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Abstract

It is widely accepted that the symptoms of depression are due, in part, to abnormal 

monoaminergic tone in the brain, primarily serotonin, noradrenaline and to a lesser 

extent dopamine. This constitutes the monoamine theory of depression. Antidepressants 

(ADs) work by increasing the extracellular concentration of monoamines at the synapse. 

Though, their mechanism is not fully understood, it has been suggested that chronic AD 

treatments can affect NMDA receptor function in the brain.

Using in vivo microdialysis in freely moving rats, the effects of acute, 7-day subchronic 

and chronic doses of the ADs paroxetine and clomipramine treatment on the NMDA- 

evoked efflux of extracellular DA, 5-HT and their metabolites, DOPAC and 5-HIAA 

respectively in the frontal cortex were investigated. The duration of these effects after 

48 hours and 14 days of drug cessation, and the effect of the co-administration of 

NMDA antagonists with paroxetine on monoamine levels and their metabolites was also 

investigated.

Acute injection of paroxetine (10 and 20 mg/kg i.p.) did not affect dialysate DA or 

5-HT content in the frontal cortex. Clomipramine at 10 and 20 mg/kg caused a decrease 

in extracellular DA without exerting any influence on dialysate 5-HT levels. Local 

infusion of lOOpM NMDA into the frontal cortex decreased both extracellular DA and 

5-HT levels in this region. 21 day treatment of rats with paroxetine and clomipramine 

increased 5-HT levels to 150% and 147% above basal levels respectively. The same 

treatment increased DA levels to 200% and 186% above basal levels. When NMDA 

infusion was preceded by a single injection of paroxetine/clomipramine no marked 

differences between NMDA and NMDA+paroxetine/clomipramine treated groups were 

observed. Subchronic (7-days) and chronic (21-days) treatment with 

paroxetine/clomipramine were able to abolish the NMDA-evoked decrease in dialysate 

DA and 5-HT levels. This effect lasted for a period of 48 hours but was abolished 

following a 14-day ‘drug holiday’. This suggests that adaptive functional changes occur 

in NMDA receptor function during treatment with AD drugs. These results suggest that 

the NMDA receptor is subject to adaptive changes following chronic AD treatment. 

Interestingly, the co-administration of acute paroxetine with NMDA antagonists 

(amantadine, budipine, CGP 40116 and ifenprodil) causes an increase in extracellular 

5-HT which may prove to have clinical implications.
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Pity the poor patient with a disease whose doctor rejects the whole notion of 
disease.... Psychodynamic theories are based on stories not facts... nevertheless 
every person is a story. For the patient, this is the most crucial fact of all.

Donald Goodwin
Professor of Psychiatry,

University of Kansas
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Clomipramine

Chronic mild stress

Central nervous system

Catechol-O-methyltransferase

Cyclic adenosine 3%5’ monophosphate response element binding 

protein

Corticotrophin releasing hormone 

Cerebrospinal fluid 

Dopamine

{^H}-5, 7 dichlorkynurenic acid 

3 ,5-dihydroxyphenylacetic acid 

Electroconvulsive therapy 

Frontal cortex 

y-aminobutyric acid 

Glutamate 

Glycine

General practitioner 

Hamilton depression rating scale

5-hydroxyindoleacetic acid 
Hypothalamic-pituitary-adrenocortical axis
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HPLC High performance liquid chromotography

HPLC-ED HPLC with electrochemical detection

5-HT 5-hydroxytryptamine

5-HTP 5-hydroxytryptophan

I D. Inner diameter

i.p. Intraperitoneal

i.v. Intravenous

KA Kainate

KD Kilo dalton

LC Locus coeruleus

L-DOPA L-dihydroxyphenylalanine

LTP Long term potentiation

MAOI Monoamine oxidase inhibitor

MHPG 3-methoxy-4-hydroxy-phenylglycol

MK801 Dizocilpine

mRNA Messenger ribonucleic acid

NA Noradrenaline

Nacc Nucleus accumbens

NMDA N-methyl-D-aspartate

NRI Noradrenaline reuptake inhibitor

OB Olfactory bulbectomized

O.D. Outer diameter

8-OH DP AT 8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide

Parox Paroxetine

PCP Phencyclidine

PDE Phosphodiesterase

PKA Protein Kinase A

PKC Protein Kinase C

RIMA Reversible inhibitors of monoamine oxidase type A

RN Raphe nuclei

s.c. Subcutaneous

S.E.M Standard error of the mean

SNRI Selective noradrenaline reuptake inhibitor

ST Striatum

23



SSRl Selective serotonin reuptake inhibitor

Ti/2 Half-life

Tmax Maximum rate of absorbance

TCA Tricyclic antidepressant

VTA Ventral tegmental area

WAY 100635 N-{2-{4-(2mehoxyphenly)-l-piperazineyl}ethyl}-N-(2- 

pyridil)cyclohaxanecarboxamide trihydrochloride
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1.0 Introduction

1.1 Depression

Depression is a potentially life-threatening disorder that affects between 1-12% of the 

Western male and 3-25% of the Western female population (Angst, 1998). It may occur 

at any age from early childhood to late life. The impact of this major psychiatric 

disorder has been severely underestimated by traditional approaches that do not value 

disability. If disability rather than death is used as a measure of socio-economic burden, 

then major depression is the fourth highest most disabling ailment and has been 

predicted to rank second only to heart disease by 2020 (Skolnick, 1999). The annual 

direct and indirect costs of depression are estimated to be in excess of £3 billion in the 

United Kingdom and $43 billion in the United States. These figures include treatment, 

loss of earnings and productivity (Henry and Rivas, 1997).

Major depression is defined as a chronic state (>2 weeks) of a patient suffering from at 

least one core symptom and at least four secondary symptoms. The core symptoms are: 

(i) lack of motivation and loss of interest in daily activities and (ii) the inability to 

experience pleasure (anhedonia). The secondary symptoms are: (i) loss of appetite; (ii) 

insomnia (increased amount and decreased latency of rapid eye movement (REM) sleep, 

as determined by EEG measurement); (iii) motor retardation or agitation; (iv) feelings 

of worthlessness or guilt; (v) continuous fatigue; (vi) learning difficulties and (vii) 

suicidal thoughts [Diagnostic and Statistical Manual, 4̂  ̂ edition (DSM IV), American 

Psychiatric Association, 1994].

There are two main types of depression: unipolar and bipolar. Unipolar depression is 

more common than bipolar depression and more often related to adverse circumstances. 

This type of depression is more common later in life and is often associated with 

anxiety and aggression. In bipolar depression, mood and behaviour oscillate between 

depression and mania. In the manic state, an individual portrays excessive exuberance, 

enthusiasm and self-confidence. There is strong evidence for a hereditary link in the 

condition. This type of depression develops earlier in life and may have features in 

common with schizophrenia.

26



Chapter 1: General Introduction

1.2 Epidemiology

The World Health Organization (WHO) estimates that 5-10 % of the population 

(500 000 000 people) worldwide on any one day may be depressed. Creed (1993), 

reported that over 80 million working days per year are lost in the UK through 

depression. This is 30 times the number lost due to industrial disputes. As stated above, 

the total costs of depression on the UK economy is £3 billion and this is 1 % of the 

gross national product (Taylor, 2000).

Epidemiological studies in the UK initiated by Shepherd in the 1960s identified 

substantial psychiatric morbidity in general care/primary care populations. The annual 

prevalence rate is 5-10% of the population or 30% of those seen in primary care. 

Lifetime prevalence of these disorders are estimated to vary between 20 and 50% of the 

population.

1.2.1 Social epidemiology of depression.

Social (occupational) class, domestic position, sex and genetic predisposition are 

factors that have been thought to contribute toward the manifestation of depression 

(Bebbington, 1998).

There are conflicting reports on the direct link between social (occupational) class and 

depression (Bebbington et al 1981 and Kessler et al, 1994). Generally, it is agreed that 

the frequency of depression is greater in the less privileged. This is generally thought to 

be a consequence of the lack of advantages they face in the everyday world.

One of the most obvious causes in the prevalence of depression is directly related to 

changes in domestic situations. These situations could be marital or relationship break 

up, bereavement of a loved one or being made unemployed (see Bruce, 2002). These 

domestic changes are indeed stress-related events that trigger up to 50% of all 

depression. Early life stress has been thought to play a role in increasing vulnerability to 

depression in later life stages (Marano, 1999).

Several studies have concluded that females are more likely to suffer depression than 

males (Bebbington, 1998). This finding may be due to the fact that women are more
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likely to report depressive symptoms (Sher et al, 2001). Men suffer a suicide rate 2-3 

higher than women, a figure which may be artificially high due to the inability of males 

to report their depressive condition (see Taylor, 2000).

There is a hereditary component for both unipolar and bipolar depression. The siblings 

of bipolar depressives show morbid risks of bipolar depression of 21% and of unipolar 

illness of 0.5%. Similarly, the prevalence of bipolar or unipolar depression in siblings of 

unipolar depressives is equal to 0.5% and 12.6% respectively (Leboyer et al, 1998).

1.3 Causes of depression.

Depression is a difficult illness to define precisely as it is difficult to differentiate 

between unpleasant feelings which are a normal consequence of stressful events and the 

state of abnormal functioning which could be classified as a depressive illness.

Depression has psychological, environmental and biological roots. Different drugs such 

as p- blockers, steroids, the contraceptive pill, opiates and L-DOPA have been shown to 

cause depression (Nutt et al, 1997). Depression has also been linked to the 

neuroendocrine system and chronic stress (Checkley, 1996) as well as the tryptophan 

hydoxylase gene (Bellivier et al 1998), changes in the biochemical activity of discrete 

brain regions (Figure 1.1) (Drevets et al, 1997), and there is a direct link between stress 

and the activation of the immune system and depression (see Leonard, 2000).

The areas of the brain related to mood and emotion contain a high density of 

monoaminergic neurones. According to the monoamine theory of depression (see 

section 1.7), which has formed the cornerstone of research into the illness since the 

1960Sythere is a deficit in transmission of noradrenaline, serotonin (Baldessarini, 1975) 

and to a lesser extent, dopamine (Wilhier, 1983).

1.4 Clinical diagnosis of depression

Although depression is common in general practice and primary care, very few people 

present clear-cut symptoms of depression. Many GPs feel there is a nervous component 

to many physical disorders. After looking at recent life events, physical illness and 

family history, there are diagnostic criteria which are a major indication for depressive
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disorders. The current diagnostic criteria for this are stipulated in the Diagnostic and 

Statistical Manual, 4* edition (DSM IV). Five or more of the following symptoms must 

have been present nearly everyday during a 2 week period for a diagnosis of depression 

may be made (Jackson et al, 1997).

1. Depressed mood for most of the day

2. Markedly diminished interest in or pleasure from normal activities.

3. Significant weight change (either loss or gain)

4. Insomnia or hypersomnia

5. Psychomotor agitation or retardation

6. Fatigue or loss of energy

7. Feelings of worthlessness or excessive guilt

8. Reduced ability to concentrate

9. Recurrent thoughts of death or suicide

10. Decreased eye contact, tearfulness, decreased libido and reduced self confidence. 

(Refer to table 1.1).
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Table 1.1 Different types of depression: Severity (Data criteria for depressive 

disorders in DSM IV).

(Adapted from Freeman et al, 1997).

Severity Diagnosis Characteristics Treatment

Mild Adjustment disorder 

Dysthymic disorder

Mild, depressive 

symptoms for > 2 weeks, 

following a stressful event.

Depression lasting > 2 

years. Person feels 

constantly negative.

Cognitive 

behaviour therapy 

Counselling, 

Antidepressant 

drugs

Moderate Major depression Overwhelming depressed 

mood with significant 

sleep and appetite 

disturbances, including 

weight loss.

Cognitive 

behaviour therapy 

ECT 

Antidepressant 

drugs

Severe Major depression with 

melancholia

Total loss of interest and 

pleasure. Psychomotor 

retardation.

Cognitive

behaviour therapy 
ECT

Antidepressant

drugs

30



Chapter 1: General Introduction

1.5 Treatment of depression

After the clinician has diagnosed a patient to be suffering from depression, a treatment 

plan is drawn up. Treatment of depression varies among individuals and depression is 

not solely treated by antidepressant drugs. There are other psychological treatments 

used to combat depressive symptoms (discussed later).

In depression, there are 3 phases of treatment:

• Acute- This treatment will resolve symptoms.

• Continuation- This treatment will ensure the maintenance of the response.

• Prophylaxis- This treatment will prevent relapse.

1.5.1 The pharmacological treatment of depression

There are several classes of drugs that act as antidepressants. Recently, a new class of 

non-tricyclic antidepressants (TCAs) (see section 1.5.2.2 for TCAs).like drugs have 

come into clinical use, which are as effective as TCAs but have fewer side effects. 

These have been termed ‘atypical ADs’. Their therapeutic actions are usually explained 

by the mechanism by which they enhance monoamine function in the brain. These 

treatments, their classification and mechanism of actions are summarised in table 1.2 

below.

Class

1957-70 TCAs

MAOIs

Tricyclic antidepressants

Non-selective monoamine oxidase inhibitors

1980-90 SSRIs Selective Serotonin reuptake inhibitors

1990-2000 RIMAs

SNRIs

SNARIs

Reversible inhibitors of monoamine oxidase 

Serotonin and noradrenaline reuptake inhibitors 

Selective Noradrenaline reuptake inhibitors

Table 1.2 The historical development of antidepressants (as categorised by Leonard 

and Healy, 2000).

In addition to these classes in the table above, there are a number of other ‘atypical’
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antidepressants which can be used in the treatment of depression (e.g. trazadone and 

mianserin).

However, the 3 main classes of antidepressants used clinically are:

1. TCAs e.g. clomipramine and imipramine

2. SSRIs e.g. paroxetine and fluoxetine

3. SNRIs e.g. Venlafaxine

Changes in depression ANHEDONIA

Anorexia, sleep disturbance Decreased dopamnergic functicn Decreased drive and motivation

Decreased serotonergic function DEPRESSION Decreased noradrenergic function

Decreased mocd Increased cholinergic function Increased number of 
(3-and ou,- adrenoceptors

Increased ORF secr^ion

? Sleep disturbance 
Memory deficit

Anxiety

Hypercortisdaenia
Decrease in cellular irrm inity 
(T cells, natural killer cells)

Increased probability of infections

Figure 1.1 Relationship between the biochemical changes in depression and the 

mode of action of antidepressants (Adapted from Leonard and Healy, 2000).
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1.5.2 Clinically used antidepressants: 

1.5.2.1 Monoamine Oxidase Inhibitors (MAOIs)

In the 1950s it was found that isoniazid and its isopropyl derivative iproniazid, which 

were used as antimycobacterials, induced euphoria (regarded as an adverse reaction) in 

tubercular patients. It was subsequently found that these agents inhibit MAO, the main 

enzyme that metabolises monoamines (Crane, 1956). These observations in large part 

contributed to the foundation for the monoamine hypothesis of depression. The 

antidepressant action of MAO-inhibitors (MAGI) results from the increase in synaptic 

concentrations of amines due to increased monoamine release resulting from decreased 

enzymatic breakdown. There are two generations of MAOIs, subdivided on the basis of 

their binding characteristics to MAO. Most of the older clinically available MAOIs are 

unable to differentiate between the A or B isoform of MAO, which explains some of the 

side effects seen with this class of antidepressant. The first-generation MAOIs (e.g 

phenelzine, isocarboxazid and tranylcypromine) are irreversible inhibitors of MAO, and 

are associated with a high toxicity profile. Their toxicity arises from their interaction 

with primary amines, such as tyramine, contained in the diet (e.g. mature cheese, 

marmite and pickled herrings). This ‘cheese reaction’ can lead to a sudden increase in 

cardiac output and hypertension^may cause a cardiovascular crisis and even a stroke. In 

contrast, the second-generation MAOIs (e.g. moclobemide) bind reversibly to MAOa, 

and have an improved toxicity profile compared to the former agents. Although the first 

developed irreversible, non-selective MAOIs are no longer the 1®̂ choice in the clinic 

because of their numerous side effects, several newly developed, clinically cleaner, 

MAOIs remain valuable clinical tools today (for review see Thase et al, 1995).

1.5.2.2 Tricyclic antidepressants (TCAs)

Shortly after the discovery of the antidepressant action of MAOIs a new class of 

antidepressants was discovered; the TCA. TCAs are closely related and were initially 

developed as potential neuroleptics. Imipramine, the first TCA, was found to have no 

neuroleptic properties, but it proved effective in relieving the symptoms of depression. 

Subsequently, minor structural modifications resulted in drugs such as clomipramine, 

amitriptyline and desipramine. Contrary to the action of MAOIs, TCAs increase 

synaptic concentrations of monoamines not by inhibiting metabolism of the monoamine
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but rather by blocking the reuptake carriers which clear the neurotransmitters from the 

synaptic cleft. The principal sites of action are the noradrenergic and the serotonergic 

uptake carriers. Due to their superior safety, the TCAs have largely supplanted the 

clinical use of MAOIs. Most side effects of both classes of antidepressants can be 

attributed to the non-specific interactions with peripheral and central cholinergic, 

adrenergic, dopaminergic, histaminergic and serotonergic receptors (Gareri et al., 2000) 

(Refer to (Fig 1.3) TCAs have been shown to be as effective as more novel 

antidepressants and may be more effective in the treatment of severe depression (Stahl, 

1999). Clomipramine, as shown in Fig 1.3, displays highest potency at the 5-HT and NA 

reuptake site. It is also effective in the treatment of obsessive compulsive disorder. 

Unfortunately, high doses can lead to increased risk of seizures as with all TCAs.

1.5.2.3 Selective Serotonin reuptake inhibitors (SSRIs)

5-HT up 
site

5-HT
terminal

5-HT receptor

Figure 1.2 Action of SSRIs on serotonin reuptake. SSRIs have no direct action on 
5HT-receptors or on other monoamine transmitters.
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Since the development of the TCAs, research has focussed on developing agents that 

share the reuptake properties of the TCAs but lack the tricyclic structure, which is 

believed to be a major determinant of TCA related non-specific receptor binding 

characteristics. Among these are the selective reuptake inhibitors of serotonin (SSRI). 

SSRIs have revolutionised the treatment of depression. In comparison to TCAs and 

MAOIs, SSRIs have increased safety and tolerability with fewer side effects (Stahl, 

1999). SSRIs act by selectively blocking the re-uptake of 5-HT into the presynaptic 

terminal (Figure 1.2 on previous page; Figure 1.3 below). Their side effects are well 

tolerated and most are resolved in approximately 3 weeks, except sexual dysfunction 

which may continue (Nutt et al, 1997). However, not all the effects of the SSRIs on 

sexual function are negative. Low acute doses of the shorter acting SSRIs can be used to 

treat premature ejaculation, which is accepted as a very common problem, not only in 

those patients with depression or anxiety.

The use of SSRIs have also been common in other known disorders which have a 

depressive symptom and 5-HT component such as anxiety, obsessive compulsive 

disorder (OCD) and panic syndrome. The effectiveness of SSRIs in severe depression is 

controversial (Hirschfeld and Schatzberg, 1994).

N A -
s e l e c t iv e

5 -H T
s e l e c t iv e

'4 n is o x e t in e

 m a p r o t il in e

^ --------- d e s ip r a m in e

■4--------- n o r tr ip ty lin e

^ --------- im ip r a m in e

•4--------- a m itr ip ty lin e

4 --------- c lo m ip ra m in e

4 z im e l id in e

4--------- tr a z o d o n e

4--------- f lu o x e t in e

-4--------- p a r o x e t in e

-c it a i  op ram

Figure 1.3 Selectivity of various antidepressants for NA and 5-HT uptake carriers 

in vitro (from Rang and Dale, 1997)
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1.5.2.4 Selective serotonin and noradrenaline reuptake inhibitors (SNRIs)

SNRIs differ structurally from the TCAs and generally have no direct action on the 

muscarinic, histaminic or adrenergic receptors. Venlafaxine and milnacipran are the 

only SNRIs currently available. SNRIs block the uptake of both 5-HT and less so NA 

and possibly DA (Bolden-Watson and Richelson, 1993). The specificity of the reuptake 

block and the degrees of side effects of SNRIs are largely dose dependent. Low doses 

block serotonergic function while medium doses block both serotonergic and 

noradrenergic function and the highest doses block the reuptake of all 3 monoamines 

(see Roseboom and Kalin, 2000).

1.5.2.5 Selective noradrenaline reuptake inhibitors (SNARIs)

Research has led to the development of SNARIs such as reboxetine (Dostert et al, 1997) 

which increases extracellular NA concentrations in the brain. SNARIs do not have the 

typical side effects associated with TCAs as SNRIs lack affinity for 5-HT and DA 

reuptake sites. SNARIs have low affinity for adrenergic, muscarinic and histaminergic 

receptors (Burrows et al, 1998; Wong et al, 2000).

Although the development of these newer agents has improved the physicians’ choice 

of treatment and decreased treatment related side effects, there are still some key issues 

that have not been resolved; therapeutic lag persists, and up to a third of all patients 

remain unresponsive to treatment.
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Table 1.3 Side effects of antidepressants

Antidepressant

Class

Side Effect

TCAs Consequence of blockade of muscarinic receptors (atropine

like effect):

dry mouth, blurred vision, raised intraoccular pressure, urinary 

retention, constipation, tachycardia, confusion.

Consequence of blockade of ai adrenoceptors: orthostatic 

hypotension, dizziness.

Consequence of blockade of Hi receptors: sedation, weight 

gain

Reduced sexual dysfunction.

Cardiotoxicity, particularly in elderly patients and if taken in 

overdose, arises from cardiac conduction block (quinidine-like 

effect).

SSRIs Neurological side effects:

agitation, akathisia, anxiety, insomnia, sexual dysfunction 

Vascular side effects:

Headache, migraine-like attacks

Gastrointestinal side-effects: nausea, vomiting, diarrhoea.

SNRIs Low dose: same as SSRI

Intermediate to high doses mediated by NA and DA as well as 

5-HT.

Hypertension 

Severe insomnia 

Severe agitation 

Severe nausea 

Headache
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1.6 Beyond pharmacological treatment

There are a number of alternative treatments that maybe used instead, or in combination 

with, antidepressant drug therapy such as Electroconvulsive Shock therapy (ECS) 

counselling and social intervention; cognitive behaviour therapy (CBT) and 

Psychotherapy. In addition to the above treatments there are several complementary and 

alternative therapies in the treatment of depression, such as exercise, acupuncture, and 

relaxation therapy. These therapies are beyond the scope of this thesis.

1.6.1 Electroconvulsive shock therapy

Electroconvulsive therapy (ECT) has been practiced for over 60 years and is still used 

today to successfully treat severe depression. ECT in man involves stimulation of the 

brain or parts of it by means of electrodes placed on the head, with the patient slightly 

anaesthetised and paralysed with neuromuscular blocking drugs so as to avoid physical 

injury. ECT is occasionally used in hospitalised patients who do not respond to 

conventional antidepressant therapy and/or have a high risk of committing suicide 

(Gareri. et al, 2000). Despite being very effective, it has several major disadvantages. 

These include the levels of distress experienced by the patient undergoing this therapy 

and chronic episodes of amnesia and cognitive abnormalities in addition to ECT being 

substantially more expensive than pharmacotherapy.

Electroconvulsive therapy (ECT) still remains the treatment that is considered to be the 

most potent in refractory depressive disorders. This treatment is usually restricted to 

patients hospitalised for severe depression. An advantage of this treatment is that it may 

be used in the elderly as it maybe safer than antidepressant drugs. Rates of 

responsiveness of up to 90% can be expected in delusional types of depression. There is 

therefore the temptation to resort to ECT in any non-responsive condition. Generally, 

ECT is a safe, effective treatment but there are risks of memory impairment in 

individuals with personality-based types of depression
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1.7 The monoamine theory of depression

Because of the high prevalence of depression the pharmaceutical industry have placed 

great emphasis on unravelling its pathogenesis. This has resulted in several hypotheses 

of depression pathophysiology. The initial hypothesis proposed by Schildkraut (1965) 

suggested that depression was linked to a deficiency of the noradrenergic 

neurotransmitter system in the central nervous system (CNS). This theory contributed to 

what became known as the monoamine theory of depression. This hypothesis originated 

from the observation that agents that deplete monoamines cause depressive symptoms. 

This was first observed when a high proportion of patients taking the rauwolfia alkaloid 

‘reserpine’, for the treatment of hypertension, developed symptoms of depression 

(Schildkraut, 1965). With ongoing research, it became evident that this theory had to be 

revised to include a deficiency in central serotonergic (Praag and Korf, 1971) and to a 

lesser extent, dopaminergic systems (Willner, 1983).

The monoamine hypothesis is supported by the fact that all clinically useful 

antidepressant therapeutic agents act by increasing synaptic levels of monoamines e.g. 

noradrenaline (NA), 5-hydroxytryptamine (5-HT) and dopamine (DA). However, this 

theory does not explain the discrepancies between the rapid effects on monoamine 

metabolism (i.e. release and reuptake caused by antidepressants) and the delayed onset 

of clinical action, which usually takes up to several weeks to develop. An additional 

drawback of this theory is that approximately 30% of patients do not respond to current 

antidepressant therapies (Skolnick, 1999). These findings suggest that additional factors 

contribute to the therapeutic mechanisms underlying antidepressant action.

1.8 Monoamine theory: Revised

The discrepancy between the onset of neurochemical actions and the onset of clinical 

action has led to the hypothesis that one or more adaptive changes must precede a 

clinical antidepressant response (Vetulani, 1991; Duman et al, 1997). This hypothesis 

was initially substantiated by the observation that activity of central p-adrenoreceptors 

in the cortex is decreased following chronic antidepressant treatment (Vetulani and 

Sulser, 1975; Stanford et al, 1983). Subsequently, it has been shown that chronic 

antidepressant treatment causes adaptive changes in the efficacy of the monoaminergic 

systems, including a decreased density of neurotransmitter uptake sites (Raisman et al.,
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1980) and downregulation of receptors (e.g. Pi, 5-HT2, Di) (Papp et al, 1994). These 

observations have resulted in the monoamine hypothesis being revised to include the 

adaptive changes caused by chronic antidepressant treatment. Currently, the generally 

accepted mechanism of antidepressant action is that as a result of persistent elevated 

synaptic monoamine levels, with concomitant receptor activation, there is an adaptive 

decrease in receptor density or function. These adaptive changes are thought to underlie 

the clinical action of antidepressant drugs. However it is still poorly understood how 

these adaptive changes are linked to the clinical improvement.

Although there is general acceptance of the revised monoamine hypothesis, there are 

several shortcomings. Firstly, there is not one general pattern of neurological adaptive 

change in any of the monoaminergic systems that is shared by all antidepressant 

treatments. This is illustrated by the fact that p-adrenoreceptor downregulation is seen 

after treatment with tricyclic antidepressants (TCA’s) but not after treatment with all the 

so-called selective serotonin reuptake inhibitors (SSRI’s) (Vetulani, 1991). Secondly, 

there is a discrepancy between the time course of P-adrenoreceptor and 5-HT 

dovmregulation and the clinical onset of antidepressant action (Duman et al, 1997). 

Thirdly, attenuation of adrenergic functioning by p-adrenoreceptor antagonists fails to 

elicit any antidepressant affects and can aggravate them (see Hirschfeld, 2000).

Based on these findings, it may be hypothesised that the clinical efficacy of 

antidepressant drugs which alter monoaminergic transmission may act via a secondary 

common signal transduction mechanism, which may be evoked by an adaptive change 

in the monoaminergic neurotransmission system. Alternatively, the clinical efficacy of 

antidepressant treatment may be mediated by an adaptive change in an, as yet, 

uncharacterised neurotransmitter system.

1.9 Role of 5-HT in depression

5-HT has been implicated in the aetiology of depression. 5-HT is an indoleamine that 

was first identified as a vasoconstrictor (Rapport, 1949), and was then discovered in the 

CNS by Amin et al. (1954). The brain contains only 1-2% of the body’s 5-HT. As 5-HT 

does not cross the blood brain barrier (EBB), it is synthesised in the brain from the 

essential amino acid L-tryptophan (Figure 1.4). The rate limiting step, tryptophan
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hydroxylase, is responsible for converting L-tryptophan to 5-hydroxtryptophan 

(5-HTP). 5-HTP is then rapidly decarboxylated to 5-HT by aromatic L-amino 

decarboxylase (AADC) and then transported into storage granules within the 

serotonergic neurones.

Serotonergic
neuron

5-HTP <■ L-Tryptophan

5-HT.
MAO -►5-HIAA

c :^  5-HT^

I□ □□
5-HT receptors on 
ppstsynaptic tissue

Figure 1.4 Biochemical events at serotonergic synapses. (5-HTP: 

5-hydroxytryptophan; 5-HT: 5-hydroxytryptamine; 5-HIAA: 5-hydroxindoleacetic 

acid).

The cell bodies of serotonin neurones are known to be restricted to an area lying in or 

near the midline or raphe regions of the pons and the upper brain stem. Nine 5-HT 

nuclei (B1-B9) have been described by Dahlsrom and Fuxe and recently 

immunocytochemical localisation of 5-HT has also detected reactive cells in the area 

postrema and in the caudal locus coeruleus as well as in and around the interpeduncular 

nucleus. The more caudal groups project largely to the medulla and spinal cord. The 

more rostral (intermediate) groups (raphe dorsalis, raphe medianus and centralis 

superior), also called B7-B9, provides the extensive 5-HT innervation of the 

telencephalon and diencephalon.

The main serotonergic pathways originate from the raphe nuclei and have projections to 

the preffontal cortex, the hippocampus and the striatum (Figure 1.5). The firing rate of
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these neurones is controlled by somatodendritic autoreceptors in the raphe nuclei 

Romero and Artigas, 1997; Gobert and Millan, 1999). Additionally, presynaptic auto- 

and heteroreceptors regulate the 5-HT release from nerve terminals (Fink et ah, 1996), 

Gobert and Millan, 1999), The dorsal raphe distributes 5-HT terminals to areas 

innervated by dopamine (e.g. the amygdala, basal ganglia and cortical areas), while the 

median raphe innervates the hippocampus and cortex in a similar but more limited 

distribution to NA (Azmitia and Segal, 1978).

D R --------------Amygdala, Basal Ganglia and Cortex

MRN-------------Hippocampus and Cortex

Caudate
ST

Hypothalamus
Raphe nuclei

Figure 1.5 Serotonergic pathway in rat brain. ST: stria terminalis; D and M: dorsal 
and medial superior raphe nuclei. (Adapted from Ganong, 1 9 9 9 )

Multiple receptors for serotonin in the CNS have been suggested by physiological and 

molecular studies. In the last decade, a vast amount of new information has become 

available concerning the various 5-HT receptor subtypes and their functional and 

structural characteristics. Pre-synaptically, 5-HT receptors have been divided into 

5-HTiA and 5-H T ib /d  subtypes. Post-synaptically, several receptors have been identified 

(5-HTiA, iB/D, 2A, 2C, 3, 4, 6, i) (for review, see Barnes and Sharp, 1 9 9 9 ) . The presynaptic 

5-HT]A receptors are termed as somatodendritic autoreceptors. These receptors appear 

to possess a negative feedback mechanism that partially contributes to presynaptic 5-HT 

release. Presynaptic 5-HT]b / d  receptors are called terminal autoreceptors and regulate 

5-HT release in a similar manner to the 5-HT]a receptors, though they only inhibit 

terminal release without having an effect on cell firing (for review see Adell et al, 

2002).
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During the last decade, preclinical and clinical evidence has accumulated indicating the 

involvement of the 5-HT system in the therapeutic action of anti depressant drugs (AD) 

(Figure 1.6). Impairment of 5-HT synthesis leads to a transient reappearance of 

depressive symptoms in patients in remission obtained with various SSRIs (Delgado et 

al., 1990). On the other hand, tryptophan and lithium, which both increase 5-HT 

function (Sharp et ah, 1991), can potentiate the therapeutic effect of ADs (de Montigny 

et ah, 1983). Thus, there seems to be a clear association between the AD response and 

enhanced 5-HT neurotransmission.

Antibulimic
action

Antipanic action

Preffontal cortex

Hypothalamus

Midbrain raphe Hippocampus: limbic cortex

Antidepressant
action

V
AntiOCD

action

Basal ganglia

Figure 1.6 Schematic representation of the main serotonergic pathways involved in 

the main therapeutic actions of the SSRIs (Adapted from Leonard and Healy, 2000)

1.10 Role of dopamine in depression

Dopamine (DA) synthesis, similar to all catecholamines in the CNS, originates from the 

amino acid precursor tyrosine, which must be transported across the blood-brain barrier 

into the DA neuron. The rate-limiting step in dopamine synthesis is the conversion of 

L-tyrosine to L-dihydroxyphenylalanine (L-DOPA) by the enzyme tyrosine 

hydroxylase. DOPA is subsequently converted to dopamine by aromatic L-amino 

decarboxylase (AADC). Since tyrosine hydroxylase is the rate-limiting enzyme in the 

biosynthesis of DA, this enzyme sets the pace for the formation of DA and is 

particularly susceptible to physiological regulation and pharmacological manipulation. 

Released DA is converted to dihydroxyphenylacetic acid (DOPAC) by intraneuronal 

MAO after reuptake by the nerve terminal. Released DA is also converted to
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homo vanillic acid (HVA), at an extraneuronal site through catechol-0- 

methyltransferase (COMT).

The main dopaminergic pathways originate from cell bodies situated in the substantia 

nigra (SN) and innervate the striatum, prefrontal cortex and the nucleus accumbens. The 

A9 group of the SN mainly innervates the basal ganglia while the AlO group of the 

ventral tegmental (VTA) mainly projects to the mesolimbic terminals (Figure 1.7).

