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Abstract

The suitability of lazy functional languages for image processing applications is 

investigated by writing several image processing algorithms. The evaluation is done from an 

application programmer's point of view and the criteria include ease of writing and reading, 

and efficiency.

Lazy functional languages are claimed to have the advantages that they are easy to 

write and read, as well as efficient. This is partly because these languages have mechanisms to 

improve modularity, such as higher-order functions. Also, they have the feature that no 

subexpression is evaluated until its value is required. Hence, unnecessary operations are 

automatically eliminated, and therefore programs can be executed efficiently. In image 

processing the amount of data handled is generally so large that much programming effort is 

typically spent in tasks such as managing memory and routine sequencing operations in order 

to improve efficiency. Therefore, lazy functional languages should be a good tool to write 

image processing applications. However, little practical or experimental evidence on this 

subject has been reported, since image processing has mostly been written in imperative 

languages.

The discussion starts from the implementation of simple algorithms such as pointwise 

and local operations. It is shown that a large number of algorithms can be composed from a 

small number of higher-order functions. Then geometric transformations are implemented, 

for which lazy functional languages are considered to be particularly suitable. As for 

representations of images, lists and hierarchical data structures including binary trees and 

quadtrees are implemented. Through the discussion, it is demonstrated that the laziness of the 

languages improves modularity and efficiency. In particular, no pixel calculation is involved 

unless the user explicitly requests pixels, and consecutive transformations are straightforward 

and involve no quantisation errors.

The other items discussed include: a method to combine pixel images and images 

expressed as continuous functions. Some benchmarks are also presented.
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1.1 Image Processing

1.1.1 W hat is image processing

Image processing [Gonzalez87a, Schalkoff89a, Pratt91a] is a large application area which 

includes literally everything which involves processing images. Although it is a diversified 

area, its common property is that it involves enormous amount of data. In order to deal with 

images on computers, we normally use pixels, measurements such as intensity at sampled 

points of an image, and an image is typically represented as an array of pixels. The number of 

pixels involved is varied but always large. For example, a television picture usually contains 

approximately 500 x 500 pixels, a high-definition TV image or a bit map image on a current 

workstation roughly 1000 x 1000, an image for printing an A4 document about 3000 x 4000, 

and a panchromatic SPOT satellite image [ChevrelSla] 6000 x 6000. A pixel may contain one- 

bit (ON/OFF) information, a few bits or a real number to denote a value such as a gray level, 

a complex number for Fourier transformed images, a tuple such as RGB data for multi-spectral 

images, a label, or other types of information for various purposes. Images may be static, as 

well as dynamic; such as television pictures, or processing image sequences. In addition, 

images are not only 2D but also 3D or more; voxels sampled at 3D grid are used for 

representing 3D structures, e.g. MRl data [Woods91a] of human bodies.

As well as the sizes, the purpose of image processing varies extensively. It may be as 

simple as adjusting intensity of an image to improve the look of the image, or geometric 

transforms such as rotation and scaling. It may be transformation from one domain to the 

other domain, such as a Fourier transform which transforms an image from the spatial domain 

to the frequency domain; Hough transform to convert an image from the spatial domain to the 

Hough space; image compression such as JPEG [Wallace91a] and MPEG [Le Gall91a] for 

storing images or communicating through networks. Or, it may be for extracting necessary 

information out of an image such as description of edges, shapes, or labels. It may be a 

conversion from some description to reconstruct an image such as data obtained from 

computer tomography (CT) [HermanSOa], MRl, or synthetic-aperture radar (SAR), or 

producing a picture from a picture description language such as PostScript [Adobe Systems 

lnc.90a]. In any case, image processing can be described as a certain process applied to input 

images or descriptions which yields output images or descriptions'.
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1.1.2 Programming image processing

Because a large amount of data is involved, programming image processing is rather tedious 

and cumbersome. We address the difficulties in programming image processing as follows:

• Programmers have to put extra effort in arranging sequences o f operations, so that the 

amount o f memory used is kept within reasonable bounds.

For example, even if the same operation is being applied, different code may be necessary 

for processing a television image and a satellite image, since the satellite image contains a 

lot more data than the television image, and so it may not be practical to have all the data 

in main memory. In such a case, the satellite image may be read, processed and written in 

a line by line or chunk by chunk manner, while the television image may be read and 

processed at once.

As another example, in order to save memory, programmers normally overwrite an image 

which will not be used. If an operation is pointwise (See Section 2.2.2) it is OK to replace 

the input pixels with the output as the operation proceeds, but if it is a local neighbourhood 

operation (See Section 35), overwriting the input image does not yield the correct result 

because the resulting pixel value depends on the values of surrounding pixels. In such a 

case, either the output image should be kept separate, or careful arrangement of memory 

usage in order not to give the wrong result is necessary.

In any case, programmers have to be veiy careful in arranging proper usage (and reusage) 

of memory and appropriate sequences of operations, which is not an easy task.

• Programmers have to write almost identical code for various operations on various 

images although there are a lot of common structures among them.

As described in the previous subsection, there are many different image types; binary, gray, 

colour, label, complex, or other kinds of images. But these images usually share a common 

structure, i.e. a 2D array of pixels, and the difference lies in the type of an element in an 

array. If a programming language does not have a facility to unify those image types, 

programmers will have to define those images separately and write almost identical code 

to process those images. For example, when a gray image and a colour image of the same

1. This definition is rather broader and more vague than the common definition, e.g. [Hom86a], 
where image processing is defined as image to image conversion. However, as will be shown, 
use of lazy functional languages allows unified treatment of these wider areas.
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size are being defined, they may need separate definitions because the type of an element 

is a single value for the gray image, whereas it is a triple of RpB values for the colour image.

Not only the structures of image data, but also the structures of computation are shared 

among a number of image operations, such as pointwise operations, local neighbourhood 

operations, and so on. These computational structures are typically expressed by control 

structures in conventional languages, such as a double loop. If a programming language 

does not support passing various operations to a common control structure, programmers 

have to write almost identical code nriany times. For example, if they write programs to add 

two images and to subtract two images in a pixel by pixel manner, they normally end up 

with two separate but almost identical pieces of code in which only plus (+) and minus (-) 

symbols differ.

1.1.3 How do conventional languages cope?

This subsection reviews conventional languages and how they cope with the problems 

addressed above. No language can be a panacea, but certain facilities will work well to solve 

certain problems.

In Fortran^, where only static arrays are used, arrays must be explicitly declared in 

source code, i.e., the size of images must be known at compile time. Also, it is very difficult to 

cope with changes of array size, and so image processing libraries written in Fortran tend to 

keep the size of images fixed through operations.

In Pascal and C, where memoiy can be dynamically allocated and deallocated via 

function calls, the size of images need not be known at compile time, but explicit allocation and 

deallocation must be described in source code.

C++ [Stroustrup86a] features classes which allow encapsulation of a number of data 

types and operations associated with them in one class, and the implementation details can be 

hidden from users. Thus, it is possible to hide explicit memory allocation/deallocation of 

complicated data structures from users, though it must be implemented somewhere by 

implementors. Also, overloading of functions and operators allows registration of different 

operations on different data types under the same name. So, for example, once various data 

types and operations have been packaged up as the class 'pixel', users do not have to be aware

2. up to Fortran 77, anyway.
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of which types of pixels are being processed. This saves users from writing almost identical 

programs. However, these techniques are quite ad-hoc [Straçhey67a] in the sense that the 

underlying operations work differently on diH^erent types despite that they bear the same 

name. If a new data type is to be added to a dass, implementers must look into the 

implementation details.

A new feature of C++ called templates [Stroustrup91a] may be another solution; these 

allow various types and functions to be used as parameters in different instances of a common 

pattern of data, such as lists and arrays. But this is a kind of macro facility and its flexibility 

and applicability are rather limited.

Usp automates memory management, so that normally users do not have to write code 

to allocate/deallocate storage. Also, it is an untyped language, so that a function argument can 

take various data types. However, it is not statically type-checked, which means that 

programmers have to work hard to produce correct programs, especially when complicated 

data structures are being used. Some dialects of Lisp, such as Scheme [AbelsonSSa] and 

Common Usp [Steele Jr.90a], allow a functional style of programming in which a function can 

take other functions as its arguments. This is a convenient feature to save programmers from 

writing almost identical code, since various operations can be passed as arguments to the 

common control structure.

Table 1-1 Comparison between conventional languages

Fortran C, Pascal C++ Common
Lisp Scheme

Automatic storage 
management

1 ✓ ✓

Static type check­
ing

✓ ✓ ✓

Classes and Over­
loading

3

Functional-style
programming

2 ✓ ✓

1. Memory management can be hidden from users of a library.
2. Also templates [Stroustrup91al allow a limited form of polymorphism.
3. CLOS [Bobrow90a] is an object-oriented extension of Common Lisp which has classes.

Table 1-1 shows differences between conventional languages described above. Please
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note that the table is based on the "standard" programming style. So, it is possible to program 

in a different style, though it could be unusual or inefficient. Also, languages are evolving, and 

various extensions are available to support particular styles of writing.

1.2 Functional Programming

This section gives a brief overview of functional programming. For more details, see various 

textbooks and surveys, e.g., [HendersonSOa, BirdSSa, Reade89a, Hudak89a].

1.2.1 Fundam ental concepts

Functional programming falls in the category of declarative programming. The most important 

characteristic of declarative programming is that there are no implicit states, or no side-effects. 

This is because assignment is prohibited in declarative programming, which contrasts with 

imperative programming. Imperative programming has implicit states which may be modified 

or side-effected through assignment operations. Imperative languages include nrtost 

conventional languages such as Fortran, Pascal, C, C++, Lisp, and so forth.

The basic computational model of functional programming is mathematical functions 

in contrast to relations in logic programming [Sterling86a] which is also categorised as 

declarative programming. Programs are constructed as a collection of function definitions and 

expressions are evaluated by the computer. The basic mechanism of evaluation is function 

application, i.e.,

output = function (inputs)

is the fundamental style of functional programming where output names the result of applying 

function to the argument inputs and is completely equivalent in its meaning. In other words, 

referential transparency is secured in functional programming, provided all functions are 

deterministic.

Because there are no side-effects, the output depends only on the input arguments, and 

how the evaluation is carried out is the system's role. Amongst various evaluation strategies, 

eager and lazy are the two which should be mentioned here. Eager evaluation, or applicative order 

evaluation, takes the strategy that a function is evaluated after all the input a i lm e n ts  have 

been evaluated. Whereas lazy evaluation, or normal order evaluation, evaluates an expression in 

a demand-driven manner, i.e., no argument is evaluated until its value is required. Lazy
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evaluation is commonly used to implement languages with non-strict semantics (see Section 

4.2).

One of the important features of functional languages is that a function is regarded as a 

first-class object, just like a number in conventional languages. A function which takes a 

function as argument, or delivers one as a result is called a higher-order function. The benefits 

of a higher-order function are that it can separate control structures from operations, and that 

arbitrarily complicated control structures can be relatively easily constructed from simple 

ones. Scheme and Common Lisp, as described in Section 1.1.2, have this facility although they 

have imperative features, as well.

Types are an important factor in programming languages to help producing reliable 

code. It is often desirable that program errors are detected as early as possible, and programs 

should not run if they contain type errors. Languages with this facility are said to be strongly 

typed and such a type checking mechanism is called static type checking. Most functional 

languages, as well as many imperative languages including Fortran, C, Pascal and C-H-, have 

this feature, but Common Lisp and Scheme do not, as these are untyped, or dynamically typed 

languages.

In addition, most functional languages allow polymorphic functions; that is, a function 

may take arguments of arbitrary type if the function does not depend on that type. For 

example, suppose there is an identity function which returns the same entity as its input 

argument. If the identity function takes a number it returns the number, and if the input 

argument is a string it returns the string. In this example, as long as the types of its input and 

output are the same, it can be of any type. Such a type is called a polymorphic type and a type 

system which allows polymorphic types is called a polymorphic type system.

1,2JZ A brief history

The most influential work which formed the theoretical basis of functional programming 

would be the lambda calculus invented by Church [Church41a] (see also [Barendregt84a]>. As 

for the programming language side, the development of Lisp by McCarthy [McCarthy60a] 

was a big step forward. Lisp has been so popular in the artificial intelligence community in the 

U.S. A. that it has produced a lot of dialects and extensions. The most important developments 

amongst them were Scheme [AbelsonSSa] and Common Lisp [Steele Jr.90a] because they 

feature functions as first-class objects.
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Other important work was done by Landin who proposed a language called kwim  

[Landin66a]. He put a lot of syntactic and semantic ideas into the language, such as infix 

notations, introduction of let and where, and emphasised the importance of defining a 

tactically rich language over a small but expressive core language.

The importance of Backus' Turing Award Lecture in 1977 [Backus78a] was that it drew 

much attention to functional programming, although FP itself has been a less conrunon 

language.

The polymorphic type system, one of the principal features of modem functional 

languages, was invented by Hindley [Hindley69a] and Milner [MilnerTSa], hence called 

Hindley-Milner type system, and was first implemented in a programming language called ML 

[Gordon78a], later developed in SML [Milner84a]. SML has been one of the most widely-used 

functional languages.

A series of language designs carried out by Turner, started as SASL [T\imer76a] then 

KRC n\imer82a], has led to the development of Mirandc^ [Tumer85a] which we will use 

extensively in this thesis. The most notable feature of Miranda is lazy evaluation, as well as 

more common facilities such as polymorphic strong typing and higher-order functions. 

Currently, Miranda is the only functional language for which there is a commercially available 

implementation.

A more recent movement has been the development of Haskell [Hudak92a] by an 

international group of researchers. The aim of the project is to design a common language to 

avoid emergence of a number of similar functional languages and duplication of effort. 

Haskell is a general purpose, purely functional language with the features of higher-order 

functions, non-strict semantics, static polymorphic typing, and so forth. Besides these features 

which are in common with Miranda, it also incorporates novel features such as type classes 

and overloading integrated with the polymorphic type system and non-strict immutable 

arrays. As of now, a few implementations have appeared [The Yale Haskell Group91a, 

Augustsson92a, The AQUA Team93al. Also, a subset of Haskell has been implemented by 

Jones as Gofer Qones92a]. A good introduction to Haskell is given in [Hudak92b].

Another recent development worth mentioning is a language called SISAL [Bohm92a]. 

This language is in the category of dataflow languages designed for dataflow architectures

3. Miranda is a trademark of Research Software Ltd.
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[Chambers84a]. On such machines operations are completely data dependent, and therefore 

sequencing of operations by a human programmer is not relevant. Hence, such languages are 

essentially functional. Other languages in this category include Id [Arvind89a]. The 

importance of SISAL is that its implementations on parallel machines are very fast A recent 

report shows that it runs as fast as Fortran using various scientific applications including 

Fourier transforms and hydro-dynamics [Cann92a]. This result suggests that, although SISAL 

is not lazy, and is without polymorphic typing, functional languages could be implemented 

efficiently on parallel machines. Since image processing is a data intensive application area, 

this possibility may be a good sign for functional languages to be used for real image 

processing applications.

To conclude this subsection. Table 1-2 gives a comparison between principal functional 

languages in terms of their facilities. Of the languages reviewed so far, we are mainly using the 

lazy functional language Miranda. Section 12.4 describes the reasons for the selection and 

Section 13 describes the possible benefits of using lazy functional languages for image 

processing.

Table 1-2 Comparison of principal functional languages

Miranda Haskell SML SISAL Scheme

Lazy evaluation ✓ ✓ 1 ,2 2

Higher-order functions ✓ ✓ ✓ ✓ ✓

Polymorphic strong typ­
ing

✓ ✓ ✓

Type classes and Over­
loading

✓

Arrays ✓ 3 ✓ ✓

Imperative features ✓ ✓

1. Lazy ML [Augustsson84a] supports lazy evaluation.
2. It is possible, though limited (See [Paulson91a] for SML and [AbelsonSSa] for Scheme).
3. Some implementations have arrays [Paulson91a].
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1.2.3 Im plem entations

Implementations of functional languages have often been described in terms of abstract 

machines, since programs are analysed and compiled into a sequence of instructions which an 

abstract machine can execute. Whether the machine is implemented in hardware or software 

appears to be a separate issue. However, it is generally considered that functional languages 

have potential to be implemented efficiently on parallel architectures since there are no side- 

effects and expressions can be evaluated in any order. In fact, the recent report on SISAL by 

Cann [Cann92a] can be regarded as a strong evidence to support this statement. Thus, 

although implementations of functional languages are still a research area, it should not be 

long before efficient parallel iixiplementations appear.

The SECD machine invented by Landin [Landin64a] and later described by Henderson 

[HendersonSOa] is one of the early-days implementations. It is a stack-based implementation 

and consists of four stacks, namely S: the stack, E: the environment, C: the control list, and D: the 

dump, hence the name. The SECD machine can be extended to support lazy evaluation.

Turner proposed a technique called comhinator^ reduction [Tumer79a] by which high- 

level expressions can be compiled into expressions in a fixed set of low-level combinators 

named SK combinators. Hughes modified this method and developed super-combinator 

compilers [Hughes84b]. He showed that as the size of a program becomes larger the super- 

combinator method presents better performance than Turner's method. Both methods 

implement lazy evaluation and have formed the basis of modem implementations of lazy 

functional languages.

More recent implementations include TIM (The Three Instruction Machine) 

[Fairbaim87a], (he G-machine [Augustsson87a, Johnsson87a], a parallel version of the G- 

machine [Kingdon91a], and so forth.

1.2.4 M iranda

Miranda has been chosen as a representative of lazy functional languages and the code that 

appears in this thesis is written mostly in Miranda. The reasons are:

• Miranda is a lazy functional language which has all the principal features that modem

4. A combinator is a lambda expression which contains no occurrences of a free variable 
[Barendregt84al.
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functional languages have, such as higher-order functions and polymorphic strong 

typing.

• Miranda is small and easy-to-leam, and is capable enough to demonstrate the claims 

described below.

• A stable Miranda implementation was available when coding was being done.^

• Miranda works and integrates well on a UNIX workstation and its supporting 

environment such as on-line manuals is good.

For an introduction to programming in Miranda, see, e.g., [Tumer86a] and [BirdSSa]. In 

this thesis it is assumed that readers have basic knowledge of Miranda programming. Also, 

Miranda's built-in operators and functions defined in the standard environment are used 

without definition or explanation. If necessary, readers should refer to the Miranda's on-line 

manual [Research Software LimitedS9a].

1.3 Why Functional Programming Matters to Image Processing

Image processing progranuning in functional languages has been a less common approach 

until recently, partly because functional languages themselves are still under active research 

[HudakS9a] and not many real-world applications have been written [Hall92a]. Nevertheless, 

a few research results have shown that functional programming should be a good vehicle to 

describe image processing algorithms [Allsop91a, Breuel92a].

The overall theme of this thesis is "are lazy functional languages 'good' for writing image 

processing programs?". The suitability of lazy functional languages for image processing is 

investigated by writing several image processing algorithms in lazy functional languages. The 

focus of the discussion is on how the features of these languages, laziness in particular, make 

image processing programming easier, or more difficult. Possible criteria are ease of writing 

and reading, and efficiency.

A particular issue related to ease of writing and reading is modularity of programs which 

describes the capability to keep code for separate operations separate and to require little work 

in putting them together. If programs can be written in a modular manner it will also improve

5. The version of Miranda used in this thesis is V2.014.
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reusabÜity, because different programs may comprise common operations or control 

structures.

It is assumed that time and space efficiency of the underlying implementation of lazy 

functional languages will be adequate for image processing applications. We are going to 

discuss efficiency from an application programmer's point of view, such as asymptotic 

behaviour, termination and the possibility of using better algorithms^.

The following is a list of possible benefits of using lazy functional languages in image 

processing programming, by which the difficulties of image processing programming 

discussed in Section 1.1.2 may be overcome. These items will be discussed in detail with 

examples throughout the body of the thesis and revisited in the last chapter to discuss to what 

extent these benefits have been confirmed. The first four items do not concern laziness, but can 

be applied to any functional programming languages with higher-order functions and 

polymorphic typing:

1. The basic functional style, i.e. output -  functiondnputs), can naturally express image 

processing which is essentially described as an "input—̂ process—^output" process.

2. Higher-order functions allow different functions to be mapped onto a common 

structure, which enables separation of control and operations. This facility should 

improve modularity and reusability of code because images typically have a common 

structure, such as a 2D array of pixels.

3. Polymorphic typing allows any pixel types in a common image structure, which should 

provide a mechanism to handle various types of images, such as binary, gray, colour, or 

other kinds of images, in a unified manner.

4. An image may typically be represented as a 2D array of pixels, but it can also be viewed 

as a collection of rows and a row bang  a collection of pixels, i.e., an image and a row 

have the common structure. Using this nature, higher-order functions together with 

polymorphic typing should provide a simple mechanism to build up higher 

dimensional data and operations by combining lower dimensional ones which are 

usually easier to implement and debug.

6. However, the actual speed and memory usage using currently available languages are of 
interest. Chapter 8 gives some benchmarks.
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And the following are three possible benefits which originate particularly from laziness:

5. Lazy evaluation ensures that an expression is not evaluated until its value is required. 

In image processing where each operation is usually very expensive, this facility to 

eliminate unnecessary operations may improve efficiency automatically. It may be more 

beneficial when not the whole image but only a small portion is required.

6. Functional languages embed memory management and routine sequencing operations 

in themselves. This, when combined with lazy evaluation, may become more beneficial 

in image processing. For instance, when consecutive operations are applied to an image, 

the execution sequence and the necessary intermediate memoiy can all be handled by 

the functional language implementation, so that programming will be easier.

7. One particular consequence of the embedded memoiy management and sequencing 

operations is that it may improve modularity, since different parts can be implemented 

as different functions and not much care is necessary in putting them together. For 

example, it may be possible to make a display function separate from the other image 

processing parts which can be used as a common programming part for display.

Of course there are drawbacks of using lazy functional languages. As a natural 

consequence of the fact that the languages do more work in order to be laz)7, i.e., it is necessaiy 

to decide whether an operation is required or not, bigger overhead may be incurred and 

execution of programs may be rather slow compared with eagerly evaluated languages. This, 

however, should trade off with the above benefits, such as ease of programming and better 

efficiency when requiring a small portion. Also, as implementation techniques of lazy 

functional languages are advancing, programs will run faster when more efficient 

implementations appear.

1.4 Related Work

Application of functional languages to image processing is a little-researched area and only a 

few results have been reported. In this area, SML has been the most common language. SML 

features higher-order functions and polymorphic strong typing, but is not lazy and has 

imperative features such as references, imperative arrays, and referentially opaque I/O . So, it

7. For the overheads of laziness, see page 64.
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is possible to program in an imperative style if a programmer chooses to do so.

Allsop [Allsop91a] implemented a basic image processing library called FUPT 

(Functional Language Image Processing Toolkit) using SML and discussed basic concepts of 

image processing by comparing SML programs with Apply (Hamey89a] and C. Breuel 

[Breuel92a] implemented a library of functions for computer vision both in SML and C++ and 

discussed how elements of functional programming benefit the programming of various 

vision algorithms. They both concluded that functional programs are modular and easier to 

understand because the language has strong mechanisms, such as higher-order functions and 

polymorphism, to integrate from diverse sources. Breuel, in particular, stated that the 

language support for closures with unlimited extent enables one to implement lazy data 

structures which are particularly desirable when an algorithm does not require information at 

eveiy pixel. However, SML is a strict language and so any laziness needs to be explicitly 

programmed (See Table 1-2). As a consequence, he did not demonstrate this in the programs. 

The overall programming style of SML, though it is functional, is quite different from lazy 

languages, and so separate work using lazy languages would be necessaiy to discuss effects 

of laziness.

Wallace et al. [Hopkins89a, Wallace92a] implemented the specific algorithms of scene 

labelling and parallel perspective inversion using SML. Although they mentioned the general 

advantages of functional programming such as modularity and ease of understanding, their 

emphasis is rather on how to identify and utilise the implicit parallelism of functional 

programs and how they can be efficiently executed on parallel machines. There is no mention 

of laziness.

Another common functional language is Miranda which we also use intensely in this 

thesis. Parsons [Parsons87a, Parsons89a] used Miranda to implement various data structures 

to represent graphical data and images, including lists of line segment, rasters, quadtrees, 

quadgraphs® [Parsons86a], run length code, and fractals. His focus is on the use of algebraic 

data types with laws [Thompson86a]. However, laws are difficult to use and have become an 

obsolete feature in the current Miranda release [Research Software Limited89a]. As for 

laziness, he concluded that it contributes to improving efficiency by non-strict 

transformations, displaying primitives at lower resolution, minimising relational tests, and in

8. A quadgraph is a data structure similar to a pointer-based quadtree, but it allows pointing to 
any node. So, it could be a cyclic or self-recursive data structure.
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the higher-order version of RasterOp operations. His most important message is "we have been 

enlightened by the use of this language; it has suggested new and interesting definitions of old 

graphical ideas (Parsons87al." However, he did not discuss how laziness affects not only the 

data structures, but also the way programs are written, in particular how it improves 

modularity of programs. Although he implemented interesting data structures, his emphasis 

was on graphics applications and he did not present commonly used image processing 

operations in a way that utilises laziness in a positive nunner.

The other development using Miranda is by Poole IPoole92a]. His approach is fairly 

pragmatic. The execution speed of Miranda programs with the current implementation is 

rather slow for real image processing applications, so he uses Miranda as the front-end to the 

existing Woolz image processing server [Piper85a] written in C. Such systems may provide a 

good interim solution by combining the speed of a conventionally implemented image 

processing system with the flexibility and other advantages of a lazy functional language. He 

is currently working on a fully-functional version using Haskell, as efficient and reliable 

implementations are appearing.

Burton and Huntbach's work [BurtonSSa] does not use a functional language, but 

focuses on laziness in manipulating geometric objects. In particular, they advocated that lazy 

evaluation of geometric objects is useful whenever objects are represented by quadtrees and 

only a portion of the data structure is required. They implemented a lazy data structure of a 

quadtree in Pascal, in which an extra boolean member indicates whether the quadtree has been 

evaluated or not.

1.5 The Rest of the Thesis

In the remainder of the thesis, we will discuss whether lazy functional programming 

languages are suitable for writing image processing programs using a number of examples.

Chapter 2 serves as an introduction to image processing in Miranda to familiarise 

readers with this paradigm using very simple examples, such as unary and binary pointwise 

operations. Also an example Miranda session is provided in order for readers to understand 

how to communicate with the system. We call the version introduced in this chapter the 

"ruUvef' version, because this is the image processing program which a first-time Miranda 

programmer would write.
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In Chapter 3, an implementation called the "vHth an origin*' version is presented. The 

categories of algorithms included are pointwise, image translation, and local neighbourhood 

operations such as convolution. This version introduces the concept of an origin into the data 

structure to represent an image, by which the image boundaiy problem commonly associated 

with image translation and local neighbourhood operations is solved elegantly. Also, a fairly 

large number of image processing algorithms based on these operations are implemented. It 

is remarkable that median filtering which is not usually considered to be convolution can be 

implemented using the function defined for convolution. The discussed items include: a 

polymorphic pixel type allows unified treatment of various categories of images; higher-order 

functions and polymorphic typing allow construction of 2D operations by combining ID 

operations in a straightforward manner, and improve modularity.

Chapter 4 focuses on laziness in image processing. In the first part, laziness in the 

context of functional programming languages is described, where lazy evaluation is an 

implementation technique to allow non-strict semantics. Then, discussion moves on to the 

relationship between laziness and image processing. We discuss how laziness is a convenient 

feature to improve efficiency and how it improves modularity. The last part discusses the 

algorithms which are considered to be particularly suitable if expressed in lazy languages. We 

call these algorithms inherently lazy and discuss whether lazy languages can express these 

algorithms in a natural fashion.

Chapter 5 gives an implementation of inherently lazy geometric transformations using 

lists as the basic structure for images. Programs are written to utilise benefits of laziness of the 

language which include: (a) unless the user specifically asks an image to be displayed, no pixel 

operations are carried out, (b) and only the required parts are calculated, (c) program 

description is forward mapping in a straightforward manner, and (d) consecutive 

transformations are expressed as straightforward function composition and do not 

accumulate quantisation errors. It will be shown that pursuing these benefits of laziness leads 

to a novel way of image processing programming. Limitations and drawbacks of the 

algorithms are also discussed.

Chapter 6 presents the same algorithms as Chapter 5, but another implementation using 

hierarchical data structures. This chapter is divided into two parts: representing an image as a 

binary tree of binary trees, and as a quadtree. Using a tree of trees is an extension to the method 

which has been developed through the previous chapters, i.e. define ID  operations first, then
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compose 2D operations using higher-order functions. We will demonstrate that this principle 

works for hierarchical data structures, as well, and that code is fairly easy to read and write. A 

quadtree is our first attémpt to Anplement 2D data structures directly, since a simple 

calculation shows that a quadtree is supposed to have space benefit compared with a binary 

tree of binary trees. It will be shown that although the quadtree version seems less readable, it 

gives an easy mechanism of random access, i.e. look-up a value of an image at an arbitrary 

position.

Chapter 7 provides an implementation and some examples of combining pixel images 

and non-pixel images together, since this is another algorithm which lazy functional languages 

may be particularly good at. In the first section, issues related to image I/O  are discussed 

because for the pixel image side this is a non-avoidable technique to be implemented. Then, a 

method to combine pixel and non-pixel images is described. Images are implemented as 

abstract data types which hide implementation details from application programmers and 

allow much higher level programming. Several examples are presented.

Chapter 8 gives some benchmarks comparing median filter operations written in 

Miranda, Haskell and C. The comparison may not be fair, but it still gives some idea of how 

fast/slow l a ^  functional languages run in real life using currently available implementations. 

We show that lazy functional versions run in nearly constant space even if the size of an image 

gets very large, which is not possible to achieve in C without extra progranuning effort

Chapter 9 is the last chapter. It concludes the thesis by further discussions, summary 

and future developments. We will review how many of the benefits we listed earlier have been 

confirmed.



Chapter 2: Simple Image Processing
in Miranda
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2.1 Introduction

Functional programming is a relatively new paradigm and is considerably different in style 

from imperative programming in which image processing programs are usually written. 

Therefore, it is important to get familiar with the functional programming style first. This 

chapter is intended in this respect to give some simple image processing algorithms written in 

Miranda, which include pointwise operations both unary and binary.

In implementing these algorithms, we will try to be as naive as possible. Thus, we will 

call the program described in this chapter the naive version. In addition, an example Miranda 

session is presented because working procedures, i.e. from editing to running, are very 

different from ordinary compiled imperative languages such as Fortran and C.

2.2 The Naive Version

2.2.1 R aste r im ag es

An image is typically represented as a 2D and rectangular array of pixels, or raster (Figure 2-

1). Although conceptually an image may not be rectangular or may be an abstract description 

of a scene, raster representation is most common because it is the easiest form for images to be 

manipulated on computers and 1 /0  devices, such as frame buffers, scanners, and laser 

printers.

A pixel

9mmm

(a) A scene (b) Its raster image

Figure 2-1 A scene and its raster image
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For representing an image using imperative languages, an array structure is typically 

used. In order to represent a 2D array of pixels in Miranda, use of a list of lists of pixels would 

be most straightforward, since arrays are not supported in Miranda. Also, the properties of a 

list describe the nature of a pixel image quite well, that is, it is an ordered collection of values 

and the elements of a list must have the same type. In Miranda, a 2D list is written as follows, 

assuming that pixels are numbers:

pixel == num 
img == [[pixel])

'==' is a type synonym which allows users to introduce a new name for an already existing type, 

[ p i x e l ]  defines a list whose elements are of the type p ix e l ,  and [ [ p i x e l ] ]  defines a list 

of lists of pixels.

23 5 37 10 23 -5 -37 -10
12 64 8 15 -12 -64 -8 -15

22 20 54 0
Negate image

22 -20 -54 0
49 31 6 25 49 -31 -6 -25

23 5 37 10
12 64 8 15

22 20 54 0
49 31 6 25

5 3 10 15
22 31 23 9

16 51 20 38
11 4 25 42

28 8 47 25
Add two 34 95 31 24
images 38 71 74 38

60 35 31 67

Figure 2-2 Pointwise operations

2.2.2 P o in tw ise  o p e ra tio n s

The term pointwise operation describes an operation which takes one or more images as its input 

and carries out a certain operation over the images in a pixel by pixel manner. The actual pixel 

operation may be as simple as negation or addition, or it may involve more complicated 

operations. The principles of the operation are: the result does not depend on any pixels of 

different position, and the same operation is carried out all through the images. In other
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words, the operation only concerns the pixel itself in the case of an umrypointwise operation, or 

the pixel itself and the pixel of the same position in the other image in the case of a binary 

pointwise operation, but the same operation is carried out regardless of the position (Figure 2-

2). Therefore, the pointwise operation provides a framework to define various image 

processing algorithms, rather than a specific algorithm.

2.2.3 Unary operations

We use the function map to implement unary pointwise operations, map is defined in the 

standard environment, and has the type:

map:

Types can be parameterised using type variables such as * and ** in Miranda. A type variable 

can accept any type which is called a polymorphic type. Code to define the type is called a type 

signature. The above type signature can be read as "for all types * and * *, the function map takes 

two arguments, a function from * into * * and a list of elements of type *, and returns a list of elements 

of type **". Since the function takes a function as an argument, it is a higher-order function. 

W hat map does is to apply the function given as its first argument to each element of the list 

given as its second aigument. So, for example, the increment (+1) and the logical negation 

(~ ) functions can be mapped on a list of numbers and booleans, respectively^:

map (+1) [ 1 ,2 ,3 ]  reduces to [2 , 3 , 4]

map (-)  [T r u e ,F a lse ,F a ls e ,T r u e ]  reduces to [F a ls e ,T r u e ,T r u e ,F a ls e ]

If the first argument is a function defined on a list, such as (map (+1 ) ) , then map makes a 

function on a 2D list. For example:

map (map (+1)) [ [ 1 , 2 , 3 ] ,  [4 , 5 , 6] ] reduces to [ [ 2 , 3 , 4 ] ,  [5 , 6 ,7 ] ]

This is what a unary pointwise operation should do. Thus, a unary pointwise operation can be 

defined as follows^:

unaryPointwise::(pixel->pixel)->image->image 
unaryPointwise f im = map (map f) im

1, In Miranda, both operators and functions can be used interchangeably using sections 
[BirdSSa].
2. The other style of expression will be discussed in Chapter 3.
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It is not necessaiy to attach a type signature to eveiy function definition, and even if a type 

signature is not given, Miranda's type checker infers types correctly if they are well-defined. 

In fact, it is often the case that the compiler infers more general types than those specified by 

programmers.

Miranda uses a technique known as currying [BirdSSa] which assumes function 

application to be left associative. This is useful to reduce the number of brackets which has 

been a cause of unreadability of Lisp code, and to allow elimination of function arguments 

from the right. For example, it is possible to omit the right most argument of the unary 

pointwise function, im, and redefine it as:

unaryPointwise f = map (map f)

Since u n aryP o in tw ise  is defined as a higher-order function, it is representing rather 

a category of algorithms than an individual algorithm. Each operation can be defined by 

passing a certain function to the u n a ry P o in tw ise  function. For example:

negatelmage = unaryPointwise neg
absImage = unaryPointwise abs

The first function negates each pixel value, and the second takes the absolute value of each 

pixel.

2.2.4 Binary operations

The binary pointwise operations can be implemented by using map2 instead of map. The map2 

function is defined in the standard environment whose type signature is:

map2: :(*->**->***)->[*]->[**]->[***]

How a binary pointwise function for 2D images is composed is exactly the same as the 

unary pointwise's case, which is defined as follows:

binaryPointwise f = map2 (map2 f)

Using this higher-order function, various individual operations can be defined. Following are 

functions to add two images by passing addition (+), subtract an image from an image by 

passing ( - ) ,  take maximum of two pixels by max2, and take minimum by min2, respectively:
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addlmage = binaryPointwise (+) 
subimage = binaryPointwise (-)

maxImage = binaryPointwise max2 
minImage = binaryPointwise min2

2.3 An Example Miranda Session

A source program is called a script in Miranda which is a collection of definitions. The script 

for the naive version is given in Figure 2-3. This script contains test images such as im l and 

ixn2 for simple debugging. For real usage, these test images should eventually be replaced 

with real images such as ones fead from disks.

naive.m 
I I The "Naive" Version
pixel == num 
img == {[pixel]]
I I pointwise operations
unaryPointwise;:(pixel->pixel)->image->image 
unaryPointwise f * map (map f)
binaryPointwise::(pixel->pixel->pixel)->image->image->image 
binaryPointwise f = map2 (map2 f)
I I pointwise examples
negatelmage = unaryPointwise neg 
absImage = unaryPointwise abs
addlmage = binaryPointwise (+) 
subimage = binaryPointwise (-)
maxImage = binaryPointwise max2 
minImage = binaryPointwise min2
iml = [[49,31,6,25], [22,20,54,0],[12,64,8,15], [23,5,37,10]] 
im2 = [[11,4,25,42],[16,51,20,38],[22,31,23,9],[5,3,10,15]]

Figure 2-3 The script, "'naive.m"

When Miranda is started it compiles the script and checks types. If the script contains 

an error, Miranda reports it. Miranda is an interactive system, so that an expression which the 

user types in is interpreted and evaluated by the system, and the result is returned. If an 

expression contains a type error the system reports it. If an expression is incomplete as a
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sufficient number of arguments is not specified, Miranda still evaluates the expression and 

returns that it is a function because it is a curried function. A sample session is shown in Figure 

2-4, where 'M iranda' is a prompt and a line in bold face following the prompt shows a user 

input.

T h e  M i r a n d a  S y s t e m  
version 2.014 last revised 3 May 1990 
Copyright Research Software Ltd, 1989

(100000 cells) 
compiling naive.m 
chec)cing types in naive.h\ 
for help type /help 
Miranda negatelmage iml
[(-4 9,-31,-6,-251,[-22,-20,-54,0],[-12,-64,-8,-151,(-23,-5,-37,-1011 
Miranda addlmage iml im2
[[60,35,31,671 ,[38,71,74,381, [34,95,31,24], [28,8,47,25]]
Miranda maxImage iml im2
[[4 9,31,25,42], [22,51,54,38], [22,64,23,15], (23,5,37, 15)]
Miranda addlmage iml (negatelmage (minlmage iml im2))
[[38,27,0,0], [6,0,34,0],[0,33,0,6], [18,2,27,0]]
Miranda ?unaryPointwise
unaryPointwise;:(num->num)->[[num]]->[[num]] |(defined in "naive.m" line 11
Miranda ?addlmage
addlmage::[[num]]->[[num]]->([num]] | I defined in "naive.m" line 21
Miranda addlmage 
<function>
Miranda addlmage iml
<function>
Miranda addlmage iml iml
[[98,62,12,50],[44,40, 108,0], [24,128,16,30], [4 6,10,74,20]]
Miranda negatelmage [1,2,3] 
type error in expression 
cannot unify [num] with [[num]]
Miranda negatelmage [[ 'a','b ' ], ['c',  ̂d']]
type error in expression
cannot unify [[char]] with [[num]]
Miranda

Figure 2-4 M iranda sample session



Chapter 3: From Pointwise to Local
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3.1 Introduction

Although the algorithms are written in the lazy functional language Miranda, the focus in this 

chapter is not on laziness, but on higher-order functions, polymorphic typing and 

sophisticated data structures. In other words, the discussion in this chapter may be applied to 

any language if it has such facilities. The goal of this chapter is to implement algorithms which 

are still simple but are most commonly used in image processing, i.e. pointwise, image 

translation, and local neighbourhood operations, such as convolution.

Various techniques are introduced. Firstly, we will introduce the origin of an image into 

an image data structure, and use a pair of an origin and a list as a fundamental element. Hence, 

we call the implementation in this chapter the "with an origin" version. By introducing an 

origin, the image boundary problem commonly associated with image translation and local 

neighbourhood operations can be solved elegantly. Also, the type of a pixel is parameterised 

as a type variable, so that any type of images, such as gray, boolean, colour, or other types of 

images, can be handled in a unified manner. Another technique is to make the patterns of ID 

and 2D structures identical, by which once operations have been defined on the ID structure 

it is fairly straightforward to compose 2D operations by utilising those ID operations. Since 

these techniques appear to be very convenient for implementing various image processing 

algorithms in a modular fashion, they are going to be used through the rest of the thesis.

After the polymorphic and higher-order local neighbourhood function is defined, it is 

demonstrated that a fairly large number of image processing algorithms can be implemented 

just by passing individual masks and functions as its arguments. These include the local 

averaging smoother, Laplacian edge detector and Sobel edge operator. Furthermore, using the 

same local neighbourhood function, the median filter can be implemented.

3.2 Image Representation

3.2.1 Why introduce an origin?

We are going to implement image translation which relates to positioning of an image and an 

origin is introduced to make this operation easier.

In the previous chapter, we represented an image as a 2D list of pixels (page 31), in 

which the position of an image was not explicit. In the case of binary pointwise operations, it
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was assumed that the first pixel of the first row of each image is at the same position (Figure

2-2). However, using this representation an image may be translated as shown in Figure 3-1 (a) 

which would seem fairly restrictive; i.e. the amount of translation may be restricted to integer, 

a background value may have to be filled in if it is desirable that the first pixel retains a certain 

position, and the image size may increase if it is not desirable to lose the content of the image. 

Furthermore, translation of a negative amount would seem difficult. Conceptually, however, 

image translation should change only the position of an image and the content should not 

change (Figure 3-1 (b)). If the information of a position is kept separate from a pixel array, it 

will satisfy the above requirement. This is the reason why we introduce an origin as part of the 

image representation.

Translate
(1,1)

t i

bg
bg
bg
bg

bg bg bg bg bg
(1,0) ^

(a) Translation of a 2D array

Translate ■
(x,y)

(b) Translation by shifting an origin 

Figure 3-1 Translation o f im ages

As for the coordinate system, the conventional right-hand system is used in this thesis 

rather than the raster scan coordinate commonly used in image processing. The reason is to 

avoid confusion in geometric operations described in later chapters.
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3.2.2 A polymorphic pixel type and interval representation

In the image representation in the naive version the type of a pixel was defined as a type 

synonym and was actually a number (Section 2.2.1). However, we would like to process not 

only images whose pixels are numbers, such as gray images, but also boolean images, colour 

images, complex images such as Fourier transformed ones, and so forth. A polymorphic type 

should be ideal to deal with these diversified images in a unified manner. Therefore, the type 

of a pixel is represented by a type variable.

In order to improve modularity, which is a key to ease of writing and reading, a data 

structure called interval is defined which represents the common structure for a row being a 

collection of pixels, and an image a collection of rows. This is important because once an 

operation is defined on an interval, then it may be applied to a row, as well as an image.

Based on the above consideration, the representation we také is "a row as a pair of an x 

origin (the x coordinate where the row starts) and a list of pixels" and "an image as a pair of a y  origin 

(the y  coordinate where the image starts) and a list of rows". Image origins are expressed in the 

world coordinate system. The definition for a row and an image is given as follows:

interval * == (num,[*])
row * == interval *
image * == interval (row *)

This representation implements three ideas: (i) the type of a pixel is parameterised as the type 

variable *, (ii) the patterns for a row and an image are identical using the common structure 

i n t e r v a l ,  and (iii) the information of the position of an interval is incorporated and kept 

separated from the list part. The length of an interval is made implicit as the length of the list 

part^.

Although the interval representation can represent non-rectangular images, there are 

certain subtle restrictions on possible shapes. Since the representation assumes that the 

elements (either pixels or rows) in a list are equally spaced, an image cannot be represented if 

it does not satisfy this criterion. As shown in Figure 3-2 (a), an image composed of more than 

one discrete object cannot be represented. If an image is non-isotropic, it may or may not be 

represented depending on its orientation (Figure 3-2 (b) and (c)).

1. The problem of not making the length explicit will be discussed in terms of efficiency in 
Chapter 8.
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a
(a) More than one object (c) Non-iso tropic but 

representable

Figure 3-2 Non-rectangular shapes

Representing an image as a collection of intervals is not a benefit of using functional 

languages, as it can be done in any languages which can handle data structures. This issue will 

be discussed in Section 3.65.

3.3 Pointwise operations

3.3.1 Definition of pointwise operations in Miranda

In the naive pointwise operations implemented in the previous chapter (Section 2.2), it is 

assumed that images are at the same position (though they can be of different size). But now  

we have the representation of images at different positions and pointwise operations between 

those images can be defined. Unary operations are straightforward as usually the operations 

will not change the size and position of an image, but binary operations need consideration. 

How to handle these operations is a matter of discussion but one possible scheme may be to 

define the result of a binary pointwise operation only where the both source images are 

defined. This may be reasonable because a binary operation without two operands usually 

does not have well-defined meaning [Kozato88a].

Pointwise operations for intervals are defined as follows:
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unarylnterval::(*->**)->interval *->interval ** 
unarylnterval f (o,p) = (o, map f p)

binarylnterval:;<*->**->***)->interval *->interval **->lnterval *** 
binarylnterval f (ol,pl) (o2,p2)

= (o, map2 f (drop (o2-ol) pi) p2) , if cl < o2 
= (o, map2 f pi (drop (ol-o2) p2)) , otherwise 
where o = max2 ol o2

In order to take the common part in a binary operation, a new origin is calculated as the larger 

of the origins of two source intervals, d rop  takes a number, n, and a list, and returns the part 

of the list which remains after the first n elements have been removed. map2 is similar to map 

but takes three arguments: a function of two arguments, f, and two lists. The result is a list in 

which each element is the result of applying the function f to the corresponding elements in 

the two lists. If the two lists are of different lengths, the excess portion of the longer list is 

ignored.

Note that these functions are defined as polymorphic higher-order functions. That is, as 

long as the second argument (and third one for a binary function) has the pattern of 

i n t e r v a l ,  the functions do not care about the content of the list part in the interval. It is the 

parameterised function, f , which cares about the content.

As the data structures of in t e r v a l  and row are identical, unary and binary pointwise 

operations for rows are:

unaryRow = unarylnterval 
binaryRow = binarylnterval

(Composition of 2D operations using these ID operations is exactly the same as the naive 

version (Section 2.23) and is equivalent to the following definitions using the function 

composition operator (.):

unaryPointwise = unaryRow.unaryRow 
binaryPointwise = binaryRow.binaryRow

These definitions are remarkably simple and easy to write and read because of their 

conciseness and modularity. Higher-order functions and polymorphic typing are the main 

contributors. The following subsections give a few example pointwise operations using the 

higher-order polymorphic pointwise functions defined here.
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3.3.2 Simple pointw ise examples

Picking up several operators and functions from the standard environment, example unaiy 

pointwise operations can be implemented:

negatelmage = unaryPointwise neg 
absImage * unaryPointwise abs 
loglmage = unaryPointwise log 
constImage x = unaryPointwise (const x)
notImage = unaryPointwise (-)
doublelmage » unaryPointwise (*2)

Pixel operations used in the examples are as follows: neg does the unaiy minus, abs takes the

absolute value of a number, lo ^  gives the natural logarithm, c o n s t returns a constant value 

and is defined as:

const X y = X

(~) is logical negation, and the last one (*2) multiplies by two.

And the following are a few example binary pointwise operations:

addlmage = binaryPointwise (+) 
maxImage = binaryPointwise max2 
minlmage = binaryPointwise min2 
andlmage = binaryPointwise (£) 
orlmage = binaryPointwise (\/) 
eqImage = binaryPointwise (=)

(&) and ( \ / )  are logical AND and OR, and (=) does comparison.

Type signatures can be omitted; Miranda infers the type of each function correctly. For 

example:

const lmage;:* -> (num, [ (num,[ * * ] ) ] ) - > (num,[ (num,(*] ) ] )  
notImage:: (num,( (num,[bool]) ] ) - > (num,[ (num,[bool]) ] )  
eqimage:: (num,[ (num,[ * ] ) ] ) - > (num,[ (num,[ * ] ) ] ) - > (num,[ (num,[bool ]) ] )

This shows that various types of images can be handled in a unified manner.

3.3.3 Look-up table functions

In image processing, it is often necessary to apply a fixed transformation to all pixels in an 

image. For example, gamma correction to compensate for the characteristics of a display
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device, or to map pixel values to colour codes for pseudo-colour display. Such operations are 

commonly called look-up table operations, because the f ix ^  transformation is normally 

represented as an array or look-up table. Using the una ry P o in t w ise function defined above, 

a look-up table function of an integer image can be implemented by passing a list indexing 

function as an argument. For example, an inverse look-up table of an 8 bit integer image, 

whose pixel values range between 0 and 255, can be written as follows:

inverseLookUpTable = unaryPointwise ( [255,254..0]!)

The operator ! is list indexing to look up a specified element in a list. It should be pointed out 

that this look-up table works on an 8 bit integer image only, since an index must be an integer 

although the type of ! is defined as [*] ->num->* in Miranda^. It is rather awkward for 

certain applications that a language does not differentiate integers from real numbers because 

we often use the discrete nature of integers, e.g. as labels.

Since continuous functions can be passed to the higher-order pointwise function, it is 

easy to implement a continuous image look-up table. For example, a continuous version of an 

inverse look-up table can be defined as follows:

inverseLookUpTable2 range = unaryPointwise ((+range).neg)

Needless to say, more complicated look-up is possible, such as a table obtained by histogram 

equalisation.

3.3.4 Spatial conditional operations

The next example is a spatial conditional operation, or parallel-if, which is often used for parallel 

computers and does selection using boolean array objects [Hockney81a]. As illustrated in 

Figure 3-3, a spatial conditional operation returns pixels from either the second or third image 

depending on the boolean pixels in the first image.

2. [1,2,3] !l returns 2, but [1,2,3] l. 0 is an error in Miranda.
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iml

im2

im3

Spatial 
conditional

23 5 37 10
12 64 8 15
22 20 54 0
49 31 6 25

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

23 5 37 10
12 0 0 15
22 0 0 0
49 31 6 25

Figure 3-3 A spatial conditional operation 

It can be defined in Miranda as:

condlmage iml im2 im3
* binaryPointwise cond iml (binaryPointwise pair im2 im3) 
where cond True (a,b) =» a 

cond False (a,b) = b 
pair a b = (a,b)

This function takes three images: the first image is a boolean image and the second and third 

images are polymorphic images which have the same type. Depending on the contents of the 

boolean image, the function condlmage returns pixels either in the second or the third image. 

Because the type of a pixel is defined as a polymorphic type, operations on mixed image types 

like this can be implemented without difficulty. Please also note that only the overlapping part 

of the three operand images is returned.

3.4 Image Translation

Using the image representation with an origin, image translation is very easy just by shifting 

the origin. There is no need to move pixel data, so it is very efficient. Also, as with the 

pointwise operations, a 2D operation can be easily constructed from a ID  operation.
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translatelnterval:;num->interval *->interval *
translateInterval d (o,p) = (o+d,p)

translateRow = translatelnterval
translatelmage x y (o,p) = translateRow y (o,map (translateRow x) p)

Because this function changes an image origin only, it is possible to express translation 

of an image by a non-integer amount. At the moment, this does not say much because the 

image representation uses lists and non-integer indices are not allowed. Even though an image 

is translated by a non-integer distance, an error may occur if the translated image is operated 

upon by the other functions, e.g. a binary pointwise operation. A mechanism to interpolate a 

list to allow non-integer indexing is necessary to reap the benefit. Implementations of 

interpolation are presented in Chapter 5.

