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A bstract

Curved ducts for transporting fluids are commonplace in industry and nature 

and, whilst many previous studies have concentrated on viscous responses to 

curvature, there are conflgurations and/or occasions when the fluid flow is suf

ficiently rapid that an inviscid approximation is more appropriate. One such 

occasion is the rapid flow of compressed air through an ejector in a food-sorting 

machine, which occurs over a typical timescale of 3 milliseconds. The particu

lars of the current project are connected with the interests of a manufacturer 

of food-sorting machines, and consequently variations around a specific geom

etry are studied in this thesis. Using asymptotic analysis and computational 

techniques, the thesis first studies the steady inviscid response of the flow to 

the curvature of the duct. Part I concentrates on the core-flow response to the 

curvature, extending a recent study to include compressibility. Bulk properties 

of the flow are derived analytically, along with far-downstream predictions of 

the flow behaviour and the response close to sharp corners of the cross-section. 

These results are supported by weakly and fully non-linear computational so

lutions of the steady three-dimensional Euler equations. Part II then studies 

the growth and development of the turbulent boundary layer in a curved duct. 

It is observed that there is an apparent lack of experimental data for the level 

of curvature specified by the industrial application. Entry region analysis sug

gests the turbulent boundary layer velocities split into a component matching 

the core flow and a turbulent component. Solutions are found for the turbu

lent components in the entry region. Three downstream regimes of the major 

parameters are also identified and described. One, the quasi-straight regime, 

is studied in detail numerically and comparisons with experiments are made. 

Increasing curvature effects are discussed by means of the other two regimes.
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Chapter 1

Introduction

An understanding of the flow of fluids through ducts has been sought since 

times of antiquity. Perhaps over millenia, many now nameless hydraulic en

gineers contributed to a body of expertise which must have been known to 

Hero of Alexandria when he wrote his Dioptra in the 2"̂  ̂ century BCE. The 

description of a principle of continuity contained within is the earliest we know 

of, and predates Leonardo da Vinci’s clearer exposition by some 17 centuries. 

Between these two men stand lessons learnt, forgotten, and re-learnt by the 

great Roman engineers and the inhabitants of pre-Rennaissance Europe. The 

fresh- and waste-water piping systems in continents across the ancient world 

are also testament to the early practical understanding of duct flows and their 

importance to managing ever larger human settlements.

In the modern world, predicting and controlling flows through ducts seem

ingly grow in importance as our technological sophistication and knowledge 

of biological systems increase. In particular, it is fair to say that ducts with 

bends are commonplace in nature and in human constructs, where they arise 

either by design or by necessity. The positive and negative effects, depending

18
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on application, of convoluted piping systems are of interest to industry, for 

example in enhancing heat transfer or necessitating the installation of pumps 

to overcome pressure head losses. The flows through mass exchangers, turbo

machinery, rocket engines, animal and artiflcial hearts, microfluidic machines 

and many other industrial applications besides involve fluids of different kinds 

moving at a range of velocities over a range of length and time scales and 

through a variety of levels of duct curvature.

Consequently an important parameter of duct flow is the Reynolds number, 

denoted Re, and deflned as

Re  =  , (1.1)
^OO

where L qq is a representative length scale of the flow, and Uqô ^oo are rep

resentative values of the fluid velocity and kinematic viscosity, respectively. 

The deflnition of Re was of course originally formulated in a study of the fac

tors influencing the transition to turbulence of fluids flowing through straight 

ducts, and has since found general application. Flows in which Re is relatively 

low involve a balance of inertia and viscosity and tend to remain laminar. 

Relatively high Reynolds number flows, on the other hand, can approximate 

an ideal inviscid fluid for which Re is inflnite and are more likely to exhibit 

turbulence.

