore both the population demographics and home locations 

for geodemographic mapping. However, to the best of our knowledge, hardly any study has attempted to 

infer the geodemographics based on transit SC data due to several challenges and limitations. First, the raw 

SC data are not well represented and noisy. We need to represent SC data properly in order to apply prediction 

models. Second, the prediction tasks of different demographic characteristics are related to each other. For 

instance, older people (retired) are unlikely to have a very high income. Existing prediction models always 

estimate multiple demographics separately, ignoring the correlation between prediction tasks. Third, to date, 

existing studies about demographic inference seldom contribute to the area of geodemographic research due 

to the lack of sufficient individual home location information.  

To fill these research gaps, this research aims to propose a systematic and feasible framework to obtain 

geodemographics from human daily activities using SC data. In this framework, the raw SC data are 

represented as 2D images to capture the spatio-temporal activity patterns of individuals effectively. Based on 

the representation, we employ a multi-task convolutional neural network (CNN) model to map the activity 

sequences to demographics. Finally, leveraging the residential areas detected from SC data, geodemographic 

information can be obtained. The framework is applied to a case study of public transit users in Greater 

London, UK to validate its effectiveness.  

The remainder of this paper is organised as follows. Section 2 reviews the related work. Section 3 describes 

the datasets used in this study and the pre-processing step. Next, Section 4 provides an overview of the 

methodology. Section 5 elaborates the case study to evaluate the framework and the paper is concluded in 

Section 6 with a discussion of future research directions. 

2 Related Works 

Geodemographic is an analysis of ‘who you are’ by ‘where you live’. The former research question (who you 

are) is usually referred to as demographics prediction and the latter (where you live) is termed as home 

location detection. Hence, related works are presented from these two aspects. We also summarise the 

limitations, the proposed approaches, and the contributions of our work. 

2.1 Demographic Inference Using Geo-Tagged Data 

Over recent years, a vast amount of data with location information has become available. Such geo-tagged 

information is timely, detailed and specific to each individual, yet it becomes a valuable source to reconstruct 

human trajectories and explore the human activities. Extensive studies have shown that the activity patterns 

correlate with the demographic characteristics of individuals. For example,  Siren and Hakamies-Blomqvist 

(2004) showed that demographics (e.g., gender, the presence/absence of a driver's license and place of 



residence) were strongly associated with the mobility of elderly citizens in Finland. Other personal traits, 

including age, working status, education level, were also identified to be related to individuals’ activity 

patterns (van den Berg, Arentze and Timmermans, 2013, Bantis and Haworth, 2017, Zhang, Zhang and Zhou, 

2019). Concerning the relationships between demographics and spatio-temporal activity patterns, researchers 

began to utilise geo-tagged data to infer demographics. A recent survey has summarised several works about 

demographic attribute prediction using physical geo-tagged footprints (Gao, Zhang and Zhou, 2019).  

From the perspective of data sources, it shows the majority of existing studies mainly focused on inferring 

demographics from check-ins or GPS trajectories. For example, Zhong, Yuan, Zhong, Zhang and Xie (2015) 

proposed a ‘location to profile’ framework, in which spatiality, temporality and location knowledge were 

extracted from check-in data to profile users. Ghosh and Ghosh (2017) utilised transfer knowledge derived 

from massive GPS trajectories of a geographically distanced but semantically similar type of region of interest 

(ROI) to categorise mobile users. Zhu, Gonder and Lin (2017) leveraged individuals’ long-term GPS data to 

retrieve home-based trips. Then, travel behaviour variability features were extracted for estimating the social-

demographic information by a supervised learning approach. However, all abovementioned works were based 

on hand-crafted features extracted from geo-tagged data. The feature engineering process is time-consuming 

and important information might be lost through the aggregation since activity patterns are not only 

characterised by the aggregated attributes but also the organisation order of activities (Ilägcrstrand, 1970).  

In urban areas, with the increasing prevalence of public transit with AFC systems, researchers can collect 

massive transit SC data from a large population. The availability of SC data has motivated a considerable 

number of studies that analyse the relationship between demographics and SC data-based activity patterns 

(Mohamed, Côme, Oukhellou and Verleysen, 2017, Zhang, Cheng and Aslam, 2019). Although some possible 

relationship has been well-documented in many works, very limited attention has been paid to estimate 

demographics from SC data. Lately, Zhang and Cheng (2018) explored inferring demographics by leveraging 

a variety of spatial and temporal features extracted from the raw transaction records. Ding, Huang, Zhao and 

Fu (2019) developed a deep learning model to estimate socioeconomic status using temporal-sequential 

features and general statistical features generated from SC data. However, the success of these works heavily 

relied on elaborated feature engineering. The extracted features, such as the number of travel days, average 

travel length, and average departure time of the first trips, were derived from a scalar aggregation of an 

individual travel diary. These indicators ignored the organisation of multiple journeys over time (Goulet 

Langlois, Koutsopoulos and Zhao, 2016). In order to take full advantages of the knowledge embedded in SC 

data, more effective representation of SC data and more advanced mining techniques need to be used. Very 

recently, Zhang and Cheng (2020) presented an ‘end-to-end’ thresholding multi-channel CNN model to infer 

the working status of passengers using 2D temporal profiles reconstructed from SC data. This framework did 

not require manual feature extraction process, but it ignored the spatial information of the individual activity 

patterns. 



From the perspective of prediction methods, demographic inference has been treated as a supervised learning 

task. It is found that most previous frameworks have followed a flow chart of extracting measures of temporal 

and spatial regularity first, and then utilising these features as the input of conventional machine learning 

methods (e.g. support vector machine, random forest,  and neural network) to predict multiple demographics 

(Zhong, Tan, Mo and Yang, 2013, Zhu, Gonder and Lin, 2017, Zhang and Cheng, 2018, Wu et al., 2019). In 

these frameworks, besides the abovementioned feature engineering issue, they also overlooked the correlation 

between different demographic prediction tasks. It has been well-documented that different demographic 

inference tasks might be correlated.  

To tackle this problem, multi-task learning (MTL) can be used to improve the performance by building models 

collectively to take advantage of the knowledge from all tasks. A typical way of MTL is to learn tasks in 

parallel with a shared representation. Recently, several studies have employed MTL for demographic 

prediction. For instance, utilised a multi-task SVM model to infer demographics using mobile phone records. 