3.5 Local Neighbourhood Operations

A heal neighbourhood operation is so called because a pixel value is calculated as a result of 

operations involving the pixel itself and its surrounding pixels. It is also called a mask, 

template, window, or filter operation, because a mask covering neighbouring pixels is applied 

to each pixel in an image and certain operations are carried out within the mask. By replacing 

the size or contents of a mask, or operations to be performed, a fairly large collection of image 

processing algorithms can be implemented, e.g. image smoothing, image sharpening, edge 

detection, and so on [Gonzalez87a, Pratt91a]. In other words, a local neighbourhood 

operation, as with the pointwise operations, gives a certain framework to define various 

individual algorithms.

For example, it is intuitively understood that if every pixel in an image is calculated as 

the average value of itself and neighbouring pixels the image will be smoother (neighbourhood 

averaging). Figure 3-4 (a) shows a part of a pixel image in which pixel values are expressed as 

a, b, c ,... The following equation gives an average pixel value of the nine pixels at the position 

of the pixel

average = ^ x ( a  + b + c + e+f+g + i+j-i-k) (Eq. 3-1)
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m n o P
i j k 1 w7 w8 w9
e f 8 h w4 w5 w6
a b c d wl w2 w3

(a) A part of a pixel image (b) A 3x3 mask of coefficients

Figure 3-4 A local neighbourhood m ask

This averaging operation can be explained as applying a 3x3 mask of coefficients (Figure

3-4 (b)) to an image and performing a sum-of-products operation. The nine components of the 

mask are:

wl = w2 = vv3 = w4 = w5 = w6 = w7 = w8 = w9 — — (Eq.3-2)

and the operation to be performed is:

value = axwl-»-bxH'2 + cxw3 + «xw4+ / x  w5 + g x w 6  + i x w l  w8 + kxw9  (Eq. 3-3) 

In order to calculate the whole image, the mask must be scanned across the whole image.

3.5.1 Convolution in Miranda

We consider a Miranda implementation of convolution, one of the most important local 

neighbourhood operations.

Discrete one-dimensional convolution of f(x) and g(x) is defined as

/(jc)*g(jf) = % A^)g(%-W (Eq. 3-4)

where g(x) is called a convolution mask or kemd. And the definition of discrete two-dimensional 

convolution is:

(Eq.3-5)

The neighbourhood averaging operation described in the previous subsection is a kind of 

convolution.



-47

An alternative way of viewing the convolution is that it is a collection of pointwise 

operations between translated images. This method of calculation is commonly used on 

parallel machines [Oarke86a]. If the image described in Figure 3-4 (a) is translated by (1,1), 

then the pixel 'a' comes on top of the pixel T .  If the image is translated by (0,1), then the pixel 

V  comes to that position. If we repeat these operations eight times changing the directions of 

image translation, we then have eight shifted images and one non-shifted original. We can 

then multiply each image by predefined coefficients and add them together, which gives the 

same result. We call this approach the parallel method. In order to make direct use of the 

functions already defined, i.e. pointwise and translation, which have been designed to operate 

on the whole image, we will adopt the parallel method.

As in the implementation of pointwise and translation operations, the two-step 

approach is taken, i.e. construct a ID operation first, then compose a 2D operation.

Figure 3-5 illustrates how ID convolution is carried out by combining translation and 

pointwise operations. For ID convolution, functions are parameterised as multiplicative and 

additive operations, as convolution is based on sum-of-products. The multiplicative parameter 

defines the operation between an element of a convolution mask and an element of a 

translated image (Figure 3-5 (a)). The amounts of translation are integers within half the size 

of a mask, i.e. if the size of a mask is 3 the amounts are -1,0, and 1. Products are calculated by 

unary pointwise operations by passing the curried function, {multiplicative ajnaskjelement). 

The additive operation defines the operation between the results of the multiplicative 

operations (Figure 3-5 (b)). Accumulation of the products is carried out by binary pointwise 

operations by using the additive parameter.

In Miranda, ID convolution can be expressed as follows:

convl mul add mask im
= accum [prod (element mask p) (shiftlnterval p) 1 p<-domain mask] 
where
accum = foldll add
prod X = unarylnterval (mul x)
shiftlnterval p = translatelnterval (p-((leng mask) div 2)) im

domain = index.snd
leng = (#).snd
element = ( ! ).snd



-48

image
9 3 10 0 23 5 12 4

(unary (*!)).

mask 
[  I  2 |  3

9 3 10 0 23 5 12 4

9 3 10 0 23 5 12 4 i y 18 6 20 0 46 10 24 8
I (im ary(*2))^A A
18 6 20 0 46 10 24 8 (unary(* 3 ))^ (binary (+)) 27 9 30 0 69 15 36 12

27 9 30 0 69 15 36 12

(binary (-*•))

43 29 53 51 91 43

(a) translate and apply unary 
multiplicative operations

(b) accumulate rows by binary 
additive operations

Figure 3-5 ID  convolution by multiplicative and  additive operations

The main definition of co n v l uses alist comprehension [BirdSSa], in which the right-hand side 

of the vertical bar works as a generator, or a qualifier, and the list of the results from the 

expression of the left of the bar is returned. It employs a syntax adapted from conventional 

mathematics for describing sets. In the above code, domain returns a list or the indices of the 

list part of a mask by using in d ex  defined in the standard environment, sn d  is a function to 

take the second element in a pair, i.e. the list part. For example, if a mask is ( 0, [1 ,2 ,3 ]  ) as 

in Figure 3-5 its domain will be [0 ,1 ,2 ] .

prod does the multiplicative operations described in Figure 3-5 (a) by passing the 

multiplicative function (mul) with a mask argument to the unary pointwise operation. 

Translation of an interval is expressed in s h i f t l n t e r v a l  p where p is an element of the 

domain of the mask. The interval is shifted by p to the right and a half of the size of the mask 

to the left, i.e. if the mask size is 3 the amounts of translation are -1,0, and 1. The # operator 

used in le n g  calculates the length of a list and d iv  does an integer division^.

3. Note that, because of Miranda's laziness, an expression such as leng mask is only evaluated 
at most once for each evaluation of convl (in fact, it will be evaluated exactly once, since its 
value is always needed if convl's value is required). See Chapter 4.
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accum is in charge of accumulating the results obtained by the prod operations. As 

shown in Figure 3-5 (b) a list of intervals is accumulated by the function argument add. 
foldll is a higher-order function defined in the standard environment and is defined 

informally as follows:

foUn add [ i l  i 2 , i n ]  = (add... (add (add i l  i2) i3) ... in)

The fold operation family, like the map family, are also important higher-order functions 

defined on lists. There are a few variations of fold operations depending on the direction of an 

operation and whether it allows folding a non-empty list, f o l d l l  is defined on a non-empty 

list and folds up the list from the left.

This co n v l function is the actual "working part", which is defined polymorphically to 

accept either a row or an image. The top-level definition for convolution is just to give a 

suitable interface above it. Separate functions for convolution of rows and images can be 

defined simply as follows:

convolveRow = convl (*) (binaryRow (+))
convolveImage = convl convolveRow (binaryPointwise (+))

convolveR ow  uses multiplication as the operation between an element of a mask and a pixel 

in a row, and a binary pointwise addition of rows which specifies the operation between the 

results of the multiplications, co n v o lv e  image takes convolveR ow which defines the ID 

convolution between a ID image and a ID mask, and a binary pointwise addition of images 

which specifies the operation between the results of the above convolutions. In this way 

convolution can be defined elegantly using Miranda.

3.5.2 Some examples of convolution - Smoothing, Laplacian and Sobel

The convolution function gives a framework and individual algorithms can t)e implemented 

by passing appropriate arguments to the function. For example, smoothing an image by 

neighbourhood averaging, as described on page 45, can be implemented as:

average = convolvelmage (makeMask [[1/9,1/9,1/9],
[1/9,1/9,1/9],
[1/9,1/9,1/9]])

makeMask::[[*]]->lmage *
makeMask m = fn (map fn m) where fn x = (0,x)



50 -

Here, makeMask is a simple conversion from a 2D list to its image structure to be used as a 

parameter to the convolution function.

Likewise, Lapladan edge detection filter can be implemented by replacing the coefficients 

in the mask as follows:

lapladan -= convolvelmage (makeMask ([ 0, 1, 0],
[ 1,-4, 11,
I 0,  1, 0} ] )

The same principle is seen in the following more elaborate example Sobel edge operator, 

where the gradient can be commonly approximated by adding absolute values of horizontal 

and vertical edge strengths [Gonzalez87a]:

sobel im
= binaryPointwise (+) (absImage imh) (absImage imv) 
where imh = convolvelmage (makeMask hMask) im

imv « convolvelmage (makeMask (transpose hMask)) im
hMask = t[ 1, 2, 1],

[ 0 , 0 , 0 ],
[ - 1 , - 2 , - ! ] ]

The vertical mask can be obtained by transposing the horizontal mask using t r a n s p o s e  

which is defined in the standard environment.

3.5.3 M inim um  and maximum filters

The examples described in this and next subsections are called rank filters which are local 

neighbourhood operations but are not conventionally regarded as convolution operations. We 

demonstrate the convenience of higher-order functions that those designed above for 

convolution can be used for rank filters without a change.

At each point in an image the maximum filter finds the maximum value in the local 

neighbourhood; correspondingly, the minimum filter finds the minimum value. Unlike the 

linear filters described in the previous subsection, these filters cannot be implemented only by 

changing the coefficients in a mask and it is necessary to change the function arguments to be 

passed to the co n v l function. The implementation is:
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maxFllterRow * convl secondArg (blnaryRow max2) 
maxFilterImage = convl maxFilterRow maxImage

minFilterRow - convl secondArg (blnaryRow min2) 
minFilterImage = convl minFilterRow minImage

secondArg a b = b

Note that the mask used in these filter functions specifies the size of a neighbourhood; 

the values of mask pixels are not significant.

3.5.4 M edian filtering

The final example, the median filter, is also a rank filter. This filter takes the median within a 

neighbourhood, which is quite a common and effective method of noise removal. In the local 

neighbourhood examples described so far, the operations such as sum-of-products or finding 

a m in/m ax value are separable in x and y directions, i.e. how the elements are grouped and in 

what order the operations are executed does not matter. So, "rows first, then an image" does 

not make any difference from any other calculation order. However, in the median operation, 

the median of the medians of rows may not be the same as the median of the area. A 

conventional method of median filtering is to produce a histogram of local pixels, then take 

the median of the histogram. Our approach is similar: first concatenate the neighbouring 

pixels into a list, which gives an image whose pixels are lists, or a list image, then take the 

median of each pixel list in a pointwise manner. Since production of a list of neighbourhood 

pixels can be done in any order, there is no need to mcxiify the basic computation structure 

and hence the basic code co n v l can be used unchanged. As a result, the implementation is 

surprisingly elegant:

medianImage mask = (unaryPointwise median).(localHistImage mask) 
median list = (sort list)!(#list div 2)

localHistImage = convl (localHistRow) (binaryPointwise (++)) 
localHistRow = convl f (binaryRow (++)) where f a b = [b]

Here, s o r t  is a standard environment function for list sorting, and ++ is the operator to 

concatenate two lists.

Rank filters are not normally considered as examples of convolution, but the 

polymorphic higher order function designed for convolution is so general that it can be used 

to implement them successfully.
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3.5.5 An alternative implementation of convolution

From a readability viewpoint, the above convolution function c o n v l may not be the best, 

since the modularisation is not the same as the most common definition of convolution (Eq. 3- 

4). Convolution is commonly defined as follows: a mask is turned over and scanned across an 

image, and a pixel is calculated as the dot product of the mask and the image at a certain 

position. If a mask is not turned over it is called correlation (Gonzalez87al. Figure 3-6 illustrates 

how convolution faithful to the definition is carried out.

the pixel at x=l

image

binary (*) )

(fo ld  (+) )

43

x=0
mask

dot-product result 

(a) a dot-product at x=l

image

9 3 10 0 23 5 12 4

3 2 1

convolved result 
(b) convolution by scanning a mask

Figure 3-6 Convolution -  an alternative m ethod

The following is a Miranda implementation of row convolution which attempts to trace 

the definition relatively faithfully:
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conv2 mul add <mo,msk) im = correlation mul add (mo,reverse msk) im

correlation mul add mask im
= (fst im, [dot mul add mask im x I x<-domain im])

dot mul add mask im x
= accum (shiftMask $times im) 
where
accum * foldim add
shiftMask = translateRow (x-((leng mask) div 2)) mask 
times = binaryInterval mul

foldim op = (foldll op).snd

conv2 is defined ascorrelation; a mask is flipped by the re v e rs e  function which is defined 

in the standard environment.

In the definition of c o r r e l a t  io n , the qualifier in the list comprehension is the domain 

of the image. This means that the output image retains the domain of the original image, and 

hence the origin of the original image should be attached to the list of do t-products by the f s t  

function which returns the first element in a pair. This is enabled by the property of the dot- 

product function which returns the dot-product of the overlapped area between an image and 

a mask. If the same result as conv l is desired, it is possible to do so by changing the domain 

and the origin appropriately.

The dot-product of a mask and an image at the position x is defined as d o t, where the 

operations to produce a dot-product are parameterised as mul and add. Note that the type of 

the add function is different from the one previously used (page 47), since in the case of a dot- 

product of a row as in Figure 3-6 (a) the additive operation adds up (or accumulates) pixels, 

not rows. The sub-definition accum does this job. sh iftM ask  aligns the mask and the image 

appropriately using the designated position x and the length of the mask, t  im es defines the 

multiplication between the mask and the image by a binary pointwise operation. In the main 

definition of d o t, this operation is made into a do-it-yourself infix operator by attaching the 

symbol $ [BirdSSa] attempting to make the code slightly more readable.

Using the new definition of convolution, a row and an image convolution can be 

expressed as follows:

convolveRow2 = conv2 (*) (+)
convolveImage2 = conv2 convolveRow2 (binaryRow (+))
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It is very difficult to conclude which implementation is more readable. A feature of this 

implementation is that a convolved image retains the position and size of an original image. 

Also, programmers can alter the origin and size by changing the origin and the domain in the 

definition of c o r r e la t io n .  Treatment of the position and edges of a convolved pixel image 

is a relatively difficult and generic problem which is discussed in the next subsection.

3.5.6 Convolution and image boundary problem s

Our representation of an image with an origin give a solution to what is called the image 

boundary problem, or border effect, usually associated with local neighbourhood operations. 

Since a digital image has a finite size and outside the lx>undary can be considered as 

undefined, in the resulting image of a local neighbourhood operation, the pixel values adjacent 

to the image boundary, or more precisely, within a half the size of the mask, should be 

undefined. However, since there is often the restriction that an output image has the same size 

as an input image, which is to some extent related to representing an image as a 2D static array 

(Section 3.2.1), certain values are filled into the boundary pixels.

There are several other approaches to the image boundary problem. One approach is to 

use restricted local neighbourhoods at the boundaries, e.g. the a v e ra ^  over only those pixels 

within the image where the local neighbourhood overlaps the boundaiy. Other approaches 

assume certain pixel values outside the image area, for example: the centered, zero padded 

superposition assumes outside the boundary of an image is filled with zero; the centered, reflected 

boundary superposition assumes that an input image is reflected at the border; and the centered 

zero boundary superposition fills zero in the pixels near the border of an output image [Pratt91a]. 

Each of these approaches works well in some circumstances and badly in others. The approach 

we used always gives correct answers; however it sometimes discards useful information at 

the boundary.

In retrospect the parallel method implemented in Section 3.5.1 uses the assumption that 

outside an image is undefined, so that the resulting image of a convolution shrinks, or is 

"peeled-off" since the edge pixel values are not well-defined. One of the advantages of our 

image representation with an origin is that it is easy to alter the position or size of an image. 

This is why we can easily maintain the domain of a convolved image where the result is well- 

defined.

The alternative method in Section 3.5.5 assumes that the area outside an image is filled
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with zeros, i.e., the centred, zero padded superposition has been implemented. There is no 

difficulty in maintaining the domain of an original image by using the function domain to 

generate the original domain. In addition, the nature of the binary pointwise operation which 

returns only the overlapped area of its two operands works very well to calculate the dot- 

product of two rows.

Another solution to the image boundary problem may be to define an undefined pixel 

properly. For example, a pixel can be defined as either undefined or a value, expressed in 

Miranda using an algebraic data type as:

pixel * Undefined I Value *

An algebraic data type is a simple mechanism for users to define a new type. U n d efin ed  and 

V a lu e  are called constructors which must be capitalised in Miranda.

However, although this algebraic data type for a pixel implements an undefined pixel, 

it would be necessary to define all the operations on this pixel type: even a small operation 

such as "adding two pixels" would need to be redefined. In addition, since Miranda does not 

support overloading, each operation must have a unique name, i.e. adding two pixels cannot 

be written using a plus symbol, and this would lead to quite unreadable code. Haskell, on the 

other hand, supports overloading which may be useful to handle the type of a pixel as a tagged 

union of a value and 'undefined'.

3.6 Discussions -  What Are the Benefits?

3.6.1 Programming in  functional style

As described in Section 1.1, image processing may be most commonly described as a certain 

function applied to input images or descriptions which yields output images or descriptions. 

Therefore, the very basic style of functional programming, i.e.

output = function (inputs)

should be suitable for describing image processing applications. Most conventional 

imperative languages including Fortran, Pascal, C and C++, allow this functional style 

notation, as opposed to the procedural style. A series of function applications can be written 

as:
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output = functioriZ (functionl (inputs))

The use of functional notation can be understood as general convenience to avoid ade- 

effects and improve readability, and has been discussed in various progranuning paradigms 

not necessarily in functional languages. This includes the work by Breuel [Breuel92a] and Sato 

et al. [Sato90a], who both used C++ to implement image processing functions and discussed 

the convenience of functional notation. However, in these conventional imperative languages, 

a function can take other functions as arguments but cannot return a function as its return 

value^.

Whereas, functional languages^ provide higher-order functions which can both take 

and return functions, and thus'they allow composition of complicated functions using simple 

ones as their arguments. Also, many functional languages including Miranda have a 

mechanism to pass operators to a function, since an operator is just another form of a function. 

In addition, some syntactic facilities, namely the function composition operator and cunying, 

add more convenience to functional languages.

For example, when a sequence of functions is applied to inputs, as in the above pseudo 

code, it may be described as^:

compositeFunction = f.unction2 . functionl
output = compositeFunction inputs

This style, i.e. applying a series of functions to inputs, is very typical in image processing, and 

the resulting code is fairly readable. For example, the median filter function (medianlmage ) 

is dehned as a composite function of lo c a lH is t  image and u n a r y P o in tw ise  (page 51).

Currying is also useful since it can eliminate unnecessary arguments in definitions, and 

allows the programmer to supply some but not all arguments in applications. For example, in 

the basic convolution function (con v l on page 47), the multiplicative operation mul is a 

binary operation, but it makes a unary operation as the curried function, mul x, which is

4. Some of these languages, e.g. C or C++, allow pointers to functions to be passed and returned. 
This provides some of the power but not all; for example, it does not support partial application, 
in which a function has some parameter values filled in in one function, and is then passed to 
another. An example of this in image processing occurs if a pixel gamma correction function 
(which has two aiguments: the input pixel value, and the gamma value) is being passed to a 
lookup-table function, which expects an image and a function bf one argument.
5. Including languages such as Scheme and Common Lisp, in this context.
6. In Miranda a sequence of functions should be read from right to left, which may seem 
unnatural for some.
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passed to the unary pointwise function. Also, when various pointwise operations, such as 

addlm age and eqlm age, are defined (Section 3.3.2), it is obvious that addlm age takes two 

images, and so does b in a ry P o in tw ise . So, attaching two arguments for images in the 

definition is redundant.

3.6.2 Use of higher-order functions

As discussed in Section 1.1.2, there are many common control structures in image processing 

programs, and therefore higher-order functions should be particularly useful to handle 

various operations in a modular manner. We have successfully demonstrated the convenience 

this offers with a number of examples.

In the pointwise functions, for example, the actual operation on pixels is given as an 

argument, rather than hard-coded in the function. The local neighbourhood function also 

takes functions, multiplicative and additive, as its aiguments. Despite these names, these 

operations are not necessarily multiplication of pixels and pointwise addition of intervals, but 

can be anything, as long as they are not ill-typed^. Using these functions a large number of 

operations have been implemented. There are three kinds of usage of the higher-order local 

neighbourhood function:

• Linear operations by replacing a mask, which include neighbourhood averaging, 

Lapladan, and Sobel edge operator. Most languages can cope with this category, as data 

can be taken as an argument to a function.

• Non-linear but separable operations, such as minimum and maximum filters. Because 

the higher-order local neighbourhood function works on "ID first then 2D" basis and 

functions such as min and max can be calculated in any order within a neighbourhood, 

these operations can be implemented by replacing the arguments for additive and 

multiplicative operations.

• Non-linear and non-separable operations, such as median filtering. In this case, the local 

neighbourhood function is used as an access method to neighbouring pixels. The 

neighbourhood pixels are concatenated to form a list image, and then the actual 

operation, such as taking a median, is mapped onto the list image in a pointwise 

manner.

7. However, if mul is not commutative, or add is not both associative and commutative, the 
result may not be equal to the value specified by the definition of convolution in Section 3.5.1.
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Median filtering is not nonnally regarded as a form of convolution, but our higher-order 

function designed for convolution is so powerful that it has been implemented by simply 

passing appropriate arguments to the function.

The benefit of higher-order functions can also be described as separating control and 

operations which improves modularity of programs. The higher-order version of image 

operations can be regarded as describing a computational structure, and the actual operations 

are given later as the actual aiguments. Those structures and operations are dehned separately, 

and are reusable. Even if an image representation is changed and as a result the higher-order 

functions have to be modified, the actual operations may not need to be changed.

Although a number of people have stated this convenience for image processing 

applications (e.g., [Allsop91a, Breuel92a]), it is still surprising to see that such a laige number 

of algorithms can be implemented based on just die pointwise, translation and local 

neighbourhood functions.

3.6.3 Construction of 2D operations from ID

In defining the representation of an image, we took the basic strategy that an image is a 

collection of rows and a row is a collection of pixels. This representation improves modularity 

of programs considerably. The idea is to dehne a common data structure for rows and images 

using a polymorphic type: both images and rows are intervalsof somef/img ( " in te r v a l  *" in 

the code). The basic implementation style is to consider a ID version first, which is usually 

much easier to implement and debug. This ID operation should be defined as a higher-order 

polymorphic function so as to take itself as its argument. Then construct a 2D operation, which 

is fairly simple and easy to understand. This strategy is so important that it is going to be used 

even in more complicated operations described later.

A similar idea has been presented by Runciman [Runciman92b]. He implemented a 

Haskell version of a software package called TIP [ThimblebyS7a] for use in interactive 

terminal-based programs. He noted the close similarity of the line (ID) and screen (2D) data 

structures and proposed self-supporting delta structures. Using this polymorphic type, he 

demonstrated that the two data structures can be defined as instances of the same 

polymorphic type.
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3.6.4 Polymorphic typing and image categories

In Section 3.2.2 the type of a pixel was left as a parameter, or defined as a polymorphic type, 

and subsequent programming has been done in a polymorphic manner. This enables us to 

handle various categories of images, such as a gray, colour, boolean, or label image, in a 

unified manner. In other words, as far as programming is concerned, there is no need to worry 

about the category of images and no need to write separate code for each category. Miranda's 

type system infers the most general type as possible at compile time. In this way, polymorphic 

typing allows us to deal with various kinds of images in a unified manner.

As discussed in Section 1.1.3, there is a clear distinction between polymorphic strong 

typing and untyped systems, such as Lisp. Although untyped languages may also accept any 

type of pixels, they do not type-check at compile time, so that writing correct code may be 

rather difficult especially when complicated data structures are being used. On the other hand, 

polymorphic type systems allow any type and programs are type-checked at compile time, 

which may be considered to be a very convenient feature for image processing programming.

3.6.5 Using flexible data structures

We have introduced an origin to the image data structure, which gives various benefits to 

image processing programs described so fan the binary pointwise operation returns a 

resulting image only where both operand images are defined, so that it can cope with binary 

operations between images of different size and position (Section 33.1). Also, image 

translation is remarkably simple and efficient, requiring only shifting an origin. It also allows 

trandation by a non-integer amount (Section 3.4)®. In addition, an origin solves the image 

boundary problem associated with local neighbourhood operations (Section 33.6).

Introducing an origin to an image data structure can be done in most programming 

languages by using, e.g., record in Pascal or struct in C. For instance, an image processing 

library known as Woolz [Piper85a] stores the domain and the value of an image as separate 

members in a data structure. A benefit of its implementation is that it is possible to write a 

function to calculate the area of the union of two images without involving their data part. 

Also, the data outside the overlapped area in a binary operation can be retrieved if it is desired. 

Whereas in our representation, the image position is explicit but not the size, and the treatment

8. How to handle images which are not aligned with an integer grid will be described later in 
Chapter 5 and Chapter 6.
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of overlap is embedded in the basic list operation (map2). Therefore, redefinition of an image 

representation will be necessary if the above "area of union" function is to be implemented. 

However, in order to use these data structures in imperative languages, programmers usually 

have to allocate and deallocate memoiy explicitly. While in functional programming, use of 

those sophisticated data structures is veiy straightforward, as seen in the examples. This could 

be done using languages with automatic storage management, such as Lisp and Scheme, but 

these languages lack static type checking as described in Section 3.6.4, so that programming 

using these data structures may be more difficult.

3.7 Summary
I

In this chapter we have implemented the "with an origin" version which incorporates an 

origin in the image data structure. Using this representation a laige variety of image 

processing algorithms have been implemented. Since the techniques developed in this chapter 

are not exploiting the laziness of Miranda, they may be applied to any programming 

languages which share the features we have used. In the next chapter we will focus on laziness, 

which is the main subject of this thesis, and discuss how it can be utilised for writing innage 

processing programs.



Chapter 4: Laziness in Image
Processing
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4.1 Introduction

While the main theme of this thesis is laziness and how lazy languages can express image 

processing programs, the discussion so far has not particularly concerned lazy languages. That 

is, most functional languages, lazy or eager, and to some extent non functional languages may 

have the same benefits if programmed with the same principle.

In this chapter the discussion is focused on laziness. Rrst, laziness in the context of 

functional programming languages is described, where lazy evaluation is an implementation 

technique to allow non-strict semantics. Then, discussion moves on to the relationship 

between laziness and image processing. The meaning of the term laziness' is slightly different 

in the context of image processing, but it is a convenient feature to improve efficiency, and to 

improve modularity because progranrmners have to take little care in connecting functions 

together. The last part discusses algorithms which are considered to be particularly suitable if 

expressed in l a ^  languages. We call tiiese algorithms inherently lazy and lazy languages can 

express these algorithms in a natural fashion.

4.2 Lazy Evaluation

Lazy evaluation is an implementation technique of functional languages which allows non- 

strict semantics. If a function is non-strict, even if it is applied to an ill-defined argument, such 

as an error, undefined, or non-terminating, it may not produce an ill-defined result. As an 

example of non-strict functions, let us consider an infinite list with some ill-defined elements 

and a function to select an element from the list using list indexing:

list = [l/0,undef,sum[0..], 3]++[4.. ] 
select = (!)

where undef is 'a completely und^ned value^ defined in Miranda which has a polymorphic 

type, sum is applied to a list of numbers and returns their sum. [ 0 . .  ] is an infinite list starting 

at 0 and increasing by 1.

The following select operations succeed or fail depending on which element is required:
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Miranda «elect list 0
program error: attempt.to divide by zero 
Miranda select list 1 
program error : undefined 
Miranda select list 2
«not enough heap space —  task abandoned»
Miranda select list 3 
3
Miranda select list 1000
1000

An expression that does not denote a well-defined value in the normal mathematical 

sense is called bottom, written using the symbol _L. A function is said to be strict if it returns 

bottom whenever any of its aiguments (or any part of its arguments) is equal to bottom. All 

other functions are non-strict. In the above example, the function s e l e c t  is applied to l i s t  

which includes some elements which do not have a well-defined value, but s e l e c t  can still 

return a well-defined value. So it is non-strict.

42.1 Elements of lazy evaluation

This subsection briefly describes how laziness is achieved in the context of implementation of 

lazy functional languages. For more details, see [Peyton Jones87a] and [Peyton Jones92a]. The 

typical implementation of lazy evaluation includes the following three techniques:

1. Normal order reduction

As most functional languages are based on the lambda calculus, the implementation is 

usually explained as reduction of a lambda expression to its normal form. Normal order 

reduction, or outermost reduction, describes the reduction strategy which reduces the 

leftmost redex (reducible expression) first if there is more than one redex. It ensures that 

an aig;ument is required only when it is necessary because, in function application, the 

outermost redex is the function application itself. So, normal order reduction always 

evaluates the function before evaluating its arguments.

2. Graph reduction

Let us look at an example first: given the function definition, s q r  x = x * x, if we 

reduce the expression, s q r  (4+2), normal order reduction requires more reduction 

steps than its counterpart, called applicative order, or innermost reduction [BirdSSa]. This 

can be solved by a technique called graph reduction which replaces a shared expression
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with a pointer to avoid the same expression from being evaluated more than once. In 

this way, normal order graph reduction ensures that an argument is calculated only when 

it is required, and that it is evaluated at most once. The number of reduction steps is 

never more than applicative order reduction.

3. Stop at weak head normal form

If, for example, an expression to be reduced consists of structured data, such as a list or 

a tree, it may not be necessary to reduce the term into the normal form because only 

some elements in the structure may be required. On the other hand, certain information 

will always be required. So reduction should stop at a stage called weak head normal^rm, 

— see, e.g. [Peyton Jones87a] for a definition. For example, an expression of the form 

(expression! :expression2) is in weak head normal form even if each expression in the list 

may not be normal form. The reduction does not proceed until which element Is 

required is known.

4.2.2 Space efficiency of lazy evaluation

If we talk about efficiency, not only speed but space consumption is also an important factor. 

As Hughes discussed [Hughes84a], if a program involves a simple flow of data, such as 

counting the number of characters in a file, lazy evaluation provides a space efficient solution. 

Whereas, if there is branching or merging of streams of data which requires synchronisation 

between the streams due to the difference of data consumption speed, lazy evaluation may 

accumulate intermediate data structures. He proposed the use of language constructs to 

control the behaviour of programs. However, it has to be admitted that these constructs are 

rather difhcult to use. Separately, Wadler tackled this problem and proposed the listless 

transformer to automate elimination of intermediate structures [Wadler84a]. However, the 

applicability of this technique is fairly limited. More recently, this problem is called 

deforestation [WadlerSSa] to reduce intermediate tree structures and is still a difficult problem.

There is a lot of subtlety in space behaviour of lazy functional programs and it is difficult 

to predict or optimise the memoiy usage. For example, space leaks [Peyton Jones87a]. One 

possible suggestion from an application programmer's point of view is to use profiling tools 

[Runciman93a, Sansom93a] which provide information on space and time behaviour of a lazy 

functional program. Using this kind of tool, programmers may be able to analyse their 

programs and improve them (See Chapter 8).
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4.2.3 Drawbacks of lazy evaluation

As shown above lazy evaluation ensures that any subexpression is not evaluated until it is 

required, and that it is evaluated at most once. Therefore, on the one hand, lazy evaluation is 

more efficient because it minimises the number of reduction steps. Also, if a program deals 

with only a simple flow of data stream, n^m ory usage should be efficient. On the other hand, 

apparently, it involves a bigger overhead because each time reduction proceeds the system has 

to check whether the expression is in weak head normal form and decide whether or not to 

proceed. So, a drawback, but quite a major one, would be its execution speed. It should be said 

that, as far as speed is concerned, lazy evaluation pays off when the saving effect is greater 

than the overhead cost However, it is not only efficiency but also modularity of programs that 

matters to image processing programming, as discussed in the following.

43  How Laziness Contributes to Image Processing

4.3.1 Laziness contributes to efficiency

In image processing applications, the size of data to be handled is usually large and operations 

are expensive. Therefore, by reducing unnecessary operations, the efficiency should be much 

improved [Lau-Kee91a, Kozato92a]. Poole [Poole92a] also addressed this issue and is 

currently working on a system which allows overloading of multiple image representations 

using Haskell. In his system, these internal representations are not visible to an application 

programmer and the system automatically converts an image between different 

representations. Since the system works lazily, conversion takes place only when it is 

necessary, which may save a large amount of computation.

For example, if we compare an image with a filtered image to check the effect of the filter 

we would define the following function:

diffImage filter im = binaryPointwise (-) im (filter im)

Let us consider the case where an image is derived as the result of an expensive operation, i.e. 

how the expression:

diffImage filter (expensiveOperation image)

is reduced. Using graph reduction, e x p e n s iv e O p e r a t io n  is  evaluated only once, although  

the argument im appears twice in the right-hand side of the definition of d i f f  Image.
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Also, in image processing, the whole image may be not always required, but only a 

partial image or an image only in reduced resolution may be required. For example, if a user 

of an image processing system is interested in a particular part of an image, such as a 

suspicious part in a medical diagnostic image, only that part should be needed. If a satellite 

image of the size 6000 x 6000 is displayed on a TV resolution screen of the size 500 x 500, pixels 

should be interleaved either by sub-sampling or averaging. In these cases, a lazy system is 

considered to be more efficient because it evaluates only the required parts of an image. We 

will use a display function to produce demand for pixel evaluation because in order to display 

an image every pixel in the display must have a value. Note that a display function is just an 

example of a function which requires pixel evaluation. This may be done in lazy functional 

languages by evaluating the following:

display p a ra m e te r s image

where parameters should contain the information such as size and resolution of the display. 

Lazy languages should be able to propagate the demand through to the input image, where 

unnecessaiy operations are eliminated. This is where lazy languages are regarded as 

particularly suitable, and will be implemented in Chapter 5 and Chapter 6.

4.3.2 Laziness contributes to modularity

Hughes argued that laziness improves programs' modularity because different parts of a 

problem can be implemented as different functions which can be put together using lazy 

evaluation as the "glue" [Hughes89a]. This may be true for image processing, too, if 

programmers choose to utilise laziness as the "glue" to put functions together.

For example, let us consider a veiy simple operation, adding three images, in an 

imperative language and a lazy functional language.

Assume that an image is represented as a 2D array in an imperative language. A 

common control structure to handle such an image is a double loop. In order to avoid 

generating intermediate results, programmers may like to put several operations in one 

double loop. Let us call a function to do this add3. In pseudo code with a C-like syntax, this 

add3 function may be written as follows:

for (j=0; j<YSIZE; j++) 
for (1=0; KXSIZE; i++)

result[i][j]=iml[i][j]+im2[i][j]+im3[i][j];
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It would also be possible to define a function to add two innages. Let us call it add2 which can 

be defined as follows:

for (j=0; j<YSIZE; j++) 
for (1=0; KXSIZE; i++)

result(i][j]=iml[i)[j]+im2 (i] ( j];

Using this add2 function, it is possible to compose addition of three images by using 

functional notation, i.e., add2 ( add2 ( im l, im2 ) ,  im3 ). But this composite does not work in 

the same way as the above add3 because the usage of memory is different and hence the 

sequence of operations is different. This is considered to be a serious loss of modularity.

In lazy functional languages, on the other hand, if we pick a suitable representation for 

an image, there is not significant loss of performance even if we add three images by the style 

of add2 (add2 ( im l, im 2), im 3). Because, in this case, a piece of demand is to produce a 

pixel of the resulting image and the system automatically fetches necessaiy pixels from the 

input images.

Figure 4-1 intuitively shows the above discussion, where the "program" is expressed as 

the boxes and black arrows, and the gray arcs denote image data flows. In an imperative 

language, it is the programmers' role to decide which method is taken. Because (b) is more 

space efficient, programmers may wish to process in pixel by pixel manner by putting several 

operations in one double loop, which can be considered to be loss of modularity. Whereas in 

lazy functional languages, with a suitable representation, the method (b) may automatically 

be taken. Programmers do not have to w ony about the storage for intermediate results 

because it is handled by the system.

Figure 4-1 (b) handles an image as a lazy list of pixels, but of course there are other 

representations which implement different views of laziness in image processing. For 

example, if an image is represented by a hierarchical data structure such as a quadtree, it may 

be possible to produce a demand at a certain resolution. Hierarchical data structures are 

discussed in Chapter 6.
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add ------------------► add

(a) Image by image manner

(b) Pixel by pixel manner 

Figure 4-1 Adding three images in two ways

4.3.3 Degrees of laziness

There are various levels of laziness and 'full' laziness is representation dependent. For 

example, there are lazy image processing systems which allow laziness only at the image level. 

Poole's image analysis system [Poole92a] uses Miranda as the front-end of the system. 

However, images themselves are kept in the back-end image processing server. The principal 

reasons for this division are execution speed and the need to utilise existing image processing 

resources. Therefore, within Miranda, an image is not separable into pixels, but dealt with as 

one substance expressed as the type image* which is merely a string to store an image id. 

VPLl.O [Otto92a] is a visual programming system for image processing whose underlying 

computational model is demand-driven functional programming. It uses a separate C++ 

library as the image processing back-end which does not allow pixel level operations. Thus, 

like Poole's system, although VPL itself works lazily, the degree of laziness is restricted to the 

image level.
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As described in Section 42A, in the context of functional languages, 'full' laziness is 

usually defined in terms of function applications. So, the maximum degree of laziness depends 

upon the level of the primitive data types. For example, if an integer is represented in binary 

form, as a stream of bits, least significant first, then evaluating even  n will not require 

evaluating the more significant bits. Thus, it is possible that evaluating:

even (2 * B xpen s ive_ fu n c t ion _kn ow n _ to_r6 tu rn _an _ in t6ger)

would not need evaluate the expensive function. If, however, an atomic representation is used 

for integers, then primitive operations will automatically calculate all of the bits if any are 

needed, and so this laziness cannot occur. So, the degree of laziness depends on the 

representation and coding of data.

For images, this perhaps becomes clearer: an image represented by bitplanes could be 

lazy about not giving high precision; whereas an image represented by a tree of floating point 

numbers could be lazy about not evaluating unwanted areas of the image. In the 

implementation described so far, an image is basically represented as lists of pixels, and lists 

behave lazily in Miranda. Therefore, the degree of laziness is at the pixel level, i.e., only 

required pixels are calculated.

In order to get the benefit of this kind of lazy optimisation, the language must be 

implemented using knowledge of the data representation and it would be impossible to 

implement a language with every possible data coding method. Nevertheless, it may be a 

good idea to embed certain knowledge if the language is biased toward some specific 

applications.

4.3.4 Image processing and infinite data structures

The primary motivation of lazy evaluation is to allow non-strict functions, and one of its 

immediate benefits may be the use of infinite data structures. This allows very elegant 

solutions to various problems, e.g. finding prime numbers [BirdSSa], Newton-Raphson square 

roots, and numerical differentiation [HughesS9a]. Also, for graphics applications, infinite data 

structures such as fractals [ParsonsS9a] and quadgraphs [ParsonsS6a] can be implemented 

elegantly. What about image processing applications?

An image is usually very large, but not infinite. So, unless a program is erroneous, it will 

terminate even if it takes a long time. In this sense, a language for image processing does not



- 70 -

need to be non-strict. Therefore, if a significant gain can be achieved by eliminating non­

strictness, but retaining other features of laziness, e.g. the elimination of unnecessaiy 

operations, then it is worth considering. For example, Traub discussed the difference between 

non-strictness and laziness and proposed lenient evaluation [Traub91a]. This could be useful 

because it may reduce delay-related overhead.

4.4 Inherently Lazy Operations

There are some operations which could be called inherently lazy [Kozato92a]. That is, if these 

operations are programmed naively the program will be written in a demand-driven manner. 

We claim that lazy languages can describe these operations naturally. In this section, we will 

describe two examples, namely geometric transformations of pixel images and handling pixel 

and non-pixel images, of which geometric transformations will be described in detail in 

Chapter 5 and Chapter 6, and a method to combine pixel and non-pixel images will be 

implemented in Chapter 7.

4.4.1 Geometric transformations

Geometric transformations describe operations to map one coordinate to another coordinate 

which redefine the spatial relationship between points in an image. Geometric 

transformations include simple affine transformations, such as translation, scaling, rotation and 

shearing, and more elaborate ones, such as projective, bilinear and polynomial 

transformations. It is also termed image warping [Wolbeig90al.

Applications of geometric transformations are wide-ranging, but geometric correction 

and distortion may be the two principal factors. For example, image mosaicing [Schalkofi89a] is 

a technique to compose a large image by "patching-up" a number of small images, such as 

producing an image of the earth from a number of satellite images. In this case, because the 

images are distorted by the varied orientation of the satellite, they need to be corrected 

properly. Geometric correction is also used for stereo matching algorithms [Hom86a], and 

many other applications. Geometric distortion is commonly used in various packages, for 

example, graphics, desk top publishing and image handling, where images are enlaiged, 

shrunk, rotated, twisted, trimmed, and so forth.

As a simple case, affine transformations are described. An affine transformation 

preserves parallelism and can be usually expressed as a matrix multiplication on old
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coordinates (x,y) to produce new coordinates (X,Y) (Figure 4-2). Using homogeneous coordinates 

[Foley90a] an affine transfomnation can be written as:

[jf r i] = [x ). i]
“ 11 “ 12 “  

2̂1 2̂2 ® 
*̂31 ^yz ^

(Eq. 4-1)

Affine matrix

a„ fl,2 0 
2̂1 2̂2 ®
*31 “32

Figure 4-2 An affine transformation

Here, let us consider two problems in affine transformations of pixel images, namely 

holes & overlaps, and interpolation & quantisation errors:

a. Forward vs backward mapping

If the above matrix multiplication is directly applied to input pixels, the transformed 

image may include holes and overlaps. This is because the output image should be a 

pixel image, as well, although the transformed pixels may not fall onto the regular grid 

of the output image. This problem can be avoided if input pixels are considered as 

square patches that may be transformed into arbitrary quadrilaterals and output pixels 

are calculated by properly integrating these quadrilaterals. But this calculation is 

usually complicated and expensive [Wolberg90a].

For this reason, geometric transformations of pixel images are often programmed 

backwardly, i.e. in a demand-driven manner, using inverse mapping. In this respect, we 

regard geometric transformations as inherently lazy. What is normally done is to 

calculate an inverse transformation matrix, then scan the output image, calculate where
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the corresponding pixel comes from in the input image, take the surrounding pixels, 

and finally calculate the pixel value using appropriate interpolation.

b. Consecutive transformations

When a series of transformations is applied to a pixel image and their intermediate 

results are stored as pixel images, two problems may arise: (i) each transformation 

involves computationally expensive interpolation, and (ii) quantisation errors 

produced in each transformation are accumulated through the consecutive operations. 

In order to avoid these drawbacks, it is conrunon to calculate the composite matrix first, 

then process the image using inverse mapping. This, however, is purely for the sake of 

computing convenience, and also requires extra programming effort. Users would wish 

to process images as a straightforward sequence of transformations, e.g. rotate the 

image by 30 degrees, then translate it by (15,23), then scale it by (1.2,0.8), and so on.
i

Using a lazy functional language, the inverse mapping usually required for geometric 

transformations is provided by the evaluation strategy of the language and explicit 

programming of inverse mapping is not necessaiy. Programs can be written straightforwardly, 

so that the actual pixel calculation is not carried out unless users request the evaluation of 

pixels.

One example of an operation which forces evaluation of pixel is a display function. The 

output pixels in a rotated image are calculated only when o u tp u t in the following definition 

is evaluated:

image1 = rotate an gle inputImage 
output = display p a ra m e te rs imagel

Evaluation of im agel may return a certain description of the rotated image, but not the 

rotated pixel image.

In addition, consecutive transformations are expressed explicitly and straightforwardly 

as function composition, rather than matrix composition, and involve no intermediate 

interpolation or quantisation errors. This is because lazy languages do not try to calculate 

results until the complete transformation is known. Further, consecutive transformations are 

expressed even when the data they will act upon is not yet available. Consecutive 

transformations may look like the following code:
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consecutiveTransform = (rotate a n g le).(translate d isp la c e m e n t)  

output = display p a ra m e te r s (consecutiveTransform inputImage)

This way of programming can be regarded as more "natural" than imperative programming, 

because progranuners do not have to rearrange the sequence of low-level operations and 

carefully consider memory usage in order to avoid holes & overlaps, intermediate 

interpolation and quantisation errors.

4.4.2 Combining pixel images and non-pixel images

We started the discussion with the common assumption that an image is an array of pixels 

which is usually laige (Section 1.1). We are used to this representation veiy much and take 

pixels for granted. However, conceptually, an image should be a certain description of objects 

in the real world, which may be represented as a function of a continuous variable. Pixels are 

just one representation method in order for an image to be input through an array of sensors, 

stored in computer memory, or output to digital devices such as a frame buffer and a raster 

scan display. In other words, pixels are invented because t h ^  are convenient to handle images 

on digital computers, and they have nothing to do with abstract descriptions of objects in the 

real world.

With regard to describing the real world, lazy functional languages have potential 

because they are based on mathematical functions, so that there is little difficulty in handling 

continuous functions. Also, lazy functional languages have potential to be able to handle pixel 

images and images represented as continuous functions in a unified manner. In the previous 

subsection (Section 4.4.1), we discussed that lazy functional languages can display an image 

which has been arbitrarily transformed. To implement this technique, there should be a 

mechanism to get a display pixel value by interpolating arbitrarily placed pixels. This would 

also be seen as a look-up function of a pixel image using real number indexing. The type 

signature of such a function may look like:

lookup;: coord->image *->*

where the first argument is the type to designate a coordinate. Using this function, the display 

function will be implemented as a simple iteration.

With regard to a continuous function, this kind of look-up operation should be much 

easier because it is exactly the evaluation of the function itself. Let us call an image expressed
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as a function a function image of the type f  image, which can be expressed as:

fimage:;coord->*

And the function to look-up a pixel from a function image should have the type signature:

lookUpFI mage;:coord->fImage->*

Like the pixel images' case described above, the display function of a function image will be 

implemented as simple iteration of the lookup? image function. If we call it 

d isp lay F lm ag e , it can be used in the same way as the display function for a pixel image 

described in Section 4.4.1. For example, evaluating the expression:

displayFlmage p a ram eters  a_function_im age

will produce a list of lists of pixels.

In this way, a pixel image and a function image act in the same way. In non-lazy 

languages or imperative languages, if programmers wish to implement such a facility and 

program as such, it may be possible. But using lazy functional languages it should be easier, 

because, as already discussed, lazy languages cany out evaluation only when a result is 

required. Therefore, it is not the programmers' concern to prepare data in advance for possible 

and probably never occurring requests.

Before considering applications of combining pixel and non-pixel images, let us 

consider non-pixel images alone. Non-pixel images correspond to computer graphics in a 

broad sense, because objects are modelled not by pixels but by geometric data, e.g. a collection 

of polygons, and such geometries are transformed, lighting is calculated, a viewport is set on 

the geometric objects, and ultimately, they are scan-converted to pixels and displayed 

[Foley90a]. So, scan conversion is somewhat akin to the display function described so far, 

because the operation is driven by the demand to produce output pixels. A few approaches 

towards computer graphics using functional languages have been reported [Henderson82a, 

Parsons87a, Lakshminarasimhan89a, Checkland91a], but none discussed laziness of this 

nature although Parsons and Checkland used lazy functional languages. Parsons, in 

particular, implemented several scan conversion algorithms using Miranda, but his approach 

is that the function takes a graphical object and a raster, and updates the raster. Thus, it is not 

based on the kind of laziness which we have been discussing.
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The first example of œmbining pixel and non-pixel images is image synthesis using 

non-pixel images. In Section 3.3.4, we implemented condlm age to carry out the spatial 

conditional operation, where all the arguments had to be pixel images (See Figure 3-3). But 

now it is not a necessary constraint. For example, an alternative conditional operation can be 

implemented, where the first argument, i.e. a boolean image, is a function image, such as "if a 

coordinate is inside the specified circle, then True, otherwise False". This will produce a synthesised 

image, e.g., as shown in Figure 4-3.

I f  a  c o o rd in a te  is  
in s id e  th e  sp e c ifie d  c irc le  
th e n  T r u e ,  o th e rw is e  F a lse

Spatial Conditional 
Function

Figure 4-3 An image conditional function using a function image

Another application is object recognition by fitting models to photometry [Suetens92a]. 

The essence of the technique is to quantify similarities between models, or templates, and an 

image, and the simplest method is to use correlation. Models may be represented in pixels, or 

may be in some geometric description as in CAD models for machinery parts. Correlation is 

very similar to convolution except that a mask, or a template in this case, is not turned over (as 

was implemented in Section 3.5.5). The components of correlation are translation and 

pointwise operations, both of which can be implemented easily on function images, as well.

Yet another application is image filtering in the frequency domain. We have already
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implemented various kinds of filtering in the spatial domain using local neighbourhood 

operations (Section 33), but filtering is also possible in the frequency domain. This can be done 

by transforming an image into the frequency domain, e.g. by Fourier transformation, applying 

a filter in a pointwise manner, then converting it back to the spatial domain. Filters in the 

frequency domain are typically given as equations, such as the ideal filter and Butterworth 

filter [Gonzalez87a]. Therefore, operations between a pixel image and a function image will be 

convenient.

As we have seen, there are various applications of combining pixel and non-pixel 

images. Some of the examples will be implemented in Chapter 7

4.5 Summary

In this chapter we have discussed laziness not only in the context of functional language 

implementations but also in terms of image processing applications. As image processing 

involves very expensive operations, lazy languages may provide efficiency by eliminating 

unnecessary operations. In addition, laziness may contribute modularity of programs. We 

have presented two particular areas which lazy functional languages would su it geometric 

transformations and combining pixel and non-pixel images. These applications are 

implemented in the following three chapters.



Chapter 5: Affine Transformations
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5.1 Introduction

As discussed in the previous chapter, geometric transformations are one class of operations 

which lazy functional languages particularly suit because they are inherently lazy. This 

chapter describes an implementation of affine transformations, i.e. any combination of 

translation, scaling and rotation, written in Miranda. Using lists as the basic representation of 

an image, the lesson we learned in Chapter 3 is again followed, i.e. define a ID  structure and 

operations first, then compose 2D operations using higher-order functions. Also, the data 

structures are designed to separate the list part and the other parameter part using tuples. In 

Chapter 3, we introduced only an origin as the other parameter since the purpose was to 

implement translations. Whereas here, additional parameters will be attached as we are 

implementing scaling and rotation.

Programs are written to utilise the laziness of the language. The following is a summary 

of the benefits of using lazy languages to express geometric transformations as discussed in 

Chapter 4;

• Unless the user specifically asks an image to be displayed, no pixel operations are 

carried out.

• And only the required parts are calculated.

• Program description is forward mapping in a straightforward manner.

• Consecutive transformations are expressed as straightforward function composition 

and do not accumulate quantisation errors.

' It will be shown that pursuing these benefits of laziness leads to a novel way of image 

processing programming.