Many — though by no means all — examples of flows through curved 

ducts are in the low Reynolds number regime. Perhaps due to the signiflcance 

of several such flows (the blood flow through the arteries of the brain, for 

example), the effects of streamwise duct curvature in low Reynolds number 

flows have received much attention. Work in this area began with studies of 

fully developed flows in curved channels and ducts. Uniform streaming of the 

surface flow to the outer wall of a curved open channel was first recorded in
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[87]. The next step, according to [7], was the discovery that the location of the 

maximum axial velocity of a Poiseuille flow shifted to the outer wall of curved 

ducts, whilst [34] discovered that a larger pressure gradient was required to 

produce a given flow rate in curved ducts than in straight ones. Eustice, in [31] 

and references therein, measured secondary, swirling flows in such ducts. These 

experimental results were confirmed analytically for circular cross-sections by 

Dean in [25] and references therein, in which the problem was formulated 

mathematically for the first time. The formulation in [25] effectively lays the 

foundations of future work in viscous laminar flow through curved ducts and 

furnished us with the dimensionless Dean number, K  — effectively, the ratio 

of the product of inertial and centrifugal forces to the viscous forces, though 

its exact definition depends on the paper in which it appears. Such flows are 

characterised by the ratio h : a, the ratio of the typical cross-sectional width 

to radius of curvature of the bend, and by K.

As well as finding analytical solutions which matched the known experi

mental results, [25] demonstrated the existence of twin counter-rotating helical 

vortices in the upper and lower halves of the duct. These counter-rotating vor

tices are the subject of continuing research. For example, the question of the 

exact mechanism of viscous return across the centre of the duct is still open, 

but for large values of K  boundary layers are known to develop, carrying mass 

around the circumference of the duct away from a “source” point at the outer 

bend, with the layers gradually thickening towards the inside of the bend. 

Here, after a finite distance, collision and separation occur and a re-entrant 

jet is formed across the horizontal symmetry plane of the duct, returning the 

fluid to the source point. Similar mechanisms are known to operate in ducts 

of non-circular cross-section; for a fuller discussion, see [7, pp.476ff] and refer
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ences therein. Under certain conditions, such as those in [85, 96] and references 

therein, the twin-vortex solution can bifurcate into a four-vortex solution.

Developing entry flows in viscous regimes have also been the subject of 

analytical, numerical, and experimental work as described in the introductions 

to [77, 96]. For example, [71] showed that the boundary layer adjusts upstream 

of the onset of the bend in the entry region. The introduction to [77] also 

contains several references to related experimental, analytical, and numerical 

work on unsteady flows through two-dimensional bends.

Despite the interest in essentially viscous responses to curvature there are 

many physical situations involving high Reynolds number flow through three- 

dimensional curved ducts. Many of the ducts are slender and turn the flow 

through a signiflcant angle, and any inviscid responses to curvature may be 

compounded by the flow in such bends becoming turbulent and/or unsteady. 

Often, three-dimensional ducts in practice have simple, uniform cross-sections 

such as rectangles or circles in order to lower the cost and raise the preci

sion of manufacture. A good example, which we will now describe, of a high 

Reynolds number flow through such a duct will serve as the motivating phys

ical system for the work in this thesis. The system is connected with the flow 

of air through ejector guns in food sorting machines. These machines contain 

arrays of ejectors supplied by air which is pressurised to between three and 

six atmospheres, depending on the application. The flow through each ejector 

is instigated by the operation of a piezo-electric diaphragm which opens and 

closes over 3 milliseconds at up to 150 Hertz. The flow rates involved are 

substantial and typically equivalent to 20 litres of air per minute through each 

duct. Design of the machine as a whole forces certain constraints on the design 

of the ejectors which often entail a departure from the ideal straight duct. At



CHAPTER 1. INTRODUCTION  22

present, the air in each ejector must pass down a straight rectangular duct 

section before being twice turned sharply through a significant angle and then 

ejecting from the duct into the atmosphere. Such complex factors are likely to 

render a linear one-dimensional analysis (see just below) inadequate and call 

for a full non-linear three-dimensional treatment. The multi-component nature 

of the array and the multiple firing of each ejector increases the complexity of 

the problem.

A standard one-dimensional linearised shock tube analysis of the fiow in a 

typical example of the above motivating industrial system — such as that 

in [53, pp.TOff] — suggests an atmosphere-ejection speed in the region of 

290 ms“ \  whereas the experimental value is close to 30 m s" \ This serves 

to emphasise the importance of understanding the effects of the bend in a t

tenuating the flow (through loss of pressure head), and to demonstrate some 

restrictions of the one-dimensional analysis.