A9 (SN) --------------Basal Ganglia

AlO (VTA)---------------- Mesolimbic regions

Frontal cortex
Cingulate cortex

Substantia nigra
Striatum

Nucleus accumbens

Hypothalamus Ventral tegmentum

Figure 1.7 Dopaminergic pathway in rat brain. MC: mesocortical system; NS: 
nigrostriatal system (Adapted from Ganong, 1999)

DA receptors mediate dopaminergic transmission within the CNS. DA synthesis and 

release is influenced by neuronal dopaminergic activity. Postsynaptic dopamine 

receptors include Di and Di subtypes and are present in the projection areas of the 

midbrain DA neurons. They regulate the activity of neuronal feedback pathways e.g. 

postsynaptic receptors in the striatum regulate communication pathways between 

striatal neurones and DA cell bodies in the SN (see Starr, 1995; Tzscentke, 2001). D2 

autoreceptors exist on most portions of DA cells and this determines their effects. 

Activation of somatodendritic autoreceptors reduces the rate of neuronal firing whilst 

terminal autoreceptors inhibit DA synthesis and release (see Starr, 1995; Tzscentke, 

2001 ).
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Following chronic treatment with the TCA imipramine, it has been shown that there is a 

selective downregulation of dopamine Di receptors in the mesolimbic system of rats 

(Serra et al, 1990). However, this observation is not seen in AD-treated suicide 

postmortems’ (Bowden et al, 1997). In general, it would appear that dopaminergic 

transmission is increased by chronic antidepressant treatment, particularly in the 

mesolimbic area (Vetulani, 1991). However, it remains unclear whether changes in DA 

function are primary or secondary in depression.

1.11 Role of noradrenaline in depression

Noradrenaline (NA) synthesis is similar to that of DA. The final hydroxylation to 

convert DA to NA is catalysed by the non-specific enzyme DA-P-hydroxylase. This 

enzyme is restricted to NA producing cells. Similar to DA catabolism, MAO and 

COMT are the 2 principal enzymes involved in NA breakdown.

Two major clusterings of noradrenergic cell bodies have been described within the 

brain. The first is the locus coeruleus (LC), a compact cell group (A6) within the caudal 

pontine gray. The LC pathways terminate in the thalamus, cortex, amygdala, 

hippocampus and hypothalamus (Moore and Bloom, 1979) and are extremely important 

physiologically in the regulation of learning, memory, sleep, adaptation, arousal and 

stress (Leonard, 1997). The second group of cells (Al, A2, A3) lie outside the LC and 

consist of mainly descending fibres within the mesencephalon and spinal cord, although 

the more anterior tegmental levels innervate the forebrain and diencephalon (for review 

see Mongeau et al, 1997).
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C o r to
Cingulate cortex
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Hypothalamus

Locus coeruleus

Figure 1.8 Noradrenergic pathway in rat brain (locus coeruleus system). Olf B:

olfactory bulb; ST: stria terminalis; Thai: thalamus (Adapted from Ganong, 1999)

Noradrenergic transmission is regulated by a number of pre-and post-synaptic receptors. 

These receptors are adrenergic and termed a%, a : , pi and P2 • When activated by NA, 

these receptors trigger a molecular cascade in the postsynaptic neuron. The presynaptic 

receptor, acts as an autoreceptor and when activated by NA, reduces release of NA. 

This occurs physiologically to prevent excess NA acting on its receptors.

The role of NA in affective disorders is therefore regarded as highly significant, and it is 

known that as well as its involvement in depression, there are abnormalities in the 

central and peripheral noradrenergic systems in patients suffering from anxiety, panic 

disorders and post-traumatic stress (Leonard, 1997). Early AD drugs acted on 

noradrenergic systems whereas more recently the SSRIs target 5-HT reuptake without 

affecting noradrenergic pathways in vitro. There is considerable evidence to suggest that 

both drug types affect NA and 5-HT pathways in the CNS, and the two transmitter 

systems are inextricably linked to one another. For example, local (Hughes and 

Stanford, 1996) and chronic administration of an SSRI such as fluoxetine, selectively 

blocking the reuptake of 5-HT, will increase extracellular NA (Potter, 1996). Following 

these findings, extensive investigations into the ligand binding properties of a- and p- 

adrenoceptors in depressed patients and also measurements of the main NA metabolite 

3-methoxy-4-hydroxyphenyl-glycol (MHPG) in plasma, urine and CSF were carried out 

but proved largely inconclusive (reviewed by Redmond and Leonard, 1997). Attention 

then turned toward tyrosine hydroxylase (TH), the rate limiting enzyme in NA
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synthesis, and it was found that in depressed patients and animal models of depression, 

AD drug treatment caused downregulation of TH mRNA expression. However, like the 

metabolic studies, the findings were inconclusive of the involvement of TH in 

depression (Ordway et al., 1994).

1.12 Monoaminergic neurotransmitter interactions

As no one transmitter-system can fully explain the pathophysiology of depression, it 

must be noted that interactions between transmitter systems must occur in the CNS of 

depressed patients.

1.12.1 DA-5-HT interactions

Dopaminergic cells of the VTA project to limbic structures such as the nucleus 

accumbes, amygdala and lateral septum and receive convergent afferents fi*om several 

parts of the brain, including the mesencephalic dorsal raphe nucleus (Steinbusch, 1981). 

Endogenous 5-HT, as well as synapses immunoreactive for 5-HT can be found in the 

VTA (Hervé et al, 1987). These 5-HT fibres contact dendrites of cells that may or may 

not contain TH, the DA (and NA) synthetic enzyme (Hervé et al, 1987). In Vitro 

electrophysiological studies indicate that 5-HT, via the stimulation of 5 -HT2 receptors, 

increases the firing of a large proportion of DA cells located in the VTA (Pessia et al,

1994). The overall effects, however are more complex, since indirect changes in DA 

cell-firing can result from 5-HT exciting or inhibiting local GABA-containing 

intemeurones (Pessia et al, 1994). For example, Ugedo et al (1989) have found that the 

systemic administration of ritanserin, a 5 -HT2 antagonist, increases the firing rate of DA 

neurons. Thus, the discrepancy between the effects of 5 -HT2 agonists and antagonists, 

which both increase DA cell-firing emphasises that complex neuronal loops interact 

when compounds are injected systemically.

Ferre and Artigas (1993) report that stimulating D2 receptors increases the local 

concentration of 5-HT. This leads to the activation of somatodendritic raphe nuclei 

(RN) 5-HTia autoreceptors thus reducing 5-HT release in the striatum. Several 5-HT 

receptor subtypes (e.g. 5-HTib/id, 5-HT2 , 5-HTs) are found in high densities in DA- 

containing structures (Hoyer, 1990). Several authors (Benloucif & Galloway, 1991;
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Chen et al, 1991) have reported 5-HT mediated regulation of mesencephalic 

dopaminergic systems at somatodendritic and terminal regions.

The above findings suggest that 5-HT neurons exert both direct and indirect, excitatory 

and inhibitory, controls on DA neurons. It is possible that 5-HT] receptors regulate, 

through indirect neuronal loops, the activity of DA cells controlling DA release. There 

is some indication that NA neurons may contribute to the link between the 5-HT and 

DA circuits (Figure 1.9; see Tassin et al, 2000).

5-HT transmission
NA transmission

5-HT

To cortex

A Vtransmission

Thalamus

VTASensory afferents

Figure 1.9 Schematic diagram of the monoaminergic cascade induced by ADs

(Adapted from Tassin et al, 2000).

The reactivation of the 5-HT transmission by ADs facilitates the stimulation of 5-HT] 

receptors and restores the sensitivity of NA neurons to sensory stimuli. The NA neuron^ 

via the stimulation of cortical cl\ receptors^may then enable a functional DA subcortical 

transmission. RN, raphe nuclei; LC, locus coeruleus; VTA, ventral tegemental area.
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1.13 Depression and the glutamatergic system

1.13.1 The glutamatergic system

Glutamate is a non-essential amino acid and is the major excitatory neurotransmitter in 

the mammalian CNS. It is synthesised either de novo from glucose via the Krebs cycle, 

or from glutamine which is taken up into the nerve terminal after synthesis in glia from 

previously released glutamate. Its occurrence in the CNS is ubiquitous and at high 

levels (Fonnum, 1984).

A high affinity Na^-coupled glutamate transporter found on the presynaptic nerve 

terminal and on glial cells is responsible for terminating the action of synaptic 

glutamate. The glutamate that is transported into the glial cells is converted back to 

glutamine by glutamine synthetase and is then transported into the nerve terminal to be 

converted back to glutamate.

Glutamate mediates its actions via activation of two major classes of glutamate 

receptors termed ionotropic and metabotropic receptors which are named on the basis of 

extensive studies using selective agonists (Cotman et al., 1989). The ionotropic 

receptors are further subdivided into N-methyl-D-aspartic acid (NMD A), amino-3- 

hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) and kainate receptors on 

account of the affinity of the ligands that were used initially to characterise them (Refer 

to table 1.6).

Since it has not been possible to evince any monoamine related adaptive change that is 

uniform across all antidepressant therapies, recent research has focussed on adaptive 

changes beyond the monoaminergic systems. There is now an emerging body of 

evidence implicating a pivotal role for the glutamatergic system in the therapeutic action 

of antidepressant drugs and, by implication, in the pathogenesis of depression (reviewed 

by Skolnick et al, 1996).
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1.13.2 NMDA receptors

Glutamate, NMDA, 
Competitive antagonists

Polyamines ^ \ Xf
J

M K SO l^  

k g : #

Figure 1.10 Diagram of NMDA receptor in neuronal membrane, shown with 
binding sites.

1.13.2.1 Pharmacology

As mentioned above, glutamate mediates its actions via activation of two major classes 

of glutamate receptors, ionotropic and metabotropic receptors. The ionotropic class have 

been subdivided into NMDA, AMP A and Kainate (Refer to table 1.4).

The NMDA receptor has multiple sites whereby ligands can bind to their active site and 

modulate the receptors ion channel properties (Figure 1.10 above). Activation of the 

receptor occurs when endogenous glutamate binds to its site in addition to strychnine- 

insensitive glycine acting as a co-agonist binding to its allosteric domain. Both these 

sites must be occupied before receptor activation can occur (Kleckner and Dingledine, 

1988). If both criteria are fulfilled, in addition to the membrane potential being 

sufficiently depolarised from its resting state of —70 mV, the voltage-operated ion 

channel blockade governed by magnesium ions is removed allowing the free passage of 

both calcium and sodium cations into the cell (Foster and Wong, 1987). Over

stimulation of glutamate receptors has been implicated in neurodegeneration with levels 

of intracellular calcium being raised to such a level that cell death ultimately occurs. 

Blockade of the glutamate recognition site can be achieved following the synthesis of
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ligands such as CGP40116 (Sills et al, 1991), AP5 (Watkins et al, 1990), AP7 (Watkins 

and Olveraian, 1987) and CPP as can the allosteric site by action of drugs such as 

(+)-HA 966.

In addition, the NMDA receptor can be modulated by a polyamine regulatory site 

(Williams et al, 1991) with agonists such as spermidine and antagonists such as 

ifenprodil and eliprodil. The polyamine site has generated much interest in recent years 

after it was shown that this class of drug aids in preventing the widespread excitotoxicity 

that follows an insult in certain neurodegenerative conditions such as cerebral ischaemia 

(Scott et al, 1993).

Within the ion channel itself there are sites where drugs can act to mimic the 

magnesium blockade that exists under conditions when the receptor is physiologically 

quiescent. Drugs which act within the ion channel include MK801, PCP, ketamine, 

dextromethorphan, budipine, memantine and amantadine (Starr, 1995). Drugs which act 

by blocking the ion channel are termed ‘use-dependent’ blockers because they can only 

act once the receptors are stimulated and the endogenous magnesium block is removed. 

MK801 and PCP are experimental agents, while drugs such as amantadine and budipine 

are now employed clinically.

1.13.3 Molecular biology

The NMDA receptor has been characterised electrophysiologically in Xenopus oocytes 

and it is now apparent that multiple receptor subtypes exist with unique biochemical and 

pharmacological properties (Foster and Fagg, 1987). Each of these subtypes is hetero- 

oligomeric in structure and cloning studies have demonstrated the existence of at least 

one of eight NMDARl subunits (NMDARIA-H) (Moriyoshi et al., 1991; Yamazaki et 

al., 1992) and at least one of four NMDAR2 subunits (NMDAR2A-D) (Kutsuwada et 

al., 1992) in each receptor-ion channel complex. NMDARl is required for receptor 

activation and unlike the NMDAR2 subunits, has the capability to form functional 

homomeric receptors in expression systems (Yamazaki et al., 1992), albeit resulting in 

lower agonist-induced current flow when compared to the native heteromeric form.

Several potential configurations for the arrangement of subunits have been suggested, 

but for optimum channel activation the binding of two glutamate molecules and two

51



Chapter 1: General Introduction

glycine molecules is required (Clements and Westbrook, 1991). This is consistent with 

a tetrameric configuration of two NRl and two NR2 subunits. Thus for a functional ion 

channel to be formed, there must be a pairing of NRl and NR2 subunits. Function is 

characterised by a high Ca^  ̂ conductance (Boyer et al, 1998). Thus, overactivation of 

the channel results in a sustained rise in the cytosolic Ca^^ concentration: this triggers 

neurotoxicity. Ideally, the prevention of elevated Ca^  ̂levels following NMDA receptor 

activation may therefore limit the neuropathological toxicity.

NMDA receptor subunits are differentially expressed throughout the CNS (Monyer et 

al, 1994). The mRNA for the NRl and NR2A subunits are ubiqitously expressed 

throughout the adult brain. The NR2 subunit mRNA expression has more restricted, 

region-specific distribution (Boyer et al, 1998). NR2B subunit expression is restricted to 

forebrain regions such as the cortex, hippocampus and the striatum while the NR2C 

subunit is expressed in the cerebellum. Finally, the NR2D subunit is restricted to the 

midbrain regions.
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Receptor Type Distribution/Function

Ionotropic

NMDA

• Widely distributed in the CNS-enriched in hippocampus and 

cerebral cortex.

• Usually recognised as a slow component in repetitive activity 

generated primarily by non-NMDA receptors.

• Important in synaptic plasticity

AMPA

• Widespread in the CNS. Parallel distribution to NMDA 

receptors.

• Involved in the generation of fast component of EPSPs in 

many excitatory pathways.

Kainate

• Concentrated in a few specific areas of CNS, complementary 
to NMDA/AMPA distribution (eg hippocampus).

• Difficult to distinguish from AMPA receptors 

pharmacologically due to nonspecificity of kainate in 
electrophysiological experiments.

• Present specifically (in absence of AMPA receptors) on 

dorsal root C fibres and dorsal root ganglion.

Metabotropic

ACPD

• Linked to IP3 formation.

• Activated by glutamate, quisqualate, ibotenate and ACPD but 

not by NMDA, AMPA or kainate.

• Not antagonized by NMDA or non-NMDA antagonists but 

sensitive to pertussis toxin.

• Possibly involved in developmental plasticity.

Table 1.4 Distribution and function of excitatory amino acid receptors in the 

mammalian CNS.
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1.13.4 NMDA receptor antagonists

Antagonists that act on the NMDA receptor can either be classified as:

• Competitive. These antagonists act on the glutamate recognition site. Examples are 

CGP 40116, 2-amino-5-phoshopentanoic acid (D-AP5) and CPP.

• Non Competitive. These antagonists can either be channel blockers such as MK-801 

(potent channel blocker) and amantadine and memantine (weak channel blocker) or 

glycine site antagonists such as HA-966 and D-cycloserine.

Excessive release of glutamate leads to the over-activation of the NMDA receptor and 

neurotoxicity (McCulloch, 1992). Thus, NMDA antagonists could reduce or prevent 

this neurotoxicity. Early competitive antagonists were highly polar and were poorly 

absorbed across the BBB when given peripherally. The channel blockers e.g. 

dizocilpine (MK801) and PCP penetrate easily into the CNS but are not free firom 

undesirable side effects such as psychotcmimetic effects (Tricklebank et al, 1989) and 

cardiovascular effects (Lewis et al, 1989). NMDA antagonists which act on excitatory 

amino acid receptors, e.g. NMDA receptors, have few peripheral side effects as their 

receptors are primarily located in the CNS, unlike other transmitter systems e.g. 

serotonergic and noradrenergic neurons. However, there is some evidence for the 

presence of excitatory amino acid receptors in the PNS (Bertrand et al, 1992).

Because of the NMDA antagonists having therapeutic potential but having a major 

disadvantage of their side effects, they have only successfully been used as 

neuroprotectants in animal models of neurodegeneration.

1.14 NMDA and depression

During the past decade several important studies have implicated NMDA receptors in 

the aetiology of depression. This was initially supported by findings that functional 

antagonists of the NMDA receptor mimic the effects of clinically effective 

antidepressant drugs in a preclinical animal model predictive of antidepressant activity 

(Trullas and Skolnick, 1990). Subsequently it was shown that chronic treatment with 

NMDA antagonists induces antidepressant activity in putative animal models of 

depression (Papp and Moryl, 1994). Additional evidence supporting a role for NMDA 

receptors in the mechanism of antidepressant action follows from the observation that
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there is an important interaction between the glutamatergic and the monoaminergic 

systems in the brain (Pallotta et ah, 1998; 1999). The therapeutic relevance of this 

interaction is underscored by the finding that chronic treatment with NMDA antagonists 

produces a down-regulation of cortical p-adrenoreceptors comparable to that produced 

by chronic treatment with the TCA imipramine (Paul et ah, 1992). The role of NMDA 

receptors in the aetiology of depression is also supported by post-mortem data, showing 

a glutamatergic dysfunction in the frontal cortex of untreated depressed suicide victims 

(Nowak et al, 1995). Finally, Nowak et ah, (1993) have shown that chronic treatment 

with imipramine alters ligand binding to the NMDA receptor. The altered ligand 

binding would be expected to dampen NMDA functioning and is manifest as; (i) a 

reduced potency of glycine to inhibit [^H] 5,7-dichlorokynurenic acid (DCKA) to 

strychnine-insensitive glycine receptors; (ii) a diminution in the number of glycine 

displaceable [^H]CGP 39653 binding sites and (iii) a reduction in basal [^H]MK-801 

binding that was reversed by the addition of positive modulators such as glycine and 

glutamate.

The former observations support the role of NMDA receptors in the mechanism of 

action of antidepressants. These studies have led to the hypothesis that conventional 

antidepressant drug therapies aimed at altering the efficacy of monoaminergic systems 

ultimately exert their therapeutic effect by altering the efficacy of the glutamatergic 

system. Further evidence in support of this hypothesis came when Paul and co-workers 

(1994) showed that chronic (14 days) but not acute (1 day) treatment with 17 out of 18 

clinically active antidepressants were able to reduce DCKA binding. It is still difficult 

to determine whether these effects form the basis of antidepressant action or are merely 

a secondary side effect of antidepressant drugs. However, it is clear that these 

neurochemical effects have a superior indicative value of antidepressant activity 

compared to p-adrenoreceptor down-regulation.

1.14.1 Molecular evidence for NMDAR involvement in depression

Based on recombinant DNA studies it has become clear that subunit composition plays 

a crucial role in determining the pharmacological and physiological properties of ligand 

gated ion channels, such as the NMDA receptor (Monaghan et al, 1989). Recently, in 

situ hybridization studies have revealed that chronic treatment with the antidepressants 

imipramine and citalopram produces region-specific and treatment-specific changes in
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mRNA levels encoding NMDA receptor protein subunits (Boyer et al., 1998). These 

observations form the basis for alternative hypothesis for mechanisms underlying the 

adaptive changes in NMDA receptor functioning.

Although it is clear that chronic antidepressant treatment with compounds from each 

major class of antidepressants causes an adaptation of NMDA functioning, it is still 

unclear what the functional consequences of these adaptive changes are and how these 

changes are connected to the monoaminergic systems and depression.

1.14.2 NMDA, monoamines and intracellular second messengers

The exact mechanisms by which antidepressants cause an adaptive change in the 

functioning of the NMDA receptor are as yet unclear. However, since conventional 

antidepressants modulate monoaminergic transmission, it has been hypothesised that the 

adaptations in NMDA functioning are secondary to antidepressant actions at 

monoaminergic terminals (Skolnick, 1999). Direct evidence for this theory comes from 

experiments showing that lesions in the noradrenergic system block the adaptive 

changes caused by chronic desipramine treatment (Harkin et al., 2000). Additionally, 

there is considerable evidence suggesting that the monoaminergic and the glutamatergic 

systems are strongly synaptically linked to one another (Pallotta et al, 1999).

Most currently used antidepressants, when administered chronically, increase synaptic 

levels of monoamines with concomitant stimulation of adenylyl cyclase via G-protein 

coupled receptors (e.g. j8-adrenergic, 5-HT4,6,?) (for review see Duman et al, 1997). The 

resulting increased formation of cAMP leads to activation of cAMP dependent protein 

kinase (PKA), with subsequent phosphorylation of substrate proteins. A possible 

substrate for PKA is the cAMP response element binding protein (CREE), which is 

capable of regulating gene expression (Duman et al, 1997). Phosphorylation of CREE 

dramatically increases its ability to regulate gene expression. CREE is capable of up- 

regulating the expression of specific genes containing the cAMP response element, one 

of which is the brain-derived neurotrophic factor (EDNF) (Nibuya et al., 1995). It is 

demonstrated that the expression of EDNF is increased after chronic but not acute 

treatment with antidepressants from several different classes (Nibuya et al., 1995, 

1996). This effect is believed to be mediated by CREE, since there is also an elevation 

of CREE mRNA and protein after chronic treatment with antidepressants (Nibuya et al,
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1995). Further evidence that the cAMP system mediates the induction of BDNF is 

provided by the observation that inhibitors of phosphodiesterase (PDF) IV, a key 

enzyme responsible for the breakdown of c AMP, increase the expression of both CREB 

and BDNF in rat hippocampus (Fujimaki et ah, 2000).
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Figure 1.11 (Adapted from Skolnick, 1999)

The relationship between increased BDNF levels and alterations in NMDA functioning 

has been explored by a series of pivotal experiments performed by Brandoli et al 

(1998). They have shown that chronic, but not acute, infusion of BDNF into the rat brain 

reduces the expression of NMDA receptor protein, to an extent comparable to that seen 

after chronic imipramine treatment (Brandoli et al, 1998). Thus, in addition to its 

neurotrophic effect, BDNF is able to dampen NMDA receptor mediated transmission. 

This is confirmed by the observation that chronic BDNF attenuates the intracellular 

Ca^  ̂ response to NMDA treatment (Brandoli et ah, 1998) an effect that is readily 

demonstrated by treatment with an NMDA antagonist.
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The aforementioned observations support the hypothesis that the alterations in NMDA 

functioning, which occur after chronic antidepressant treatment, are elicited by the 

primary rise in synaptic concentrations of monoamines. In addition they form a 

plausible explanation for the molecular mechanisms underlying this adaptation. 

Altogether, it is evident that future research will provide tools to develop new treatment 

strategies aimed at intervention beyond the monoaminergic systems, thereby reducing 

side effects and therapeutic lag as well as increasing the efficacy of treatment.

1.15 Principle drugs used in this study: Mechanisms of action

1.15.1 Paroxetine

Paroxetine (commercially known as Seroxat®, Paxil®), a phenyl-piperidine derivative 

(Figure 1.12), belongs to the AD class of SSRIs and it has been successfully used in the 

treatment of depression for over a decade. Paroxetine proves to be an effective treatment 

for anxiety disorders [eg. panic disorder, obsessive compulsive disorder (OCD), etc.]. 

However this property is not unique for paroxetine but is a general feature of SSRIs. 

Paroxetine is a more potent inhibitor of 5-HT reuptake in vitro than most SSRIs, having 

a K] of 1.1, 350 and 2000 nM for the serotonin, noradrenaline and dopamine 

transporters, respectively (Thomas et al., 1987). In contrast to the TCAs, paroxetine 

displays low affinity for monoamine and histamine H] receptors (Thomas et al, 1987; 

Gunasekara et al, 1998). However, the relative affinity for the cholinergic muscarinic 

receptor is greater than other SSRIs. The relative low affinity of

paroxetine for neurotransmitter receptors is believed to account for the superior side- 

effect profile compared to TCAs and MAOIs.

Numerous clinical trials have compared paroxetine with other antidepressants from 

different classes (reviewed by Gunasekara et al, 1998, Fujishiro et al, 2002). Paroxetine 

was found to be superior to fluoxetine on measures of agitation and psychic anxiety 

after only one week of treatment (Chouinard et al, 1999). The antidepressant potency of 

paroxetine is equivalent to that of TCAs and other SSRIs (Gunasekara et al, 1998; 

Feighner et a l , 1993). The most common adverse effects occurring during treatment are 

nausea, headache, somnolence and anticholinergic effects such as dry mouth and 

constipation. However, most of the adverse effects associated with paroxetine tend to be 

mild and transient and it is generally well tolerated by elderly patients (Gunasekara et
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al, 1998). Having a long half-life of approximately 24 hours in human, with no active 

metabolites, paroxetine is well suited for a once daily treatment regime of 40 mg/day.

1
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Figure 1.12 Chemical structure of paroxetine

1.15.2 Clomipramine

Clomipramine (Figure 1.13) is a tricyclic antidepressant that inhibits NA and 5-HT re

uptake and causes p, Œ] and 5 -HT2 receptor downregulation. After oral administration, 

it is absorbed in 2-3 hours, undergoes hepatic metabolisation to demethylclomipramine 

(Fujita et al, 1991), which is pharmacologically active with a higher affinity for the NA 

transporter than the parent drug (Benfield et al, 1980). Its plasma half life is about 20-50 

hours and it is excreted in the urine and faeces. The most important side effects are 

postural hypotension, anticholinergic effects, weight gain, sedation and cardiotoxic 

effects (Gareri et al, 2000).
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.13 Chemical structure of clomipramine
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1.16 Aims of this study

The psychopathology and treatment of depression is outlined in the introduction above 

along with evidence supporting a crucial role for the NMDA receptor in this disorder. 

Whatever AD is used to treat clinical depression, there is in general a 3-week delay or 

‘therapeutic lag’ before a clear therapeutic effect is obtained.

Information on the effects of chronic ADs on NMDA receptors stems from the work of 

Skolnick and Colleagues (1994) using radioligand binding assays. This group observed 

that chronic, but not acute treatment with a range of antidepressants including SSRIs 

decreases the binding affinity of NMDA receptors (Paul et al, 1994). The purpose of 

this present study was to investigate the effects of acute, subchronic (7 days) and 

chronic (21 days) paroxetine or clomipramine treatment on NMDA-evoked DA and 

5-HT efflux in the frontal cortex and their respective metabolites, DO?AC and 5-HIAA 

using in vivo microdialysis. This was prompted by the work of Paul and colleagues 

(1994) who report that AD-induced properties of the NMDA receptor complex require 7 

to 14 days of treatment and persist for 5 to 10 days after the cessation of treatment. The 

effects on AD cessation on NMDA-evoked monoamine changes were also investigated.

As it has been suggested that chronic AD treatments can affect NMDA receptor 

ftmction in the brain, this study was aimed to answer the following questions:

• Do ADs of different classes e.g. SSRI and TCA, have similar effects on 

extracellular DA/5-HT efflux in the frontal cortex when given acutely, 

subchronically and chronically? (Chapter 3 and 4)

• What are the effects of acute, subchronic (7-days) and chronic (21-days) treatment 

on local NMDA-evoked monoamine efflux in the frontal cortex? (Chapter 3 and 4)

• Are these changes reversed following AD cessation? (Chapter 3 and 4)

•  What are the effects of polypharmacy studies involving the administration of 

NMDA antagonists as adjuncts to paroxetine? (Chapter 5)
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Chapter 2 

Materials and Methods
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2.0 Materials and Methods

2.1 Determining levels/concentrations of brain extracellular fluids: In Vivo 

methods

Over the past 50 years, there have been many methods developed to monitor 

monoamine release and uptake. The earliest techniques relied upon measurement of 

tissue monoamine content, monoamine synthesis or measurement of monoamine 

metabolites to indicate the underlying changes in neurotransmission. However, these 

techniques lacked accuracy as ‘actual’ extracellular monoamine concentrations could 

only be inferred and not measured directly. Subsequent techniques developed to 

study brain biochemistry in intact (normal) and neuropathological states, permit the 

direct measurement of the concentration of extracellular monoamines. The main aim 

of the criteria used to develop these techniques are as follows:

• Reliable measurement of neurotransmitter and metabolite levels in specific brain 

regions with sensitivity and selectivity.

• Non-invasive: Normal tissue physical structure and biochemical states 

(metabolism) remain unchanged during and following application of the 

technique.

• Determine concentration versus time profiles within individual animals.

2.2 In Vivo sampling techniques

One of the first established in vivo sampling techniques used was the cortical cup 

(Macintosh and Oborin, 1953). This technique involved drilling a hole in the skull, 

exposing the brain surface and then placing a cylinder, or ‘cup’ containing artificial 

cerebrospinal fluid (aCSF) on the surface of the cortex. Monoamines and other 

compounds of interest pass from the surface of the cortex into the aCSF in the cup 

which can then be sampled and analysed (e.g. Milby et al, 1981). The advantages of 

this technique are that it can be used in awake rats and does not involve tissue 

penetration. However, the main drawback is that sampling is only possible from the 

surface of the cortex, i.e. other internal brain structures are inaccessible. The use of
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the push-pull cannula, originally designed by Gaddum (1961), involved the 

implantation of two concentric tubes in or near the brain region of interest. Sampling 

is accompanied by perfusing perfusion fluid at a high flow rate of 10-30 pL/min via 

a tube into the tissue and withdrawing samples from the extracellular fluid via 

another tube (Gaddum, 1961; Reisine et al, 1984). This method has fallen out of 

favour, except for neuropeptide monitoring, because of the tissue damage caused by 

the perfusion of relatively large volumes directly into the tissue. However, there have 

been technical improvements in the design of the push-pull system such as 

miniaturization of the microbore cannuale which have minimised associated tissue 

damage (for review, see Myers et al, 1997).

The problems associated with the push-pull technique, such as perfusion with a high 

flow rate and anatomical problems associated with the use of large push-pull needles 

placed in deep structures of the brain, lead to significant improvements and the 

development of the microdialysis technique. Bito et al (1966) were the first to 

implant ‘dialysis sacs’ containing dextran into the brain of dogs and, 10 weeks later, 

analysed their amino acid content. In 1972, Delgado and colleagues constructed a 

cannula in which its tip was covered with a porous semipermeable membrane. This 

dialysis bag or ‘dialytrode’ was later replaced by a hollow fiber of dialysis membrane 

(Delgado et al, 1984). Thus, the microdialysis probe was applied to experiments 

identical in purpose to those utilising a push-pull cannula device. Microdialysis 

involves the insertion of a microdialysis probe (Figure 2.4) into a specific area of the 

brain. Substances around the semipermeable part of the probe will diffuse into or out 

of the perfusate (i.e. aCSF), down their concentration gradient. Subsequently the 

dialysate is collected for analysis.

Microdialysis has become a widely used method for the analysis of the extracellular 

fluid composition in various organs (Benveniste & Huttemeier, 1990). It has found 

numerous applications monitoring the release of neurotransmitters in the brain of 

anaesthetised or freely moving animals. Microdialysis is especially suited for 

monitoring monoamines, DA, NA and 5-HT, which can be separated and quantified 

using highly sensitive assay procedures such as HPLC with electrochemical 

detection (HPLC-ECD) (Martin-Fardon et al, 1997). Microdialysis enables the
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modification of the extracellular environment by drugs that can enter the CNS, either 

by infusion through the microdialysis probe or administered systemically. Not only 

is microdialysis used to measure neurotransmitter efflux but it can also be used as a 

drug delivery system and as a pharmacokinetic tool.

The microdialysis technique has a number of advantages over previous experimental 

procedures: (for review, see de Lange et al, 1997) (1) distinct brain regions can be 

examined; (2) there is only modest tissue trauma; (3) concentration versus time 

profiles can be obtained fi*om (jfieely moving) individual animals; (4) a wide range of 

substances can be analysed. It also has some associated disadvantages. For instance, 

(1) it requires sensitive analytical methods to detect small concentrations; (2) and 

requires in vivo recovery of the drug to calculate true concentrations in the 

extracellular fluid of the surrounding tissue (Refer Section 2.7). The advantages and 

disadvantages of microdialysis compared to other in vivo techniques can be 

summarised in table 2.1.

Another in vivo method for measuring the concentration of central monoamines 

which is a more recent and entirely different approach to estimate the concentrations 

of electroactive compounds in the extracellular space is in vivo voltammetry (for 

review, see Stamford, 1985). Here, a three electrode system (consisting of a carbon 

working, reference and auxiliary electrode) is implanted in a discrete brain region. 

By applying a potential difference, between the working (carbon) and reference 

(Ag/AgCl) electrode, oxidation of the electroactive species occurs. This results in a 

concentration dependent flow of electrons which can be detected with the auxiliary 

(usually platinum, Pt) electrode. The advantage of voltammetry is the high time 

resolution (ms) and this method is a promising tool for the study of continuous 

changes in transmitter release and metabolism. However, the disadvantage is that 

detection is performed in situ, without prior separation of solutes, so it can be 

difficult to identify the compound peaks as different compounds can oxidise at 

similar potentials [e.g. 5-HT is oxidised at the same potential as its metabolite, 

5-HIAA (Cespuglio et al, 1981)].
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2.3 Microdialysis; What is being measured?

Microdialysis is especially adapted for measuring changes in the extracellular 

concentration of particular substances within the brain such as monoamines. Thus 

microdialysis does not measure the concentration of monoamine in the synapse, but 

rather the amount of monoamine which overflows into the ECF. Monoamines in the 

ECF diffuse down their concentration gradient through the dialysis membrane into 

the probe. Thus, the concentrations of monoamines measured reflect the combined 

effect of synthesis, release, uptake and metabolism of monoamines. Thus the term 

monoamine ‘release’ has never been correct and has subsequently been modified to 

reflect these simultaneous events and is now termed monoamine ‘efflux’.
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Table 2.1 The advantages and disadvantages of microdialysis in comparison to 

other in vivo techniques

Technique Advantages Disadvantages

In Vivo 
Voltammetry

Examination of all brain regions 

Time resolution 1 ms-sec

Only detects oxidisable 

compounds

Selectivity poor without 

prior HPLC analysis

Microdialysis

Regional specificity allowing 

distinct brain regions to be 

examined.