5.2 Design Overview

This section gives an overview of what is implemented and how it materialises the above 

benefits of laziness in concrete terms.

Let us assume a series of transformations illustrated in Figure 5-1, that is, "we would like 

to translate an image by (-05,1), rotate it by 45°, then scale it by (2,15), and display it as the pixel
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image whose origin is (0/)) and size 5x5".

(a) Original pixel image (b) Translate (-0.5,1) (c) Rotate 45°

(d) Scale (2,1.5) (e) Display using interpolation
□  - Original pixel 
O  - Display pixel

Figure 5-1 An example of affine transform ations

If this series of transformations was expressed in an imperative language, the program 

would be far from the above description. That is, as already discussed in Section 4.4.1, in order 

to avoid holes & overlaps, intermediate interpolation, and accumulation of quantisation 

errors, the transformation matrix for the whole process should be composed from each 

transformation matrix first, then the composite matrix should be inverted, and lastly each 

pixel should be calculated using inverse mapping and an appropriate interpolation method. 

An imperative version of affine transformations is shown later (Figure 5-6) with a discussion 

of the difference between functional and imperative styles (Section 55.3).

In Miranda, this series of transformations can be written very directly as :̂

transform = scale 2 1.5 . rotate (pi/4) . trans (-0.5) 1

This is just a function composition to express the transformations in a straightforward fashion.

1. pi is n  in Miranda.
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and no image calculation is involved. If this function is applied to an image, i.e. evaluating the 

expression:

transform image

produces the correct image data structure, but does not access or modify the pixel values 

themselves. This is due to the image representation adopted, in which the list part and the 

other parameters to describe the "shape" of the image are separated. (Please recall the image 

translation in Section 3.4 on page 44, where a translation did not affect the list part.)

A demand for calculating a display pixel is produced only by the user's desire to display 

the transformed image. The ^ stem  automatically propagates the demand through to input 

and calculates the output pixel values. For example, given an appropriate definition of the 

function d is p la y  which takes as arguments the origin and the size of the display (expressed 

as X and y coordinates), an interpolation function, and an image, evaluating the expression:

display 0 0 5 5 linear (transform image)

gives a 2D list of pixels to be displayed, shown as an array of Q 's  in Figure 5-1 (e), which may 

be transferred to a display device or stored as a 2D image file. It should be noted that only 

required display pixels, 5x5=25 in this example, are calculated. As the transformed image only 

partially covers the display grid, a requested pixel that falls outside the transformed image is 

given the background value. In addition, the interpolate function, l i n e a r  in this case to carry 

out bilinear interpolation, is parameterised, so that the other interpolation function can be 

slotted in.

In this way, the "output=funcHondnputsy* style of a functional language naturally leads 

to the same effect as the backward mapping required for geometric transformations, and 

avoids unnecessary operations and accumulation of quantisation errors.

5.3 Translation and Scaling

First, we will consider translation and scaling only. Because for these transformations 

operations can be completely separable for x and y directions, the principal method developed 

in Chapter 3 can be reused with some extension. In order to implement rotation, a little more 

thought is necessary which will be described in Section 5.4.
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5.3.1 Image representation

The data structures of an image are defined with the same principle as, but a little extension 

to, the ones used in the "with an origin" version (Section 32.2).

intervall * == (num,num,(*]) II (origin,length,pixel_list)
rowl * == intervall *
imagel * *= intervall (rowl *)

The type of a pixel is parameterised and the triple i n t e r v a l l  is used both for a row 

and an image. An interval is a straight line segment on which list elen^nts, i.e. either pixels or 

rows, are evenly distributed, and its members are an origin, length and a list. The first member 

refers to the starting position pf a list, i.e. either the x coordinate of a pixel list in the case of a 

row or the y coordinate where a list of rows starts in the case of an image, both in world 

coordinates. The second member represents the length of the interval (not the length of the 

list). This length parameter specifies the scaling of the interval.

Using the interval representation, it is possible to represent non-rectangular images (See 

Figure 3-2). Also, if an operation is defined on an interval, it may be used for a row or an image 

without change, which improves modularity. Further, transformations do not affect the list 

part, but only change its origin and length which describe the "shape" of the interval. Thus, 

no pixel operations are involved and it is efficient.

5.3.2 Transformations

Because the origin and the length of an interval are separated from the list part, translation is 

just a shift of the origin, and scaling is a shift of the origin plus scaling of the length since 

scaling is done about the world origin. An implementation of translation and scaling is as 

follows:

transRowl, scaleRowl : :nuni->rowl *->rowl * 
transRowl d (o,l,p) = (d+o, 1, p) 
scaleRowl sc (o,l,p) = (sc*o, sc*l, p)

translmagel,scalelmagel::num->num->imagel *->imagel *
translmagel dx dy (oy,ly,r) = transRowl dy (oy,ly,map (transRowl dx) r) 
scalelmagel sx sy (oy,ly,r) = scaleRowl sy (oy,ly,map (scaleRowl sx) r)

At this stage no pixel operation is carried out since translation and scaling only affect 

the parameters outside the pixels. It is also notable that 2D operations are constructed entirely
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in terms of ID operations.

5.3.3 Displaying an image

An image is displayed lazily, that is, a display function is designed so that demand for an 

output pixel drives evaluation. The whole process is somewhat akin to the stream model often 

used as a model of I/O  to functional programs [HudakSSaJ. In the stream model, a functional 

program takes a (possibly infinite) stream of data as input and delivers a (possibly infinite) 

stream of data as output, and this is done lazily, i.e. a request for output drives the functional 

program to read its input.

As constructing 2D operations can be done at a higher level and entirely in terms of ID  

operations, a method to display a ID image is described first.

Discarded pixels Pixels of interest

Transformed 
original pixels

Interpolate

Calculated pixels

Figure 5-2 Displaying pixels through interpolation

We use the display function as the demander of pixel evaluation, i.e. until the user 

wishes to display an image, pixel operations are not carried out. The process for displaying can 

be broken down into the following three sub-processes and illustrated in Figure 5-2:

a. Scanning the output image along the display grid. An interval between two display 

positions is 1.

b. Pulling out necessary pixels from the original image in order to calculate an output 
pixel. Due to transformations, the original pixels may not be aligned with the integer 

grid.
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c. Interpolation which calculates the value of the output pixel from the original pixels.

Because both input and output images are represented as lists, the overall process can 

be described as synchronisation of an output pixel list and an original pixel list through an 

interpolation function, and lazy evaluation does this automatically!

At first, a new intermediate data structure is introduced. The interval representation is 

convenient for transformations, but in order to get the actual pixel values, information about 

the position of each element will be needed. In the code this data structure is called p l i s t  

which is a list of pairs of (position, value), in which value is either a pixel or a row. Conversion 

from i n t e r v a l  to p l i s t  is straightforward as follows:

plist * == [(num,*)]

intervalToPlistintervall *->plist *
intervalToPlist (o,1,[a]) » [(o,a)]
intervalToPlist (o,l,p) = zip2 posList p

where posList - map ((+o).(*period)) [0..]
period “ l/(#p-l)

In lazy languages, only the necessary portions are converted to a plist, not the entire 

image. This means that transformed original pixels shown as Q 's  in Figure 5-2 are not 

calculated until those pixels are required.

The first function to consider is sub-process (a.), i.e. the driving force along the output 

display grid. The d is p  function defined below does this job:

disp::num->num->num->num->(num->**->plist *->**)->**->plist *->[**]
disp X n hi lo ifn bg pi 

= [] , if n<=0
= bg:disp (x+1) (n-1) hi lo ifn bg pi , if ~(lo<=x<=hi)
= ifn X bg plzdisp (x+1) (n-1) hi lo ifn bg (dropUpto (x+1) pi)

, otherwise

The first and second arguments specify the display grid, i.e. the starting position and the 

number of pixels to be displayed. The former is incremented and the latter decremented 

through recursive calls. The arguments h i  and lo  define the range of the original image and 

stay throughout the calls, i f n  is an interpolate function described later, into which currently 

nearest neighbour and linear interpolation can be slotted. Because the d is p  function is 

designed to be polymorphic, i.e. be able to display either a row or an image, it takes a 

background value, bg. This is because the background value for displaying a row is a pixel.
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whereas the value for displaying an innage is a row filled with the background pixels.

The next function to consider is sub-process (b.), i.e. the key function to synchronise the 

output and the original pixel lists. In order to interpolate pixels, an output pixel of interest 

must be between the two adjacent original pixels. The dropUpto function removes elements 

from the front until this criterion is satisfied. The arguments to the dropU pto function are a 

position and a plist:

dropUpto X ( ]  =  [ ]  

dropUpto X [xl] = [xl] 
dropUpto X (xl:x2:xs)

“ (xl:x2:xs) , if isBetween x (positionOf xl) (positionOf x2)
= dropUpto X (x2:x$) , otherwise

isBetween a b c = (b<=a<=c) \/ (b>=a>=c) 
positionOf (p,v) « p

And lastly, interpolation, i.e. (c.), is defined. An implementation of nearest neighbour 

interpolation is given below. The n e a r e s t  function takes a position of the display grid x, the 

background value bg, and a plist. It compares x with the positions of the first two elements in 

the plist and returns the value of the nearer.

nearestnum->*->plist *->* 
nearest x bg (] = bg 
nearest x bg (a] = valueOf a 
nearest x bg (al;a2:as)

= valueOf al , if dist x (positionOf al) <= dist x (positionOf a2)
= valueOf a2 , otherwise

dist a b = abs (a-b) 
valueOf (p,v) = v

The nearest neighbour interpolation does not involve the value elements in (position, value) 

pairs, so the functionnearest can take a plist for either a row or an image.

As for linear interpolation, however, it requires the value elements. This means that the 

types of the functions for interpolating a row and an image differ, and separate functions are 

hence necessary, l i l  is the function to interpolate pixels, which takes the position and two 

surroundingelementsof a plistand does ordinary linear interpolation. 112 interpolates a plist 

of lists of pixels, which is implemented as a mapping of the function l i l  on each row. The 

function l i n e a r 0 is a higher-order function that makes the top-level type signatures
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compatible. Hence;

1inearl = linear0 lil 
linear2 = linearO 112

linearO fn x bg (] = bg
linearO fn x bg [a] = bg
linearO fn x bg (al:a2: as) = fn x al a2

111 X (xl,vl) (x2,v2) = vl+(v2-vl)*(x-xl)/(x2-xl) , if x2 ~= xl
= bgp , otherwise

112 y (yl,vsl) (y2,vs2) = map2 (lil y) ysl ys2
where ysl = zip2 (repeat yl) vsl 

ys2 = zip2 (repeat y2) vs2
bgp = 0

In this way all the necessary functions have been implemented.

Using the basic disp function, we can compose a 2D display function. In the following, 

dispRowl and displmagel display a row and an image respectively:

dispRowl X n ifn (o,l,p)
= disp X n ( 0 + 1 )  o ifn bgp (intervalToPlist (o,1,p))

displmagel x y xn yn ifnl ifn2 (o,l,p)
= disp y yn (o+l) o ifn2 bg (intervalToPlist iml) 
where bg = rep xn bgp

iml = (0,1,map (dispRowl x xn ifnl) p)

Flow of demand
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pixels aligned in x direction Q transformed pixels (H

Figure 5-3 Interpolation in two steps
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How an image is displayed is shown in Figure 5-3. Transformed pixels (c) are aligned in 

the X direction (b), and then y (a), using appropriate interpolate functions. But this is done in 

a demand-driven manner. So, a better explanation would be: in order to display a pixel, 

surrounding pixels are required for interpolation. In order to interpolate the pixel in the y 

direction, pixels are needed which have been interpolated in the x direction. A demand to 

produce a display pixel is propagated from (a)->(b)—>(c), while a pixel is calculated from 

(c)-»(b)->(a). In addition, the positions of the transformed pixels in (c) are not calculated unless 

they are required. In this way, laziness in Miranda naturally leads to the backward mapping 

required for geometric transformations without programming backwards.

5.3.4 Discussions

For translation and scaling, operations for x and y directions are completely separable. 

Therefore, the interval representation can be used for an image, as well as a row. For rotation, 

this is no longer true, as the transformations will interfere in each direction. Certain 

modiHcations are necessary, which will be described in the next section.

5.4 Rotation, Translation and Scaling

5.4.1 Image representation

A vector style representation for a row is introduced in order to implement rotation. A row is 

a straight line segment on which pixels are evenly distributed and is represented as a triple of 

an origin (or a start position), length and a pixel list, where the origin is a pair of x and y 

coordinates and the length is a pair of measurements in x and y directions. Since all the 

parameters to describe the "shape" are included in the definition of a row, an image is just a 

list of rows. The definitions are as follows:

row2 * == ((num,num), (num,num) , (*] )
lmage2 * == (row2 *]

In addition, the plist structure defined in Section 5.3.3, i.e. a list of (position, value) pairs, 

is used. In the following definition, row T oP list takes the x elements of a row and converts 

it to a plist, and row T oPlistY  does the same operation for the y elements:
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rowToPllst;;row2 *->plist *
rowToPlist ((ox,oy),1,[a]) = ((ox,a)]
rowToPlist ((ox,oy),(lx,ly),p)

«= zip2 posList p
where posList = map ((+ox).(*period)) [0..] 

period = lx/(#p-l)

rowToPlistY ((ox,oy),(Ix,ly),p) « rowToPlist ((oy,ox),(ly,Ix),p)

Basically, there is not much difference between the data structures defined here and the 

ones previously used. If only the x or y elements of the origin and the length of r  ow2 are taken, 

it is identical to i n t e r v a l l  defined on page 81. Thus, it can be seen that most functions we 

need to implement will be not very different from the ones defined so far.

5.4.2 Transformations

Transformations only affect the origin and length parts, but not the list part. As an image is 

just a list of rows, 2D operations can be implemented as ordinary function mapping:

transRow2 dx dy (o,l,p) = (pairl ((+dx),(+dy)) o,l,p)

scaleRow2 sex soy (o,l,p) «= (sol o, sol l,p)
where scl - pairl ((*scx),(*scy))

rotateRow2 th (o,l,p) = (rot o,rot l,p)
where rot = pair2 (rotx th, roty th)

rotx th X y = x*(cos th)-y*(sin th) 
roty th X y = x*(sin th)+y*(cos th)

pairl (fnl,fn2) (x,y) = (fnl x, fn2 y) 
pair2 (fnl,fn2) (x,y) = (fnl x y,fn2 x y)

translmage2 dx dy = map (transRow2 dx dy) 
scalelmage2 sex scy = map (scaleRow2 sex scy) 
rotateImage2 th = map (rotateRow2 th)

By combining these functions, an arbitrary affine transformation can be described as a 

function composition.

5.4.3 Displaying an image

As for the basic display function (d isp ) to produce a list of pixels from a plist, the one defined 

in Section 53.3 (page 83) can be used unchanged. All that is needed to display a rotated image
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is to select appropriate elements and rearrange function arguments. The following is the d is p  

function just as a reminder:

disp::num->nuni->num->num->(num->**->plist *->**)->**->plist *->[**]
disp X n hi lo ifn bg pi 

» I) , if n<=0
= bgtdisp (x+1) (n-1) hi lo ifn bg pi , if (lo<*x<-hi)
« ifn X bg plrdisp (x+1) (n-1) hi lo ifn bg (dropUpto (x+1) pi)

, otherwise

dropU pto used in this definition is identical to the previous definition (page 84).

The procedure to interpolate and display a transformed image is in two steps and 

illustrated in Figure 5-4. In (c>, thick lines show transformed rows. In the first pass, the d is p  

function is applied only to the x elements of rows, which yields pixels on the original rows but 

aligned with the grid of display in the x direction (0 's  in Figure 5-4 (b)>. If these elements are 

taken and viewed as rows in the y direction (thick gray lines in (b)>, then the situation is exactly 

the same as the x direction. The d is p  function is usable without any changes, and this results 

in pixels aligned with the grid in both directions.

The actual execution, however, is carried out backwards. As shown by the arcs in Figure 

5-4, a demand is produced by a request to display a pixel (Figure 5-4 (a)). The demand is then 

propagated and produces demands for two surrounding pixels in the y direction (see (b)>. 

These demands are propagated to (c) and produces demands for surrounding pixels on 

transformed rows, which further produces requests for calculation of the transformed rows. 

Since rows are represented as lists, these operations are carried out not randomly, but 

sequentially along the display grid.

Figure 5-4 may look somewhat like a well-known technique called two-pass 

transformations [Catmull80a, Tanaka86a], in which a 2D transformation, such as a rotation, is 

decomposed into two ID transformations. However, the two-pass algorithms divide a 

transformation into two steps with an intermediate pixel image being produced. Whereas in 

lazy languages, transformation and interpolation are carried out based on pixel-by-pixel 

requests. Therefore, no image is produced between the two interpolation steps.
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Figure 5-4 Displaying rotated pixels

From a programmer's point of view the above procedure is implemented automatically 

by the laziness of the language. Program description is direct and straightforward as follows:

dispPlist::num->num->(num->*->plist *->*)->*->plist *->(*] 
dispPlist X n ifn bg pi = disp x n hi lo ifn bg pi

where hi = positionOf (last pi)
lo = positionOf (hd pi)

dispRow2: :num->num->(num->*->plist *->*)->*->row2 *->row2 *
dispRow2 X n ifn bg ((ox,oy),(Ix,ly),p)

= ((X,ly/lx*(x-ox)+oy),(n-1,ly/lx*(n-1)),dsp) 
where
dsp = disp X n (ox+lx) ox ifn bg (rowToPlist ((ox,oy), (Ix, ly),p))

displmage2; ;num->num->num->num->(num->*->plist *->*)
->*->image2 *->[ [*)] 

displmage2 x y xn yn ifn bg im
= transpose (map (dispPlist y yn ifn bg) (transpose iml)) 
where iml = map (rowToPlistY.dispRow2 x xn ifn bg) im

ln d isp lm age2 , the input image im is interpolated to align with the integer grid in the x 

direction by mapping dispRow2 on rows, then these rows are converted into p lists in the y 

direction using rowToPlistY. These plists are transposed for view ing as plists in the x 

direction and interpolated using d is p P l is t ,  then transposed back to the y direction. The 

tra n sp o se  function defined in the standard environment does these transpose operations. 

All these high level functions are defined using the basic d isp  function.

With regard to the functions for interpolation, the nearest neighbour interpolation
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(n e a re s t)  defined on page 84 and the linear interpolation (linearl)onpageS5canbeused . 

There is no need to prepare separate interpolate functions for pixels and rows, as only one kind 

of interpolation of pixels is carried out in both directions. *

5.5 Discussions

5.5.1 Limitation of the programs

We have so far used lists as the basic representation of an image. This means that the 

algorithms make the assumption that elements (pixels or rows) are aligned in ascending order. 

In addition, as shown in Figure 5-2, a display pixel list and an original pixel list must extend 

in the same direction. So, if an image is rotated more than ±90® the functions need to be 

modified to traverse the original list in the opposite direction. Also, there may be a precision 

problem if the rotation angle exceeds ±45® and approaches ±90®, since the slope of the original 

row becomes too steep to interpolate pixels properly using x elements.

As for other geometric transformations the code needs to be modified. For example, in 

order to implement perspective transformations, in which linearity, but not parallelism and 

spacing, of lines is preserved, transformation functions to rotate an image about x and y axes 

may need to be added. Also the function to convert a row to a plist should be modified to 

implement appropriate forward mapping. But after plists have been calculated, the functions 

for display can stay unchanged since the relation between the two lists (Figure 5-2) is the same 

even if the original pixels are not evenly distributed.

More complicated transformations in lazy functional languages are subject to further 

research, since pixels are not aligned on straight lines. However, the principle of separating 

parameters to describe the "shape" may be useful, though these parameters may represent 

complicated equations. Above all, laziness would become more useful when complicated 

transformations are implemented, because pixels are evaluated only when necessary and the 

complicated transformations may involve expensive operations.

5.5.2 Representation and efficiency

It has been discussed in Chapter 4 that lazy languages should be efficient because only 

required data is calculated. Using lists as the basic data structure means they have to be 

traversed sequentially from the top. If a small number of pixels near the beginning are
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required (Figure 5-5 (a)), lazy languages should be efficient as the rest of the list is never visited 

or evaluated. However, if the pixels near the end are required (Figure 5-5 (b)), although the 

pixels on the original row are not evaluated unless requested (See the list selection example on 

page 62), at least the spine of the list will have to be traversed, i.e. elements will be visited from 

the head sequentially. If an image is large, hence the list isdong, this traversal may be costly. 

Also, if pixels are required only sparsely (Figure 5-5 (c>), e.g. because the original image has 

been reduced, the skeleton of the list will be sequentially traversed although evaluation of the 

elements will take place only at required positions.

Original row

Display pixels

(a) Near the top

(b) Near the end

(c) Sparse

Figure 5-5 Spatial relationship betw een original and d isp lay  p ixe ls

In order to deal with these cases efficiently, hierarchical data structures such as trees and 

quadtrees may have higher potential since they are lazy about unwanted areas. These data 

structures are discussed in the next chapter.

5.5.3 Imperative vs lazy functional style

We have demonstrated how geometric transformations can be programmed straightforwardly 

in a lazy functional language. In contrast, in a conventional imperative language, 

programmers have to do considerably more work to provide composition of geometric 

transformations in a modular fashion. Figure 5-6 gives an example of an affine transformation 

written in a language with C-like syntax^ to show how it would look. In order to avoid holes 

and overlaps, backward mapping is implemented by inverting a transformation matrix and 

scanning the output raster. When a series of transformations is required, this function will be

2. It should be noted that this is a toy-code to show the skeleton and much work is required for 
real use.
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repeatedly applied. Each application will require interpolation and accumulate quantisation 

errors. So, a composite matrix should be calculated before this function is applied. From this 

observation, although the problem of accumulating errors due to the application of successive 

transformations has to be tackled in all programming languages, it can be said that Ae lazy 

functional languages provide a neater solution.

However, with regard to the style of programming, it is difficult to conclude that the 

lazy functional version is "more natural". The principal reason would be that we are used to 

viewing a pixel image as an array of pixels, and handling an image as lazy lists is quite an 

unusual way. On the other hand, if Miranda had had arrays it would have been very difficult 

to come up with the method we have developed in this chapter. Haskell does support arrays. 

Use of arrays in lazy functional languages to write image processing programs would be an 

interesting subject for further research in terms of efficiency and ease of reading and writing.

/* Affine using bi-linear interpolation */
float input_image[XSl][YSl],output image[XS2][YS2];
int i, j, ui, vi;
float u, V ,  vail, val2, trans[3] [3], inverse[3] [3];
/ * Calculate inverse transformation matrix */ 
invert(trans, inverse);
/* Double loop to scan the output image */ 
for (i=0; i<XS2; i++) { 
for (j=0; j<YS2; j++) {

/* Calculate the corresponding position 
in the input image */
u=i*inverse[0][0]+j*inverse[0](1]+inverse[0][2]; 
v=i*inverse[l][0]+j*inverse(l](1]+inverse[1][2];
/* If the pixel is out-of-bounds, assign the background value */ 
if (u<0 I I u>XSl II v<0 I I v>YSl) 

outputimage[i][j]=BACKGROUND; 
else .{

/* Bi-linear interpolation */ 
ui=(int)u; 
vi=(int)v;
vall=(1-u+ui)*input_image[ui][vi]

+(u-ui)*input_image[ui+1][vi]; 
val2=(1-u+ui)*input_image[ui][vi+1]

+(u-ui)*input_image[ui+1][vi+1]; 
output image[i][j]=vall*(1-v+vi)+val2*(v-vi);

}
}

}

Figure 5-6 An affine transform ation in  C
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5.6 Summary

In this chapter we have presented an implementation of affine transformations in Miranda. 

Validity of the discussion in Chapter 4 has been proved with the actual code. The main 

contributor is laziness embedded in the language, and it has been shown that the program 

description is straightforward and modular by positively utilising laziness in constructing the 

algorithms. Also, the code eliminates unnecessaiy calculations which are often very expensive 

in image processing. Some drawbacks have also been pointed out. The principal difficulty lies 

in the basic representation of an image, i.e. the use of lists, which must be traversed from the 

beginning. In the next chapter we will tackle this problem by implementing hierarchical data 

structures which are lazy about unwanted areas.



Chapter 6: Using Hierarchical Data
Structures
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6.1 Introduction

In the previous chapter we implemented affine transformations and display using lists as the 

basic image representation. In this chapter we present the same algorithms employing 

hierarchicaT data structures instead. Basically, two implementations are presented: the first 

one uses a binary tree to represent a row and composes a 2D image as a binary tree of binary 

trees, which is an extension to the method we have used so far, i.e. define ID operations first, 

then compose 2D operations using higher-order functions. We will demonstrate that this 

principle works for hierarchical data structures, as well, and that programming is fairly simple 

and easy. The second implementation uses a quadtree as the fundamental data structure to 

represent an image. A quadtree has an advantage in terms of space efficiency over a binary 

tree of binary trees, but it is a 2D structure and functions should be implemented directly for 

2D. Using these data structures, it will be shown that lazy evaluation efficiently implements 

the display functionality where an image is displayed only at required region and resolution.

6.2 An Overview of Hierarchical Data Structures

This section gives a brief introduction to hierarchical data structures. For more detailed 

descriptions and overall surveys, readers may refer to [Samet84a, SametSSa, Samet90a].

Using hierarchical data structures including binary trees, quadtrees and octrees to 

represent ID, 2D and 3D data respectively is an important technique in image processing and 

computer graphics. The fundamental concept is to recursively subdivide the space, regardless 

of the dimension, until all the subspaces have a "simple" description such as a uniform data 

value. Figure 6-1 shows an example of a row and its corresponding binary tree, and an image 

and its quadtree.

In the tree representations the root node corresponds to the entire data, from which 

subdivision starts. Each child of a node represents an interval, quadrant, or octant in a binary 

tree, quadtree, or octree, respectively. Tree condensation describes an operation to replace a node 

with children of a uniform value, called a redundant node [Hunter79a], with a Imf node of that 

value for which no subdivision is necessary.
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(a) A row (b) Its binary tree

(c) An image

NE,NW

(d) Its quadtree

Figure 6-1 Example binary tree and  quadtree
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One of the primary advantages of using such hierarchical data structures is the data 

compression effect By tree condensation, if an image contains large homogeneous areas the 

number of nodes will be reduced considerably. Another advantage is the variable resolution 

aspect, i.e., as you go down the hierarchy the resolution becomes finer and finer. This is 

particularly useful when the scene is more complex than the required resolution because it is 

not necessary to traverse the whole data. It is also useful when transmitting an image with 

progressive encoding, where a rough sketch of an image is sent first, followed by more detailed 

descriptions to make the image more and more precise [KnowltonSOa, Wallace91a].

With regard to the implementations of hierarchical data structures, the most obvious 

one is to use pointers. Also, various pointerless representations have been proposed, such as a 

linear quadtree [Gargantini82a] which carries leaf nodes encoded as location codes, and DF- 

expression [KawaguchiSOa] which is based on preordered traversal of nodes. The primary 

purpose of using these pointerless representations is further reduction of memory usage.

6.3 Hierarchical Data Structures and Lazy Evaluation

The design goal of this chapter is exactly the same as the one described in the previous chapter 

(See Section 5.2). That is, affine transformations and display of an innage through interpolation; 

where transformations are implemented as separate functions, a series of transformations is 

expressed as a function composition and does not involve costly interpolation or quantisation 

errors, and without an explicit request for displaying a transformed image no pixel 

calculations are carried out.

Linear transformations of images represented by hierarchical data structures have been 

proposed by Hunter and Steiglitz [Hunter79b] for quadtrees and by Meagher [Meagher82a] 

for octrees. Here the transformations are performed on a hierarchical data structure and 

produce a hierarchical data structure as a result. Our transformation does not change the data 

structure itself, rather it only changes the parameters which describe the "shape" of the tree. 

When a display function is applied to an image represented by a hierarchical data structure, a 

2D list of display pixels is produced. This principle is very similar to the implementation 

presented in the previous chapter.

In the previous implementation using lists, some drawbacks were pointed out (Section

5.5.1 and Section 55.2). That is, although lazy evaluation eliminates unnecessary and
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expensive operations, such as evaluating unnecessary list elements, the list must still be 

traversed sequentially from the top in order to search for required pixels. This could be 

expensive if the list is long and required pixels are near to the end of the list, or pixels are 

required only spxarsely Also, there is a restriction that a display pixel list and a transformed 

original pixel list must extend in the same direction.

The aim of using hierarchical data structures is to overcome these drawbacks and can 

be summarised as follows:

• The implementation should be more efficient when pixels are required only at a reduced 

resolution, because it is not necessary to traverse trees down to the pixel level.

• Hierarchical data structures generally allow more efficient random access than linear 

lists and access speed is normally independent of the position in an image. Thus, (i) 

there will be less restriction about the range of geometric transformations, and (ii) even 

when pixels are required from the rear, it will not slow down its access speed.

Related to the second point, coding may be easier compared with the one using lazy lists 

(implemented in Section 53.3) because, using hierarchical data structures, random access 

allows an image to be treated more like arrays, with which most image processing 

programmers are familiar.

6.4 A Binary Tree of Binary Trees

6.4.1 Relation w ith other data structures

The first attempt is to use a binary tree of binary trees of pixels, or simply a tree of trees, as a 

basic representation of an image. The motivation for not implementing quadtrees straight 

away is to investigate whether the method we have developed, i.e. composing higher­

dimensional operations from lower ones, can be applied or not. In general, ID data structures 

and operations are easier to implement and debug and higher-order functions should make 

construction of higher-order operations straightforward.

As far as space efficiency is concerned, a tree of trees requires more storage than a 

quadtree. A simple calculation shows that, for representing NxN pixels using pointer-based 

representations, a tree of tree requires at most N^-1 nodes, each has two pointers. Whereas a 

quadtree requires at most (N^-l)/3 nodes, each has four pointers. This could, however, be
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traded off against ease of programming, especially when 3D or higher dimensional data are 

considered. As our interest is in programming aspects, the approach to compose higher-order 

operations from lower ones may be worth investigating.

With regard to using binary trees for representing images, Knowlton [KnowltonSOa] 

and later Ouksel et al. [Ouksel92a] reported the bintree representation of an image. Abintree is 

produced by subdividing an image into halves, instead of quarters for a quadtree (Figure 6-2 

(b)). Whereas our approach is to subdivide an image into a tree of rows, each of which is 

further subdivided into a tree of pixels (Figure 6-2 (c)). Thus, although they both use binary 

trees as the fundamental data structure, they are different. It should be noted that, in terms of 

compression effect, a bintree is better than a tree of trees, and is better still than a quadtree since 

the minimum unit of tree condensation is two elements.

(a) An image

Left Right

Bottom

(b) Its bintree

Bottom

Row4Row3,

(c) Its tree of trees

Figure 6-2 A bintree and a tree o f trees

6 ,4 .2  Im a g e  r e p r e s e n ta t io n

A tree can be introduced by an algebraic data type definition. The type of a leaf node is 

parameterised by using the type variable * which is the type of a pixel in the same way as we
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parameterised it in previous representations (See Section 3.2.2 for example), and a tree is 

defined as a recursive data type as follows:

::= Nil I Leaf * I Node (tree *) (tree *)

This can be read as "a tree of * comprises either Nil, Leaf of *, or Node which consists of two further 

trees of

Like the definition in Section 5.3.1, the actual pixel data part and the parameters to 

describe the "shape" should be separated. Those parameters should be defined so as to make 

handling the data part easy. With the tree definition above, we use the position of the root, the 

length of the first step to go down the tree one level, and the tree itself. The reason is that these 

parameters are conveniently used when a tree is traversed from the root. The data structure 

interval? is defined as a triple of these two parameters and a tree using a parameterised 

type for a pixel, as follows:

interval? * == (num,num,tree *) 
rowT * -= interval? *
image? * == interval? (row? *)

For example, in Figure 6-3, as the row extends from x=0 to 8, its root position is x=4 and 

the first step is 2. So, the row is expressed as:

(4,2,Node (Node (Node (Leaf 3) (Leaf 42)) (Leaf 36)) (Node (Node (Leaf 10) 
(Leaf 23)) (Leaf 23)))

root position = 4

0 1 2 3 4 5 6 7 8

Figure 6-3 A pixel tree, root position and first step
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It should be noted that the definitions for a row and an image are identical to the ones 

defined in Section 5.3.1. Another point to note is that we introduced Nil in the tree definition, 

so that it is possible to represent non-rectangular shapes including ones with holes. If the size 

of a tree is not a power of two, the tree is still treated as having potential to represent the size 

up to a minimum power of two which is larger than the size. A tree is strictly balanced in the 

sense that the shape of the tree represents exactly the shape of the interval, even if the tree itself 

may not be a balanced tree. For example. Figure 6-4 contains a hole and the size is not equal to 

the 2's power, but it can be treated as the tree whose potential maximum size is 8. This can be 

represented as:

(4,2,Node (Node (Node (Leaf 3) (Leaf 42)) (Node (Leaf 36) Nil)) (Node (Node 
(Leaf 10) (Leaf 23)) N i l ) )

root position = 4

Nil

Nil
►  X

0 1 2 3 4 5 6 7 8

Figure 6-4 A row w ith  N il's  

6.4.3 Generating an image represented by a tree of trees

An image is typically represented by an array of pixels, or a list in Miranda when, for example, 

input from a file. So the first thing to be done is to convert an image of the list representation 

into the tree representation. As usual, a function in ID is considered first, then a 2D operation 

will be implemented in a higher level.

It is assumed that pixels in a row are left packed and rows in an image are bottom 

packed, i.e. the origin of an original image is (0,0) and the elements are aligned with the integer 

grid. The basic makeTree function is defined as follows:
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makeTree::[*]->num->tree * 
makeTree [] s = Nil
makeTree [x] 1 ■= Leaf x « ■
makeTree list s * Node (makeTree left half) (makeTree right half) 

where left = take half list 
right = drop half list 
half “ s div 2

The second argument of the type num is used as the size of the tree to be made out of the list, 

since the possible size of a tree is a power of 2 though the number of pixels in a list may not be 

equal to it. It would be possible to calculate the size using the length of a list, but taking the 

length each time may be expensive'. Thus, the size argument is carried which is halved at each 

recursive call.

Using this makeTree function, the other related functions can be defined: l i s  tToTree  

converts a ID list to a tree, l i s t T o l n t e r v a l  a ID list to an interval, and lis tT o Im a g e  a 2D 

list to an image. The definitions for these functions follow:

listToImage::[(*]]->imageT *
listToImage 1 = listTolnterval (map listTolnterval 1) 

listTolnterval::(*]->intervalT *
listTolnterval 1 = (s/2, s/4, condenseTree (listToTree 1)) 

w)iere s = maxSize (#1)

listToTree:;[*]->tree *
listToTree 1 = makeTree 1 (maxSize (#1))

maxSize 0 = 0  
maxSize 1 = 1
maxSize n = 2''(entier (log (n-1) /log 2)+l)

In the l i s t T o l n t e r v a l  function, a tree is condensed by the function c o n d e n se T r e e  which  

will be described in the next subsection.

6.4.4 Tree condensation

A higher-order function to rearrange a tree can be defined as follows, which takes a function 

to reshape a tree and applies the function recursively to its children:

1. Related discussion is presented in Chapter 8.
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ref ormTree :: (tree *->tree *)->tree *->tree *
reformTree f (Leaf x) = f (Leaf x) - ■
reformTree f Nil * f Nil
reformTree f (Node tl t2) = f (Node (reformTree f tl) (reformTree f t2) )

The tree condensation function is defined just by passing a function to convert a Node

with two Leaf's of the same value into a Leaf of that value, or two Nil's to one:

condenseTree::tree *->tree * 
condenseTree = reformTree fun

where fun (Node (Leaf x) (Leaf x)) = Leaf x
fun (Node Nil Nil) = Nil
fun t = t

6.4.5 Translation and scaling

In order to define geometric transformation functions, it is necessary to define a higher-order 

function to map a function over each element in a tree. The effect of the function is the same as 

the map function on a list. The code for this function can be defined as follows:

mapTree::(*->**)->tree *->tree ** 
mapTree f Nil = Nil
mapTree f (Leaf x) = Leaf (f x)
mapTree f (Node xl x2) = Node (mapTree f xl) (mapTree f x2)

Using this function, and considering that transformations do not affect the tree part, geometric

transformations can be defined in an identical way to those defined for the list representation 

(See Section 5.3.2):

transRowT d (r,s,t) = (d+r,s,t)
scaleRowT sc (r,s,t) = (sc*r,sc*s,t)

transImageT dx dy (ry,sy,t)
= transRowT dy (ry,sy,mapTree (transRowT dx) t) 

scalelmageT sex scy (ry,sy,t)
= scaleRowT scy (ry,sy,mapTree (scaleRowT sex) t)

6.4.6 Displaying an image

Displaying an image represented by a hierarchical data structure is carried out lazily in terms 

of resolution. When resolution becomes higher than required, traversal stops at that level and
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the average value of the pixels underneath is calculated. The process for displaying can be 

modularised into the following three sub-processes which can be implemented as separate 

functions. Figure 6-5 illustrates how transformed pixels are displayed at required resolution:

a. Scanning the output image along the display grid. An interval between two display 
positions is 1 (the rightward arrow in Figure 6-5 (b)).

b. Traversing down the tree of transformed pixels until an interval between two elements 
becomes smaller than 1, i.e. the first step in the interval data structure is less than 0.5 (the 
downward arrows in Figure 6-5 (b)).

c. Averaging pixels underneath which gives the value of the output pixel (the upward 
arrows in Figure 6-5 (b)).

If a pixel outside the range of the original is required, a background value is returned (the 

display pixels at x=6,7,8, in Figure 6-5).

(a) A pixel tree

x=0 1

Second level 

Third level

f

Display 
pixel list

L Z ]  b g  b g  bgFourth level I T  I 1 j T
.....

Transformed original pixels . , .1.1 . 1.1 J
(Bottom level) 1

(b) Displaying at appropriate resolution 

Figure 6-5 D isp laying pixels w ith  averaging at a required resolution

The following dispT function corresponds to the sub-process (a.). Assuming that a 

function to look up the value from the pixels underneath is properly defined (lookUpT), the 

dispT function can be defined recursively as follows:
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dispT;:num->num->(*->*->*)->*->intervalT *->[*] 
dispT X n fn bg i

= [] , if n=0 .
= lookUpT X fn bg i;dispT (x+1) (n-1) fn bg i  , otherwise

The first and second arguments specify the starting position and the number of pixels to be 

displayed. The third argument is a function for averaging which is polymorphic to average 

either pixels or rows. This is similar to the disp function defined for lists (page 83) which takes 

a polymorphic interpolate function. It is also necessary to pass a background value as an 

argument for the same reason as described in Section 533.

The second function, sub-process (b.), traverses a tree until the required resolution is 

reached, and looks up a value from the subtrees underneath. A background value is returned 

if the position sought is outside the range or the value of the tree is Nil. If the tree is a Leaf, then 

the value of the Leaf is returned. Otherwise, either an average value is returned or the tree is 

further traversed depending on the required resolution. The definition follows:

lookUpT::intervalT *->num->(*->*->*)->*->*
lookUpT (r,s,t) X fn bg = bg , if (x<r-2*s)\/(r+2*s<=x)
lookUpT (r,s,Nil) x fn bg = bg
lookUpT (r,s,Leaf a) x fn bg = a
lookUpT (r,s,Node tl t2) x fn bg

= avrTree (Node tl t2) fn bg , if s<0.5
= lookUpT (r-s,s/2,tl) x fn bg, if x<r
= lookUpT (r+s,s/2,t2) x fn bg, otherwise

The function a v rT ree  calculates the average value of the subtrees underneath, i.e. the 

sub-process (c.). Depending on whether the elements of a tree are numbers or lists of numbers, 

the methods for averaging differ. So, a v rT ree  is defined as a higher-order function which 

takes a function to average either numbers or lists of numbers:

avrTreetree *->(*->*->*)->*->* 
avrTree Nil fn bg = bg
avrTree (Leaf a) fn bg = a
avrTree (Node tl t2) fn bg= fn (avrTree tl fn bg) (avrTree t2 fn bg)

avrList; :[num]->[num]->[num]
avrList 11 12 = [ (a+b)/2 I (a,b)<-zip2 11 12]

avrNum:;num->num->num 
avrNum a b = (a+b)/2

In this way, the necessary functions to implement the sub-processes (a) - (c) have been
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prepared. Using these functions, the function to display an image represented by a tree of trees 

can be defined. The d isp T  function is mapped over each row (by m apTree) to output a list of 

pixels of a required resolution in the x direction. And the resulting tree of lists is operated by 

the d isp T  function to output a list of lists of pixels. The definition follows:

display?::num->num->num->num->imageT num->([num]] 
display? X y x n  yn (r,s,t)
= disp? y yn avrList (rep xn bgp) (r,s,map?ree (disp? x xn avrNum bgp) t)

6.4.7 Discussions

For the same reason as we discussed in Section 53.4, i.e. keeping x and y operations separate, 

rotation is not implemented using the current data structure of a tree of trees. However, the 

reason for taking this representation is to test whether the technique we have developed (i.e. 

an identical pattern for x and y data structures makes programming easier) can be applied to 

data structures other than lists. It has now been confirmed that this technique can be applied 

to a binary tree of binary trees.

Rotation may be implemented fairly easily by using existing techniques. For example, 

we can modify the definition of a row to be a triple of a root position (x, y), a first step length 

(x, y), and a binary pixel tree. The whole image may be represented by a list of rows. This 

representation is very similar to the one we defined in Section 5.4.1 except that a tree instead 

of a lis t is used to represent a row. By mapping the one dimensional d isp T  function defined 

on page 105 onto the x elements of each row, a list of lists of pixels aligned in the x direction is 

obtained. A function for aligning these pixels in the y direction has previously been 

implemented (See Section 5.43).

In the next section, we introduce a quadtree to represent an image. Affine 

transformations and display at required resolution are implemented using quadtrees.

6.5 Quadtrees

6.5.1 The 2D vector abstract data type

Before implementing an image represented by a quadtree, we will introduce an abstract data 

t}/pe to represent and manipulate 2D vectors. The image data structures used so far are defined 

in the x direction first, then composed to represent 2D images. However, the quadtree
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implemented in this section is a 2D data structure, so that various operations to manipulate 2D 

geometry will be necessary. We define an abstract data type called vector for this purpose 

which is essentially a pair of x and y elements. By packaging up a vector as an abstract data 

type, the readability of code will be improved since it hides the implementation detail from 

programmers' view. A part of the implementation is described in this subsection, but for the 

full implementation, see Appendix A.9.

An abstract data type can be defined in Miranda using abs ty p e  and the type signatures 

for its operations can be introduced by using w ith . For example:

abstype vector
with vMake;;(num,num)->vector 

vXelement: :vector->num 
vYelement;;vector->num 
vAdd::vector->vector->vector

where vMake makes a vector from a pair of numbers, vX elem en t and v Y e lem en t return the 

X and y  element of a vector respectively, and vAdd adds two vectors. An example 

implementation follows:

vector == (num,num)

vMake (x,y) = (x,y)
vXelement (x,y) = x 
vYelement (x,y) = y

vFun2 fn (xl,yl) (x2,y2) = (fn xl x2, fn yl y2) 
vAdd = vFun2 (+)

In this way, a vector can be manipulated as one piece of data and access to the data is 

only through the operations defined for the vector data type.

6.5.2 Image representation

As briefly introduced in Section 6.2, the term 'quadtree' is used to describe a class of 

hierarchical data structures whose common property is that they are based on the principle of 

recursive decomposition of space [Samet84a]. The particular kind of quadtree which is studied 

in this section is called a region quadtree which is based on the successive subdivision of an 

image into four quadrants of equal size [Klinger76a].

With regard to quadtrees in functional languages. Parsons implemented them using



-108

Miranda [ParsonsSZa]. He presented a straightforward implementation of a region quadtree 

that did not allow non-square images or images with holes. Since his primary application was 

graphics, he implemented a number of functions to convert graphics primitives such as points 

and lines, not derived from pixel images, into a quadtree. He also implemented geometric 

operations on a quadtree but they are rather limited: rotating a quadtree by multiples of 90 

degrees, and reflecting a quadtree by multiples of 45 degrees. These functions are applied on 

a quadtree and produce a quadtree as a result.

Our implementation allows non-square images which may have holes. This can be done 

by introducing Nil quadtrees as an extension to the binary tree definition (Section 6.4.2). Like a 

binary tree being able to repre%nt an interval of the size up to a power of two, a quadtree can 

represent a square of the size up to a power of two and the shape of a quadtree precisely 

represents the shape of the image. Also, an average value is attached to each node since an 

average value to represent subtrees underneath a node will be required when displaying the 

node. The definition is as follows^:

qtree *
:;= QNil | QLeaf * | QNode * (qtree *) (qtree *) (qtree ♦) (qtree *)

The type of a pixel is parameterised using the type variable *. A quadtree of pixels is 

either a Nil, Leaf of a pixel, or Node with the average value of the subtrees and its four child 

subtrees. In the code, the constructor names Q Nil, QLeaf and QNode are used to avoid 

confusion with the binary tree definition. Figure 6-6 shows an example of a non-square image 

with a hole.

We use a different ordering of the four child subtrees from the common ordering used 

in most image processing applications using quadtrees, i.e. NW, NE, SW, SE, based on the 

common raster order. Instead, we use SW, SE, NW, NE based on the conventional x y 

coordinate system because it will make handling of various geometric operations easier.

Z As an extension to the binaiy tree definition on page 100, w e treat four subtrees separately. 
But there are many alternatives, such as representing subtrees by a 4-list.
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(a) A non-square image with a hole 
( B  denotes a defined pixel)

(b) Its quadtree 

Figure 6-6 Representing a non-square im age w ith  a hole

As in the various image representations used so far, a few parameters are attached to the 

pixel image itself in order to represent the "shape" of a quadtree and its position in world 

coordinate. By analogy with the image definition using binary trees (Section 6.4.2), the mot 

coordinate and the first step length will be necessary. Because the geometric operations which 

will be defined on images are affine, a quadtree may become a parallelogram. So, two vectors 

to represent the first steps are necessary. We use vectors for first steps in SW and SE directions. 

Hence, the definition of an image:

coord == vector
imageQT * == (coord,vector,vector, qtree *;

where the first element is the root coordinate, the second the SW first step vector, and the third 

the SE first step vector. An (x,y) pair can be converted to a vector (or a coord) by vMake (x, y ).
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Rool po siti on

sw tor

Figure 6-7 Root position and two vectors of a quadtree

6.5.3 C o n v e rtin g  a 2D  lis t  to  th e  im age d a ta  s tru c tu re

The first function to consider is to convert a 2D rectangular list of pixels, the most common 

representation of an image, to the image data structure using a quadtree, i.e. a quadtree 

version of makeTree.

As a quadtree is based on subdividing space into four, a function to do this subdivision 

needs to be defined. This function can be regarded as a 2D version of ta k e  and drop. The 

following qua r t e  r function returns either the SW, SE, NW, or NE square part of a list of lists;

quarter : :n u m - >num->[[*]]->([*)] 
quarter i n

= divide eastWest northSouth
where divide f g 1 = g (map f 1)

eastWest = [take n, drop n ) ! (i mod 2)
northSouth = [take n, drop n ] ! (i div 2)

The arguments of this function are an index to specify which portion to be taken (0:SW, 1:SE,

2:NW, 3:NE), and the number of elements to be taken. For example:

quarter 0 2 [[1,2,3,4], [5, 6, 7,8], [9,10,11,12 [,[13,14,15,16]] retum s  

[[1,2],[5,6]]

quarter 1 2 [ [1,2,3, 4] , [5, 6, 7,8] , [9, 10, 11,12] , [13, 14, 15, 16] ] f C t u m S  
[[3,4],[7,8]]
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Since an average value has been included as a part of the quadtree definition, a quadtree 

is produced from a 2D list by calculating average values. The following avrQ T ree function 

calculates the average value of a quadtree using v a lQ T ree which retum s the value of a 

quadtree. In order to make these functions polymorphic, a background value and an averaging 

function should be taken as aiguments:

a v r Q T r e e - > q t r e e  *->qtree *->qtree *->qtree *->* 
avrQTree bg f tO tl t2 t3 
= f (valQTree bg tO) (valQTree bg tl) (valQTree bg t2) (valQTree bg t3)

valQTree*->qtree *->* 
valQTree bg QNil  ̂ = bg
valQTree bg (QLeaf v) * v
valQTree bg (QNode v tO tl t2 t3) = v

Using all these functions, the function to convert a 2D list into a quadtree can be defined 

as follows:

makeQTree: :*->(*->*->*->*->*)->[[*]]->num->qtree *
makeQTree bg fn {[]) s = QNil
makeQTree bg fn [] s = QNil
makeQTree bg fn [[a]J 1 » QLeaf a
makeQTree bg fn lists s

= makeQNode bg fn (subt 0) (subt 1) (subt 2) (subt 3) 
where half = s div 2

subt i = makeQTree bg fn (quarter i half lists) half

makeQNode bg fn tO tl t2 t3
= QNode (avrQTree bg fn tO tl t2 t3) tO tl t2 t3

The makeQTree function takes a background value, an averaging function, a 2D list, and the 

size of a quadtree to be built. The role of the last argument is the same as the one introduced 

in the ID case (See m akeTree on page 102). The first two cases of makeQTree are for an empty 

list. The next case is that a pixel becomes a leaf node, and the last case is for subdividing the 

area further. The makeQNode function takes a background value, an averaging function, and 

four child quadtrees, and retums a QNode.

Using this makeQTree function, functions to convert a 2D list of numbers into a 

quadtree and into an image structure can be defined as follows:
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listsToQTree::[[num]]->qtree num 
listsToQTree lists

= QNil , if lists=[]
= condenseQTree (makeQTree bgp average4 lists s) , otherwise 
where s = maxSize (max2 (#(hd lists)) (#lists))

listsToImageQT::[[num]]->imageQT num 
listsToImageQT 1

= (vMake(s/2, s/2),vMake(-s/4,-s/4),vMake(s/4,-s/4), 
condenseQTree (makeQTree bgp average4 1 s)) 
where s = maxSize (max2 (#(hd 1)) (#1))

average4 a b c d = (a+b+c+d)/4

where con d en seQ T ree is a quadtree condensation function defined in the next subsection.