The large Reynolds number and short duration of the fiow described above, 

together with the likelihood of turbulent effects due to unavoidable manufac

turing defects for example, here point to a non-linear inviscid treatment. This 

approach is to be seen as complementary to the Dean-type studies summarised 

earlier. In contrast to the large number of low Reynolds number studies, a t

tempts to shed light on three-dimensional inviscid flows through curved ducts 

seem to date to consist mainly of hydraulic estimates of pressure head losses 

and empirical suggestions of the existence of secondary flows, with relatively 

little hydrodynamic treatment. Typical examples of such engineering-based 

empirical results are given in [6, §10.3], which builds on the “essentially defini

tive” work of [46, 47]. Studies relating to the transition to turbulence of flows 

entering and traversing curved ducts have also been carried out, for example
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by [84, 32] and references therein.

An important feature of such studies is the ratio h : a defined above. 

Many experimental studies of the three-dimensional turbulent core or turbulent 

boundary layer fiow through curved ducts are either in the strongly curved 

regime when h : a is of order unity, or the very weakly curved regime when 

h : a is two orders of magnitude smaller. Examples are [68] in the former 

regime and [42] in the latter. The motivating industrial system described 

above, on the other hand, has h : a approximately 0.1, lying between these 

two regimes. Although experiments, such as [30], have been reported for this 

level of curvature they seem restricted to measuring correlation functions and 

energy spectra near the wall in order to inform turbulence models, but they 

tend to give little insight into the bulk fiow development. Previous studies 

relevant to turbulent duct flows are discussed in more detail in §6.1 of this 

thesis.

In the context of the lack of theoretical insight into high Reynolds number 

flows through curved three-dimensional ducts, [77] presented an analytical and 

numerical investigation of the three-dimensional fiow of an incompressible in

viscid fluid through a curved duct of simple cross-section corresponding to the 

industrial system described earlier. The non-linear approach studied a slightly 

disturbed uni-directional incident fiow entering a sizable bend; typical turning 

angles were 90°. Unsteady effects were assumed to be confined to thin neg

ligible wall layers. Aside from the duct curvature, the dominant factors were 

found to be the input swirl in the plane of the cross-section and the shear of 

the input streamwise velocity profile. Swirl and shear are produced by (for 

example) the complex upstream conditions which include the opening of the 

diaphragm, a possible precursor bend, and possible wall roughness. For both
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weak and strong input swirl the integrated vorticity was found to grow linearly 

with bend length. The smallness of the pressure losses as described in [77, §6.2] 

was also contrasted with that in viscous flows.

Amongst the successes of the work in [77] was the demonstration of doubly- 

peaked axial velocity profiles and embedded helical vortices which have been 

witnessed in experiments as summarised in [7]. The authors of [77] also pro

posed extensions to their approach which it was hoped would give the results 

greater physical relevance. Such extensions involve the inclusion of real gas 

effects as well as a more strongly non-linear study and a consideration of tur

bulent flow effects. We re-iterate that viscous eflFects are often negligible over 

the short time scales considered herein.

This thesis aims at extending the work of [77] to include real-gas effects and 

turbulent behaviours in the motivating industrial system via a mutually sup

portive combination of analytical and numerical work. The basis of the work, 

which will in general be three-dimensional and non-linear, is the Navier-Stokes 

equations which are given in Chapter 2 with real-gas effects being considered 

in Chapters 3, 4, and 5. The effects of turbulent fluctuations in the flow are 

studied in Chapters 7 and 8 and will be modelled by a two-tier mixing-length 

model given in Chapter 6. The flow is considered to be attached throughout, 

based on the discussion for finite scaled time in [77, p.318]; essentially, the 

laminar cases would remain attached over the short time scales of relevance 

here, while turbulent (plug) flow is not likely to separate anyway. Exceptions 

to this assumption — which do not affect the analysis herein — are discussed 

in [77, p.340].

Part I of this thesis consists of Chapters 2 to 5 and is concerned with 

extending the inviscid model to include real gas effects. Laminar or turbulent
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viscous layers attatched to the duct walls are assumed to be negligibly thin. 

Chapter 2 begins this work by introducing the initial formal mathematical 

model of the motivating industrial problem, based on that in [77]. The high 

Reynolds number flow in the duct is considered steady, the fluid incompressible, 

and the level of curvature is given. As an extension to [77] the entry flow 

problem is considered first, and we show that the flow adjusts smoothly to 

the sudden onset of the bend via a small upstream influence. For the longer 

scale which enables a study of the full length of the bend, the principal results 

and arguments of [77] are summarised, before new solutions to the governing 

equations are presented which emphasise the influence of the input streamwise 

velocity shear and cross-plane swirl on the downstream flow.