Blood brain barrier (BBB) 

remains intact following 

implantation of the 

microdialysis probe.

Modest tissue trauma 

Wide range of substances can 

be analysed

Freely-moving animals used

Highly sensitive, specific 

assay required. 

Anatomical resolution 

limited by the external 

diameter of the membrane 

(250-350pm)

Transient changes missed 

as sampling times 

extended.

Push-Pull

Cannula

• Examination of all brain tissues

• Freely-moving animals used

• Blood brain barrier (BBB) 

remains intact following 

implantation

Enzymatic degradation of 

collected compounds 

Tissue trauma following 

implantation due to size of 

cannula (O.D. >lmm) and 

Turbulance caused by high 

flow rates used

Cortical Cup

• No tissue penetration

• Used in conscious animals

Time resolution >10 min 

Only cortex can be 

analysed.
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2.4 Animals used for dialysis experiments

Male albino Wistar rats (Bantin & Kingman Ltd., Hull, UK) weighing 220-250 g 

were used in all the experiments. The animals were initially housed in groups of six 

at 22°C under fluorescent lighting from 07:00-17:00 h and allowed free access to 

food and water.

Once the animals had undergone stereotaxic surgery, they were individually housed 

in clear Perspex cages wrapped in paper towel to prevent post-operative hypothermia 

and they were observed until full recovery from anaesthesia was achieved. All 

procedures were carried out in accordance with the Animals (Scientific Procedures) 

Act, 1986.

2.5 Stereotaxic surgery and probe implantation

In the dialysis experiments, the probes were unilaterally implanted in the rat frontal 

cortex. The microdialysis probes (see section 2.1.4) were implanted under isoflurane 

anaesthesia (4% v/v in O2 for induction and 2.5% v/v in O2 for maintenance) using a 

stereotaxic frame (David Kopf, USA). Once the rat was secured in the stereotaxic 

frame, a medial incision was made in the scalp of the rat. The skin was retracted 

using crocodile clips to expose the skull surface. The bregma was marked as a 

reference point to determine the location of the frontal cortex using the stereotaxic 

atlas of the rat brain (Paxinos and Watson, 1986). The co-ordinates for the frontal 

cortex were in mm: A +3.2 mm from bregma; LM ±3.0 mm from the midline and -

5.5 mm ventrally. A dental drill was used to drill burr holes at the appropriate 

stereotaxic co-ordinates exposing the dura, which was scraped off with the tip of a 

sterile hypodermic needle before probe implantation. An additional burr hole was 

drilled in the skull several mm anterior to lambda to insert a screw which was used to 

anchor the dental acrylic (Duralay) in which the probe was sealed. Additional acrylic 

was applied to the shaft of the probe to aid durability.

The microdialysis probes were perfused with deionised water at a rate of 0.8 pL/min 

using a microinfusion pump (Harvard Apparatus, syringe infusion pump 22) and a
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500 jj,L gas-tight syringe. This was carried out in order to limit compression of the 

dialysis membrane by the surrounding tissue and to prevent membrane collapse once 

the probe was in place. The perfusion of deionised water during implantation was to 

prevent overnight blockage of the probe that can occur with aCSF, due to the 

formation of salt crystals. It is not believed that any excess oedema will result from 

this process due to the small volumes involved as well as the recovery time allowed 

before the initiation of dialysis. The probes were slowly lowered vertically into the 

frontal cortex and secured using dental acrylic. Once secure, the inlet and outlet of 

the probe were sealed using dental acrylic to prevent the formation of air blocks 

within the probe.

Vortical adjustment

Lateral adjustment 
(turned aside) —

Swivel adjustment

Electrode earner 
(turned aside)

A-P adjustment

Incisor bar

Ear bar adjustment

Nose clamp
Inosor bar adjustment

Ear bar

Figure 2.1 The stereotaxic frame [Replicated from The Laboratory Rat by Krinke 

(2000) with kind permission from Academic Press]

After completion of surgery, the animals were given ImL/kg saline (0.5M) 

subcutaneously (s/c) to compensate for fluid losses during the operation period and 

placed individually in Perspex cages and allowed to recover. The rats were wrapped 

in paper towels to limit post-surgical hypothermia.

Animals were allowed an overnight postoperative recovery period of 18-24 hours 

prior to the start of the microdialysis experiments. This time period has proved to be 

essential as several studies have raised concerns about the time between probe
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implantation and the start of experimental sampling. For instance, it is thought that 

acutely implanted

Cut edge ol jiwn

I Incw  Par

Ear bar

Ekjctrodo caffw

Nose ciamp

(b)

Figure 2.2 Stereotaxic surgery [Replicated from The Laboratory Rat by Krinke 

(2000) with kind permission from Academic Press]

microdialysis probes can destabilise the cerebral tissue surrounding the probe due to 

changes in cerebral blood flow and metabolism (Benveniste et al, 1987) and 

transient disruption of the BBB (Morgan et al, 1996). Thus, acutely implanted probes 

often recover excessive quantities of anylates shortly after implantation which do not 

reflect true extracellular basal levels of monoamines. Westerink and de Vries (1988) 

have shown that following acute probe implantation, the dialysate neurotransmitters 

recovered following acute probe implantation are largely derived from damaged 

nerve terminals as opposed to impulse-evoked release from neuronal stores. A study 

in this laboratory by Whitton et al (1994a) reports that after 18 hours of implantation, 

the monoamine levels return towards normal with DA and 5-HT efflux totally 

abolished by the Na^ channel blocker tetrodotoxin (TTX).
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After a period of 18-24 hours, the microdialysis probes were infused with artificial 

cerebrospinal fluid (aCSF) composed of (mM): NaCl 125; KCl 2.5; CaCl] 1.26 and 

MgCb 1.18 (pH 7.0) through 30-50cm of pplO polyethylene tubing. The aCSF was 

infused initially at 2.0 pL/min before and shortly after connection to the probe in 

order to remove any trapped air bubbles. FEP tubing (Carnegie Medicin, Sweden:

1.2 pL/100mm), which has a low internal volume was fitted to the probe output and 

the system was flushed with aCSF. This outlet tubing transported the dialysate to the 

collection vial. Subsequent perfusion throughout the experiment was carried out at 

0.8 pL/min (this rate has been used previously in the lab with similar dialysis probes) 

for 1 hour before dialysates were collected to reach a stable baseline. Further 

dialysate samples were collected at 30 minute intervals for 2 hours to establish 

extracellular basal levels of monoamines. At this time point, drug(s) were infused 

through the probe or injected (i.p.) and further samples were taken every 30 minutes 

for 4 hours. Methodological differences between separate studies are described in 

detail in the appropriate results chapters.

Figure 2.3 Microdialysis: The technique [Replicated from The Laboratory Rat by 

Krinke (2000) with kind permission from Academic Press]
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2.6 Microdialysis probe construction

A binocular microscope was used as a visual aid. (For diagram of probe, refer to 

Figure 2.4). Two lengths of fused silica tubing (25mm) were inserted in a steel 

cannula (24 guage), which acted as the body of the probe. One length was fed 

through the cannula with several mm emerging from the opposite end, while the 

second piece of silica was inserted approximately half way through the cannula. 

Araldite adhesive (Ciba-Geigy) was used to attach the silica to the cannulae tip. After 

the araldite had fully dried (minimum 1 hour) lengths of polythene tubing (pplO 

tubing, CD 0.68mm; Portex Ltd, UK) were pushed along the lengths of smaller 

cannulae which then were carefully pushed along the length of both portions of silica 

attached to the cannula. Again, a drop of araldite was used to secure the polythene 

tubing to the body of the probe. This results in a Y-shaped probe. After leaving the 

araldite to dry, the length of the silica which emerged from the opposite end of the 

cannula was trimmed to 4mm. A Cuprophan hollow fibre dialysis membrane, type 

fis, with a 0.2 mm O.D. and a lOkD MW cut-off point (Gambro, Hechingen, 

Germany) was placed over the trimmed silica and carefully inserted into the cannula 

(ensuring the membrane doesn’t bend) until resistance was felt. The dialysis 

membrane was trimmed so that 1mm protruded from the end of the silica and was 

secured to the cannula with a minimal amount of araldite. To complete the 

construction of the probe, the open end of the dialysis membrane was sealed with 

araldite. The probe was then left overnight before it was used for implanting to 

ensure all the araldite had fully dried. Probes which failed to allow free passage of 

fluid throughout the entire length of the probe were discarded. Successful probes 

were retained in a moist atmosphere within a sealed container to eliminate dust and 

to prevent the membrane from drying out before implantation.
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U - shaped

S tain less  steel 

Glue

Dialysis tube

Figure 2.4 Microdialysis probe [Replicated from The Laboratory Rat by Krinke 
(2000) with kind permission from Academic Press]

2.7 The in vitro recovery of perfusate from constructed microdialysis probes

One of the most important questions in microdialysis is how to relate the dialysate 

concentrations to the true concentrations outside the probe i.e. to what extent is the 

compound of interest (monoamines in this thesis) recovered by the dialysate. 

Because of the constant flow of dialysate through the probe, the monoamine 

concentration in the probe will not be in equilibrium with the extracellular 

concentration. Thus in vivo and in vitro recovery rates differ. To overcome this 

problem, it is possible to estimate accurately the extracellular concentration of 

monoamines with the no-net-flux method by Lonnroth et al (1987). The principal of 

this method consists of perflisiig increasing concentrations of the analysed substances 

through the probe. At lower concentrations in the perfusate than in the extracellular 

space, the diffusion gradient leads to an enrichment in the dialysate relative to the 

perfusate. Conversely, at higher concentrations in the perfusate, the diffusion 

gradient is inverted, and the amount of monoamine in the dialysate is diminished 

relative to the perfusate. By plotting the difference between the ‘in’ and ‘out’ 

concentrations against the ‘in’ concentrations, the exact extracellular concentration 

can be estimated at the no-net-flux point (where the line crosses the X-axis at the 

value where the ‘in’ concentration equals the ‘extracellular’ concentration. This 

technique has been mainly used to determine the concentration of DA and its
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metabolite, DOPAC (Justice, 1993) but can be equally applied to other released 

compounds.

Ungerstedt (1991) suggested that there are several factors that can affect the recovery 

of perfusate.

Flow rate: The flow rate of the perfusion medium affects the recovery and the 

resolution of the measurements over time. Recovery varies inversely with flow rate. 

The inner volume of the inlet and outlet tubes creates a dead volume in the system 

that must be calculated in order to change the dialysate fractions at the right time 

point. It must be noted that when using a low perfusion flow rate, it may take a few 

minutes from the time the perfusate reaches the probe in the tissue and even longer 

until it reaches the collection vial. On the other hand, although a high flow rate will 

yield a greater perfusate volume to analyse using HPLC, it may also affect the 

pressure inside the probe. If this pressure is higher than in the surrounding ECF, net 

fluid transport over the membrane will occur. Thus a low enough flow rate that 

yields sufficient dialysate for analysis should be used.

Length and material of dialysis probe: An increase in the length of the dialysis 

membrane leads to an increase in the surface area of the dialysing surface, thus 

recovery increases linearly with length and surface area of the dialysis membrane. 

Tao and Hjorth (1992) clearly demonstrated the importance of the properties of the 

dialysis membrane. The dialysis membrane should be as inert as possible in order not 

to interfere with the passage of molecules.

Composition of the perfusion solution: Microdialysis perfusion medium is 

contiguous with the ECF and may therefore influence local ECF composition. The 

exact composition of the ECF in the brain is unknown and hence a number of 

approximations of perfusion medium compositions have been used in microdialysis 

experiments (Benveniste and Huttemeier, 1990).
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There are 2 types of recovery:

• Relative Recovery: The solute concentration in the perfusate when it leaves the 

probe expressed relative to its concentration in the surrounding medium. Relative 

recovery in vivo remains constant as long as the perfusion conditions remain 

constant.

• Absolute Recovery: The total amount of a substance recovered during a set time 

period expressed in moles/L. Absolute recovery in vivo will vary depending on 

the production or release of the substance of interest.

To determine the ‘real/absolute’ concentrations of substances from the dialysis 

probe perfusate, the microdialysis probe must be calibrated before its use in vivo.

Before the start of the microdialysis experiments, in vitro recovery experiments 

were carried out in order to obtain an estimate of the extracellular concentrations 

of monoamines and their metabolites. This was done by connecting the probe to a 

syringe using a length of pplO tubing and continuously perfusing the probe at a 

constant flow rate of 0.8pL/min. The perfusion fluid (aCSF) was identical to the 

bathing medium (aCSF) with the exception that the bathing medium contained 

the monoamine of interest. For the monoamines, a freshly prepared IpM solution 

of DA or 5-HT was made up in the aCSF. To limit oxidation, L-cysteine 

(20mg/100ml) was added (Chai and Meltzer, 1992). The probes were inserted 

into the bathing medium and perfused for a minimum of 60 minutes before 

samples were collected at 30 minute intervals. Monoamine levels in the outflow 

were immediately determined using HPLC.
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The relative recoveries for the monoamines and their metabolites were calculated 

using the relationship devised by Benveniste, (1989) (Refer to table 2.2).

Monoamine/Metabolite Mean In Vitro recovery (%) 

n=5

DA 38 ± 4.9

DOPAC 30 ± 5.3

5-HT 27 ± 6.2

5-HIAA 31 ±3.9

Table 2.2 In Vitro recovery of monoamines and their metabolites from standard 

solutions.

In Vitro recovery^ Cout/Cin 

Cout = substance concentration in the outflow 

Cin = substance concentration in the bathing medium

The same procedure is then performed in vivo and the extracellular concentration of 

the substance can be calculated as:

Ci=Coutfiow//« Vitro recovery 

Ci= true extracellular concentration

Coutfiow=concentration of the substance in the in vivo outflow solution.

These relationships are based on the assumption that the conditions in vitro and 

in vivo are equivalent. Without doubt, this is not the case. Because of the constant 

flow of dialysate through the probe, the concentration of monoamine in the probe 

will not equilibrate with the extracellular concentration. We still assume the 

conditions to be approximately equal to allow us to make estimates of actual brain 

extracellular levels from microdialysis experiments.
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2.8 HPLC-ElectroChemical Detection (ECD) parameters and hardware

A Spark-Holland refrigerated autosampler was connected to an Antech Intro 

electrochemical detector using a Vt03 flow cell with Vceii +625 mV, filtered to 5abu 

with the range set on InA/volt for frill scale deflection. A Cig ODS 3 pm reverse 

phase column heated to 40°C was connected to a Bischoff compact HPLC pump 

(model no. 2250) with the flow rate set to 650 pL/min. Data capture was achieved 

and analysed by means of a computer equipped with ChromPerfect software. Mobile 

phase was not recirculated and was composed of the following (mM): sodium acetate 

90, citric acid anhydrous 35, octane sulphonic acid 0.06 and EDTA 0.34 (all of high 

analytical grade (Fluka, Germany) with the addition of methanol (5.5% v/v) at pH 

4.2.

2.9 Chromatograph calibration

Monoamine standards and their metabolites (DA, DOPAC, 5-HT and 5-HIAA) at a 

known concentration were used regularly to ensure consistent identification of the 

correct peaks following injection of dialysate samples.

Typical chromatograms showing the separation of the monoamines using HPLC- 

ECD are shown (see figure 2.6a/b). Typical calibration plots of the monoamines are 

shown in Figs 3a-3d. Thus, the DA, DOPAC, 5-HT and 5-HIAA content of 

dialysates were identified and quantified by comparing their respective elution times 

and peak heights with those obtained from the ‘chromatograph calibration’ reference 

standards. The detection limit for DA, DOPAC, 5-HT and 5-HIAA was 

approximately 1 finol/10 pL sample. This sensitivity was approximately 19-fold 

higher than the limit of detection for 5-HT to be measured without the addition of an 

uptake inhibitor in the perfusion medium.
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2.10 Experimental drugs

The drugs and their suppliers that were used in this study are listed below:

Paroxetine hydrochloride (Glaxo-SmithKline, UK), CGP 40116 (Ciba-Geigy, UK), 

Ifenprodil tartrate (RBI, USA), NMD A, Amantadine hydrochloride. Clomipramine 

hydrochloride (Sigma, UK) and Budipine (Byk Gulden).

2.11 Experimental protocol

Chapter 3: On the day following probe implantation once spontaneous efflux was 

established, dialysate samples were collected every 30 minutes. Four consecutive 

basal samples (unless otherwise stated) were collected before administering test 

drugs. A further 8 post treatment samples (unless otherwise stated) were then 

collected.

In the first set of experiments, paroxetine (10 or 20 mg/kg) was dissolved in sterile 

water and systemically injected (i.p.) at 1 mL/kg of rat body weight. Control rats 

received an equivalent volume of vehicle (sterile water). Paroxetine, infused locally 

(90 minutes) into the frontal cortex, was dissolved in aCSF at a concentration of 100 

pM. After 90 minutes infusion paroxetine was replaced with normal aCSF.

Clomipramine (10 or 20 mg/kg) was dissolved in 0.9% saline. Control rats received 

an equal volume of vehicle (saline). In experiments involving NMDA administration, 

drug was dissolved in aCSF at a concentration of 100 pM and infused into the frontal 

cortex.

In the second set of experiments, rats were treated acutely with paroxetine or 

clomipramine (10 mg/kg) i.p. or vehicle (0.9% saline) and after 30 minutes, rats were 

infused with NMDA (100 pM).

In the subchronic and chronic studies, rats were treated i.p. once daily with 

paroxetine or clomipramine (10 mg/kg) for a period of 7, 14 or 21 days. The final
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dose of paroxetine or clomipramine was administered the day prior to dialysis. 

NMDA (100 pM) was then infused following collection of the 4̂  ̂sample.

For the ‘drug holiday’ experiments, rats were treated once daily i.p. with paroxetine 

(10 mg/kg) for 21 days or clomipramine (10 mg/kg) for 14 days. Dialysis with 

NMDA (100 pM) after sample 4 was carried out 48 hours and 14 days respectively 

after the last drug injection.

Chapter 4: The same protocols as used in the experiments for chapter 3 were 

applied in the study of 5-HT and 5-HIAA efflux.

Chapter 5: On the day following probe implantation once spontaneous efflux was 

established, dialysate samples were collected every 30 minutes. Four consecutive 

basal samples (unless otherwise stated) were collected before administering test 

drugs. A further 8 post treatment samples (unless otherwise stated) were then 

collected.

Rats were treated i.p. with either amantadine (40 mg/kg), budipine (10 mg/kg), CGP 

40116 (1 mg/kg) and ifenprodil (0.9 mg/kg) following sample 4. Following sample 5, 

rats were dosed (i.p.) with paroxetine ( 1 0  mg/kg) or vehicle (sterile water).

In the subchronic study, paroxetine (10 mg/kg) was administered i.p. for a period of 

7 days prior to dialysis, with the final dose being administered the day prior to 

dialysis. Amantadine (40 mg/kg) or vehicle (sterile water) was administered 

following sample 5.

2.12 Data analysis and statistics

Data included in this study (not corrected for in vitro recovery) was expressed as 

percentage of basal analyte level (% basal; means ± S.E.M.) in acute studies. The 

average of the first four baseline samples was taken as 100%. However, in the 

subchronic and chronic studies, data was expressed as absolute values (finol/lOpL; 

means ± S.E.M.) using the calibration graphs (Figs 2.5a-2.5d).
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All statistics were performed, using the program SPSS™’, on raw data. Statistical 

significance was set at the 95% confidence level (p<0.05). The effects of drugs on 

experimental and control groups were compared using a two way ANOVA for 

repeated measures with treatment was a ‘between subjects factor’ and time as a 

‘within-subjects factor’ i.e. as a repeated measure. A significant overall group, time 

or interaction was followed by the Newman-Keuls test. The effects of drugs at 

individual time points were compared with baseline values using one-way ANOVA 

with repeated measures followed by Dunnett’s test, two tailed.
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Figure 2.5a Calibration curve for DA

30000000-1

>  20000000-

u
10000000 -

200  400  600  800  1000  12000

DOPAC (fmoles)
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3 The effect of acute, subchronic and chronic paroxetine and clomipramine 

treatment on NMDA- evoked extracellular DA and DOPAC changes in the frontal 

cortex

3.1 Introduction

The monoamine theory of depression has dominated research and treatment of 

depression for over 30 years. The neurotransmitters 5-HT and NA are believed to play a 

crucial role while that of DA has been less clear. Evidence exists to suggest DA plays 

some role in the pathogenesis of depression (Willner, 1983). Both direct acting DA 

agonists, [e.g. piribedil (Post, et al., 1978) and bromocriptine (Theohar et al, 1981)], and 

an indirect DA agonist, amphetamine (Silberman et al, 1981), which is reported to 

increase DA release in the nucleus accumbens (Arnold et al, 2000), have been reported 

to have antidepressant effects.

Three important lines of experimental evidence led to investigations on the possible role 

of DA both in the pathogenesis of depression and in the mechanism of action of 

antidepressant treatments. Firstly, drugs which increase DA levels, such as cocaine and 

amphetamine, cause euphoria and excitement (see Fleckenstein et al, 2000). In addition, 

drugs which either reduce DA levels, such as reserpine, or block DA receptors, such as 

neuroleptics, can either induce dysphoria or depressed mood (Jimerson, 1987). 

Secondly, several studies have shown that the DA metabolite, HVA, is reduced in the 

CSF of untreated depressed patients (Banki, 1977). Thirdly, it has been demonstrated by 

several studies that dopaminergic neurones originating in the VTA and projecting their 

nerve terminals into different telencephalic areas, (including the preffontal cortex and 

the nucleus accumbens), are involved in the control of reward-related behaviour and 

incentive motivation ( Fibiger and Phillips, 1987; Wise, 1989; Blackburn et al, 1992).

Dopamine is thought to play an important role in the associative functions of the 

prefrontal cortex (Goldman-Rakic, 1987). The frontal cortex is a brain structure 

implicated in depression (Petty et al, 1992; Sulivan et al, 1998) and evidence suggests 

that alterations in the normal functioning of the dopaminergic system may be significant 

in the aetiology of depression (Willner, 1983).
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There is considerable electrophysiological, behavioural and neurochemical evidence 

that chronic administration of both the TCAs (eg clomipramine) and the SSRIs, (e.g. 

paroxetine) increase brain serotonergic activity (Willner, 1985, Heninger and Chamey, 

1987; Blier et al, 1987; Chaput et al, 1991; Beasley et al, 1992). It has also been 

reported that long-term treatment with TCAs increases brain dopaminergic activity. For 

example, chronic treatment with desipramine enhances the ability of amphetamine to 

increase extracellular DA levels in the nucleus accumbens (Brown et al, 1993). The 

properties of TCA treatment are attributed to the modulation of both noradrenergic and 

serotonergic function while the SSRIs are potent and selective inhibitors of the 

serotonin neuronal reuptake system and more recently are also reported to inhibit NA 

reuptake in vivo (Jordan et al, 1994; Hughes and Stanford, 1996).

As with TCAs, the SSRIs may affect other neurotransmitters indirectly as well. For 

example, the SSRI fluoxetine has been reported to acutely increase cortical extracellular 

DA levels without affecting extracellular DA levels in the nucleus accumbens (Jordan et 

al, 1994; Tanda et al, 1994; Clark et al, 1996). Similarly, the TCAs including 

clomipramine, imipramine, desipramine and amitriptyline, as well as atypical ADs, such 

as mianserin and maprotiline, have also been reported to acutely increase cortical 

extracellular DA levels without affecting extracellular DA levels in the nucleus 

accumbens (Gresch et al, 1995; Kihara and Dceda, 1995; Tanda et al, 1994, 1996). 

Furthermore, striatal extracellular DA levels are reported to be increased by 

clomipramine and imipramine (Ichikawa and Meltzer, 1995) but decreased by SSRIs 

including paroxetine and sertraline (Meltzer et al, 1993), citalopram (Dewey et al, 

1995), or unchanged by the TCA, amitriptyline (Meltzer et al, 1993). There are 

conflicting results with fluoxetine as Meltzer and colleagues (1993) report that 

fluoxetine decreases extracellular DA levels in the striatum while Maj and colleagues 

(1996) report that extracellular DA levels remain unchanged.

On a clinical level, in one of the first patients treated with fluoxetine, it caused 

extrapyramidal symptoms (EPS) (for example, akathisia and tremor) and decreased 

cerebrospinal fluid levels of HVA, suggesting this drug could decrease nigrostriatal 

dopaminergic activity in humans (Meltzer, 1979). Similar side-effects have been 

reported by others (Dave, 1994; Scheepers and Rogers, 1994) including after paroxetine 

treatment in man (see Caley and Weber, 1993). Although the relationship between 

SSRIs and EPS is not clear (see Caley and Weber, 1993), it appears to be initiated by
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excessive stimulation of the 5-HT2-receptors in the serotonergic pathway which project 

to the basal ganglia. It is postulated that the 5-HT2-receptors inhibit the release of DA 

leading to these EPS (Lane, 1998; Scheepers and Rogers, 1994). These findings may 

support a role that both TCAs and SSRIs therapeutic effects or possibly side effects 

such as EPS may be due to an overall change in brain extracellular DA levels.

It has been found that NMDA receptor antagonists can give a positive result in a screen 

for antidepressants in a rodent behavioural model (Trullas and Skolnick, 1990). It has 

also been observed that chronic, but not acute treatment with a range of antidepressants 

including SSRIs decreases the sensitivity of NMDA receptors (Paul et al, 1994). This 

may suggest that a dysfunction in NMDA receptor-mediated transmission in the CNS of 

depressed patients may play a role in the pathophysiology of depression. This is 

supported by the finding that NMDA receptors are abnormal in the frontal cortex of 

depressed suicide victims (Nowak et al, 1995). As an important role exists for the 

NMDA receptor in the regulation of DA release in several brain regions (see Whitton, 

1997), it may be likely that antidepressant related changes in NMDA receptors may 

alter NMDA-evoked changes in dopaminergic transmission.

In this part of the study, using in vivo microdialysis in freely moving rats, it was 

determined whether the clinically used SSRI, paroxetine, and TCA, clomipramine, alter 

NMDA receptor-mediated DA efflux following acute, subchronic (7-day) and chronic 

(21-day) treatment and how long these changes last after cessation of drug treatment 

(‘drug holiday’).

The following questions were addressed in this part of the study:

• What are the effects of paroxetine administered (systemically and locally) on 

extracellular DA efflux in the frontal cortex?

• What are the effects of NMDA on DA efflux in the frontal cortex?

• What are the effects of acute, subchronic and chronic treatment with paroxetine on 

NMDA-evoked changes on DA efflux?

• If any changes result from the above treatments, are these changes reversed 

following AD (paroxetine) cessation and what is the time scale?

• Are these changes related specifically to the SSRI, paroxetine, or can the findings be 

replicated in a different class of AD, in this case by using the TCA, clomipramine?
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3.2 Results

3.2.1 Extracellular basal levels of DA and DOPAC measured in the frontal cortex

Basal dialysate DA and DOPAC values were 88 ± 4.2 and 535 ± 6.9 fmoles/10 [iL 

(n=48). These values are similar to published results from our laboratory (Whitton et al, 

1992a, b).

3.2.2 The effect of acute paroxetine on extracellular levels of DA and DOPAC in 

the frontal cortex

Acute administration of paroxetine i.p. (10, 20 mg/kg) had no effect on extracellular DA 

[F(l,9)=4.41, p<0.08] or DOPAC levels in the frontal cortex (Figure 3.1A/B).

Local infusion into the frontal cortex of 100 pM paroxetine caused a maximal increase 

in extracellular DA at 240 minutes to 179% of basal levels (Figure 3.2A). Two-way 

repeated measures ANOVA revealed significant effects over time [F(ll,66)=4.97, 

p<0.01] and treatment [F(l,6)=22.14, p<0.001]. This returned to 128% basal level at the 

end of the experiment (360 minutes).

The effect of the local infusion of paroxetine (100 pM) on extracellular DOPAC levels 

was a profound transient increase. This increase in extracellular DOPAC was only 

observed after 90 minutes of the start of paroxetine infusion with a maximal increase of 

300% basal at 240 minutes (Figure 3.2B). After this time point, extracellular DOPAC 

levels decreased rapidly with the levels returning to slightly higher than basal (150% 

basal).

3.2.3 The effect of acute clomipramine on extracellular levels of DA and DOPAC 

levels in the frontal cortex

Acute administration of clomipramine i.p. (10/20mg/kg). led to a dose-dependent 

decrease in extracellular DA [F(2,9)=136.11, p<0.05] and DOPAC levels in the frontal 

cortex which at the higher dose lasted for the duration of the experiment (Figure 

3.3A/B).
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Figure 3.1. The effect of acutely administered paroxetine on extracellular levels of 
A) DA and B) DOPAC in the frontal cortex. The arrow indicates the time at which 
paroxetine (i.p) was administered. Data are the mean ± SEM of six-eight animals in 
each group.
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Figure 3.2. The effect of localised infusion of paroxetine on extracellular A) DA 
and B) DOPAC in the frontal cortex. Paroxetine was infused into the frontal cortex 
and extracellular DA measured. The solid box indicates the period of paroxetine 
infusion. Data are the mean ± SEM of six animals in each group. * indicates 
significantly different (p<0.05); **(p<0.01) from control.
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Figure 3.3 The effect of acutely administered clomipramine (CIM) on extracellular 
levels of A) DA and B) DOPAC in the frontal cortex. The arrow indicates the time at 
which clomipramine (i.p) was administered. Data are the mean ± SEM of six animals in 
each group. * indicates significantly different (p<0.05) from control.
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3.2.4 The effect of NMDA infusion into the frontal cortex on extracellular DA 

and DOPAC

Direct, localised infusion of NMDA (100|o,M) for 30 minutes into the frontal cortex 

caused a statistically significant decrease of extracellular DA and DOPAC levels.

NMDA (100jj,M) administration caused an immediate significant [F(l,6)=7.63, p<0.05] 

decrease in extracellular DA to 70% of basal levels. This effect lasted for 60 minutes 

with levels returning to basal levels thereafter (Figure 3.4A). The infusion of NMDA 

(lOOpM) for 30 minutes also produced an immediate, significant [F(l,6)=43.93, 

p<0.05] decrease in extracellular DOPAC levels to 63% of basal levels which remained 

so for the duration of the experiment (Figure 3.4B).

3.2.5 Effect of acute paroxetine on 100 pM NMDA-evoked changes in extracellular 

DA and DOPAC in the frontal cortex

When 100 pM NMDA was infused into the frontal cortex of rats treated acutely with 

paroxetine (10 mg/kg), extracellular DA in this region fell significantly below basal 

values (75 % of basal) [F(2,9)=6.99, p<0.05] and remained so for the duration of the 

experiment [F(ll,99)=2.74, p<0.01] (Figure 3.5A).

Following NMDA infusion, animals acutely pre-treated with paroxetine (10 mg/kg) 

displayed an apparent increase in extracellular DOPAC levels which was not significant 

(p>0.05) (Figure 3.SB).
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Figure 3.4. The effect of NMDA infusion in the frontal cortex on extracellular
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paroxetine (i.p) was administered. Data are the mean ± SEM of six animals in each 
group. * indicates significantly different (p<0.05) from control.
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Figure 3.5. Effect of acute paroxetine (Parox) on 100 pM NMDA-evoked changes 
in extracellular A) DA and B) DOPAC in the frontal cortex. NMDA was infused 
into the cortex and extracellular DA and DOPAC measured. The arrow indicates the 
time at which paroxetine or vehicle was administered. The solid box indicates the 
period of NMDA infusion. Data are the mean ± SEM of six animals in each group. * 
indicates significantly different (p<0.05) from control.
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3.2.6 Effect of acute clomipramine on 100 pM NMDA-evoked changes in 

extracellular DA and DOPAC in the frontal cortex

When 100 pM NMDA was infused into the frontal cortex of rats treated acutely with 

clomipramine (10 mg/kg), extracellular DA in this region fell significantly below basal 

values (75 % of basal) [F(2,9)=17.61, p<0.001] and remained so for the duration of the 

experiment (Figure 3.6A) [F(ll,99)=2.50, p<0.01]. The decrease in DA efflux was 

similar in magnitude to that seen after NMDA infusion alone.

Following NMDA infusion, animals acutely pre-treated with clomipramine (10 mg/kg) 

displayed a similar significant [F(2,9)=29.93, p<0.05] decrease in extracellular DOPAC 

levels to that seen of NMDA alone which remained significantly [F(ll,99)=9.87, 

p<0.05] so for the duration of the experiment (Figure 3.6B).

3.2.7 Effect of 7-day (sub-chronic) dosing of paroxetine on 100 pM NMDA-evoked 

changes in extracellular DA and DOPAC levels in the frontal cortex

7-day dosing of paroxetine (lOmg/kg) resulted in significant reductions in extracellular 

DA and DOPAC levels.

After a 7-day sub-chronic treatment with paroxetine, extracellular DA levels were 

reduced significantly to 67% of basal levels [F(2,9)=23.54, p<0.001]. Extracellular DA 

levels did not appear to decrease upon NMDA infusion, as was seen with saline-treated 

rats [F(ll,99)=0.802, p<0.638]. In fact, no change was evident with NMDA infusion 

(Figure 3.7A). Extracellular DOPAC levels were observed to decrease significantly 

[F(2,9)=18.04, p<0.01] to 47% basal following 7-day paroxetine treatment. In these rats, 

infusion with NMDA was followed by a gradual increase in extracellular DOPAC 

levels which peaked at the end of the experiment near control levels (Figure 3.7B).
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Figure 3.6. Effect of acute clomipramine (CIM) on 100 pM NMDA-evoked changes 
in extracellular A) DA and B) DOPAC in the frontal cortex. NMDA was infused 
into the cortex and extracellular DA and DOPAC measured. The arrow indicates the 
time at which clomipramine or vehicle was administered. The solid box indicates the 
period of NMDA infusion. Data are the mean ± SEM of six animals in each group. * 
indicates significantly different (p<0.05) from control.
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Figure 3.7. Effect of 7-day (sub-chronic) dosing of paroxetine (Parox) on 100 pM 
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cortex. The box indicates the period of NMDA infusion. Data are the mean ± SEM of 
six animals in each group. * indicates significantly different (p<0.05) from control. # 
indicates significantly different from treatment basal (p<0.05).
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3.2.8 Effect of 21-day (chronic) dosing of paroxetine on 100 pM NMDA-evoked 

changes in extracellular DA and DOPAC levels in the frontal cortex

After a 21 day chronic treatment with paroxetine (10 mg/kg), two marked changes were 

observed. Firstly, extracellular DA levels in this brain region were 175% (154 

finol/lGpL) above basal values compared with vehicle treated controls. (Figure 3.8A). 