6.5.4 Quadtree condensation

The structure of a quadtree condensation function is the same as the one defined for a binary 

tree, i.e., a higher-order function to rearrange the shape of a quadtree and the actual 

condensation function. A quadtree version can be defined as follows:

reformQTree;;(qtree *->qtree *)->qtree *->qtree * 
reformQTree f (QLeaf x) * f (QLeaf x)
reformQTree f QNil = f QNil
reformQTree f (QNode v qtO qtl qt2 qt3)

= f (QNode V  (reformQTree f qtO) (reformQTree f qtl)
(reformQTree f qt2) (reformQTree f qt3))

condenseQTree:;qtree *->qtree * 
condenseQTree

= reformQTree fun 
where
fun (QNode v (QLeaf x) (QLeaf x) (QLeaf x) (QLeaf x)) = QLeaf x
fun (QNode v QNil QNil QNil QNil) = QNil
fun t = t

6.5.5 Transformations

Translation, scaling and rotation of an image can be expressed by using some operations for 

2D vectors as follows:
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transQTree dx dy (r,sw,se,qt) = (vAdd (vMake (dx,dy)) r,sw,se,qt) 
scaleQTree sex scy (r,sw,se,qt) = (scl r,scl sw,scl se,qt)

where scl * vMuJ. (vMake (sex, scy))

rotateQTree th (r,sw,se,qt) = (rot r,rot sw,rot se,qt)
where
rot = vMap2 (rotx th, roty th) 
rotx th X y - x*(cos th)-y*(sin th) 
roty th X y = x*(sin th)+y*(cos th)

Note that, unlike the image representations used so far where the "ID first, then 2D" policy 

was adopted, 2D geometric operations are directly implemented

6.5.6 Displaying an image

Since average values to represent the subtrees underneath have been incorporated in the 

definition of a quadtree, the process to display pixels can be modularised into the following 

two steps:

a. Scanning the output image along the display grid. An interval between two display 
positions is 1.

b. Traversing down the quadtree of transformed pixels until an interval between two 
elements becomes smaller than 1, i.e. the lengths of both SW and SE first step vectors are 
less than 1/72. At that point the value is fetched using the previously defined 
valQ T ree function.

The sub-process (a.) is a straightforward recursive definition. The following dispQT  

scans in ID and displayQT does it in 2D:

displayQT:;num->num->num->num->*->imageQT *->[[*]] 
displayQT xs ys xn yn bg im 

= [] , if yn=0
= dispQT xs xn ys bg im:displayQT xs (ys+1) xn (yn-1) bg im , otherwise

dispQT::num->num->num->*->imageQT *->(*] 
dispQT xs xn y bg im 

= [] , if xn=0
= lookUpQTree (vMake (xs,y)) bg im:
dispQT (xs+1) (xn-1) y bg im , otherwise

In the sub-process (b.), there are three cases to consider:

1. If the point is outside the transformed quadtree or the quadtree is Nil, then the 

background value is returned.
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2. If the quadtree to look at is a Leaf or the quadtree is smaller than required, i.e. both the 

SW and SE first steps are less than 1 /72 , then return the value of the quadtree. This may 

be either the Leaf value or the average value of the Node.

3. Otherwise, traverse the quadtree further down.

Figure 6-8 illustrates an example of displaying a quadtree. Figure 6-8 (a) is an image 

represented by a quadtree. The image has been affine transformed to become a parallelogram 

and contains Nil elements, (b) is a display grid, in which the interval between two display 

positions is 1. (c) shows the display grid overlapped on the image, (d) is an array of display 

pixels.

Nil i  NU

(a) An image represented by a Quadtree 
- transformed to become a parallelogram

Nil

-Ntt-

(c) The grid overlapped on the image
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Figure 6-8 Displaying a quadtree at a required resolution

The following lookUpQTree function is an example implementation which takes a 

point coordinate, a background value and an image as its arguments. The three cases in the
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code œrrespond to the three cases described above.

lookUpQTree:;coord->*->imageQT *->* 
lookUpQTree p bg (root,sw,se,qt)

- bg /if -(vislnside p vertexList)\/qt“QNil
* valQTree bg qt , if isQLeaf qt\/(vLength sw<len)«(vLength se<len)
- lookUpQTree p bg (nextRoot,vHalf sw,vHalf se,subTree qt), otherwise
where
len = 1/sqrt 2
vertexList = map ((vAdd root).vDouble) (sw, se,vNeg sw,vNeg se] 
s = sw $vAdd se
w = sw $vSub se
isW est = vD irection  (root $vSub p) (root $vAdd s $vSub p) < 0
isSouth  * vD irection  (root $vSub p) (root SvAdd w $vSub p) > 0
(nextRoot, i )  = <root $vAdd. sw, 0) , i f  isW est fi isSouth

= (root SvAdd se , 1) , i f  -isW est £ isSouth
= (root $vSub se , 2) , i f  isW est £ -isS o u th
= (root $vSub sw, 3) , i f  -isW est £ -isS o u th

subTree (QNode v a b c d) = [ a , b ,c ,d ] ! i

isQLeaf (QLeaf a) = True 
isQLeaf qt = False

Although the number of cases is only three, the code looks quite complicated as a number of 

judgements are involved to decide which case to take and which subtree to traverse. Note also 

that in this implementation there are many repeated computations in displaying an image, 

since it does not utilise a previous pixel computation in calculating a next pixel and a quadtree 

is always traversed from the root. It would be possible to improve the code but more 

investigation is needed.

6.6 Discussions

6.6.1 Com paring trees w ith quadtrees

Comparing the two implementations, the quadtree version appears less readable than the ̂ tree 

of trees' version; the number of cases to be considered increases as the dimension of data goes 

up (compare makeTree with makeQTree, and lookUpT w ith lookUpQTree). Given the 

corresponding increase in programming difficulty between tree of trees and quadtrees, it is 

likely that the implementation of octrees would be quite complex and difficult.

The principal reason for the programming difficulty of quadtrees lies in the fact that 

quadtrees cannot be constructed from ID structures. In the tree of trees implementation, ID
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operations are defined first and there is little difficulty in composing 2D operations using 

higher-order functions. The method of composition is identical to what we have developed for 

the list of lists implementation. In the quadtree version, since the data structure itself is two- 

dimensional, there appears to be no way to program its operations in a similarly modular way. 

On the other hand, as discussed in Section 6.4.1, a quadtree requires a smaller number of nodes 

than a tree of trees to represent an image, so if an image gets laiger and larger, the tree of trees 

representation will be less memory efficient compared with the quadtree representation.

It can therefore be concluded that one of the advantages of functional programming is 

the ease of programming it offers by allowing complicated data structures and functions to be 

composed using existing simpler ones. However, it is not clear whether programs composed 

in this way can always be as efficient.

6.6.2 Higher-dim ensional data and overloading

In the quadtree version, the basic operations to handle higher dimensional data, such as 

v e c to r ,a re r^ u ire d  to manipula te thatdatadirectly,andabstract data types are an effective 

way to encapsulate such data and operations. However, there is still some difficulty in using 

such data types. The operations on vectors can be written using user-defined infix operators, 

such as $vAdd and $ vSub, but these operators are not easy to read without a gpod knowledge 

of their meaning. The code would be much clearer and easier to read if the operators such as 

+ and -  were overloaded to express vector operations, as well as scalars. In this respect the type 

classes and the overloading mechanism employed in Haskell seem attractive.

6.6.3 Com paring hierarchical data structures w ith  lists

This subsection discusses some issues regarding the representation of images raised by 

comparing the representations described in this chapter and the list representation employed 

in the previous chapter.

One of the reasons for using hierarchical data structures is that they allow more efficient 

random access than linear lists (Section 63). This simplifies the coding of functions to display 

a transformed image since programmers do not have to express a function to synchronise 

output and input, such as dropUpto defined on page 84. In the d isp T  function implemented 

in Section 6.4.6, the original image stays unchanged through recursive calls. Programming 

with random access and simple iteration is a common style in image processing, e.g. using an
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array and a loop. Thus, if ease of programming is viewed as the closeness to the currently 

familiar style, this style may be advantageous for many progranuners. However, there is a 

trade-off with efficiency, as pointed out in Section 55. That is, if input and output images are 

relatively similar in orientation and resolution, the list representation may present better 

efficiency since it uses the nature of lists, i.e. elements are sequentially ordered, which are 

treated as lazy streams.

Another important point to add in terms of representations is the data compression 

aspect of hierarchical data structures. Since our interest has been how hierarchical data 

structures can be programmed in a lazy functional language, we did not specify the kinds of 

images to be processed. In general, the fewer the number of leaf values and the laiger the 

homogeneous areas in an image are, the more compression effect can be expected. The space 

efficiency in this context is data dependent and the overall efficiency should be discussed in 

terms of applications to real images.

The final aspect in this discussion of representations is the use of arrays in lazy 

functional languages. Since Haskell has arrays, it may be of interest to implement the same 

algorithms using arrays and compare the issues of ease of writing/reading and efficiency. As 

far as random accessibility is concerned, arrays ensure 0(1) time access, but the structure must 

be allocated beforehand. Although Haskell's arrays are non-strict, i.e. unless an element of an 

array is required the element is not evaluated, the entire memoiy block for an array is allocated 

as soon as any part of it is needed. In image processing this can be expensive, since the size of 

an array is usually very large. Use of arrays has not been considered here, and has been left for 

future development.

6.7 Summary

We have presented two implementations of geometric transformations and image display 

using hierarchical data structures as the fundamental representation. The first part of this 

chapter described a binary tree of binaiy pixel trees, in which the technique, "ID  first, then 2D 

using higher-order functions", has been successfully applied to hierarchical data structures. 

The second part described the quadtree representation which should be more space efficient, 

but less easy to program because of the less modular style of programming. The actual 

efficiency is data dependent and left for future investigation.



Chapter 7: Combining Pixel and
Non-Pixel Images
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7.1 Introduction

As discussed in Chapter 4 lazy functional languages should allow operations involving pixel 

images and non-pixel images, such as an image expressed in a continuous function, to be 

treated uniformly. This is enabled by the following two characteristics of lazy functional 

languages:

• The languages are functional and can handle functions and data without discrimination, 

so that even an image expressed as a function can be processed using function 

composition.

• The languages are lazy and do not try to produce output pixels unless it is absolutely 

necessary regardless of whether the original image is represented in pixels or functions. 

Even when a pixel image and a function image are combined, output pixels are only 

calculated if they are needed.

In this chapter, an implementation of combining pixel and non-pixel images is 

presented. Both types of images are implemented as abstract data types including file I/O  to 

allow processing real images.

7.2 File I/O in Miranda

So far we have deliberately ignored discussing how to process real images such as the ones 

from image input devices or stored as image files. But communication with outside world is 

essential if the algorithms are applied to real images.

7.2.1 Rasterfîle read/write functions

As an example of image file format. Sun's rasterfile format [Sun Microsystems Inc.87a] is taken. 

Although there are various image file formats around, they are not much different in essence, 

i.e. the header information containing attributes such as size, depth, etc., and the image itself. 

Rasterfile format consists of three parts: a header containing 8 integers, a (possibly empty) set 

of colour map values, and the pixel image stored line by line in increasing y order. The integers 

contained in the header are encoded as eight four-byte integers, and a four-byte integer is encoded 

as a thirty-two-bit binary number in which the bits are ordered from MSB to LSB. Although this 

is quite a common scheme used in the UNIX/C environment on many machines, data
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encoding including byte order is machine dependent and the following code will need to be 

modified if it runs on machines with different schemes.

Miranda treats a file as a list of characters. The type signature of the Miranda function 

to read a file is defined as a conversion from a file name to a list of characters:

read : : [char]->[char]

Since there is no compatibility between Miranda's type num and the encoding scheme tor a 

number described above, it is necessary to implement a conversion from a series of four 

characters to a series of numbers. The following fourCharToNum converts a list of four 

characters to a number and charToNumList converts a list of characters to a list of numbers:

charToNumList: :[char]->[num]
CharToNumList [] -  []
CharToNumList cs * fourCharToNum (take 4 cs):charToNumList (drop 4 cs) 

fourCharToNum::(char]->num
fourCharToNum cs = foldll (+) (map2 (*) (map code cs)

(map (256") [3,2..0]))

where code is a function to convert a c h a r  to a num.

Conversely, if a number in Miranda is written as a four-byte integer a conversion from 

a list of numbers to a list of four-byte integers must be explicitly written. The following two 

functions are example to do this job:

numToCharList: :[num]->[char] 
numToCharList [] = []
numToCharList (n:ns) = numToFourChar n++numToCharList ns 

numToFourChar::num->[char]
numToFourChar n * map (decode,(mod 256).(n div)) (map (256") [3,2..0]) 

where decode is a function to convert a num to a char.

In order to deal with various rasterfile parameters, a program needs to be able to 

interpret the eight numbers in the header as a series of parameters. If the code was written in 

C, this would be done by just #in c lu d e  < r a s t e r f  l i e . h>, but since Miranda does not have 

a mechanism to include C's header files this should be coded somewhere. In the following 

example, the rasterfile parameters are implemented as a list of functions from a header 

(represented as a list of numbers) to a number:
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[ras_magic, ras_width,ras_height, ras_depth,
ras_ len gth ,ras_typ e , ras_maptype,ras_maplength] = ( ( ! i ) I i < - ( 0 . . 7 ] ]

headerLength = 32 
ras_magic_num = 1504078485 
rmt_equal_rgb * 1

In the current implementation, only gray images whose pixels are 8 bit integer can be 

handled. To impose this restriction, the header parameters should be checked to see whether 

the file satisfies it. The following readHeader takes a filename and retums a header:

readHeader: :[char)->[num] 
readHeader name

= error *getHeader;not a rasterfile." , if ~isRaster
* error *getHeader; not a byte image." , if -is8bit
•= error "getHeader : unexpected colour map type" , if ~isEqualRgb
= header , otherwise 

where
isR aster  = (rasjmagic header=ras_magic_num)
i s 8 b i t  = ( r a sd e p th  header=8)
isEqualRgb « (rasmaptype header»rmt_equal_rgb)
header = CharToNumList (take headerLength (read name))

Using the above defined 'low-level" functions, the following is an example 

implementation of reading a rasterfile and converting it to an image structure using the 

function lis tsT o lm a g e  defined in Section 6.53:

readlmage:: [char] ->image num 
readlmage name

= ( l i s t s T o lm a g e .r e v e r s e .s p l i tL is t  width.map code.drop skip)
(read name)
where skip = headerLength+rasmaplength header 

width = raswidth header
header = readHeader name

s p l i t L i s t : :num->[* ] -> [ [* ] ]  
s p l i t L i s t  n [j = []
s p l i t L i s t  n 1 = [take n 1]++( s p l i t L i s t  n (drop n 1))

The code may seem fairly readable because (re a d  name) is the producer of a list of 

characters and a chain of functions to process the string is described as a composite function. 

The long string read from a file is drop 'd  to leave only the pixel part; the function code is 

map'd to convert ch a r 's  to num's; the long list is split into a 2D list; it is r e v e rs e 'd  to convert 

from the common raster order to the conventional x-y coordinate order; then it is converted to
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an image structure. However, in terms of memory efficiency, this is rather inefficient since it 

involves re v e r s e  which usually requires the whole image to be stored in memoiy. This can 

be avoided if raster order image representation is used.^

Writing an image to a file is basically a reverse process of the above. Using a function to 

convert an image structure to a 2D list of pixels (named d is p la y  in the code), an example is 

given in the following. Note that the functions to manipulate 2D vectors defined in Appendix 

A.9 are used:

wrltelmage::coord->vector->image num->[char]->[Sys_message] 
writeImage origin size im name

= (Tofile name (header++cmap++data), Closefile name] 
where
header - numToCharList [ras_magic_num,w,h,8,1,1,1,768] 
w - vXelement size
h = vYelement size
1 - w*h
cmap = map decode ([0..255]++[0..255]++[0..255])
data = (map decode.concat.reverse) (display origin size im)

A header represented as a list of eight numbers that is converted to a list of characters, a colour 

map for a straightforward gray image by giving a linear table for each colour, and a list of 

pixels are concatenated and written to a file. The type [Sys_m essage] is a special type in 

Miranda to communicate with outside world [Research Software limited89al.

7,2.2 Discussions on I/O

Input/output operations are essential in image processing, but judging from the above 

example, it has to be admitted that Miranda would not particularly good at expressing I/O . 

Two issues may be pointed o u t

In order to communicate with outside world, encoding/decoding of foreign data needs 

to be carried out, such as converting a four-byte integer to a number, or a one-byte character 

to a number. This problem would not arise as long as a file is written and read by one language 

in a persistent way. For example, Miranda provides the r e a d v a ls  function which can read a 

file directly if the file has been written by Miranda. Also in Haskell, if a file has been written 

by a W r ite B in F ile  request, the file can be read in by a R ead B in F ile  request. But this

1. It would be straight forward to avoid this cost by storing the image in memory in raster order. 
However, for ease of explanation we have not done this. See Section 3.2.
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facility is implementation dependent and data persistency is not maintained even between 

different Haskell compilers ITrinder92a]. Although this kind of inconvenience would be 

inevitable in I/O  in any case, it may not be wise to get such low level operations done by a high 

level language such as Miranda because of its execution speed. One possible solution to this 

data persistency problem would be for a language to incorporate code to import foreign data 

written in another language. For example, the new Glasgow Haskell compiler has a facility 

which allows arbitrary C functions to be called from the functional program without losing 

referential transparency [Hall92aJ.

The other issue of note is related to polynwrphic typing. The above functions, 

readlm age and w r ite  Image, handle images of numbers only. In order to handle other kinds 

of images such as boolean or character images, a separate function with a unique name for 

each type of images will be necessary. A polymorphic function accepts any type as long as the 

function behaves exactly in the same way for any type, but in I/O  this is not the case, i.e. there 

is no way to convert polymorphic types to a list of characters. This means that, although in the 

heart of functional programming polymorphic typing works quite nicely (Section 3.6.4), once 

I/O  is involved, it becomes necessary for programmers to be aware that which concrete types 

are being processed.

The problem of polymorphic typing and communication with the outside world can be 

found in Miranda's special function show [Research Software Limited89a]. The function has 

been defined to cope with the need to convert an arbitrary value to its printable representation 

without requiring an infinite number of functions. However, the show function is rather 

difficult to use because it seems like a polymorphic function but actually it is not. The type of 

show must be determined monomorphically. For example, if the following function is defined 

without its type signature:

myShow x = "hello"++show x++"world\n"

the compiler will infer the type of myShow to be *-> [ char] and the type of x to be *. Since 

this usage of show is polymorphic the compiler reports an error. Hence, a type signature is 

essential in such a case.

The above discussion would be a typical example of why overloading is desirable. 

Haskell's facility of function overloading combined with polymorphic typing [Wadler89a] 

may become a solution to the problem, since it allows switching operations depending on the
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type of data to be processed. Once separate I/O  functions under the same name have been 

defined for separate instances in a type class, application programmers do not have to pay 

attention to which concrete types are being processed.

7.3 The Abstract Data Type: function images

An abstract data type called/wncfion image or f  image implements a non-pixel image. It is 

basically a function from a coordinate to a pixel. A coordinate is identical to the abstract data 

type x>ector described in Section 6.5.1, which is essentially a pair of x and y. Since a function 

image is the function itself, various processes can be written in functional languages using 

function compositions. In this section, geometric transformations of a function image are 

implemented as example.

7.3.1 ly p e  signatures

The principal reason for using abstract data types would be to encapsulate data and operations 

together and hide detailed implementation from application programmers. For them it is 

sufficient to understand the type signatures for the abstract data type and its operations.

The following is the definition of the abstract data type for a function imageor fim age:

filename «  [char] 

abstype fimage *
with makeFImage::(coord->*)->fImage *

writeFImage::coord->vector->fImage num->filename->[sysmessage]
displayFImage::coord->vector->fImage *->[[*]]
lookUpFImage::coord->fImage *->*
translateFImage:;vector->fImage *->fImage *
scaleFImage:;vector->fimage *->fimage *
rotateFImage;:num->fImage *->fimage *

As in the image data structures introduced so far, the type of a pixel is parameterised as 

the type variable *. makeFImage converts a function from a coordinate to a pixel into a 

function image.

Here we address again the problem with the polymorphic data types and 1/O discussed 

in Section 7.2.2, Although a function image can be an image of any type, when an image is 

written to a file it is necessary to know exactly what the type of its pixel is. In the current
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implementation, only an image of numbers can be handled (see the type signature of 

w riteF lm age). If the other types of images are to be dealt with, a separate function for each 

type must be defined under a unique name.

73,2 Im plem entation

The full implementation is given in Appendix A.6.

A function image is simply a function from a coordinate to a pixel. So, maker image is 

the function itself:

fImage * *=“ coord->*
makeFImage fn » fn

w riteF lm age is almost identical to the function w r ite  Image on page 122, so its 

implementation is not described here.

The next function is d isp layF lm age  which, like the display functions defined for 

images represented as lists or hierarchical data structures, converts a function image to a 2D 

list of pixels. The implementation is in two steps; dispF im age to produce a ID  pixel list and 

d isp layF lm age  to produce a 2D pixel list:

displayFlmage position size fim 
= [) , if vYelement size=0 
= dispFImage position size fim

: display? Image (vYup position) (vYdown size) fim , otlierwise

dispFImage position size fim 
= [] , if vXelement size=0
« fim position:dispFImage (vXup position)(vXdown size) fim , otherwise

lookUpFImage is extremely simple, since a look-up function for a function image is the 

application of the function image itself:

lookUpFImage p fim = fim p

Lastly, three functions to transform a function image are defined. These are extremely 

simple, too, since these functions can be defined as function composition of 2D vector 

transfomjation and the function image itself:
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translateFImage v fim = fim.((vAdd.vNeg) v)
scaleFImage v fim = fim.((vMul.vRecip) v)
rotateFImage th fim - fim.(vMap2 (rotx (-th), roty (-th)))

where r o t x  th  x y * x * (c o s  t h ) - y * ( s i n  th)  
r o ty  th  X y * x * ( s in  t h ) + y * (c o s  th)

As we have seen, image processing of a function image can be expressed veiy simply as 

function compositions.

7.3.3 Examples

This subsection covers a few examples of function images. The procedure to produce a 

function image is to define a function which takes a coordinate, i.e. a vector, and returns a 

pixel, iÆ. a number, then to produce a function image by using makeFImage. If it is desirable 

to write an image file, use w riteF lm age specifying an area. Note that currently we can write 

an 8bit integer gray image only (Section 7.2.1).

The first example is a simple sinusoidal image vibrating only in x direction. The code to 

express this function and to write this function image to a file as a 256x256 image is:

org “ vMa)ce (0,0) 
siz - vMake (256,256)

funl c = 255*(1+sin (vXelement c*pl/32))/2
fiml = writeFlmage org siz (makeFImage funl) "fiml.ras"

A rotation of this image by 45 degrees can be expressed as follows:

fimlR = writeFlmage org siz im "fimlR.ras"
where im * rotateFImage (pi/4) (makeFImage funl)

The following Figure 7-1 shows these resulting function images.
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(a) fiml.ras (b) fimlR.ras

Figure 7-1 A sinusoidal image and its rotation

The next example is also sinusoidal but vibrating both in x and y directions, and 

involves scaling by (1 /2,1 /2). Example code is as follows:

fun2 c = 2 5 5*(2+1/2*(sin(x*pi/32)+sin(y*pi/32)))/4 
where x = vXelement c 

y = vYelement c

fim2 = writeFlmage org siz (makeFImage fun2) "fim2.ras" 
fim2S = writeFlmage org siz im "fim2S.ras"

where im = scaleFImage (vMake(1/2,1/2)) (makeFImage fun2)

And the resulting images are shown in Figure 7-2.

(a) fim2.ras (b) fim2S.ras

Figure 7-2 A 2D sinusoidal image and its scaling
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The last example is not a continuous function as above, but concentric circles with 

discrete values. Also its translation is shown;

fun3 c = 63 , if raclius<64
= 127 , if radius<128
= 191 , if radius<192
= 255 , otherwise

where radius = sqrt (vXelement c''2+vYelement c''2) 
fim3 = writeFlmage org siz (makeFImage fun3) "fim3.ras" 
fim3T = writeFlmage org siz im "fim3T.ras"

where im = translateFImage (vMake(128,128)) (makeFImage fun3)

The resulting function images are shown in Figure 7-3.

(a) fimS.ras (b) fimST.ras

Figure 7-3 A  concentric circle im age and its translation

7.4 The Abstract Data Type: pixel images

All the functions to manipulate pixel images have already been defined both for the list 

representation (Chapter 5) and the hierarchical representation (Chapter 6), and they have the 

same semantics. In other words, both implementations represent the same abstract data type. 

This section gives the type signature for that abstract data type. An example implementation 

using the list representation is given in Appendix A.7, and the quadtree representation in 

Appendix A.8.

7.4.1 Type signatures

The type signatures for the abstract data type p Image can be defined as follows:
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abstype pimage
with readPImage::filename->plmage 

makeFImage::f[pixel]]->plmage
writeFlmage::coord->vector->pImage->filename->[sysmessage] 
displayFlmage::coord->vector->pImage->[[pixel]] 
translateFImage;:vector->pImage->pImage 
scaleFImage::vector->pImage->pImage 
rotateFImage; :num->plmage->plmage

The type signatures are very similar to the ones for f  im age. A major difference is that 

a pixel image is generated by reading from a file ( re a d ? im age) or converting from a 2D list 

(makeFImage) instead of being made from a function.

Also, the type of pixels is restricted to num for the same reason as described in Section

7.22.

7.4.2 Examples

This subsection presents a few examples of the usage of pixel and non-pixel images. The 

examples may give some ideas of the level at which application programmers might work.

The first example reads an image file (m a n d r il l . imS) whose original size is 

250wx2(X)h pixels, scales it by (1/2,2/3), and writes it to a file (pim l S . ra s )  as the origin (0, 

0) and the size (128,128).

siz2 = vMake (128,128)
pimlS = writeFlmage org siz2 (sc im) "pimlS.ras" 

where
im = readFImage "testimages/mandrill.im8" 
sc = scaleFImage (vMake(l/2,2/3))

The next example reads the same file, rotates it by 45 degrees, translates it by (64, -24), 

and writes it to a file (pimlSRT . ra s ) .

pimlSRT = writeFlmage org siz2 (tr im) "pimlSRT.ras" 
where
im = readFImage "testimages/mandrill.im8"
tr = trans.rotate.scale
rotate = rotateFImage (pi/4)
scale =* scaleFImage (vMake(1/2,2/3) )
trans = translateFImage (vMake(64,-24))

Another example operates a series of 6 transformations to demonstrate how
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straightforwardly transformations can be expressed. In addition, the image quality is not 

degraded because there is no accumulation of quantisation errors, and no parts of the image 

have been lost because no intermediate images are produced. The code is as follows:

pimlSRTSRT = writeFlmage org siz2 (tr im) "pimlSRTSRT.ras" 
where
im = readFImage "testimages/mandrill.im8"
tr = t r a n s 2 .rotate2.scale2.transi.r otatel.scalel
scalel = scaleFImage (vMake(1/2,2/3))
rotatel = rotateFImage (pi/4)
transi = translateFImage (v M a k e (64,-24))
scale2 = scaleFImage (vMake(1.2,0.9))
rotate2 = rotateFImage (-pi/6)
trans2 = translateFImage (vMake(-20,25))

The resulting images are shown in Figure 7-4.

\ \

(a) pim lS.ras (b) pimlSRT.ras (c) pimlSRTSRT.ras

Figure 7-4 Transformed pixel images

The last example combines pixel and non-pixel images. It demonstrates what we 

described in Chapter 4, i.e. a spatial conditional operation using non-pixel images (Figure 4-3). 

This can be defined fairly simply as follows;
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condlm iml im2 im3
= bPointwise cond iml (bPointwise pair im2 im3) 
where cond True (a,b) = a 

cond False (a,b) = b
pair a b = (a,b)
bPointwise = map2.map2

fun4 c = True , if inside 
= False , otherwise
where inside = (x-64) *2 + (y-64)''2 - 60^2 < 0 

X * vXelement c 
y » vYelement c

cim = condim iml im2 im3 
where
iml = displayFlmage org siz2 (makeFImage fun4)
im2 - displayPImage org siz2 (readPImage "pimlS.ras")
im3 = displayFlmage org siz2 (makeFImage fun2)

ciml = writePImage org siz2 (makePImage cim) "ciml.ras"

condim is just a redefinition of the spatial conditional operation since the previous definition 

on page 44 is for the representation with an origin and we have not defined the operation for 

a plain list of lists, fu n 4 defines the conditional part as a function image. Please note that 

although f  un4 does not return a number but a boolean value it is still possible to make a 

function image as long as the image is not written to a file, cim  provides the contents to the 

arguments to the condim function, and evaluating c im l produces an image file of the 

synthesised image. The result of this operation is given in Figure 7-5 .̂

2. Note that the mandrill image in the output slightly differs from that in the input. This is 
because the output colour map is created as in cmap on page 122, while the input colour map is 
slightly different from that. How to handle colour maps from different sources would be 
another major problem.
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fun4 c
= True , if inside
= False , otherwise

where
inside = (x-64)" 2 + (y-64)"2-60"2<0

im l

Spatial Conditional 
Function

imS

fun2 c
= 2 55* (2 + 1 / 2 * (sin(x*pi/32)+sin(y*pi/32) ) ) / 4

Figure 7-5 An example spatial conditional

7.5 D isc u ss io n s

7.5.1 Applications of non-pixel images

In this chapter, we have demonstrated a method to combine pixel and non-pixel images as a 

potential of the utility of lazy functional languages. Because functional languages handle 

functions as first-class objects, an image expressed as a function can be handled without 

difficulty and processing such images can be written as function compositions. See the 

implementation of geometric transformations of f  Image (Section 7.3.2). In addition, because 

of the laziness of the languages pixels are produced from a function image only when they are 

required. This property is of most benefit when a complicated series of functions are applied 

to images since no intermediate pixel images are produced.

However, how the technique of handling non-pixel images is useful is left as a subject 

for further research; the examples shown in this chapter arc very primitive and just to show 

the possibility. One promising area would be computer graphics as discussed in Section 7.5.3,
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because lazy functional languages can manipulate mathematical representations directly and 

eliminate unnecessary operations in rendering by conducting calculations at only required 

resolution. In particular, texture mapping [Heckbert86a] combines geometrically transformed 

pixel images and geometric objects; a task for which the method we have proposed could be 

applicable.

As found in a number of image processing textbooks, it is a general practice that many 

image processing algorithms are defined in the continuous domain using mathematical 

functions, then they are converted to the discrete domain and implemented to process pixel 

images. Lazy functional languages may potentially be useful to bridge this gap.

7.5.2 Integration of fimage and pim age

In the implementation described in this chapter fim age and pim age are separate, e.g. see the 

sub-definitions im l, im2 and im3 in cim  on page 131. But ideally, these images should be 

integrated into one data type and individual image types should be hidden from application 

programmers. In Miranda this may be done by defining an algebraic data type for a general 

image which is a tagged union of either fim age * or pim age. In Haskell, this may be done 

by defining a type dass for a general image whose instances are fim age * and pimage.

7.5.3 How to integrate m ultiple representations

Through the thesis, we have developed quite a few representations of an image. We started 

with a list of lists (Section 2.2.1) in the naive version. Then, based on the list of lists 

representation we attached various parameters, i.e. a list of lists with an origin (Section 3.2.2), 

with an origin and length (Section 5.3.1), with an origin and length represented as pairs of x 

and y elements (Section 5.4.1). We then adopted hierarchical data structures as the basic 

representation and implemented a binary tree of binary trees with a root position and first step 

length (Section 6.42), and a quadtree with a root position and first step length in 2D (Section 

6.5.2).

What we have not discussed is how later versions can cope with algorithms defined for 

previous versions. The way we developed the representations is fairly ad-hoc, i.e. to implement 

a new operation a new parameter is necessary, so attach it. Therefore, for example, convolution 

cannot be applied to an image represented for rotation. In order to apply convolution defined 

in Section 3.5.1 to an image represented in Section 5.4.1, it will be necessary to check whether
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the rows in the image are horizontal and whether the intervals of pixels and rows are equal to 

1. That is, in the row data structure:

((x_origin,y_origin), (xjength,y_length), list_of_pixeIs)

it will be necessary to check whether yjength is 0 and xjength  is equal to the length of 

list_of_pixels., and also to check if the y_origins in the image form an arithmetic series with 1 as 

the increment. If they are, then conversion to a convolvable form would be straightforward. If 

not, an operation akin to 'display' will be required.

We have used 'display' as the demander of pixel evaluation since the original 

motivation came from laziness in displaying a transformed pixel image. But now it has turned 

out that 'display' is to convert an image representation to a form suitable for an operation, such 

as display. In fact, when an operation involving both pixel and non-pixel images is designed, 

these images are "displayed" to form 2D lists before the operation is carried out. In this case, 

a 2D list happens to be the most naive way (See Chapter 2) to combine the two kinds of images, 

and the display functions happen to be available to convert each representation to the common 

representation.

When an image processing library is to be designed using lazy functional languages, 

how to choose a good representation is an important issue. This is left as further work. One 

possible idea would be to use multiple representations or isomorphic representations [Poole92b] 

which cany a number of representations of an image as a form of a tuple, an algebraic data 

type, or a type class (e.g. in Haskell). A processing algorithm may be defined as a function 

composition of a conversion of representations and the algorithm itself. Because the system 

works lazily, until a processing path is specified by the user, no conversions take place. Once 

a processing path has been defined and input data has been made available, the process 

proceeds, where conversions from one representation to another take place only when 

necessary. In this way, it would be possible to integrate various representations.

A similar idea has been presented in [Parsons87a] for graphics applications, e.g. 

specification of coordinates in cartesian and polar systems and colours specified in any of the 

equivalent colour models.



Chapter 8: Real-Life Efficiency —
Some Benchmarks and 
Possible Improvement
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8.1 Introduction

We started the investigation by assuming that the efficiency of lazy functional languages is 

adequate for writing image processing applications (Section 13). The discussions have been 

carried out by relying on the fact that lazy functional languages are implemented so as to do 

what they promised to do. This kind of assumption is appropriate for most of the 

investigations in this thesis. However, people may ask, "By the way, in reality, how fast are they, 

or how many (mega) bytes of memory do they use?" This chapter answers this question.

Benchmarking is not a simple business. The purpose of comparison in this chapter is to 

give a rough idea of the performances of code written in three languages, namely Miranda, 

Haskell, and C  In this respect, this test may be quite different from comparing machine 

architectures or language implementations using the same source code, such as SPEC 

[SPE(Z92a] or twfib benchmarking [Partain93a]. There are a few approaches to this kind of 

benchmarking:

• Use the code which a typical programmer^ would write in each language. This may 

result in different algorithms between languages.

• Carry out optimisation to have the best possible code in each language. This may also 

lead to different algorithms.

• Take a reasonable algorithm, e.g. simple, fast, etc., and implement the algorithm in each 

language.

We will take the first approach, i.e. what a typical programmer would write. This will also 

highlight how programmers would be likely to write inefficient code unconsciously, and how 

such code can be improved. All in all, the comparison will not at all be fair, but may be 

sufficient to give a rough order of efficiency in the three languages. The other interesting 

philosophical and technical arguments about benchmarking can be found both in image 

processing, e.g. [Uhr86a], and in lazy functional languages, e.g. [Partain93a].

We use the median filter as an example algorithm since it is very well-known and 

widely used in image processing. We compare execution speed and memoiy usage of the 

median filter written in Miranda, Haskell and C. Fortunately, by the time of writing, a few

1. Note that a programmer who is typical of one group (e.g. professional numerical analysts) 
may not be typical of another group (e.g. computer science graduates).
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Haskell implementations have become available^. We use GHC (The AQUA Team93a] 

developed at University of Glasgow, since it is the latest implementation and currently said to 

be most efficient. After we compare the three versions, the cause of inefficiency is analysed and 

possible improvement of the C and Haskell versions is tried out.

8.2 An Unfair Competition

8.2.1 Contender N o.l — M iranda

The Miranda code for the median filter (Figure 8-1) is based on the one written in Section 3.5.4. 

This code has been discovered as a by-product of the general local neighbourhood function 

which was initially designed for convolution. Therefore, no efficiency issues have been 

considered. In facf, at a glance, the code looks rather inefficient since an entire list image, i.e. 

an image whose pixel is a list of pixels, is produced although there are a lot of common 

elements between adjacent pixel lists. In addition, as discussed in Section 72.2, very low-level 

conversion related to I/O  between Miranda numbers and 32 bit integers has to be carried out 

in Miranda.

Differences from the code in Section 3J5 are listed as follows:

• The first two lines are the magic words to make Miranda code available as a command 

at the UNIX shell level.

• The second line is the main expression to be evaluated. The function main has been 

implemented to describe the "input—>process—>output" sequence. The header and the 

colour map are copied from the input to the output file. The pixel data part is converted 

to a list of numbers, then to the image data structure with an origin, processed by the 

function passed as an argument, converted back to a list of numbers and then to a list of 

characters for file output.

• The size of the input image is maintained. For the boundary pixels, a background value, 

0 in this case, is filled in, i.e. centered zero boundary superposition (see Section 35.6).

2. For benchmarks using another implementation called hbc [Augustsson92a1, see the paper 
lKozato93a] attached in Appendix B.
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im 21  (0 , 1 ) * map d e c o d e  ( ( c o n c a t  ( r e p  o  b g r ) ++

f l a t t e n  ( o , 1)

c o n c a t  (map f l a t t e n  1 )+ +  
c o n c a t  ( r e p  ( h e i g h t - o - f 1) b g r ) ) )
( r e p  0  b g p ) + + 1 + + ( r e p  ( w i d t h - o - « l )  b g p )

s p l i t L i s t : : n u m - > [ * ] - >  [ ( •  ] ]  
s p l i t L i s t  n []  -  [ ]
s p l i t L i s t  n 1 -  [ t a k e  n 1 ] + + ( s p l i t L i s t  n (d r o p  n 1 ) )

[ r a s _ m a g ic ,  r a s _ w i d t h , r a s h e i g h t ,  r a s d e p t h ,
r a s ^ l e n g t h , r a s  t y p e ,  r a s _ m a p t y p e ,r a s _ m a p l e n g t h ]  -  ( ( ! i ) | i < - ( 0 . . 7 ] ]

h e a d e r L e n g t h
r a s _ m a g ic _ n u m
n n t ~ e q u a l _ r g b

3 2
1 5 0 4 0 7 8 4 8 5
1

c h a r T o N u m L is t : : [ c h a r ] - > [num ] 
ch a r T o N u m L is t  [ ]  -  []
C h a rT o N u m L ist c s  -  fou rC h a rT o N u m  ( t a k e  4 c s ) : c h a r T o N u m L is t  ( d r o p  4 c s )

fo u r C h a r T o N u m :: [ c h a r ] - > n u m  
fou rC h arT oN u m  c s

-  f o l d l l  (+ ) (m ap2 ( • )  (map c o d e  c s )  (map (2 5 6 '')  [ 3 , 2 . . 0 ] ) )

u n a r y l n t e r v a l : : ( • - > * * ) - > i n t e r v a l  * - > i n t e r v a l  **  
u n a r y l n t e r v a l  f  ( o ,p )  -  ( o ,  m ap f  p )

b i n a r y l n t e r v a l : : ( * - > * * - > * * * ) - > i n t e r v a l  * - > i n t e r v a l  * * - > i n t e r v a l  * • *  
b i n a r y l n t e r v a l  f  ( o l , p l )  ( o 2 ,p 2 )

-  (o ,  map2 f  (d r o p  ( o 2 - o l )  p i )  p 2 )  , i f  o l  < o 2
-  (o ,  m ap2 f  p i  (d r o p  ( o l - o 2 )  p 2 ) ) , o t h e r w i s e  

w h e r e  o  -  m ax2 o l  o 2

u n a ry R o w  -  u n a r y l n t e r v a l  
b in a r y R o w  -  b i n a r y l n t e r v a l

u n a r y P o i n t w i s e : : ( * - > * * ) - > im a g e  * - > im a g e  **  
u n a r y P o i n t w i s e  f  -  u n aryR ow  (u n aryR ow  f )

b i n a r y P o i n t w i s e : : ( * - > * * - > • * * ) - > im a g e  • - > im a g e  * * - > im a g e  * * *  
b i n a r y P o i n t w i s e  f  -  b in a r y R o w  (b in a r y R o w  f )

I I im a g e  t r a n s l a t i o n

t r a n s l a t e l n t e r v a l : : n u m - > i n t e r v a l  * - > i n t e r v a l  * 
t r a n s l a t e l n t e r v a l  d ( o ,p )  -  ( o + d ,p )

t r a n s l a t e R o w  -  t r a n s l a t e l n t e r v a l

I I c o n v o l u t i o n

c o n v l  m u l ad d  m ask  im
-  a c c u m  [p r o d  ( e l e m e n t  m ask  p )  ( s h i f t l n t e r v a l  p ) | p < -d o m a in  m ask ]  

w h e r e
a ccu m  -  f o l d l l  a d d
p r o d  X -  u n a r y l n t e r v a l  (m ul x)
s h i f t l n t e r v a l  p

-  t r a n s l a t e l n t e r v a l  ( p -  ( ( l e n g t h  m a sk ) d i v  2 ) )  im

d o m a in  -  i n d e x . s n d
l e n g t h  -  ( # ) . s n d
e le m e n t  -  ( ! ) . s n d

I I m e d ia n  f i l t e r

m ask -  m akeM ask 3

m a k e M a sk ::n u m -> im a g e  num
m akeM ask n -  f n  (map f n  ( r e p  n  ( r e p  n 0 ) ) )  w h e r e  f n  x  -  ( 0 ,x )

m e d ia n lm a g e  m ask  -  ( u n a r y P o i n t w i s e  m e d ia n ) . ( l o c a l H i s t I m a g e  m a sk )  
m e d ia n  l i s t  -  ( s o r t  l i s t ) ! ( # l i s t  d i v  2 )

l o c a l H i s t l m a g e  -  c o n v l  ( lo c a l H i s t R o w )  ( b i n a r y P o i n t w i s e  ( + + ) )  
lo c a l H is t R o w  -  c o n v l  f  (b in a r y R o w  (++ ) ) w h e r e  f a b -  [ b]

%

I I p o i n t w i s e  o p e r a t i o n s
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8.2.2 Contender No.2 — Haskell (Version 1)

The Haskell code (Figure 8-2) has been produced by filtering the Miranda code of Figure 8-1 

through the shell script miralhs written by Howe [Howe92a], then modified by hand to 

implement the main routine. This means that this Haskell code has not been written to utilise 

the facilities provided by Haskell. For example, arrays in Haskell could have been used instead 

of lists, which might have improved the efficiency. In addition, the low-level conversion 

between 32 bit integers and I n ts  is done in Haskell. If the facility such as I/O  monads 

[Hall92a] which allow C functions to deal with low-level jobs without violating referential 

transparency had been used, the efficiency might have been improved.

Changes made are:

• The main function has been added, which is of the type D ia lo g u e  defined as:

type Dialogue = [Response] -> [Request]

• The ip  function forms the main part of the job, which takes an input character list, an 

image processing function, and returns an output list of characters. This is akin to the 

main function deffned in the Miranda version.

• The s p l i t L i s t  function has been changed to utilise the library functions, ch o p L ist  

and s p l i t  At, in the hope that library functions could be more efficient than 

user-defined functions. For ch o p L ist, see [Augustsson92b]. For this purpose the 

module L i s t U t i l  is imported. Also, we use quick sort defined in the library to sort a 

list of pixels. The module QSort is imported for this purpose.

• Two functions (rep  and s u b s c r ip ts )  defined in miralhs are used, since these are 

defined in Miranda but not in Haskell, s u b s c r ip ts  is equivalent to in d e x  in Miranda.

Otherwise, algorithms are identical to the Miranda version. It is noticeable how much 

Haskell inherits Miranda's facilities. The code is compiled by the ghc compiler version 0.19 

using the " - s y s l i b  hbc -02" flag.
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00

K>
X

I
I
3a
S'
3
3>

3.
3

OQ?

—  VK-28/'05752
—  M e d la n l .h s
m o d u le  M ain  (m a in )  w h e r e

im p o r t  L i s t U t i l  
im p o r t  Q S o r t

m a in  : : D i a l o g u e  
m a in  r e s p s

-  [ R e a d F i le  " t e s t i m a g e s / g a n t e i . r a s " ,
W r i t e F i l e  " o u t l . r a s "

( c a s e  r e s p s ! ! 0 o f
S t r  c o n t e n t s  - >  i p  c o n t e n t s  (m e d ia n lm a g e  m ask )  
F a i l u r e  i o e  - >  " E r r o r " ) ]

—  T h e " w it h  a n  O r i g i n "  V e r s i o n
t y p e  I n t e r v a l  a -  ( I n t , ( a ) )
t y p e  Row a  -  I n t e r v a l  a
t y p e  Im a g e  a -  I n t e r v a l  (Row a )

—  r a s t e r f i l e  I /O
i p : : [ C h a r ] - > (Im a g e  I n t - > I m a g e  I n t ) - > [C h a r]  
i p  i n p u t  p r o c

-  h e a d e r + + c m a p + + p ix l
t a k e  h e a d e r L e n g t h  i n p u t
t a k e  c m le n g  (d r o p  h e a d e r L e n g t h  i n p u t )
r a s _ m a p l e n g t h  h d r
C h a rT o N u m L ist h e a d e r
( im 2 1 .p r o c .1 2 im )  ( d r o p  ( h e a d e r L e n g th + c m le n g )  i n p u t )  
1 1 2 i m . ( s p l i t L i s t  w i d t h ) . ( m a p  o r d )  
r a s  w i d t h  h d r

w h e r e  h e a d e r  
cm ap  
c m le n g  
h d r  
p i x l  
1 2 im
w i d t h  -  _
h e i g h t  -  r a s _ h e i g h t  h d r
1 1 2 im  1 1  -  f n  (map f n  1 1 )  w h e r e  f n  x  -  ( 0 ,x )
b g r  -  r e p  w id t h  b g p
b w  -  0
im 21  (0 , 1 ) -  (map c h r  . c o n c a t )  ( r e p  o  b g r  ++

map f l a t t e n  1 ++ r e p  ( h e i g h t - o -  l e n g t h  1) b g r )  
f l a t t e n  ( o , 1) -  ( r e p  o  b g p ) + + 1 + + ( r e p  ( w i d t h - o -  l e n g t h  1 ) b g p )

s p l i t L i s t : : I n t - > [ a ] - > [ [ a ] ]
s p l i t L i s t  n 1 -  c h o p L i s t  ( s p l i t A t  n) 1

[ r a s _ m a g ic ,  r a s _ w i d t h , r a s _ h e i g h t ,  r a s d e p t h ,
r a s _ l e n g t h , r a s  t y p e ,  r a s _ m a p t y p e ,r a s _ m a p l e n g t h ]  -  [ (!  ! i ) | i < - [ 0 . . 7 ] ]

h e a d e r L e n g t h  -  3 2  
r a s _ m a g ic _ n u m  -  1 5 0 4 0 7 8 4 8 5  
r m t _ e q u a l_ r g b  -  1

C h a r T o N u m L is t: : [ C h a r ] - > [ I n t ]
C h a rT o N u m L ist [ ]  -  [j
C h a rT o N u m L ist c s  -  fo u rC h a rT o N u m  ( t a k e  4 c s ) : c h a r T o N u m L is t  ( d r o p  4 c s )

fo u r C h a r T o N u m :: [ C h a r ] - > I n t  
fo u rC h a rT o N u m  c s

- f o l d l l  (+ ) ( z i p W i t h  (* )  (map o r d  c s )  (map (2 5 6 " )  [ 3 , 2 . . 0 ] ) )

n u m T o C h a r L is t : : [ I n t ] - > [ C h a r ]

n u m T o C h a r L is t  []  -  []
n u m T o C h a r L ist  ( n : n s )  -  n im T o F o u rC h a r  n + + n u m T o C h a rL ist  n s

n u m T o F o u rC h a r: : I n t - > [ C h a r ]
n u m T oF ourC har n -  map ( c h r . ( ' m o d '  2 5 6 ) .  (n  ' d i v ' ) )  (map ( 2 5 6 " )  [ 3 , 2 . . 0 ] )

—  p o i n t w i s e  o p e r a t i o n s
u n a r y l n t e r v a l : : ( a - > a a ) - > I n t e r v a l  a - > I n t e r v a l  aa  
u n a r y l n t e r v a l  f  ( o ,p )  -  ( o ,  m ap f  p )

b i n a r y l n t e r v a l : : ( a - > a a - > a a a ) - > I n t e r v a l  a - > I n t e r v a l  a a - > I n t e r v a l  a a a  
b i n a r y l n t e r v a l  f  ( o l , p l )  ( o 2 ,p 2 )

I ( o l  < o 2 )  -  ( o ,  z ip W it h  f  (d r o p  ( o 2 - o l )  p i )  p 2 )
I o t h e r w i s e  -  ( o ,  z ip W it h  f  p i  (d r o p  ( o l - o 2 )  p 2 ) )

w h e r e  o  -  m ax o l  o 2

u n a ry R o w  -  u n a r y l n t e r v a l  
b in a r y R o w  -  b i n a r y l n t e r v a l

u n a r y P o i n t w i s e : : ( a - > a a ) - > I m a g e  a - > I m a g e  a a  
u n a r y P o i n t w i s e  f  -  u n aryR ow  (u n a ry R o w  f )
b i n a r y P o i n t w i s e : : ( a - > a a - > a a a ) - > I m a g e  a - > I m a g e  a a - > I m a g e  a a a  
b i n a r y P o i n t w i s e  f  -  b in a r y R o w  (b in a r y R o w  f )

—  im a g e  t r a n s l a t i o n
t r a n s l a t e l n t e r v a l : : I n t - > I n t e r v a l  a - > I n t e r v a l  a  
t r a n s l a t e l n t e r v a l  d  ( o ,p )  -  ( o + d ,p )  
t r a n s l a t e R o w  -  t r a n s l a t e l n t e r v a l

—  c o n v o l u t i o n  
c o n v l  m ul a d d  m ask  im

-  a c c u m  [p r o d  ( e l e m e n t  mas)c p ) ( s h i f t l n t e r v a l  p ) | p < -d o m a in  m a sk ]  
w h e r e
a c c u m  -  f o l d l l  ad d
p r o d  X -  u n a r y l n t e r v a l  (m ul x )
s h i f t l n t e r v a l  p  -  t r a n s l a t e l n t e r v a l  ( p - ( ( l e n g  m ask ) ' d i v '  2 ) )  im  

d o m a in  -  s u b s c r i p t s . s n d
l e n g  -  l e n g t h . s n d
e le m e n t  -  ( ! ! ) . s n d

—  m e d ia n  f i l t e r  
m ask  -  m akeM ask 3 
m a k e M a s k : : I n t - > I m a g e  I n t
m akeM ask n -  f n  (map f n  ( r e p  n ( r e p  n 0 ) ) )  w h e r e  f n  x  -  ( 0 ,x )

m e d ia n lm a g e  m ask  -  ( u n a r y P o i n t w i s e  m e d ia n ) . ( l o c a l H i s t l m a g e  m a sk )  
m e d ia n  l i s t  -  ( s o r t  l i s t ) ! ! ( ( l e n g t h  l i s t )  d iv "  2)

l o c a l H i s t l m a g e  -  c o n v l  ( l o c a l H i s t R o w )  ( b i n a r y P o i n t w i s e  (+ + ) )  
l o c a l H is t R o w  -  c o n v l  f  (b in a r y R o w  ( + + ) )  w h e r e  f a b -  [b ]

r e p  : : I n t  - >  b  - >  [b ]  
r e p  n X -  t a k e  n ( r e p e a t  x )

s u b s c r i p t s  : : [a ]  - >  [ I n t ]  —  M ir a n d a  in d e x
s u b s c r i p t s  x s  -  f  x s  0

w h e r e  f  []  n - [ ]
f  ( _ : x s )  n  -  n  : f  x s  (n + 1 )

ê
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8.2.3 Contender No.3 — C (median-by-qsort)

The C code for median filtering shown in Figure 8-3 has been freshly written for this 

benchmarking purpose. The first two and a half columns in the source list are the main routine 

and the code for file I/O  and various house-keeping. The median algorithm is implemented 

in  the function medonpage 143. The fundamental algorithm is to generate a local histogram 

within ra d iu s ,  sort the local histogram using quick sort defined in the library (hence, we call 

this version median-by-qsort), and get the mid'th element from the histogram. So, the basic 

median algorithm is relatively similar to the Miranda and Haskell versions. The size of input 

image is maintained and (Xs are filled in the image boundary^. The program is compiled with 

the "-04" option to optimise at the maximum level.