Real-gas effects are considered for the first time in Chapter 3. This chap

ter contains an account of the relevant thermodynamical results which are 

required for the inclusion of real-gas eflPects in the model. A concise summary 

of the equations to be carried forward into forthcoming chapters is given at 

the end of Chapter 3. This work is required for Chapter 4 in which the cou

pled governing equations are derived for when compressibility and viscosity 

are present, although in fact the viscous cases are not analysed in this thesis 

for reasons given above. Next, we perform an analytical study of the weakly 

non-linear compressible inviscid case which reveals behaviour bearing similar

ities to the incompressible case of Chapter 2. For example, the pressure drop 

is relatively small and the vorticity grows linearly with bend length. However, 

variations in the fluid density in general appear. Far-downstream behaviours 

are considered both for bends which terminate at a finite distance and others 

which are maintained indefinitely. Streamwise-invariant states of all variables 

are attained if the bend terminates, while the vorticity continues to increase
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with bend length for large distances if the bend is maintained, leading to more 

strongly non-linear interactions downstream. The influence of sharp corners 

in the duct cross-section is also considered, and although singularities develop 

in the vorticity close to the corners the density is found to be well-behaved 

there. In certain limits of the governing equations connections with the more 

strongly non-linear studies of Chapter 5 are discussed.

Chapter 5 is divided into four main sections. The first two are concerned 

with numerical solutions of the weakly non-linear compressible case, while the 

second two parts deal with solutions of the fully non-linear compressible case. 

The numerical approach is explained in detail in §5.1, and is based on an 

implicit/iterative scheme to solve the relevant coupled set of tridiagonal equa

tions, with compact differencing and mid-point averaging. Numerical solutions 

are given in §5.2 for a range of input swirls, input streamwise velocity shear 

and curvature strengths to show the dependence of the downstream flow on 

these variables. The analytical predictions of Chapter 4 are confirmed within 

the computational limits of the numerical scheme. The chapter continues with 

§5.3 in which the governing equations of a fully non-linear compressible inviscid 

study are derived. The strongly non-linear and coupled nature of the equations 

render this case a largely numerical one, of course, and the numerical approach 

is also explained here. Solutions are then given in §5.4 for a range of input 

values and also for the fully non-linear incompressible inviscid case; mutually 

supportive analytical and numerical work is carried out in a range of asymp

totic limits to assess the reliability of the numerical scheme. An interesting 

conclusion to emerge is that due to the smallness of the pressure drop the fully 

non-linear compressible case corresponds to the fully non-linear incompressible 

case. Real gas effects are thus less influential in the fully non-linear studies
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than they are in the weakly non-linear ones.

Part II of this thesis, comprising Chapters 6 to 8, is concerned with the ef

fects of turbulence in the duct flow, from a boundary layer perspective initially. 

As such. Chapter 6 contains a fairly full background to the description and 

modelling of turbulence with particular emphasis on two-tier mixing length 

models. It also gives the details of the Cebeci-Smith model which will serve as 

the standard model in this thesis. The governing equations for the turbulent 

boundary layer flow in a duct with streamwise curvature are derived. We con

sider next two speciflc cases. The development of the turbulent boundary layer 

in inlet flow in a straight duct is shown to be similar to that for the turbulent 

boundary layer over a flat plate at zero incidence, as given in [60]. The gov

erning equations in the entry region of a duct with the same level of curvature 

as that in Part I are given. We then consider the far-downstream behaviour in 

the entry region wherein as the scaled boundary layer wall normal coordinate 

tends to inflnity the flow in the turbulent boundary layer matches with the 

far-downstream entry region core flow of Part I. This leads to the introduction 

of an important parameter: the ratio of the magnitude of the core flow swirl 

to the magnitude of the turbulent fluctuations in the boundary layer.