Secondly, infusion of 100 pM NMDA into the frontal cortex of chronically-treated rats 

was reversed causing a highly statistically significant increase in DA efflux which 

remained greater than control for the duration of the experiment. This increase was 

significant over main factor ‘time’ [F(16,96)=173.99, p<0.001] and between treatments 

[F(2,6)=87.24, p<.001]. The maximal increase in DA efflux was six-fold of basal values 

(Figure 3.8 A).

When paroxetine was administered repeatedly for 21 days extracellular DOPAC levels 

decreased significantly (p<0.05) to 75% of basal levels. The effect of NMDA infusion, 

as with DA, was a significant increase in extracellular DOPAC levels that reached a 

peak after 150 minutes after infusion (Figure 3.8B). The maximal peak in extracellular 

DOPAC levels was 585ftnols/10pL. Although this peak was significantly different from 

points prior to infusion, it was not significantly different from control levels.

3.2.9 Effect of 21-day (chronic) dosing of paroxetine with 48 hours ‘drug holiday’ 

on 100 pM NMDA-evoked changes in extracellular DA and DOPAC levels in the 

frontal cortex

Chronic dosing for 21 days with paroxetine followed by 48 hours of ‘drug holiday’ 

caused an increase in extracellular DA while not affecting DOPAC levels.

After a 21 day chronic treatment with paroxetine (10 mg/kg) with 48 hours of ‘drug 

holiday’, two marked changes were observed. Firstly, extracellular DA levels in this 

region were 176% (140 finol/lOpL) above basal values compared with vehicle treated 

controls. (Figure 3.9A). Secondly, the effect of infusion of 100 pM NMDA into the 

fi'ontal cortex of these rats was reversed compared to that of controls and an increase in 

dialysate DA was observed. This increase in extracellular DA efflux was significant 

between drug treatments [F(2,9)=32, p<0.001] but not on main factor ‘time’ 

[F(ll,99)=1.87, p=0.052].The increase in extracellular DA was immediate and transient
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lasting for 60 minutes after which extracellular DA levels returned to basal levels. The 

maximal increase in extracellular DA was 250finol/10|iL which occurred 60 minutes 

after the start of inftision.

The repeated treatment with paroxetine (10 mg/kg) with 48 hours of ‘drug holiday’ 

failed to cause any change in extracellular DOPAC levels. However, the NMDA 

infusion into the frontal cortex reversed the decrease in extracellular DOPAC levels 

seen in saline treated rats. When NMDA was inftised into these chronically treated rats 

a significant [F(2,9)=41.94, p<0.01] increase in extracellular DOPAC levels was 

observed. These increases were gradual and the maximal increase (850frnol/10pL) was 

observed at 150 minutes after the start of NMDA infusion (Figure 3.9B). This increase 

lasted for the duration of the experiment with all samples up to 300 minutes being 

statistically significant [F(ll,99)=2.55, p<0.01] while the extracellular DOPAC levels 

for last 60 minutes of experiment rested above those of control.
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Figure 3.8. Effect of 21-day (chronic) dosing of paroxetine (Parox) on 100 pM 
NMDA-evoked changes in extracellular A) DA and B) DOPAC in the frontal 
cortex. The box indicates the period of NMDA infusion. Data are the mean ± SEM of 
six animals in each group. * indicates significantly different (p<0.05); ** (p<0.01); *** 
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(p<0.05).
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Figure 3.9. Effect of 21-day (chronic) dosing of paroxetine (Parox, 10 mg/kg) with 
48 hours ‘drug holiday’ on 100 pM NMDA-evoked changes in extracellular A) DA 
and B) DOPAC in the frontal cortex. The box indicates the period of NMDA 
infusion. Data are the mean ± SEM of six animals in each group. * indicates 
significantly different (p<0.05) from control. # indicates significantly different from 
treatment basal (p<0.05).
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3.2.10 Effect of 21-day (chronic) dosing with paroxetine followed by 14 days ‘drug 

holiday’ on 100 pM NMDA-evoked changes in DA and DOPAC levels in the 

frontal cortex

Chronic dosing for 21 days with paroxetine with 14 days of ‘drug holiday’ caused an 

increase in extracellular DA and DOPAC levels.

After a 21 day chronic treatment with paroxetine (10 mg/kg) with 14 days of ‘drug 

holiday’, two marked changes were observed. Firstly, extracellular DA levels in this 

region were 147% (135 finol/lOpL) above basal values compared with vehicle treated 

controls. (Figure 3.10A). Secondly, the infusion of NMDA into the frontal cortex of 

these rats, produced a significant decrease in extracellular DA levels. Two-way 

ANOVA revealed significant differences over time [F(ll,99)=3.44, p<0.01] and 

between treatments [F(2,9)=14.04, p<0.01]. Although this decrease was delayed, only 

occurring after 150 minutes after the start of NMDA infusion, it persisted until the end 

of the experiment with extracellular DA levels falling to 50% (75finol/juL) after drug 

infusion.

The apparent increase in extracellular DOPAC levels to 125% basal levels following 

this drug treatment was not significant (p=0.057). However, when NMDA was infused 

into the fi"ontal cortex there was a reversal of the decrease seen in saline-treated rats. 

There was a slightly delayed increase in extracellular DOPAC levels. This 28% increase 

in extracellular DOPAC was only observed after 150 minutes following NMDA 

infusion (Figure 3.1 OB).
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Figure 3.10. Effect of 21-day (chronic) dosing of paroxetine (Parox, 10 mg/kg) with 
14 days ‘drug holiday’ on 100 pM NMDA-evoked changes in extracellular A) DA 
and B) DOPAC in the frontal cortex. The box indicates the period of NMDA 
infusion. Data are the mean ± SEM of six-eight animals in each group. * indicates 
significantly different (p<0.05) from control. # indicates significantly different from 
treatment basal (p<0.05).
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3.2.11 Effect of 7-day (sub-chronic) dosing of clomipramine on 100 pM NMDA- 

evoked changes in extracellular DA and DOPAC levels in the frontal cortex

7-day dosing of clomipramine (lOmg/kg) resulted in significant reductions in 

extracellular DA and DOPAC levels.

After a 7-day sub-chronic treatment with clomipramine, extracellular DA levels were 

reduced significantly to 77% basal (79finol/10pL) (p<0.05). Extracellular DA levels did 

not appear to decrease upon NMDA infusion compared with saline-treated rats 

(F(ll,99)=1.076, p<0.39]. In fact, there was no apparent change with NMDA infusion 

alone (Figure 3.11 A).

Extracellular DOPAC levels decreased drastically to 26% (150 finol/lOpL) basal 

[F(2,9)=243.6, p<0.01] following 7-day clomipramine treatment. In these rats, infusion 

with NMDA did not have any significant effect on extracellular DOPAC levels

[F(ll,99)=2.42, p=0.07] (Figure 27). This is in contrast when NMDA is infused in 

saline-treated rats in which a persistent decrease in extracellular DOPAC is observed 

(Figure 3.1 IB).

3.2.12 Effect of 21-day (chronic) dosing of clomipramine on 100 pM NMDA- 

evoked changes in extracellular DA and DOPAC extracellular levels in the frontal 

cortex

After 21 days chronic treatment with clomipramine (10 mg/kg), two marked changes 

were observed. Firstly, extracellular DA levels in this region were 186% (170 

finol/lOpL) above basal values compared with vehicle treated controls (Figure 3.12A). 

Secondly, the effect of infusion of 100 pM NMDA into the frontal cortex of 

chronically-treated rats was reversed: there was an increase in DA efflux which 

remained so for the duration of the experiment. This increase in extracellular DA efflux 

was significant between drug treatments [F(2,6)=617, p<0.001] and on main factor 

‘time’ [F(16,96)=617, p<.0001]. The maximal increase in DA efflux was five-fold that 

of basal values (600finol/pL) (Figure 3.12 A).

When clomipramine was administered repeatedly for 21 days, extracellular DOPAC 

levels increased to 120% of basal levels. NMDA infusion did not cause any
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change in extracellular DOPAC levels to these chronically treated rats (Figure 3.12B). 

NMDA infusion to the saline-treated rats caused a significant decrease in DOPAC 

efflux.

3.2.13 Effect of 14-day (chronic) dosing of clomipramine on 100 pM NMDA- 

evoked changes in extracellular DA and DOPAC in the frontal cortex

Chronic dosing for 14 days with clomipramine caused an increase in extracellular DA 

levels while not affecting extracellular DOPAC levels.

After a 14 day chronic treatment with clomipramine (10 mg/kg) extracellular

DA levels in this region were significantly increased to 213% (187 finol/lOpL) above 

basal values compared with vehicle treated controls. [F(2,9)=l 59.46, p<0.001] (Figure 

3.13A).

The repeated treatment with clomipramine (10 mg/kg) had no significant effect on 

extracellular DOPAC levels. However, the NMDA infusion into the frontal cortex of 

CIM-treated animals reversed the decrease in extracellular DOPAC levels seen in saline 

treated rats (Figure 3.13B). Thus when NMDA was infused into these chronically 

treated rats a significant [F(2,9)=52.65, p,0.05] increase in extracellular DOPAC levels 

was observed. These increases were gradual and the maximal increase (919 fmol/lOpL) 

was observed at 90 minutes after the start of NMDA infusion and lasted for the duration 

of the experiment.
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Figure 3.11. Effect of 7-day (sub-chronic) dosing of clomipramine (CIM) on 100 
pM NMDA-evoked changes in extracellular A) DA and B) DOPAC in the frontal 
cortex. The solid box indicates the period of NMDA infusion. Data are the mean ± 
SEM of six animals in each group. * indicates significantly different from control 
(p<0.05). # indicates significantly different from treatment basal (p<0.05).
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Figure 3.12. Effect of 21-day (chronic) dosing of clomipramine (CIM) on 100 pM 
NMDA-evoked changes in extracellular A) DA and B) DOPAC in the frontal 
cortex. The solid box indicates the period of NMDA infusion. Data are the mean ± 
SEM of six animals in each group. * indicates significantly different (p<0.05); ** 
(p<0.01); *** (p<0.001) from control. # indicates significantly different from treatment 
basal (p<0.05).
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3.2.14 Effect of 14-day (chronic) dosing of clomipramine with 48 hours ‘drug 

holiday’ on 100 pM NMDA-evoked changes in extracellular DA and DOPAC in 

the frontal cortex

With chronic dosing of 14 days with clomipramine with 48 hours of ‘drug holiday’ 

there was still an increase in extracellular DA while still having no effects on 

extracellular DOPAC levels.

After a 14 day chronic treatment with clomipramine (10 mg/kg) with 48 hours of ‘drug 

holiday’, extracellular DA levels in this region were significantly increased to 268% 

(236 finol/lOpL) above basal values compared with vehicle treated controls. 

[F(2,9)=l59.46, p<0.001] (Figure 3.14A). The repeated treatment with clomipramine 

(10 mg/kg) with 48 hours of ‘drug holiday’ did not effect basal extracellular DOPAC 

levels. However, the NMDA infusion into the frontal cortex of CIM-treated animals 

reversed the decrease in extracellular DOPAC levels seen in saline treated rats (Figure 

3.14B). Thus when NMDA was infused into these chronically treated rats a significant 

[F(2,9)=52.65, p,0.05] increase in extracellular DOPAC levels was observed. These 

increases were gradual and the maximal increase (790 finol/lOpL) was observed at 90 

minutes after the start of NMDA infusion. This increase lasted for the duration of the 

experiment with all points beyond 210 minutes being statistically significant 

[F(ll,99)=2.02, p<0.05].

3.2.15 Effect of 14-day (chronic) dosing of clomipramine with 14 days ‘drug 

holiday’ on 100 pM NMDA-evoked changes in DA and DOPAC levels in the 

frontal cortex

Chronic dosing of 14 days with clomipramine with 14 days of ‘drug holiday’ caused an 

increase in basal extracellular DA and DOPAC levels.

After a 14 day chronic treatment with clomipramine (10 mg/kg) with 14 days of ‘drug 

holiday’, two marked changes were observed. Firstly, basal extracellular DA levels in 

this region were 156% (150 finol/lOpL) above basal values compared with vehicle 

treated controls. (Figure 3.15B). Secondly, the infusion of NMDA into the frontal 

cortex of these rats, produced an immediate, persistent significant decrease in 

extracellular DA levels. Two-way ANOVA revealed significant differences between
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treatments [F 2,9=14.55, p<0.001] and over time [F(ll,99)=7.76, p<0.001]. This 

decrease persisted for the duration of the experiment with the maximal decrease at the 

last time point of 360 minutes. Extracellular DA levels here were 30% (55 finol/lOpL) 

of basal levels at the end of the experiment.

Basal extracellular DOPAC levels were observed to increase to 156% basal following 

this drug treatment. However, when NMDA was infused into the frontal cortex there 

was a reversal of the decrease seen in saline-treated rats. There was a delayed increase 

in extracellular DOPAC levels was observed 120 minutes after the start of NMDA 

infusion and persisted for the duration of the experiment (Figure 3.15B). The maximal 

increase in extracellular DOPAC levels was seen at the last time point (360 minutes). 

This significant [F(2,9)=70.03, p<0.05] increase was 150% basal (1700fmol/10pL).
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400n NMDA 100 i^M 

Control
i  300-

200 -

o  100-

100 200 300

Time (Minutes)
400

(B)
14 day CIM (+ 48 hours Drug Holiday) + NMDA 100 pM 
14 day CIM + NMDA 100 îM 
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Figure 3.14. Effect of 14-day (chronic) dosing of clomipamine (CIM, 10 mg/kg) 
with 48 hours ‘drug holiday’ on 100 |iM NMDA-evoked changes in extracellular 
DA and DOPAC in the frontal cortex. The solid box indicates the period of NMDA 
infusion. Data are the mean ± SEM of six-eight animals in each group.* indicates 
significantly different (p<0.05); ** (p<0.01); *** (p<0.001) from control. # indicates 
significantly different from treatment basal (p<0.05).
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Figure 3.15. Effect of 14-day (chronic) dosing of clomipramine (CIM, 10 mg/kg) 
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DA and B) DOPAC in the frontal cortex. The solid box indicates the period of 
NMDA infusion. Data are the mean ± SEM of six animals in each group. * indicates 
significantly different (p<0.05) from control. # indicates significantly different from 
treatment basal (p<0.05).
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Drug Treatment DA DOPAC

Paroxetine 10 mg/kg N/E t

Paroxetine 20 mg/kg N/E

Paroxetine 100 pM t T

NMDA 100 pM 40% i

NMDA 25 jiM * 20% ^ i
Paroxetine 10 mg/kg + 
NMDA 100 pM

; T

Paroxetine 20 mg/kg + 
NMDA 100 pM ^

N/E N/E

Clomipramine 10 mg/kg
; ;

Clomipramine 20 mg/kg i

Clomipramine 10 mg/kg + 
NMDA 100 pM

i

7 day Paroxetine 10 mg/kg 
+ NMDA 100 pM

67% Basal 
Transient T

47% Basal Delayed
T

21 day Paroxetine 10 mg/kg 
+ NMDA 100 pM

200 % Basal 
t  6 fold

75% Basal

T
21 day Paroxetine 10 mg/kg 
+ NMDA 100 pM.
Drug Holiday of 48 hours

176% Basal 
T 2 fold

97 % Basal 
Transient T

21 day Paroxetine 10 mg/kg 
+ NMDA 100 pM.
Drug Holiday of 14 days

147% Basal 125 % Basal 
Delayed Minimal T

7 day Clomipramine 10 mg/kg + 
+ NMDA 100 pM

77 % Basal
N/E

26 % Basal 
N/E

14 day Clomipramine 10 mg/kg + 
NMDA 100 pM

186 % Basal
t

120 % Basal
T

21 day Clomipramine 10 mg/kg + 
NMDA 100 pM

186 % Basal 
T 5 fold

120 % Basal
N/E

14 day Clomipramine 10 mg/kg 
+ NMDA 100 pM.
Drug Holiday of 48 hours

268 % Basal 
N/E

115 % Basal
T

14 day Clomipramine 10 mg/kg 
+ NMDA 100 pM.
Drug Holiday of 14 days

156 % Basal 148 % Basal 
Delayed t

Table 3.1 Summary of chapter 3 results
T and I Increase and decrease in efflux respectively. 
N/E No effect in efflux.

* Data not shown
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3.3 Discussion

3.3.1 The effect of acute, subchronic (7-day) and chronic (21-day) 

paroxetine/clomipramine treatment on extracellular DA and DOPAC changes in 

the frontal cortex

3.3.1.1 Acute paroxetine and clomipramine treatment

Acute systemically administered paroxetine had no effect on DA efflux in the frontal 

cortex in this study whereas acute administration of clomipramine led to a dose- 

dependent decrease in extracellular DA levels. During the final preparation of this 

manuscript, a similar microdialysis study by Bymaster and colleagues (2002) 

investigating the effect of paroxetine (3 mg/kg s.c) on DA efflux in the frontal cortex 

confirmed that paroxetine does not affect DA efflux in the frontal cortex. Although, this 

dose is lower than that used in the present study (10 mg/kg), the s.c. route, however, 

reduces hepatic metabolism of paroxetine therefore exposing a greater concentration of 

the drug to the brain. These authors report that at this dose plasma levels of paroxetine 

were 129 ng/mL and as many patients responding to paroxetine treatment for depression 

and OCD exhibit serum concentrations between 10-200 ng/mL (Eap et al, 1998; Owens 

et al, 2000), the dose (10 mg/kg) used in this present study was within the therapeutic 

range of paroxetine.

Similar microdialysis experiments have also used paroxetine 10 mg/kg (Ramaiya et al, 

1997; Roberts et al, 1998) and this dose was used by others examining the effect of 

paroxetine on uptake transporter function (Pineyro et al, 1994). However, Meltzer et al 

(1993) reported that paroxetine (10 mg/kg) produced a significant decrease in 

extracellular DA in the nucleus accumbens and striatum. In the light of these findings 

and those of this present study, it is evident that there is considerable regional diversity 

with regard to the effect of acute paroxetine on DA efflux.

The clomipramine data presented here supports previously published data from this 

laboratory (Pallotta et al, 1999). Clomipramine has previously been shown to alter DA 

efflux in the frontal cortex (Pallotta et al, 1999) and in other brain regions (Ichikawa and 

Meltzer, 1995) using similar doses to those used in the present study. Friedman and 

Cooper (1983) found a maximal clomipramine concentration of 1.1 pM in rat cortex
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after the i.p. administration of 15 mg/kg clomipramine, while Adell and Artigas (1991) 

estimate after clomipramine (20 mg/kg i.p.) a maximal concentration of 1.5 pM can be 

assumed. Estimates from the dose used in this study (10 mg/kg) would give a maximal 

concentration of 0.7 pM in the brain. Ichikawa and Meltzer (1995) have observed that 

acute clomipramine did not alter extracellular levels in the nucleus accumbens but 

increased DA efflux in the striatum. In light of these findings and those of this current 

study, it is evident that, like paroxetine, there is also considerable regional diversity 

with regard to the effect of acute clomipramine on DA efflux.

Paroxetine and other SSRIs such as fluoxetine and sertraline have not been reported to 

have any significant affinity for DA receptors or DA uptake sites (Paroxetine IC5o=5100 

nmol/L see Kent, 2000) as the affinity of paroxetine and other SSRIs for the dopamine 

transporter (DAT) is much lower than the 5-HT transporter (SERT) (Thomas et al, 

1987). In contrast to paroxetine and other SSRIs, clomipramine has been shown to have 

a relatively high affinity for central D] receptors, in addition to an affinity for Hi and a\ 

adrenergic receptors. There are no reports to suggest the decrease in extracellular DA 

levels seen in these experiments when clomipramine was administered systemically is 

due to a direct effect of clomipramine on DA uptake sites (Ki = 1.8 pM) except for the 

relatively weak affinity of clomipramine for D2 receptors (Ki =190 nM) (Richelson and 

Nelson, 1984; Richelson and Pfenning, 1984).

Collectively, these data indicate that the effects of acutely administered clomipramine 

are unlikely to be mediated via an inhibitory interaction with the DA transporter but are 

more likely to be the result of secondary changes in the reuptake of other transmitters, 

presumably 5-HT, the uptake of which is more potently altered by clomipramine. 

Moreover, it is known that 5-HT decreases DA release in certain brain regions (Westfall 

and Tittermay, 1982).

The subsequent decrease seen in DA efflux may be due to the breakdown of 

clomipramine to its metabolite, desmethylclomipamine (Fujita et al, 1991), which has 

been shown to have a higher affinity for the NA transporter (Benfield et al, 1980) and 

which may decrease uptake by the noradrenaline transporter (NET). Pozzi et al, (1994) 

have provided evidence that extracellular concentrations of DA are regulated by 

noradrenergic neurones, via the noradrenergic uptake mechanism, in the frontal cortex 

of rats. Studies by Carboni et al (1990) and Izenwasser et al (1990) suggest that DA
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Uptake blockers have no effect on DA efflux in the frontal cortex as most of the DA is 

taken up by noradrenergic terminals. On the other hand, acute administration of other 

antidepressants such as fluoxetine, imipramine and desipramine have been reported to 

cause modest increases in extracellular DA in the frontal cortex upon acute i.p. 

treatment (Tanda et al, 1994, 1995 1996). From the above observations, it can be seen 

that, in general, the mechanism of action of ADs and possibly their therapeutic effect 

may involve the dopaminergic system.

Acute paroxetine did not appear to affect extracellular DOPAC efflux while acute 

clomipramine decreased extracellular DOPAC efflux. No change in extracellular 

DOPAC levels following paroxetine treatment would also be in agreement with 

microdialysis studies by Bymaster et al (2002) following acutely administered 

paroxetine and a wide range of SSRIs. In addition, Di Chiara and Imperato (1988) 

report that acutely administered imipramine had no effect on DA and DOPAC efflux in 

the nucleus accumbens. However, acute clomipramine administration caused a decrease 

in both DA and DOPAC efflux which is consistent with a study by Garrett and Soares- 

Da-Silva (1990) who report that DOPAC in the brain is derived from the deamination of 

DA by MAO A, and so a decrease in DA efflux would be expected to be paralleled by a 

decrease in DOPAC levels.

There are conflicting reports on the value of DOPAC measurements to assess the degree 

of DA release, but several authors strongly suggest that the deamination of DA to form 

DOPAC occurs before DA is released from presynaptic terminals (Zetterstrom et al, 

1988; Garrett and Soares-da-Silva, 1990; Soares-da-Silva and Garrett, 1990) and it was 

concluded that DOPAC efflux is more indicative of DA synthesis than of DA release. 

Therefore, a decrease in DOPAC efflux following clomipramine administration 

suggests a decrease in DA synthesis which is subsequently shown by a decrease in DA 

efflux. Interestingly, the rate of utilisation of DA in the frontal cortex is greater than in 

the mesolimbic and nigrostriatal DA terminal areas (Sharp et al, 1986; Soares-da-Silva 

and Garrett, 1990). This has also been proven by electrophysiological studies that have 

shown that the rate of firing of dopaminergic neurones in the frontal cortex is greater 

than in the mesolimbic and nigrostriatal pathways suggesting increased DA release (for 

review see Bannon and Roth, 1983). These differences in the metabolism of DA to 

DOPAC are largely derived from the rates of formation of DA and not differences in 

MAO activity.
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3.3.1.2 Local infusion of paroxetine

The local infusion of 100 pM  paroxetine directly into the frontal cortex produced a 

slight increase in both extracellular DA and DOPAC efflux whereas systemic 

paroxetine failed to increase extracellular DA efflux. The increase in DA efflux seen 

with infused paroxetine may seem unusual as systemic paroxetine did not affect DA 

efflux. However, Jordan and colleagues (1994) report similar increases in extracellular 

DA efflux to 600%, 360% and 200% above basal levels following fluoxetine, 

fluvoxamine and imipramine infusion, respectively, into the frontal cortex. The 

pronounced increase in extracellular DA levels achieved with fluoxetine compared to 

paroxetine used in the current study is most probably due to the high dose (1 mM) used 

by these authors. The paroxetine dose of 100 fiM used in this study is similar to that 

used to infuse the ADs imipramine, desipramine and citalopram into the frontal cortex 

(Golembiowska and Zylewska, 1999).

A thorough literature review does not reveal paroxetine’s receptor affinity (Kj) for the 

DA uptake transporter (DAT) in the frontal cortex, however, as mentioned previously, a 

review by Kent (2000) reveals paroxetine’s potency (IC50) for inhibiting DA uptake to 

be in the range of 5.1 pM. A calculation from the Kj values published by Hughes and 

Stanford, (1996) and a review (Stanford, 1996) generates a value for DA uptake affinity 

of paroxetine to be in the range of 0.9-8.4 pM in the striatum. These values may differ 

from those for the frontal cortex (see Stanford, 1996) but the dose of 100 pM paroxetine 

infused into the frontal cortex and surrounding the probe will be well within the range 

of the Kj for inhibition of DA uptake assuming a probe efficiency of at least 10%. It is 

thus quite difficult to make dose-effect comparisons between drugs applied locally and 

those applied systemically because of the variance in the exact concentration of drug in 

the extracellular environment surrounding the probe.

It would have been interesting to measure NA levels upon paroxetine infusion as an 

increase in NA efflux is the most likely explanation causing an increase in DA efflux 

here. This hypothesis is supported by a study of Owens and colleagues (1997) who 

report paroxetine, compared to other SSRIs, possesses moderate affinity for the rat 

noradrenaline transporter/uptake sites (NET) with a Kj of 59 nM. Infusion of the potent 

SSRIs, fluoxetine (10 pM) and citalopram (100  pM) into the frontal cortex causes an 

increase in both NA and DA efflux. A possible explanation for this could be the
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interaction between noradrenergic and dopaminergic neurotransmission as it has been 

demonstrated that the blockade of the noradrenaline transporter (NAT) increases 

extracellular DA levels in the frontal cortex, providing evidence that NET is also 

involved in clearing DA in the frontal cortex of the rat (Carboni et al, 1990; Pozzi et al,

1994). Noradrenergic innervation is also denser than the dopaminergic innervation 

within the frontal cortex (Slopsema et al, 1982). Thus it may be that in this study 

infused paroxetine blocked the NAT resulting in an increase in DA efflux in the frontal 

cortex. Recently work by Mazei et al (2002) reported that NAT can clear extracellular 

DA, especially in regions that have much less DAT than NAT, such as in the prelimbic 

cortex.

Alternatively, the increase in DA efflux could be due to increases in 5-HT efflux which 

in turn affect extracellular NA and DA efflux (Figure 3.16). As an evident increase is 

seen in 5-HT efflux upon paroxetine infusion in Chapter 4 an explanation for the 

increase in DA efflux could be the facilitation of DA release by 5-HT in rat frontal 

cortex mediated by 5-HTib (Iyer and Bradberry, 1996) or 5-HT] receptors (Tanda et al,

1995). 5-HT may also elevate DA efflux via a non-exocytotic mechanism by 

penetrating into DA terminals through DA uptake sites and displacing DA from its 

vesicular pool (De Deurwaerdere et al, 1996).

3.3.1.3 Subchronic and chronic paroxetine/clomipramine treatment

Interestingly, there were different results after a 7-day subchronic and a 21-day chronic 

treatment with both paroxetine and clomipramine (10 mg/kg). Extracellular DA and 

DOPAC levels in the frontal cortex were decreased upon the 7-day subchronic treatment 

with paroxetine or clomipramine treatment. The 21-day chronic treatment with 

paroxetine or clomipramine increased extracellular DA levels whereas extracellular 

DOPAC levels were modestly decreased with paroxetine treatment and increased with 

the clomipramine treatment. Both effects on extracellular DA and DOPAC levels in the 

frontal cortex following subchronic and chronic treatments were similar . in magnitude.
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Figure 3.16 Schematic representation of the interrelationship between 

serotonergic, dopaminergic and noradrenergic transmission in the frontal cortex 

at the presynaptic level: autoreceptors and heteroreceptors (Adapted from Gobert et 

al, 1997).

•  Dopaminergic neurons bear DA D2/D3 (cell body and terminal) autoreceptors and (^-adrenergic 

(terminal) heteroreceptors. At the cell body level, they are regulated by a tonic serotonergic input 

from the dorsal raphe, which involves 5-HT2c receptors (Lejeune et al, 1997). In addition, the LC 

probably exerts a modulatory role on the VTA via «i-adrenergic receptors.

•  Noradrenergic neurons express 0!2-adrenergic (cell body and terminal) autoreceptors. Similar to VTA  

DAergic neurons, they are controlled by a tonic serotonergic input from the dorsal raphe, which 

involves 5-HT2C receptors.

•  Serotonergic neurons express 5-HTia (cell body) and 5-HTib (terminal) autoreceptors and 0:2- 

adrenergic (terminal) heteroreceptors. Noradrenergic neurons also exert a stimulatory influence on 

the dorsal raphe via o;i-adrenergic receptors.
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This is an interesting finding bearing in mind that paroxetine and clomipramine are 

different classes of ADs. The observation that after subchronic treatment with both 

clomipramine or paroxetine, extracellular DA was decreased in the frontal cortex 

suggests that adaptations are occurring within 7 days. A 4-day study using 

clomipramine performed in this laboratory showed that extracellular DA concentrations 

were decreased under these conditions too (unpublished observations). This suggests 

that adaptations can occur after as little as 4 days (Refer section 3.3.1.4).

One explanation for this decrease after 4-7 days treatment with paroxetine or 

clomipramine is that the 5-HT system is being compromised by these drugs leading to 

5-HT being taken up into DA neurons. This is in agreement with a recent study 

published (Zhou et al, 2002) which suggests 5-HT can be taken into DA neurons when 

the SERT is not functionally adequate to remove extracellular 5-HT. In addition, these 

authors suggest that the DA transporter is responsible for 5-HT uptake into DA neurons 

when SERT is compromised.

This study demonstrates that cross-neuronal uptake exists and serves as a compensatory 

backup when a specific transporter (such as SERT) is compromised such as following 

7 days treatment with paroxetine or clomipramine. The decrease seen in extracellular 

basal levels of DA suggests a decrease in dopaminergic function as the DA neurons are 

storing 5-HT as a ‘false transmitter’, a borrowed transmitter of another system. In this 

study, a subchronic period of 7-days and not 4-days was chosen as Paul et al (1994) 

report that the ligand binding properties of the NMDA receptor complex require 7 to 14 

days of AD treatment before changes are noticeable. A 21-day chronic dosing regime 

was also chosen as the same authors report that the effect of imipramine was not fully 

manifested during 14-days of treatment because a 21-day dosing regime increased the 

IC 5 0  of glycine by 330% of control values. Therefore, this suggests that there may 

possibly be a further change in NMDA-evoked monoamine efflux measured by 

microdialysis for a 21 day dosing regimen when compared to the 14 day dosing regime. 

This study is the first to measure the effects of paroxetine and clomipramine on 

extracellular DA release in the frontal cortex in both a subchronic (7-day) and a chronic 

(21-day) time frame.

Although, as previously mentioned, the levels of extracellular DA in the frontal cortex 

decreased and increased by the same magnitude using both paroxetine and
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clomipramine in both the subchronic and chronic studies respectively, the effect of 

chronic clomipramine and paroxetine on extracellular DOPAC varied. An increase in 

extracellular DOPAC levels was observed following chronic clomipramine treatment 

whereas a decrease in extracellular DOPAC levels was observed following chronic 

paroxetine treatment. This is in agreement with a study by Nomikos et al, (1991) who 

saw a similar increase in DOPAC levels in the nucleus accumbens and the striatum after 

a 2 week chronic treatment with desipramine. Further support for the chronic paroxetine 

findings is provided by, an earlier chronic study by De Montis et al, (1990). Using 

imipramine (2-3 weeks dosing, twice daily, 10 mg/kg) they reported a reduction in 

DOPAC levels in the limbic regions (containing the olfactory tubercle, the nucleus 

accumbens and the septum). These authors suggested that chronic imipramine treatment 

reduced DOPAC levels as DA in the limbic system is recaptured not only by 

dopaminergic but also noradrenergic terminals. This is unlikely to occur in the striatum 

which is more densely innervated by dopaminergic than noradrenergic nerve terminals.

It is unlikely that these changes in DOPAC levels after chronic paroxetine and 

clomipramine treatment are due to these ADs acting directly on MAO. A recent study 

by Silver and Youdim (2000), examining the long-term administration (up to 6 weeks) 

of fluvoxamine, desipramine and saline on MAO-A and MAO-B activities in the fi*ontal 

cortex and striatum, reported that MAO activity is not altered by chronic TCA or SSRI 

treatment. In addition, previous studies (Green and Youdim, 1975; Green et al, 1977) 

showed that a reduction of at least 85% in MAO activity is required to produce a 

significant elevation in monoamine, NA and 5-HT levels. The changes seen here in 

basal extracellular DOPAC levels following chronic paroxetine and clomipramine are 

most probably due to changes in DA synthesis.