3. This is done by the memset function!
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§
s
n
a
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3
a
53

3
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m e d i a n - b y - q s o r t . c
M e d ia n  f i l t e r  u s i n g  q u i c k  s o r t  i n  t h e  l i b r a r y  
-  f o r  b e n c h m a r k  i n  C h a p te r  8

« i n c l u d e  < s t d i o , h >  
« i n c l u d e  < f c n t l . h >  
« i n c l u d e  < r a s t e r f i l e . h >  
« i n c l u d e  < m a l lo c .h >

« d e f i n e  BGP 0

c h a r  * p r o g n a m e ;

m a i n ( a r g c ,  a r g v )  
i n t  a r g c ;  
c h a r  • a r g v [ ) ;

s t r u c t  r a s t e r f i l e  r a s ;
v o i d  u s a g e  0 ,  w r i t e h e a d e r  ( ) ,  w r i t e c m a p O ,  w r i t e d a t a  () ;
i n t  r a s t e r o p e n  0 ,  o u t o p e n ( ) ,  c h e c k h e a d e r  ( ) ;
c h a r  * i n p u t f i l e n a m e  0  ;
s t r u c t  r a s t e r f i l e  r e a d h e a d e r  ( ) ;
u n s i g n e d  c h a r  * r e a d c m a p ( ) ,  * r e a d d a t a ( ) ,  * m e d ( ) ;
i n t  i f d ,  o f d ,  m a s k s i z e ;
u n s i g n e d  c h a r  ‘ d a t a ,  ‘ cm ap , ‘ o u t d a t a ;

p r o g n a m e  -  a r g v [ 0 ] ;

i f d  -  r a s t e r o p e n ( “ t e s t i m a g e s / g a n t e i . r a s " )  ; 
o f d  -  o u t o p e n ( " o u t . r a s " ) ; 
m a s k s i z e  -  3 ;

r a s  -  r e a d h e a d e r  ( i f d ) ; 
w r i t e h e a d e r ( o f d ,  r a s ) ;  
i f  ( r a s . r a s  m a p ty p e  ! -  RMT_N(WE)

cm ap -  r e a d c m a p ( i f d ,  r a s ) ; 
w r i t e c m a p ( o f d ,  cm ap , r a s ) ;

)
d a t a  -  r e a d d a t a ( i f d ,  r a s ) ;

o u t d a t a  -  m e d ( d a t a ,  r a s . r a s w i d t h ,  r a s . r a s _ h e i g h t ,  
w r i t e d a t a ( o f d ,  o u t d a t a ,  r a s ) ; 
c l o s e ( o f d ) ; 
e x i t  ( 0 ) ;

)

v o i d
f a t a l ( m s g )  
c h a r  ‘ m sg ;
(

m a s k s i z e ) ,

f p r i n t f ( s t d e r r ,  
e x i t  ( 1 ) ;

•% s: % s\n " , p r o g n a m e , m s g ) ;

r a s t e r o p e n ( f i l e n a m e )  
c h a r  ‘ f i l e n a m e ;
(

i n t  f d ;

i f  ( ( f d  -  o p e n ( f i l e n a m e ,  0_R D 0N L Y )) —  - 1 )  f a t a l ( " c a n n o t  o p e n  
r a s t e r f i l e " ) ; 

r e t u r n  f d ;
)

i n t
o u t o p e n ( f i l e n a m e )  
c h a r  ‘ f i l e n a m e ;
(

i n t  f d ;

i f  ( ( f d  -  o p e n ( f i l e n a m e ,  0_CREAT|0_RDWR, 0 6 4 4 ) ) — 1)  
f a t a l ( " c a n n o t  o p e n  o u t p u t  f i l e " ) ;  

r e t u r n  f d ;
)

s t r u c t  r a s t e r f i l e  
r e a d h e a d e r ( f d )  
i n t  f d ;
{

s t r u c t  r a s t e r f i l e  r a s ;

i f  ( r e a d ( f d ,  s r a s ,  s i z e o f ( r a s ) ) ! -  s i z e o f ( r a s ) ) 
f a t a l ( " c a n n o t  r e a d  h e a d e r " ) ; 

r e t u r n  r a s ;
}

v o i d
w r i t e h e a d e r ( f d ,  r a s )  
i n t  f d ;
s t r u c t  r a s t e r f i l e  r a s ;
(

i f  ( w r i t e ( f d ,  r a s ,  s i z e o f ( r a s ) ) 1 -  s i z e o f ( r a s ) ) 
f a t a l ( " c a n n o t  w r i t e  h e a d e r " ) ;

)

u n s i g n e d  c h a r  ‘  
r e a d c m a p ( f d ,  r a s )  
i n t  f d ;
s t r u c t  r a s t e r f i l e  ‘ r a s ;

u n s i g n e d  c h a r  ‘ cm ap;

cm ap -  ( u n s ig n e d  c h a r  • ) m a l l o c ( r a s - > r a s _ m a p l e n g t h ) ;  
r e a d ( f d ,  ( c h a r  ‘ )c m a p , r a s - > r a s _ m a p l e n g t h ) ; 
r e t u r n  cm ap ;

)

i n t

v o i d
w r i t e c m a p ( f d ,  cm ap , r a s )  
i n t  f d ;
u n s i g n e d  c h a r  ‘ cm ap;  
s t r u c t  r a s t e r f i l e  ‘ r a s ;
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i f  ( w r i t e ( f d ,  cm ap , r a s - > r a s _ m a p l e n g t h )  
f a t a l  ( “ c a n n o t  w r i t e  c o l o u r  m a p " );

r a s - > r a s _ m a p l e n g t h )

u n s i g n e d  c h a r  * 
r e a d d a t a ( f d ,  r a s )  
i n t  f d ;
s t r u c t  r a s t e r f i l e  * r a s ;
(

u n s i g n e d  c h a r  ‘ d a t a ;

d a t a  -  ( u n s ig n e d  c h a r  • ) m a l l o c ( r a s - > r a s _ l e n g t h ) ; 
r e a d ( f d ,  ( c h a r  * ) d a t a ,  r a s - > r a s _ l e n g t h ) ;  
r e t u r n  d a t a ;

f o r  (X -  r a d i u s ;  x  < x s i z e - r a d i u s ;  x + + ) ( 
i n t  o f f s e t  -  X + x s i z e * y ;  
i n t  i ,  j ;
f o r  ( i  -  - r a d i u s ;  i  < -  r a d i u s ;  i+ + )  

f o r  ( j  -  - r a d i u s ;  j  < -  r a d i u s ;  j+ + )
• b u f+ +  -  i n t o f f s e t + l + j * x s i z e ) ;  

b u f  —  n b h a r e a ;
q s o r t ( ( c h a r * ) b u f , n b h a r e a , s i z e o f ( u n s i g n e d  c h a r ) , b y t e c o m p a r e ) , 
o u t [ o f f s e t ]  -  * m e d ia n _ l o c a t i o n ;

)
f r e e ( b u f ) ;

)
r e t u r n  o u t ;

)

v o i d
w r i t e d a t a ( f d ,  d a t a ,  r a s )  
i n t  f d ;
u n s i g n e d  c h a r  ‘ d a t a ;  
s t r u c t  r a s t e r f i l e  * r a s ;
(

i f  ( w r i t e ( f d ,  d a t a ,  r a s - > r a s _ l e n g t h )  I -  r a s - > r a s _ l e n g t h )  
f a t a l ( “ c a n n o t  w r i t e  d a t a " ) ;

« i n c l u d e  < m e m o r y .h >

s t a t i c  i n t  
b y t e c o m p a r e ( i ,  j )  
u n s i g n e d  c h a r  * i ,  * j ;
(

r e t u r n ( * i  -  * j ) ;
1

u n s i g n e d  c h a r  *
m ed ( i n ,  x s i z e ,  y s i z e ,  m s i z e )
u n s i g n e d  c h a r  ‘ i n ;
i n t  x s i z e ,  y s i z e ,  m s i z e ;
(

u n s i g n e d  c h a r  ‘ o u t  -  ( u n s ig n e d  c h a r  ‘ ) m a l l o c ( x s i z e  ‘  y s i z e ) ;

/ ‘  f i l l  i n  e d g e  p i x e l s  w i t h  b a c lc g r o u n d  v a l u e  ‘ /
(

m e m s e t ( ( c h a r * ) o u t ,  BGP, x s i z e ‘ y s i z e ) ; / *  w h a t  t h e  h e c k  -  d o  t h e  l o t !  * /
)
/ *  now d o  t h e  m e d ia n s  * /
(

i n t  n b h a r e a  -  m s i z e ‘ m s i z e ;
/ *  b u f f e r  t o  e a s e  s o r t i n g  * /
u n s i g n e d  c h a r  ‘ b u f  -  ( u n s ig n e d  c h a r  * ) m a l l o c ( n b h _ a r e a ) ; 
i n t  r a d i u s  -  m s i z e  /  2 ;  
i n t  X,  y ;
u n s i g n e d  c h a r  * m e d i a n _ l o c a t i o n  -  b u f  + n b h _ a r e a / 2 ;  
f o r  (y  -  r a d i u s ;  y  < y s i z e - r a d i u s ;  y + + ) (
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8.2.4 Result

The three versions are made into commands at the UNIX shell level, and to measure the speed 

and memory use the c-shell built-in command "tim e" is used. The three programs ran on a 

Sun Microsystems' SPARCstation2 with 32MB of main memory, running SunOS 4.1.3, and all 

files on local disk. Table 8-1 diows a result of the test using an 8 bit gray level image of the size 

256x256 with the median mask of the size 3x3. Slow-down ratios indicate how many times 

Miranda and Haskell are slower assuming the speed of C to be 1. We use elapsed time to 

calculate the slow-down ratios, since we are interested in the total time including CPU time 

and other overhead, e.g. time spent waiting for I/O  or paging. Since elapsed time also includes 

time consumed by other processes, it is important to measure these timings on a machine 

which is otherwise idle. Note also that times vary between runs, but we used the result of 

runs that fall within the typical cases.

Table 8 -1A benchm ark result

Language Hme in seconds' Slow-down ratio Maximum real

elapsed^ user system using elapsed time memoiy used in kB^

Miranda^ 382 376.9 1.6 127 9192

Haskell 44 43.3 0.5 15 4608

C 3 3.4 0.1 1 424

a. The time command gives elapsed time, CPU times devoted to the user's process and con­
sumed by the kernel by providing the tags "%E %U %S" via the "time" shell variable (see the 
manual pages for csh on the SunOS system).
b. Note that user and system time are rounded to the nearest 0.1 s by the time command, and 
elapsed time to the nearest second. This can lead to apparent anomalies, such as the elapsed 
time being reported as less than the user + ^ stem  times.
c. The maximum real memory is given in units of system pages (8kB) by providing the tag 
"%M" to the time command.
d. Pre-compilation of the Miranda program improves the performance slightly. It gives: 
elapsed - 369, user - 363.4, system -1.7, and memory - 9144.

As mentioned, the competition may not be regarded as fair for a number of reasons: the 

Miranda code was not intended to be a median filter but only a by-product of convolution 

without consideration of efficiency; the Haskell code was converted from Miranda with very 

little knowledge of Haskell programming; each version uses a different sort function defined 

in each library and its implementation is not known, and so forth. However, despite all the 

unfairness, the result gives an idea of the speed and memory use that average programmers 

could expect. The Miranda version is more than a hundred times slower than C and is too slow



- 145 -

for image processing applications. In contrast, Haskell is only 15 times slower than C. The 

Miranda implementation is very stable and reliable, but is now at least a few years old, while 

the development of Haskell is currently an on-going project and various ideas for 

improvement are being tested [Hall92b, Peyton Jones92b]. Therefore, we can expect more 

speed-up in the Haskell version. More discussions on performance are given in Section 8.6

In the following two sections, we try a few improvements on the C and Haskell versions 

to get better performance.

8.3 Improvement of the C Code

83.1 Replacing quick sort w ith  insertion sort (median-by-sort)

We used the libraiy function q s o r t  to sort local histograms, but this involves the overhead of 

a function call for each comparison during the sort. When comparing bytes, this overhead is 

likely to be significant, so we replaced qsort with an insertion sort for bytes — see Figure 8-4. 

(Insertion sort is simple and one of the most efficient algorithms for sorting small lists like this, 

i.e. lists of 9 elements or so. See, for example, [Knuth73a]). We call this revised algorithm 

median-hy-sort. The code for median filtering is otherwise identical to the one given in Figure 

8-3.

/ *  m e d l a n - b y - s o r t  * /
I i n c l u d e  < m e m o r y .h >

/ *  q s o r t  i s  t o o  s l o w  . . .  * /  
v o i d
s o r t ( v , n )
u n s i g n e d  c h a r  v [ ) ;  
i n t  n ;
(

/* insertion sort */ int i;for (i - 1; 1 < n; 1++)( unsigned char x - v[i);Int j;for (j - 1-1; (j >- 0) £« (v(jl > X ) ;  j— ) v(j+l) - v(jl; v[j+ll - x;
I

Figure 8-4 M edian by sort in C

83.2 Incremental updating of local histogram s (median-incremental)

The above two algorithms (median-by-qsort and median-by-sort) update an entire local 

histogram for each position. However, there are overlapped pixel values between
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neighbouring local histograms, e.g., for a 3x3 median mask 6 pixels are common between two 

adjacent positions. So, it is possible not to replace the entire histogram, but to update the 

histogram incrementally in scanning the input image. In addition, in updating the histogram 

the median for the previous pixel can be kept and used for searching a new median pixel. We 

call thià new algorithm median-incremental coded as shown in Hgure 8-5.___________^
/* median-incremental */ 
flnclude cnemory.h>
unsigned char *
med(In, xsize, ysize, msize)
unsigned char *in;
Int xsize, ysize, msize;

unsigned char *out - (unsigned char *) malloc(xsize * ysize);
Int y;
Int radius - msize / 2;
/ *  fill In edge pixels with background value */
memset((char*)out, BGP, xslze*yslze); /* what the heck - do the loti * /
I
/* now do the medians */
for (y <• radius; y < yslze-radlus; y++) (
Int hist[256];
Int m;
Int s; /* sum of hlst[0..m] Inclusive */
Int offset * xslze*y; / *  position of centre of mask * /
Int mid - (mslze*mslze+l)/2;
Int 1,j;
/* first build the histogram etc */ 
for (1 - 0 ;  1 < 256; 1++) 

hlst[l] - 0; 
for (j - -radius; j <- radius; j++) 

for (1 « -radius; 1 <- radius; 1++) 
hist(ln[offset+l+j*xslze])++;

/* find the median */ 
s - 0; 
m - -1; 
do { 

m++;
s +- hist[m];

) while (s < mid);
/ *  now m - median * /  
out[offset] - m;
/* now scan along the row. Incrementally updating */ 
for (j - radlus+1; j < xslze-radlus; j++)(

/* update histogram * /  
offset —  radius;
for (1 - -radius; 1 <- radius; 1++)(

Int X - ln[offset+l*xslze]; 
hlst(x]— ;
If (x <= m) 

s— ;
)offset +- 2*radlus + 1;
for (1 " -radius; 1 <- radius; 1++)(

Int X - ln[offset+l*xslze]; 
hlst[x]++;
If (x <- m)

S + + ;
}offset —  radius;
/ *  adjust m to be median again * /  
while (s-hlst[m] >- mid)( 

s —  hist[m]; 
m— ;

)
while (s < mid)( 

m++;
s +- hist[m];

)/* now m - median * /  
out[offset] - m;

}
Ireturn out;

Figure 8-5 M edian by incremental h istogram  updating
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8.3.3 Improved result

A result obtained by these improvements is shown in Table 8-1. We achieved execution time 

of 1 second by median-by-sort, and less than 1 second by median-incremental. Although these 

are quite remarkable achievements, it should be noted that in order to improve the 

performance of programs better algorithms should be used, and this optimisation should 

normally be done by hand. This requires extra progranuning effort.

Table 8-2 A benchmark result of the improved C versions

Algorithms Hme in seconds Maximum real

elapsed^ user system memoiy in kB

median-by-qsort 3 3.4 0.1 424

median-by-sort 1 1.3 0.1 424

median-incremental 0 0.6 0.0 424

a. As described in Table 8-1, elapsed time is rounded to the nearest second 
and may be less than the sum of user and system times.

8.4 Improvement of the Haskell Code

In this section, we conduct careful examination of the Haskell code and try possible 

improvement to get better performance. For the detailed description of the analysis and 

improvement using the heap profiling tool [Rundman92a, Rundman93a] that comes with hbc 

[Augustsson92a], see Appendix B.

8.4.1 Attaching 'leng th ' to the interval structure (Version 2)

In the Haskell code shown in Figure 8-2 (Version 1), there is the ip  function which is 

responsible for the whole sequence from file input, image processing, to file output, and the 

following code is in the subdefinitions of ip :

im21 (0,1) = (map chr . concat) (rep o bgr ++ map flatten 1 ++
rep (height-o- length 1) bgr) 

flatten (o,1) = (rep o bgp)++1++(rep (width-o- length 1) bgp)

Input and output streams are long lists of characters, but image processing is defined on a 2D 

interval structure, a pair of an origin and a list of elements (Section 3.2.2). irti21 is designed to 

convert a 2D interval structure to a plain list, and f l a t t e n  converts a ID interval to a plain
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list. The need for these functions comes from the intention to have equal sizes of input and 

output/ so that the results of the three versions can be made identical. Thus, in the original 

implementation in Chapter 3, this issue was not considered at all. In the im21 function, there 

is the code fragment " le n g th  1". Usually le n g th  itself consumes a list but does not keep 

the whole l is t  But in the above code, because the list *1' is shared between f l a t t e n  and 

le n g th , and the le n g th  function is not evaluated until the end, the content of the whole list 

is kept until le n g th  is evaluated. And here, this is the whole image!

As discussed in Chapter 23 of [Peyton Jones87a] and in [Hughes84a], there is a lot of 

subtlety in behaviour of lazy functional programs. Our code may be a good example of space 

leaks caused by the scheduling problem. Because the Haskell code handles an image as a list of 

lists of pixels and lists are treated lazily through input, process and output, and the process is 

a simple local neighbourhood operation that does not rely on data at distant positions, it 

should not cause any space leaks. However, as shown in Appendix B., our code had a space 

leak for the above reason.

The code has been modified to overcome the problem of accumulating the whole image. 

The interval structure has been modified to become a triple of (origin, length, list). The length 

was considered to be redundant in the original code in Chapter 3, but now it seems a good idea 

to add the new member to the data structure. The length of a now and the length of an image 

are provided as w id th  and h e ig h t respectively in the header information of a rasterfile. So, 

there is almost no overhead in obtaining this information. The new interval structure in 

Haskell is:

type Interval a = (Int,Int,[a])

The subdefinitions for the improved ip  function are shown as follows:

112im 11 = (0,height,map fn 11) where fn x = (0,width,x)
im21 (o,In,1) = (map chr . concat) (rep o bgr ++ map flatten 1 ++

rep (height-o- In) bgr) 
flatten (o,ln,l) = (rep o bgp)++1++(rep (width-o- In) bgp)

The other functions which need modification are the unary and binaiy pointwise operations, 

and the translation of intervals:
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unarylnterval f (o,ln,p) = (o,in, map f p) 
binarylnterval f (ol,lnl,pl) (o2,ln2,p2)

I (ol < o2) = (o. In, zipWith f (drop (o2-ol) pi) p2)
I otherwise = (o. In, zipWith f pi (drop (ol-o2) p2)) 
where o = max ol o2

In = max 0 ((min (ol+lnl) (o2+ln2)) - o) 
translatelnterval d (o,ln,p) = (o+d,ln,p)

Also modifications of con v l and makeMask are necessary, as well as related functions such 

as domain, e lem en t, etc. A new definition of these functions is as follows:

convl mul add mask im
» accum [prod (element mask p) (shiftlnterval p) I p<-domain mask] 
where
accum " foldll add
prod X - unarylnterval (mul x)
shiftlnterval p = translatelnterval (p-((second mask) 'div' 2)) im

domain = subscripts.third
element = (!.'). third
second (a,b,c) = b
third (a,b,c) = c
makeMask n = fn (map fn (rep n (rep n 0))) where fn x = (0,n,x)

In any of the above functions, it can be said that the modifications are relatively trivial. There 

is no change in the fundamental algorithm, but just addition of an extra parameter to save 

calculations.

8.4.2 Eliminate identical operations (Version 3)

The basic algorithm of our median filtering is to generate a list image, in which the length of 

each pixel list is equal to the square of the mask size. Then, the median of each pixel (list) is 

taken as a unary pointwise operation. Therefore, the function to take a median is the same all 

through the list image, but a compiler does not spot this fact. Lazy evaluation shares the same 

expressions only when these occur in the same function call. In our original code (Version 1) 

the index of a median is calculated every time, e.g. 65536 times for a 256x256 image. The 

following is the original code to take a median:

median list = (sort list)!!((length list) 'div' 2)

where the length does not change, e.g. if a median mask is 3x3 the index, i.e. " ( le n g th  l i s t )  

'  d iv ' 2", is 4 and is constant all through the operations. Utilising this knowledge, it is
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possible to modify the code, so that the index is calculated only once before the median 

function is called. The new definition follows;

medlanlmage n
= (unaryPolntwlse (rankFilter m)).(localHistImage (makeMask n)) 
where m = n*n 'div' 2 

rankFilter m list - (sort list)!!m

where n is the mask size. Since Ihe new function takes a rank order as a parameter, it works as 

a general rank filter rather than only a median. Hence, the name has been changed.

8.4.3 Whether to fold up a list from left or right? (Version 4)

Wedefined thehigher-orderconvolutionfunction(convl) to take multiplicative and additive 

operations as parameters and accumulation is defined within the function as " f o ld !  add". 

As discussed in Chapter 6 of [BirdSSa], fold operations behave very subtly; for functions, such 

as (+) or (*), that are strict in both arguments and can be computed in constant time and space, 

f  o ld l  is more efficient. Whereas for functions, such as (& ) or (++), that are non-strict in some 

argument, f  o ld r  is often more efficient. Therefore, it may be a mistake to hard-code the 

direction of accumulation within the function definition of convolution.

Based on the above consideration, the new definition of co n v l below takes an 

accumulation instead of an additive operation. Since an append operator (++) is passed as an 

argument in order to produce a list image, accumulate from the right should be more efficient. 

The modified code is the following:

convl mul accum mask im
= accum [prod (element mask p) (shiftInterval p) I p<-domain mask] 
where
prod X = unarylnterval (mul x)
shiftlnterval p = translatelnterval (p-((second mask) div' 2)) ira

localHistImage = convl f accum
where f = localHistRow

accum = fo ld r l  (binaryPointwise (++))

localHistRow = convl f accum
where f a b = [b]

accum = foldrl (binaryRow (++))
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8.4.4 Use of cons instead of append (Version 5)

It is generally quicker to use cons (:) instead of append C++) to attach an element to a list, 

because in order to append two lists, the one in front should be traversed. In the median 

filtering it is possible to use cons in the ID local histogramming operation. The modified 

function is:

loca lH istR ow
* conv3 f accum
where f a b  = b

accum (r:rs) * foldr (binaryRow (:)) (unaryRow (:[]) r) rs

8.4.5 Insertion sort instead of quick sort (Version 6)

As we discussed in optimising C code (Section 8.3.1), insertion sort is normally regarded as 

one of the best choices for sorting small lists like this. We implemented insertion sort in 

Haskell as follows and replaced the library quick sort with this insertion sort:

—  insertion sort
sort :: Ord a => [a] -> [a]
sort [] “ []
sort (x:ys) * insert x (sort ys)

insert Ord a => a -> [a] -> [a]
insert x [] = [x]
insert x ys0(y:ys')

I  X <= y = x:ys
1 otherwise = y: insert x ys'

The entire code of Version 6 is given in Figure 8-6.



S '
§
t
I
I
1
fD

o'
* -i

3
&
5
3
2
3.

I
o3
ON

m o d u le  M a in  (m a in ) w h e r e  
im p o r t  L i S t U t i l

—  i n s e r t i o n  s o r t
s o r t  : : O rd a - >  [a ]  - >  [a ]
s o r t  [1 -  [ ]
s o r t  ( x : y s )  -  i n s e r t  x
i n s e r t  : : O rd a - >
i n s e r t  x  ()  -  [x ]
i n s e r t  x  y s @ ( y : y s ‘ )

I X < -  y  »  x : y s
I o t h e r w i s e  -  y : i n s e r t

( s o r t  y s )  
a - >  [ a ]  - >  [a ]

X y s '

m a in  : : D i a l o g u e  
m a in  r e s p s

-  [ R e a d F i l e  " g a n t e i . r a s " ,
W r i t e F i l e  - o u t 2 . r a s “

( c a s e  r e s p s ! !0  o f
S t r  c o n t e n t s  - >  i p  (m e d ia n lm a g e  3 ) c o n t e n t s  
F a i l u r e  i o e  - >  " E r r o r " ) ]

—  T h e " w it h  a n  O r i g i n "  V e r s i o n
t y p e  I n t e r v a l  a -  ( I n t , I n t , [ a ] )
t y p e  Row a  -  I n t e r v a l  a
t y p e  Im a g e  a -  I n t e r v a l  (Row a )

—  r a s t e r f i l e  I /O
i p : : ( Im a g e  I n t - > I m a g e  I n t ) - > [ C h a r ) -> [ C h a r ]  
i p  p r o c  i n p u t

-  h e a d e r + + c m a p + + ( ( i m 2 1 . p r o c .1 2 i m )  ( d r o p  ( h e a d e r L e n g th + c m le n g )  i n p u t ) ) 
w h e r e
h e a d e r  -  ta )c e  h e a d e r L e n g t h  i n p u t
cm ap -  ta )c e  c m le n g  ( d r o p  h e a d e r L e n g t h  in p u t )
c m le n g  -  r a s _ m a p l e n g t h  h d r
h d r  -  c h a r T o N u m L is t  h e a d e r
1 2 im  -  1 1 2 i m . ( s p l i t L i s t  w i d t h ) . (map o r d )
w i d t h  -  r a s _ w i d t h  h d r
h e i g h t  -  r a s  h e i g h t  h d r
1 1 2 im  11 -  ( S ' ,h e ig h t ,m a p  f n  1 1 )  w h e r e  f n  x  -  ( 0 , w i d t h , x )
b g r  -  r e p  w id t h  b g p
b g p  -  0
im 2 1  ( o , I n , 1 ) -  (map c h r  .  c o n c a t )  ( r e p  o  b g r  ++ map f l a t t e n  1 ++

r e p  ( h e i g h t - o -  I n )  b g r )  
f l a t t e n  ( o , I n , 1 ) -  ( r e p  o  b g p ) + + 1 + + ( r e p  ( w i d t h - o -  I n )  b g p )

s p l i t L i s t : : I n t - > ( a  I - > [ [ a j ]  
s p l i t L i s t  n 1 -  c h o p L i s t  ( s p l i t A t  n ) 1

[ r a s m a g i c ,  r a s _ w i d t h , r a s _ h e i g h t ,  r a s d e p t h ,  
r a s l e n g t h , r a s “ t y p e ,  r a s ~ m a p t y p e ,r a s _ m a p l e n g t h ]  

h e a d e r L e n g t h  -  3 2  
r a s _ m a g ic _ n u m  -  1 5 0 4 0 7 8 4 8 5  
r m t _ e q u a l_ r g b  -  1 
C h a r T o N u m L is t: : [ C h a r ] - > [ I n t ]
C h a rT o N u m L ist [ ]  -  [ ]
C h a rT o N u m L ist c s  -  fou rC h a rT o N u m  ( ta )c e  4 
fo u r C h a r T o N u m :: [C h a r ] - > I n t  
fo u rC h a rT o N u m  c s - f o l d l l  (+ ) ( z ip W it h  (* )

[ ( ! ! i ) | i < - [ 0 . . 7 ] ]

c s ) : C h a rT o N u m L ist ( d r o p  4 c s )

(map o r d  c s ) ( m a p  (2 5 6 " )  [ 3 , 2 . . 0 ] ) )

n u m T o C h a r L is t : : [ I n t ] - > [C h a r]  
n u m T o C h a r L ist  [ ]  -  [ ]
n u m T o C h a r L ist  ( n : n s )  -  n um T oF ourC har n + + n u m T o C h a rL ist  n s
n u m T o F o u r C h a r :: I n t - > [ C h a r ]
n u m T oF ou rC h ar n -  map (c h r .(" m o d *  2 5 6 ) .  (n ' d i v ' ) )  (map ( 2 5 6 " )  [ 3 , 2 . . 0 ] )

—  p o i n t w i s e  o p e r a t i o n s
u n a r y l n t e r v a l : : ( a - > a a ) - > I n t e r v a l  a - > I n t e r v a l  aa  
u n a r y l n t e r v a l  f  ( o , l n , p )  -  ( o , I n ,  m ap f  p)
b i n a r y l n t e r v a l : : ( a - > a a - > a a a ) - > I n t e r v a l  a - > I n t e r v a l  a a - > I n t e r v a l  a a a  
b i n a r y l n t e r v a l  f  ( o l , l n l , p l )  ( o 2 , l n 2 , p 2 )

I ( o l  < o 2 )  -  ( o .  I n ,  z ip W it h  f  (d r o p  ( o 2 - o l )  p i )  p 2 )
I o t h e r w i s e  -  ( o .  I n ,  z ip W it h  f  p i  (d r o p  ( o l - o 2 )  p 2 ) )

w h e r e  o  -  max o l  o 2
I n  -  m ax 0  ( (m in  ( o l + l n l )  ( o 2 + l n 2 ) ) -  o )  

u n a ry R o w  -  u n a r y l n t e r v a l  
b in a r y R o w  -  b i n a r y l n t e r v a l  
u n a r y P o i n t w i s e : : ( a - > a a ) - > I m a g e  a - > I m a g e  a a  
u n a r y P o i n t w i s e  f  -  u n a ry R o w  (u n a ry R o w  f )
b i n a r y P o i n t w i s e : : ( a - > a a - > a a a ) - > I m a g e  a - > I m a g e  a a - > I m a g e  a a a  
b i n a r y P o i n t w i s e  f  -  b in a r y R o w  (b in a r y R o w  f )

—  im a g e  t r a n s l a t i o n
t r a n s l a t e l n t e r v a l : ; I n t - > I n t e r v a l  a - > I n t e r v a l  a 
t r a n s l a t e l n t e r v a l  d ( o , I n , p )  -  ( o + d , l n , p )  
t r a n s l a t e R o w  -  t r a n s l a t e l n t e r v a l

—  c o n v o l u t i o n
c o n v 3  m ul a ccu m  ma s it im

-  a ccu m  [p r o d  ( e l e m e n t  m asit p ) ( s h i f t l n t e r v a l  p ) | p < -d o m a in  m a sk ]  
w h er e
p r o d  X -  u n a r y l n t e r v a l  (m ul x )
s h i f t l n t e r v a l  p  -  t r a n s l a t e l n t e r v a l  ( p - ( ( s e c o n d  m a sk ) "d i v '  2 ) )  im  

d o m a in  -  s u b s c r i p t s . t h i r d
e le m e n t  -  ( ! I ) . t h i r d
s e c o n d  ( a , b , c )  -  b  
t h i r d  ( a ,b ,  c )  -  c

—  m e d ia n  f i l t e r  
m a k e M a s k : : I n t - > I m a g e  I n t
m akeM ask n -  f n  (map f n  ( r e p  n  ( r e p  n 0 ) ) )  w h e r e  f n  x  -  ( 0 , n , x )  
m e d ia n lm a g e  n -  ( u n a r y P o i n t w i s e  (m e d ia n  m ) ) . ( l o c a l H i s t I m a g e  (m akeM ask n ) ) 

w h e r e  m -  n * n  d i v '  2 
m e d ia n  m l i s t  -  ( s o r t  l i s t ) ! ! m
l o c a l H i s t I m a g e

l o c a l H is t R o w

c o n v 3
w h e r e

c o n v 3  f
w h er e
f a b

f  a ccu m  
f  -  l o c a l H is t R o w  
a c c u m  -  f o l d r l  ( b i n a r y P o i n t w i s e  ( + + ) )  
a ccu m

-  b
a ccu m  ( r : r s )  -  f o l d r  (b in a r y R o w  ( : ) )  (u n a ry R o w  ( : [ ] )  r )  r s

r e p  : : I n t  - >  b  - >  [b ]  
r e p  n X -  t a k e  n  ( r e p e a t  x )
s u b s c r i p t s  : : [ a ]  - >  [ I n t ]  —  M ir a n d a  in d e x
s u b s c r i p t s  x s  -  f  x s  0

w h e r e  f  [ ]  n -  []
f  ( _ : x s )  n -  n : f  x s  (n + 1 )
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8.4.6 Summary of the improvement

The following Table 8-3 summarises the result of the improvement. The condition of the runs 

is the same as the one described in Section 8.2.4. Through the various improvement of the 

Haskell code. Version 6 achieved 32 seconds in executing median filter operation on an image 

of 256x256 and this is a 27% speed up from Version 1. As for memoiy usage, these 

modifications did not improve die performance. The biggest contribution to execution time 

was from changing sorting algorithm to use insertion sort. (The cause of the speed-up was 

similar to the reason that the C version speeded up when the library qsort was replaced by an 

insertion sort. In both cases, the library functions could not inline the comparisons. Optimising 

compilers with access to the libraries could remove this overhead in both cases.) The other 

tweaks did not improve the performance very much. In particular, using cons instead of 

append (Version 5) even worsened the execution time, which was contradictory to our 

expectation. By using hbc, however, this modification made a slight improvement as 

described in Appendix B., and so there may be unknown overhead in using cons in GHC. 

More investigation is needed.

Table 8-3 Improved results of Haskell versions

Versions Time in seconds Maximum real

elapsed user system memory in kB

Version 1 (original) 44 43.3 0.5 4608

Version 2 (eliminate calculation 
of length) 41 40.1 0.6 4608

Vision 3 (eliminate index cal­
culation) 40 39.8 0.5 4608

Version 4 (accumulate from the 
right) 39 38.5 0.5 4608

Version 5 (Use (:) instead of 
(++))

40 39.0 0.6 4608

Version 6 (insertion sort instead 
of quick sort) 32 31.6 0.7 4608
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8.5 Further Benchmarks — I/O and Larger Images

To analyse the performance further, we conducted a few more tests; I/O-only versions in 

Haskell to test how much time is spent for I/O , and the memory and timing to process larger 

images both in Haskell and C.

8.5.1 How m uch time is consumed by I/O?

As a source of unfairness of the benchmark tests, we referred to I/O  in the functional versions 

(Sections 8.2.1 and 8.22). However, we have not tested how much of the execution time is 

spent for I/O  which includes low level conversions between 32 bit integers and numbers used 

in the functional programs.

Based on the Haskell's Version 1 and Version 6 (though versions from 2 to 6 will give the 

same result since the I/O-only versions are identical for these), we replaced the image 

processing function with an identity function to see how much time is used for I/O , and the 

following is the result of a set of runs:

Table 8-4 I/O  overheads of the Haskell versions

Versions Hme in seconds Maximum real

elapsed user system memory in kB

Version 1 44 43.3 0.5 4608

Version 1 (I/O  only) 5 5.1 0.6 4592

Version 6 32 31.6 0.7 4608

Version 6 (I/O  only) 5 4.3 0.6 4600

The result shows that about 5 seconds (= 11% for Versionl, and = 16% for Version 6) is 

spent for I/O  which could be improved if a better I/O  scheme was taken.

8.5.2 Space and time behaviour for larger images

Because we eliminated the source of space leaks in Section 8.4.1, the improved Haskell version 

should run in constant space even if the size of an image gets very large. Whereas in the C 

version, it is obvious from the code that the amount of memory increases as the size of an
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image increases, since we only allocates two buffers for input and output. The purpose of this 

test is to investigate how space and time behaviour changes as the image size increases.

We use the C s  median-incremental and the Haskell's versions 5 and 6 for this test. We 

use 8 bit integer images whose sizes are 256x256, 512x512, 1024x1024, 2048x2048 and 

4096x4096. The test condition is the same as Section 8.2.4, except that image files are not on the 

local disk due to disk space shortage. Following Table 8-5 shows a result, in which "Time" 

indicates elapsed time and "Memory" indicates maximum real memory used during 

execution of the process, both from c-shelTs built-in tim e  command.

Table 8-5 Results for larger images

256x256 512x512 1024x1024 2048x2048 4096x4096

c Time
(sec)

la 4 20 81 347

median-in
cremental

Memory
(kB) 416 696 2232 8376 26968

Haskell Time
(sec) 40 159 660 2738 11513

(Version 5) Memory
(kB) 4624 4608 4616 4632 4696

Haskell Time
(sec) 34 132 541 2269 %22

(Version 6) Memory
(kB) 4624 4608 4616 4632 4672

a. The elapsed time of C s  median-incremental algorithm differs from that shown in Table 8-2. 
This is probably due to a combination of rounding of the time command as described in Table 
8-1, and I/O  effects. In particular, the timing in Table 8-2 was measured using local disk only, 
while this was done using remote disk for the data files.

Following Figure 8-7 and Figure 8-8 show time and space behaviour respectively of C 

and Haskell based on the above result. Both in C and Haskell, execution time increases in 

proportion to the number of pixels and the ratio between them does not vary very much, i.e. 

Haskell is approximately 30 times slower. As for space, C consumes larger space as the image 

size increases. While in the Haskell versions, space consumption is more or less constant even 

if the image size gets very large. Up to a certain size (somewhere between 1024x1024 and 

2048x2048) C is more space efficient than Haskell, but above that Haskell becomes more space 

efficient. Moreover, the C version crashes due to out of swap space when the image size 

exceeds a certain limit^. To make the C version run, modification of the program will be

4. In fact, this happened when we processed an image of 8192x8192.
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inevitable. In contrast, the Haskell version will continue to work although it is slow.

Haskell 
(Version 5)

10240 -

Haskell 
(Version 6)

2560 -

^  640 -  

1 6 0 -

C Version

40 -

10 -

256x256 512x512 1024x1024 2048x2048 4096x4096
Image size (Number of pixels)

Figure 8-7 Graphic plot o f tim e behaviour for larger im ages

25600 -

I 6 4 0 0 -

1600 -

4 0 0 -

C Version

Haskell 
(Version 5)

Haskell 
(Version 6)

256x256 512x512 1024x1024 2048x2048 4096x4096
Image size (Number of pixels)

Figure 8-8 Graphic plot of space behaviour for larger im ages



157 -

8.6 Discussions

8.6.1 W hen lazy functional languages beat imperative languages

Table 8-1 shows that a recent compiled implementation of a lazy functional language 

outperforms an older interpretive implementation of a similar language by almost a factor of 

ten for the median filtering program. This result is obtained without making any alterations to 

the program to exploit the characteristics of the newer language and compiler. The same table 

also shows that a compiled C program for the same task outperforms the compiled functional 

program by more than a further factor of ten. However, the compilation of lazy functional 

languages is an active field of research in which major advances are still being made: there 

may yet be significant further improvements in the performance of functional programs on 

stock hardware.

Optimising code is not an easy task regardless of the languages. In C and Haskell, we 

achieved remarkable improvement in performance by using better algorithms in both cases, 

but it required extra programming effort. See the complete rework of the code to produce 

median-incremental (Figure 8-5). If a language is designed to be easy to implement better 

algorithms, better performance can be achieved more easily by using the language. There are 

a number of advantages of using lazy functional languages described all through the thesis, 

including ease of reading and writing. So, for rapid prototyping or executable specifications, 

lazy functional languages are well worth considering.

Furthermore, as shown in Section 8.5.2, when an image to be processed becomes very 

large, lazy functional languages beat imperative languages in terms of space efficiency. As 

described in Section 4.3, one of the advantages in using lazy functional languages for image 

processing is better memory management, i.e., data is always produced and consumed 

according to the needs and garbage is continuously collected. Whereas, the C version allocates 

memory for both input and output images, so that the increase of memory is proportional to 

the number of pixels in the images. If we process a very large image in the C version, it is 

impossible to process the image by the current code. In order to avoid this, programmers will 

need to do extra work to get the C code working well on large images, probably by rewriting 

the code to process an image line-by-line or chunk-by-chunk.
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8.6.2 Use of other data structures

• Arrays

Hie modification we made in Version 2 is to attach the known length of a list as an extra 

member of the data structure instead of calculating it afterwards, which has avoided 

accumulating the whole list and has fixed the space leak problem. This suggests that use of 

arrays may be plausible, because the fact that the size is known beforehand indicates there 

is no problem in allocating the area. In fact, an array implemented in Haskell has the range 

of its indices in its data structure, so that there is no overhead in obtaining the size of an 

array. It is not yet known whether arrays are easy to use for image processing in functional 

languages. More investigation is needed.

• Hierarchical data structures

We did not test the versions which use hierarchical image representations, since we used 

ordinary rasterfiles as input data which need to be converted to such data structures. This 

can be an expensive operation, and there seems no benefit in using hierarchical data 

structures as long as we use the rasterfile format and the median filtering application. 

Whether use of hierarchical data structures is beneficial or not will depend on applications, 

and we need more investigation to demonstrate hierarchical data structures are more 

beneficial in real-life applications.

8.6.3 Caveats of lazy functional languages

It may be generally true that lazy functional languages are adequately efficient even with a 

naive way of programming. However, as we have experienced, if more efficiency is to be 

sought, optimising code may not be an easy job. There is a lot of subtlety in the behaviour of 

lazy functional programs and it is not too obvious from the code itself, whether to use foldl or 

foldr, for example.

In order to write more efficient code, programmers still have to work out the sources of 

inefficiency. For example, to avoid repeated calculations, they will have to add an extra 

parameter to a function if its value is known before the function calls. Compilers will spot 

redundancy within a function but not across different functions calls. Also, it may be a good 

idea to avoid possibly expensive operations which may involve a large amount of data, such 

as length. These precautions may be veiy general regardless of the kinds of languages.



Chapter 9: Conclusions
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9.1 Overview

We have investigated the suitability of lazy functional languages for expressing image 

processing applications by implementing a variety of algorithms. Though Miranda has been 

used as the main implementation language, most of the discussions are independent of 

languages and may be applied to any other language as long as it has the same features. Some 

of the issues may be quite novel not only because there are only a few real applications written 

in lazy functional languages, but also we have tried to utilise the features of the languages, 

laziness in particular, in a positive manner. We should now come back to the original question, 

"are lazy functional languages 'good' for writing image processing programs?" and revisit the list of 

possible benefits given in Section 13.

9.2 Benefits of Functional Image Processing

9.2.1 Image processing in functional style

Image processing can be described as a certain function applied to input images or 

descriptions which yields output images or descriptions, i.e. input—̂ process—̂ output. 

Therefore, the basic style of functional programming:

output = function (inputs)

naturally describes image processing operations; for example, describing a series of 

operations, such as image file I/O  functions to convert data from/to a long list of characters 

(Section 7.2.1) and a series of geometric transformations (Section 7.4.2)'.

However, the real benefit of functional programming is not only its syntactic style, but 

its strong capability to construct complex operations from simple ones in a modular fashion, 

as described in the following.

9.2.2 Higher-order functions and image processing

Images usually have a regular and common structure, such as a 2D array of pixels, and higher- 

order functions are particularly useful to handle various operations on the same structure. 

This statement may be quite obvious and has previously been mentioned, e.g. [Breuel92a,

1. Many fm^ctions are used in a curried form including the collection of examples presented to 
show the/&pability of pointwise and convolution functions (Sections 3.3 and 3.5).
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Parsons87a]. However, what we have achieved by the local neighbourhood operations 

implemented in Section 3.5 seems quite remarkable and has practical value.

We have demonstrated that a large collection of local neighbourhood operations can be 

constructed from only three basic functions: pointwise, translation and convolution. There are 

three kinds of usage of the convolution function:

• Linear operations, such as neighbourhood averaging, Laplacian, and the Sobel edge 

operator. These operations can be implemented by replacing a mask. Most languages 

can cope with this category, as data can be given as an argument to a function.

• Non-linear but separable operations, such as minimum and maximum filters. Because 

the convolution works on a "ID first then 2D" basis and functions such as min and max 

can be calculated in any order within a local neighbourhood, those operations can be 

implemented by replacing the arguments for additive and multiplicative operations.

• Non-linear and non-separable operations, such as median filtering. In this case, the 

convolution is used as an access method to neighbourhood pixels. The neighbourhood 

pixels are concatenated to form a list of pixels at the position, which is a separable 

operation that our convolution can deal with. Then the actual operation, such as taking 

a median, is mapped onto the list image in a pointwise manner.

Using the same technique, other local neighbourhood operations such as morphological 

operations may be implemented without much difficulty. When an image processing package 

is to be designed using a functional language, the convolution proposed in this thesis will be 

a strong candidate as a member, which allows users to implement various local 

neighbourhood operations without writing low-level code.

The general methodology would be not to implement an individual algorithm directly, 

but to grasp the common structure of operations and define these structures as higher-order 

polymorphic functions. Individual algorithms can be implemented later at a much higher 

level. This principle has been termed algorithm categorisation in [Parsons87a].

9.2.3 Polymorphic pixel types

In defining a representation of images, we have used the technique to leave the type of a pixel 

as a polymorphic type using a type variable. This may be a general method to allow processing
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various categories of images in a unified manner, and has previously been used in [ Allsop91a]. 

Using this technique, programmers do not have to write almost identical code for each 

different image category, and the concrete type can be inferred when the arguments (data and 

functions) to a function have been specified. The spatial conditional operation (Section 3.3.4) 

would be a good example of combining a boolean image and polymorphic images. In short, 

from the programmers' point of view, polymorphic typing allows a modular way of 

programming by reusing polymorphic functions as program parts.

However, a serious drawback has been pointed out when polymorphic data are used to 

conununicate with the outside world (Section 72.2), as I /O  is an essential operation in image 

processing. In such a case, programmers have to be aware of which concrete types are being 

processed, and they have to apply an explicit type conversion for each type. It has been 

suggested that, to overcome this problem, overloaded functions should be defined for I/O  

which call an appropriate conversion depending on a member in the type class. In addition, if 

a language has a facility to incorporate such low level functions written in an appropriate 

language such as assembler or C, it may overcome the I/O  efficiency problem. Haskell may be 

able to cope with both suggestions.

9.2.4 Composing complex data and operations

An image is typically represented as a regular N dimensional array and functional languages 

allow construction of higher-dimensional data and operations using lower ones. This would 

be a general benefit in expressing image processing algorithms in functional languages and 

was mentioned in [Breuel92a]. However, our contribution is that we have presented a very 

clear methodology to realise this benefit which would be practically useful for implementing 

many data structures and operations for image processing.

The principle is to define a common data structure for any dimension using 

polymorphic types, then to implement an operation on the ID version making it as 

polymorphic and higher-order as possible, and lastly to apply the ID operation to itself to 

compose higher-dimensional operations. If the data structure is a plain list, composing the 

operations for a list of lists is straightforward as in [Allsop91a]. But using our method, more 

elaborate structures can be made common for all dimensions. We have defined interval as the 

common structure which is a tuple of parameters to describe the "shape" of the interval and 

the data in the interval, and regarded a row as an interval of pixels and an image as an interval
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of rows. As concrete examples, we have implemented in t e r v a l  * (Chapter 3), i n t e r v a l l  

* (Chapter 5) and in t e  rva IT * (Chapter 6), and shown that the methods to compose higher­

dimensional operations are very straightforward regardless of the basic data representations 

being lists or trees. We have not implemented 3D or higher dimensions, but they may be 

constructed using the same principle. This is another good example of modularity gained from 

the features of functional languages.

However, ease of programming may not always bring efficiency, since data struchires 

and operations are not optimised for each dimension. As discussed in Section 6.6.1, the binary 

tree version is much easier to program than the quadtree version, but in terms of space usage 

the quadtree version should be more efficient. We have not tested the practical effect of this 

trade-off in real image processing applications, which is left as future work.

9.3 Benefits of Lazy Image Processing

9.3.1 Why lazy image processing?

Lazy evaluation delays the evaluation of an argument until its value is required, which is 

particularly suitable for image processing since each image operation is usually expensive, 

and by reducing unnecessary operations, the efficiency will be much improved. We often see 

statements of this kind, e.g. (Breuel92a, Lau-Kee91a], but in practice we do not fully 

understand what this really implies. This has been the principal motivation of the 

investigation in this thesis.

We have presented an extensive discussion regarding laziness and image processing in 

Chapter 4. The conclusions drawn from the discussion would simply be the following (see 

Section 4.3):

• Laziness contributes to efficiency of image processing programs:

There are three cases: (i) when a non-strict operation, such as a conditional operation, is 

applied to images, some of the images need not be evaluated, (ii) when the same 

argument appears more than once in an expression, it will be evaluated at most once, 

and (iii) when only a part of an image or an image in reduced resolution is required, not 

all the pixels are evaluated.

• Laziness contributes to modularity of image processing programs:
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Modularity, the capability to keep code for separate operations separate, may be a key 

issue of ease of reading and writing. Using lazy languages, programs can be written in 

a modular manner without extra programming effort or much loss of efficiency. For 

example, when an image operation comprises a series of sub-operations, programmers 

can describe the composition of the series straightforwardly as:

operation = sub_op_n suh_op_3. sub_op_2. sub_op_l

As evaluation is driven by demand, even if each sub-operation processes large data 

structures, intermediate storage between sub-operations is automatically handled by 

the system. In addition, even if each sub-operation consists of a numba" of lower-level 

operations, rescheduling of individual operations is automated by the system. And 

above all, as described above, this work can be done efficiently.

To give supporting evidence for these two statements, we have implemented geometric 

transformations, in particular affine transformations, in a lazy functional language. The 

algorithms have been chosen because they are inherently lazy and lazy languages can express 

them nicely. The following three subsections describe direct benefits from writing image 

processing programs in lazy functional languages to support the above two statements.

9.3.2 Elim inating unnecessary operations

In order to produce a partial demand for an image, we have implemented the display 

functions which enable users to specify a desired area. "Display" is merely an example 

function since it is easy to understand that pixels are required in order to display an image, but 

it can be any function which issues requests for part of an image; for example, a function to 

calculate a histogram of a certain part of an image. In order to produce a display pixel, 

interpolation is usually required, since the original image may be transformed and the pixels 

may not be aligned with the display grid. Since interpolation can be an expensive operation, 

the saving which results from the elimination of unnecessary operations will be large. In this 

way, we have successfully implemented functions which only carry out operations that are 

directly required.