The influence of the magnitude of the important ratio just described, i.e. 

the swirl-turbulence ratio, is explored further in Chapter 7. We show that, 

although there are apparently three identiflable magnitudes, in the entry region 

each case can be analysed as one by a suitable separation of the influences in 

the streamwise and cross-stream directions. The core flow influences are felt 

through terms which are constant across the height of the boundary layer on 

an outer tier length scale, while the fully turbulent parts of the streamwise 

and cross-stream boundary layer velocities become the objects of study in the
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far-downstream region of the entry region. Here, we derive solutions for the 

streamwise velocity, which develops similarly to that in the turbulent boundary 

layer over a flat plate, and for the cross-stream velocity which is non-zero in 

general and depends on the cross-sectional profile of the duct. Furthermore, a 

novel kind of cross-stream behaviour is shown to hold here in which the local 

maximum of the cross-stream flow in the turbulent boundary layer lies very 

close to the duct wall.

A discussion of longer scale behaviours and their dependence on the swirl- 

turbulence ratio is also given in Chapter 7 and one of these cases is examined in 

Chapter 8. This case occurs when the turbulent fluctuations are much stronger 

than the curvature-induced swirl in the core. As such it is denoted the “quasi

straight” regime. We study this regime over a new length scale where the 

turbulent boundary layers grow to merge and fill the duct. Firstly, a two- 

dimensional study is performed in which we show that the duct centre-line 

velocity is an important parameter which influences both the flow develop

ment and the far-downstream behaviour. The junction between the two layers 

of the two-tier mixing-length model, and leading order variations in centre-line 

velocity and pressure, are shown to develop linearly with streamwise distance 

before the junction position and the centre-line velocity suddenly bend to con

stant values which hold thereafter. An analysis of the governing equations 

based on a small parameter is performed and the sudden bending described 

above is shown to be smoothed over a shorter length scale. Generalising, the 

quasi-straight regime in a three-dimensional axisymmetric duct is considered 

next; once again, the centre-line velocity is an important parameter and the 

pressure is predicted to develop linearly with streamwise distance. An analysis 

based on a small parameter predicts linear growth in the variation in centre
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line velocity and in the junction position with a sudden bending to an invariant 

state, in keeping with the marching calculations. Unlike in laminar flow, the 

turbulent fully developed flow solution far downstream is found to depend on 

the flow behaviour globally, i.e. on the complete flow development beforehand.

A summary of the main results of the current thesis and suggestions for 

future work are contained in Part III (Chapter 9).



Part I

The inviscid model

30



Chapter 2

The Incompressible Inviscid case

The following configuration, shown graphically in Figure 2.1, constitutes the 

basic model of the physical situation described in Chapter 1. We take the 

fiuid in the duct to be both incompressible and inviscid. The duct, which is of 

simple cross-section, is straight fore and aft of the bend, and turns through a 

total angle denoted by 9\. In the straight sections, the coordinate xd is in the 

direction of the duct axis, and yo and zd are the mutually orthogonal coordi

nates in the cross-sectional plane perpendicular to We non-dimensionalise 

the coordinate system with respect to a typical upstream cross-sectional dis

tance ho, and the corresponding velocity components ud , vd , wd are measured 

relative to the typical upstream axial fiow speed Ud àt the onset of the bend. 

As a result, a natural scaling of the pressure variation p # is  based on twice 

the dynamic pressure head, namely PdU^, where pd is the density of the fiuid. 

We take the radius of curvature of the inside bend of the duct, a^,  to be 

constant and also non-dimensionalised with respect to hr, giving a large ratio 

ao/hr, = a. For the fiow in the bend, we use cylindrical polar coordinates 

where 9 is zero at the onset of the bend and 9\ at the termination of

31



CHAPTER 2. THE INCOMPRESSIBLE INVISCID CASE 32
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Figure 2.1: Coordinate configuration. The fore and aft straight sections are 

much longer than drawn here. A duct of rectangular cross-section has been 

drawn for clarity, although the work herein holds in general for other ducts of 

simple cross-section.

the bend. It is supposed that the bend is turning through a significant angle 

of a circular arc, so that 0i is for example | .  At the focus of the bend, rn = 0 

and in the duct + zd where z =  is typically of order unity.

The coordinate 6 is equivalent to a;/a and is here assumed to be also of order 

unity. Note that the coordinate system (r# ,# , has corresponding velocity 

components [wd , ud, vd) again.

The equations governing this flow are the dimensional continuity and steady 

Euler equations:

1
and {ud ■ V d)'^d — ------ V dPd •

PD

(2.1a)

(2.1b)
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We take the incident flow to be nearly uniform and nearly unidirectional, 

in the sense that u is unity to within a small order e, and v and w are small.