Wang, Guo, Lan, Xu and Cheng (2016) proposed a multi-task representation learning model to predict 

personal traits of twitter users. Although MTL improves the prediction accuracy, these works also required 

the manual feature extraction and selection step because the base model used in the MTL framework was the 

traditional machine learning classifier. Alternatively, deep learning (DL) techniques have been employed as 

the base model in MTL to avoid task-specific feature engineering. This is because a typical DL model can 

automatically discover the required features from input data level by level, which is also called ‘end-to-end’ 

learning. Many DL or multi-task DL models have been proposed for traffic prediction (Zhang, Zheng, Sun and 

Qi, 2019, Zhang, Cheng and Ren, 2019, Zhang, Cheng, Ren and Xie, 2020). However, using DL approaches for 

SC data analysis is quite rare, since the raw SC data cannot be directly fed to DL models. To the best of our 

knowledge, our work is the very first to use multi-task DL for demographic prediction. 

2.2 Home Location Detection From SC Data 

Compared to other transport data sources, SC data can provide continuous trip data covering a longer period 

to reveal the frequently visited locations of individual cardholders (Bagchi and White, 2005). It hence provides 

an excellent opportunity to infer home locations from SC data. Li, Yu, Ng, Wu and Goh (2015) developed a 

probabilistic approach to infer the home locations using SC data in Singapore, by exploring the underlying 

repeated travelling patterns between home and workplace. However, it overlooked that passengers might use 

different bus/tube stations to access home. Long and Thill (2015) presented a decision tree method to detect 

home locations from one-week Beijing SC data for commuting analysis, but this approach only considered 

the first boarding station in each day as the potential home locations. Sari Aslam, Cheng and Cheshire (2019) 

proposed a heuristic model to detection home locations from London’s Oyster card data, but it was only 

applicable for tube users because the alighting bus stops were missing in SC data. Additionally, in previous 

works, the home locations detected from SC data are mainly used for demand estimation or commuting/travel 

behaviour analysis (Zhang, Zhang and Zhou, 2019). Hence, the results of home location identification are 



always aggregated in the bus/tube stations. In terms of geodemographic mapping, it is necessary to explore 

an applicable way to aggregate the results in appropriate geographical unit, e.g. administrative districts.  

2.3 Summary 

After reviewing the related works, there are three main limitations in these diagrams: 

(1)  First, the feature extraction approaches are limited in capturing the time-ordered activities during 

the study period. Besides, handcrafted features are usually non-robust and rest too much on expert 

knowledge and experience.  

(2) Second, existing frameworks overlook the correlation between multiple demographic prediction tasks, 

which may decrease the prediction accuracy and efficiency (Ruder, 2017). 

(3) Third, current studies have limited to demographic inference or home location detection in isolation. 

To the best of our knowledge, there is no work attempting to link travel behaviour, geography and 

demography to produce predicted geodemographic mappings, which is significant to expand the real-

world applications of the demographic estimates in urban-related fields, such as transport planning, 

business intelligence and policy-making (Singleton and Spielman, 2014, Liu and Cheng, 2018).  

This paper aims to explore whether and how SC data can be used to estimate geodemographics. To cope with 

abovementioned issues, we present a systematic framework of geodemographic inference based on SC data. 

The proposed framework has four main components. First, a decision tree diagram is used to detect the 

passengers’ residential areas from SC data. Second, we represent the raw, multi-week SC data as a two-

dimension image to depict each user’s spatio-temporal activity pattern. Third, benefit from the image-like 

representation, a multi-task CNN model is provided to infer multiple demographic characteristics based on 

the 2D images, which overcome the second issue listed above. CNN (LeCun, Bengio and Hinton, 2015) is a 

state-of-the-art deep learning model for image processing. In addition, the MTL architecture can improve the 

performance of multiple related tasks by taking advantage of the similarities between different tasks. Finally, 

the detected residential areas are aggregated in administrative districts and combining demographic estimates, 

geodemographic mapping can be obtained. 

The contributions of this study are twofold. The first is the proposed systematic framework of 

geodemographic inference from SC data. This framework can improve the prediction accuracy. Compared to 

census, it provides a feasible and fast way to map out timely geodemographic information from SC data. To 

the best of our knowledge, this is the very first attempt to infer geodemographics by using SC data. Second, 

from an empirical perspective, we provide a case study using large-scale SC data collected in London, UK. It 

is important to understand the association between the passenger’s mobility and demographic attributes. In 

addition, this research also suggests that confidential location information should be hidden to avoid potential 

privacy leak from the abusive use of the proposed framework.  



3 Dataset 

The datasets used in this paper come from Transport for London (TfL), which is the public transport authority 

of Greater London, UK. It consists of a sample of Oyster card data and the London Travel Demand Survey 

(LDTS) data. 

3.1 Oyster Card Data 

The Oyster card is a smart card used to pay for journeys on all London public transit systems. According to 

TfL’s report (TfL, 2013), daily journeys made by public transit systems account for about 37% of London’s 

journeys every day. London's public transit has served as the most important travel mode in London. The SC 

data used in this study is a sample of over 0.86 million transactions made by around 0.3 million passengers in 

bus and tube networks in London in March 2013. In this paper, a journey is defined as one-way travel from 

one station to another. This dataset consists of 34% tube journeys and 66% bus journeys. Tube records contain 

the boarding and alighting stations and time. In contrast, bus records only include the origin stations and the 

start time, but not alighting information. All transactions also include unique user IDs. For privacy concerns, 

all user IDs were encrypted. 

3.2 London Travel Demand Survey 

Demographic information was collected via the London Travel Demand Survey (LTDS) in 2013. LTDS is an 

annual survey carried out in Greater London. Each year, 8000 households are randomly selected by TfL to be 

interviewed about their travel habits. This survey is completed by every household member aged five or over. 

The LTDS also collects the demographic information such as gender, household income, car ownership and 

the outcode (the first part of a UK postcode) of home location. The respondents voluntarily provided their 

Oyster card IDs. This enables TfL to match the survey to the Oyster card records. 