It is also important to choose suitable representations of an image to get more benefit 

from lazy evaluation, because traversal of a data structure is needed to get access to required 

pixels even though its elements may not be evaluated. From this consideration, we have
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implemented basically two types of representations: linear data structures, i.e. lists (Chapter 

5), and hierarchical data structures, i.e. trees and quadtrees (Chapter 6). The former utilises the 

nature of ordered collection of elements, so that it is suitable when the order of demands is 

relatively close to the order of pixels (i.e. a display pixel list and an original pixel list are dose 

to each other), or the required position is close to the top of a list, whereas the latter is suitable 

when pixels are only sparsely or relatively randomly required.

However, we did not compare the actual effidency between those representations. This 

is because there are the other benefits of using particular data structures for particular 

applications. For example, hierarchical data structures are benefidal when large data 

compression effect can be expected, such as an image with large uniform areas. And unless 

these benefits are taken into account, it would not seem worthwhile comparing the effidency. 

Currently, all the original images can only be handled as lists and conversions from lists to 

trees/quadtrees are required, which can be very expensive. This consideration of practical 

effidency is left as future work.

9.3.3 Laziness and house-keeping operations

It would be possible using non-lazy languages to implement a system in which only required 

calculation is performed. But in order to do so, extra programming effort will be needed to 

manage memory and related routine sequendng operations. One of the benefits of lazy 

functional languages is that those house-keeping operations are embedded and no extra 

programming is involved. This becomes clearer when consecutive operations are applied to a 

pixel image: a series of operations is composed to become a composite function and its 

execution is driven by a demand to produce an output pixel. Therefore, there is no need to 

arrange memory for intermediate results. The particular benefit in geometric transformations 

is that consecutive transformations do not accumulate quantisation errors, because 

intermediate pixel images will never be produced.

In short, programming in lazy functional languages is easier because they release the 

programmer from cumbersome house-keeping tasks.

9.3.4 Laziness as the "glue" of functions

The direct benefit from the above discussion, i.e. lazy languages embed house-keeping 

operations, would be that programs can be made modular. As Hughes discussed this matter
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using non-image processing examples [Hughes89al, different parts of a problem can be 

implemented as different functions and they can be put together using l a ^  evaluation as the 

"glue". We have demonstrated that this principle is also applicable to image processing 

programs.

For example, the ID display function implemented in Section 5.3.3 consists of three 

basic parts: (i) scanning output raster, (ii) fetching necessary pixels from the original pixel list, 

and (iii) interpolation. These program parts can also be used for other programs, e.g. in the 

display function for a different representation (See Section 5.43). Likewise, the ID display 

function in Section 6.4.6 using binary trees as the basic representation can also be modularised 

into three sub-processes: (i) scanning output raster, (ii) tree traversing until required resolution 

is satisfied, and (iii) calculation of the average of the sub-trees underneath. These parts can be 

"plugged in" without any consideration of synchronising operations or arrangement of 

memory between operations, i.e. those operations are "glued" together using l a ^  evaluation.

9.4 Utility of Lazy Image Processing

The utility of lazy image processing is not only to carry out conventional image processing 

operations efficiently as described above, but also it may create a new paradigm. By utilising 

both the functional and lazy nature of languages, it would be possible to handle pixel images 

and non-pixel images, such as images expressed as continuous functions, in a unified manner. 

Unless there is a demand to produce pixels, those function images can stay as functions and 

image processing may be carried out as function composition. When those two types of images 

are to be combined, necessaiy pixels will be produced from the function images.

We have demonstrated the possibility of this paradigm in (Chapter 7. Although the 

examples presented are very primitive pointwise operations only, they at least show that it can 

be done. If we come up with suitable applications of this paradigm, it might develop a new 

frontier since an image should be a certain abstract description of objects in the real world.

However, how to best encapsulate various image representations is left as further work. 

Haskeirs type class facilities look promising, but more investigation is needed.
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9.5 Are Lazy Functional Languages Inefficient?

Even though we show off a variety of benefits of lazy functional languages, people would not 

use them unless they are reasonably efficient for their applications. In Chapter 8, we have 

presented some benchmarks to compare the actual speed and memory use of currently 

available lazy functional languages with a conventional imperative language. The comparison 

is not necessarily fair because different algorithms are used for each language. Using the 

median filtering example programmed relatively naively, it has been shown that the Haskell 

program runs 15 times slower than C (Table 8-1). The importance of this speed penalty 

depends on the application, but we can conclude that, taking all the benefits of lazy functional 

languages into account, lazy functional languages could become usable for some image 

processing uses, such as prototyping and executable specifications. The results in the thesis 

should help to dispel the myth, 'Tunctional programming languages are toys" [Hudak89a].

Furthermore, we demonstrated in Chapter 8 with practical evidence that the Haskell 

version runs in nearly constant space even if an image gets very large. In contrast, the space 

usage of the C version is proportional to the number of pixels to be processed and the program 

does not run for an image larger than a certain size. If we want the C version to cope with much 

larger images, modification of the code is inevitable, which requires extra programming effort. 

What we discussed as the benefits of lazy functional languages for image processing 

applications has been confirmed by the benchmarking tests.

With regard to applying a series of image operations, a facility called element chaining is 

being discussed and proposed by the ISO committee for image processing and interchange 

[IS092a]. The aims of element chaining are to minimise data storage, to eliminate unnecessary 

data flow, and so on. This shows that, although the scope of the technology may be quite 

different from lazy functional languages, the idea of memory management and instruction 

rescheduling as performed by implementations of lazy languages is highly desirable in image 

processing applications.

We also tried some improvement of the median filter code in Haskell and found that, 

although lazy functional languages are adequately efficient even with naive coding, there is 

still considerable room for improvement, in both the speed of the code generated by functional 

compilers and the tools to help functional language programmers write more efficient code. 

Better tools and compilers are becoming available, see for example [Runciman92a, Sansom93a,
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The AQUA Team93a]. We expect emergence of these tools to encourage wider use of lazy 

functional languages.

9.6 What Has Been Achieved?

In comparison with the very diverse applications of image processing in the real world, the 

variety of algorithms we have presented in this thesis is small, and covers only a small portion 

of image processing. However, we have shown how a lazy functional language can be used to 

succinctly express a range of image processing algorithms, and how it can express some 

operations (e.g. geometric transformations) in a more modular and direct way than languages 

with strict semantics. Furthermore, we have shown how unnecessary image processing 

operations can be eliminated simply by using the laziness of the language.

However, one possibly large obstacle is the unfamiliar style, since writing image 

processing programs in lazy functional languages is quite new and most image processing 

programmers have only programmed in imperative languages. In order to overcome this 

difficulty, we need to accumulate more experience and motivate them by demonstrating 

convenience and adequate efficiency in real applications. Of course, a library of basic image 

processing modules and routines would also be a great help; if the efficiency was adequate, 

then the language facilities like polymorphism and higher-order functions would allow 

programming at a much higher level. In this light, the main contribution of this thesis is to 

present some of such experience, which should help start programming in the lazy functional 

style.

Supported by the achievements above, we can conclude the thesis by saying, "Lazy 

functional image processing is nearly there."
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Appendix A. Function Definitions

A.l Pointwise, Translation and Convolution "with an Origin'

I I YK 1 8 / 0 9 / 9 2  
I I o r i g i n . m
I I M ir a n d a  c o d e  d e s c r i b e d  i n  C h a p te r  3

II T h e  " w it h  a n  O r ig in "  V e r s i o n

i n t e r v a l  * —  (n u m ,[ * ] )
ro w  * - -  i n t e r v a l  *
im a g e  * —  i n t e r v a l  (ro w  *)

I I p o i n t w i s e  o p e r a t i o n s  (ID )

u n a r y l n t e r v a l : : ( * - > * * ) - > i n t e r v a l  * - > i n t e r v a l  **  
u n a r y l n t e r v a l  f  ( o ,p )  -  ( o ,  m ap f  p)

b i n a r y l n t e r v a l : : ( * - > * * - > * * * ) - > i n t e r v a l  * - > i n t e r v a l  * * - > i n t e r v a l  * * *  
b i n a r y l n t e r v a l  f  ( o l , p l )  ( o 2 ,p 2 )

-  ( o ,  m ap2 f  ( d r o p  ( o 2 - o l )  p i )  p 2 )  ,  i f  o l  < o 2
-  ( o ,  m ap2 f  p i  ( d r o p  ( o l - o 2 )  p 2 ) ) , o t h e r w i s e

w h e r e  o  -  m ax2 o l  o 2

u n aryR ow  -  u n a r y l n t e r v a l  
b in a r y R o w  -  b i n a r y l n t e r v a l

I I p o i n t w i s e  o p e r a t i o n s  (2 0 )

u n a r y P o i n t w i s e  -  u n a r y R o w .u n a r y R o w  
b i n a r y P o i n t w i s e  -  b in a r y R o w .b in a r y R o w

I I e x a m p le  p o i n t w i s e  o p e r a t i o n s

n e g a t e I m a g e  -  u n a r y P o i n t w i s e  n e g  
a b s I m a g e  -  u n a r y P o i n t w i s e  a b s  
l o g I m a g e  -  u n a r y P o i n t w i s e  l o g  
c o n s t I m a g e  x  -  u n a r y P o i n t w i s e  ( c o n s t  x )  
n o t I m a g e  -  u n a r y P o i n t w i s e  ( - )  
d o u b le lm a g e  -  u n a r y P o i n t w i s e  (* 2 )

a d d lm a g e  -  b i n a r y P o i n t w i s e  (+)  
s u b im a g e  -  b i n a r y P o i n t w i s e  ( - )  
m a x Im a g e  -  b i n a r y P o i n t w i s e  m ax2  
m in im a g e  •= b i n a r y P o i n t w i s e  m in 2

a n d lm a g e  -  b i n a r y P o i n t w i s e  (&) 
o r lm a g e  = b i n a r y P o i n t w i s e  ( \ / )  
e q im a g e  = b i n a r y P o i n t w i s e  ( - )

I I e x a m p le  -  i n v e r s e  l o o k  u p  t a b l e  

I n v e r s e L o o k U p T a b le  -  u n a r y P o i n t w i s e  ( [ 2 5 5 , 2 5 4 . . 0 ) ! )  

in v e r s e L o o k U p T a b le 2  r a n g e  -  u n a r y P o i n t w i s e  ( ( + r a n g e ) .n e g )

I I e x a m p le  -  s p a t i a l  c o n d i t i o n a l

c o n d lm a g e  im l  im 2 im 3
-  b i n a r y P o i n t w i s e  c o n d  im l  ( b i n a r y P o i n t w i s e  p a i r  im 2 im 3)  

w h e r e  c o n d  T r u e  ( a ,b )  -  a
c o n d  F a l s e  ( a ,b )  -  b  
p a i r  a b  -  ( a ,b )

I I im a g e  t r a n s l a t i o n

t r a n s l a t e l n t e r v a l : : n u m - > in t e r v a l  * - > i n t e r v a l  * 
t r a n s l a t e l n t e r v a l  d  ( o ,p )  -  ( o + d ,p )

t r a n s l a t e R o w  -  t r a n s l a t e l n t e r v a l
t r a n s l a t e l m a g e  x  y  ( o ,p )  -  t r a n s l a t e R o w  y  (o ,m a p  ( t r a n s l a t e R o w  x )  p)  

I I c o n v o l u t i o n

c o n v o lv e R o w  -  c o n v l  ( • )  (b in a r y R o w  ( + ) )  
c o n v o l v e l m a g e  -  c o n v l  c o n v o lv e R o w  ( b i n a r y P o i n t w i s e  ( + ) )

c o n v l  m u l a d d  m ask  im
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-  a c c u m  ( p r o d  ( e l e m e n t  m ask  p ) ( s h i f t l n t e r v a l  p ) 1 p < -d o m a in  m a sk )  
w h e r e
a c c u m  = f o l d l l  a d d
p r o d  X -  u n a r y l n t e r v a l  (m u l x )
s h i f t l n t e r v a l  p  -  t r a n s l a t e l n t e r v a l  ( p - ( ( l e n g  m a sk ) d i v  2 ) )  im

d o m a in  -  i n d e x . s n d
l e n g  -  ( f ) . s n d
e le m e n t  -  ( i j . s n d
f o l d i m  o p  -  ( f o l d l l  o p ) . s n d

I 1 e x a m p le  -  a v e r a g e ,  l a p l a c i a n

a v e r a g e  -  c o n v o l v e l m a g e  (m akeM ask [ ( 1 / 9 , 1 / 9 , 1 / 9 ) ,
( l / 9 , l / 9 , l / 9 ) ,
( l / 9 , l / 9 , l / 9 ) ) )

l a p l a c i a n  -  c o n v o l v e l m a g e  (m akeM ask ( (  0 ,  1 ,  0 ) ,
[ 1 , - 4 ,  1 ) ,
( 0 , 1 , 0 ) ) )

m a k e M a s k :: ( ( * ) ) - > im a g e  *
m akeM ask  m -  f n  (m ap f n  m) w h e r e  f n  x  -  ( 0 ,x )

I I e x a m p le  -  s o b e l  

s o b e l  im
-  b i n a r y P o i n t w i s e  (+ ) ( a b s I m a g e  im h ) ( a b s lm a g e  im v )  

w h e r e  im h -  c o n v o l v e l m a g e  (m akeM ask hM ask) im
im v  -  c o n v o l v e l m a g e  (m akeM ask ( t r a n s p o s e  h M a s k )) im
hM ask -  ( (  1 ,  2 ,  1 ) ,

[ 0 , 0 , 0 ),
( - 1 , - 2 , - D )

1 I e x a m p le  -  m axim um  a n d  m inim um  f i l t e r

m a x F il t e r R o w  -  c o n v l  s e c o n d A r g  (b in a r y R o w  m ax2) 
m a x F i l t e r l m a g e  -  c o n v l  m a x F il t e r R o w  m a x Im age

m in F i l t e r R o w  = c o n v l  s e c o n d A r g  (b in a r y R o w  m in 2 )  
m i n F i l t e r l m a g e  -  c o n v l  m in F i l t e r R o w  m in im a g e

s e c o n d A r g  a  b  -  b  

I ] e x a m p le  -  m e d ia n  f i l t e r

m e d ia n lm a g e  m a sk  -  ( u n a r y P o i n t w i s e  m e d ia n ) . ( l o c a l H i s t I m a g e  m a sk )  
m e d ia n  l i s t  -  ( s o r t  l i s t ) ! ( « l i s t  d i v  2)

l o c a l H i s t I m a g e  -  c o n v l  ( l o c a l H i s t R o w )  ( b i n a r y P o i n t w i s e  ( + + ) )
l o c a l H is t R o w  -  c o n v l  f  (b in a r y R o w  ( + + ) )  w h e r e  f  a  b  -  (b )

I I a n o t h e r  c o n v o l u t i o n  -  f a i t h f u l  t o  t h e  d e f i n i t i o n  

c o n v o lv e R o w 2  -  c o n v 2  (* )  (+)
c o n v o i v e lm a g e 2  -  c o n v 2  c o n v o i veR ow 2 (b in a r y R o w  ( + ) )

c o n v 2  m ul a d d  (m o ,m sk ) im  -  c o r r e l a t i o n  m u l a d d  ( m o , r e v e r s e  m sk ) im

c o r r e l a t i o n  m u l a d d  m ask  im
-  ( f s t  im , ( d o t  m u l a d d  m ask  im  x  | x < -d o m a in  i m ) )

d o t  m u l a d d  m a sk  im  x
-  a c c u m  ( s h i f t M a s k  $ t i m e s  im ) 

w h e r e
a c c u m  -  f o l d i m  a d d
s h i f t M a s k  -  t r a n s l a t e R o w  ( x - ( ( l e n g  m a sk ) d i v  2 ) )  m ask  
t i m e s  -  b i n a r y l n t e r v a l  m ul

A.2 Translation and Scaling Using List Representation

I I YK 0 7 / 0 9 / 9 2
II g e o m e t r i c l . m
I I M ir a n d a  c o d e  d e s c r i b e d  i n  C h a p t e r  5 

I I t r a n s l a t i o n  a n d  s c a l i n g  o n l y  

I I t y p e  sy n o n y m s

i n t e r v a l l  * —  (n u m ,n u m ,( * ) )  | |  ( o r i g i n , l e n g t h , p i x e l l i s t )
r o w l  * —  i n t e r v a l l  *
im a g e l  * —  i n t e r v a l l  ( r o w l  *)

p i  1 s t  * —  ( (num , * ) )
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I I t r a n s l a t i o n  a n d  s c a l i n g  f o r  r o w s  a n d  im a g e s

t r a n s R o w l , s c a l e R o w l : : n u m -> r o w l * - > r o w l  * 
t r a n s R o w l  d  ( o , l , p )  -  (d + o ,  1 ,  p)
s c a l e R o w l  s c  ( o , l , p )  -  ( s c * o ,  s c * l ,  p)

t r a n s l m a g e l , s c a l e l m a g e l : :n u m -> n u m -> im a g e l * - > im a g e l  *
t r a n s l m a g e l  d x  d y  ( o y , l y , r )  -  t r a n s R o w l  d y  ( o y , l y ,m a p  ( t r a n s R o w l  d x )  r )
s c a l e l m a g e l  s x  s y  ( o y , l y , r )  -  s c a l e R o w l  s y  ( o y , l y ,m a p  ( s c a l e R o w l  s x )  r )

I I C o n v e r s i o n  fr o m  a n  i n t e r v a l l  t o  a  p l i s t

i n t e r v a l T o P l 1 s t  : : i n t e r v a l l  * - > p l i s t  * 
i n t e r v a l T o P l i s t  ( o , l , [ a ] )  -  [ ( o , a ) ]
i n t e r v a l T o P l i s t  ( o , l , p )  -  z i p 2  p o s L i s t  p

w h e r e  p o s L i s t  -  m ap ( ( + o ) . ( ‘ p e r i o d ) ) ( 0 . . )  
p e r i o d  -  l / ( l p - l )

II b a s i c  d i s p l a y  f u n c t i o n

d is p : : n u m - > n u m - > n u m - > n u m - > ( n u m - > * * - > p l i s t  * - > * * ) - > * * - > p l i s t  * - > [ * * )  
d i s p  X n  h i  l o  i f n  b g  p i

-  [1 , i f  n < -0
-  b g i d i s p  (x + 1 )  ( n - 1 )  h i  l o  i f n  b g  p i  ,  i f  - ( l o < - x < - h i )
-  i f n  X b g  p l z d i s p  (x + 1 )  ( n - 1 )  h i  l o  i f n  b g  (d r o p U p to  (x + 1 )  p i )  ,  o t h e r w i s e

I I V a r i o u s  f u n c t i o n s  f o r  d i s p l a y

d is p R o w l  X n  i f n  ( o , l , p )  -  d i s p  x  n ( o + l )  o  i f n  b g p  ( i n t e r v a l T o P l i s t  ( o , l , p ) )

d i s p l m a g e l  x  y  x n  y n  i f n l  i f n 2  ( o , l , p )
-  d i s p  y  y n  ( o + l )  o  i f n 2  b g  ( I n t e r v a l T o P l i s t  im l )  

w h e r e  b g  -  r e p  x n  b g p
im l -  ( 0 , 1 , m ap ( d is p R o w l  x  x n  i f n l )  p)

d i s p I m a g e N N l ,d i s p I m a g e L I l : : n u m -> n u m -> n u m -> n u m -> im a g e l n u m -> [ [n u m ]| 
d is p I m a g e N N l x  y  x n  y n  -  d i s p l m a g e l  x  y  x n  y n  n e a r e s t  n e a r e s t  
d i s p I m a g e L I l  x  y  x n  y n  -  d i s p l m a g e l  x  y  x n  y n  l i n e a r l  l i n e a r 2

I I s p e c i a l i s e d  " t a i l "  f u n c t i o n

d r o p U p to  X [ )  -  [1
d r o p U p to  X [ x l l  -  [ x l ]
d r o p U p to  X ( x l : x 2 : x s )

-  ( x l : x 2 : x s )  ,  i f  i s B e t w e e n  x  ( p o s i t i o n O f  x l )  ( p o s i t i o n O f  x 2 )
-  d r o p U p to  X ( x 2 : x s )  , o t h e r w i s e

i s B e t w e e n  a  b  c  -  ( b < - a < - c )  \ /  ( b > - a > - c )

I I N e a r e s t  n e i g h b o u r  i n t e r p o l a t e  f u n c t i o n

n e a r e s t : : n u m - > * - > p l i s t  * -> *  
n e a r e s t  x  b g  [ ]  -  b g
n e a r e s t  x  b g  [ a ]  -  v a l u e O f  a
n e a r e s t  x  b g  ( a l : a 2 : a s )  -  v a l u e O f  a l

, i f  d i s t  X ( p o s i t i o n O f  a l )  <= d i s t  x  ( p o s i t i o n O f  a 2 )  
-  v a l u e O f  a 2  , o t h e r w i s e

d i s t  a  b  -  a b s ( a - b )

II L i n e a r  i n t e r p o l a t e  f u n c t i o n s

l i n e a r l  -  l in e a r O  l i l  
l i n e a r 2  «  l in e a r O  1 1 2

l in e a r O  f n  x  b g  [ ]  -  b g
l in e a r O  f n  x  b g  [ a ]  -  b g
l in e a r O  f n  x  b g  ( a l : a 2 : a s )  -  f n  x  a l  a 2

1 1 1  X ( x l , v l )  ( x 2 ,v 2 )  -  v l + ( v 2 - v l ) * ( x - x l ) / ( x 2 - x l )  , i f  x 2  ~=  x l
= b g p  , o t h e r w i s e

1 1 2  y  ( y l , v s l )  ( y 2 ,v s 2 )  -  m ap2 ( l i l  y )  y s l  y s 2
w h e r e  y s l  -  z i p 2  ( r e p e a t  y l )  v s l  

y s 2  -  z i p 2  ( r e p e a t  y 2 )  v s 2

b g p  -  0
p o s i t i o n O f  ( p ,v )  -  p  
v a l u e O f  ( p ,V )  -  v
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A.3 Affine Transformations Using List Representation

I I YK 0 7 / 0 9 / 9 2
II g e o m e t r i c 2 .m
I I M ir a n d a  c o d e  d e s c r i b e d  i n  C h a p t e r  5

I I A f f i n e  -  t r a n s l a t i o n ,  s c a l i n g ,  r o t a t i o n

I I im a g e  r e p r e s e n t a t i o n

r o w 2 * —  ( (num , n u m ),  (n u m ,n u m ),  (*1  )
im a g e 2  * —  [ro w 2  *1

p l i s t  * —  t ( n u m ,* ) I

I I t r a n s l a t i o n ,  s c a l i n g  a n d  r o t a t i o n  f o r  ID  a n d  2D " im a g es

t r a n s R o w 2  d x  d y  ( o , l , p )  -  ( p a i r l  ( ( + d x ) ,  ( + d y ) > o , l , p )

s c a le R o w 2  s e x  s c y  ( o , l , p )  -  ( s c l  o , s c l  l , p )
w h e r e  s c l  -  p a i r l  ( ( * s c x ) , ( * s c y ) )

r o ta t e R o w 2  t h  ( o , l , p )  -  ( r o t  o , r o t  l , p )
w h e r e  r o t  -  p a i r 2  ( r o t x  t h , r o t y  t h )

r o t x  t h  X y  -  x * ( c o s  t h ) - y * ( s i n  t h )  
r o t y  t h  X y  -  x *  ( s i n  t h ) + y * ( c o s  t h )

p a i r l  ( f n l , f n 2 )  ( x , y )  -  ( f n l  x , f n 2  y )
p a i r 2  ( f n l ,  f n 2 )  ( x , y )  -  ( f n l  x  y ,  f n 2  x  y )

t r a n s l m a g e 2  d x  d y  -  m ap ( tr a n s R o w 2  d x  d y )  
s c a l e l m a g e 2  s e x  s c y  -  m ap ( s c a le R o w 2  s e x  s c y )  
r o t a t e I m a g e 2 t h  -  m ap ( r o t a t e R o w 2  t h )

I I C o n v e r s i o n s  fr o m  a row  t o  a  p l i s t

r o w T o P l i s t : : r o w 2  * - > p i i s t  * 
r o w T o P l i s t  ( ( o x , o y ) , 1 , ( a ) ) -  ( ( o x , a ) )  
r o w T o P l i s t  ( ( o x , o y ) , ( I x , l y ) , p )  -  z i p 2  p o s L i s t  p

w h e r e  p o s L i s t  -  m ap ( ( + o x ) . ( " p e r i o d ) ) [ 0 . . ]  
p e r i o d  -  l x / ( l p - l )

r o w T o P l i s t Y ( ( o x , o y ) , ( I x , l y ) , p )  -  r o w T o P l i s t  ( ( o y , o x ) , ( l y , I x ) , p )

II T h e b a s i c  d i s p l a y  f u n c t i o n

d i s p : : n u m - > n u m - > n u m -> n u m -> ( n u m -> * * - > p l i s t  * - > * * ) - > * * - > p l 1 s t  * - > [ * * )  
d i s p  X n  h i  l o  i f n  b g  p i

-  [ ]  ,  i f  n < -0
-  b g i d i s p  (x + 1 )  ( n - 1 )  h i  l o  i f n  b g  p i  , i f  ~ ( l o < - x < - h i )
»  i f n  X b g  p l z d i s p  (x + 1 )  ( n - 1 )  h i  i o  i f n  b g  (d r o p U p to  (x + 1 )  p i ) ,  o t h e r w i s e

1 I V a r i o u s  f u n c t i o n s  f o r  d i s p l a y

d i s p P l i s t : : n u m - > n u m - > (n u m - > * -> p l is t  * - > * ) - > * - > p l i s t  * - > [ * )  
d i s p P l i s t  X n i f n  b g  p i  -  d i s p  x  n h i  l o  i f n  b g  p i

w h e r e  h i  -  p o s i t i o n O f  ( l a s t  p i )  
l o  -  p o s i t i o n O f  (h d  p i )

d i s p R o w 2 : : n u m - > n u m - > ( n u m - > * - > p l i s t  * - > * ) - > * - > r o w 2  * -> r o w 2  * 
d isp R o w 2  X n i f n  b g  ( ( o x , o y ) , ( I x , l y ) , p )

-  ( ( x , l y / l x *  ( x - o x ) + o y ) , ( n - l , l y / l x * ( n - 1 ) ) , d s p )
w h e r e  d s p  -  d i s p  x  n ( o x + l x )  o x  i f n  b g  ( r o w T o P l i s t  ( ( o x , o y ) ,  ( I x , l y ) , p ) )

d is p lm a g e 2 : : n u m - > n u m - > n u m -> n u m - > ( n u m -> * - > p l i s t  * - > * ) - > * - > im a g e 2  * - > [ [ • ] ]  
d i s p lm a g e 2  x  y  x n  y n  i f n  b g  im

-  t r a n s p o s e  (map ( d i s p P l i s t  y  y n  i f n  b g )  ( t r a n s p o s e  i m l ) ) 
w h e r e  im l  -  map ( r o w T o P l i s t Y .d i s p R o w 2  x  x n  i f n  b g )  im

d i s p I m a g e N N 2 ,d is p I m a g e L I 2 : : n u m -> n u m -> n u m -> n u m -> im a g e2  n u m -> [ (n u m ]] 
d isp Im a g e N N 2  x  y  x n  y n  -  d i s p lm a g e 2  x  y  x n  y n  n e a r e s t  b g p  
d is p I m a g e L I 2  x  y  x n  y n  -  d i s p lm a g e 2  x  y  x n  y n  l i n e a r  b g p

b g p  -  0

I I s p e c i a i i s e d  " t a i l "  f u n c t i o n

d r o p U p to  X 0  -  (I
d r o p U p to  X ( x l )  -  [ x l ]
d r o p U p to  X ( x l : x 2 : x s )

-  ( x l : x 2 : x s )  ,  i f  i s B e t w e e n  x  ( p o s i t i o n O f  x l )  ( p o s i t i o n O f  x 2 )
-  d r o p U p to  X ( x 2 : x s )  ,  o t h e r w i s e

i s B e t w e e n  a b  c  -  ( b < - a < - c )  \ /  ( b > - a > - c )  
p o s i t i o n O f  ( p ,V )  -  p

I I N e a r e s t  n e i g h b o u r  i n t e r p o l a t e  f u n c t i o n
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n e a r e s t : : n u m - > * - > p l i s t  * -> *  
n e a r e s t  x  b g  ( )  -  b g
n e a r e s t  x  b g  [ a ]  -  v a l u e O f  a
n e a r e s t  x  b g  ( a l : a 2 : a s )  -  v a l u e O f  a l

i f  d i s t  X ( p o s i t i o n O f  a l )  < »  d i s t  x  ( p o s i t i o n O f  a 2 )  
v a l u e O f  a 2  , o t h e r w i s e

d i s t  a  b  -  a b s ( a - b )  
v a l u e O f  ( p , v )  -  V

I L i n e a r  i n t e r p o l a t e  f u n c t i o n s

l i n e a r : : n u m - > n u m - > p l i s t  num ->num  
l i n e a r  x  b g  ( ]  -  b g
l i n e a r  x  b g  [ a ]  -  b g
l i n e a r  x  b g  ( ( x l , v l ) : ( x 2 , v 2 ) : a s )  -  v l + ( v 2 - v l ) * ( x - x l ) / ( x 2 - x l ) , i f  x 2 — x l

-  b g  ,  o t h e r w i s e

A.4 Translation and Scaling Using Tree of Trees Representation

I I YK 0 7 / 0 9 / 9 2
II t r e e O f T r e e s l .m
I I M ir a n d a  c o d e  d e s c r i b e d  i n  C h a p t e r  6

I I t r a n s l a t i o n  a n d  s c a l i n g  u s i n g  t r e e  o f  t r e e s  r e p r e s e n t a t i o n  

I I t y p e  d e f i n i t i o n s

t r e e  * N i l  I L e a f  * | N o d e  ( t r e e  * )  ( t r e e  *)

i n t e r v a l T  * —  ( n u m ,n u m ,tr e e  * )
row T * « “  i n t e r v a l T  *
im a g e ?  * —  i n t e r v a l T  (row T  *)

I I C o n v e r s i o n  fro m  a  p i x e l  l i s t  t o  a p i x e l  t r e e  ( l e f t - p a c k e d )

m a k e t r e e : : ( * ) - > n u m - > t r e e  * 
m a k e T r e e  [ ]  s  -  N i l
m a k e T r e e  [ x ]  1 -  L e a f  x
m a k e T r e e  l i s t  s  -  N o d e  (m a k e T r e e  l e f t  h a l f )  (m a k e T re e  r i g h t  h a l f )

w h e r e  l e f t  -  t a k e  h a l f  l i s t
r i g h t  -  d r o p  h a l f  l i s t
h a l f  -  s  d i v  2

I I c o n v e r s i o n  fr o m  a  p i x e l  l i s t  t o  a  row

l i s t T o I m a g e : : [ [ * ) ] -> im a g e T  *
l i s t T o I m a g e  1 = l i s t T o I n t e r v a l  (map l i s t T o I n t e r v a l  1) 

l i s t T o I n t e r v a l : : [ * | - > i n t e r v a l T  *
l i s t T o I n t e r v a l  1 = ( s / 2 ,  s / 4 ,  c o n d e n s e T r e e  ( l i s t T o T r e e  1 ) )  

w h e r e  s  -  m a x S iz e  (# 1 )

l i s t T o T r e e : : ( * ] - > t r e e  *
l i s t T o T r e e  1 =■ m a k e T r e e  1 ( m a x S iz e  ( # 1 ) )

m a x S iz e  0 - 0  
m a x S iz e  1 - 1
m a x S iz e  n -  2̂  ̂ ( e n t i e r  ( l o g  ( n - 1 ) / l o g  2 ) + 1)

II T h e b a c k g r o u n d  v a l u e !  

b g p  -  0

I I T r e e  c o n d e n s a t i o n

r e f o r m T r e e : : ( t r e e  * - > t r e e  * ) - > t r e e  * - > t r e e  •  
r e fo r m T r e e  f  ( L e a f  x )  -  f  ( L e a f  x)
r e f o r m T r e e  f  N i l  -  f  N i l
r e fo r m T r e e  f  (N o d e t l  t 2 )  = f  (N od e ( r e f o r m T r e e  f  t l )  ( r e f o r m T r e e  f  t 2 ) )

c o n d e n s e T r e e : : t r e e  * - > t r e e  * 
c o n d e n s e T r e e  -  r e f o r m T r e e  fu n

w h e r e  fu n  (N o d e  ( L e a f  x )  ( L e a f  x ) ) -  L e a f  x
f u n  (N o d e  N i l  N i l )  -  N i l
f u n  t  -  t

I I t r a n s l a t i o n  an d  s c a l i n g  f o r  r o w s  a n d  im a g e s

tr a n sR o w T  d  ( r , s , t )  -  ( d + r , s , t )
s c a le R o w T  s c  ( r , s , t )  -  ( s c * r , s c * s , t )

t r a n s l m a g e l  d x  d y  ( r y , s y , t )  -  tr a n sR o w T  d y  ( r y , s y ,m a p T r e e  ( tr a n s R o w T  d x )  t )  
s c a l e l m a g e T  s e x  s c y  ( r y , s y , t )

-  s c a le R o w T  s c y  ( r y , s y ,m a p T r e e  ( s c a le R o w T  s e x )  t )
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lu a p T r e e :  : ( * - > * * ) - > t r e e  * - > t r e e  **
m a p T r e e  f  N i l  -  N i l
m a p T r e e  f  ( L e a f  x )  -  L e a f  ( f  x )
m a p T r e e  f  (N o d e  x l  x 2 )  -  N o d e  (m a p T ree  f  x l )  (m a p T ree  f  x 2 )

I I d i s p l a y  f u n c t i o n s

d is p la y T ::n u m -> n u m -> n u m -> n u m -> im a g e T  n u m -> ( [n u m ]) 
d i s p l a y T  x  y  x n  y n  ( r , s , t )

-  d i s p T  y  y n  a v r L i s t  ( r e p  x n  b g p )  ( r , s ,m a p T r e e  ( d i s p T  x  x n  avrN um  b g p )  t )

d i s p T : : n u m - > n u m - > ( * - > * - > * ) - > * - > i n t e r v a l T  * - > [ * )  
d i s p T  X n f n  b g  i  -  [ ]  , i f  n - 0

-  lo o k U p T  X f n  b g  i ; d i s p T  (x + 1 )  ( n - 1 )  f n  b g  i  , o t h e r w i s e

lo o k U p T : : i n t e r v a l T  * - > n u m - > ( * - > * - > * ) - > * - > *
lo o k U p T  ( r , s , t )  X f n  b g  -  b g  ,  i f  ( x < r - 2 * s ) \ / ( r + 2 * s < - x )
lo o k U p T  ( r , s , N i l )  X f n  b g  -  b g
lo o k U p T  ( r , s , L e a f  a )  x  f n  b g  -  a
lo o k U p T  ( r , s , N o d e  t l  t 2 )  x  f n  b g

-  a v r T r e e  (N o d e t l  t 2 )  f n  b g  ,  i f  s < 0 . 5
-  lo o k U p T  ( r - s , s / 2 , t l )  x  f n  b g ,  i f  x < r
-  lo o k U p T  ( r + s , s / 2 , t 2 )  x  f n  b g ,  o t h e r w i s e

I I A v e r a g i n g  f u n c t i o n s

a v r T r e e : r t r e e  * - > ( * - > * - > * ) - > * - > *  
a v r T r e e  N i l  f n  b g  -  b g
a v r T r e e  ( L e a f  a )  f n  b g  -  a
a v r T r e e  (N o d e  t l  t 2 )  f n  b g -  f n  ( a v r T r e e  t l  f n  b g )  ( a v r T r e e  t 2  f n  b g )

a v r L i s t : : [n u m ]-> [n u m ]- > [num ]
a v r L i s t  11  1 2  -  [ ( a + b ) / 2  | ( a , b ) < - z i p 2  11 1 2 ]

a v r N u m :: num ->nu m ->num  
avrN um  a b  -  ( a + b ) / 2

A.5 Affine Transformations Using Quadtree Representation

I I YK 0 7 / 0 9 / 9 2
II q u a d t r e e .m
I I M ir a n d a  c o d e  d e s c r i b e d  i n  C h a p t e r  6

I I A f f i n e  t r a n s f o r m a t i o n  o f  a  q u a d t r e e  

% in c lu d e  " v e c t o r "

II t y p e  d e f i n i t i o n s  -  o r d e r i n g  o f  s u b t r e e s  i s  SW, SE , NW, NE

q t r e e  * : : -  Q N il  | Q L e a f • I Q N ode * ( q t r e e  * ) ( q t r e e  *) ( q t r e e  *) ( q t r e e  • )  

c o o r d  —  v e c t o r
im ageQ T  * —  ( c o o r d , v e c t o r , v e c t o r , q t r e e  *)

I I g e o m e t r i c  t r a n s f o r m a t i o n s

t r a n s Q T r e e  d x  d y  ( r , s w , s e , q t )  -  (vA dd (vM ake ( d x , d y ) ) r , s w , s e , q t )

s c a le Q T r e e  s e x  s c y  ( r , s w , s e , q t )  -  ( s c l  r , s c l  s w , s c l  s e , q t )
w h e r e  s c l  -  vM ul (vM ake ( s e x , s c y ) )

r o t a t e Q T r e e  t h  ( r , s w , s e , q t )  -  ( r o t  r , r o t  s w , r o t  s e , q t )
w h e r e
r o t  -  \Æiap2 ( r o t x  t h ,  r o t y  t h )  
r o t x  t h  X y  -  x * ( c o s  t h ) - y * ( s i n  t h )
r o t y  t h  X  y  -  x * ( s i n  t h ) + y * ( c o s  t h )

I I f u n c t i o n s  f o r  a v e r a g i n g  a  q u a d t r e e

a v r Q T r e e : : * - > ( * - > * - > * - > * - > * ) - > q t r e e  * - > q t r e e  * - > q t r e e  * - > q t r e e  • - > *  
a v r Q T r e e  b g  f  tO  t l  t 2  t 3

-  f  ( v a lQ T r e e  b g  tO ) (v a lQ T r e e  b g  t l )  ( v a lQ T r e e  b g  t 2 )  (v a lQ T r e e  b g  t 3 )

v a l Q T r e e ; : * - > q t r e e  * -> *  
v a lQ T r e e  b g  Q N il  = bg
v a lQ T r e e  b g  (Q L ea f v )  -  v
v a lQ T r e e  b g  (QN ode v  tO  t l  t 2  t 3 )  -  v

II c o n v e r s i o n  fr o m  a  l i s t  o f  p i x e l  l i s t s  t o  a q u a d t r e e .  B o t t o m - l e f t  
II p a c k e d  r e c t a n g u l a r  i s  a s s u m e d .

m a k e Q T r e e : : * - > ( * - > * - > * - > * - > * ) - > [ [ * ] ] - > n u m - > q t r e e  *
m ak eQ T ree  b g  f n  [ [ ] ]  s  -  Q N il
m ak eQ T ree  b g  f n  ( ]  s  -  Q N il
m a keQ T ree b g  f n  [ [ a ] ] 1 -  Q L e a f a
m a keQ T ree b g  f n  l i s t s  s

-  m akeQ N ode b g  f n  ( s u b t  0 )  ( s u b t  1) ( s u b t  2) ( s u b t  3)
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w h e r e
h a l f  -  s  d i v  2
s u b t  1 -  m a k eQ T ree  b g  f n  ( q u a r t e r  1 h a l f  l i s t s )  h a l f

m a)ceQNode b g  f n  tO  t l  t 2  t 3  -  Q Node (a v r O T r e e  b g  f n  tO  t l  t 2  t 3 )  tO  t l  t 2  t 3

q u a r t e r : : n u m -> n u m -> [ ( * 1 ] - > [ [ * )  1 
q u a r t e r  1 n

-  d i v i d e  e a s t W e s t  n o r t h S o u t h  
w h e r e  d i v i d e  f  g  1 -  g  (m ap f  1 )

e a s t W e s t  -  ( t a k e  n ,  d r o p  n ] ! ( i  m od 2 )
n o r t h S o u t h  -  ( t a k e  n ,  d r o p  n j ! ( i  d i v  2 )

I I F o r  i m a g e s  w h o s e  p i x e l s  a r e  num s

l i s t s T o Q T r e e : : ( ( n u m ) ] - > q t r e e  num 
l i s t s T o Q T r e e  l i s t s

-  Q N il  , i f  l i s t s - (]
-  c o n d e n s e Q T r e e  (m ak eQ T ree  b g p  a v e r a g e 4  l i s t s  s )  ,  o t h e r w i s e  

w h e r e  s  -  m a x S iz e  (m ax2 ( # ( h d  l i s t s ) )  ( f l i s t s ) )

l i s t s T o I m a g e Q T : : ( (n u m ]] -> im a g eQ T  num 
l i s t s T o I m a g e Q T  1

-  ( v M a k e ( s / 2 , s / 2 ) , v M a k e ( - s / 4 , - s / 4 ) , v M a k e ( s / 4 , - s / 4 ) ,
c o n d e n s e Q T r e e  (m a k eQ T ree  b g p  a v e r a g e 4 1 s )  ) 

w h e r e  s  -  r o a x S iz e  (m ax2 ( # (h d  1 ) )  ( # 1 ) )

m a x S iz e  0 - 0  
m a x S iz e  1 - 1
m a x S iz e  n -  2 * ( e n t i e r ( l o g  ( n - 1 ) / l o g  2 ) + 1 )  

a v e r a g e 4  a b e d -  ( a + b + c + d ) /4

I I Q u a d t r e e  c o n d e n s a t i o n

r e f o r m Q T r e e : : ( q t r e e  * - > q t r e e  * > - > q t r e e  * - > q t r e e  * 
r e fo r m Q T r e e  f  (Q L ea f  x )  -  f  (Q L e a f  x )
r e fo r m Q T r e e  f  Q N il  -  f  Q N il
r e fo r m Q T r e e  f  (Q N ode v  qtO  q t l  q t 2  q t 3 )

-  f  (Q N ode V (r e fo r m Q T r e e  f  q tO ) ( r e fo r m Q T r e e  f  q t l )
(r e fo r m Q T r e e  f  q t 2 )  (r e fo r m Q T r e e  f  q t 3 ) )

c o n d e n s e Q T r e e : : q t r e e  * - > q t r e e  * 
c o n d e n s e Q T r e e

-  r e fo r m Q T r e e  f u n  
w h e r e
fu n  (Q N ode v  (Q L ea f x )  (Q L e a f  x )  (Q L ea f  x )  (Q L ea f x ) ) -  Q L e a f  x
fu n  (Q N ode v  Q N il  Q N il  Q N il  Q N il)  -  Q N il
fu n  t  -  t

II d i s p l a y  f u n c t i o n s

d is p la y Q T ::n u m -> n u m -> n u m -> n u m -> * -> im a g e Q T  * - > ( ( * ] ]  
d i s p la y Q T  x s  y s  x n  y n  b g  im

-  (J ,  i f  y n - 0
-  d isp Q T  x s  x n  y s  b g  im : d i s p la y Q T  x s  ( y s + 1 )  x n  ( y n - 1 )  b g  im  ,  o t h e r w i s e

d i s p Q T : : n u m -> n u m -> n u m -> * -> im a g eQ T  * - > ( * ]  
d isp Q T  x s  x n  y  b g  im

-  (1 , i f  x n = 0
-  lo o k U p Q T r e e  (vM ake ( x s , y ) ) b g  im :d isp Q T  ( x s + 1 )  ( x n - 1 )  y  b g  im  , o t h e r w i s e

lo o k U p Q T r e e : : c o o r d -> * - > im a g e Q T  * -> *  
lo o k U p Q T r e e  p  b g  ( r o o t , s w , s e , q t )

-  b g  , i f  - ( v i s l n s i d e  p  v e r t e x L i s t ) \ / q t - Q N i l
-  v a lQ T r e e  b g  q t  ,  i f  i s Q L e a f  q t \ / ( v L e n g t h  s w c l e n ) t ( v L e n g t h  s e < l e n )
-  lo o k U p Q T r e e  p  b g  ( n e x t R o o t ,v H a I f  s w , v H a l f  s e , s u b T r e e  q t ) ,  o t h e r w i s e  

w h e r e
l e n  -  1 / s q r t  2
v e r t e x L i s t  -  m ap ( (vA d d  r o o t ) . v D o u b l e )  ( s w , s e , v N e g  s w ,v N e g  s e ]
s  -  sw  SvA dd s e
w -  sw  S v S u b  s e
i s W e s t  -  v D i r e c t i o n  ( r o o t  S v S u b  p ) ( r o o t  SvA dd s  S v S u b  p ) < 0
i s S o u t h  -  v D i r e c t i o n  ( r o o t  S v S u b  p )  ( r o o t  SvA dd w S v S u b  p )  > 0
( n e x t R o o t ,  i )  -  ( r o o t  SvA dd sw , 0 )  ,  i f  i s W e s t  « i s S o u t h

-  ( r o o t  SvA dd s e ,  1 )  ,  i f  - i s W e s t  t  i s S o u t h
-  ( r o o t  S v S u b  s e ,  2 )  , i f  i s W e s t  & - i s S o u t h
-  ( r o o t  S v S u b  sw , 3 )  , i f  - i s W e s t  & - i s S o u t h

s u b T r e e  (Q N ode v  a  b  c  d ) -  ( a , b , c , d ] ! i

i s Q L e a f  (Q L ea f  a )  = T r u e  
i s Q L e a f  q t  -  F a l s e

b g p  -  0

A.6 Abstract Data Type: (Image

II YK 1 6 / 0 9 / 9 2  
I I f u n c t i o n i m a g e .m
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II A b s t r a c t  d a t a  t y p e  f o r  im a g e  a s  f u n c t i o n  

% in c lu d e  " v e c t o r "
% ex p o rt f I m a g e  m a k eF Im a g e  w r i t e F I m a g e  d i s p la y F I m a g e  lo o k U p F Im a g e  

t r a n s l a t e F I m a g e  s c a le F I m a g e  r o t a t e F I m a g e

f i l e n a m e  —  [ c h a r ]  
c o o r d  —  v e c t o r

a b s t y p e  f I m a g e  *
w i t h  m a k e F I m a g e : : ( c o o r d - > * ) - > f I m a g e  *

w r i t e F I m a g e : : c o o r d - > v e c t o r - > f I m a g e  n u m - > f i l e n a m e - > [ s y s _ m e s s a g e l
d i s p l a y F I m a g e : : c o o r d - > v e c t o r - > f I m a g e  * - > [ 1 * 1 1
lo o k U p F I m a g e : : c o o r d - > f I m a g e  * -> *
t r a n s l a t e F I m a g e : ; v e c t o r - > f I m a g e  * - > f I m a g e  *
s c a l e F I m a g e : : v e c t o r - > f I m a g e  * - > f I m a g e  *
r o t a t e F I m a g e : : n u m - > f I m a g e  * - > f I m a g e  *

f im a g e  * —  c o o r d - > *

m a k eF Im a g e  f n  -  f n

d i s p la y F I m a g e  p o s i t i o n  s i z e  f im
-  [1 ,  i f  v Y e le m e n t  s i z e - 0
-  d i s p F I m a g e  p o s i t i o n  s i z e  f im

: d i s p l a y F I m a g e  (vY u p  p o s i t i o n )  (vY dow n s i z e )  f im  , o t h e r w i s e

d is p F I m a g e  p o s i t i o n  s i z e  f im
-  [1 ,  i f  v X e le m e n t  s i z e - 0
-  f im  p o s i t i o n : d i s p F I m a g e  (v X u p  p o s i t i o n )  (vX dow n s i z e )  f im  , o t h e r w i s e

w r i t e F I m a g e  o r i g i n  s i z e  f im  nam e
-  [ T o f i l e  nam e ( h e a d e r + + c m a p + + d a t a ) ,  C l o s e f i l e  nam e)  

w h e r e
h e a d e r  -  n u m T o C h a r L is t  [ r a s _ m a g ic _ n u m ,w ,h ,  8 , 1 , 1 , 1 , 7 6 8 ]  
w -  v X e le m e n t  s i z e
h -  v Y e le m e n t  s i z e
I  -  w*h
cm ap -  map d e c o d e  ( [ 0 . . 2 5 5 ) + + [ 0 . . 2 5 5 ) + + [ 0 . . 2 5 5 ] )
d a t a  -  map ( d e c o d e . c l i p )

( ( c o n c a t . r e v e r s e )  ( d i s p l a y F I m a g e  o r i g i n  s i z e  f i m ) )

c l i p  X -  0  r i f  x < 0
-  2 5 5  ,  i f  x > 2 5 5
-  e n t i e r  x  , o t h e r w i s e

r a s _ m a g ic _ n u m  -  1 5 0 4 0 7 8 4 8 5

n u m T o C h a r L is t : : [n u m ]- > ( c h a r )  
n u m T o C h a r L is t  ( )  -  [ )
n u m T o C h a r L is t  ( n : n s )  -  n u m T oF ou rC h ar n + + n u m T o C h a rL is t  n s  

n u m T o F o u r C h a r : :n u m -> [c h a r )
n u m T oF ou rC h ar n  -  m ap ( d e c o d e ,  (mod 2 5 6 )  .  (n  d i v )  ) (map (2 5 6 '' )  [ 3 , 2 .  . 0 )  ) 

lo o k U p F Im a g e  p  f im  -  f im  p

t r a n s l a t e F I m a g e  v  f im  -  f i m . ( (v A d d .v N e g )  v )  • 

s c a le F I m a g e  v  f im  = f i m . ( (v M u l. v R e c ip )  v )

r o t a t e F I m a g e  t h  f im  -  f im .( v M a p 2  ( r o t x  ( - t h ) , r o t y  ( - t h ) ) )
w h e r e  r o t x  t h  x  y  -  x * ( c o s  t h ) - y * ( s i n  t h )  

r o t y  t h  X y  -  x * ( s i n  t h ) + y * ( c o s  t h )

A.7 Abstract Data Type: pimage - The List Implementation

I I YK 1 6 / 0 9 / 9 2  
I I p i x e l i m a g e L .m

I I M ir a n d a  c o d e  d e s c r i b e d  i n  C h a p t e r  7
II A b s t r a c t  d a t a  t y p e  p im a g e  ( im p le m e n t e d  a s  l i s t s )

% in c lu d e  " v e c t o r "
% ex p o rt p im a g e  r e a d ? I m a g e  m a k eF Im a g e  w r i t e F I m a g e  d i s p la y F I m a g e  

t r a n s l a t e F I m a g e  s c a le F I m a g e  r o t a t e F I m a g e

f i l e n a m e  —  [ c h a r )  
c o o r d  —  v e c t o r  
p i x e l  —  num

a b s t y p e  p im a g e
w i t h  r e a d P I m a g e : : f i l e n a m e - > p lm a g e  

m a k e F I m a g e : : [ [ p i x e l ] ] - > p I m a g e
w r i t e F I m a g e : : c o o r d - > v e c t o r - > p I m a g e - > f i l e n a m e - > [ s y s m e s s a g e ]  
d i s p l a y F I m a g e : : c o o r d - > v e c t o r - > p I m a g e - > [ [ p i x e l ) ]  
t r a n s l a t e F I m a g e : : v e c t o r - > p I m a g e - > p I m a g e
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s e a l e P I m a g e : : v e c t o r - > p I m a g e - > p I m a g e  
r o t a t e F I m a g e : : n u m -> p lm a g e -> p lm a g e