2.1 Entry flow

In this section we show that as the fluid enters the bend the pressure adjusts 

smoothly to the sudden onset of the bend via a small upstream influence. By 

extension, the velocities in the duct also respond smoothly.

We consider the entry region indicated in Figure 2.2 described by order 

unity values of the non-dimensional Cartesian coordinates x,y, and z. In the 

reference frame of the entry region the duct walls deviate from the upstream 

straight section {x < 0) by a distance of order e 1 in the downstream section 

a; > 0. This deviation will be seen to create a small pressure perturbation which 

drives the cross-flow locally.

We want to discover how a uniform unidirectional straight-duct flow re

sponds to the onset of the bend, and so we substitute the perturbations

(u, u,u;) =  (1,0,0) 4-e(û ,û ,û ))-f . . .  , (2.2a)

p = 1 cp . (2.2b)

into the non-dimensional continuity and Euler equations. This yields the fol

lowing system:

üx T ûy +  Wz — 0 I (2.3a)

ùx = -Px  ; (2.3b)

Vx = -Py  ; (2.3c)

Wx =  —Pz • (2.3d)
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Figure 2.2: Coordinates in the entry region. The straight and curved sections 

continue upstream and downstream, respectively. A rectangular cross-section 

is drawn for clarity.

The equations (2.3a-d) yield a three-dimensional Laplace problem for the pres

sure perturbation p:

% P  =  0 .  (2.4)

The boundary conditions are considered next.

We suppose now that the shape of the duct for a; > 0 is given by

2 =  /  =  â +  ef{x, y) , (2.5)

whereas for a; < 0 /  is identically zero. The apparent spatial movement of the 

walls in the Cartesian frame of reference causes a pressure gradient at the walls. 

Newton’s second law requires the force at the wall to equal the acceleration 

per unit mass it produces. The force produced on the fluid by the moving wall 

is the negative pressure gradient at the wall, while the acceleration of the wall
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is =  e |^ .  Thus in general we require 

dp d'^f
dn dx^

at the wall, where n  is the local wall-normal coordinate. More specifically, on 

the wall z =  f { x ,y )  we must have tx • V(z) = it • V(/), which gives

w = uf:^P vfy . (2.7)

With the perturbations (2.2a,b) and with (2.3d) we therefore obtain

-Pz =  Az (2.8)

when the shape of the duct is given by (2.5). This is the pressure condition on 

z =  â for a; > 0, in line with (2.6). The condition for a; < 0 is =  0 on the 

walls.

There are at least two possible methods to solve (2.4). One method would 

be to take Fourier transforms in the z direction, in which case we need to solve 

the following Poisson equation for the Fourier transform p* of p:

V i o f  =  w V  . (2.9)

We observe that the solution to the Poisson equation in a duct of circular 

cross-section would involve circular or Bessel functions, while that in a duct 

of rectangular cross-section would involve trigonometric functions. Use of the 

convolution theorem would then return the solution for p.

An alternative, and ultimately equivalent method of solution of the Laplace 

problem is to set

, ZA>o ^Ae^'9A(2/, )̂ for a; <  0 ,
P = {  (2.10)

E a <0 Bxe^^Qxiy, z) 4- Poo{y, z) for x  > 0 ,
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and solve for the eigen-functions q\, Qx and the eigen-values A. Equation (2.10) 

requires some discussion. Firstly we note that in the upstream and downstream 

sections we have chosen the sign of A and the form of the exponential term such 

that p is bounded as a: —> — oo and x  — +oo. We have also included the non

zero term Poo{y, z) since we aim to show that a non-zero pressure perturbation 

persists far downstream which will connect with that in the longer scale flow 

studied in §2.2 and the remainder of Part I of this thesis. The coefficients 

Ax, Bx are to be determined to ensure that the solution is smooth across x = 0. 

We note that this approach ties in with the work of [76, §§3,6].

Let us now consider a rectangular duct with a given deviation /  ~  kx"̂  for 

a: > 0. Then for all x  in the downstream section a; > 0 we must have

p, ~  - 2 k  (2.11)
z=à

by (2.8). Therefore we set

Poo =  —2kz for all y , z  . (2.12)

We observe that this form of Poo satisfies (2.4) far downstream, and that it

furthermore satisfies the other wall condition, namely Pooy =  0. This
j / = c o n s t .

far-downstream pressure variation yields the following velocity variation from 

(2.3d):

w 2kx , (2.13)

as a; oo. We also observe that then |f;| |w| as a: — oo, a point discussed

on page 39 below.