3.3 Data Pre-processing 

First, the usage frequency of public transit varies significantly among different users. Some passengers use 

public transportation for most of their daily travels, while others use it occasionally for specific purposes. The 

low-resolution SC data of occasional passengers cannot present their daily activities. In order to ensure the 

Oyster card data can reveal a relatively complete activity pattern of an individual, we first need to identify 

the frequent passengers. To do so, three variables, namely the number of journeys, the number of travel days, 

and the spread days between the first and the last travel days during the study period, are used to describe 

the individual’s usage frequency. Subsequently, k-means is utilised to classify the passengers into three 

groups: occasional, moderate and frequent passengers. The means of the three variables of the three groups 

are given in Table 1. There are 10,495 passengers (accounting for 34.5% of all passengers in the available 

sample) are identified as frequent users, who travelled on most of the days during the study period and 

averagely made about two journeys per day.  



 

Table 1 The mean of the three variables of the different passenger groups. 

Categories Percentage  
Mean of the number of 

journeys 
Mean travel days 

Mean spread 
days 

Occasional 24.1% 5 2 5 

Moderate 41.4% 19 8 24 

Frequent 34.5% 73 21 29 

 

Second, we link the LTDS data to the Oyster card data by matching the user IDs. Finally, among the 10,495 

frequent users, there are 2493 passengers are identified as LTDS respondents (for whom both demographic 

data and Oyster card data are available). They carried out about 179,017 journeys. The demographic data of 

these 2493 LTDS respondents are used as the ground truth to train and validate the proposed demographic 

prediction model. In this paper, we focus on the inference of four demographic attributes, namely age group, 

gender, income level and car ownership. The demographic characteristics in LTDS of 2493 passengers are 

summarised in Table 2. 

Table 2 Description of the demographic attributes of the 2493 LTDS respondents. 

Demographic attributes Number of labels Categories and fraction 

Age 3 
Young (<30): 28.40% 
Adults (30-65): 53.87% 
Elder (>65): 17.73% 

Gender 2 
Male: 43.68% 
Female: 56.32% 

Income level 3 
Low income (<£20k): 32.45% 
Middle income (£20k-£50k): 39.83% 
High income (>£50k): 27.72% 

Car ownership 2 
Have no private cars: 58.56% 
Have private cars: 41.44% 

 

Next, the Oyster card did not record the alighting stations and time information of bus journeys because the 

bus ticket prices do not rely on the travel length or traffic zone. To reconstruct the activities from SC data, 

the first step is to infer the missing alighting information. We employ the method developed by Gordon, 

Koutsopoulos, Wilson and Attanucci (2013). Approximately 84% of bus journeys can be successfully inferred. 

For an alighting station that cannot be deducted, we simply assume it to be the bus station nearest to the next 

boarding station. This assumption has no significant impact on the results. 



4 Methodology 

4.1 Methodological Framework 

To infer the geodemographics from SC data, we propose the concept that ‘you are how you travel’. This 

means that if we can represent SC data describing the activity patterns of individuals (including stays and 

travels), people’s demographics can be inferred. By integrating residential area information, we can then 

produce the geodemographic mapping of an area of interest. For such a purpose, the proposed framework 

should be capable of: 

 Detecting residential areas from SC data; 

 Representing the raw SC data in a proper form, describing the activity patterns of individuals, as well 

as being used as the input of demographic inference model; 

 Building a supervised learning framework for multiple demographic attributes inference; 

 Producing the geodemographic mapping of an area of interest leveraging the inferred demographics 

and residential areas. 

The proposed framework consisting of the four main steps is demonstrated by the flow chart in Figure 1. The 

abovementioned four objectives are realised by four main steps as follows: 

1) Residential Area (RA) detection: employing a decision tree diagram to identify the RA of each 

individual from SC data; 

2) SC data representation: extracting stay areas of individuals from SC data, reconstructing the 

activity sequences and representing the SC data into 2D images, as their spatio-temporal activity 

profiles to depict their activity patterns; 

3) Multi-task CNN for demographic inference: Leveraging a multi-task CNN model to predict 

multiple demographics simultaneously; 

4) Geodemographic mapping: Linking the RA to administrative divisions. Combining the 

demographic estimates and RA information to produce a geodemographic mapping. 

The rest of this section is organised according to the flow chart, illustrating the method developed in each 

step. 



 

Figure 1. Flow chart of the framework. 

 

4.2 Residential Area Detection  

In this paper, a residential area (RA) is defined as a circular area with a radius of 500 m, which is the average 

radius of a walkable stay area in London (Goulet Langlois, Koutsopoulos and Zhao, 2016, Sari Aslam, Cheng 

and Cheshire, 2019). To detect residential areas from SC data, we assume that the boarding station of the first 

journey or the alighting station of the last journey in a day to be the potential RA centre of a cardholder†. For 

convenience, the boarding station of the first journey or the alighting station of the last journey in a day is 

referred to as ‘candidate station’ in this paper.  

To detect RAs, a decision tree diagram is proposed, as shown in Figure 2. The flowchart and detailed 

conditional control statements are described as follows: 

1) Firstly, we count the visit-frequency (vf ) of each candidate station during the study period.  

2) Next, if there is only one candidate station, this station is identified as the centre of an RA.  

3) If not, these candidate stations are clustered into groups based on their geographic coordinates. This 

is because a passenger may use different stations to access his/her home. The clustering starts by 

treating each potential station as a separate cluster. Then, it repeatedly executes the following two 

steps: (1) identify the two clusters that are closest together, and (2) merge the two nearest clusters if 

the distance between the two clusters is smaller than a predefined distance threshold ���� . This 

continues until the distance between any pair of clusters is greater or equal to ����. The distance 

between two clusters � and � is defined as: 

                                                      
† There could be a minor bias in identifying residential area based upon this assumption since a passenger in London 
may cycle or drive a private car to the station prior to their first journey or to their residential area after their last journey. 



             , max , :  where station  is in cluster  and station  is in cluster D r s d i j i r j s   (1) 

The �(�, �) is the Euclid distance between the candidate stations i and j.  The threshold distance ���� 

is set to be 1 km, which is twice the radius of an RA. 

 

Figure 2 A decision tree diagram for residential area detection. 

 

4) If there is only one cluster, the circular area defined by this cluster is the identified RA. 

5) If not, we sum the vf of all candidate stations within the same cluster. 

6) After that, if a single cluster has the maximum total vf, the ‘vf-weighted’ centre of this cluster 

(arithmetic mean coordinate of all stations weighted by the vf within this cluster) is taken as the RA 

centre. For example, in Figure 3 (a), there are three clusters with total vf  to be 2, 2, and 23, respectively. 