I I Im a g e  r e p r e s e n t a t i o n

ro w 2  —  ( (num , n u m ), (num , n u m ), [num ] ) 
p im a g e  —  [r o w 2 )

p i 1 s t  * —  ( (n u m ,* )1

I I f u n c t i o n s  r e l a t e d  t o  r a s t e r f l l e  I /O  

r e a d P I m a g e  nam e
-  ( l i s t s T o P I m a g e . r e v e r s e . s p l i t L i s t  w id t h .m a p  c o d e .d r o p  s ) c ip )  ( r e a d  nam e) 

w h e r e  s k i p  -  h e a d e r L e n g t h + r a s _ m a p le n g t h  h e a d e r
w i d t h  -  r a s  w i d t h  h e a d e r  
h e a d e r  -  r e a 3 H e a d e r  nam e

m a k eF Im a g e  -  l l s t s T o P I m a g e

w r i t e F I m a g e  o r i g i n  s i z e  im nam e
-  ( T o f i l e  nam e (h e a d e r + + c m a p + + d a t a ) , C l o s e f i l e  nam e]

w h e r e  h e a d e r  -  n u m T o C h a r L is t  [ r a s _ m a g ic _ n u m ,w ,h ,8 , 1 , 1 , 1 , 7 6 8 )  
w -  v X e le m e n t  s i z e
h  -  v Y e le m e n t  s i z e
1 -  w*h
cm ap  -  map d e c o d e  ( [ 0 . . 2 5 5 ) + + ( 0 . . 2 5 5 ) + + [ 0 . . 2 5 5 ] )
d a t a  -  (map ( d e c o d e . e n t i e r ) . c o n c a t . r e v e r s e )

( d is p l a y F I m a g e  o r i g i n  s i z e  im )

s p l i t L i S t  : : n u m -> [ * ) - > ( ( * ) )  
s p l i t L i s t  n  [)  -  [ j
s p l i t L i s t  n  1 -  ( t a k e  n  1 ) + + ( s p l i t L i s t  n  (d r o p  n 1 ) )

( r a s m a g i c ,  r a s w i d t h , r a s h e i g h t ,  r a s d e p t h ,
r a s _ l e n g t h , r a s _ t y p e , r a s  m a p t y p e , r a s  m a p le n g t h )  -  ( ( ! i ) | i < - ( 0 .  . 7 ) )

h e a d e r L e n g t h  -  3 2
r a s _ m a g ic _ n u m  -  1 5 0 4 0 7 8 4 8 5
r m t e q u a l r g b  -  1

r e a d H e a d e r : : f i l e n a m e - > ( n u m )  
r e a d H e a d e r  nam e

-  e r r o r  " g e t H e a d e r : n o t  a  r a s t e r f l l e . "  ,  i f  - i s R a s t e r
“  e r r o r  " g e t H e a d e r : n o t  a  b y t e  i m a g e ."  , i f  ~ i s 8 b i t
-  e r r o r  " g e t H e a d e r : u n e x p e c t e d  c o l o u r  m ap t y p e " ,  i f  - I s E q u a lR g b
-  h e a d e r  , o t h e r w i s e

w h e r e
I s R a s t e r  -  ( r a s m a g i c  h e a d e r - r a s m a g i c n u m )
i s 8 b l t  -  ( r a s d e p t h  h e a d e r - 8 )
i s E q u a lR g b  -  ( r a s m a p t y p e  h e a d e r - r m t  e q u a l r g b )
h e a d e r  -  c h a r T o N u m L is t  ( t a k e  h e a d e r L e n g t h  ( r e a d  n a m e ) )

c h a r T o N u m L is t : : ( c h a r ) - > (num )
C h a rT o N u m L ist ( )  -  (j
C h a rT o N u m L ist c s  -  fo u rC h a rT o N u m  ( t a k e  4 c s ) : c h a r T o N u m L is t  ( d r o p  4 c s )

fo u r C h a r T o N u m :: ( c h a r ) ->num
fo u rC h a rT o N u m  c s  -  f o l d l l  (+ ) (map2 (* ) (map c o d e  c s )  (map (256"") ( 3 , 2 .  . 0 )  ) )

n u m T o C h a r L is t : : (n u m )- > [ c h a r ) 
n u m T o C h a r L is t  ( )  -  ()
n u m T o C h a r L is t  ( n : n s )  -  n u m T oF ou rC h ar n + + n u m T o C h a rL ist  n s

n u m T o F o u r C h a r : :n u m -> (c h a r )
n u m T oF ou rC h ar n -  map ( d e c o d e ,  (mod 2 5 6 )  .  (n  d i v )  ) (map (256"") ( 3 , 2 .  . 0 ) )

II t r a n s l a t i o n ,  s c a l i n g  a n d  r o t a t i o n  f o r  ID  a n d  2D im a g e s

tr a n sR o w 2  d x  d y  ( o , 1 , p) -  ( p a i r l  ( ( + d x ) , ( + d y ) ) o , l , p )

s c a le R o w 2  s e x  s c y  ( o , l , p )  -  ( s c l  o , s c l  l , p )
w h e r e  s c l  -  p a i r l  ( ( * s c x ) , ( * s c y ) )

r o ta t e R o w 2  t h  ( o , l , p )  -  ( r o t  o , r o t  l , p )
w h e r e  r o t  -  p a i r 2  ( r o t x  t h , r o t y  t h )

r o t x  t h  X y  -  x * ( c o s  t h ) - y * ( s i n  t h )
r o t y  t h  X y  -  x*  ( s i n  t h ) + y * ( c o s  t h )

p a i r l  ( f n l , f n 2 )  ( x ,y )  = ( f n l  x , f n 2  y )
p a i r 2  ( f n l , f n 2 )  ( x , y )  = ( f n l  x  y , f n 2  x  y )

t r a n s l a t e F I m a g e  d -  map ( tr a n s R o w 2  (v X e le m e n t  d ) ( v Y e le m e n t  d ) )
s c a le F I m a g e  s  -  map ( s c a le R o w 2  (v X e le m e n t  s )  (v Y e le m e n t  s ) )
r o t a t e F I m a g e  t h  -  map ( r o t a t e R o w 2  t h )

I I P r o d u c in g  a  p im a g e  fr o m  a  2D l i s t

l i s t s T o P I m a g e  1 -  z i p 3  ( z i p 2  ( 0 , 0 . . )  ( 0 . . ) )  ( z i p 2  ( w , w . . )  ( 0 , 0 . . ) )  1
w h e r e  w -  I ( h d  1 ) - 1

I I C o n v e r s i o n s  fro m  a row  t o  a  p l i s t

r o w T o F l i s t  ( ( o x , o y ) , 1 , ( a ) ) -  [ ( o x , a ) )
r o w T o F l i s t  ( ( o x , o y ) , ( I x , l y ) , p )  »  z ip 2  p o s L i s t  p
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w h e r e  p o s L i s t  - m a p  ( ( + o x ) . ( ‘ p e r i o d ) ) [ 0 . . ]  
p e r i o d  -  l x / ( l p - l )

r o w T o P l i s t Y  ( ( o x , o y ) , ( l x , l y ) , p )  -  r o w T o P l i s t  ( ( o y , o x ) , ( l y , I x ) , p )

I I T h e b a s i c  d i s p l a y  f u n c t i o n

d i s p ;  :n u m -> n u m -> n u m -> n u m ->  ( n u m - > * * - > p l i s t  * - > “ ) - > “ - > p l i s t  * - > [ “ ] 
d i s p  x  n h i  l o  i f n  b g  p i

-  [ ]  ,  i f  n < -0
-  b g i d i s p  (x + 1 )  ( n - 1 )  h i  l o  i f n  b g  p i  , i f  ~ ( l o < - x < - h i )
-  i f n  X b g  p l : d i s p  (x + 1 )  ( n - 1 )  h i  l o  i f n  b g  ( d r o p U p to  (x + 1 )  p i ) ,  o t h e r w i s e

II V a r i o u s  f u n c t i o n s  f o r  d i s p l a y

d i s p P 1 1 s t  : : n u m -> n u m -> (n u m -> ‘ - > p l i s t  * - > * ) - > * - > p l i s t  * - > [ * 1  
d i s p P l l s t  X n i f n  b g  p i  -  d i s p  x  n h i  l o  i f n  b g  p i

w h e r e  h i  -  p o s i t i o n O f  ( l a s t  p i )
l o  -  p o s i t i o n O f  (h d  p i )

d isp R o w 2  X n i f n  lag ( ( o x , o y ) , ( I x ,  l y )  ,p )
-  ( (X , l y / l x *  ( x - o x )  + o y ) ,  ( n - 1 ,  l y / l x *  ( n - 1 )  ) ,  d s p )

w h e r e  d s p  -  d i s p  x  n ( o x + l x )  o x  i f n  b g  ( r o w T o P l i s t  ( ( o x , o y ) , ( I x , l y ) , p ) )

d i s p lm a g e 2  x  y  x n  y n  i f n  b g  im
-  t r a n s p o s e  (map ( d i s p P l i s t  y  y n  i f n  b g )  ( t r a n s p o s e  i m l ) )

w h e r e  im l  -  map ( r o w T o P l i s t Y .d i s p R o w 2  x  x n  i f n  b g )  im

d i s p la y P I m a g e  o  s
-  d is p I m a g e N N 2  ( v X e le m e n t  o )  ( v Y e le m e n t  o )  ( v X e le m e n t  s )  ( v Y e le m e n t  s )

d is p I m a g e N N 2  x  y  x n  y n  -  d i s p lm a g e 2  x  y  x n  y n  n e a r e s t  b g p

b g p  -  0

II s p e c i a l i s e d  " t a i l "  f u n c t i o n

d r o p U p to  X [ ]  -  [1
d r o p U p to  X ( x l )  -  [ x l I
d r o p U p to  X ( x l : x 2 : x s )

-  ( x l : x 2 : x s )  , i f  i s B e t w e e n  x  ( p o s i t i o n O f  x l )  ( p o s i t i o n O f  x 2 )
-  d r o p U p to  X ( x 2 : x s )  , o t h e r w i s e

i s B e t w e e n  a  b  c  -  ( b < - a < - c )  \ /  ( b > - a > - c )  
p o s i t i o n O f  ( p ,v )  -  p

I I N e a r e s t  n e i g h b o u r  i n t e r p o l a t i o n

n e a r e s t : : n u m - > * - > p l i s t  * - > *  
n e a r e s t  x  b g  [1 -  b g
n e a r e s t  x  b g  [ a )  -  v a l u e O f  a
n e a r e s t  x  b g  ( a l : a 2 : a s )  -  v a l u e O f  a l

,  i f  d i s t  X ( p o s i t i o n O f  a l )  < -  d i s t  x  ( p o s i t i o n O f  a 2 )  
-  v a l u e O f  a 2  , o t h e r w i s e

d i s t  a b  -  a b s ( a - b )  
v a l u e O f  ( p , V )  -  V

A.8 Abstract Data Type: pimage - The Quadtree 
Implementation

I I YK 1 6 / 0 9 / 9 2
II p ix e l im a g e Q .m

II M ir a n d a  c o d e  d e s c r i b e d  i n  C h a p t e r  7
I I A b s t r a c t  d a t a  t y p e  p im a g e  ( im p le m e n t e d  a s  q u a d t r e e s )

% in c lu d e  " v e c t o r "
% exp ort p im a g e  r e a d P I m a g e  m a k eP Im a g e  w r i t e P I m a g e  d i s p la y P I m a g e  

t r a n s l a t e P I m a q e  s c a le P I m a g e  r o t a t e P I m a g e

f i l e n a m e  —  [ c h a r ]
c o o r d  —  v e c t o r
p i x e l  —  num

a b s t y p e  p im a g e
w i t h  r e a d P I m a g e : : f i 1 e n a m e -> p lm a g e  

m a lteP Im a g e  : : ( [ p i x e l  ] j - > p lm a g e
w r i t e P I m a g e : : c o o r d - > v e c t o r - > p I m a g e - > f  i l e n a m e - > [ s y s  m e s s a g e j
d i s p l a y P I m a g e : : c o o r d - > v e c t o r - > p I m a g e - > [ [ p i x e l ] )
t r a n s l a t e P I m a g e : : v e c t o r - > p I m a g e - > p I m a g e
s c a l e P I m a g e : : v e c t o r - > p I m a g e - > p I m a g e
r o t  a t e P I m a g e : : n u m -> p lm a g e -> p lm a g e
s h o w P I m a g e : : p l m a g e - > [ c h a r ]

I I t y p e  d e f i n i t i o n s  -  o r d e r i n g  o f  s u b t r e e s :  SW, SE, NW, NE
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q t r e e  * Q N il  | Q L e a f  * | Q Node * ( q t r e e  *) ( q t r e e  *) ( q t r e e  * ) ( q t r e e  • )

p i m a g e - -  ( c o o r d , v e c t o r , v e c t o r , q t r e e  p i x e l )  | |  ( r o o t ,S W ,S E ,p i x e l s )

I I f u n c t i o n s  r e l a t e d  t o  r a s t e r f l l e  I /O  

r e a d P I m a g e  nam e
-  ( l i s t s T o P I m a g e . r e v e r s e . s p l i t L i s t  w id t h .m a p  c o d e .d r o p  s ) c ip )  ( r e a d  nam e)  

w h e r e  s ) c ip  -  h e a d e r L e n g t h + r a s  m a p le n g t h  h e a d e r
w i d t h  -  r a s  w i d t h  h e a d e r  
h e a d e r  -  r e a d H e a d e r  nam e

m a)ceP Im age -  l i s t s T o P I m a g e

w r i t e P I m a g e  o r i g i n  s i z e  im  nam e
-  [ T o f i l e  nam e (h e a d e r + + c n v a p + + d a ta ) ,  C l o s e f i l e  nam e]

w h e r e  h e a d e r  -  n u m T o C h a r L is t  [ r a s _ m a g i c _ n u m , w , h ,8 , 1 , 1 , 1 , 7 6 8 ]  
w -  v X e le m e n t  s i z e
h -  v Y e le m e n t  s i z e
1 -  w*h
cm ap  -  m ap d e c o d e  ( [ 0 . . 2 5 5 ] + + [ 0 . . 2 5 5 ] + + ( 0 . . 2 5 5 ] )
d a t a  -  (map d e c o d e . c o n c a t . r e v e r s e )  ( d i s p l a y P I m a g e  o r i g i n  s i z e  im )

s p l i t L i s t ; : n u m -> [ * ] - > ( [ * ] ]  
s p l i t L i s t  n  [ ]  -  [ ]
s p l i t L i s t  n  1 -  [ ta ) c e  n 1 ] + + ( s p l i t L i s t  n (d r o p  n  1 ) )

[ r a s m a g i c ,  r a s _ w i d t h , r a s _ h e i g h t ,  r a s d e p t h ,
r a s l e n g t h , r a s t y p e ,  r a s m a p t y p e , r a s m a p l e n g t h ]  -  [ ( ! i ) | i < - [ 0 . . 7 ] ]

h e a d e r L e n g t h  -  3 2
r a s _ m a g ic _ n u m  -  1 5 0 4 0 7 8 4 8 5
r m t e q u a I r g b  -  1

r e a d H e a d e r : : f i l e n a m e - > [ n u m ]  
r e a d H e a d e r  nam e

-  e r r o r  “ g e t H e a d e r : n o t  a  r a s t e r f l l e . "  , i f  - i s R a s t e r
-  e r r o r  " g e t H e a d e r in o t  a b y t e  i m a g e ."  , i f  - i s 8 b i t
-  e r r o r  " g e t H e a d e r : u n e x p e c t e d  c o l o u r  m ap t y p e " ,  i f  - i s E q u a lR g b
-  h e a d e r  , o t h e r w i s e

w h e r e
i s R a s t e r  -  ( r a s m a g i c  h e a d e r - r a s m a g i c n u m )
i s 8 b i t  -  ( r a s d e p t h  h e a d e r - 8 )
i s E q u a lR g b  -  ( r a s m a p t y p e  h e a d e r - r m t e q u a l r g b )
h e a d e r  -  c h a r T o N u m L is t  ( t a k e  h e a d e r L e n g t h  ( r e a d  n a m e ) )

C h a r T o N u m L is t : : [ c h a r ] - > [num ]
C h a rT o N u m L ist [ ]  -  [ j
C h a rT o N u m L ist c s  -  fo u rC h a rT o N u m  ( t a k e  4 c s ) : c h a r T o N u m L is t  ( d r o p  4 c s )  

fo u r C h a r T o N u m :: [ c h a r ] - > n u m
fou rC h a rT o N u m  c s  -  f o l d l l  (+ ) (m ap2 (* )  (map c o d e  c s )  (map (2 5 6 '' )  [ 3 , 2 .  . 0 ]  ) )

n u m T o C h a r L is t : : [n u m ]- > [ c h a r ]  
n u m T o C h a r L is t  [ ]  -  []
n u m T o C h a r L is t  ( n : n s )  -  n u m T oF ou rC h ar n + + n u m T o C h a rL ist  n s  

n u m T o F o u r C h a r :: n u m -> [c h a r ]
nu m T oF ou rC h ar n -  map ( d e c o d e . ( m o d  2 5 6 ) . (n  d i v ) ) (map (2 5 6 ^ )  [ 3 , 2 . . 0 ] )

I I f u n c t i o n s  r e l a t e d  t o  q u a d t r e e s

l i s t s T o P I m a g e  1 -  ( r o o t ,  s w , s e ,  c o n d e n s e Q T r e e  (m ak eQ T ree  1 s ) ) 
w h e r e  s  -  m a x S iz e  (m ax2 ( # (hd  1 ) )  ( # 1 ) )

r o o t  -  vM ake ( s / 2 ,  s / 2 )
sw  -  VMake ( - s / 4 , - s / 4 )
s e  -  VMake ( s / 4 , - s / 4 )

m a x S iz e  0 - 0  
m a x S iz e  1 - 1
m a x S iz e  n -  2 * ( e n t i e r ( l o g  ( n - 1 ) / l o g  2 ) + l )

I I c o n v e r s i o n  fr o m  a  l i s t  o f  p i x e l  l i s t s  t o  a  q u a d t r e e

m a k e Q T r e e : : [ [ p i x e l ] ] - > n u m - > q t r e e  p i x e l  
m ak eQ T ree  [ [ ] ]  t s i z e  -  Q N il
m ak eQ T ree  [ ]  t s i z e  »  Q N il
m ak eQ T ree  [ [ a ] ] 1 -  Q L ea f a
m ak eQ T ree  l i s t s  t s i z e  -  m akeQ N ode ( s u b t  0 )  ( s u b t  1 ) ( s u b t  2 )  ( s u b t  3 )

w h e r e
h a l f  -  t s i z e  d i v  2
s u b t  i  -  m ak eQ T ree  ( q u a r t e r  i  h a l f  l i s t s )  h a l f

m a k e Q N o d e :: q t r e e  p i x e l - > q t r e e  p i x e l - > q t r e e  p i x e l - > q t r e e  p i x e l - > q t r e e  p i x e l  
m akeQ N ode tO  t l  t 2  t 3  -  QNode (a v r Q T r e e  tO  t l  t 2  t 3 )  tO  t l  t 2  t 3

q u a r t e r : : n u m -> n u m -> [ ( * ] ] - > [ [ * ] ]  
q u a r t e r  i n -  d i v i d e  w e s t E a s t  s o u t h N o r t h

w h e r e  d i v i d e  f  g  1 -  g  (m ap f  1)
w e s t E a s t  -  [ t a k e  n ,  d r o p  n ] ! ( i  mod 2 )
s o u t h N o r t h  -  [ t a k e  n ,  d r o p  n ] ! ( i  d i v  2 )

I I f u n c t i o n s  f o r  a v e r a g i n g  a q u a d t r e e
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a v e r a g e 4 ; : n u m ->n u m -> n u m -> n u m ->n u m  
a v e r a g e 4  a b e d -  ( a + b + c + d ) /4

a v r Q T r e e :  : q t r e e  n u m - > q t r e e  n u m - > q t r e e  n u r a -> q tr e e  nuiti->num  
a v r Q T r e e  tO  t l  t 2  t 3

-  a v e r a g e 4  ( v a lQ T r e e  tO ) (v a lQ T r e e  t l )  ( v a lQ T r e e  t 2 )  ( v a lQ T r e e  t 3 )

v a l Q T r e e : : q t r e e  num ->num  
v a lQ T r e e  Q N il  -  b g p
v a lQ T r e e  (Q L ea f  v )  -  v
v a lQ T r e e  (Q N ode v  tO  t l  t 2  t 3 )  -  v

b g p  -  0

11 Q u a d t r e e  c o n d e n s a t i o n

t r a n s f o r m Q T r e e : : ( q t r e e  * - > q t r e e  * ) - > q t r e e  * - > q t r e e  * 
t r a n s f o r m Q T r e e  f  (Q L ea f  x )  -  f  (Q L ea f  x )
t r a n s f o r m Q T r e e  f  Q N il  -  f  Q N il
t r a n s f o r m Q T r e e  f  (Q N ode v  q tO  q t l  q t 2  q t 3 )

-  f  (Q N ode v  ( t r a n s f o r m Q T r e e  f  q tO ) ( t r a n s f o r m Q T r e e  f  q t l )
( t r a n s f o r m Q T r e e  f  q t 2 )  ( t r a n s f o r m Q T r e e  f  q t 3 ) )

c o n d e n s e Q T r e e ; : q t r e e  * - > q t r e e  * 
c o n d e n s e Q T r e e  -  t r a n s f o r m Q T r e e  f u n  

w h e r e
f u n  (Q N ode v  (Q L ea f  x )  (Q L ea f  x )  (Q L ea f  x )  (Q L ea f  x ) ) -  Q L e a f  x  
f u n  (Q N ode v  Q N il  Q N il  Q N il  Q N il)  -  Q N il
f u n  t  -  t

I I g e o m e t r i c  t r a n s f o r m a t i o n s

t r a n s l a t e F I m a g e  d  ( r o o t , s w , s e , q t )  -  (vA dd d  r o o t ,  s w , s e ,  q t )

s c a le P I m a g e  s c  ( r o o t ,  sw , s e ,  q t )  -  ( s c l  r o o t ,  s c l  sw , s c l  s e ,  q t )
w h e r e  s c l  -  vM ul s c

r o t a t e P I m a g e  t h  ( r o o t , s w , s e , q t )  -  ( r o t  r o o t ,  r o t  s w , r o t  s e ,  q t )
w h e r e
r o t  -  vM ap2 ( r o t x  t h ,  r o t y  t h )  
r o t x  t h  X y  -  x*  ( c o s  t h ) - y * ( s i n  t h )
r o t y  t h  X y  -  x*  ( s i n  t h ) + y * ( c o s  t h )

I I d i s p l a y  f u n c t i o n s

d i s p la y P I m a g e  o r i g i n  s i z e  im
-  (1 ,  i f  v Y e le m e n t  s i z e - 0
-  d i s p  o r i g i n  s i z e  im :

d i s p la y P I m a g e  (vY u p  o r ig i n ) ( v Y d o w n  s i z e )  im  , o t h e r w i s e

d i s p  o r i g i n  s i z e  im
-  [ ]  ,  i f  v X e le m e n t  s i z e - 0
-  lo o )(U p P Im a g e  o r i g i n  i m : d i s p  (vX up o r i g i n )  (vX dow n s i z e )  im  ,  o t h e r w i s e

lo o k U p F Im a g e  p  ( r o o t , s w , s e , q t )
-  b g p  ,  i f  - ( v i s l n s i d e  p  v e r t e x L i s t ) \ / q t - Q N i l
-  v a lQ T r e e  q t  , i f  i s Q L e a f  q t \ / ( v L e n g t h  s w < 0 .5 ) t ( v L e n g t h  s e < 0 . 5 )
-  lo o k U p F Im a g e  p  ( n e x t R o o t ,  v H a l f  s w , v H a l f  s e ,  s u b T r e e  q t ) , o t h e r w i s e  

w h e r e
v e r t e x L i s t  -  map ( (vA dd r o o t ) . v D o u b l e )  [ s w , s e , v N e g  s w ,v N e g  s e ]  
s  -  sw $vA dd s e  
w -  sw  $ v S u b  s e
i s W e s t  -  v D i r e c t i o n  ( r o o t  $ v S u b  p ) ( r o o t  $vA d d  s  $ v S u b  p ) < 0
i s S o u t h  -  v D i r e c t i o n  ( r o o t  S v S u b  p ) ( r o o t  SvA dd w S v S u b  p ) > 0
( n e x t R o o t ,  i )  -  ( r o o t  SvA dd sw , 0 )  ,  i f  i s W e s t  (  i s S o u t h

-  ( r o o t  SvA dd s e ,  1 )  ,  i f  - i s W e s t  i i s S o u t h
-  ( r o o t  S v S u b  s e ,  2 )  ,  i f  i s W e s t  & - i s S o u t h
-  ( r o o t  S v S u b  s w , 3 )  ,  i f  - i s W e s t  & - i s S o u t h

s u b T r e e  (Q N ode v  a  b  c  d ) -  [ a , b , c , d ] l i

i s Q L e a f  (Q L ea f  a )  -  T r u e  
i s Q L e a f  q t  -  F a l s e

isQ N o d e  (Q N ode v  a  b  c  d ) -  T r u e  
i sQ N o d e  q t  -  F a l s e

sh o w P Im a g e  ( r , s w , s e , Q N il)  -  " Q N il"
sh o w P Im a g e  ( r ,  sw , s e ,  Q L e a f a )  -  " (Q L ea f " + + sh o w  a + + " ) "
sh o w P Im a g e  ( r , s w , s e , Q Node v  a b  c  d)

- " \n ( Q N o d e  " + + sh o w  v + + sh o w P Im a g e  ( r , s w , s e , a )+ + s h o w P Im a g e  ( r , s w , s e , b) 
+ + sh o w P Im a g e  ( r , s w , s e , c )+ + s h o w P I m a g e  ( r , s w , s e , d ) + + " )"

A.9 Abstract Data Typeivector

II YK 1 7 / 0 3 / 9 2
I I v e c t o r . m
II A b s t r a c t  d a t a  t y p e  f o r  2D v e c t o r  h a n d l i n g  

f u n c 2  —  num ->num ->num
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a b s t y p e  v e c t o r
w i t h  v M a k e : : ( n u m ,n u m ) - > v e c t o r  

v X e l e m e n t : : v e c t o r - > n u m  
v Y e l e m e n t : : v e c t o r - > n u m  
v M a p 2 :: ( f u n c 2 , f u n c 2 ) - > v e c t o r - > v e c t o r  
v A d d ; ; v e c t o r - > v e c t o r - > v e c t o r  
v S u b : ; v e c t o r - > v e c t o r - > v e c t o r  
v M u l: ; v e c t o r - > v e c t o r - > v e c t o r  
v D i v : : v e c t o r - > v e c t o r - > v e c t o r  
v H a I f : : v e c t o r - > v e c t o r  
v D o u b le : : v e c t o r - > v e c t o r  
v N e g : : v e c t o r - > v e c t o r  
v R e c i p : : v e c t o r - > v e c t o r  
v L e n g t h : : v e c t o r - > n u m  
v X u p : : v e c t o r - > v e c t o r  
v X d o w n : : v e c t o r - > v e c t o r  
v Y u p : : v e c t o r - > v e c t o r  
v Y d o w n : : v e c t o r - > v e c t o r  
v i s l n s i d e : : v e c t o r - > [ v e c t o r ] - > b o o l  
v D i r e c t i o n : : v e c t o r - > v e c t o r - > n u m  
s h o w v e c t o r : : v e c t o r - ) [ c h a r ]

v e c t o r  —  (num ,num )

vMa)ce ( x , y )  -  ( x ,y )
v X e le m e n t  ( x , y )  -  x
v Y e le m e n t  ( x , y )  -  y

v F u n l  f n  ( x ,y )  -  ( f n  x ,  f n  y )
v F u n 2  f n  ( x l , y l )  ( x 2 ,y 2 )  -  ( f n  x l  x 2 ,  f n  y l  y 2 )

vM apl ( f n l ,  f n 2 )  ( x , y )  -  ( f n l  x ,  f n 2  y )
vM ap2 ( f n l ,  f n 2 )  ( x , y )  -  ( f n l  x  y ,  f n 2  x  y )
vM ap3 ( f n l , f n 2 )  ( x l , y l )  ( x 2 ,y 2 )  -  ( f n l  x l  x 2 ,  f n 2  y l  y 2 )
vM ap4 ( f n l , f n 2 )  ( x l , y l )  ( x 2 ,y 2 )  -  ( f n l  x l  y l ,  f n 2  x 2  y 2 )

vA dd -  v F u n 2  (+)  
v S u b  -  v F u n 2  ( - )  
vM ul -  v F u n 2  {*)  
v D iv  -  v F u n 2  ( / )  
v H a lf  -  v F u n l  ( / 2 )  
v D o u b le  -  v F u n l  (* 2 )  
v N e g  -  v F u n l  (n e g )
v R e c i p  -  v F u n l  ( 1 / )

v L e n g t h  ( x , y )  -  s q r t  (x ''2 + y ^ 2 )

v X u p  ( x , y )  -  ( x + l , y )  
vX dow n ( x , y )  -  ( x - l , y )  
vY u p ( x , y )  -  ( x , y + l )  
vYdown ( x , y )  -  ( x , y - l )

v i s l n s i d e  p  v l
-  a n d  ( v D i r e c t i o n  v l  v 2  > -  0  |

( v l , v 2 ) < - z i p 2  (map (v S u b  p ) v l )  (map (v S u b  p ) v l r ) ] 
w h e r e  v l r  -  ( t l  v l ) + + [ h d  v l ]

v D i r e c t i o n  ( x l , y l )  ( x 2 ,y 2 )  -  x l * y 2 - x 2 * y l

s h o w v e c t o r  ( x , y )  = " (" + + sh o w  x + + " , “ + + sh o w  y + + " ) "
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Abstract

This paper presents our practical experience gained from 
writing image processing programs in lazy functional lan­
guages. We give some benchmarking results comparing me­
dian filter operations written in C, Miranda^ and Haskell. 
(The median filter is a common method for removing noise 
from images.) Also, using a profiling tool, we achieve re­
markable improvement of the Haskell code. In particular, 
we show that the Haskell program runs in constant space, 
which is difficult to achieve in C without extra program­
ming effort. Although the performance of lazy functional 
language is beginning to make them feasible for specific pur­
poses such as rapid prototyping, better compilers and tools 
are stUl needed to encourage wider use in image processing 
applications.

1 Introduction

With the recent development of implementing lazy func­
tional languages, applications of these languages to data in­
tensive areas such as computer graphics [13, 4] and image 
processing [11, 12] are appearing. In these applications, the 
fact that lazy languages delay the evaluation of arguments 
until their values are required seems particularly suitable, 
because these applications typically involve a large amount 
of data and the efficiency can be much improved by reducing 
unnecessary computation.

In addition, programming these applications is rather te­
dious and cumbersome, also because a large amount of data 
should be dealt with. In lazy functional languages, how­
ever, since house keeping tasks such as memory management 
and routine sequencing operations are embedded in the lan­
guages, programmers can be released from writing code for 
these tasks and concentrate on designing algorithms.

On the other hand, as a natural consequence of the fact 
that the languages do more work in order to be lazy, bigger

^ M ira n d a  is a  t ra d e m a rk  o f re sea rch  S oftw are  L td .

P e r m i s s i o n  t o  c o p y  w i t h o u t  f e e  a l l  o r  p a r t  o f  t h i s  m a t e r i a l  i s  
g r a n t e d  p r o v i d e d  t h a t  t h e  c o p i e s  a r e  n o t  m a d e  o r  d i s t r i b u t e d  f o r  
d i r e c t  c o m m e r c i a l  a d v a n t a g e ,  t h e  A C M  c o p y r i g h t  n o t i c e  a n d  t h e  
t i t l e  o f  t h e  p u b l i c a t i o n  a n d  i t s  d a t e  a p p e a r ,  a n d  n o t i c e  i s  g i v e n  
t h a t  c o p y i n g  i s  b y  p e r m i s s i o n  o f  t h e  A s s o c i a t i o n  f o r  C o m p u t i n g  
M a c h i n e r y .  T o  c o p y  o t h e r w i s e ,  o r  t o  r e p u b l i s h ,  r e q u i r e s  a  f e e  
a n d / o r  s p e c i f i c  p e r m i s s i o n .
ACM FPCA'93 6/93/Copenhagen, DK 
® 1993 ACM 0 -8 9 7 9 1 -5 9 5 -X /9 3 /0 0 0 6 /0 0 1 8 . . .$ 1 .5 0

overheads may be incurred and execution of programs may 
be rather slow compared with conventional languages, in 
which programs in these application fields are usually writ­
ten. Unless some indication of execution speed and mem­
ory usage is presented, lazy functional languages will not be 
used for real applications because time and space efficiency 
is crucial for those data intensive areas. However, few ex­
perimental or practical results have been reported so far.

Based on the above consideration this paper gives some 
benchmarking results of real-life image processing programs 
by comparing median filtering [6] programs written in C, 
Miranda [24] and Haskell [9]. Median filtering has been 
selected because it is very well-known and widely used in 
image processing for removing noise in a gray image.

By the time of writing, a few Haskell compilers have 
become available. One particular compiler called hbc [1] 
comes with a heap profiling tool which enables us to analyse 
the cause of inefficiency of programs and to improve the code
[19]. After we compare the versions in Miranda, Haskell, 
and C, the cause of inefficiency is analysed by using the 
heap profiling tool, and possible improvement of the Haskell 
version is tried out.

1.1 Benchmarking

Benchmarking is not a simple business. The purpose of the 
comparison is to give an idea of the performance of code 
written in the three languages, Miranda, Haskell and C. 
In this respect, this test may be quite different from com­
paring machine architectures or language implementations 
using the same source code, such as SPEC [21] or n ofib  
benchmarking [14]. There are a few approaches to this kind 
of benchmarking;

• Use the code which a typical programmer’ would write 
in each language. This may result in different algo­
rithms between languages.

• Carry out optimisation to have the best possible code 
in each language. This may also lead to different algo­
rithms.

^ N o te  th a t  a  p ro g ram m er w ho is ty p ic a l o f one  g ro u p  (e .g . profes­
sional num erica l a n a ly s ts )  m ay n o t be  ty p ica l o f  a n o th e r  g ro u p  (e .g . 
c o m p u te r  science g ra d u a te s ) .

mailto:kozato@cis.canon.co.jp
mailto:otto@canon.co.uk
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• Take a reasonable algorithm, e.g. simple, fast, etc., 
and implement the algorithm in each language.

We will take the first approach, i.e. what a typical pro­
grammer would write. This will also highlight how program­
mers would be likely to write inefficient code unconsciously, 
and how such code can be improved. All in all, the compar­
ison may not be fair, but will be sufficient to give a rough 
order of efficiency in the three languages.

2 The Algorithm - Median Filtering

Median filtering is in the category of local neighbourhood 
operations, in which the gray level of a pixel is replaced 
by the median of the gray levels in a neighbourhood of that 
pixel. For example in Figure 1 the value of the gray-hatched 
pixel (valued 64) is replaced by 22, since the pixel values of 
its 3 X 3 neighbourhood, i.e. within the 3 x 3  median mask, 
are 23, 5, 37, 12, 64, 8, 22, 20, and 54, and their median is 
22.

M   3X3 median mask
23 5 37 10
i;# 8 15
22 2C54 0
4S 31 6 25

median
? ? ?
? i 15 ?
? 22 2C ?

? ? ? ?

(a) original image (b) filtered image
Figure 1: Pixel values of 3 x 3 median filtering

Figure 2 shows an example result of median filtering of a 
retina image. The image contains 256 x 256 pixels and the 
size of the median mask is 3 x 3. Noise in the original image 
is removed and the filtered image looks slightly smoother 
than the original.

(a) original image (b) filtered image

Figure 2: Example images

3 Median Filtering in Miranda

We implement median filtering using a higher-order func­
tion which is designed for general local neighbourhood op­
erations. (It was originally designed for convolution, but it 
turned out to be more general.) Since various image pro­
cessing operations have common computational structures, 
such as point wise and local neighbourhood operations, use of 
higher-order functions together with polymorphism is par­
ticularly suitable for describing these operations. Just by

defining the higher-order local neighbourhood function, a 
large number of individual operations can be implemented 
[12].

The algorithm can be divided into two parts: first pro­
duce an image whose pixel is a list of neighbouring pixels 
within a mask. We call this a l i s t  im a g e .  In the above ex­
ample (Figure 1), the pixel at the position of the pixel value 
of 64 will become [23, 5, 37, 12, 64, 8, 22, 20, 54]. Then, the 
median of each pixel list is taken at each point.

In the following, we use Miranda’s notation, but as you 
will see, Haskell code will not be much different.

3.1 Image representation

To begin with, we introduce a data structure called in te r v a l  
which represents the common structure for a row being a col­
lection of pixels, and an image a collection of rows. This is 
important because once an operation is defined on an in­
terval, then it can operate on a row, as well a s  an image. 
This gives us a very simple and modular way of constructing 
higher-dimensional operations from lower ones. The actual 
representation we take is “a r o w  a s  a  p a i r  o f  a n  x  o r i g i n  ( t h e  
X c o o r d in a t e  w h e r e  t h e  r o w  s t a r t s )  a n d  a  l i s t  o f  p i x e l s ” and 
“an i m a g e  a s  a  p a i r  o f  a  y  o r i g i n  ( t h e  y  c o o r d in a t e  w h e r e  
t h e  i m a g e  s t a r t s )  a n d  a  l i s t  o f  r o w s ”. Image origins are ex­
pressed in the world coordinate system. The definition for 
a row and an image is given as follows:

interval ♦ == 
row ♦ ==
image * ==

(num,[*]) 
interval * 
interval (row ♦)

3.2 Pointwise operations

The first part is to produce an image whose pixel is a list of 
neighbouring pixels. In order to implement a general local 
neighbourhood function, we need pointwise and translate 
operations.

Pointwise operations can be defined on intervals as fol­
lows:

unarylnterval::(♦->♦♦)->interval *->interval ** 
imarylnterval f (o,p) = (o, map f p)

An unary pointwise operation takes a function to be ap­
plied to a pixel, and an interval as its arguments. Obviously, 
it does not change the origin of an interval and the function 
is applied to each element of the list by function mapping.

binjuryInterval::(*->**->***)->interval *
->interval **->interval ♦** 

binarylnterval f (ol,pl) (o2,p2)
=(o, map2 f (drop (o2-ol) pi) p2), if ol < o2 
=(o, map2 f pi (drop (ol-o2) p2>), otherwise 

where o = max2 ol o2
A binary pointwise operation takes a function and two 

intervals. The alignment of the two intervals is done by 
calculating a new origin by taking the maximum of the two 
origins, and only the overlapped part is calculated, which is 
implemented in the function map2.

Composing 2D image operations from the above opera­
tions defined on intervals is very straightforward. Since a 
row is an interval itself, pointwise operations for rows are 
identical to those for intervals. Pointwise operations for im­
ages can be composed by using function composition oper­
ators. These definitions follow:
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iinaryRow = imarylnterval 
binaryRow = binarylnterval

unaryPointwise
binaryPointwise

unaryRoB.unaryRow 
binaryRow.binaryRow

3.3 Image translation

The next function is for shifting an image. This function 
is used to have access to neighbouring pixels. Since the 
origin is separated from the pixel data part in the interval 
definition, translation of an image is very simple as follows:

translatelnterval d (o, p) = (o+d, p)

trzmslateRoB = tremslatelnterval 
translatelmage x y (o, p)
= translateRoB y (o, map (translateRoB x) p)

3.4 The higher-order local neighbourhood function

Using the above defined functions, we give a definition of a 
higher-order function for general local neighbourhood oper­
ations. The function is primarily designed for convolution 
which is the most common local neighbourhood operations 
and which can be defined as a sum-of- products operation. 
Therefore, the function takes two function arguments for the 
“sum” and “product” operations.

The following function lo c a l  takes the two functions mul 
and add. mul defines the operation between a pixel in a 
shifted image and an element in a mask, and add defines 
the operation between the results of muls. The subdefini­
tion accuffl represents accumulation of the products. The 
data arguments, mask and im are assumed to be of the type 
image * defined above.

local mul add mask im 
= accum [prod (element mask p)

(shiftinterval p) I p<-domain mask] 
where
accum = foldll add
prod X = imarylnterval (mul x)
shiftinterval p

= translatelnterval
(p-((leng mask) div 2)) im

domain
leng
element

index.snd 
(#).snd 
(!).snd

This local function is a higher-order function for general 
local neighbourhood operations. Therefore, individual oper­
ations can be implemented by passing operations and mask 
data to the function. For example, genuine convolution can 
be defined as:

convolveRow = local (*) (binaryRow (+)) 
convolvelmage
= local convolveRow (binaryPointwise (+))

3.5 A median filter function

Using the above local neighbourhood function, median fil­
tering is defined in two steps: the first step is to produce 
a list image, i.e. an image whose pixels are lists of neigh­
bouring pixels, and the second is to take the median of each 
pixel list in a pointwise manner.

medianlmage mask
= (unaryPointwise median).(localHist mask) 

median list
= (sort list)!(#list div 2)

localHist
« local (localHistRow) (binaryPointwise (++)) 

localHistRow = local f (binaryRow (++)) 
where f a b = [b]

The function lo c a lH is t  produces a list image by pass­
ing the append function (++) to the higher-order local neigh­
bourhood function. The function median is a pointwise func­
tion which takes a list image and returns an image whose 
pixels are the medians of the list image, medianlmage is the 
top-level function to be used by the user.

3.6 Image I/O

I/O  functions are essential for processing real images, such 
as the ones stored in a file or input from input devices. We 
use Sun’s rasterflle [22] format as an example image file for­
mat. Rasterflle format consists of three parts: a header 
containing 8 integers, a (possibly empty) set of colour map 
values, and the pixel image stored line by line in increasing 
y order. See appendices for the actual code for I/O. Please 
note that there is no compatibility between 32 bit integers 
commonly used in the UNIX/C environment and num in Mi­
randa or Int in Haskell. So some conversion code between 
these is necessary.

4 The Competition

4.1 Contender N o .l —  Miranda
The full Miranda code for the median filter is given in Ap­
pendix A. (Originally 107 lines, but reformatted slightly to 
fit in this paper.) As we have seen in the above section, this 
code is based on the higher-order function for general local 
neighbourhood operations which is designed not solely for 
median filtering. Therefore, no efficiency issues have been 
considered.

The following is a list of features of the code:

• The first two lines are the magic words to make Mi­
randa code available as a command at the UNIX shell 
level.

• The second line is the main expression to be evaluated. 
The function main has been implemented to describe 
the “input —» process —» output” sequence. The header 
and the colour map are copied from the input to the 
output file. The pixel data part is converted to a list 
of numbers, then to the image data structure with an 
origin, processed by the function pzissed as an argu­
ment, converted back to a list of numbers and then to 
a list of characters for file output.

• The size of the input image is maintained. For the 
boundary pixels, a background value, 0 in this case, is 
filled in.
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4.2 Contender No.2 —  Haskell

The Haskell code (Appendix B) was based on the Miranda 
code. This means that this Haskell code has not been writ­
ten to utilise the facilities provided by Haskell. For exam­
ple, arrays in Haskell could have been used instead of lists, 
which might have improved the efficiency. In addition, the 
low-level conversion between 32 bit integers and Ints is done 
in Haskell. If the facility such as I/O  monads [7] which al­
low C functions to deal with low-level jobs without violating 
referential transparency had been used, the efficiency might 
have been improved slightly.®

The changes made are:

•  The main function has been added, which is of the type 
Dialogue defined as:

type Dialogue = [Response] -> [Request]

•  The ip  function forms the main part of the job, which 
takes an input character list, an image processing func­
tion, and returns an output list of characters. This is 
akin to the main function defined in the Miranda ver-

• The s p l i t L is t  function has been changed to utilise 
the library functions, chopList and sp litA t, in the 
hope that library functions could be more efficient than 
user-defined functions. For chopList, see [2]. For this 
purpose the module L is tU t il  is imported.

• Two functions (rep and su b scrip ts) are defined as 
these are defined in Miranda but not in Haskell, 
su b scr ip ts  is equivalent to index in Miranda.

Otherwise, the algorithms is identical to the Miranda 
version. It is noticeable how much Haskell inherits Mi­
randa’s facilities. The code is compiled by the hbc compiler 
(using the -0  flag) and an executable file of a . out format is 
generated.

4.3 Contender No.3 —  C

The C code for median filtering shown in Appendix C has 
been freshly written for this benchmarking purpose. There­
fore, the C version is the most efficiency conscious of the 
three contenders. Appendix C shows the median function 
only. The complete program (including file I/O , various 
house-keeping and comments) has 215 lines of code. The al­
gorithm starts by generating a local histogram within radius  
and get the mid’th element from the histogram. Then the 
input image is scanned, incrementally updating the local his­
togram and median. The size of input image is maintained 
and Os are filled in the image boundary. The program is 
compiled with the -04 option to optimise at the maximum 
level.

4.4 A result

The three versions are made into commands at the UNIX 
shell level, and the UNIX facility /b in /t in e  is used to mea­
sure the speed. The three programs ran on a Sun Microsys­
tems’ SPARCstation IPX with main memory of 16 MB. Ta­
ble 1 shows a result of the test using an 8 bit gray level

Table 1: A benchmark result

Language Time in 
seconds

Slow-down
ratio

Miranda 409.8 273
Haskell 54.3 36
C 1.5 1

® For th e  H askell p ro g ram s  p re sen te d  in th is  p a p e r , 10-15%  o f th e  
ru n tim e  w as ta k e n  by I /O  (m easu red  by rep lac ing  th e  m ed ian  filte r  
w ith  th e  id en tity  o p e ra tio n ) .

image of the size 256 x 256 with the median mask of the 
size 3 X 3.* The slow-down ratio indicates how many times 
Miranda and Haskell are slower assuming the speed of C to 
be 1.

As mentioned, the competition may not be regarded as 
fair. This is because the Miranda code was not intended to 
be a median filter but uses the general local neighbourhood 
function without consideration of efficiency; the Haskell code 
was converted from Miranda and does not use Haskell’s spe­
cific facilities; while the C code was written with efficiency in 
mind. However, despite all the unfairness, the result gives 
a certain idea of speed which average programmers could 
expect. The Miranda implementation is very stable and re­
liable, but is now at least a few years old, while the develop­
ment of Haskell is currently an on-going project and various 
ideas for improvement are being tested [8, 16]. Therefore, 
we can expect more speed up in Haskell implementations, 
but they may never be as fast as C.

5 Heap Profiling and Improvement o f the Haskell Code

5.1 The heap profile of the Haskell version (Version 1)

The lack of debugging and profiling tools has been one of 
the obstacles for wide use of lazy functional languages. Com­
pared with, for example, C which has a number of convenient 
facilities to debug, analyse and improve code, lazy functional 
languages have had almost nothing to allow programmers 
to do this kind of job. In Miranda, for instance, there is a 
facility to report some statistics such as the number of re­
ductions, cells, and garbage collections, and the CPU time 
[17], but this does not show causes of inefficiency or bugs. 
A graphical tool to exhibit runtime behaviour of Miranda 
code has been developed by Taylor [23], but it is a test im­
plementation and not available yet.

The recent development of profiling tools for Haskell by 
Runciman and Wakeling [18] and by Sansom and Peyton 
Jones [20] seems interesting, because they provide informa­
tion on the dynamic space and time behaviour of programs. 
Using these tools, it is possible to look at which parts are 
costly which may suggest possible improvements to the pro­
grammer. In fact, Runciman et al. reported that the tools 
can be used to bring about a dramatic reduction in the space 
consumption using a few examples [18, 19]. In the following, 
we use the heap profiling tool by Runciman et al.

The heap profiling result of the median filter code (Ap­
pendix B) is shown in Figure 3. In the graph the diamond 
marks on the time axis indicate garbage collections. It shows 
monotonically linear increase of space until the last moment 
and more than a megabyte is eventually used. This looks 
extremely memory-hungry.

 ̂We use M ira n d a  V 2.014 and  hbc re lease  0.999.3.
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Figure 3: A heap profile graph of median filtering

5.2 A culprit spotted

Because the code handles an image as a list of lists of pix­
els and lists are treated lazily through input, process and 
output, and the process is a simple local neighbourhood op­
eration which does not rely on data at distant positions, the 
profile should have been flatter. Figure 3 suggests that there 
is some code which accumulates the whole image at once.

Careful examination of the code in Appendix B has been 
conducted and the culprit has been found in the ip  function 
which is responsible for the whole sequence from file input, 
image processing, to file output. The following code is in 
the subdefinitions of ip:

im21 (0,1)
= (map chr.concat)(rep o bgr ++ map flatten 1 ++ 

rep (height - o - length 1) bgr) 
flatten (o,l)
= (rep o bgp)++l++ (rep (width - o - length Dbgp)

Input and output streams are long lists of characters, 
but image processing is defined on the 2D interval structure, 
which is a pair of an origin and a list of elements. im21 is 
designed to convert a 2D interval structure to a plain list, 
and f la t t e n  converts a ID interval to a plain list. The 
need for these functions comes from the intention to have 
equal sizes of input and output, so that the results of the 
three versions can be made identicaJ. Thus, in the original 
implementation of median filtering itself in section 3.5, this 
issue was not considered at all.

As discussed in Chapter 23 of [15] and in [10], there is 
a lot of subtlety in behaviour of lazy functional programs. 
Our code may be a good example of the scheduling problem 
addressed by Hughes. In the im21 function, there is the code 
fragment “length  1”. Usually length  itself consumes a list 
but does not keep the whole list. But in the above code, 
because the list T ’ is shared between f la t t e n  and length, 
and the length  function is not evaluated until the end, the 
content of the whole list is kept until len gth  is evaluated. 
And here, this “1” is t h e  w h o le  im a g e !