3.3.1.4 Adaptation following AD treatment?

The increase in extracellular DA levels following both chronic paroxetine and 

clomipramine administration could be the result of adaptive changes in serotonergic 

transmission in the cortex, leading to increased levels of extracellular cortical 5-HT and 

thereby a direct effect of 5-HT on DA release, most probably mediated by 5-H T ib  (Iyer 

and Bradberry, 1996) or 5-HT] receptors (Tanda et al, 1995). Although the mechanism 

by which 5-HT facilitates extracellular DA release is presently unclear, studies using 

intracellular recordings in vertebrates indicate that 5-HT affects neuronal activity by
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altering permeability (Joels and Gallagher, 1988). Alternatively, adaptive changes in 

the dopaminergic regulatory system itself, such as alterations in D2 receptor density or 

function, offer another explanation.

It has been suggested that after chronic treatment with antidepressants, the motor 

stimulant effect of the DA receptor agonist, apomorphine is potentiated, while the 

hypomotility and inhibition of DA synthesis produced by the small amounts of DA 

synthesis are prevented (Serra et al, 1979). D’Aquila and colleagues (2000) interpreted 

these findings by suggesting that chronic AD treatment potentiates DA transmission by 

activating a population of normally subsensitive DA autoreceptors. Thus, chronic AD 

treatments potentiate DA transmission possibly via an increased sensitivity of 

postsynaptic DA receptors (Spyraki and Fibiger 1981) rather than a decreased 

sensitivity of presynaptic DA receptors.

Although chronic ADs fail to modify the behavioural responses to D% receptor 

stimulation, a decrease in D% receptor number and sensitivity has been reported in the 

preffontal cortex (Paetsch and Greenshaw, 1992; Gambarana et al, 1995). Another 

finding consistent with this, is that chronic treatment with a range of ADs, such as 

fluoxetine, desipramine and tranylcypromine,induced an increase in D2 receptor mRNA 

in the nucleus accumbens but not in the striatum (Ainsworth et al, 1998). Additionally, 

the levels of mRNA coding for D2 receptors increased both in the nucleus accumbens 

and in the striatum upon chronic administration of the ADs imipramine and citalopram 

(Dziedzicka-Wasylewska et al, 1997).

Maj et al (1998) have also reported that chronic treatment with various AD drugs (such 

as imipramine, amitriptyline, citalopram and mianserin) potentiated the locomotor 

response to the D3 receptor agonist 7-OH-DPAT and increased the density of D3 

receptors in the shell of the nucleus accumbens. No studies have yet demonstrated 

whether chronic paroxetine or clomipramine treatments alter DA receptor numbers or 

sensitivity but, as previously mentioned, other chronic AD treatments increase the 

sensitivity to DA receptor stimulation via increases in D2-like (i.e. D2 and D3 ) receptor 

function and/or decreased D% receptor number and sensitivity. These changes are most 

prominent in the limbic areas innervated by DA neurones with cell bodies in the VTA 

or projecting from the VTA.
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Dopaminergic pathways are postulated to project from the VTA and SN to the raphe 

(Ferre and Artigas, 1993), and D2 receptors have been shown to mediate increased 

release of 5-HT (Stem et al, 1981; Kalen et al, 1988) in this region. This may lead to 

DA changes in the raphe which could may regulate raphe 5-HT causing changes in 

frontal cortex 5-HT and thus DA. It is believed that these adaptive changes occur 

following subchronic and chronic paroxetine and clomipramine treatment with 

subsequent modulation of DA levels in the frontal cortex. This supports the idea that 

paroxetine, a selective SSRI (and clomipramine to a lesser extent), which lack direct 

effects on the dopaminergic system, exert secondary actions on the dopaminergic 

system via 5-HT or NA, effects which may be important in the clinic.

For some years evidence has suggested that DA may play a role in the aetiology and 

possibly treatment of depression. There is a clear difference between the acute and 

chronic effects of the clinically used ADs, paroxetine (the SSRI) and clomipramine (the 

TCA), on extracellular DA efflux. In this study acute paroxetine failed to elicit any 

effect on extracellular DA levels whereas acute clomipramine decreased extracellular 

DA levels. Additionally, chronic paroxetine and clomipramine treatment increased DA 

levels. It is evident that acute dosing regimens may be niisleading when interpreting 

antidepressant effects on neurotransmitter release. These changes in extracellular DA 

would require some sort of biochemical/physiological adaptation for the clinical effect 

of both paroxetine and clomipramine to take effect. This mechanism may be partly 

responsible for the latency in effect between onset of AD treatment and clinical 

effectiveness being achieved.

3.3.2 Effects of NMDA on basal DA and DOPAC efflux in the frontal cortex

Dopamine is thought to play an important role in the associative functions of the 

prefrontal cortex (Goldman-Rakic, 1987). In the rat, DA projections to the PFC mainly 

arise from the VTA and innervate primarily the medial layers of the PFC (Fallon, 1989). 

This area also receives major excitatory (e.g. glutamatergic) inputs from the 

mediodorsal thalamic nuclei (Groenewegen, 1988) and cortical regions including the 

hippocampal formation (Jay et al, 1992). This axo-axonal association maybe the site for 

the presynaptic interaction between glutamatergic and DA-ergic terminals within the 

PFC.
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Aj considerable T body of literature indicates that excitatory amino acids are able to 

facilitate the release of DA (Barbeito et al, 1990; Leviel et al, 1990; Krebs et al, 1991). 

Krebs and colleagues (1991) speculate that glutamate predominantly potentiates DA 

release by activating NMDA receptors located presynaptically on DA-ergic afférents. 

Microdialysis studies have demonstrated that glutamate, AMP A, kainate and NMDA 

increase the release of DA in the striatum and nucleus accumbens (Imperato et al, 1990; 

Moghaddam et al, 1990; Youngren et al, 1993; see Whitton 1997) whereas NMDA- 

receptor antagonists have been reported to increase DA turnover in vivo (Wedzony et al, 

1993; Hondo et al, 1994).

In the present study, the local application of NMDA (25 and 100 pM), reduced 

extracellular DA levels in the frontal cortex. Extracellular DOPAC levels were also 

sharply decreased following NMDA infusion reflecting decreased metabolism of DA 

within the frontal cortex nerve terminals. This is in agreement with similar findings by 

Jedema and Moghaddam (1996) who used local application of NMDA 20 and 100 pM. 

Findings in this current study and the study by Jedema and Moghaddam (1996) using 

the lower and higher concentrations of NMDA observed there was no difference in the 

effect on extracellular DA levels for either the lower or higher dose used. Higher 

concentrations of NMDA (> ImM) have been reported by Westerink et al, (1992) to 

increase extracellular levels of DA in the striatum. This increase in extracellular DA is 

associated with behavioural activation and this has been attributed to generalised 

neuronal excitation (Keefe et al, 1992).

It has also been demonstrated that the increase in the release of PFC DA during stress 

potentiates the outflow of glutamate (Moghaddam, 1993). The lack of an excitatory 

effect of NMDA on extracellular DA release in the PFC and the possibility that 

activation of NMDA receptors in the PFC may decrease the release of DA in this 

region, is consistent with reports that NMDA-receptor antagonists increase DA turnover 

in the PFC (Wedzony et al, 1993; Hondo et al, 1994; Nishijima et al, 1994). This 

suggests that the release of DA in the PFC is under tonic-inhibition by NMDA 

receptors. Jedema and Moghaddam, (1996) suggest that the efflux of DA in the PFC is 

may be modulated by non-NMDA receptors. The release of DA in the PFC may also be 

facilitated by AMP A and kainate receptors.
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Another explanation for the decrease in extracellular DA following NMDA infusion 

could be that the NMDA receptors may indirectly inhibit DA-ergic neurotransmission in 

the PFC. A number of studies have suggested that G ABA intemeurons may play a role 

in the interaction between glutamate and DA neurons in the preffontal cortex. NMDA 

receptors may regulate cortical GAB A release (Drejer and Honoré, 1987), and GABAa 

receptors, which demonstrate a relatively high density in the preffontal cortex (Bowery 

et al, 1987), may regulate preffontal DA release (Santiago et al, 1993). It has also been 

reported that NMDA (100 pM) increases the efflux of GAB A in the PFC (Santiago et 

al, 1993). Indeed, the same report found that GABA-receptor agonists inhibit, whereas 

GAB A antagonists facilitate the release of DA in the PFC (Santiago et al, 1993) 

suggesting other neurotransmitters may be involved in regulating extracellular DA 

levels in the PFC. Taken together, whatever the mechanism these observations suggest a 

close association between glutamatergic, gabaergic and dopaminergic pathways in the 

preffontal cortex.

It is widely accepted that extracellular DA release can be modulated by NMDA 

receptors (Feenstra et al, 1995; Whitton 1997; Pallotta et al, 1999; Kretschmer, 2000; 

Kretschmer et al, 2000). However, the relationship between NMDA receptors and DA 

efflux in the PFC has not been fully investigated. Therefore, 1 investigated the roles of 

NMDA receptors on DA receptor neurotransmission induced by the chronic 

administration of antidepressants.

3.3.3 Effects of NMDA on basal and paroxetine/clomipramine-induced DA and 

DOPAC efflux in the frontal cortex

NMDA, when infused after a single injection of paroxetine, generated no marked 

differences between the reduction in PFC DA release evoked by NMDA alone or 

NMDA + paroxetine treated groups. Similarly, in the case of clomipramine, rats acutely 

pre-treated with clomipramine displayed decreases in DA release similar in magnitude 

to those seen after administration of NMDA alone. However, when rats were 

subchronically (7-days) treated with paroxetine or clomipramine the decrease in 

extracellular DA following NMDA inftision in the frontal cortex was abolished. In fact, 

a tendency towards an increase in extracellular DA was observed following subchronic 

paroxetine treatment. Following chronic paroxetine or clomipramine treatment for 21 

days, extracellular DA levels increased six and five-fold respectively following acute
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NMDA receptor stimulation. Interestingly, no motor stimulation or sterotypical 

behaviour was seen. It would have been interesting to measure extracellular DA levels 

in the striatum during this pronounced increase in cortical DA as no behavioural 

changes were seen when this pronounced increase in DA efflux occurred. It is assumed 

that as NMDA was infused directly into the frontal cortex, the changes in DA efflux 

would most probably affect only the region examined. For both subchronic and chronic 

experiments, extracellular DOPAC efflux was increased following NMDA infusion but 

during the chronic study, the increase in extracellular DOPAC efflux was greater.

3.3.4 Drug holiday of paroxetine/clomipramine treatment. Any difference in 

NMDA-induced DA and DOPAC efflux in the frontal cortex?

It can be concluded from the results presented in this study that both chronic paroxetine 

and clomipramine treatment can cause adaptive changes in as little as 7-days which 

persist up to 21-days treatment. Using these observations it was decided to establish 

how long these changes persist after a ‘drug holiday’ period. A 48 hour drug holiday 

period and a 14 day drug holiday period were chosen to assess any changes on the 

NMDA-evoked DA response.

With regard to paroxetine, a 21 day chronic dosing regime was chosen to assess the 

effects of the drug holiday on NMDA-evoked DA and DOPAC efflux, while for 

clomipramine, a 14 day dosing regime was chosen. The main reason for this difference 

was to extend data from a previous study from our laboratory (Pallotta et al, 1999). The 

effect of a 14-day dosing regime as opposed to a 21-day dosing regime should not affect 

the drug holiday effects on NMDA-evoked DA efflux. This assumption is based on data 

from the work of Skolnick et al (1996) who report that adaptation in the radioligand 

binding properties of NMDA receptors revealed that a statistically significant change in 

the IC50 of glycine to inhibit [^H] 5,7-DCKA binding in the frontal cortex required 10 

and 7 days using citalopram and electroconvulsive shock (ECS) respectively. Thus, both 

the 21 day (in the case of paroxetine) and the 14 day (in the case of clomipramine) 

dosing regime would be presumed to cause NMDA-evoked changes to the drug holiday 

study. In order to directly compare paroxetine and clomipramine treatments and their 

effects on NMDA-evoked DA and DOPAC efflux, it was necessary to investigate the 

effect of a 14-day chronic clomipramine treatment on NMDA-evoked DA and DOPAC 

efflux.
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After a 14-day chronic treatment with clomipramine, basal extracellular DA levels were 

increased 2-fold. This is similar to a previous study in this laboratory (Pallotta et al, 

1999) in which a 15-day chronic clomipramine treatment increased basal extracellular 

DA levels dose-dependently. The increase of basal extracellular DA levels was similar 

to that of the 21 day study (refer section 3.3.1.3). Therefore, it is possible that the 

changes in basal dialysate DA reflect the fact that clomipramine, within this treatment 

time, is converted into a metabolite, desmethylclomipramine, which has a higher 

affinity for the NA transporter than the parent drug leaving excess NA around to 

mediate increases in extracellular DA in the frontal cortex (Pozzi et al, 1994). 

However, there was no effect on extracellular DOPAC basal levels.

Following the 14-day clomipramine study, the effect of NMDA on DA efflux was to 

reverse the sustained decrease seen with acute clomipramine + NMDA, though there 

was no increase similar to that seen in the 21-day study. These results were similar to 

previous work performed in this laboratory (Pallotta et al, 1999) who report that NMDA 

infusion was followed by an increase in dialysate DA efflux which was proportionately 

greater with the higher dose of 20 mg/kg clomipramine. A reason for the difference 

between the greater increase seen after the 21-day (10 mg/kg) and the 14-day higher 

dose (20 mg/kg) of clomipramine may be interpreted from the findings of Skolnicks and 

colleagues (1996) as a result of the 21 day dosing regime being able to further increase 

the IC50 of glycine to inhibit [^H] 5,7-DCKA binding in the frontal cortex, an effect 

which is dose dependent. This further change in NMDA receptor binding following the 

21 day study may cause the greater increase in DA efflux when the NMDA receptor is 

stimulated.

After a 21-day treatment, the paroxetine-treated rats with a 48 hour drug holiday 

showed similar levels of extracellular DA to those animals treated with a similar dose 

regimen, but without the drug holiday (200% compared to 176% above basal levels). 

Extracellular DA levels in rats treated with 21 day paroxetine including a 14 day drug 

holiday, were significantly lower than those values obtained following 21 day drug 

treatment alone. Nevertheless, extracellular DA concentration in the 21 day treated 

animals were significantly greater than basal. A similar trend was seen in the 

clomipramine-treated rats. After a 48-hour drug holiday an augmentation in dialysate 

DA levels that superceded those values obtained in rats treated with an identical dose 

regimen but without the drug holiday was seen. As with paroxetine, the clomipramine-
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treated rats with a 14-day drug holiday exhibited dialysate DA levels that were 

significantly greater than basal values. The increase in extracellular DA levels between 

the paroxetine and clomipramine groups were of similar magnitude.

During the 48 hour drug holiday period, we are confident that both paroxetine and 

clomipramine were extensively metabolised and excreted from the body. Therefore, 

over the 48 hour drug-free period we would expect plasma drug levels to fall to 

pharmacologically negligible levels. A study by Cremers et al, (2000) reported that 

citalopram plasma levels fell from 0.5 pM to 8.2 nM (the pharmacologically inactive 

plasma level is 0.01 pM) upon a 2 day washout period. When extracellular DA (and 

5-HT) levels were measured after a 48-hour ‘drug holiday’, these monoamines were still 

elevated compared to baseline. As mentioned above, it is unlikely, that the persistent 

effects of chronic paroxetine and clomipramine dosing on extracellular DA (and 5-HT) 

levels were caused merely by the accumulation and presence of higher plasma levels of 

paroxetine and clomipramine and their metabolites, as substantial allowance for their 

clearance was given after the last drug treatment. The mean elimination half life of 

paroxetine and clomipramine are 8 (Owens et al, 2000) and 6 (Weigmann et al, 2000) 

hours, respectively, in rats. As mentioned earlier, paroxetine’s metabolites (glucuronide 

and sulphate conjugates; Haddock et al, 1989) are inactive and clomipramine 

metabolite, desmethylclomipramine is active (Weigmann et al, 2000).

Following chronic treatment with paroxetine for 21 days with 48 hours drug holiday, 

extracellular DA levels increased transiently upon NMDA receptor stimulation. 

However, following chronic treatment with clomipramine for 14 days with 48 hours 

drug holiday, the decrease in extracellular DA levels seen in the acute study was 

abolished. After the same chronic drug treatments, but with a 14 day ‘drug holiday’, 

NMDA receptor stimulation caused a decrease in DA efflux in both paroxetine and 

clomipramine treated rats. For both 48 hour ‘drug holiday’ treatment regimes using 

paroxetine and clomipramine, extracellular DOPAC levels were increased following 

NMDA inftision. Similar results were found after a 14 day ‘drug holiday’ in which upon 

NMDA receptor stimulation, extracellular DOPAC levels increased.
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Changes induced by chronic treatment of paroxetine or clomipramine indicate that 

this protocol reaches an identical functional endpoint: dampening of NMDA receptor 

function. As explained in section 4.3.5, marked changes are occurring in the NMDA 

receptors following chronic AD treatment. The exact reason is as yet unknown as to 

why a robust increase in DA efflux was observed following NMDA infusion into the 

frontal cortex in rats treated chronically with paroxetine/clomipramine (see section 

4.3.3). However, the increase may be due to a change in NMDA receptor subunit 

composition which is accompanied by a robust reduction in NMDA-evoked increase 

in [Ca^^] (Brandoli et al, 1998). This effect can readily be mimicked by direct 

application of NMDA antagonists which have been reported to cause an increase in 

DA efflux in the frontal cortex (Wedzony et al, 1993; Hondo et al, 1994).

This finding may possibly suggest that a non-NMDA receptor effect may be 

occurring. For example, both paroxetine and clomipramine have anticholinergic 

effects (Gareri et al, 2000) and so the involvement of muscarinic receptors could 

explain the robust increase in DA efflux because muscarinic receptor antagonists 

increase DA efflux (Jackisch et al, 1992). However, interactions with other receptors 

[e.g sigma receptors; (Danysz et al, 1997)] are feasible.



___________________________________________________________________________Chapter 3

3.3.5 Changes in the NMDA receptor following chronic AD treatment?

It is clear that marked adaptive changes in NMDA receptor function occur in a manner 

whereby NMDA receptors regulate cortical DA efflux (Figure 3.17). This could explain 

the effect of both chronic paroxetine and clomipramine treatment on basal extracellular 

DA. Several studies suggest that AD-induced changes in the mesolimbic system depend 

on the stimulation of NMDA receptors. For example, studies using MK-801 have 

shown that chronic but not acute treatment prevents the development of behavioural 

supersensitivity to DA agonists induced by chronic imipramine treatment (D’Aquila et 

al, 1992; De Montis et al, 1993) and by challenges with ECT (Nimikos et al, 1992; 

D’Aquila et al, 1997). Nowak et al, (1993) confirm our theory that, after repeated AD 

treatment, some sort of NMDA adaptation is occurring. These authors find that chronic 

treatment with imipramine impairs the normal function of the NMDA receptor- 

associated cation channel in the nominal absence of agonists such as glycine and 

glutamate. In a recent review, (D’Aquila et al, 2000) it is clear that chronic treatment 

with ADs influences a variety of neurotransmitter systems (e.g. DA, 5-HT and NA) and 

induces a great number of adaptive changes in the brain, such as alterations in receptor 

sensitivity (e.g. increased D2 sensitivity) or receptor binding properties (e.g. NMDA). 

These alterations to the receptor proteins induce potentiation of dopaminergic 

neurotransmission, a conclusion which supports the results generated with both of the 

ADs investigated in this study.

In addition to behavioural work implicating the involvement of NMDA receptors in the 

action of ADs (Trullas and Skolnick, 1990; Papp et al, 1994; Layer et al, 1995), there is 

neurochemical evidence to support the hypothesis that marked and qualitative changes 

are occuring in the NMDA receptors following chronic AD treatment. For example, in 

mice it has been shown that chronic AD treatment leads to a decrease in the affinity of 

{^H}-5,7-DCKA for the NMDA receptor complex associated glycine site (Paul et al, 

1994), therefore presumably decreasing excitatory transmission via NMDA receptors in 

vivo. These data provide further evidence for the probable role of the NMDA receptor in 

the pathology of depression.

In conclusion, adaptive changes appear to occur in the NMDA receptor complex in as 

little as 7-days following paroxetine or clomipramine administration, an effect which 

continues for up to 21-days following initiation of treatment. However, these adaptive
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changes in NMDA receptor function appear to revert back to those observed for 

prechronic drug-treatment following a 14-day drug cessation. From this study these 

experiments suggest that ADs, either acutely or chronically administered, interfere with 

DA efflux. This study shows the effects of 2 different classes of ADs which both 

increase DA efflux in the frontal cortex following chronic treatment. This may reflect a 

potentiation of dopaminergic neurotransmission which may ultimately contribute to the 

therapeutic effects observed with these ADs, possibly via depression of glutamatergic 

transmission involving the NMDA receptor. Paroxetine and/or clomipramine may also 

mediate their clinical effects via an interaction with glutamatergic/dopaminergic 

neurons and this should be explored further.
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Figure 3.17 Sketch to show the effects of chronic antidepressants on DA 

transmission.

Chronic ADs (e.g. paroxetine and clomipramine) cause:

• An increase in D] receptor mRNA.

• An increase in density of D3 receptors

• A decrease in D, receptor number and sensitivity.

• A functional desensitisation of 5-HTia autoreceptors, resulting in disinhibition of 

neuronal firing.

• An increase in 5-HT will cause an increase of DA via 5-HT] receptors

• A decrease in NMDA receptor function which will cause an increase in 5-HT and

DA levels.

• These effects cause an overall INCREASE IN DA TRANSMISSION.
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4 The effect of acute and chronic paroxetine and clomipramine treatment on 

NMDA-evoked extracellular 5-HT and 5-HIAA release in the frontal cortex

4.1 Introduction

It is widely accepted that the neurotransmitter 5-HT plays a crucial role in the aetiology 

of depression with diminished brain serotonergic activity linked to the manifestation of 

major depression (Meltzer et al., 1987). Indeed, several classes of antidepressants as 

well as ECS, lead to a net increase in serotonergic transmission, supporting an important 

role of 5-HT in antidepressant therapy (Blier and de Montigny, 1994).

As mentioned previously, it has been found that NMDA receptor antagonists can be 

effective as antidepressants in a rodent behavioural model (Trullas and Skolnick, 1990). 

It has also been observed that chronic, but not acute treatment with a range of 

antidepressants including MAOIs, TCAs and SSRIs decreases the sensitivity of NMDA 

receptors (Paul et al, 1994). We have recently observed that chronic but not acute 

clomipramine decreases the effect of NMDA receptor activation on serotonergic efflux 

between the raphe nuclei and the frontal cortex (Pallotta et al, 2001). Collectively, this 

suggests that NMDA receptor dysfunction may play a role in the pathophysiology of 

depression. This is supported by the finding that there is a decreased affinity in NMDA 

receptor binding properties in the frontal cortex of depressed suicide victims (Nowak et 

al, 1995).

It is possible that interactions between the glutamatergic and serotonergic systems in the 

brain play a role in the development and potential treatment of depression. As an 

important role exists for the NMDA receptor in the regulation of 5-HT release in several 

brain regions (Whitton, et al., 1992ab; 1994b), it is likely that antidepressant related 

changes in NMDA receptors may alter NMDA-evoked changes in serotonergic 

transmission. Tao and Auerbach (1996) using microdialysis reported that infusion of 

NMDA into the dorsal raphe nucleus leads to a concentration-dependent increase in 

extracellular 5-HT in the same region and this was associated with an increase in 

extracellular 5-HT in the nucleus accumbens.

In the present study, using in vivo microdialysis in freely moving rats, I investigated 

whether two clinically used ADs, paroxetine, (a SSRI) and clomipramine, (a TCA) can
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alter NMDA receptor mediated 5-HT efflux following acute, subchronic (7-day) and 

chronic (21-day) treatment and how long these changes persist following cessation of 

drug treatment (‘drug holiday’).

The following questions were addressed:

• What are the effects of paroxetine when administered (systemically or 

locally in the PFC) on 5-HT efflux in the frontal cortex?

• What are the effects of NMDA infusion into the frontal cortex on 5-HT 

efflux in the same region?

• What are the effects of acute, subchronic and chronic treatment of ADs on 

NMDA-evoked changes on 5-HT efflux in the frontal cortex?

• If any changes are observed, are they reversed following AD (paroxetine) 

cessation and what is the time scale?

• Are these changes related specifically to the SSRI, paroxetine, or can we 

replicate the findings in using a different class of AD, for example the TCA, 

clomipramine?
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4.2 Results 

4.2.1 Basal levels of 5-HT and 5-HIAA measured in the frontal cortex

Basal dialysate 5-HT and 5-HIAA values were 19 ± 3 finoles/10 \xL and 3.1 ± 0.2 

pmoles/10 |iL (n=48). These values are similar to published results from our laboratory 

(Whitton et al, 1992a; Pallotta et al, 2001).

4.2.2 The effect of acute paroxetine on extracellular levels of 5-HT and 5-HIAA in 

the frontal cortex

Acute administration of lOmg/kg i.p. paroxetine failed to cause any change in 

extracellular 5-HT in the frontal cortex. However the higher dose (20 mg/kg) caused a 

decrease in extracellular 5-HT in the frontal cortex (Figure 4.1 A). This decrease in 

extracellular 5-HT (on average 84% of basal level) was sustained for the duration of the 

experiment. Two-way repeated ANOVA revealed no significant effects over main 

factor ‘time’ [F(ll,99)=1.39, p=1.88] or between treatments of the control and the 

lower dose of paroxetine [F(2,9)=5.13, p=0.052].

Paroxetine (10, 20 mg/kg) caused a significant decrease in extracellular 5-HIAA levels 

over time [F(ll,99)=10.89, p<0.05] and between doses [F(2,9)=17.41, p<0.05]. The 

higher dose was slightly more effective by 5% (Figure 4.IB).

Local infusion of paroxetine (100 pM) resulted in a maximal increase in extracellular 

5-HT of 283% of basal levels at 150 minutes after the start of infusion (Figure 4.2A). 

Two-way repeated ANOVA revealed significant effects over time [F(ll,66)=5.36, 

p<0.01] and between treatment [F(l,6)=8.04, p<0.01]. This increase of 5-HT was 

delayed but was sustained until the end of the experiment without returning to basal 

levels.

Finally, the local infusion of paroxetine did not affect extracellular 5-HIAA levels 

(Figure 4.2B).
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Figure 4.1 The effect of acutely administered paroxetine on extracellular A) 5-HT 
and B) 5-HIAA in the frontal cortex. The arrow indicates the time at which paroxetine 
(i.p) was administered. Data are the mean ± SEM of six-eight animals in each group. * 
indicates significantly different (p<0.05) from control.
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Figure 4.2 The effect of localised paroxetine infusion on extracellular A) 5-HT and 
B) 5-HIAA in the frontal cortex. Paroxetine was infused into the frontal cortex and 
extracellular 5-HTmeasured. The solid box indicates the period of paroxetine infusion. 
Data are the mean ± SEM of six animals in each group. * indicates significantly 
different (p<0.05) from control.
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4.2.3 The effect of acute clomipramine on extracellular levels of 5-HT and 5-HIAA 

in the frontal cortex

Acute administration of 10 and 20 mg/kg clomipramine caused an apparent decrease in 

extracellular 5-HT in the frontal cortex that was not significant (p>0.602) (Figure 4.3A). 

Two-way repeated ANOVA revealed no significant effects over main factor ‘time’ 

[F(ll,99)=0.6248, p=0.99] or between treatment [F(2,9)=0.538, p=0.602].

Clomipramine (10, 20 mg/kg) caused a dose-dependent significant decrease in 

extracellular 5-HIAA levels over time [F(ll,99)=12.20, p<0.05] and between doses 

[F(2,9)=31.12, p<0.05] (Figure 4.3B).

4.2.4 The effect of NMDA infusion into the frontal cortex on extracellular 5-HT 

and 5-HIAA

Direct, localised infusion of NMDA (lOOpM) for 30 minutes into the frontal cortex 

caused a statistically significant decrease of extracellular 5-HT levels (p<0.01).

The NMDA (lOOpM) infusion also caused a rapid, significant [F(l,6)=10,47, p<0.05] 

and persistent decline in extracellular 5-HT levels. This significant decrease (57% of 

basal) [F(l 1,66)=4.58, p<0.05] persisted until the end of the experiment (Figure 4.4A).

Figure 4.4B shows that NMDA infused into the cortex did not affect extracellular 

5-HIAA levels.
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Figure 4.3. The effect of acutely administered clomipramine (CIM) on 
extracellular A) 5-HT and B) 5-HIAA in the frontal cortex. The arrow indicates the 
time at which clomipramine (i.p) was administered. Data are the mean ± SEM of six- 
eight animals in each group. * indicates significantly different (p<0.05) from control.
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Figure 4.4 The effect of NMDA infusion in the frontal cortex on extracellular 
A) 5-HT and B) 5-HIAA in the frontal cortex. The bar denotes the duration of 
NMDA infusion. Data are the mean ± SEM of six-eight animals in each group. * 
indicates significantly different (p<0.05) from control.
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4.2.5 Effect of acute paroxetine on 100 pM NMDA-evoked changes in extracellular 

5-HT and 5-HIAA in the frontal cortex

When animals were given an acute dose of paroxetine (10 mg/kg) systemically prior to 

100 pM NMDA infusion into the frontal cortex, there was a rapid, statistically 

significant decrease in extracellular 5-HT levels (75% of basal) which did not differ 

from the effect of NMDA alone. Two-way repeated measure ANOVA revealed a 

significant effect between treatments [F(2,9)=62.17,p<0.001] and over main factor 

‘time’ [F(ll,99)=7.68, p<0.001]. However, towards the end of the experiment, 

extracellular 5-HT levels returned to control basal levels (Figure 4.5A). Although 

NMDA infusion did not affect extracellular 5-HIAA levels, unlike 5-HT, when animals 

were pretreated with acute systemic paroxetine there was a significant decrease in 

extracellular 5-HIAA levels (55% of basal) which lasted for the duration of the 

experiment. However, the lower dose of paroxetine caused a reduction in extracellular 

5-HIAA levels (Figure 4.5B).

4.2.6 Effect of acute clomipramine on 100 pM NMDA-evoked changes in 

extracellular 5-HT and 5-HIAA in the frontal cortex

When animals were given an acute dose of clomipramine (10 mg/kg) systemically prior 

to 100 pM NMDA infusion into the frontal cortex, there was a rapid, statistically 

significant decrease in extracellular 5-HT levels (64% of basal) which did not differ 

from the effect of NMDA alone [F(2,9)=15.99, p<0.01]. This effect was also significant 

over time [F(ll,99)=7.68,p<0.01]. This decrease lasted for the duration of the 

experiment (Figure 4.6A). Although NMDA infusion did not affect extracellular 

5-HIAA levels, unlike 5-HT, when animals were pretreated with acute systemic 

clomipramine there was a significant decrease in extracellular 5-HIAA levels (58% of 

basal) [F(2,9)=11.00, p<0.01] which lasted for the duration of the experiment (Figure 

4.6B).
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Figure 4.5 Effect of acute paroxetine (Parox) on 100 pM NMDA-evoked changes in 
extracellular A) 5-HT and B) 5-HIAA in the frontal cortex. NMDA was infused into 
the cortex and extracellular 5-HT and 5-HIAA measured. The arrow indicates the time 
at which paroxetine or vehicle was administered. The solid box indicates the period of 
NMDA infusion. Data are the mean ± SEM of six animals in each group. * indicates 
significantly different (p<0.05) from control.
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Figure 4.6 Effect of acute clomipramine (CIM) on 100 pM NMDA-evoked changes 
in extracellular A) 5-HT and B) 5-HIAA in the frontal cortex. NMDA was infused 
into the cortex and extracellular 5-HT and 5-HIAA measured. The arrow indicates the 
time at which clomipramine or vehicle was administered. The box indicates the period 
of NMDA infusion. Data are the mean ± SEM of six animals in each group. * indicates 
significantly different (p<0.05) from control.
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4.2.7 Effect of 7-day (sub-chronic) dosing of paroxetine on 100 pM NMDA-evoked 

changes in extracellular 5-HT and 5-HIAA levels in the frontal cortex

7-day dosing of paroxetine (lOmg/kg) resulted in significant reductions in extracellular 

5-HIAA levels while significantly increasing extracellular 5-HT levels.

In contrast to the above results, (4.2.2) extracellular 5-HT levels were increased to 

125% basal following the 7-day paroxetine treatment (Figure 4.7A) 

[F(2,9)=6.27,p<0.05]. NMDA infusion did not affect the extracellular 5-HT levels 

(Figure 4.7A) over time [F(ll,99)=1.09, p=0.371]. Extracellular 5-HIAA levels were 

seen to significantly decrease to 53% of basal levels [F(2,9)=62.48, p<0.05] following 

7-day paroxetine treatment. Here again, NMDA infusion had no effect on extracellullar 

5-HIAA levels (Figure 4.7B).

4.2.8 Effect of 21-day (chronic) dosing of paroxetine on 100 pM NMDA-evoked 

changes in extracellular 5-HT and 5-HIAA levels in the frontal cortex

After a 21-day chronic treatment with paroxetine, two marked changes were observed in 

relation to extracellular 5-HT levels. Firstly, extracellular 5-HT levels in this region 

were 150% (28 finol/10 pL) above basal values compared with vehicle treated controls 

(Figure 4.8A). Infusion of 100 pM NMDA evoked a significant change in extracellular 

5-HT when compared to NMDA alone [F(2,6)=16.05, p<0.01]. This was also 

significant over main factor ‘time’ [F(16,96)=24.21, p<0.001]. This was different to the 

control treatment in which 5-HT was significantly decreased with NMDA infusion, 

albeit for a short period.