It is clear that for the rectangular cross-section the solution can have v 

identically zero for all x, in fact. Thus the problem is a quasi-two dimensional
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one, requiring us to find the coefficients Ax,Àx,Bf^, B^ in

(Sa>o {Axcos{Xz) +  Axsin{\z))  for a; < 0 ,
(2.14)

E/i>o [B^cos{fiz) +  B,j,sin{fiz)) — 2kz for z > 0

such that the pressure adjusts smoothly across z  =  0.

Since in the upstream section there is a zero normal pressure gradient at 

the inner and outer walls we must have

[—Axsin{Xà) +  Âaco5(Aû}) =  0 =  (—AAsm(O) +  Âacos(O)) .
A >0 A >0

(2.15)Thus Aa =  0 for all A and A =  ^ .  Hence

oo

p< =  ^  ( ^ )  , (2.16)
n = l

where p< is the pressure in the region z < 0.

Next we consider the pressure p> in the region z > 0. By applying (2.11) 

we obtain

[—By,sin{^a) +  B^cos(fia)) — 2k =  —2k
fi>0

=  i-B^sin{0)  +  B^cos(O)) -  2k , (2.17)
/x>0

which leads to the solution:
oo

p> = ' ^ B n € ~ ' ^ c o s  ( ^ )  -  2/cz . (2.18)
7 1 = 1

It now remains to find An, Bn such that the adjustment across z =  0 is 

smooth, which requires at z =  0 that we have equality of p< and p> and also 

of the derivatives p^x and The latter condition requires that

g ( ^ ) ( . 4 „  +  B „ ) c o . ( ^ ) = 0  (2.19)
7 1 = 1
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X
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Figure 2.3: Left: plot of (2.23) at fixed z =  0.5. Right: plot of (2.23) following 

the corresponding interior point.

for all Z; and thus An = —Bn- Substituting this into the condition of equality 

of p< and p> across a; =  0 yields:

' ^ B n c o s  •
n = l

(2 .20)

Equation (2.20) involves a Fourier cosine series of period a, and thus inverting 

(and taking care due to the omission of the n =  0 term) we have the formula

n 2 r  _ . /n7TZ\ ,
B n  =  T  [ k z - \ -  B q) cos I d z  .

a Jo \  a J
(2 .21)

Applying the formula for n =  0 gives Bq =  —ka. Integration by parts then 

yields the even coefficients B 2n (and hence the coefficients À 2n) as zero and 

the odd coefficients as

4kà , , . Akâ
(2n -  l )H^  

Therefore we have found that

E oo 
n = l

and thus A2„_i =
[2n — 1)̂ 7T̂

(2 .22)

P
(2n —1)27t2 

'O O  4fcâ

 ̂(2tI—1)7TẐ

COS +  fc(â -  2z) for I  >  0 .

for X <  0 ,

0 .

(2.23)
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We note that away from the duct centre line there is a small upstream 

influence which smooths the transition. Let us now briefly consider a speciflc 

duct with —k = à = l  and e =  0.125 and the sample point zq = j  = 0.25 here, 

recalling that the solution is independent of y. We will show the streamwise 

pressure development at this position first from the point of view of fixed z and 

second at a point fixed relative to the duct walls in order to see how the local 

pressure of the fluid responds within the duct itself. To do so, we note that 

a given point zq in the upstream cross-section of the duct corresponds to the 

point z = Zq-\- ekx^ in the downstream cross-section of the duct. Mathematica 

was used to plot (2.23) for —1.5 < T < 1.5 with 100 terms of each sum taken. 

The two perspectives are shown in Figure 2.3. We observe that the adjustment 

across a; =  0 is smooth and that the far downstream state can be seen emerging.