5.3 Modification of the code (Version 2)

The code has been modified to overcome the problem of 
accumulating the whole image. The interval structure has 
been modified to become a triple of (origin, length, list). In

this particular code, the length of a row and the length of 
an image are provided as width and h eigh t respectively in 
the header information of a rasterfile. So, there is almost 
no overhead in obtaining this information. The new interval 
structure in Haskell is:

type In terv a l a = ( I n t ,I n t , [ a ] )

The subdefinitions for the improved ip  function are:

112im 11
= ( 0 ,height,m ap fn  11) where fn  x = ( 0 ,w id th ,x) 

im21 ( o , l n , l )
*= (map chr .con cat) (rep o bgr ++ map f la t t e n  1 ++ 

rep (height -  o -  In) bgr) 
f la t t e n  ( o , l n , l )

= (rep o bgp) ++ 1 ++ (rep (width -  o -  In) bgp)

The unary and binary pointwise operations, and interval 
translation, also need modification:

unarylnterval f  ( o ,ln ,p )  = ( o , ln ,  map f  p) 
b in ary ln terva l f  ( o l , l n l , p l )  (o 2 ,ln 2 ,p 2 )

|(o l< o 2 ) = (o ,ln ,z ip W ith  f  (d rop (o2 -o l)p l)p 2 )
I otherw ise

= (o ,ln ,z ip W ith  f  p l(d r o p (o l-o 2 )p 2 )) 
where
o = max o l o2
In = max 0 ( (m in (o l+ ln l)(o 2 + ln 2 ))-o )

tr a n s la te ln te r v a l d (o , ln ,p )  = (o+ d ,In ,p )

Also modifications to lo c a l  and makeMask are necessary, 
as well as related functions such as domain, element, etc. A 
new definition of these functions is as follows:

lo c a l mul add mask im
= accum [prod (elem ent mask p)

( s h if t in te r v a l  p) I p<-domain mask] 
where accum = f o ld l l  add

prod X = unarylnterval (mul x) 
s h i f tinterval p

= translatelnterval
(p -((seco n d  mask) 'd iv ' 2))im

domain = su b sc r ip ts .th ir d
element = (! ! ) .th ir d
second ( a ,b ,c )  = b 
th ird  (a ,b ,c )  = c

makeMask n
= fn (map fn (rep n (rep n 0 ) ) )  

where fn  x = (0 ,n ,x )

In any of the above functions, it can be said that the 
modifications are relatively trivial. There is no change in 
the fundamental algorithm, but just addition of an extra 
parameter to save calculations.

5.4 Improved results

With the above relatively minor modifications, a new heap 
profile is shown in Figure 4. This graph has been drawn in 
the same scale as Figure 3 to highlight the difference. It is 
remarkable to see that the program runs in a constant space 
as garbage is constantly collected, and how little memory the
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Figure 4: An improved heap profile (Version 2)

program consumes just by those modifications. Without the 
profiling tool, it would have been much harder to notice the 
inefficient memory usage of the previous version.

With regard to the execution time, the improved version 
took 48.3 sec (cf. the original version 54.3 sec).

6 Further improvement

We have further tried to improve the Haskell code for median 
filtering to get the best possible speed, as follows;

6.1 Eliminate identical operations (Version 3)

The basic algorithm of our median filtering is to generate 
a list image. The length of each pixel list is equal to the 
square of the mask size. Then, the median of each pixel 
(list) is taken as an unary pointwise operation. Therefore, 
the function to take a median is the same all through the 
list image, but a compiler does not spot this fact. Lazy eval­
uation shares the same expressions only when these occur 
in the same function call. In o u r  original code the index of 
a median is calculated every time, e.g. 65536 times for a 
256 X  256 image. The following is the original code to take 
a median:

median list = (sort list)!!((length list) ‘div‘ 2)

where the length does not change, e.g. if a median mask 
is 3 X 3 the index, i.e. “(length list) 'div' 2”, is 4 and 
is constant all through the operations. Utilising this knowl­
edge, it is possible to modify the code, so that the index is 
calculated only once before the median function is called. 
The new definition follows:

medianlmage n
= (unaryPointwise (rzmkFilter m)) .

(localHistlmage (makeMask n)) 
where m = n*n 'div' 2

rankFilter m list = (sort list)!!m

where n is the mask size. Since the new function takes 
a rank order as a parameter, it works as a general rank 
filter rather than only a median. Hence, the name has been 
changed.

This reduces the time slightly, to 46.2 sec.

6.2 Whether to fold up a list from left or right? (Version
4)

We defined the higher-order local neighbourhood function 
( lo ca l)  to take two functions (mul and add) as parame­
ters and accumulation is defined within the function to be 
f o ld l  add. As discussed in Chapter 6 of [3], fold opera­
tions behave very subtly; for functions, such as (+) or (*), 
that are strict in both arguments and can be computed in 
constant time and space, f o ld l  is more efficient. Whereas 
for functions, such as (&) or (++), that are non- strict in 
some argument, f  o ld r is often more efficient. Therefore, it 
may be a mistake to hard-code the direction of accumulation 
within the function definition of convolution.

Based on the above consideration, the new definition of 
lo c a l below takes an accumulation instead of an add op­
eration. Since an append operator (++) is passed as an 
argument in order to produce a list image, accumulate from 
the right should be more efficient. The modified code is the 
following:

local mul accum mask im
= accum [prod (element mask p)

(shiftlnterval p) I p<-domain mask]
where
prod X = unarylnterval (mul x) 
shiftlnterval p

= translatelnterval
(p-((second mask) 'div' 2)) im

localHistlmage 
= local f accum
where f = localHistRow

accum = foldrl (binaryPointwise (++))

localHistRow 
= local f accum 
where f a b = [b]

accum = foldrl (binaryRow (++))

This reduces the execution time slightly, to 44.6 sec.

6.3 Use of cons instead of append (Version 5)

It is generally quicker to use cons ( : )  instead of append 
(++) to attach an element to a list, because in order to 
append two lists, the one in front should be traversed. In 
the median filtering it is possible to use cons in the ID local 
histogramming operation. The modified function is:

localHistRow 
= conv3 f accum 
where 
f a b = b 
accum (r:rs)
=foldr (binaryRow (:))(unaryRow (:[]) r) rs

The execution time after this modification is 44.4 sec.

6.4 Summary of the improvement

Table 2 summarises the result of the improvement.
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Table 2: Comparison of execution times

Versions Time in 
seconds

Slow-down
ratio

Version 1 (original) 54.3 36
Version 2 (eliminate 
calculation of length)

48.3 32

Version 3 (eliminate 
index calculation)

46.2 31

Version 4 (accumulate 
from the right)

44.6 30

Version 5 (Use (:) 
instead of (+ + ))

44.4 30

C Version 1.5 1

were to process a very large image in the C version, it would 
become slower above a certain image size due to paging and 
various house-keeping operations carried out by the system. 
When an image becomes even larger, it will be impossible 
to process the image by the current C code. For example, a 
panchromatic SPOT satellite image [5] contains 6000x6000,
i.e. 36 million pixels; a 400 dpi colour scan of an A4 page 
contains about 45 Mb. In order to avoid this problem, pro­
grammers need to do extra work to get the C code working 
well on large images, typically by rewriting the code to pro­
cess an image line-by-line or chunk-by- chunk.

7.3 Use of arrays

Miranda does not have arrays, but Hziskell does. However, 
we did not use them here because, at the time of writing, 
arrays were not supported well in the available compilers.

7 Discussion

7.1 Are lazy languages inefficient?
A

The benchmark result given in Table 4  shows that lazy 
functional languages are much slower than C. In particu­
lar Miranda runs a few hundred times slower, which may 
be regarded as unrealistic for image processing applications. 
However, as shown in Table 4:̂  with a little eff̂ ort to im­
prove the Haskell code, we have achieved a slow-down ratio 
of about 30. This speed can be considered to be not unre- 
tJistic for some purposes such as rapid prototyping.

We have to consider two factors here:

1. There are a number of advantages of using lazy func­
tional languages such as facilities to improve modular­
ity [12]. So, if we consider lazy functional languages as 
a rapid prototyping or specification tool they are well 
worth considering.

2. Implementations of lazy functional languages are un­
der active research and a large amount of improvement 
can be expected. Thus, based on the benchmarking 
results we may be able to say that lazy functional lan­
guages are only a few 10s times slower than C.

However, although lazy functional languages are begin­
ning to be feasible, they are still rather slow for wide use 
in the image processing community where the demand for 
efficiency is high. We have not been able to investigate the 
remaining causes of the slowness yet. One possibility would 
be concerning type classes and overloading in Haskell. We 
might be unconsciously writing code which uses unnecessar­
ily excessive overloading, which may reduce efficiency. We 
need further investigation and, to do so, better analysis tools 
are desirable.

7.2 When lazy functional languages can beat imperative 
languages

Using the current code, if an image to be processed becomes 
very large lazy functional languages can beat imperative lan­
guages. As shown in the improved heap profile (Figure 4), 
the Hciskell version runs in constant space because data is 
always produced and consumed and garbage is continuously 
collected. Whereas, the C version allocates memory for both 
input and output images, so that the increase of memory is 
proportional to the number of pixels in the images. If we

7.4 Caveats of lazy functional languages

It may be generally true that lazy functional languages are 
adequately efficient even with a naive way of programming. 
However, as we have experienced, if more efficiency is to be 
sought, optimising code may not be an easy job. There is a 
lot of subtlety in the behaviour of lazy functional programs 
and the behaviour is not obvious from the code itself.

In order to write more efficient code, programmers still 
have to work out the sources of inefficiency. For example, to 
avoid repeated calculations, they will have to add an extra 
parameter to a function if its value is known before the func­
tion calls. Compilers will spot redundancy within a function 
but not across different function calls. Also, even simple op>- 
erations (such as length) can be very expensive if they cause 
a large amount of data to be retained in memory.

When analysing code, we have found profiling tools very 
convenient. Though profiling lazy functional programs is 
not a simple task [20], judging from the current status, i.e. 
very few of them, any tools may be useful. We would expect 
emergence of more convenient tools to encourage wider use 
of lazy functional languages.

8 Conclusions

We have presented some benchmarking results of median fil­
tering written in Miranda, Haskell and C. Although we have 
presented only a small set of benchmarks with a small set of 
languages, the result shows that lazy functional languages 
are feasible for specific purposes such as rapid prototyping.

Using the heap profiling tool, we have shown that the 
lazy functional version runs in constant space, which is dif­
ficult to achieve using imperative languages without extra 
programming effort.

However, the performance is not yet sufficient for wide 
use of the languages for real image processing applications. 
In order to encourage wider use, we need better tools to 
help identify ways in which the programs can be written 
more efficiently. Also, we need better compilers to generate 
efficient machine code from what we have written.
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A Median Filtering Code in Miranda

#! /usr/loc<Ll/bin/mira -exp
main "gantei.ras" (medianlmage mask) "out.ras"

I I The "with am Origin" Version
interval * == (num,[*])
row * == interval *
image * == interval (row ♦)

I I rasterfile I/O
main::[char]->(image num->image num)->[char]->

[sys.message]
main infile proc outfile
=[Tofile outfile (header++cmap++data),

Closefile outfile] 
where
input = read infile
header = take headerLen input
cmap = take cmapLen

(drop headerLen input) 
cmapLen = ras_maplength hdr 
hdr = charToNumList header
data = (im21.proc.12im)

(drop (headerLen+cmapLen) input) 
12im = 112im.(splitList width).(map code)
width = ras_width hdr
height = ras_height hdr
112im 11 = fn (map fn 11) where fn x = (0,x)
bgr = rep width bgp
bgp = 0
im21 (o,l) = map decode ((concat (rep o bgr)++ 

concat (map flatten 1)++ 
concat (rep (height-o-#l) bgr))) 

flatten (o,l)= (rep o bgp)++l++
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(rep (width-o-#l) bgp)
splitList::nuB->[*]->[[♦]] 
splitList n [] = [] 
splitList n 1 = [take n 1]++

(splitList n (drop n 1)) 
[ras_magic, ras_width,ras_height, ras_depth, 
ras.length,ras_type, ras.maptype,ras_saplength]
= C(!i)li<-[0..7]]

headerLen = 32 
ras_magic_num = 1504078485 
rat_equal_rgb = 1

CharToNumList: :[char]->[num]
CharToNumList [] = []
CharToNumList cs 
= fourCharToNum (take 4 cs):charToNumList

(drop 4 cs)
fourCharToNum::[char]->num 
fourCharToNum cs 
*= foldll (+) (map2 (*) (map code cs)

(map (256*) [3,2..0]))

I I pointwise operations
unarylnterval::(♦->♦*)->interv3ü. *->interval ♦* 
unarylnterval f (o,p) = (o, map f p)

binarylnterval::(*->**->***)->interval *
->interval ♦♦->interval *** 

binarylnterval f (ol,pl) (o2,p2)
= (o, map2 f (drop (o2-ol) pi) p2) , if ol < o2
= (o, map2 f pi (drop (ol-o2) p2)) , otherwise
where o = meix2 ol o2

unaryRow - unarylnterval 
binaryRow = binarylnterval

unaryPointwise: : (*->**)->imeige *->image ** 
unaryPointwise f = unaryRow (unaryRow f)

binaryPointwise::(*->**->***)->image *->image **
->image *** 

binaryPointwise f = binaryRow (binaryRow f)

I I image translation
translatelnterval::num->interval *->interval * 
translatelnterval d (o,p) = (o+d,p) 
translateRow = translatelnterval

II convolution 
local mul add mask im
= accum [prod (element mask p) (shiftlnterval p)

I p<-domain mask]
where
accum = foldll add
prod X = unarylnterval (mul x)
shiftlnterval p

= tramslatelnterval (p-((length mask) div 2))
im

domain = index.snd
length = (#).snd
element = (!).snd

makeMask::num->image num 
makeMask n
= fn (map fn (rep n (rep n 0))) where fn x = (0,x)

medianlmage mask 
= (unaryPointwise median).(localHistlmage mask) 
median list * (sort list)!(#list div 2)

localHistlmage 
« local (localHistRow) (binaryPointwise (++)) 
localHistRow 
= local f (binaryRow (++)) where f a b = [b]

B Median Filtering Code in Haskell

module Main (main) where 
import ListUtil 
import QSort

main : : Dialogue 
main resps 
= [ReadFile "gantei.ras",

WriteFile "out1.ras"
(case resps!!0 of
Str contents -> ip contents (mediemlmage mask) 
Failure ioe -> "Error")]

—  The "with aui Origin" Version
type Interval a = (Int,[a])
type Row a = Interval a
type Image a = Interval (Row a)

—  rasterfile I/O
ip:;[Char]->(Image Int->Image Int)->[Char] 
ip input proc 
= header++cmap++pixl where

header = take headerLen input
cmap = take cmleng (drop headerLen input)
cmleng = ras_maplength hdr
hdr = CharToNumList header
pixl = (im21.proc.12im)

(drop (headerLen+cmleng) input)
12im = 112im.(splitList width).(map ord) 
width = ras_width hdr 
height * ras.height hdr
112im 11 = fn (map fn 11) where fn x = (0,x) 
bgr = rep width bgp 
bgp = 0
im21 (o,l) = (map chr . concat)

(rep o bgr++map flatten 1++ 
rep (height-o- length 1) bgr) 

flatten (o,l) = (rep o bgp)++l++
(rep (width-o- length 1) bgp)

splitList::Int->[a]->[[a]]
splitList n 1 = chopList (splitAt n) 1

—  Rasterfile I/O omitted; similar to Miramda's

—  pointwise operations
unarylnterval::(a->aa)->Interval a->Interval aa 
unarylnterval f (o,p) = (o, map f p)

I I median filter 
mask = makeMask 3

binarylnterval::(a->aa->aaa)->Interval a
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->Interval aa->Interval aaa 
binarylnterval f (ol,pl) (o2,p2)
I (ol < o2) = (o, zipWith f (drop (o2-ol) pi) p2)
I otherwise = (o, zipVith f pi (drop (ol-o2) p2>) 
where o - max ol o2

unaryRow = unarylnterval 
binaryRow = binarylnterval

unaryPointwise: : (a->aa)->Imeige a->Image aa 
unaryPointwise f = unaryRow (unaryRow f) 
binaryPointwise::(a->aa->aaa)->Image a->Image aa

->Imaige aaa 
binaryPointwise f = binaryRow (binaryRow f)

—  image translation
trauislatelnterval::Int->Interval a->Interval a 
translatelnterval d (o,p) = (o+d,p) 
translateRow « translatelnterval

—  convolution 
local mul add mask im
= accum [prod (element mask p) (shiftInterval p)

I p<-domain mask]
where
accum = foldll add 
prod X = unarylnterveJ. (mul x) 
shiftlnterval p 
= translatelnterval (p-((leng mask) 'div' 2)) im 

domain = subscripts.snd
leng = length.snd
element “ (! !).snd

—  mediam filter 
mask = makeMask 3 
makeMask::Int->Image Int 
makeMask n
= fn (map fn (rep n (rep n 0))) where fn x = (0,x)

medianlmage mask 
= (unaryPointwise median).(localHistlmage mask) 
median list = (sort list)!!((length list) 'div' 2)

localHistlmage 
= local (localHistRow) (binaryPointwise (++)) 
localHistRow = local f (binauryRow (++))

where f a b = [b]
rep : : Int -> b -> [b] 
rep n X = take n (repeat x)

subscripts : : [a] -> [Int] —  Miranda index
subscripts xs = f xs 0

where f [] n = []
f (_:xs) n = n : f xs (n+1)

C Median Filtering Code in C

unsigned char *
med(in, xsize, ysize, msize)
unsigned char *in;
int xsize, ysize, msize;
{
unsigned char *out
= (unsigned char *) malloc(xsize * ysize);

int y; 
int radius msize / 2;
/* fill in edge pixels with background value */ 
memset((char*)out, BGP, xsize*ysize);

/♦ now do the medians ♦/ 
for (y * radius; y < ysize-radius; y++){ 
int hist[256]; 
int m;
int s; /* sum of hist[0..m] inclusive ♦/
int offset « xsize*y;

/* position of centre of mask */ 
int mid = (msize*msize+l)/2; 
int i,j;
/♦ first build the histogram etc */ 
for (i * 0; i < 256; i++) 
hist[i] « 0; 

for (j ■ -radius; j <= radius ; j++) 
for (i = -radius; i <= radius; i++) 
hist[in[offset+i+j *xsize]]++;

/♦ find the median */ 
s = 0; 
m = -1; 
do { 

m++ ;
s +- hist[m];

} while (s < mid);
/* now m = mediaui ♦/ 
out[offset] = m;

/ * now scam along the row, incrementally
updating */ 

for (j ■ radius+1; j < xsize-radius; j++){
/♦ update histogram ♦/ 
offset -= radius;
for (i = -radius ; i <= radius ; i++){ 
int X = in[offset+i*xsize]; 
hist[x]— ; 
if (x <= m) 

s— ;
}
offset += 2*radius + 1; 
for (i = -radius ; i <= radius ; i++){ 
int X « in[offset+i*xsize]; 
hist[x] ++; 
if (x <= m)

S + + ;

}
offset -= radius ;
/♦ adjust m to be median again */ 
while (s-hist[m] >= mid){ 
s -= hist[m]; 
m—  ;

}
while (s < mid){ 

m++;
s += hist[m];

}
/ * now m = median ♦/ 
out[offset] = m;

}
}
return out;



- 193 -

References

AbelsonSSa

Abelson, H. and G. J. Sussman, Structure and Interpretation of Computer Programs, The MIT 
Press, 1985.

Adobe Systems Inc.90a

Adobe Systems Inc., Postscript Language Reference Manual, Addison Wesley, 1990.

Allsop91a

Allsop, M., Applications of Functional Methods to Image Processing, Macquarie University, 
Sydney, Australia, July 1991.

The AQUA Team93a

The AQUA Team, The Glorious Haskell Compilation System Version 0.19 User's Guide, 
Department of Computing Science, University of Glasgow, December 1993.

ArvindS9a

Arvind, R. S. Nikhil, and K. K. Pingali, "I-Structures: Data Structures for Parallel 
Computing," ACM Trans, on Programming Languages and Systems, vol. 11, no. 4, pp. 598 - 632, 
ACM, October 1989.

Augustsson84a

Augustsson, L., "A Compiler for Lazy ML," in Proceedings of the 1984 ACM Symposium on 
Lisp and Functional Programming, pp. 218 - 227, ACM, 1984.

Augustsson87a

Augustsson, L., Compiling Lazy Functional Languages, Part II, PhD Thesis, Chalmers 
University of Technology, 1987.

Augustsson92a

Augustsson, L., Haskell B. user's manual (draft), July 1992.

Augustsson92b

Augustsson, L. and T. Johnsson, Lazy ML user's manual, Chalmers University, August 1992. 

6ackus78a

Backus, J., "Can Programming Be Liberated from the von Neumann Style? A Functional 
Style and Its Algebra of Programs," Communications of the ACM, vol. 21, no. 8, pp. 613 - 641, 
ACM, 1978.



-194

Barendregt84a

Barendregt, H. P., The Lambda Calculus - Its Syntax and Semantics (Revised Edition), North- 
Holland, 1984.

BirdSSa

Bird, R. and P. Wadler, Introduction to Functional Programming, Prentice-Hall, 1988. 

Bobrow90a

Bobrow, D. G., L. G. Demichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, and D. A. Moon, 
"Cbnunon Lisp Object System," in CommonUsp - The Language (Second Edition), Steele Jr., G. 
L., pp. 770 - 864, Digital Press, 1990.

Bohm92a

Bohm, A. P. W., R. R. Oldehoeft, D. C. Cann, and J. T. Feo, SISAL Reference Manual - Language 
Version 2.0,1992.

Breuel92a

Breuel, T. M., "Functional Programming for Computer Vision," in SPIE Conference on Image 
Processing, San Jose, February 1992.

Burton88a

Burton, F. W. and M. M. Huntbach, "Lazy Evaluation of Geometric Objects," IEEE CG&A, 
vol. 4, no. 1, pp. 28 - 33, IEEE, January 1988.

Carm92a

Cann, D., 'Retire Fortran? A Debate Rekindled," (Communications of ACM, vol. 35, no. 8, pp. 
81 - 89, August 1992.

Catmull80a

Catmull, E. and A. R. Smith, "3-D Transformation of Images in Scanline Order," in 
SIGGRAPH 80, pp. 279 - 285,1980.

Chambers84a

Chambers, F. B., D. A. Luce, and G. P. Jones, Distributed Computing, Academic Press, 
London, 1984.

Checkland91a

Checkland, I. and C. Runciman, Development of a Prototype Geometric Modelling System using 
a Functional Language, Technical Report, Department of Computer Science, University of 
York, York, 1991.

Chevrel81a

Chevrel, M., M. Courtis, and G. Weill, "The SPOT satellite remote sensing mission," 
Photogrammetric Engineering and Remote Sensing, vol. 47, no. 8, pp. 1163 -1171,1981.



- 195 -

Church41a

Church, A., The Calculi of Lambda Conversion, Princeton University Press, 1941.

Qarke86a

Clarke, K. A., "Computer Tomography," in Cellular Logic Image Processing, ed. M. J. B. Duff 
and T. J. Fountain, pp. 141 -172, Academic Press, 1986.

FairbaimS7a

Fairbaim, J. and S. Wray, "TIM - a simple lazy abstract machine to execute 
supercombina tors," in Functional Programming Languages and Computer Architecture, LNCS 
274, Springer Verlag, 1987.

Foley90a

Foley, J. D. and A. van-Dam, and Steven K. Feiner, and John F. Hughes, Computer Graphics 
- Principles and Practice, Addison-Wesley, 1990.

Gargantini82a

Gargantini, I., "An Effective Way to Represent Quadtrees," Communications of ACM, vol. 25, 
no. 12, pp. 905 - 910, ACM, December 1982.

Conzalez87a

Gonzalez, R. C  and P. Wintz, Digital Image Processing (Second Edition), Addison-Wesley, 
1987.

Gordon78a

Gordon, M., R. Milner, L. Morris, M. Newey, and C. Wadsworth, "A metalanguage for 
interactive proof in LCF," in Conference Record of the 5th Annual ACM Symposium on Principles 
of Programming Languages, pp. 119 -130, ACM, 1978.

Hall92a

Hall, C., K. Hammond, W. Partain, S. L. Peyton Jones, and P. Wadler, The GRASP project. 
University of Glasgow, Glasgow, February 1992.

Hall92b

Hall, C., K. Hammond, W. Partain, S. L. Peyton Jones, and P. Wadler, Abstracts of GRIP/ 
GRASP-related papers and reports 1990 and after. University of Glasgow, Glasgow, February 
1992.

Hall93a

Hall, C., K. Hammond, W. Partain, S. L. Peyton Jones, and P. Wadler, "The Glasgow Haskell 
Compiler: A Retrospective," in Functional Programming, Glasgow 1992 (Proceedings of the 
1992 Glasgow Workshop on Functional Programming, Ayr, Scotland, 6-8 July 1992, pp. 62 - 71, 
Springer-Verlag, 1993.



1 9 6 -

Hamey89a

Harney, L. G. C., J. A. Webb, and I. C. Wu, "An Architecture Independent Programming 
Language for Low-Level Vision," Computer Vision, Graphics, and Image Processing, vol. 48, 
no. 2, pp. 246 - 264, Academic Press, November 1989.

Heckbert86a

Heckbert, P. S., "Survey of Texture Mapping," IEEE Computer Graphics and Applications, vol. 
6, no. 11, pp. 56 - 67, November 1986.

Henderson80a

Henderson, P., Functional Programming : Application and Implementation, Prentice-Hall, 
London, 1980.

Henderson82a

Henderson, P., "Functional Geometry," in LISP and Functional Programming Symposium 
Papers, pp. 179 -187, ACM, 1982.

Herman80a

Herman, G. T., Image Reconstruction from Projections, Academic Press, New York, 1980. 

Hindley69a

Hindley, R., "The Principle Type Scheme of an Object in Combinatory Logic," Transactions 
of American Mathematics Society, vol. 146, pp. 29 - 60,1969.

Hockney81a

Hockney, R. W. and C. R. Jesshope, Parallel Computers, Adam Hilger Ltd., Bristol, 1981. 

Hopkins89a

Hopkins, S., G. J. Michaelson, and A. M. Wallace, "Parallel Imperative and Functional 
Approaches to Visual Scene Labelling," Image and Vision Computing, vol. 7, no. 3, pp. 178 - 
193, Butterworth, London, August 1989.

Hom86a

Horn, B. K. P., Robot Vision, The MIT Press, Cambridge, Massachusetts, 1986.

Howe92a

Howe, D., miralhs (in the contribution to hbc distribution). Department of Computing, 
Imperial College, London, 1992.

Hudak88a

Hudak, P. and R. Sundaresh, "On the expressiveness of purely functional 1 /0  systems," 
Technical Report, no. YALEU/DCS/RR-665, Dept, of Computer Science, Yale University, 
1988,



- 197-

Hudak89a

Hudak, P., "Conception, Evolution, and Application of Functional Programming 
Languages," ACM Computing Surveys, vol. 21, no. 3, pp. 359 - 411, ACM Press, September 
1989.

Hudak92a

Hudak, P., S. L. Peyton Jones, P. Wadler, B. Boutel, J. Fairbaim, J. Fasel, M. M. Guzman, K. 
Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain, and J. Peterson, 
"Report on the Programming Language Haskell - A Non-strict Purely Functional Language 
(Version 1.2)," SIGPLAN NOTICES, vol. 27, no. 5, ACM, May 1992.

Hudak92b

Hudak, P. and J. H. Fasel, "A Gentle Introduction to Haskell," SIGPLAN NOTICES, vol. 27, 
no. 5, ACM, May 1992.

Hughes84a

Hughes, R. J. M., Parallel Functional Languages Use Less Space, 1984.

Hughes84b

Hughes, R. J. M., The Design and Implementation of Programming Languages , PhD thesis, 
Oxford University, Oxford, 1984.

Hughes89a

Hughes, J., "Why Functional Programming Matters," The Computer Journal, vol. 32, pp. 98 - 
107, Cambridge University Press, Cambridge, April 1989.

Hunter79a

Hunter, G. M. and K. Steiglitz, "Operations on Images Using Quad Trees," IEEE Transactions 
on Pattern Analysis and Machine Intelligence, vol. 1, no. 2, pp. 145 -153, IEEE, 1979.

Hunter79b

Hunter, G. M. and K. Steiglitz, "Linear Transformation of Pictures Represented by Quad 
Trees," Computer Graphics and Image Processing, pp. 289 - 296, July 1979.

IS092a

ISO, Image Processing and Interchange - Functional Specification Parti: The Programmer's 
Imaging Kernel System Application Program Interface, ISO/IEC Committee Draft (CD) 12087- 
2, ISO/IEC JTCl SC24, April 1992.

Johnsson87a

Johnsson, T., Compiling Lazy Functional Languages, PhD Thesis, Chalmers University of 
Technology, 1987.



-198

Jones92a

Jones, M. P., An Introduction to Gofer (draft version), 1992.

KawaguchiSOa

Kawaguchi, E. and T. Endo, "On a Method of Binary-Picture Representation and Its 
Application to Data Compression," IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 2, no. 1, pp. 27 - 35, IEEE, 1980.

Kingdon91a

Kingdon, H., D. Lester, and G. L. Bum, "The HDG-Machine: A Highly Distributed Graph 
Reducer for a "B-ansputer Network," The Computer Journal, vol. 34, no. 4, pp. 290 - 302,1991.

Klinger76a

Klinger, A. and C. R. Dyer, "Experiments in picture representation using regular 
decomposition," Computer Graphics and Image Processing, vol. 5, no. 1, pp. 68 -105,1976.

Knuth73a

Knuth, D. E., The Art of Computer Programming, vol. 3, Addison-Wesley, 1973. 

Knowlton80a

Knowlton, K., 'Progressive transmission of gray-scale and binary pictures by simple, 
efficient, and lossless encoding schemes," Proc. IEEE, vol. 68, pp. 885 - 896, IEEE, 1980.

Kozato88a

Kozato, Y., "Design Considerations for "General-Purpose" Image Processing Systems," End- 
of-2nd-year report. Department of Computer Science, University College London, 
September 1988.

Kozato92a

Kozato, Y. and G. P. Otto, "Geometric Transformations in a Lazy Functional Language," in 
Proceedings of 11th International Conference on Pattern Recognition, vol. IV, pp. 128 -132, The 
Hague, August 1992.

Kozato93a

Kozato, Y. and G. P. Otto, "Benchmarking Real-Life Image Processing Programs in Lazy 
Functional Languages", in Proceedings of FPCA '93, Copenhagen, June 1993.

Lakshminarasimhan89a

Lakshminarasimhan, A. L. and M. Srivas, "A Framework for Functional Specification and 
IVansformation of Hidden Surface Elimination Algorithms," Computer Graphics Forum, vol. 
8, no. 2, pp. 75 - 98, June 1989.



- 199 -

Landin64a

Landin, P. J., "The Mechanical Evaluation of Expressions," Computer Journal, vol. 6, no. 4, pp. 
308 - 320, January 1964.

Landin66a

Landin, P. J., "The Next 700 Programming Languages," Communications of the ACM, vol. 
9, no. 3, pp. 157 -166, ACM, 1966.

Lau-Kee91a

Lau-Kee, D., A. Billyard, R. J. Faichney, Y. Kozato, G. P. Otto, M. Smith, and I. Wilkinson, 
"VPL: An Active, Declarative Visual Programming System," in Proceedings of IEEE Workshop 
on Visual Languages, Kobe, Japan, October 1991.

LeCall91a

Le Gall, D., "MPEG: A Video Compression Standard for Multimedia Applications," 
Communications of the ACM, vol. 34, no. 4, pp. 46 - 58, April 1991.

McCarthy60a

McCarthy, J., "Recursive Functions of Symbolic Expressions and Their Computation by 
Machine, Part I," Communications of the ACM, vol. 3, no. 4, pp. 184 -195, ACM, 1960.

Meagher82a

Meagher, D., "Geometric Modeling Usiiig Octree Encoding," Computer Graphics and Image 
Processing, pp. 129 -147, June 1982.

Milner84a

Milner, R., "A Proposal for Standard ML," in 1984 ACM Symposium on Lisp and Functional 
Programming, pp. 184 -197, Austin, Texas, August 1984.

Milner78a

Milner, R., "A theory of type polymorphism in programming," Journal of Computer and 
System Science, vol. 17, pp. 348 - 375,1978.

Otto92a

Otto, G. P., D. Lau-Kee, and Y. Kozato, 'Design and implementation issues in VPL: visual 
language for image processing," in Proceedings of SPIE/IS&T conference on image processing, 
vol. 1659, pp. 240 - 253, SPIE, San Jose, February 1992.

Ouksel92a

Ouksel, M. A. and A. Yaagoub, "The Interpolation-Based Bintree and Encoding of Binary 
Images," CVGIP: Graphical Models and Image Processing, vol. 54, no. 1, pp. 75 - 81, Academic 
Press, January 1992.



200 -

Parsons86a

Parsons, M. S., "Generating lines Using Quadgraph Patterns," Computer Graphics Forum, 
vol. 5, pp. 33 - 39, North-Holland, 1986.

ParsonsSZa

Parsons, M. S., Applicative Languages and Graphical Data Structures, PhD Thesis, Computing 
Laboratory, University of Kent, September 1987.

Parsons89a

Parsons, M. S., "Image Representations Using Miranda Laws," Computer Graphics Forum, 
vol. 8, pp. 99 -106, North- Holland, 1989.

Partain93a

Partain, W., "The nofib Benchmark Suite of Haskell programs (pre-release Ayr draft)," in 
Functional Programming, Glasgow 1992 (Proceedings of the 1992 Glasgow Workshop on 
Functional Programming, Ayr, Scotland, 6-8 July 1992, pp. 195 - 202, Springer-Verlag, 1993.

Paulson91a

Paulson, L. C , ML for the Working Programmer, Cambridge University Press, 1991.

Peyton Jones87a

Peyton Jones, S. L., The Implementation of Furwtional Programming Languages, Prentice-Hall 
International, 1987.

Peyton Jones92a

Peyton Jones, S. L. and D. R. Lester, Implementing Functional Languages, Prentice Hall, 1992. 

Peyton Jones92b

Peyton Jones, S. L., Functional programming at Glasgow University, Dept of Computing 
Science, Glasgow University, April 1992.

Pipei85a

Piper, J. and D. Rutovitz, "Data structures for image processing in a C language and Unix 
environment," Pattern Recognition Letters, vol. 3, pp. 119-129, North-Holland, March 1985.

Poole92a

Poole, I., "A Functional Programming Environment for Image Analysis," in Proceedings of 
11th International Conference on Pattern Recognition, vol. IV, pp. 124 -127, The Hague, 1992.

Poole92b

Poole, I., Private communication, April, August, 1992.

Pratt91a

Pratt, W. K., Digital Image Processing (Second Edition), Wiley, 1991.



-201  -

Reade89a

Reade, C., Elements of Functional Programming, Addison-Wesley, 1989.

Research Software Limited89a

Research Software Limited, Miranda System Manual (V2.014), 1989.

Runciman92a

Rundman, C. and D. Wakeling, Heap Profiling of Lazy Functional Programs, Technical Report, 
Department of Computer Science, University of York, York, 1992.

Rundman92b

Rundman, C , "TIP in Haskell — another exerdse in functional programming," in 
Proceedings of 1991 Glasgow Workshop on Functional Programming, ed. R. Heldal, C  K. Holst 
and P. Wadler, Springer-Verlag, 1992.

Rundman93a

Rundman, C. and D. Wakeling, "Heap Profiling of a Lazy Functional Compiler," in 
Functional Programming, Glasgow 1992 (Proceedings of the 1992 Glasgow Workshop on 
Functional Programming, Ayr, Scotland, 6-8 July 1992, pp. 203 - 214, Springer-Verlag, 1993.

Samet84a

Samet, H., "The quadtree and related hierarchical data structures," ACM Computing 
Surveys, vol. 16, no. 2, pp. 817 - 860, ACM, 1984.

Samet88a

Samet, H. and R. E. Webber, "Hierarchical Data Structures and Algorithms for Computer 
Graphics Part I: Fundamentals," IEEE Computer Graphics and Applications, vol. 8, no. 3, pp. 
48 - 68, May 1988.

Samet90a

Samet, H., The Design and Analysis of Spatial Data Structures, Addison-Wesley, 1990. 

Sansom93a

Sansom, P. and S. L. Peyton Jones, "Profiling Lazy Functional Languages (Working Paper)," 
in Functional Programming, Glasgow 1992 (Proceedings of the 1992 Glasgow Workshop on 
Functional Programming, Ayr, Scotland, 6-8 July 1992, pp. 227 - 239, Springer-Verlag, 1993.

Sato90a

Sato, H., H. Okazaki, T. Kawai, H. Yamamoto, and H. Tamura, "The VIEW-Station 
Environment: Tools and Architecture for a Platform-Independent Image Processing 
Workstation," in Proceedings of the 10th International Conference on Pattern Recognition, 
Atlantic City, NJ, June 1990.



202

Schalkoff89a

Schalkoff, R. Digital Image Processing And Computer Vision, Wiley, 1989.

SPEC92a

SPEC, The January 1992 SPEC/CINT92/CFP92 announcement. Standard Performance 
Evaluation Corporation, 1992.

Spivey90a

Spivey, M., "A Functional Theory of Exceptions", Science of Computer Programming, vol. 14, 
pp. 25 - 42, North-Holland, 1990.

Steele Jr.90a

Steele Jr., G. L., CommonLisp - The Language (Second Edition), Digital Press, 1990.

Sterling86a

Sterling, L. and E. Shapiro, The Art of Prolog, MIT Press, 1986.

Stoy81a

Stoy, J. E., Denotational Semantics, MIT Press, 1981.

Strachey67a

Strachey, C., "Fundamental Concepts in Programming Languages", in Lecture Notes for 
International Summer School in Computer Programming, Copenhagen, August 1967.

Stroustrup86a

Stroustrup, B., The C++ Programming Language, Addison-Wesley, 1986.

Stroustrup91a

Stroustrup, B., The C++ Programming Language (Second Edition), Addison-Wesley, 1991. 

Suetens92a

Suetens, P., P. Fua, and A. J. Hanson, "Computational Strategies for Object Recognition," 
ACM Computing Surveys, vol. 24, no. 1, pp. 5 - 61, ACM, March 1992.

Sun Microsystems Inc.87a

Sun Microsystems Inc., SunOS Reference Manual, 1987.

Tanaka86a

Tanaka, A., M. Kameyama, S. Kazama, and O. Watanabe, "A Rotation Method for Raster 
Images Using Skew Transformation," in Proc. IEEE Conference on Computer Vision and 
Pattern Recognition, pp. 272 - 277, June 1986.



203 -

Taylor91a

Taylor, J., "A System For Representing The Evaluation Of Lazy Functions," Technical Report, 
no. 522, Dept, of Computer Science, Queen Mary and Westfield College, London, February 
1991.

Thimbleby87a

Thimbleby, H. W., "The Design of a Tenninal independent Package," Software— Practice and 
Experience, vol. 17, no. 5, pp. 351 - 367, May 1987.

Thompson86a

Thompson, S., "Laws in Miranda," in Proc. of the 1986 ACM Conference on Lisp and Functional 
Programming, pp. 1 -12, ACM, Cambridge, Massachusetts, August 1986.

Traub91a

Traub, K. R., Implementation ofNon-Strict Functional Programming Languages, The MIT Press, 
Cambridge, Massachusetts, 1991.

Trinder92a

Trinder, P. and K. Hammond, and D. McNally, "Functional Languages can’t Manipulate 
Persistent Data (DRAFT)," in Draft Proceedings of Fifth Annual Glasgow Workshop on 
Functional Programming, pp. 282 - 290, Ayr, Scotland, July 1992.

Tumer76a

Turner, D. A., "SASL Language Manual," University of St. Andrews Technical Report, 1976. 

Tumer79a

Turner, D. A., "A new implementation technique for applicative languages," Software - 
Practice and Experience, vol. 9, pp. 31 - 49,1979.

Tumer82a

Turner, D. A., "Recursion Equations as a Programming Language," in Functional 
Programming and its Applications, ed. J. Darlington, P. Henderson, and D. A. Turner, pp. 1 - 
28, Cambridge University Press, 1982.

Tumer85a

Turner, D. A., "Miranda: A non-strict functional language with polymorphic types," in 
Lecture Notes in Computer Science, vol. 201, Springer, 1985.

Tumer86a

Turner, D. A., "An Overview of Miranda," in SIGPLAN Notices, December 1986.

Uhr86a

Uhr, L., K. Preston, Jr., S. Levialdi, and M. J. B. Duff (eds). Evaluation of Multicomputers for 
Image Processing, Academic Press, 1986.



-204

Wadler84a

Wadler, P., "Listlessness is Better than Laziness - Lazy evaluation and garbage collection at 
compile-time," in Proceedings of the 1984 ACM Conference on USP and Functional 
Programming, pp. 45 - 52, ACM, August 1984.

WadlerSSa

Wadler, P., "Deforestation: Transforming Programs To Eliminate Trees," in European 
Symposium on Programming, Lecture Notes in Computer Science 300, Springer, 1988.

Wadler89a

Wadler, P. and S. Blott, "How to make ad-hoc polymorphism less ad hoc," in Proceedings of 
16th ACM Symposium on Principles of Programming Language, pp. 60 - 76, ACM Press, January 
1989.

Wallace91a

Wallace, G. K., "The JPEG Still Picture Compression Standard," Communications of the ACM, 
vol. 34, no. 4, pp. 30 - 44, ACM, April 1991.

Wallace92a

Wallace, A. M., G. J. Michaelson, P. McAndrew, K.G. Waugh, and W. J. Austin, "Dynamic 
Control and Prototyping of Parallel Algorithms for Intermediate and High-Level Vision," 
iEEE Computer, vol. 25, no. 2, pp. 43 - 53, IEEE, February 1992.

Woods91a

Woods, J. W. (ed). Subband Image Coding, Kluwer academic publishers group, 1991. 

Wolberg90a

Wolberg, G., Digital Image Warping, IEEE Computer Society Press, Wachington DC, 1990.

The Yale Haskell Group91a

The Yale Haskell Group,, The Yale Haskell Users Manual, Yale University, New Haven, May 
1991.



Subject Index
205

abstract data types 106 
affine transformations 70 
algebraic data types 25, 55, 99 
algorithm categorisation 161 
Apply 25

B
benchmarking 136 
binary trees 95,98  
bintrees 99 
border effect 54 
bottom 63

FLIPT25
fold operations 49, 150 
FP 19
fractals 25, 69
full laziness 68
function composition 41, 56
function images 74, 124
functional programming 17—22
functions

as first-class objects 18 
non-strict 63, 69 
polymorphic 18 
strict 63

classes 15
combina tor reduction 21 
Common Lisp 16 
constructors 55 
convolution 46-49

alternative implementation 52 
discrete one-dimensional 46 
discrete two-dimensional 46 
parallel method 47 

convolution kernel 46 
correlation 52, 75 
currying 33, 56

D
deforestation 64 
DF- expressions 97 
do-it-yourself infix operators 53

E
ease of writing/reading 22 
efficiency 22, 65 
element chaining 167 
evaluation

applicative order 17 
demand-driven 17 
eager 17
lazy 17, 24, 62-65 
normal order 17

filtering in the frequency domain 75 
filters

maximum 50 
median 51, 136 
minimum 50 
rank 50

geometric transformations 70 
GHC 137 
G-machine 21 
Gofer 19
graph reduction 63 

H
Haskell 19
hierarchical data structures 67, 95 
higher-order functions 18, 23, 32, 56 
Hindley-Milner type system 19 
homogeneous coordinates 71

I
I/O monads 139 
Id 20
image boundary problems 54 
image mosaicing 70 
image processing 13—16 
image warping 70 
infinite data structures 69 
infinite lists 62 
inherently lazy 70 
interpolation 89 

linear 84, 90 
nearest neighbour 84, 89 

interval 39, 58, 81 
inverse mapping 71 
isomorphic representations 134 
Iswim 19

K
KRC 19

lambda calculus 18 
languages

dataflow 19



206

dynamically typed 18 
strongly typed 18 
untyped 18 

Lapladan 50 
laws 25 
laziness 22

and efficiency 65 
and modularity 66 
degrees of 68 

lazy evaluation 17, 24, 62-65 
Lazy ML 20 
leaf nodes 95 
linear quadtrees 97 
Lisp 16, 18 
list comprehension 48 
list images 51 
list indexing 43 
listless transformers 64 
local neighbourhood operations 45

M
map functions 32 
median-by-qsort 141 
median-by-sort 145 
median-incremental 146 
miralhs 139 
Miranda 19, 21 
ML 19
modularity 22, 66 
multiple representations 134

N
neighbourhood averaging 45, 49 
Nil quadtrees 108 
non-pixel images 73 
non-strict semantics 62

O
object recognition 75 
octrees 95 
overloading 15, 55

parallel G-machine 21 
parallel-if 43
perspective transformations 90 
pixel images 13, 128 
pixels 13, 30,73  

undefined 55 
plist 83
pointerless representations 97 
pointwise operations 31, 40

binary 32, 33 
unary 32 

polymorphic type systems 18 
polymorphic types 32 
polymorphic typing 18, 19, 23 

and I/O 123 
profiling tools 64 
programming 

declarative 17 
functional 17—22 
imperative 17 
logic 17 

progressive encoding 97

Q
quadgraphs 25, 69 
quadtree condensation 112 
quadtrees 25, 95, 107 
qualifiers 48

R
raster 30 
rasterfile 119 
redex 63 
reduction

applicative order 63 
innermost 63 
normal order 63 
outermost 63 

redundant nodes 95 
referential transparency 17 
region quadtrees 107 
reusability 23 
root nodes 95

SASL 19
scan conversion 74 
Scheme 16, 18 
script 34
SECD machine 21 
sections 32
self-supporting delta structures 58
show 123
side-effects 17
SISAL 19
SK combinators 21
SML 19
Sobel edge operator 50 
space efficiency

of lazy evaluation 64



- 207 -

of trees and quadtrees 98 
space leaks 64, 148
spatial conditional operation 43,75, 130
standard environment 22
static type checking 18
stream models 82
strong typing 18
super-combinator compilers 21
superposition

centered zero boundary 54 
centered, reflected boundary 54 
centered, zero padded 54

templates 16
texture mapping 133
TIM (Three Instruction Machine) 21
tree condensation 95
two-pass transformations 88
type signatures 32
type synonym 31
type variables 32

V
variable resolution 97 
vectors 107 
voxels 13 
VPL1.0 68

W
weak head normal form 64 
Woolz 26, 59



Code Index
- 208 -

Symbols
! 43 
#47 
$53 
&42 
+ 34 
++ 51 
-34 
-> 32 
. 41 
: 151 
= 42 
==31 
[ ] 31 
\/42 
-32

abs 33
absImage 33, 42 
abstype 107 
addlmage 34, 42 
andlmage 42 
average 49 
average4 112 
avrList 105 
avrNum 105 
avrQTree 111 
avrTree 105
6
bgp 85
b in a r y ln te r v a l  41 
b in a r y P o in tw ise  33, 41 
binaryRow 41
c
charToNuitiList 120 
cim 131 
c im l 131 
code 120
condenseQTree 112 
condenseT ree 103 
condim 131 
condlmage 44 
c o n st  42 
c o n st  Image 42 
co n v l 47 
conv2 53
convolveIm age 49 
convolveRow 49 
coord 109 
c o r r e la t io n  53

D
decode 120
d i f f  Image 65
d is p  83, 88
d isp F  Image 125
d isp lm a g e l 85
d isp lm age2  89
d isp la y F lm a g e  124, 125
d is p la y ?  Image 129
displayQ T  113
d is p la y !  106
d i s p P l i s t  89
dispQT 113
dispR ow l 85
dispRow2 89
dispT  105
d i s t  84
d iv  47
domain 47
d o t 53
d ou b le  Image 42 
drop 41 
dropUpto 84
E
e lem en t 47 
eqim age 42
F
f ile n a m e  124 
f im l 126
fim lR  126 
fim 2 127 
fim 2S 127 
fim 3 128 
fim3T 128 
f  Image 124, 125 
f  o ld im  53 
f o l d l l  47 
f  ourCharToNum 120 
f  St 53
fu n l 126
fun2 127 
fun3 128 
fun4 131
H
headerL ength 121 
I
image 39 
im age1 81 
im age2 86 
imageQT 109



-209

imageT 100 
img 31 
in d ex  47 
in t e r v a l  39 
i n t e r v a l l  81 
in t e r v a l !  100 
in te r v a lT o P l is t  83 
inverseLookU pT able 43 
inverseLookU pT able2 43 
isB etw een  84 
isQ L eaf 115

la p la c ia n  50 
Leaf 100 
le n g  47
111 85
112 85 
linearO  85 
l in e a r l  85 
l in e a r 2  85 
l i s t  62
listsT oIm ageQ T 112 
l is tsT o Q T ree  112 
lis tT o Im a g e  102 
l i s t T o I n t e r v a l  102 
l is tT o T r e e  102 
lo ca lH istIm a g e  51 
loca lH istR ow  51 
lo g  42 
loglm age 42 
lookUpF Image 124, 125 
lookUpQTree 115 
look u p ! 105
M
makeF Image 124, 125 
makeMask 49 
make? Image 129 
makeQNode 111 
makeQ!ree 111 
m ake!ree 102 
map 32 
map2 33 
m ap!ree 103 
max2 34
m axF ilterlm age 51 
m axFilterRow 51 
maxImage 34, 42 
m axSize 102 
median 51 
medianlmage 51 
min2 34
m in F ilterIm age 51

m inF ilterR ow  51 
minImage 34, 42
N
n e a r e s t  84 
neg 33
n e g a te  Image 33, 42 
N i l  100 
Node 100 
n o t Image 42 
num !oCharList 120 
num!oFourChar 120
o
org  126 
orlm age 42
P
p a ir l  87 
p a ir 2  87 
p i  79 
pim lS 129 
pim lSR ! 129 
pim lSR!SR! 130 
pImage 129 
p i x e l  31 
p i x e l  * 55 
p l i s t  83 
p o s it io n O f  84

Q
QLeaf 108 
QNil 108 
QNode 108
cjtree 108 
(Quarter 110

R
ras_d ep th  121 
r a s_ h e ig h t  121 
r a s _ le n g th  121 
ras_m agic 121 
ras_magic_num 121 
ras_m aplength  121 
ras_m aptype 121 
r a s_ ty p e  121 
ras_w id th  121 
read 120 
readHeader 121 
readlm age 121 
read? Image 129 
reform Q !ree 112 
refo rm !ree  103 
r e v e r se  53 
r m t e q u a I r g b  121



- 210 -

ro ta teF Im a g e  124, 126 u n d ef 62
r o ta te Im a g e 2  87 ^
r o ta te ? Im a g e  129
r o ta teQ T ree  113 vAdd 107
ro ta teR ow 2 87 valQ T ree 111
row 39 v a lu e O f 84
row l 81 v e c t o r  107
row2 86 vFun2 107
rowT 100 vMake 107
r o w T o P lis t  87 vX elem en t 107
ro w T o P listY  87 v Y elem en t 107
s w
sca le F Im a g e  124, 126 with 107
s c a le lm a g e l  81 w riteF Im a g e  124
s c a le lm a g e 2  87 w riteP Im a g e  129
sc a le lm a g e T  103
s c a le P  Image 129
sca leQ T re e  113
s c a le R o w l 81
sca leR ow 2 87
scaleR ow T  103
secon d A rg  51
s e le c t  62 
s iz  126
s i z 2  129 
sn d  47 
s o b e l  50 
s o r t  51 
s p l i t L i s t  121 
su b im age 34 
sum 62
Sys_message 122 
T
tr a n s lm a g e l  81 
tr a n s lm a g e 2  87 
t r a n s  ImageT 103 
t r a n s la te F I m a g e  124, 126 
t r a n s la t e lm a g e  45 
t r a n s l a t e l n t e r v a l  45 
t r a n s l a t e ?  Image 129 
tr a n s la te R o w  45 
t r a n s p o s e  50 
tra n sQ T ree  113 
tra n sR o w l 81 
transR ow 2 87 
transRowT 103 
t r e e  100

U
u n a r y ln te r v a l  41 
u n a r y P o in tw is e  32, 41 
unaryRow 41