Thus, the area characterised by the third cluster is taken as the RA. 

7) Otherwise, when multiple clusters have the same largest vf, the cluster containing the most frequent 

candidate station is treated as the RA. An example is given in Figure 3 (b). It is observed that the 

clusters 1 and 3 have the same maximum total vf, but cluster 1 contains the most frequent candidate 

station with vf=10. Therefore, the identified RA is determined by cluster 1.  

8) Finally, if there are more than one most frequent candidate stations belonging to different clusters, 

there is no confidential RA can be identified.  



Note that in step (6), we choose the cluster with the largest total vf as the most potential RA area, no matter 

whether the candidate station with the highest vf is within this cluster. It means the total vf of a cluster is 

prior to the vf of a single candidate station in this decision process. This is because users may use different 

stations to access home.  

 

 

Figure 3 Two examples of the identified RA. (a) RA identified by the cluster with the largest total vf; (b) RA identified 
by the cluster containing the most frequent candidate station. 

 

4.3 Smart Card Data Representation 

As suggested by previous works, demographics are related to spatio-temporal activity patterns of individuals, 

which can be conceptualised as a sequence of stays and travels between some areas. SC data can reveal the 

series of these activities over time. Thus, effective representation of SC data to capture the activity pattern is 

fundamental for demographic inference. This is realised by three steps: 1) trip chain generation; 2) stay area 

identification; 3) SC data representation as two- dimensional images. Details are given below. 

4.3.1 Trip Chain Generation 

In this paper, a journey is defined as one-way travel from one station to another. A trip chain is defined as 

a series of journeys made by a passenger on a daily basis and is considered as a useful way to demonstrate 

passengers’ activities (Ma, Wu, Wang, Chen and Liu, 2013). In many cases, a passenger may perform an 

activity while transferring between public transit services. The short-stay between the transfer cannot reflect 

the passenger’s real travel purpose. Thus, identifying transfers and reconstructing the trip chains are therefore 

crucial for SC data representation. To do so, the journeys of each passenger are ordered by time. Afterwards, 

public transit transfers are identified based on the temporal and spatial constraints of their SC data to generate 

trip chains. In terms of Oyster card data, the maximum transfer time is 45 min, and transfer distance is 750 m, 

referring to (Gordon, Koutsopoulos, Wilson and Attanucci, 2013). This means that if the transaction time 

between two consecutive journeys in SC data is less than 45 min and the distance between the last alighting 

and the next boarding stations is less than 750 m, the two consecutive journey stages should be linked. Failing 

any one condition will label the former journey as not linked to the next. 



4.3.2 Stay Area Identification  

After obtaining the trip chains, all start and end stations of trip chains of each passenger are spatially clustered 

based upon their geographical coordinates. The clustering method is the same as the approach to group the 

candidate stations for residential area detection, described in Section 4.2. Each cluster is identified as a stay 

area of an individual. After that, the total vf of each stay area is calculated. Finally, all stay areas of an 

individual are ranked by their summed vf values and the average stay time in descending order. The average 

stay time is used to rank stay areas with the same summed vf values. Both the visit frequency and the stay 

time can imply the travel purpose to some extend (Wang, de Almeida Correia, de Romph and Timmermans, 

2017, Sari Aslam, Cheng, Cheshire and Zhang, 2019), which has been used to profile people (Shen and Cheng, 

2016).  

4.3.3 Activity Profiles as 2D Images  

SC data cannot be directly used for demographic prediction. To represent the spatio-temporal activity pattern, 

we propose to reconstruct the SC data of a passenger as a two-dimensional image. In this approach, the start 

and end stations of trip chains are linked to these identified residential or stay areas. If a journey’s destination 

does not match the origin of the next journey, the interval between the two journey stages are equally divided 

and linked to the two different stay areas, respectively. If there is no journey observed in a day, the intraday 

status is denoted as unknown. In this way, all journeys made by a passenger can hence be linked to a sequence 

of activities, characterised by stay/residential areas or travel behaviours with specific durations. Furthermore, 

the activity pattern is represented by an � ×� array, where N  is the number of predefined time slots and M 

is the number of days during the study period. Each cell of an image is associated with a stay/residential area, 

or travel behaviour, or unknown status. Note that the duration of travelling is always shorter than staying in 

an area. In order to contain the travel behaviours in an activity pattern as possible, a time slot will be labelled 

as travelling by tube/bus once there is a tube/bus journey being detected during this time slot. If both tube 

and bus journeys exist in the same slot, we select the travel behaviour with a longer duration as the activity 

status of this time bin.  

The notation of different activities is summarised in Table 3. For each individual, his/her stay areas are ranked 

by the summed vf values and the average stay time in descending order for notation. It is worth noting that 

the number of stay areas is varied from user to user. Some users may have many occasional visits to different 

areas, hence their maximum number of identified stay areas might be much larger than that of the majority. 

To deal with these exceptional situations, we propose to only differentiate the K3sigma most frequently visited 

areas (including home location). The value of K3sigma is determined based on all passengers’ number of activities 

using the three-sigma rule. For example, if K3sigma is identified to be ten, it means 99.7% passengers have less 

than ten stay areas. Consequently, for passengers who have more than ten activity areas, their first ten 

activities are denoted using number 1 to 10 (as shown in  Table 3). All the other occasional stay areas are 

identically denoted using number 11. The reason for this is that we usually need to rescale the 2D image into 



a predefined range (i.e. usually [0, 1] or [-1, 1]) before inputting them into a predictive model. Limiting the 

maximum value using three-sigma rule is equivalent to remove outliers (noise) from the images. In addition, 

we assume that the stay areas with higher visit frequency and longer stay duration play a more important 

role than very occasional stay areas in terms of passenger profiling.   

Using one-hour time bin, an example of the 2D image generated from a passenger’s Oyster card data is given 

in Figure 4. For visualisation, the activities (stays, travels or unknown status) are depicted using different 

colours in Figure 4. The duration of each activity is captured by the length alongside the y-axis. Each column 

then denotes a daily spatio-temporal activity pattern. 

Table 3 The notation of activities. 

Notation Activity 

-2 Travel by bus 

-1 Travel by tube 

0 Unknown status 

1 Stay in the esidential area 

2 Stay in stay area 1 

3 Stay in stay area 2 

⋮         ⋮  

k+1 Stay in stay area k 

⋮         ⋮  

K3sigma+1 Stay in stay areas K>K3sigma 

 

 

 
Figure 4 A two-dimensional image generated from a passenger’s SC data. It describes the activities distributed over 

one-hour time slots of each day of the month. 
 