Extracellular 5-HIAA levels were also increased significantly (p<0.05) to 134% basal 

after 21 day repeated administration of paroxetine. Although no change in extracellular 

5-HIAA levels was observed when NMDA was infused to saline treated rats, there was 

a transient significant decrease for 60 minutes in extracellular 5-HIAA levels after 

which extracellular 5-HIAA levels returned to basal levels (Figure 4.8B).
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Figure 4.7. Effect of 7-day (sub-chronic) dosing of paroxetine (Parox) on 100 pM 
NMDA-evoked changes in extracellular A) 5-HT and B) 5-HIAA in the frontal 
cortex. The solid box indicates the period of NMDA infusion. Data are the mean ± 
SEM of six animals in each group. * indicates significantly different (p<0.05) from 
control. # indicates significantly different from treatment basal (p<0.05).
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Figure 4.8 Effect of 21-day (chronic) dosing of paroxetine (Parox) on 100 pM 
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4.2.9 Effect of 21-day (chronic) dosing of paroxetine with 48 hours ‘drug holiday’ 

on 100 pM NMDA-evoked changes in extracellular 5-HT and 5-HIAA in the 

frontal cortex

Chronic dosing of 21 days with paroxetine with 48 hours of ‘drug holiday’ caused an 

increase in extracellular 5-HT and 5-HIAA levels.

After a 21 day chronic treatment with paroxetine (10 mg/kg) with 48 hours of ‘drug 

holiday’, two marked changes were observed in respect to 5-HT levels. Firstly, 

extracellular 5-HT levels were significantly increased to 165% basal ('SOfinol/pL) 

(p<0.01). Secondly, upon NMDA infusion, the decrease in 5-HT seen in saline-treated 

rats was no longer present after chronic administration of paroxetine.Repeated measures two-way 

ANOVA revealed significant main effects of treatment [F(2,9)=60.27, p<0.001] but not 

time [F(ll,99)=0.832, p=0.61]. NMDA infusion here was able to increase extracellular 

5-HT levels significantly. However, this increase lasted 60 minutes after which 

extracellular 5-HT levels returned to basal levels (Figure 4.9A).

The 21-day chronic treatment with paroxetine (10 mg/kg) with 48 hours of ‘drug 

holiday’ did not affect extracellular 5-HIAA levels. NMDA infusion had no significant 

effect on extracellullar 5-HIAA levels, either (Figure 4.9B).
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Figure 4.9 Effect of 21-day (chronic) dosing of paroxetine (Parox, 10 mg/kg) with 
48 hours ‘drug holiday’ on 100 pM NMDA-evoked changes in extracellular 
A) 5-HT and B) 5-HIAA. The box indicates the period of NMDA infusion. Data are 
the mean ± SEM of six animals in each group. * indicates significantly different 
(p<0.05) from control. # indicates significantly different from treatment basal (p<0.05).

148



__________________________________________________________________________ Chapter 4

4.2.10 Effect of 21-day (chronic) dosing of paroxetine with 14 days ‘drug holiday’ 

on 100 (iM NMDA-evoked changes in 5-HT and 5-HIAA levels in the frontal 

cortex

Chronic dosing of 21 days with paroxetine with 14 days of ‘drug holiday’ increased 

extracellular 5-HT while not affecting 5-HIAA levels.

After a 21 day chronic treatment with paroxetine (10 mg/kg) with 14 days of ‘drug 

holiday’, two marked changes were observed with respect to 5-HT levels. Firstly, 

extracellular 5-HT levels were significantly increased to 137% basal (22 finol/pL) 

[F(2,9)=6.76, p<0.05]. Secondly, NMDA infusion in these rats caused an immediate, 

short lasting decrease in extracellular 5-HT levels. This decrease lasted for 90 minutes 

with a maximal significant decrease of 35% before returning to pre-infusion basal levels 

(Figure 4.10A).

The 21 day chronic treatment with paroxetine (10 mg/kg) with 14 days of ‘drug 

holiday’ did not affect extracellular 5-HIAA levels. NMDA infusion had no effect on 

extracellullar 5-HIAA levels, either (Figure 4.1 OB).

4.2.11 Effect of 7-day (sub-chronic) dosing of clomipramine on 100 pM NMDA- 

evoked changes in extracellular 5-HT and 5-HIAA levels in the frontal cortex

7-day dosing of clomipramine (lOmg/kg) resulted in significant reductions in 

extracellular 5-HIAA levels while increasing extracellular 5-HT levels.

Extracellular 5-HT levels were increased to an average of 115 % basal (22finol/10pL) 

(average of first samples) following the 7-day clomipramine treatment (Figure 4.11 A) 

[F(2,9)=1.19, p=0.349]. NMDA infusion to these subchronically-treated rats did not 

affect the extracellular 5-HT levels over time [F(l 1,99)=0.479, p<0.912](Figure 4.8A).

Extracellular 5-HIAA levels decreased drastically to 42% basal (1.4pmol/10pL) 

[F(2,9)=84.98, p<0.01] following 7-day clomipramine treatment. Again here, NMDA 

infusion had no effect on extracellullar 5-HIAA levels [F(l 1,99)=1.51, p=0.138] (Figure

4.1 IB).
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Figure 4.10 Effect of 21-day (chronic) dosing of paroxetine (Parox, 10 mg/kg) with 
14 days ‘drug holiday’ on 100 pM NMDA-evoked changes in extracellular A) 5-HT 
and B) 5-HIAA in the frontal cortex. The box indicates the period of NMDA 
infusion. Data are the mean ± SEM of six animals in each group. * indicates 
significantly different (p<0.05) from control.
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Figure 4.11 Effect of 7-day (sub-chronic) dosing of clomipramine (CIM) on 
100 pM NMDA-evoked changes in extracellular 5-HT and 5-HIAA in the frontal 
cortex. The solid box indicates the period of NMDA infusion. Data are the mean ± 
SEM of six-eight animals in each group. * indicates significantly different from control 
(p<0.05). # indicates significantly different from treatment basal (p<0.05).
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4.2.12 Effect of 21-day (chronic) dosing of clomipramine on 100 pM NMDA- 

evoked changes in extracellular 5-HT and 5-HIAA levels in the frontal cortex

After a 21-day chronic treatment with clomipramine, two marked changes were 

observed in relation to extracellular 5-HT levels. Firstly, extracellular 5-HT levels in 

this region were 147% (32 finol/10 pL) above basal values compared with vehicle 

treated controls (Figure 4.12A). Secondly, infusion of NMDA (100 pM) into the frontal 

cortex caused no significant change in extracellular 5-HT in the frontal cortex (Figure 

4.12A). However, there was a significant difference between treatments [F(2,6)=4.69, 

p<0.05] and time [F(16,96)=17.29, p<0.001]. This was different to the control treatment 

in which 5-HT was significantly decreased with NMDA infusion.

Extracellular 5-HIAA levels increased significantly (p<0.05) to 129% basal after 21 day 

repeated administration of clomipramine. Upon infusion of NMDA into the frontal 

cortex, extracellular 5-HIAA levels decreased significantly. This maximal decrease of 

40% (2.2 pmol/lOpL) was achieved 90 minutes after the start of NMDA infusion and 

lasted the duration of the experiment (Figure 4.12B).

4.2.13 Effect of 14-day (chronic) dosing of clomipramine on 100 pM NMDA- 

evoked changes in extracellular 5-HT and 5-HIAA in the frontal cortex

Chronic dosing of 14 days with clomipramine caused an increase in extracellular 5-HT 

levels.

After a 14 day chronic treatment with clomipramine (10 mg/kg), two marked changes 

were observed in respect to 5-HT levels. Firstly, extracellular 5-HT levels were 

significantly increased to 213% basal (40finol/pL) [F(2,9)=l59.48, p<0.05]. Secondly, 

NMDA infusion in these rats was able to prevent the significant decrease in 

extracellular 5-HT levels in saline-treated rats. NMDA infusion in CIM-treated animals 

did not cause any change in extracellular 5-HT (Figure 4.13A).

The 14 day chronic treatment with clomipramine (10 mg/kg) did not affect basal 

extracellular 5-HIAA levels. NMDA infusion had no effect on extracellullar 5-HIAA 

levels, either (Figure 4.13B).
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4.2.14 Effect of 14-day (chronic) dosing of clomipramine with 48 hours ‘drug 

holiday’ on 100 pM NMDA-evoked changes in extracellular 5-HT and 5-HIAA in 

the frontal cortex

Chronic dosing of 14 days with clomipramine with 48 hours of ‘drug holiday’ caused an 

increase in extracellular 5-HT and 5-HIAA levels.

After a 14 day chronic treatment with clomipramine (10 mg/kg) with 48 hours of ‘drug 

holiday’, two marked changes were observed in respect to 5-HT levels. Firstly, 

extracellular 5-HT levels were significantly increased to 201% basal (39 finol/pL)

[F(2,9)=159.48, p<0.001]. Secondly, upon NMDA infusion, the decrease in 5-HT seen in 

saline-treated rats was no longer present after chronic administration of clomipramine 

(Figure 4.14 A).

The 21 day chronic treatment with clomipramine (10 mg/kg) with 48 hours of ‘drug 

holiday’ did not affect basal extracellular 5-HIAA levels. NMDA infusion had no effect 

on extracellullar 5-HIAA levels, either (Figure 4.14B).
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Figure 4.12 Effect of 21-day (chronic) dosing of clomipramine (CIM) on 100 jiM 
NMDA-evoked changes in extracellular A) 5-HT and B) 5-HIAA in the frontal 
cortex. The solid box indicates the period of NMDA infusion. Data are the mean ± 
SEM of six animals in each group. * indicates significantly different (p<0.05) from 
control. # indicates significantly different from treatment basal (p<0.05).
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Figure 4.13. Effect of 14-day (chronic) dosing of clomipramine (CIM) on 
100 pM NMDA-evoked changes in extracellular A) 5-HT and B) 5-HIAA in the 
frontal cortex. The box indicates the period of NMDA infusion. Data are the mean ± 
SEM of six animals in each group. * indicates significantly different (p<0.05) from 
control. # indicates significantly different from treatment basal (p<0.05).
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Figure 4.14 Effect of 14-day (chronic) dosing of clomipramine (CIM, 10 mg/kg) 
with 48 hours ‘drug holiday’ on 100 pM NMDA-evoked changes in extracellular 
A) 5-HT and B) 5-HIAA in the frontal cortex. The solid box indicates the period of 
NMDA infusion. Data are the mean ± SEM of six animals in each group.* indicates 
significantly different (p<0.05) from control. # indicates significantly different from 
treatment basal (p<0.05).
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4.2.15 Effect of 14-day (chronic) dosing of clomipramine with 14 days ‘drug 

holiday’ on 100 pM NMDA-evoked changes in 5-HT and 5-HIAA levels in the 

frontal cortex

Chronic dosing of 14 days with clomipramine with 14 days of ‘drug holiday’ caused an 

increase in basal extracellular 5-HT and 5-HIAA levels.

After a 14 day chronic treatment with clomipramine (10 mg/kg) with 14 days of ‘drug 

holiday’, two marked changes were observed in respect to 5-HT levels. Firstly, basal 

extracellular 5-HT levels were increased to 126% basal (23 finol/lOpL). Secondly, 

NMDA infusion in these rats caused an immediate, persistent decrease in extracellular 

5-HT levels. This decrease lasted the duration of the experiment with a maximal 

significant decrease of 48% basal (12 finol/lOpL) which lasted the duration of the 

experiment (Figure 4.15A). Repeated measure two-way ANOVA revealed significant 

main effects of treatment [F(2,9)=l 1.94, p<0.01] and time [F(l 1,99)=7.11, p<0.001].

The 14 day chronic treatment with clomipramine (10 mg/kg) with 14 days of ‘drug 

holiday’ did not affect basal extracellular 5-HIAA levels significantly (107% basal). 

NMDA infusion had no effect on extracellullar 5-HIAA levels, either (Figure 4.15B).
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Figure 4.15 Effect of 14-day (chronic) dosing of clomipramine (CIM, 10 mg/kg) 
with 14 days ‘drug holiday’ on 100 |iM NMDA-evoked changes in extracellular A) 
5-HT and B) 5-HIAA in the frontal cortex. The box indicates the period of NMDA 
infusion. Data are the mean ± SEM of six animals in each group. * indicates 
significantly different (p<0.05) from control. # indicates significantly different from 
treatment basal (p<0.05).

158



Chapter 4

Drug Treatment 5-HT 5-HIAA

Paroxetine 10 mg/kg N/E

Paroxetine 20 mg/kg i i

Paroxetine 100 pM t N/E

NMDA 100 pM i ;

NMDA 25 pM * 10 % i i

Paroxetine 10 mg/kg + 
NMDA 100 pM

i

Paroxetine 20 mg/kg +  ̂
NMDA 100 pM

N/E

Clomipramine 10 mg/kg
1 i

Clomipramine 20 mg/kg i

Clomipramine 10 mg/kg + 
NMDA 100 pM
7 day Paroxetine 10 mg/kg 

+ NMDA 100 pM

125% Basal 

N/E

53 % Basal
N/E

21 day Paroxetine 10 mg/kg 
+ NMDA 100 pM

150 % Basal
N/E

134 % Basal 
Transient -I

21 day Paroxetine 10 mg/kg 
+ NMDA 100 pM.
Drug Holiday of 48 hours

165% Basal 
N/E

113 % Basal
N/E

21 day Paroxetine 10 mg/kg 
+ NMDA 100 pM.
Drug Holiday of 14 days

137% Basal 
>1

103 % Basal 
N/E

7 day Clomipramine 10 mg/kg + 
+ NMDA 100 pM

115 % Basal
N/E

42 % Basal 
N/E

14 day Clomipramine 10 mg/kg + 
NMDA 100 pM

147 % Basal
N/E

129 % Basal

21 day Clomipramine 10 mg/kg + 
NMDA 100 pM

147 % Basal
N/E

129 % Basal

14 day Clomipramine 10 mg/kg 
+ NMDA 100 pM.
Drug Holiday of 48 hours

201 % Basal 
N/E

95 % Basal 
N/E

14 day Clomipramine 10 mg/kg 
+ NMDA 100 pM.
Drug Holiday of 14 days

126 % Basal 107 % Basal
N/E

Table 4.1 Summary of chapter 4 results
t and I Increase and decrease in efflux respectively. 
N/E No effect in efflux.

* Data not shown
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4.3 Discussion

4.3.1 The effect of acute, subchronic (7-day) and chronic (21-day) paroxetine and 

clomipramine treatment on extracellular 5-HT and 5-HIAA changes in the frontal 

cortex

Clinical depression has been classically linked with a dysfunction of monoaminergic 

systems within the brain. Evidence from several sources indicates that the disruption of 

5-HT mediated neurotransmission in the brain significantly contributes to the 

pathophysiology of depression (Lopez-Ibor, 1992). Chronic but not acute treatment with 

SSRIs and TCAs leads to AD effects (Blier and de Montigny, 1994).

There is much experimental evidence that acute treatment with clomipramine, 

fluvoxamine, sertraline and citalopram markedly raises the extracellular concentrations 

of 5-HT in the cell body region on 5-HT neurons, with little or no effect on dialysate 

5-HT in the frontal cortex (Adell and Artigas, 1991; Invemizzi et al, 1992; Bel and 

Artigas, 1992). This study confirms these observations in that acute paroxetine 

administration caused a dose-dependent decrease in both 5-HT and 5-HIAA levels in 

the frontal cortex, while acute clomipramine had no effect on 5-HT efflux but rather 

caused a dose-dependent decrease in 5-HIAA efflux. A similar microdialysis 

experiment by Roberts and colleagues (1998) using the same dose (10 mg/kg i.p.) of 

paroxetine concurs with these results in that acute paroxetine had no effect on 5-HT 

efflux in the guinea-pig. However, my observations conflict with those of Malagie and 

colleagues (2001). These authors report that upon a low dose (1 mg/kg) of paroxetine 

given acutely, extracellular 5-HT levels increased to 270% of basal levels. The main 

reason for these differences could be in the different methodologies used. These authors 

added 1 pM citalopram to their aCSF composition in order to artificially raise 

extracellular 5-HT levels to a detectable level. The presence of citalopram probably 

modified the effects of paroxetine on extracellular 5-HT efflux as reported by several 

authors (Invemizzi et al, 1992; Kreiss et al, 1993). A recent microdialysis study by 

Hajos-Korcsok et al (2000) reported that, upon administration of acute paroxetine (5 

mg/kg S.C.), dialysate 5-HT levels were elevated in the hippocampus, quite different to 

the results here which demonstrated no change of dialysate 5-HT levels in frontal cortex 

upon administering paroxetine (10 mg/kg i.p.). This may be due to the higher density of 

5-HT receptors in the hippocampus compared to the frontal cortex (Hrdina et al, 1990),
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or to the greater density of the inhibitory 5-HTia autoreceptors in the dorsal raphe, 

which innervates the frontal cortex, compared to the median raphe which innervates the 

hippocampus. Ramaiya and colleagues (1997) observed an increase of 400% in 

extracellular 5-HT levels in the rat striatum after acute paroxetine (10 mg/kg i.p.) 

treatment. As far as clomipramine is concerned, my data is most similar to that of Adell 

and Artigas (1991), and to previous studies in this laboratory (Pallotta et al, 2001) 

which report that after acute administration of clomipramine (10 and 20 mg/kg i.p.) 

there was no significant change in extracellular 5-HT levels in the frontal cortex. In 

light of these findings, it is evident that there is regional diversity with regard to the 

effect of acute paroxetine in different brain regions and this may be due to a differential 

role of somatodendritic 5-HTia autoreceptors.

In this study, acute treatment with paroxetine/clomipramine (10 and 20 mg/kg i.p.) 

caused a dose-dependent decrease in 5-HIAA efflux. During the final preparation of this 

manuscript, a study by Bymaster and colleagues (2002) report that acute administration 

of several SSRIs (including paroxetine, fluoxetine, citalopram and sertraline) decreased 

levels of 5-HIAA in the frontal cortex. The same finding was reported by Adell and 

Artigas (1991) following acute clomipramine administration: 5-HIAA efflux in the 

frontal cortex was reduced dose-dependently. These findings are consistent with the 

idea that blockade of 5-HT uptake by the SSRIs (and clomipramine) results in decreased 

firing of 5-HT neurons due to autoreceptor activation (Chaput et al, 1986).

However, it is worth addressing what a change in 5-HIAA dialysate actually reflects? 

For example, the relationship, or the lack thereof, between changes in neurotransmitter 

and metabolite levels is not often discussed in in vivo experiments, as the microdialysis 

technique has frequently demonstrated a lack of correlation between direction or 

magnitude of changes in neurotransmitter and metabolite levels (Westerink and Justice, 

1991). However, this is not surprising because dialysate metabolite levels, including 

those of 5-HIAA, are not dependent on the amount of neurotransmitter that is released 

and taken up again. In addition, 5-HIAA is present in high concentrations in all brain 

areas with the basal concentration of 5-HIAA in the rat brain being 200-1000 times 

higher than that of 5-HT, which makes it difficult to measure small changes in the 

5-HIAA concentration (Ross and Stenfors, 1997). 5-HIAA is detected in brain areas 

where there is no 5-HT indicating that 5-HIAA diffuses easily and could originate from 

distant areas. Thus, these reasons suggest it is highly unlikely that a simple relationship
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exists between dialysate concentrations of transmitter and metabolite (Rollema, 1997). 

Generally speaking, levels of metabolites are not always reliable parameters to estimate 

actual transmitter release in a specific brain region.

4.3.1.2 Different routes of administration: Local infusion

Adell and Artigas (1991) suggested that antidepressants have different effects on 

dialysate 5-HT release depending on the route of administration. This finding supports 

these results that the local infusion of paroxetine into the frontal cortex increased 

extracellular 5-HT levels whilst systemic administration had no significant effect. From 

these results, it is clearly evident that there is a peak delayed increase in extracellular 5- 

HT release upon local paroxetine infusion. Therefore, the increase of dialysate 5-HT in 

the frontal cortex after local application of paroxetine is most probably the result of the 

in vivo blockade of the 5-HT reuptake, since no promotion of 5-HT release by the drug 

has been observed (Baker et al., 1977). An increase in extracellular 5-HT upon local 

infusion was also expected as it is assumed that paroxetine would by-pass the effects of 

an increase in raphe 5-HT which under systemic administration would decrease the 

firing rate and consequently the amount of dialysate 5-HT in the frontal cortex. Raphe 

nuclei are enriched in 5-HTia receptors (Pazos and Palacios, 1985), and the affinity of 

5-HT for them is in the low nanomolar range (Pedigo et al., 1981). Therefore, the 

assumed increase in extracellular 5-HT in raphe nuclei after systemic paroxetine 

administration could activate 5-HTia receptors located in cell bodies and dendrites, 

which in turn would lead to an inhibition of cell firing (Scuvee-Moreau and Dresse, 

1979). This would then reduce or even inhibit the release of 5-HT in the frontal cortex. 

Several studies have reported different effects in terminal areas by systemically 

administered SSRIs (e.g. Fuller, 1994). This is generally attributed to a divergent 

involvement of release-controlling somatodendritic 5-HTia autoreceptors in the raphe 

nuclei (Kreiss and Lucki, 1994). The 300% increase of extracellular 5-HT above basal 

levels following local infusion of paroxetine in our study contrasts with the lack of 

effect following acute, systemic paroxetine administration which suggests a strong 

involvement of somatodendritic 5-HTia receptor-mediated feedback. Thus, upon local 

infusion there was a 3-hour lag between the onset of drug perfusion and the maximal 

increase in dialysate 5-HT. As paroxetine is highly lipophilic molecule and tends to 

accumulate in the tissue (Ramaiya et al., 1997), it can be retained in the glial cells after 

diffusing out of the probe and so its pharmacological effect can be delayed. A similar
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phenomenom was observed with local infusion of clomipramine, which is also 

lipophilic (Adell and Artigas, 1991).

Adell and Artigas (1991) also report a decrease in extracellular 5-HIAA levels in the 

frontal cortex following clomipramine dosing which supports these findings. A similar 

decrease was observed when clomipramine was administered through the probe in the 

raphe and the resultant extracellular 5-HIAA levels were measured in the frontal cortex. 

In this study, paroxetine infused into the frontal cortex, which differed in effect from 

that seen following systemic administration only, caused a transient decrease in 

extracellular 5-HIAA levels. This difference could be due to several reasons. Firstly, 

paroxetine has a higher affinity than clomipramine for the 5-HT transporter (K jS= 0.05 

and 0.47 nM respectively, Owens et al, 1997). Secondly, there were methodological 

differences. Adell and Artigas (1991) use a lower dose of 10 and 40 pM clomipramine 

and the clomipramine was infused directly into the raphe, which as mentioned before, 

has a much higher density of 5-HTia autoreceptors. Overall dialysate extracellular 

5-HIAA levels tend to decrease following paroxetine treatment. Since 5-HIAA is 

formed partly after reuptake of 5-HT (Fuller and Wong, 1977), decreases in 5-HIAA are 

possibly derived from the reduced reuptake of 5-HT after paroxetine treatment.

4.3.1.3 At the synapse

Many microdialysis experiments have demonstrated that a single exposure to SSRIs, 

such as paroxetine, leads to an increase in extracellular 5-HT levels near the cell bodies 

and dendrites of serotonergic neurones in the raphe nuclei compared to brain regions 

innervated by serotonergic nerve terminals such as the frontal cortex (e.g. citalopram: 

Invemizzi et al, 1992; fluoxetine: Malagie et al, 1995; fluvoxamine: Bel and Artigas, 

1992; paroxetine: Gartside et al, 1995). SSRIs increase 5-HT levels in the vicinity of 

serotonergic neurones by blocking the 5-HT carrier (Fuller, 1994). It is interesting to 

note that the administration of TCAs such as clomipramine and imipramine result in 

large increases in extracellular 5-HT levels in terminal regions including the frontal 

cortex only when doses of 10 mg/kg or higher are used (Bel and Artigas, 1996). In 

addition, 5-HTia autoreceptors on 5-HT cell bodies and 5-HTib receptors on axon 

terminals become increasingly activated. Thus when 5-HTia autoreceptors are 

stimulated, a reduction in the firing rate of 5-HT neurones occurs (Sprouse and 

Aghajanian, 1987) as well as a reduction in the release of extracellular 5-HT (Bosker et
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al, 1996) and a reduction of 5-HT synthesis (Hutson et al, 1989). When 5 -H T ib 

presynaptic receptors are stimulated, 5-HT release is also decreased (Limberger et al, 

1991). The existence of a neuronal feedback loop between projection areas and raphe 

nuclei has been hypothesised by Blier et al (1987). The raphe nuclei are known to be 

enriched with 5-HT]a autoreceptors displaying a high affinity for 5-HT in the low 

nanomolar range (Pazos and Palacious, 1985, Pedigo et al, 1981). Bel and Artigas 

(1992) observed that fluvoxamine, an antidepressant devoid of noradrenergic activity in 

vivo (Jordan et al, 1994; see Stanford, 1996), preferentially increased both raphe and 

fi’ontal cortex 5-HT levels, but the increase in the raphe was several-fold that in the 

fi"ontal cortex (Bel and Artigas, 1992). However, in a microdialysis study performed by 

Malagie and colleagues (2000), a single dose of paroxetine induced similar increases in 

extracellular 5-HT in both the frontal cortex and raphe nuclei. This was an unusual 

finding which the authors were unable to explain.

4.3.1.4 Duration of treatment

7-day sub-chronic and 21-day chronic paroxetine and clomipramine treatment were 

observed to increase extracellular 5-HT in the frontal cortex. Interestingly, both 

paroxetine and clomipramine 7-day and 21-day dosing regimens gave similar relative 

changes in extracellular 5-HT and 5-HIAA levels.

These findings of an increase in extracellular 5-HT levels agree with previous work 

conducted both in our laboratory by Pallotta et al (2001) and also in the work of Gur et 

al (1999b) who report a 2-fold increase in extracellular 5-HT levels in the frontal cortex 

after chronic administration of 10 mg/kg clomipramine for 14 days (Pallotta et al, 2001) 

and 28 days (Gur et al, 1999b). Although the literature does not report any study 

measuring the effect of repeated paroxetine treatment in the frontal cortex, Hajos- 

Korcsok et al, (2000) reported that basal extracellular 5-HT levels were increased 2-fold 

in the hippocampus upon 14-day chronic treatment with paroxetine (5 mg/kg s/c twice 

daily). Chronic imipramine has also been shown to initiate larger increases in terminal 

regions, with lower doses than those used in acute studies (Bel and Artigas 1993, 1996). 

A study of the effects of chronic fluvoxamine at a dose of 1 mg/kg for 14 days showed 

increases in frontal cortex extracellular 5-HT. These studies suggest that chronic AD 

treatment raises serotonergic levels in the frontal cortex and which may partially 

contribute towards its therapeutic effect.
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The 7-day paroxetine treatment decreased the extracellular 5-HIAA levels while the 

21-day paroxetine treatment slightly increased extracellular 5-HIAA levels. There were 

contrasting effects between the 7-day and 21-day paroxetine and clomipramine 

treatment with regard to extracellular 5-HIAA levels. Basal extracellular 5-HIAA levels 

are decreased by 60% following the 14-day paroxetine treatment (Hajos-Korcsok et al, 

2000). The decrease in extracellular 5-HIAA levels following chronic paroxetine 

treatment is in contrast to these findings. In this study, extracellular 5-HIAA levels were 

measured from the fi*ontal cortex while Hajos-Korcsok and colleagues (2000) measured 

levels in the hippocampus. Once again it is evident that the same drug has different 

actions in different brain regions. This is not surprising due to different innervating 

pathways. The modest increase in extracellular 5-HIAA levels seen in this study is in 

agreement with a study by Nomikos et al (1991) who saw a similar increase in 5-HIAA 

levels in the nucleus accumbens and the striatum after a 2 week chronic treatment with 

desipramine. Imipramine, the TCA, when given acutely by these authors reduced 

dialysate 5-HIAA levels in both the raphe and the fi*ontal cortex, with the effects more 

marked in the latter brain region (Bel and Artigas, 1996). However, when the drug 

(4 mg/kg) was given over a 2-week period using minipumps, the dialysate extracellular 

5-HIAA levels in both the raphe and the frontal cortex did not differ from control. ADs 

clearly affect extracellular 5-HIAA levels differently whether given acutely or 

chronically, whether pulse injection or continuous infusion and are region specific.

There are no other studies in animals that report the effect of chronic paroxetine 

treatment on extracellular 5-HIAA levels. However, a clinical study in patients by 

Lundmark et al, (1994) concludes that paroxetine reduces 5-HIAA levels firom the CSF 

in depressed patients after 3 weeks of treatment. This decrease in CSF 5-HIAA was 

expected as preclinical work with paroxetine indicated a selective serotonin neuronal 

reuptake inhibiting effect in vitro. This is different to my 21 day study but agrees with 

my 7-day study. Interestingly, a recent clinical study by Backman and colleagues (2000) 

report that the reported reduction in CSF 5-HIAA after AD treatment does not persist 

during long-term treatment. These authors also report that 5-HIAA seemed to return to a 

higher level when the drug treatment continued. Unfortunately, these authors were 

unable to fully interpret or evaluate the validity of their findings. The only hypothesis 

that could be suggested to explain the variance of 5-HIAA levels after a 7-day and 21- 

day treatment with paroxetine or clomipramine is the role of kynurenines in the action 

of these ADs (see Maroni, 1999; Stone, 2001). Any pharmacological manipulation
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which alters the amount of 5-HT in neurons (as observed with repeated paroxetine and 

clomipramine treatment in this study) will have a secondary effect on the activity of 

synthetic enzymes of the kynurenine cycle which may in turn affect 5-HIAA levels. 

Thus paroxetine and clomipramine may have changed the tryptophan levels and/or 

5-HIAA concentrations varied due to a change in activity and concentration of the 

components of the kynurenine pathway.

In conclusion, it is evident that there is a difference in outcome in terms of extracellular 

5-HT levels during acute and chronic dosing regimens. In recent years, amongst the 

monoamines associated with the monoamine hypothesis of depression the case for a 

pivotal place for 5-HT, largely as a result of recent drug developments, appear to have 

been pre-eminently strengthened. This increase in extracellular 5-HT levels observed 

after paroxetine and clomipramine treatment may contribute to the therapeutic effects of 

these drugs in the clinic.

4.3.1.5 Adaptation/Genetic regulation?

Chronic treatment therefore reverses the decrease in frontal cortex extracellular 5-HT 

levels observed following the ADs used in this study (acute paroxetine and 

clomipramine treatment), suggesting that some form of adaptation within the system is 

occurring. The data suggests that paroxetine and clomipramine enhance the 5-HT 

ftmction in the frontal cortex after chronic treatment. Prolonged administration of 

paroxetine may induce adaptive changes either in a serotonergic nerve terminal in the 

cortical region or in the raphe nuclei region. Extracellular unitary recordings and {^H}- 

paroxetine binding assays by Piheyro et al (1994) have shown that repeated 

administration of paroxetine results in adaptive changes in the form of down-regulation 

of the 5-HT transporter. More recently, Benmansour and colleagues (1999) report that 

after a 21-day paroxetine (10 mg/kg) treatment the SERT is downregulated. In addition 

Lesch et al (1993) found decreased 5-HT transporter mRNA levels in the raphe nuclei 

following long term AD administration to rats. This suggests ADs regulate the 5-HT 

transporter at the level of gene expression. This evidence would confirm the theory that 

adaptive changes (e.g. desensitisation of 5-HTia autoreceptors) must occur before the 

clinical benefit of antidepressants can be seen (Artigas et al, 1996, Blier and de 

Montigny, 1994).
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Another example of an adaptive process occurring was suggested by Edwards et al 

(1991). These authors showed that the induction of learned helplessness in rats was 

associated with up-regulation of 5 -H T ib receptors in the cortex and hippocampus while 

Neumaier et al (1997) found increased levels of 5 -H T ib receptor mRNA specifically in 

dorsal raphe of learned helplessness rats, with no changes in the frontal cortex or 

hippocampus. These results implied a specific increase in 5 -H T ib autoreceptors as they 

are synthesised in the cell bodies of serotonergic neurones in the raphe nucleus and then 

transported to the nerve terminal areas. Alternatively, 5 -H T ib receptors are synthesised 

in the cell bodies of non-serotonergic neurones in brain regions including the 

hippocampus. It is worth noting, clomipramine has been shown to alter presynaptic 

5 -H T ib receptor sensitivity in rat hypothalamus and 5 -H T ia  hippocampus (Newman et 

al, 2000). Thus this suggests that these effects are highly region-specific.

The increase in frontal cortex extracellular 5-HT levels initiated by antidepressants (e.g. 

paroxetine and clomipramine) may be potentiated by co-administration with a 5-HTia 

autoreceptor antagonist (Artigas et al, 1994, Blier and Bergeron, 1995). Anatomical data 

indicate that the frontal cortex is innervated by 5-HT neurones of the dorsal raphe 

nucleus in an exclusive manner (Imai et al, 1986). The effect of co-administrating a 

5-HTiA antagonist is analagous to the desensitisation of raphe 5-HTia autoreceptors by 

chronic administration with SSRIs (Blier and de Montgny, 1994). Pindolol prevents the 

autoinhibition of dorsal raphe serotonergic neurones produced by SSRIs and TCAs and 

therefore potentiates their effects in various brain areas (Artigas et al, 1994; Romero et 

al, 1996). The process of blocking 5-HT]a autoreceptors is thought to contribute 

towards the therapeutic effect of pindolol as an adjunct to AD therapy (Artigas et al, 

1994; Blier et al, 1997). A study performed by Romero and Artigas (1997) using the co

administration of paroxetine/ clomipramine in addition to other ADs such as citalopram, 

fluoxetine and duloxetine and the 5-HTia antagonist WAY 100635 support the 

hypothesis that selective 5-HTia autoreceptor antagonists may augment the clinical 

effects of SSRIs by increasing serotonergic transmission. This effect takes place 

preferentially in forebrain areas with selective innervation from the dorsal raphe nucleus 

(e.g. cortex). These findings and others (Gartside et al, 1995; Romero et al, 1996; 

Romero and Artigas, 1997; Millan et al, 1998; Cryan et al, 1999) indicate that the 

effects of ADs can be potentiated by the 5-HT] a autoreceptor blockade and therefore 

emphasises the role of this receptor in the mechanism of action of ADs.
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4.3.2 The effects of NMDA infusion on basal 5-HT and 5-HIAA efflux in the 

frontal cortex

The discharge of 5-HT neurons may be regulated under physiological conditions by 

EAA inputs to the raphe (Levine and Jacobs, 1992). Evidence from in vitro studies of 

cultured raphe neurons indicates that NMDA can stimulate 5-HT release (Becquet et a l , 

1993). The role of NMDA receptors in regulating transmission in ascending 

serotonergic pathways is evidently complex since Lejeune and colleagues (1994) 

observed that NMDA receptor antagonists increase serotonergic transmission to the 

striatum but did not, however, observe any effect of NMDA alone on firing of DRN 

neurons. Research investigating the role of NMDA on 5-HT transmission has been 

reviewed in a number of CNS regions including the raphe and the hippocampus and 

have included the effects of infusing NMDA into the raphe and measuring the resultant 

change in 5-HT extracellular release in the frontal cortex (Tao and Auerbach, 1996; 

Pallota et al, 1998). The latter authors have suggested that 5-HT release in the raphe 

nuclei is dependent on neuronal discharge, and regulated by autoreceptors and GABA 

as well as EAAs. This finding has been supported by previous work (Nishikawa and 

Seaton, 1985; Bosker et al, 1994).

NMDA receptor antagonists and tetradoxin (TTX) used in the studies of Becquet et al 

(1990, 1993) suggest that NMDA-induced changes in extracelluar 5-HT release are due 

to direct excitatory effects on 5-HT cell bodies and indirect inhibition of 5-HT release in 

some terminal sites. For this reason, microdialysis measurements in the raphe, as 

opposed to the frontal cortex, have been favoured as localised effects of receptor ligands 

can be examined more extensively to test this hypothesis.

In this study, infusion of NMDA (100 pM) into the frontal cortex caused a statistically- 

significant decrease in extracellular 5-HT efflux. Little change in extracellular 5-HIAA 

levels was seen following NMDA infusion. This is in agreement with a previous study 

in our laboratory by Pallotta et al (1998) and is further supported by the findings of Tao 

and Auerbach (1996) who reported that when NMDA is infused into the frontal cortex, 

nucleus accumbens or hippocampus 5-HT levels are found to decrease in these forebrain 

sites. However, the maximal decrease in extracellular 5-HT in the frontal cortex 

obtained in this study was slightly greater compared to that found by the authors using 

the same dose of NMDA (100 pM) as ourselves. This could be due to methodological
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differences in which the authors used ketamine as their anaesthetic which could have 

possibly retarded the NMDA receptors. The dose of NMDA used in our study may 

seem high relative to effective concentrations determined from in vitro binding studies. 

However, it is important to note that NMDA was infused at a slow rate (0.8 pL/min) via 

a short segment of dialysis membrane that represents a significant barrier to diffusion. 

Thus concentrations of low molecular weight substances, such as NMDA, fall sharply 

outside the probe and are close to zero at distances between 1.0 and 1.5 mm from the 

dialysis probe (Dykstra et al, 1992).

Previous work in this laboratory involving local infusion of NMDA into the raphe have 

shown that NMDA has a biphasic effect on extracellular 5-HT release in the raphe and 

frontal cortex (Pallotta et al, 1998; 2001). At lower concentrations of NMDA (25 pM), 

infusion leads to a marked transient decrease in extracellular 5-HT levels followed by a 

prolonged increase in terminal frontal cortex 5-HT efflux. It can be seen that the role of 

NMDA receptors in regulating transmission in ascending serotonergic pathways is 

evidently complex since Lejeune et al (1994) observed that NMDA receptor 

antagonists increased serotonergic transmission to the striatum but did not elicit any 

effect of NMDA alone on DRN neurones. The actions of NMDA on 5-HT release are 

blocked by the selective NMDA receptor antagonist 2-aminophosphonopentanoic acid 

(D-AP5) indicating the receptor specificity in our experiments (Pallotta et al, 1998). 

Presumably, localised infusion of lower doses of NMDA into the raphe would not 

activate all 5-HT neurones with projections to the specific forebrain sites where our 

dialysis probe would be implanted. At higher doses of NMDA, there could have been a 

more robust stimulation of the 5-HT neurones with forebrain projections. The data 

suggest that the degree of NMDA receptor activation results in dramatically different 

outcomes with regard to serotonergic transmission to the frontal cortex and there 

appears to be a differential role for the 5-HTia receptor in regulating these effects. It 

could be possible due to different NMDA receptor subtype populations. Each subtype 

will be localised to a particular region/pathway and each subtype will have a different 

affinity for the agonist: it depends on what is a ‘high dose’ of NMDA and what is a ‘low 

dose’ as to whether one subtype or another is activated.
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4.3.3 The effects of acute, subchronic and chronic paroxetine and clomipramine 

treatment on basal and NMDA receptor activation on serotonergic transmission in 

the frontal cortex

As mentioned previously, it has been found that NMDA receptor antagonists are as 

effective as antidepressants in a rodent behavioural model (Trullas and Skolnick, 1990). 

It has been shown that chronic, but not acute treatment with a range of antidepressants 

including SSRIs decreases the sensitivity of NMDA receptors (Paul et al, 1994). This 

suggests that NMDA receptor dysfunction may play a role in the pathophysiology of 

depression. This is supported by the finding that NMDA receptors are abnormal in the 

frontal cortex of depressed suicide victims (Nowak et al, 1995), and suggests that 

interactions between the glutamatergic and serotonergic systems in the brain may play a 

pivotal role in the development and possibly treatment of depression.

In the present study, when NMDA infusion was proceeded by a single injection of 

either paroxetine or clomipramine no marked differences between NMDA or NMDA + 

paroxetine treated groups were observed as regards to extracellular 5-HT efflux. 

However, following subchronic (7-day) and chronic (21-day) treatment of paroxetine or 

clomipramine, the decreases seen in extracellular 5-HT levels were abolished. For both 

experiments, there was no change in extracellular 5-HIAA levels. It is therefore clear 

that repeated paroxetine or clomipramine treatment causes marked and qualitative 

adaptive changes to the NMDA receptors regulating extracellular 5-HT release. 

Notably, these effects are seen in as little as 7-days of repeated drug administration. Of 

course, the converse to this hypothesis may also be true, in that monoamines could be
I

modulating the release of glutamate. However, there seems to be | substantial ; 

evidence from other laboratories in support of my own observations, favouring 

modulation of monoamine release by NMDA (Feenstra et al, 1995; Jedema and 

Moghaddam, 1996; Tao and Auerbach, 1996; see Whitton, 1997).

4.3.4 Drug Holiday of paroxetine/clomipramine treatment. Any difference in 

NMDA-induced 5-HT and 5-HIAA efflux in the frontal cortex?

Similar to the findings of section 3.3.4, it can be concluded that both chronic paroxetine 

and clomipramine treatment can cause adaptive changes in as little as 7-days, persisting 

up to 21-days treatment. A 48 hour and a 14 day drug holiday period were chosen to
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assess any changes on the NMDA-evoked 5-HT response (refer to section 3.3.4 for the 

reasons behind validity of this strategy).

After a 14-day chronic treatment with clomipramine, basal extracellular 5-HT levels 

were increased 2-fold. This is similar to a previous study in this laboratory (Pallotta et 

al, 2001) in which a 15-day chronic clomipramine treatment increased basal 

extracellular 5-HT levels dose-dependently. The magnitude of increase of these basal 

extracellular 5-HT levels was similar to that of the 21 day study (refer to section 4.3.1). 

However, there was no effect on extracellular 5-HIAA basal levels.

Following the 14-day clomipramine treatment, the effect of NMDA on 5-HT efflux was 

to prevent the sustained decrease seen with acute clomipramine + NMDA. This finding 

is similar to a study in this laboratory (Pallotta et al, 2001) in which animals treated 

repeatedly (15 day) with clomipramine (10 or 20 mg/kg) greatly attenuated or abolished 

the effect of NMDA infusion (25 pM or 100 pM respectively) into the raphe.

The drug holiday study yielded very interesting results. After a 21-day treatment, the 

paroxetine-treated rats with a 48 hour drug holiday showed similar levels of 

extracellular 5-HT to those animals treated with a similar dosing regimen, but without 

the drug holiday. Additionally, the 14 day clomipramine treated rats with a 48 hour drug 

holiday showed a modest increase (0.6 fold) in extracellular 5-HT levels compared to 

the 14 day clomipramine treatment which showed a 2 fold increase in extracellular 

5-HT levels.

Interestingly, after a 48 hour drug holiday, the paroxetine and clomipramine were 

extensively metabolised and excreted fi*om the body (see 3.3.4). Recently, a study by 

Weignmann and colleagues (2000) report that after 12 hours following five oral doses 

of clomipramine (20 mg/kg) treatment, plasma drug levels fell below the 

pharmacologically active plasma levels. The therapeutic plasma levels for clomipramine 

in the blood is 40-80 ng/mL. The plasma levels after a 12 hour drug washout period was 

20 ng/mL. In this study, it can be therefore assumed that the clomipramine and 

paroxetine drug levels fall below the pharmacologically active plasma levels after a 48 

hour washout period. This observation is inconsistent with the notion that depressed 

patients’ mood is improved during AD drug treatment and when withdrawn prematurely 

from their treatment, patients relapse rapidly. These observations provide further
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evidence that the aetiology of depression is more complex than simply 5-HT (and DA) 

neuronal activity and therefore increasing extracellular efflux of 5-HT (and DA) may be 

insufficient in explaining the mechanism of action behind ADs clinical effectiveness.

Following chronic paroxetine/clomipramine treatment with a 14 day drug holiday, 

extracellular 5-HT levels were still greater than controls and this suggests that some 

adaptive process has led to this increase. Although as mentioned earlier (section 4.3.4), 

paroxetine and clomipramine plasma levels must have been negligible after a 14 day 

drug holiday, the SERT may still have been blocked by these ADs. This is the first 

study of its kind which measures the extracellular monamine (5-HT) levels after a drug 

holiday (washout period).

Similar to the chronic paroxetine and clomipramine treatment, the 48 hour drug holiday 

dosing regime was able to abolish the decrease in extracellular 5-HT levels seen after 

acute paroxetine/clomipramine treatment following NMDA inftision. On the other hand, 

when NMDA was infused to rats treated chronically with paroxetine/clomipramine with 

a 14 day drug holiday, there was a decrease in 5-HT efflux similar to the acute study. 

There were no changes in the extracellular 5-HIAA levels in either of the studies (refer 

to section 4.3.1.1).

4.3.5 A change in NMDA receptor subunit composition?

The potential role of NMDA receptors in AD treatment was first proposed by Trullas 

and Skolnick (1990) who observed that antagonists of NMDA receptor function 

exerted an AD like action in the forced swim test. Subsequently, a number of 

compounds, acting at different sites on the NMDA receptor complex, have shown AD- 

like activity (Maj et al, 1992ab; Layer et al, 1995). Papp and Moryl (1993, 1994) found 

that chronic treatment with both competitive and non-competitive antagonists to be as 

effective as imipramine in a rodent behavioural model of depression. In mice it has been 

shown that chronic antidepressant treatment leads to a decrease in the affinity of (^H)- 

5, 7- dichlorokinurenic acid for the NMDA receptor complex associated glycine site in 

the frontal cortex (Paul et al, 1994), which could lead to a decrease in excitatory 

transmission via NMDA receptors in vivo. This chronic AD-induced adaptive change in 

the ligand binding properties of the NMDA receptor complex persist for 5-10 days after 

the cessation of treatment (Paul et al, 1994) and this may explain why after a 14 day
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drug holiday the effects of chronic paroxetine/clomipramine treatment on 5-HT efflux 

in the frontal cortex were diminished when the NMDA receptor was stimulated.

The effect of ADs on the NMDA receptor complex are regionally specific, as 

imipramine’s action on NMDA receptors only manifests in membranes prepared from 

cortex and not hippocampus or striatum (Nowak et al, 1993). A study by Porter and 

Greenamyre (1995) used quantitative autoradiography to study the regional binding 

characteristics of a number of NMDA receptor antagonists including amantadine and 

MK-801. These authors reported regional variations in the pharmacology of NMDA 

receptor channel blockers, suggesting that the pharmacological properties of NMDA 

receptors are region-specific.

More recently, Boyer et al (1998) reported more widespread decreases in NMDA 

subunit mRNA throughout the rat brain following AD treatment (imipramine and 

citalopram). To date, this study is the only of its kind which determines the effects of 

chronic AD treatment on the expression of NMDA receptor subunit mRNA in the rat 

brain. Both the drugs used in the study were observed to have altered the levels of 

mRNA encoding the Ç subunit in several brain regions including the cortex, thalamus, 

striatum and the cerebellum while having no significant effect in the hippocampus. The 

mouse Ç subunit is thought to be analogous to the NRl subunit while the s i and s2 

subunits to be analogous to NR2A and NR2B subunits respectively. The authors found 

that imipramine produced widespread reductions in levels of s2 mRNA subunits in the 

cortex, hippocampus and amydala while citalopram had a different effect on the 

subunits. Citalopram reduced s i mRNA levels in the same areas. Ongoing research by 

our colleagues (Hutson et al, personal communication) reveal that NRl protein levels in 

the frontal cortex, hippocampus but not the amygdala are decreased upon chronic AD 

(clomipramine and roboxetine) treatment. The greatest effect was seen in the frontal 

cortex. We are currently extending these studies using paroxetine. These 3 brain regions 

were chosen as they are reported to be vital in the processing of emotions and are 

implicated in depression (Marano, 1999). Thus the studies undertaken by Boyer et al 

(1998) and Hutson et al (2001 unpublished results) are in agreement with our data 

suggesting that chronic AD treatment produces region-specific changes in NMDA 

receptor fimction most probably altering NMDA receptor subunit composition. These 

different subunit compositions in different brain regions dictate the physiological and 

the pharmacological differences of regional NMDA receptors and may influence the
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therapeutic actions of ADs. A parallel study by Riva et al (1997) using acute and 

chronic dosing with antipsychotic drugs (such as haloperidol and clozapine) showed 

significant differences in the composition of NMDA receptor subunits following 

treatment. Therefore, variability in NMDA receptor subunit composition and the 

adaptive changes exerted on these subunits by pharmaceutical agents may not apply to 

depression but to a wide range of neurological disorders.

This data suggest an association between repeated AD treatment with 

paroxetine/clomipramine and the regulation of serotonergic transmission by NMDA 

receptors in the frontal cortex (Figure 4.16). The observation that acute paroxetine and 

clomipramine treatment had no significant effect on NMDA-evoked changes in 

extracellular 5-HT levels indicates that the effects of chronic treatment may be 

significant in the therapeutic action of paroxetine, clomipramine and most likely other 

ADs.

In addition to the NMDA receptor population, other neuronal components, e.g. the 

5 -HT carrier and 5 -H T ib receptors, may have also undergone adaptive changes. 

Findings by our colleagues (Hutson et al, unpublished results) that clomipramine and 

roboxetine decrease NRl NMDA subunit would support these interpretations.
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Figure 4.16 Sketch to show the effects of chronic antidepressants on 5-HT

transmission.

Chronic ADs (e.g. paroxetine and clomipramine) cause:

• A functional desensitisation of both 5-HTia and 5-HTib autoreceptors, resulting 

in disinhibition of neuronal firing and a reduction in feedback inhibition of 

transmitter release from the terminals.

• A decrease in SERT mRNA which leads to decrease 5-HI A A levels.

• A decrease in NMDA receptor function which will cause an increase in 5-HT 

levels.

• These effects cause an overall INCREASE IN 5-HT TRANSMISSION.
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5 The effects of co-administration of paroxetine with NMDA antagonists 

5.1. Introduction 

5.1.1 NMDA antagonsits

Several NMDA antagonists have previously been shown to display some antidepressant 

properties in both animal models of depression (Papp and Moryl, 1994; 1996) and in the 

clinic (e.g. amantadine: see Huber et al, 1999).

5.1.1.1 Competitive antagonists

Competitive antagonists act on the GLU recognition site, an example of which is R-E-2- 

amino-4-methyl-5-phosphono-3-pentanoic acid (COP 40116). CGP40116 is the 

synthetic biologically active enantiomer of CGP 37849, a competitive NMDA 

antagonist with improved bioavailability (Wlaz et al, 1999). Thus new NMDA 

antagonists that have increased affinity for the NMDA receptor and improved brain 

tissue penetration represent the next generation of NMDA antagonists.

Competitive NMDA antagonists have several behavioural effects. When given 

systemically or by local injection into the striatum or nucleus accumbens, they cause 

psychomotor stimulating effects (Schmidt, 1994).

A range of doses of CGP40116 given i.p. have been used in rats ranging from 0.5 mg/kg 

(Bienkowski et al, 1997) to 5 mg/kg (Wedzony et al, 1996; Wlaz et al, 1999; Fisher et 

al, 1998; Fisher and Starr, 2000; Paschoa et al, 2000;). Behavioural studies performed in 

this laboratory have shown that the higher doses (5 mg/kg) of CGP40116 dramatically 

reduce the exploratory behaviour of rats (Eradiri at University of London, personal 

communication). Based on these observations, it was decided to use a dose of 1 mg/kg 

in this study. The use of a higher dose might not be pharmacologically specific in its 

action and it would be difficult to relate any observations purely to the antagonistic 

action of CGP40116.
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5.1.1.2 Non-competitive antagonists

These antagonists act on sites other than the GLU recognition site. These compounds 

can be further divided into channel blockers (e.g. amantadine and budipine), polyamine 

site antagonists (e.g. ifenprodil) and GLY site antagonists (e.g. HA-966). These 

compounds are known to exhibit strong psychomotor stimulating effects and to elicit 

rewarding effects.

5.1.1.2a Ion channel blockers - amantadine and budipine

Compounds that act on the MK-801 binding site on the NMDA receptor-gated ion 

channel are referred to as ion channel blockers. One such compound, amantadine, a 

1-amino-adamantane derivative was introduced in 1963 and has been used successfully 

in a variety of neurological, psychiatric, and other clinical disorders. Not only does 

amantadine improve the classical symptoms of Parkinsonism, such as tremors and 

bradykinesia, but it also exerts a positive effect on the feeling of well-being and 

cognitive functions in Parkinsonian patients. Amantadine also alleviates the impairment 

of motor function induced by neuroleptic drugs (see Huber et al, 1999).

There is only limited data on the use of amantadine as an antidepressant. However, 

clinical evidence, suggests that amantadine might be useful to treat depressive 

symptoms (see Huber et al, 1999). There are no serious adverse effects associated with 

amantadine therapy. However, there are some reports of minor adverse effects such as 

nervousness, drowsiness, attention deficit and insomnia (see Huber et al, 1999). Upon 

discontinuation of the drug, these effects disappear rapidly.

After a review of the literature (Komhuber et al, 1995; Dansyz et al, 1997; Fisher et al, 

1998; 1999; Huber et al, 1999,), and based on studies carried out in our department 

(P.S. Whitton), it was decided that a dose of 40 mg/kg amantadine given i.p. was 

appropriate for this study. Komhuber and colleagues (1995) report that at behaviourally 

active doses in the rat (doses between 23 and 92 mg/kg) and under therapeutic 

conditions in man, extracellular amantadine concentrations were found to be in the low 

micromolar range (between 6  and 21 pM). With these concentrations, amantadine
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probably interacts with the phencyclidine (PCP) binding site of the NMDA receptor as 

shown by binding studies by these authors (Ki= 10 pM).

Jackisch et al (1994) reported that budipine binds with a weak affinity to NMDA 

receptors and inhibits NMDA-induced ACh release. This has to lead to the hypothesis 

that it can also reduce the excitability of glutamatergic projection neurones. 1-^er^-butyl- 

4,4-diphenylpiperidine (budipine) was first synthesised in the 1970s and recognised as 

an effective antiParkinsonian drug shortly afterwards. Budipine’s mechanism of action 

has not yet been fully elucidated. Initial observations by Menge and Brand (1982) that 

budipine reverses the cataleptic state induced by neuroleptics suggested that budipine 

might act upon the dopaminergic system. However, receptor binding studies failed to 

demonstrate specific binding of budipine to DA receptors (Przuntek and Stasch, 1985). 

Furthermore, budpine does not affect KCl-induced DA release (Jackisch et al, 1993). In 

contrast, a recent in vitro study reported that budipine inhibits synaptosomal DA uptake 

and enhances spontaneous DA release from rabbit caudate nucleus slices (Jackisch et al, 

1993). This observation suggests that a DA-releasing action of budpine contributes 

significantly to the antiParkinsonian action of budipine in vivo.

Budipine possesses antimuscarinic properties. It inhibits ACh-induced contractions of 

isolated guinea pig ileum in a dose-dependent way, yielding a pAi value of 6 ,6 8  

(Klockgether et al, 1996). However, it has generally been agreed that budipine’s 

antimuscarinic action, in itself, cannot account for its therapeutic effects (lizuka, 1985; 

Xinde, 1985). In searching for an alternative explanation, investigators have turned their 

attention to a possible interaction of budipine with NMDA receptors. Budipine binds 

with relatively low affinity to NMDA receptors (K,= 12 pM, Komhuber et al, 1995). In 

addition a recent microdialysis study by Klockgether et al (1996) reports that budipine 

mainly acts by blocking muscarinic and NMDA transmission. Facilitation of 

dopaminergic transmission does not appear to contribute to its in vivo action.

On the basis of evidence in the literature (Biggs et al, 1998; Fisher et al, 1999 

Klockgether et al, 1996), it was decided that a dose of 10 mg/kg budipine was 

appropriate for this study. According to Zech et al (1985), low micromolar 

concentrations (10 pM) of budipine will be present in the CNS of the rat after 

administering systemic doses in the range of 5-20 mg/kg. This concentration represents 

the upper limit of budipine that can be reached in the human brain after therapeutic

179



______________________________________________________________________________ Chapter 5

doses. At this concentration it can be assumed that budipine is able to bind to the PCP 

binding site of the NMDA receptor in the frontal cortex (K j= 12pM, Komhuber et al, 

1995).

5.1.1.2b Poly amine site antagonists - ifenprodil

Initially, ifenprodil was developed as a commercial antihypertensive agent and was 

found to possess potent activity at several brain receptors, including ai adrenergic 

receptors and NMDA receptors (Karbon et al, 1990; Chenard et al, 1991). Ifenprodil 

was reported to be stmcturally unique as an NMDA antagonist. The molecular cloning 

and expression of NMDA receptor subunits in xenopus oocytes demonstrated that the 

affinity of NR1A/NR2A receptors for ifenprodil (IC5o=146 pM) was 400-fold lower 

than that of NR1A/NR2B receptors (IC5o=0.34 pM) indicating that ifenprodil was more 

selective for receptors containing the NR2B subunit compared to those containing the 

NR2A subunit (Williams, 1993).

A review of the literature showed that 0.9 mg/kg i.p. in the rat is the ID50 value which 

antagonises the stimulatory effect of intrastriatally dialysed NMDA on rat striatal 

release (Carter et al, 1988), therefore this dose was used in this study.

5.1.2 Is it possible to produce a rapid AD response?

Whatever AD is used to treat clinical depression, there is in general a minimum 3-week 

delay or ‘therapeutic lag’ before a clear therapeutic effect is obtained. The introduction 

of ADs which can be given at a therapeutic dose from the start of treatment, and which 

reach steady-state levels within a few days, has not shortened the delayed onset of 

action of ADs. It has been suggested that co-treatment with the 5-HTia antagonist 

pindolol with selected ADs may accelerate their action so reducing therapeutic lag 

(Blier and de Montigny, 1994; Artigas et al, 1996). Consequently, the lag in response to 

AD treatment is most likely explained by adaptive changes that gradually develop 

secondary to the acute effects of the AD. Increased efficacy or reduced latency, perhaps 

from a new class of ADs would be an ultimate goal. It is worth exploring NMDA 

antagonists because they have a promising pharmacological and possibly, therapeutic 

profile. Functional antagonists that act on the NMDA receptor complex [e.g. AP-7 

(Watkins and Olverman, 1987), the competitive NMDA receptor antagonist; ACPC, a
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glycine partial agonist and MK-801, the use dependent channel blocker (Wong et al, 

1986)] are all as effective as TCAs in preclinical tests that predict AD activity.

5.1.3 The role of NMDA receptors in AD action

Trullas and Skolnick (1990) suggested that NMDA receptors may be involved in 

behavioural deficits induced by inescapable stress. Hence, these authors deduced that 

the NMDA receptor could be involved in the pathophysiology of depression and that 

substances that reduce transmission at these receptors may represent a new class of 

antidepressants.

Additionally, it is well established that in vivo monoamine release is partially regulated 

by glutamatergic receptors in several brain regions (Becquet et al, 1990; Whitton et al, 

1992; 1994a; 1994b). These findings are consistent with the hypothesis that the NMDA 

receptor complex may play a role in antidepressant action and that the NMDA receptor 

complex is implicated in the pathophysiology of depression as has been mentioned in 

the previous chapters.

In the present study the effects of acute paroxetine treatment on monoamine efflux was 

investigated when it is co-administered with the clinically used NMDA antagonists 

amantadine and budipine and the polyamine site antagonist, ifenprodil as well as the 

competitive antagonist, CGP 40116.

Three classes of NMDA antagonists were used to address the following questions in this 

study:

• What are the effects of the acute co-administration of paroxetine and the clinically 

used weak NMDA antagonists, amantadine and budipine on DA and 5-HT efflux 

and their metabolites, DOPAC and 5-HIAA respectively?

• Are the same effects achieved if paroxetine and the competitive NMDA antagonist, 

CGP 40116 or the polyamine site antagonist, ifenprodil were co-administered?
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5.2 Results

5.2.1 The effect of CGP40116 on paroxetine-induced changes in the extracellular 

levels of DA, DOPAC, 5-HT and 5-HIAA in the frontal cortex

Acute administration of CGP40116 alone caused a decrease in extracellular levels of 

DA and DOPAC while having no effect on 5-HT and 5-HIAA levels.

CGP40116 when given alone caused extracellular DA levels to fall rapidly to 45 % of 

basal by 180 minutes post injection (p<0.01) (Figure 5.1 A). These low levels remained 

for the duration of the experiment. This clear downward trend was observed 

immediately following CGP40116 administration. Interestingly, the combination of 

CGP40116 and paroxetine was able to prevent the decrease in extracellular DA seen 

when CGP40116 was given alone (Figure 5.1 A). Two-way repeated ANOVA revealed 

significant differences over time [F(l 1,132)=2.97, p<0.01] and between drug treatments 

[F(3,12)=7.60, p<0.01].

CGP40116 alone decreased DOPAC efflux [F(3,12)=8.62, p<0.05] while the 

combination of CGP40116 and paroxetine did not have any effect on extracellular 

DOPAC levels (Figure 5.IB).

CGP40116 given alone, caused an apparent decrease in 5-HT efflux to 73% of basal 

levels was not significant (p>0.05). Interestingly, the combination of CGP40116 and 

paroxetine caused a rapid and significant increase in extracellular 5-HT levels (191% 

basal levels) [F(3,12)=40.90, p<0.01] that lasted and remained significant for the 

duration of the experiment [F(l 1,132)=4.51, p<0.05] (Figure 5.2A).

Finally, neither CGP40116 alone nor the combination of CGP40116 and paroxetine had 

any effect on extracellular 5-HIAA levels (Figure 5.2B).
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Figure 5.1. The effect of CGP-40116 on paroxetine(Parox)-in(luced changes in the 
extracellular levels of A) DA and B) DOPAC in the frontal cortex. The first arrow 
indicates the time of the i.p injection of CGP40116 and the second is the time of the 
paroxetine injection. Data are the mean ± SEM of six animals in each group. * indicates 
significantly different (p<0.05) from control.
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Figure 5.2. The effect of CGP-40116 on paroxetine(Parox)-induced changes in the 
extracellular levels of A) 5-HT and B) 5-HIAA in the frontal cortex. The first arrow 
indicates the time of the i.p injection of CGP40116 and the second the time of the 
paroxetine injection. Data are the mean ± SEM of six animals in each group. * indicates 
significantly different (p<0.05) from control.
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5.2.2 The effect of amantadine on paroxetine-induced changes in the extracellular 

levels of DA, DOPAC, 5-HT and 5-HIAA in the frontal cortex

Acute administration of amantadine (40 mg/kg) significantly increased DA efflux in the 

frontal cortex. However, the same amantadine dose had no significant effect on 

DOPAC, 5-HT and 5-HIAA efflux.

The effect of acute amantadine on extracellular DA was rapid in onset. A statistically 

significant increase in DA efflux was seen using cluster one way ANOVA over 3 time 

points (210-270 minutes) (p<0.05). When paroxetine (10 mg/kg) was given in 

conjunction with amantadine, a delayed statistically significant increase after 120 

minutes post paroxetine injection (270 minutes) was observed that lasted until the end 

of the experiment. Two-way repeated ANOVA revealed significant differences over 

main factor ‘time’ [F(ll,132)=32, p<0.01] and between treatments [F(3,12)=22.6, 

p<0.01]. The maximal increase in extracellular DA was observed at the last time point 

after injection which was 200% above basal levels (Figure 5.3A).

Paroxetine when given in conjunction with amantadine did not have any effect on 

extracellular DOPAC in the frontal cortex (Figure 5.3B).

Unlike the effect of acute amantadine on DA efflux, amantadine did not cause any 

change on extracellular 5-HT. However, when paroxetine was combined with 

amantadine a profound statistically significant increase in extracellular 5-HT was 

clearly evident [F(3,12)=11.32, p<0.01]. This significant increase was immediate and 

peaked at 230% of basal and remained at this level for the duration of the experiment 

[F(ll,132)=4.90, p<0.01] (Figure 5.4A).

The effect of acute amantadine as well as the combination of paroxetine and amantadine 

failed to have a significant effect on extracellular 5-HIAA (Figure 5.4B).
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Figure 5.3. The effect of amantadine on paroxetine(parox)-induced changes in the 
extracellular levels of A) DA and B) DOPAC in the frontal cortex. The first arrow 
indicates the time of the i.p injection of amantadine and the second the time of the 
paroxetine injection. Data are the mean ± SEM of six animals in each group.* indicates 
significantly different (p<0.05); ** (p<0.01) from control.
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Figure 5.4 The effect of amantadine (Aman) on paroxetine(parox)-induced changes 
in the extracellular levels of A) 5-HT and B) 5-HIAA in the frontal cortex. The first 
arrow indicates the time of the i.p injection of amantadine and the second the time of the 
paroxetine injection. Data are the mean ± SEM of six animals in each group.** indicates 
significantly different (p<0.05); *** (p<0.001) from control.
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5.2.3 The effect of budipine on paroxetine-induced changes in the extracellular 

levels of DA, DOPAC, 5-HT and 5-HIAA in the frontal cortex

Budipine, when given alone was observed to cause a delayed decrease in extracellular 

DA while having no effect on extracellular DOPAC, 5-HT and 5-HIAA.

Acute budipine administration caused a delayed decrease in extracellular DA levels. DA 

levels fell to 45% of basal at 300 minutes (180 minutes post budipine injection) and this 

lasted until the end of the experiment.

However, the combination of budipine and paroxetine had no significant effect on DA 

efflux [F(3,12)=1.92, p=0.181] with the maximum levels of DA being 150% of basal at 

210 minutes (Figure 5.5A).

The apparent decrease seen for the last 3 time points (270-360 minutes) for the 

combination of paroxetine and budipine in DA efflux (65% basal) was not significant 

(p>0.05) (Figure 5.5A).

Budipine alone had no effect on DOPAC efflux. DOPAC levels only slightly rose 

towards the end of the experiment at 300 minutes with a maximal increase of 125% of 

basal levels (not significant, p>0.05). Similarly, when budipine was combined with 

paroxetine, there was no effect on DOPAC efflux (Figure 5.5B).

Although budipine alone did not have any effect on extracellular 5-HT levels when 

administered alone, the combination of budipine and paroxetine produced a statistically 

significant increase in extracellular 5-HT levels over time [F(ll,132)=2.19, p<0.05] and 

between treatments [F(3,12)=8.63, p<0.01] A significant maximal increase in 

extracellular 5-HT was observed (170% of basal). This increase in extracellular 5-HT 

was rapid in onset following budipine administration and remained constant for the 

duration of the experiment (Figure 5.6A).

Neither budipine alone or the combination of budipine and paroxetine were able to 

cause any change to the extracellular 5-HIAA levels (Figure 5.6B).
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Figure 5.5 The effect of budipine on paroxetine(Parox)-induced changes in the 
extracellular levels of A) DA and B) DOPAC in the frontal cortex. The first arrow 
indicates the time of the i.p injection of budipine and the second the time of the 
paroxetine injection. Data are the mean ± SEM of six animals in each group. * indicates 
significantly different (p<0.05) from control.
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Figure 5.6. The effect of budipine on paroxetine(Parox)-induced changes in the 
extracellular levels of A) 5-HT and B) 5-HIAA in the frontal cortex. The first arrow 
indicates the time of the i.p injection of budipine and the second the time of the 
paroxetine injection. Data are the mean ± SEM of six animals in each group. * indicates 
significantly different (p<0.05) from control.
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5.2.4 The effect of ifenprodil on paroxetine-induced changes in the extracellular 

levels of DA, DOPAC, 5-HT and 5-HIAA in the frontal cortex

Acute ifenprodil given alone did not seem to have any effect on extracellular DA, 

DOPAC, 5-HT and 5-HIAA.

Ifenprodil alone failed to cause any change in extracellular DA levels. The combination 

of ifenprodil and paroxetine similarly had no effect on DA efflux (Figure 5.7A).

The apparent immediate, transient increase in extracellular DA to 133% of basal levels, 

followed by an immediate decrease in DA levels to 75% of basal which persisted for the 

duration of the experiment was not significant as revealed by cubic regression between 

treatments [F(3,12)=0.813, p=0.511] but were significant over time [F(ll,132)=2.33, 

p<0.05].

The combination of ifenprodil and paroxetine caused a delayed effect in decreasing 

extracellular DOPAC levels. This significant decrease (68% of basal) was only seen at 

270 minutes which lasted till the end of the experiment (Figure 5.7B).