4.4 Multi-Task CNN for Demographic Prediction 

After extracting activity profiles of individuals, the demographics can be inferred using classifiers. A wide 

range of traditional machine learning models has been applied for performing the classification task, including 

support vector machine, decision tree, and Naïve Bayes (Zhong, Tan, Mo and Yang, 2013, Zhao et al., 2017). 

These classifiers require hand-crafted features as input for training. In this study, as SC data are represented 

as 2D images, we propose to employ the state-of-the-art image processing model, namely CNN, to learn 

features from images for demographic inference automatically.  

Additionally, the conventional approach for multiple demographic attributes prediction is to train different 

classifiers for different prediction tasks. However, it is observed that the four tasks are relevant. For example, 

the average income level of elderly passengers is lower than that of the middle age. The car ownership of 

female passengers is lower than the male. In this case, multi-task learning (MTL) may improve prediction 

performance, as suggested by (Zhong, Tan, Mo and Yang, 2013, Vijayaraghavan, Vosoughi and Roy, 2017). 

Motivated by this, we propose to combine MTL with CNN framework by sharing some layers between 

different tasks.  

As CNN has been widely used in imaging processing, this paper only provides a simple introduction to CNN. 

More details of the CNN model can be referred to (LeCun, Bengio and Hinton, 2015). Briefly, a CNN generally 

consists of multiple hidden layers between an input and an output layer. The hidden layers of a CNN typically 

consist of a series of convolutional layers and pooling layers, as well as fully-connected layers. A convolutional 

layer comprises a set of learnable convolutional kernels (defined by a width and height) to convolve the input. 

A non-linear activation function (e.g., the Rectified Linear Unit (ReLU) function) is usually performed after 

the convolution to add non-linearity to the network. Subsequently, a convolutional layer produces a feature 

map and passes it to the next layer, typically a pooling layer. The pooling layer reduces the dimensions of the 

image by subsampling the feature map extracted by the convolutional layers. It is commonly inserted between 

successive convolutional layers. In this paper, a popular pooling method is used, i.e. average pooling, which 

keeps the average value within a subarea (typically 2×2 size) of the feature map. After a sequence of 

convolutional layers and pooling layers, the outputs are flattened and concatenated as a single vector. 

Afterwards, the vector is fed into several fully-connected layers, which connect every neuron in one layer to 

every neuron in the next layer. For a classification task, a softmax layer is added before the final output layer 

to determine the probability of multiple classes at once. Finally, an object (e.g., an image) is identified to 

belong to the class with the maximum probability. 

Based on the basic components of CNN, a multi-task CNN is proposed, visualised in Figure 5. In this 

configuration, the images are first fed into several shared layers. The weights of these shared layers are 

common to all the tasks. Subsequently, the output of the shared layers goes into task-specific layers, where 

computation related to each task is carried out separately without sharing the learnable parameters across 



the layers. In these task-specific layers, the network layers learn features to a specific task. Finally, these 

layers produce the outputs of each task separately.  

 

Figure 5 The configuration of the proposed multi-task CNN 

 
The target of model training is to jointly minimise the loss of all tasks. The softmax cross entropy is used as 

the loss of each classification task. In the proposed model, the loss function is defined as a weighted sum of 

the loss of every task, written as 
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where ,i ky   and ,i ky  are the output of the softmax layer and the real label of the i-th sample in the k-th task, 

respectively, kw is the weight assigned to the k-th task’s softmax cross entropy loss and T is the total number 

of tasks. The optimal weight of each task is manually tuned using the grid search method. During model 

training, the model calculates the loss after forward-propagation, and then optimises all the learnable 

parameters by back-propagation with the optimiser Adam (Kingma and Ba, 2014). By minimising the loss 

function, all learnable parameters in the multi-task CNN are well trained. 

4.5 Geodemographic Mapping 

Geodemographics study the demographics of people based on where they live. Geodemographic mapping can 

widen the application of demographic inference results, such as helping life insurance companies and pension 

funds to assess longevity for pricing and reserving. This study combines the inferred home location 

information (i.e. RA) and demographics to produce geodemographic mappings.  



To do so, we first snap the RAs to the geographic units, such as the administrative districts of the study area. 

Note that some tube/bus stations within an RA might be located at the boundary of two or more adjacent 

units. If there is only a single station within the RA, we think that the passenger lives in the geographic unit 

which contains the station. If there are multiple stations within the RA, we propose to measure the 

overlapping area between the RA and each geographic unit. The unit with the maximum overlapping area is 

hence taken as the one where the passenger lives. For example, in Figure 6, the recognised RA overlaps with 

three districts. District 1 is treated as the most likely home location since it has the largest overlapping area. 

Afterwards, the statistics of demographics can be calculated in each of the geographic units to produce a 

geodemographic mapping, for instance, the distribution of elderly people across administrative districts. 

Geodemographic data can be used for geodemographic classification or segmentation for intelligence business, 

etc., but this is beyond the scope of this study. We do not discuss here. 

 

Figure 6 An example of assigning a residential area to an administrative district. 

 

5 Case Study 

5.1 Residential Area Detection Results 

Leveraging the approach proposed in Section 4.2, there are 99.1% of 10,495 frequent users’ residential areas 

can be identified based upon the first boarding and last alighting stations in Oyster card data. To validate the 

results, we use the 2493 LTDS respondents’ home location information in the survey, in which they provided 

the outcodes of their home addresses to measure the accuracy. In the UK, the postcoding system was designed 

by the Royal Mail for efficient mail delivery. A postcode consists of two parts. The first part, commonly known 

as the ‘outcode’, suggests a postcode area while the second part (i.e., ‘incode’) indicates a postcode district. 

For results validation, the identified RA of each LTDS respondent is assigned to a postcode area using the 

method described in Section 4.5. The accuracy of RA detection of these LTDS respondents is 97.4%, which 

shows the effectiveness of the proposed method. The distributions of the inferred and the real RAs of the 



LTDS respondents in the sample are shown in Figure 7. Overall, the inferred results are highly consistent with 

the real RA distribution. Slight differences between the two maps can be observed in central London 

(highlighted using the blue dotted circle). This is probably because the inner area has a denser distribution of 

bus/tube stations. There are hence more passengers whose RAs overlapped multiple postal areas, leading to 

a relatively high error ratio when snapping the RAs to the postal areas. Overall, the proposed method can 

produce the correct results in most of these cases.  