As above, ifenprodil did not seem to have any effect on extracellular 5-HT levels when 

given alone, but interestingly the combination of ifenprodil and paroxetine caused an 

immediate significant increase in extracellular 5-HT (maximal levels 191% of basal 

levels) [F(3,12)=5.30, p<0.05]. This increase, significant over time [F(ll,132)=4.8, 

p<0.05], persisted for 240 minutes before levels rapidly returned to basal levels (Figure 

5.8A).

Ifenprodil alone nor the combination of ifenprodil + paroxetine did not have any effect 

on 5-HIAA efflux (Figure 5.8B).
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Figure 5.7. The effect of ifenprodil on paroxetine(Parox)-induced changes in the 
extracellular levels of A) DA and B) DOPAC in the frontal cortex. The first arrow 
indicates the time of the i.p injection of ifenprodil and the second the time of the 
paroxetine injection. Data are the mean ± SEM of six animals in each group. * indicates 
significantly different (p<0.05) from control.
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Figure 5.8. The effect of ifenprodil on paroxetine(Parox)-induced changes in the 
extracellular levels of A) 5-HT and B) 5-HIAA in the frontal cortex. The first arrow 
indicates the time of the i.p injection of ifenprodil and the second the time of the 
paroxetine injection. Data are the mean ± SEM of six animals in each group.* indicates 
significantly different (p<0.05) from control.
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5.2.5 The effect of 7-day (sub-chronic) dosing of paroxetine on amantadine induced 

changes in the extracellular levels of DA, DOPAC, 5-HT and 5-HIAA in the frontal 

cortex.

After a 7-day sub-chronic treatment with paroxetine, extracellular DA levels were 

reduced significantly to 67% basal [F(l 1,99)=5.10, p<0.01]. Amantadine failed to cause 

any change to extracellular DA levels in these rats. However, amantadine when given 

acutely to drug-free treated rats was able to affect a significant increase in extracellular 

DA levels (Figure 5.9A).

Extracellular DOPAC levels were observed to decrease drastically to 47% basal 

following 7-day paroxetine treatment. The administration of amantadine to these rats 

did not have any effect on extracellular DOPAC levels (Figure 5.9B).

Extracellular 5-HT levels were significantly increased to 125 % basal [F(2,9)=54.40, 

p<0.05] following the 7-day paroxetine treatment but here amantadine administration 

alone and in paroxetine-treated rats did not have any effect on extracellular 5-HT levels 

overtime [F(ll,99)=0.556, p=0.86] (Figure 5.10A).

Extracellular 5-HIAA levels were seen to drastically decrease to 53% basal following 

7-day paroxetine treatment. Amantadine administration to this group of rats did not 

affect extracellular 5-HIAA levels (Figure 5.1 OB).
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Figure 5.9. The effect of 7-day (sub-chronic) dosing of paroxetine (Parox) on 
amantadine induced changes in the extracellular levels of A) DA and B) DOPAC 
in the frontal cortex. The arrow indicates the time of the i.p injection of amantadine 
injection. Data are the mean ± SEM of six animals in each group. * indicates 
significantly different (p<0.05) from control. . # indicates significantly different from 
treatment basal (p<0.05).
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Drug DA DOPAC 5-HT 5-HIAA

CGP40116 Img/kg i N/E

CGP40116 1 mg/kg 
+ Paroxetine lOmg/kg

N/E N/E t ;

Amantadine 40 mg/kg t t N/E

Amantadine 40 mg/kg 
+ Paroxetine 10 mg/kg

ÎT N/E TT

Budipine 10 mg/kg Transient
t

4- then T Transient f N/E

Budipine 10 mg/kg 
+ Paroxetine 10 mg/kg

Delayed i T Î N/E

Ifenprodil 0.9 mg/kg N/E N/E N/E

Ifenprodil 0.9 mg/kg 
+ Paroxetine 10 mg/kg

t  then Transient Î :

Amantadine 40 mg/kg 
+ 7 day Paroxetine 10 
mg/kg

Transient
t

N/E N/E N/E

Table 5.1 Summary of chapter 5 results
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There is considerable variation between different laboratories in the effects of 

agonists and antagonists at NMDA receptors on DA efflux (see: Whitton, 1997). 

Microdialysis studies have demonstrated that glutamate, AMP A, kainate and NMDA 

increase the efflux of DA in the striatum and nucleus accumbens (Imperato et al, 

1990; Mogbaddam et al, 1990; Youngren et al, 1993; see Whitton, 1997). Yet, 

paradoxically, NMDA-receptor antagonists have been reported to increase DA release 

in the preffontal cortex (Wedzony et al, 1993; Hondo et al, 1994).

In this study, both the local application of NMDA (100 pM) and systemic CGP 40116 

(1 mg/kg) reduced DA efflux in the frontal cortex. The lack of an excitatory effect of 

CGP 40116 on DA efflux in the frontal cortex conflicts with reports that NMDA- 

receptor antagonists increase DA release in the PFC (Wedzony et al, 1993; Hondo et 

al, 1994; Nisbijima et al, 1994). The explanation for this lack of an excitatory effect of 

CGP 40116 is currently unknown. However it is reasonable to speculate that this 

could be due to modulation of DA efflux by non-NMDA receptors such as AMP A 

and kainate which may be mediated by CGP 40116.
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5.3 Discussion

Tmllas and Skolnick (1990) have shown that the administration of a competitive 

antagonist, AP-5, a use-dependent channel blocker (MK-801) and a glycine partial 

antagonist (ACPC) to mice reduced immobility in the forced swim test. In addition, a 

small clinical trial (Berman et al, 2000) recently reported that i.v. infusion of ketamine, 

a use-dependent NMDA channel blocker, produced short-lasting psychotomimetic 

effects (hours) and long-lasting AD action (days). The above findings suggest that 

blockade of NMDA receptors could be a useful clinical adjunct in the treatment of 

depression. Having said that, as most of the NMDA antagonists have significant 

drawbacks such as poor CNS penetration or hallucinogenic side-effects, they are not 

favoured for use in the clinic. On the contrary, amantadine and budipine are examples of 

weak non-competitive NMDA antagonists that are widely used clinically.

The question addressed in this study is whether these non-competitive antagonists 

accelerate the neurochemical changes and would possibly reduce the clinical lag 

associated with more potent ADs. This is a crucial issue, as the literature reports (Blier 

et al, 2000) it would be impossible to obtain such an early onset of action (e.g. by 

bypassing the neurobiological events which would lead to the return of the euthymie 

mood).

CGP 40116, a competitive antagonist at the NMDA receptor, caused a decrease in 

extracellular DA levels when given alone but had no effect on extracellular 5-HT levels 

in the frontal cortex. Therefore, it could be predicted, CGP 40116 when given alone 

would not have AD properties. However, a very interesting study by Papp and Moryl 

(1994), using CGP 40116 as an example of a competitive NMDA antagonist, showed 

that a 5-week chronic treatment (25 mg/kg p.o., twice daily) was able to reverse chronic 

mild stress-induced anhedonia with the same effect as chronic imipramine in terms of 

time course and magnitude. This study confirmed the results of previous studies that 

suggested that NMDA receptor antagonists may exhibit AD properties (Trullas and 

Skolnick, 1990; Maj et al, 1992ab). In this present study, the co-administration of acute 

paroxetine with CGP 40116, another competitive NMDA antagonist^ increased 

extracellular 5-HT levels similar to those seen after chronic paroxetine treatment (Refer 

to Figure 4.8, Chapter 4). Again, it can be seen that co-administration of acute
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paroxetine with an NMDA antagonist increases extracellular 5-HT levels in the frontal 

cortex.

Amantadine is believed to interact with the MK-801 binding site in the NMDA receptor 

channel, thus blocking the flow of Na^, and Ca^  ̂ ions through the receptor. In this 

present study, acute amantadine administration increased DA efflux in the frontal 

cortex. These results were in agreement to the observations by Spanagel et al (1994) 

who used both amantadine and memantine (another clinically used weak NMDA 

antagonist), and observed increases in extracellular DA in the frontal cortex. On the 

other hand, acute amantadine treatment did not alter extracellular 5-HT efflux in the 

same brain region. Amantadine has been shown to have low affinity for the NMDA 

receptor and has been shown to displace radiolabelled MK-801 from postmortem 

human Parkinsonian brain slices at doses which were physiologically-relevant 

(Komhuber et al, 1991). It was originally believed that these drugs elicited a direct 

dopaminergic effect by facilitating presynaptic release of DA. However, this proposal 

has been disputed due to failure of other investigators to demonstrate direct stimulation 

of DA receptors (Mercuri et al, 1991; Jackisch et al, 1992). In addition, it is believed 

that amantadine reduces DA uptake into nerve cells and glia. This would allow DA to 

act on postsynaptic receptors for longer, without being degraded by catabolic enzymes 

such as MAO, although this action requires high concentrations of drug (Gianutos et al, 

1985).

In contrast, a previous study in this laboratory, has shown another NMDA receptor 

antagonist, MK-801, to increase extracellular 5-HT levels in the hippocampus and 

striatum (Whitton et al, 1992a). Other investigators also report an increase in 

extracellular 5-HT levels seen with MK-801 in the nucleus accumbens (Yan et al, 1997) 

and the raphe (Callado et al, 2000). In addition, there is evidence that amantadine 

affects the serotonergic system by blocking 5-HT uptake into synaptosomes from rat 

forebrain, and releases 5-HT directly from rat brain synaptosomes (see Herblin, 1972). 

Tanaka et al, (1973) studied the effect of amantadine on the metabolism of 5-HT in the 

rat brain and they found that 1 hour post amantadine treatment (100 mg/kg), MAO 

activity, and in turn 5-HlAA levels, were reduced in the rat whole brain. In addition to 

amantadine’s possible effect on the dopaminergic and serotonergic systems, amantadine 

may also possess noradrenergic properties. For example, amantadine but not memantine 

enhances the hind limb flexor reflex in spinal rats in a manner similar to enhancers of
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noradrenergic transmission (Maj et al, 1974). In addition, amantadine attenuates 

reserpine-induced hypothermia which is also indicative of noradrenergic properties 

(Moryl et al, 1993). Thus it is worth noting that amantadine has actions at sites other 

than the NMDA receptor which might contribute to its synergistic effect in the when 

combined with paroxetine.

As reported in the previous chapters, acute paroxetine treatment alone does not have any 

effect on extracellular DA efflux and causes a dose-dependent decrease in extracellular 

5-HT efflux in the frontal cortex. Interestingly, when amantadine was administered 30 

minutes prior to paroxetine treatment, the effect on 5-HT efflux differed to that seen 

when paroxetine was used alone. In fact, the levels of extracellular 5-HT were similar to 

those seen after chronic treatment of paroxetine (Refer to Figure 4.8, Chapter 4). In 

addition, extracellular DA efflux increased towards the end of the experiment but not to 

the same extent as 5-HT levels. The slow increase in DA and 5-HT efflux strongly 

suggests that the paroxetine and amantadine combination are causing this effect due to 

uptake blockade and not by acting as releasing agents, such as fenfluramine (Gundlah et 

al, 1997). In the microdialysis study by Gundlah et al (1997), to establish the criteria to 

differentiate monoamine reuptake inhibitors from releasing agents, flenfluramine 

produced a much larger rapid increase in 5-HT efflux (20 fold) that was transient. In this 

study, the slow increase in both DA and 5-HT efflux suggests that uptake blockade is 

taking place.

This study is the first to report the effects of co-administration of amantadine with 

paroxetine. Results from this laboratory using clomipramine (Owen and Whitton, 

unpublished observation) indicate that when amantadine is given prior to clomipramine 

treatment, raised levels of extracellular 5-HT levels are seen.

The other important question considered in this study was whether it is possible to 

accelerate the neurochemical changes in the brain and hence obtain a rapid AD response 

with this co-treatment regime. The above results may suggest that the use of a clinically 

tolerated NMDA receptor antagonist may produce a more rapid therapeutic effect as it 

is widely assumed that a sustained increase in synaptic monoamine levels in brain 

regions plays a crucial role in the mechanism of action of ADs. There are three points of 

clinical evidence that support the notion that a rapid or immediate AD effect are feasible 

with this co-administration regime.
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First, although controversial, the results of Benca et al (1992) indicated a one-night 

sleep deprivation produces a marked AD effect the following day in at least 50% of 

patients. Secondly, ECS often produces a marked AD effect in the first week of 

treatment (Rich et al, 1984; Rodger et al, 1994; Segman et al, 1995). Thirdly, patients in 

remission who have responded well to AD treatment after having undergone acute 

tryptophan depletion relapse within 5 hours, in most cases with the symptomology 

being identical to that presented before the AD regimen was initiated. Subsequently, 

when the normal AD diet is restored, the AD response returns within 24-48 hours 

(Delgado et al, 1990). The above three points of clinical evidence indicate that a 

depressive state can be rapidly reversed within 24 hours.

Budipine, another clinically used weak NMDA ion channel antagonist caused a delayed 

decrease in extracellular DA levels in the fi*ontal cortex while having no effect on 

extracellular 5-HT levels. Based on the results of Przuntek and Stasch (1985) who 

suggest that budipine’s pharmacological profile results from the blockade of synaptic 

uptake of DA and subsequent degradation of the monoamine, it was assumed an 

increase in extracellular DA following budipine administration would be observed. 

Budipine binds with a weak affinity to the NMDA receptor (K i= 12 pM, Komhuber et 

al, 1995) and inhibits NMDA-induced ACh release (Jackisch et al, 1994). This 

observation led to the hypothesis that, in addition to its mild indirect dopaminomimetic 

effects, it can reduce the excitability of glutamatergic projection neurones (Albin et al, 

1989). Fisher et al (1998) have shown that NMDA antagonists including amantadine 

and budipine, showed marked activation of AADC activity, an enzyme important in 

monoamine biosynthesis, in the striatum and the substantia nigra. This increased 

enzyme activity may help potentiate the antiParkinsonian actions of L-DOPA in the 

clinic, which is decarboxylated to DA by this enzyme. In addition, Fisher and Starr 

(2000) concluded that glutamate exerts a physiological influence on DA biosynthesis by 

tonically suppressing AADC activity.

As with my results with amantadine, following the co-administration of acute 

paroxetine and budipine, extracellular 5-HT levels were increased to similar levels as 

those seen after chronic paroxetine treatment (Refer to Figure 4.8, Chapter 4). On the 

other hand, there was no increase in extracellular DA levels but the reduction of 

extracellular DA levels seen upon budipine administration was attenuated. It can be 

suggested that marked increases in extracellular 5-HT in the frontal cortex with
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amantadine or budipine co-administered with paroxetine may lead to a more rapid 

therapeutic effect due to the accelerated neurochemical changes in 5-HT efflux in the 

frontal cortex.

The polyamine site antagonist, ifenprodil, exhibits marked cytoprotective activity in 

animal models of focal ischaemia (Gotti er al, 1988) and is already in clinical use 

(Otomo et al, 1985). This suggests that the interaction of ifenprodil with the NMDA 

receptor is the most likely mechanism responsible for its cytoprotective properties. 

Ifenprodil also alters cerebral blood flow (Delage et al, 1985) via an interaction with 

a-adrenoceptors (Honda and Sakai, 1985). There is no evidence of any AD activity of 

ifenprodil but it was decided to test whether the co-administration of this clinically used 

NMDA antagonist, which acts on a different site to amantadine/budipine and CGP 

40116, has any effect on DA or 5-HT efflux.

In this study, administration of ifenprodil alone did not have any effect on DA or 5-HT 

efflux. On the other hand, when acute paroxetine was co-administered with ifenprodil, 

there was an increase in extracellular 5-HT levels similar to those observed following 

chronic paroxetine treatment (Refer to Figure 4.8, Chapter 4). However, these increases 

were different to the other NMDA antagonists tested as the increase was only transient.

Williams (1993) has shown ifenprodil to be highly selective for the NMDA NR2B 

subunit and this may be significant in explaining why ifenprodil’s co-administration 

with paroxetine only caused a transient increase in extracellular 5-HT. As yet, there is 

still no consensus as to where ifenprodil binds to the NMDA receptor. Initially, Carter 

et al (1990) reported that ifenprodil binds to the same binding site as spermine, which is 

the ‘polyamine site’. However, recent evidence by Kew and Kemp (1998) suggests that 

ifenprodil and spermine act at discrete sites with an allosteric interaction. Grimwood et 

al (2 0 0 0 ) report that there are differences in the allosteric interactions between the 

ifenprodil site, the polyamine and glutamate sites on the NMDA receptor complex. The 

authors suggest that these differences were due to the presence of different subunit 

combinations in different ratios, i.e. NRl to NR2 subunits or the NRl splice varient(s). 

Despite the inconclusive location of the ifenprodil binding site, it can again be seen that 

the co-administration of acute paroxetine with a potentially allosteric NMDA antagonist 

increases extracellular 5-HT levels in the frontal cortex and this may have some clinical 

use.

202



__________________________________________________________________________ Chapter 5

In Chapter 3 it was reported that a 7-day treatment with paroxetine abolishes the effect 

of NMDA infusion on DA and 5-HT efflux. It was also reported that 7-day paroxetine 

treatment decreases and increases extracellular DA and 5-HT basal levels respectively. 

Hence, it was suggested that after 7-day treatment, adaptive changes are taking place at 

the NMDA receptor level. From the above results, it was decided to see whether there 

would be an even greater potentiating effect on extracellular 5-HT efflux with the co

administration of amantadine to rats treated with 7-day paroxetine. Unlike the acute co

administration of paroxetine and amantadine, 7-day paroxetine treatment failed to 

further potentiate the effects of this coadministration. Presently, no suggestions can be 

made for these observations other than that 7-day paroxetine treatment altered the 

binding properties of the NMDA receptor which had an effect on amantadine binding to 

the PCP site.

These data suggest that NMDA antagonists accelerate functional changes in the 

regulation of 5-HT transmission by NMDA receptors. Thus, NMDA antagonists when 

co-administered with paroxetine increase extracellular 5-HT levels. As 5-HT is thought 

to play a major role in the aetiology of depression, these results suggest ways of 

improving the clinical efficacy and latency of ADs. The co-administration of 

amantadine and paroxetine was the only drug combination that increased both 

extracellular DA and 5-HT levels in the frontal cortex. However, there is a drawback to 

this study as single doses of paroxetine (10 mg/kg) and NMDA antagonists (1 mg/kg 

CGP 40116, 40 mg/kg amantadine, 10 mg/kg budipine, 0.9 mg/kg ifenprodil) were used 

to produce these accelerated neurochemical changes. In view of this, during the 

preparation of this manuscript, a report by Rogoz et al (2002) investigated the 

possibility of synergistic interactions between three ADs at different doses [imipramine 

(5 and 10 mg/kg), venlafaxine (10 or 20 mg/kg) and fluoxetine (5 or 10 mg/kg)] with 

three non-competitive antagonists at different doses [amantadine (1 0  or 2 0  mg/kg), 

memantine (2.5 or 5 mg/kg) and neramexane (5 or 10 mg/kg)]. These authors report that 

most combinations resulted in synergistic AD-like effects in the FST. These additive 

effects were only seen when the drugs were co-administered. For example, fluoxetine 

when given alone was inactive while showing a positive effect when co-administered 

with the NMDA antagonists. Thus, it could be that the combination of traditional ADs 

and NMDA receptor antagonists may produce increased efficacy and reduced latency 

when given in the clinic.
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As mentioned previously, various neurotransmitters have been proposed to be involved 

in the role of clinical depressive syndromes. It bas been shown that the mechanism of 

ADs action may be related to effects on 5-HT, DA, NA and NMDA antagonism. From 

chapter 3, it was observed that chronic paroxetine and clomipramine treatment increase 

basal DA levels and it is suggested that AD action involves an increase in synaptic DA 

levels as well. Amantadine’s combination with paroxetine not only increases 5-HT 

levels but also DA levels. This could be due to the fact that amantadine appears to share 

actions with a variety of medications that are used to treat depression. It may have 

actions similar to those of amphetamines, as both amantadine and amphetamine are 

reported (for review, see Huber et al, 1999) to be capable of releasing DA and NA from 

extragranular stores in central neurons, resulting in increased DA and NA activity 

(although amantadine is 25-50 fold less potent than amphetamines). In addition, 

amantadine may inhibit DA and NA reuptake as many ADs do, and may also act in a 

similar fashion to SSRIs such as paroxetine used in this study. Amantadine also has 

weak, non-competitive NMDA-antagonistic properties, which have been proved to exert 

AD effects. It should be mentioned that, of the NMDA receptor antagonists used in this 

study, amantadine is the least selective given that at therapeutic doses it also binds to 

the 0\ site (Danysz et al, 1997). Thus, amantadine, with its many pharmacological 

properties, may in fact be used as a potential AD in the clinic when administered with 

paroxetine as it does not merely work by a single mechanism of action, but targets 

several mechanisms thought to be of importance in depressive disorders. Therefore, the 

actions of amantadine at sites other than NMDA receptors may have contributed to its 

greater activity when combined with paroxetine in this study. Clinical studies will be 

needed to assess the clinical usefulness of the co-administration of paroxetine and 

amantadine.
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6.1 Concluding Remarks

The monoamine theory of depression has dominated research and treatment of 

depression for over 30 years. The neurotransmitters 5-hydroxytryptamine (5-HT) and 

noradrenaline (NA) are believed to play a crucial role. The role of dopamine (DA) is 

less clear but evidence suggests that it plays some role in the pathogenesis of depression 

(Willner, 1983).

Recently, it has been found that N-methyl-D-aspartate (NMDA) receptor antagonists 

can give a positive result in a preclinical screen for ADs (Trullas and Skolnick, 1990). 

It has also been observed that chronic, but not acute treatment with a range of 

antidepressants from different generic groups, including selective serotonin reuptake 

inhibitors (SSRTs) decreases the binding affinity of NMDA receptors (Paul et al, 1994). 

This data suggests that some dysfunction in NMDA receptor-mediated transmission 

could play a role in the pathophysiology of depression. As an important role exists for 

the NMDA receptor in the regulation of monoamine release in several brain regions 

(Whitton, 1997), it is feasible that antidepressant related changes in NMDA receptors 

affect monoaminergic transmission.

In light of this background experimental evidence for the involvement of NMDA 

receptors in depression, four main aims of this study were addressed.

• Do ADs of different classes e.g. SSRI and TCA, have similar effects on

extracellular DA/5-HT efflux in the frontal cortex when given acutely and

chronically?

• What are the effects of acute, subchronic (7-days) and chronic (21-days) treatment

on local NMDA-evoked monoamine efflux in the frontal cortex?

• Are these changes reversed following AD cessation?

• What are the effects of polypharmacy studies involving the administration of 

NMDA antagonists as adjuncts to the SSRI, paroxetine?

In Chapter 3, the effects of acute, subchronic (7 days) and chronic (21 days) systemic 

administration of the SSRI, paroxetine and the TCA, clomipramine, using in vivo 

microdialysis, on DA efflux were investigated. This chapter also included studies
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looking at the effect of local NMDA infusion on NMDA-evoked DA efflux and the 

effects of the NMDA-evoked DA changes following AD cessation.

Acute injection of paroxetine did not affect DA efflux while clomipramine 

administration caused a decrease in DA efflux. On the other hand, the results of this 

study indicate that paroxetine and clomipramine exert similar effects on basal DA efflux 

in the frontal cortex. When administered subchronically they caused a decrease in DA 

efflux but increased DA efflux when administered chronically. These drugs also have 

similar effects on NMDA-evoked DA efflux. They decrease DA efflux when given 

acutely, prevent the decrease when given subchronically and increase DA efflux when 

given chronically. These changes in NMDA-evoked DA efflux lasted for at least 48 

hours after drug cessation and were comparable to pretreatment basal levels after 14 

days of drug cessation. From these findings, it can be inferred that adaptive changes 

occur in NMDA receptor function during treatment with an AD which may alter 

NMDA-evoked changes in dopaminergic transmission.

In Chapter 4, the effects of acute, subchronic and chronic systemic administration of 

paroxetine and clomipramine on 5-HT efflux were investigated. I have also conducted 

experiments which have addressed the effects of local NMDA infusion on NMDA- 

evoked 5-HT efflux and also the effects of these changes following AD cessation.

The results of this study indicate that paroxetine and clomipramine exert similar effects 

on basal 5-HT efflux in the frontal cortex whether administered acutely, subchronically 

or chronically. Acute i.p. injection of paroxetine and clomipramine had no effect on 

5-HT efflux while both subchronic (7 days) and chronic (21 days) administration of the 

drugs caused a dose-dependent increase in extracellular 5-HT concentration. Both drugs 

had similar effects on NMDA-evoked 5-HT efflux which lasted for at least 48 hours 

after drug cessation and were comparable to pretreatment basal levels after 14 days of 

drug cessation.

The data in Chapters 3 and 4, also showed that subchronic and chronic treatment with 

paroxetine and clomipramine abolishes or reverses the effect of NMDA infusion on DA 

and 5-HT efflux. In Chapter 5, it was therefore decided to investigate the effects of a 

range of NMDA antagonists on paroxetine-induced DA/5-HT efflux. All NMDA 

antagonists used in this study increased paroxetine-induced extracellular 5-HT levels.
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However, amantadine was the only NMDA antagonist to increase DA efflux in the 

frontal cortex. This is the first study to demonstrate that NMDA antagonists potentiate 

the effect of terminal 5-HT efflux. It appears that NMDA antagonists accelerate the 

effects of ADs on 5-HT efflux and this further reinforces the potential involvement of 

the NMDA receptor in the aetiology of depression.

Although this study concentrated on the effects of glutamate antagonists that displayed 

affinity at the NMDA subtype, ligands which bind to the AMP A subtype could also 

enhance the effects of ADs. Beattie et al (2000) and Ehlers (2000) showed that the 

application of NMDA triggers internalisation of the AMP A receptors. If such a system 

of regulating AMP A subtype availability is in place, it may act alongside NMDA 

receptors in regulating AD-induced transmitter release.

6.2 Other areas of interest and future directions

Preclinical studies have indicated that ligands that display antagonistic actions at the 

NMDA receptor may possess AD properties. Moreover, chronic administration of ADs 

has been shown to alter both the mRNA levels encoding NMDA receptor subunits and 

radioligand binding to these receptors in certain brain regions including the frontal 

cortex. It is hypothesised that AD treatments converge to produce an identical 

functional endpoint: a region- specific dampening of NMDA receptor function (see 

Skolnick, 1999 for review). Recent research has shown that that NRl protein levels in 

the frontal cortex and hippocampus are decreased following chronic AD (clomipramine 

and roboxetine) treatment (Hutson et al, personal communication). We are currently 

extending these studies using paroxetine. We are also looking at the effects of chronic 

AD treatment on NRl and NR2 mRNA levels using molecular biological techniques 

such as PCR. This molecular biology approach will help us to examine whether our data 

shows a change in mRNA NMDA subunit composition following chronic AD 

treatment.

During the past decade, research into depression has been extended beyond the 

monoaminergic synapse. The study of intracellular signalling pathways especially those 

involving the neurotrophic factor BDNF are now being explored. NMDA antagonists 

and BDNF have been shown to be protective against neuronal insults, presumably by 

dampening NMDA receptor function (Choi, 1988; Komhuber and Weller, 1997). Given

208



Chapter 6:Concludin2 remarks

the coexistence of AMP A and NMDA receptors at many central synapses (He et al, 

1998) and the role of AMP A receptors in NMDA receptor activation, further 

experiments will provide an insight into whether there is a connection between BDNF 

formation and NMDA receptor function dampening in AD action. These results suggest 

that co-administration of paroxetine (and other ADs) with NMDA antagonists should be 

further investigated in order to determine the influence of BDNF on the processes I have 

observed.

The present study demonstrates that chronic AD treatments can modify NMDA receptor 

function in the frontal cortex. These present findings suggest an associated role between 

repeated AD treatment with paroxetine and clomipramine on the regulation of 

serotonergic and dopaminergic transmission by NMDA receptors within the frontal 

cortex. This study underlies the importance of giving a chronic treatment regimen with 

ADs before making assumptions as to the functional roles of different transmitter 

systems in the mechanism of AD treatment since the results of the acute treatment study 

are quite different from that of chronic treatment. It can be concluded that the 

potentiation of serotonergic and dopaminergic neurotransmission induced by chronic 

AD (paroxetine and clomipramine) treatments may contribute to their therapeutic 

effects. Whether any single neurotransmitter system will be ascribed a central role as the 

final common pathway in the aetiology of depression is unclear. A dysfunction in the 

interaction between glutamatergic/serotonergic/dopaminergic transmission may be 

significant in the aetiology of this disease. The primary targets for AD actions at the 

monoamine synapse may only be the beginning.
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I. Rat weights

Rat weights were monitored daily to ensure that paroxetine and clomipramine were not 

having any detrimental effects on rat health in accordance with the Home Office 

guidelines.

I I The effect of chronic paroxetine and clomipramine dosing on body weight over 

21 days

Over a period of 21 days, saline-treated (control) rats were seen to steadily gain weight 

at a rate of 4g/day. At the start of monitoring, the average weight of rats wasl76g and 

these saline-treated rats increased in weight to 250g (Figure I). Rats of an identical 

starting weight but treated with clomipramine for 21 days were also observed to gain 

weight, but less rapidly than controls. During the 21 day dosing regime, these rats 

gained weight at an overall rate of approximately 2g/day. These clomipramine-treated 

rats weighed an average of 223g at the end of the experiment, which was significantly 

lower than that of saline-treated (control) rats. Similar to the clomipramine-treated rats, 

rats treated with paroxetine for 21 days also increased in weight less rapidly than 

controls at an average of 2g/day but these rats ceased gaining any weight from day 11 

till day 19. At day 19, these rats had an average weight of 215g. Interestingly on days 

20 and 21 these rats gained weight to 223g eventually weighing the same as the 

clomipramine-treated rats.

Saline
Paroxetine 10 mg/kg 
Clomipramine 10 mg/kg

275n

250-
O)

O) 225-

200 -

175
0 5 10 15 20 25

time (days)
Figure I The effect of chronic paroxetine and clomipramine dosing on body weight 
over 21 days. Data are the mean ± SEM of six animals in each group.
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I II Effect of chronic (21 days) dosing of paroxetine with 48 hours ‘drug holiday’ 

on body weight

Over a period of 21 days, saline-treated rats were observed to steadily gain weight even 

after the cessation of drug/vehicle treatment. At the start of the study, before any drug 

treatment, rats weighed 146g and at the end of the study, the control rats weighed 23Og. 

Similarly rats chronically treated with paroxetine were observed to gain weight but at a 

slower rate to the control rats. The paroxetine-treated rats gained weight at a rate of 

2g/day compared to saline-treated rats which gained weight at a rate of 4g/day. 

However, after day 11 of the dosing regime, the paroxetine treated rats were gaining 

weight at a much slower rate (Ig/day) (Figure II). Thus at the end of drug treatment 

these rats weighed 192g. After 48 hours of cessation of drug treatment, the rats did not 

gain any extra weight beyond 192g.

I.III Effect of chronic (21 days) dosing of paroxetine with 14 days ‘drug holiday’ 

on body weight

Over a period of 21 days, the results for saline and paroxine-treated rats was similar to 

above. At the start of the drug holiday, saline-treated rats weighed 223g and after 

cessation of drug treatment, these rats carried on gaining weight. After 14 days at the 

end of the study, the control treated rats weighed 273g (Figure 37). Thus rats were 

gaining weight on average 3g/day. The paroxetine-treated rats at the start of the drug 

holiday weighed 205g but these rats gained weight at a greater rate than during 

treatment and weighed identical to the control rats after 14 days of ‘drug holiday’.
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Figure II Effect of chronic (14 days) dosing of paroxetine with 48 hours ‘drug 
holiday’ on body weight. The arrow indicates the point at which daily dosing was 
stopped. Data are the mean ± SEM of six animals in each group.
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Figure III Effect of chronic (14 days) dosing of paroxetine with 14 days ‘drug 
holiday’ on body weight. The arrow indicates the point at which daily dosing was 
stopped. Data are the mean ± SEM of six animals in each group.
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I.IV Effect of chronic (14 days) dosing of clomipramine with 48 hours ^drug 

holiday’ on body weight

Over a period of 14 days, saline-treated rats were observed to steadily gain weight even 

after the cessation of drug treatment. At the start of the study, before any drug treatment, 

rats weighed 140g and at the end of the study, the control rats weighed 210g (Figure 

IV). Similarly rats chronically treated with clomipramine were observed to gain weight 

but at a slower rate to the control rats. The clomipramine-treated rats gained weight at a 

rate of 2g/day compared to saline-treated rats which gained weight at a rate of 

approximately 4g/day. Thus at the end of drug treatment these rats these rats weighed 

195g. After 48 hours of cessation of drug treatment, the rats were observed to carry on 

gaining weight.

I. V Effect of chronic (14 days) dosing of clomipramine with 14 days ‘drug holiday’ 

on body weight

Similar to rats given a shorter ‘drug holiday’, rats which were receiving the saline 

treatment initially gained more weight in comparison to clomipramine treated-rats. 

Clomipramine-treated rats carried on gaining weight even after drug cessation and in 

fact at the end of the study, clomipramine treated rats weighed 255g which was higher 

than saline-treated rats which only weighed 23 Og at the end of the study (Figure V). An 

interesting point is that after 72 hours of ‘drug holiday’ the saline-treated rats started 

gaining weight at a much reduced rate of 2g/day compared to 4g/day as earlier observed 

in this study.
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Figure IV. Effect of chronic (14 days) dosing of clomipramine with 48 hours ‘drug 
holiday’ on body weight. The arrow indicates the point at which daily dosing was 
stopped. Data are the mean ± SEM of six animals in each group.
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Figure V. Effect of chronic (14 days) dosing of clomipramine with 14 days ‘drug 
holiday’ on body weight. The arrow indicates the point at which daily dosing was 
stopped. Data are the mean ± SEM of six animals in each group.
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