Figure 7 The identified and the real residential area distribution of LTDS respondents. 

 

5.2 Oyster Card Data Representation 

In this paper, the time slot for SC data representation is set to be one hour. Hence, the one-month Oyster card 

data is represented as an image of size 24×31. To construct the 2D images of spatio-temporal activity patterns, 

we first detect the stay areas from Oyster card data for each passenger. Figure 8 displays the histogram of the 

number of identified stay areas of all passengers. Briefly, the maximum number of stay areas is 39 among all 

passengers and the average stay area count is 8. According to three-sigma rule, the value of K3sigma is 23, thus 

the maximum value in the 2D image is 24. Afterwards, each time slot is associated with a stay area or bus/tube 

travel activity, as shown in Figure 4. Before demographic prediction, all pixel values of these images are 

rescaled to [0, 1] using the min-max normalisation.    



 
Figure 8 The histogram of the number of stay areas (including home location) of passengers 

 

5.3 Demographic Prediction Results 

5.3.1 Experiment Settings 

After representing the SC data into images, the proposed multi-task CNN is used for multiple demographic 

attributes inference. The prediction is formulated as several supervised classification tasks. Therefore, we use 

the Oyster card and LTDS data of the 2493 respondents to train, validate and test the proposed multi-task 

CNN model. The dataset is split into three parts: 70% for training, 10% for validation and 20% for testing. The 

validation set is not used for model training but for monitoring the predictive accuracy change of multi-task 

CNN during the training process, in order to avoid the over-fitting problem.  

The prediction accuracy might be affected by the hyper-parameter settings of the multi-task CNN. We need 

to determine the optimal configuration of the proposed model. The hyper-parameters primarily include the 

number of a combination of the convolutional and average pooling layers in both shared and task-specific 

structures (denoted as �� and ���, respectively), the number and size of the convolutional kernels in each 

convolutional layer, and the weight of each task’s loss (see Eq. (2)). This paper employs the commonly-used 

grid search approach to determine the optimal hyper-parameters of the multi-task CNN, because it can be 

easily parallelised for time-saving. Grid search means changing one of the hyperparameters while keeping 

the others unchanged during the tuning process. As suggested in (Zhang and Cheng, 2020), the network 

structure does not need to be very deep because the 2D images of activity patterns are not as complex as 

common images (e.g., street view images). Thus,  �� and ��� is chosen from 1 to 3, each layer’s number of 

filters is selected from [4, 8, 16] and kernel size is chosen from [(2×2), (3×3), (5×5)]. Finally, the weight of 

each task’s loss is selected from [0.3, 0.5, 1]. To simplify the grid search process, we set ��� in each specific 

task to be the same and the kernel size in each pooling layer is fixed to be (2×2). Additionally, all tasks employ 

only one fully-connected layer.  



The multi-task CNN model is implemented using the GPU-version Tensorflow 1.2 (Abadi et al., 2016). In the 

training process, the batch size is 32 and the number of epochs is 50. The learning rate is set to be 0.01. The 

optimal configuration of the multi-task CNN could then be determined. The best results presented in the next 

section is obtained using a multi-task CNN with two shared convolutional+pooling layers, and one task-

specific convolutional+pooling layers (as illustrated in Figure 5). In both shared convolutional layers, there 

are 8 kernels of size (5×5) and (3×3), respectively. In each task-specific convolutional layer, the number of 

kernels is 16. However, it is found that the optimal kernel size in each task-specific convolutional layer varies 

slightly. In age, income level and car ownership prediction tasks, the optimal kernel size is (3×3). Meanwhile, 

the kernel size for gender prediction is set to be (2×2), since empirical studies show a large kernel size makes 

it easily overfitting. As that smaller kernel size will capture more details of the image, it might imply that the 

gender prediction requires more spatio-temporal information extracted from the activity pattern than the 

other prediction tasks.  Finally, the loss’s weight of the age, gender, income and car ownership inference is 

set to be 1, 0.3, 0.3 and 1, respectively.  

5.3.2 Prediction Accuracy and Model Comparison 

In this section, the demographic prediction accuracy obtained by the proposed model is compared with many 

baselines. The benchmarks include Random Forests (RF) (Breiman, 2001), Support Vector Machine (SVM) 

(Cortes and Vapnik, 1995), XGBoost (Chen, He, Benesty, Khotilovich and Tang, 2015), because these models 

have been widely adopted for demographic prediction in existing literature (Zhong, Tan, Mo and Yang, 2013, 

Wu et al., 2019). However, these models cannot directly accept two- dimensional images. Thus, each two-

dimensional image is flattened into a one-dimensional vector, and principal component analysis is utilised to 

extract one-dimensional feature vectors as the input of these models. Furthermore, to verify the effectiveness 

of the MTL structure, the proposed model is also compared with the standard CNN. Additionally, we also 

compare the proposed model with residual CNN (ResNet) (He, Zhang, Ren and Sun, 2016), which is a state-

of-the-art algorithm for image processing.  

By feeding features to all algorithms, results are obtained and depicted in Figure 9. It shows that leveraging 

the proposed model, the highest accuracy achieves 80% in the prediction of car ownership, followed closely 

by 76% of age group inference. The performance of income level ranks third, with an accuracy of 69%. The 

accuracy of gender prediction is about 64%, which is the worst among all prediction tasks. This implies that 

spatio-temporal activity patterns of frequent public transit users have a stronger association with age and car 

ownership than gender and household income level. Additionally, this empirical study suggests that gender 

prediction is the toughest prediction task among others, therefore it might require more spatio-temporal 

details, which probably further explains why the kernel size of gender prediction is smaller than that of the 

others.  

Compared to different algorithms, results show that CNN-based methods perform better than traditional 

classifiers. This is because CNN is more powerful to extract features from the image-structured spatio-



temporal activity profiles. Among the CNN-based models, the performance of the standard CNN is 

comparable to the ResNet. This may be because the spatio-temporal activity pattern images are not as complex 

as ordinary images. Increasing the complexity of the CNN architecture cannot significantly increase the 

prediction accuracy. In addition, comparing the performance between CNN/ResNet and the multi-task CNN, 

overall, the performance can be improved using the proposed model, especially for gender and income level 

inference (the two hardest prediction tasks). This might be because the MTL framework could help them to 

take advantage of the knowledge learned from other tasks. However, the situation is opposite in car 

ownership inference. The accuracy of this prediction task slightly decreases after adopting MTL architecture. 

This is probably because the noises in other demographic inference tasks have a negative impact on car 

ownership inference under the MTL framework. As the accuracy decrease is not significant, summarily, 

jointly predicting multiple demographics can improve the performance. 

 
Figure 9 Prediction accuracy of different classification models. 

5.4 Geodemographic Mapping Results 

To obtain the geodemographics, we employ the well-trained multi-task CNN to infer the demographics of the 

passengers’ whose Oyster card data is available but LTDS data not. The RAs detected in Section 5.1 are used 

to link each passenger to a specific administrative area. Note that although the postcode area is used as the 

geographic unit in Section 5.1 to validate the results of RA detection, we will not use this unit in this section. 

This is because we need to utilise the open geodemographic data to verify the geodemographic mappings. 

However, postcode area is not the administrative area in the UK. It means the demographic attributes at the 

postcode area level are not available. To verify the geodemographic mapping gained from SC data, this section 

uses the ‘borough’ as the geographic basis.  The London boroughs are the 32 local authority districts that 

makeup Greater London. Generally, the area of a borough is larger than a postcode area. There are fewer 

cases that an identified RA overlaps multiple boroughs, which ensures that the accuracy of snapping RAs to 

boroughs will not be lower than linking to postcode areas.  



5.4.1 Geodemographic Data Post-Processing 

In this section, we use the open data provided by the Office for National Statistics (ONS)‡ of UK in 2013 to 

validate the geodemographic mappings. In order to compare the real and inferred geodemographics, the 

predicted demographic attributes and the ONS data are post-processed using the following methods: 

 Age: The ONS provides the borough-level population estimates by single year of age§ in 2013. But these 

figures are less reliable and ONS advises that they should be aggregated to at least five-year age groupings 

for use in further calculations. Differently, passengers in this study are classified into three groups by age. 

To make them comparable, we first use the ONS age data to calculate the number of people in each group 

by the same grouping rule in each borough, as the ground truth. We can then compute the ratio of the 

young, middle-aged and elderly in each borough using the predictions and ground truth, respectively. 

Finally, the three ratios are used to produce the young, middle-aged and elderly distribution maps. An 

example of the ONS age data post-processing procedure is given in Figure 10. 

 Gender: We use both the ONS gender data§  in 2013 and the inferred results to compute the female/male 

ratio of each borough, respectively. The female to male ratio of each borough is used to compare the 

inferred and the real geodemographics.   

 Income and car ownership: We retrieved the household income estimates** and the licensed car†† data 

in 2013 from ONS as the ground truth. For comparison, we calculate the real and the estimated average 

income and average car ownership in each borough for validation.  

After the post-processing, we use the rank of the boroughs to produce the geographical distribution maps of 

these demographic attributes. 

 

Figure 10 An example of the ONS age data post-processing procedure. 

5.4.2 Geodemographic Visualisation, Validation and Analysis 

Figure 11 displays the comparison of the geodemographic maps produced by using the inferred demographics 

and the ONS data. In each subfigure in Figure 11, the upper plot is the predicted geodemographic map, and 

the lower plot is the ground truth. The darkness of colour is proportional to the value of a borough in terms 

of a specific demographic attribute. The darker colour implies a higher value of a borough.   

                                                      
‡ In this paper, all sources from ONS are used under the terms of the Open Government License (OGL) and UK 
Government Licensing Framework. 
§ Retrieved from: https://data.london.gov.uk/dataset/office-national-statistics-ons-population-estimates-borough.  
** Retrieved from: https://data.london.gov.uk/dataset/household-income-estimates-small-areas.  
†† Retrieved from: https://data.london.gov.uk/dataset/licensed-vehicles-type-0.  



 

 

Figure 11 Geographic distribution of multiple demographic statistics. 

 

Overall, the predicted geodemographic pattern is approximately consistent with the ground truth. For 

example, both maps in the first subplot suggest that the ratio of young people in inner London is higher than 

in outer London, which is contrary to the distribution of high-elderly-ratio boroughs. Additionally, boroughs 

of a higher middle-age ratio exhibit a distribution running on the southeast/northwest diagonal. Moreover, it 

can be observed in Figure 11 (e) that the boroughs in southwest London have a higher average household 

income than other areas. Furthermore, Figure 11 (f) shows that the households in outer London averagely 



own more private cars than those in inner London. However, the two maps in Figure 11 (d) do not match well 

as others. This is because the prediction accuracy of gender is the lowest among all tasks.  

To quantitatively measure the correlation between the predicted geodemographics and the ground truth, we 

employ the Pearson correlation coefficient �, which is a number between -1 and 1 that indicates the extent to 

which two variables are linearly related. Evans (1996) has suggested using the following rule of thumb to 

interpret the coefficient: very week correlation (|�| < 0.2), week correlation (0.2 ≤ |�| < 0.4), moderate 

correlation (0.4 ≤ |�| < 0.6), strong correlation (0.6 ≤ |�| < 0.8) and very strong correlation (|�| ≥ 0.8). 

The p-value indicates whether the testing result is significant. Table 4 presents the results of the Pearson 

correlation measurement. It shows that the predicted maps of young people ratio, the elderly ratio, average 

income and average car ownership have a significantly strong linear correlation with the corresponding true 

maps. Among the three age groups, the correlation of the middle-aged group is lower than the others. This 

might be because empirically the middle-aged have more travel mode choices than the youth or the elderly. 

Consequently, the distribution of frequent middle-aged passengers may be biased in the sample. Furthermore, 

the correlation of the ranks by female to male ratio is the weakest due to the poor prediction accuracy. To 

further validate the effectiveness of the proposed model, we also report the Pearson coefficients between the 

estimated geodemographics produced by using ResNet and the ground truth. As ResNet is the best predictive 

model among all benchmarks, we do not present other baselines’ Pearson coefficients for conciseness. Table 

4 shows the MTL framework can produce better geodemographic maps due to its higher demographic 

prediction accuracy. The results in Table 4 are consistent with the visualisation presented in Figure 9.   

 

Table 4 Pearson correlation coefficients between the real and the estimated geodemographic attributes produced by 
multi-task CNN and ResNet, respectively 

Geodemographic 
Multi-task CNN ResNet 

Pearson coefficient p-value Pearson coefficient p-value 

Young people ratio 0.707246 3.161e-06 0.672575 1.817e-05 

Middle-age people ratio 0.541675 9.974e-04 0.488839 3.893e-03 

Elderly people ratio 0.754120 3.262e-07 0.720923 2.023e-06 

Female to male ratio 0.411758 1.048e-02 0.373647 3.21 e-02 

Average income 0.600297 2.224e-04 0.56146 3.162e-05 

Average car ownership 0.651941 2.945e-05 0.659877 1.845e-05 

 

This experiment suggests that the SC data is a potential data source to generate the geographical mappings 

of some demographic attributes. If a demographic trait can be inferred from SC data with high accuracy, a 

satisfying geodemographic map can be made leveraging residential area detection. Additionally, although the 

resolution of activities embedded in the smart card data is much lower than that in GPS trajectories, the 



demographic prediction accuracy is satisfying. Hence, for personal privacy concern, the results suggest that 

the entire trajectories or travel diaries should be partially hidden and protected to avoid privacy leak. 

5.5 Discussion about Data Bias 

A series of experiments shows that it would be a promising way to use SC data to infer the timely 

geodemographic information, which can be a supplement of the conventional census survey. However, for 

geodemographics study, the success of the proposed framework also relies on the representativeness of the 

SC data. For instance, according to the results in Section 5.4.2, the inferred geographic distribution of the 

middle-age population is inconsistent with the ground truth to some extent. The potential reason is that bias 

might exist in SC data as middle-age people have more travel mode choices than other age groups. 

Considering the fact that not all the population would take public transport for daily travel, this section 

provides a brief discussion about the influence of the data bias. 

To measure the representativeness of the Oyster card data, we compare the geographic distribution of all 

passengers in the Oyster card data with the population distribution in the ONS data (as shown in Figure 12). 

The passenger distribution map is produced using their inferred residential areas. The Pearson coefficient of 

the two distributions is 0.856 (p-value= 2.17e-10), indicating a very strong linear correlation.  Overall, Oyster 

card data are representative in terms of population distribution. However, Figure 12 shows the ratio of public 

transit users in Outer London is marginally lower than that in Inner London. This is probably because the 

services by public transport are more limited in Outer than in Inner London.  

 
Figure 12 Geographic distributions of passengers in Oyster card data and the population in ONS. 

 

To deal with the slight data bias, resampling techniques can be employed. We use a bootstrapping approach 

(Mooney, Mooney, Mooney, Duval and Duvall, 1993) to resample the passengers from the total Oyster card 

data samples according to the population distribution in ONS data. We then reproduce the geodemographic 

mappings and compare the new maps with the ground truths. Results are given in Table 5. It shows the 



accuracy of the geographic distribution of different demographics can be improved to varying degrees. 

However, the accuracy of the geodemographic mapping is still mainly limited by demographic prediction 

accuracy. Note that the resampling techniques can be used to alleviate the bias issue only when the residential 

areas of passengers can be inferred with high accuracy and the real population distribution is available. If the 

real population distribution is unknown, there is no easy way to tackle the data bias issue. 

In summary, the representativeness of Oyster card data is satisfying for geodemographic study. Alleviating 

the data bias issue can help further increase the estimated results. We understand that we may miss out those 

who never use public transport, but our finding has shown the high potential of using SC for geodemographic 

mapping, which has the advantages over conventional travel survey or census. Even if the bias exists in the 

geodemographic maps produced based on SC data, the results are still useful and meaningful in many real-

world applications, such as optimising transport planning (Liu and Cheng, 2020) and improving the delivery 

of regional public transport services (Zhang and Cheng, 2020).  

 

Table 5 Pearson correlation coefficients between the ground truth and the estimated geodemographics produced after 
bootstrapping 

Geodemographic Pearson coefficient p-value 

Young people ratio 0.726955 1.658313e-06 

Middle-age people ratio 0.566292 5.918843e-04 

Elderly people ratio 0.770002 1.614154e-07 

Female to male ratio 0.462407 6.740838e-03 

Average income 0.676857 1.524531e-05 

Average car ownership 0.674038 1.705585e-05 

 

6 Conclusion 

The contribution of this study can be summarised into two aspects. The first contribution resides in the 

proposed geodemographic inference framework using SC data. In this framework, we propose a novel 

residential area detection approach. In addition, by representing the raw SC data into 2D images, the spatio-

temporal activity patterns can be revealed. A multi-task CNN is then utilised to infer multiple demographic 

characteristics simultaneously to improve the performance of demographic inference. Finally, the inferred 

home location and demographics are leveraged to produce geodemographic maps. The second contribution 

emerges from the application of the framework using large-scale Oyster card data in Greater London, UK. 

Results validate the effectiveness of the residential area identification approach. In addition, the case study 

shows that car ownership and age group can be inferred with high accuracy from SC data. On the contrary, 

the prediction performance of gender and household income level is relatively low. This phenomenon 

indicates that the predictive power of spatio-temporal activity patterns may have inclinations to some types 



of demographic attributes. Finally, by comparing the estimated geodemographic maps with the ground truth, 

it is concluded that SC data is potential to generate the geographical distribution of some demographics. If a 

demographic attribute can be inferred from SC data with high accuracy, a satisfying geodemographic map 

can be made. Also, it would be a more efficient and timely way to infer the geodemographic information using 

the SC data, as a supplement of the conventional census survey (every 10 years in UK). Furthermore, this 

study suggests the importance of geotagged data protection for privacy concerns.  

However, there is still room for improvement. Future work can be conducted based on the work presented 

herein. For example, the current SC data representation method only captures the spatial and temporal 

information of activities. The semantic interpretations of these activities are ignored in current work. Future 

research can combine multiple data sources, such as land use and POI data, to add semantics of activities, 

which might be able to further improve the prediction accuracy. In addition, the demographic inference model 

is a supervised learning approach, which requires sufficient demographic information as true labels for 

training. However, the demographic data obtained via survey is usually limited. Future work can consider 

leveraging semi-supervised learning, which uses a small amount of labelled data with a large amount of 

unlabelled data for model training, to further improve the prediction accuracy in large-scale application 

scenarios.  
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