2.1.1 Discussion of the entry flow

On page 36 we observed that |û| <C |û)| in the entry region of a curved rectan

gular duct. Thus while w is of 0{e), v is expected to be of We recall

that the above study of the entry region is in a frame of reference in which 

the walls of the duct deviate from a straight path by an 0{e) amount. Thus 

the different orders of magnitude of v and w are explained by the fact that 

the latter is required simply to move the fluid through a distance of order e 

as the walls themselves move. In other words, w is required to be non-zero 

since the fluid must move with the walls, but any cross-flow generated within 

the duct is of an order of magnitude lower still. This is an observation which 

aids the understanding of the work in Chapter 7 in which the core entry flow 

is examined from a frame of reference which moves with the walls of the duct. 

The sketch in Figure 2.4 also helps to elucidate matters.
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Figure 2.4: Sketch of the far-upstream and far-downstream regions from a 

point of view aligned with the centre of the duct at a; =  0. The large arrows 

indicate the movement of the duct in a fixed frame of reference and the velocity 

component w moves the fiuid along uniformly with the walls.

2.2 Longer scale flow

Our concern hereinafter is with the flow when the total angle turned through 

is of order unity. In this section we summarise the approach and selected 

results of [77], with a view to setting the scene for the novel developments to 

come. In addition, we will present original numerical solutions of the governing 

equations which verify the results of [77] and describe the methodology to be 

employed herein. Only sufficient detail to provide a readable presentation of 

the relevant results and techniques will be given here, and the reader is referred 

to [77] for further elaboration.
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For the flow in the bend the governing equations are:

— h Wr H h =  0 , (2.24a)
r r
u uw pe _ _ .

wUj- -j— uq +  vUy H------= ------ , (2.24b)
r r r

wvr +  -ve  +  vvy =  -py  , (2.24c)

u
wWy H— wq +  vWy------ =  —Pr • (2.24d)

In a long, straight duct the two centrifuging terms ^  on the left hand 

side of (2.24b) and — ̂  on the left hand side of (2.24d) disappear, and then a 

solution to equations (2.24a-d) is

{u,v,w) = (1,0,0) , p = po (2.25)

for some constant po- However, the practical flow which motivated our study 

features a valve opening upstream, a precursor bend, and the sudden bending 

of the straight section into the bend being investigated (see the discussion of 

the motivating industrial problem in Chapter 1). These factors are taken to 

impose perturbations onto a uniform flow, although under strict conditions to 

be discussed some simple analytical solutions exist.

A balance of magnitudes of the terms in the continuity equation suggests 

that V and w are of 0(a~^) at most, which implies a radial inertial force (which 

is proportional to and w ^ )  proportional to a~^. This is to be contrasted 

with the centrifugal force oc — ̂  in equation (2.24d) which represents the main 

effect of the bend as it is proportional to a~^. Thus we expand as follows:

u = 1 -\- ctj T . . .  5

V = eV T  . . .  ; (2.26)

w = eW  +  . . .  ,
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where as above e is small, while C/, V, W  are typically of order unity and depend 

on 9, y,z.  We find that it is natural to take a pressure variation in the bend of

epi(0) +  A 2/j 2:) +  . . .  . (2.27)

In this expansion, we have introduced the curvature parameter A which is 

identically 0 in the straight sections of the duct and is identically 1 when in 

the bend . This idea of a curvature or centrifuging parameter was used in [77], 

where the letter employed was F. We will also use the parameter

O' =  6CL (2.28)

which is taken to be of order unity. This form of the pressure variation arises 

by first considering a standard expansion

p =  [po +  ^Pi +  Ĝ P2 +  • • -]( )̂ P, ^) • (2.29)

Due to the form of the other variations, it can easily be shown from the govern

ing equations that po is a constant (which does not appear in the equations) 

and Pi is a function only of 6. We note here the appearance of a pressure 

perturbation of 0{e) which connects with the work of §2.1. After the non- 

dimensionalising and change of coordinates, the equations are examined to the 

lowest order of e. Finally, we normalise the resulting equations as follows;

e = ei9 , (2.30a)
Az  1

[Ù +  — , V, W] =  ^ [ C / ,  9iV, 9iW] , (2.30b)

Pi — ^ ^ P i  J (2.30c)

^  • (2.30d)
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The governing equations are then

Vy -hWz = 0 , (2.31a)

Ue +  VUy +  WUz = -p[  (6) , (2.31b)

Ve +  VVy +  WVz = —p2y J (2.31c)

We +  VWy +  WWz -  2AU = -p2z . (2.31d)

The velocity components U, V, and W,  and the pressure components pi and

P2 are to be found.

These equations are the governing equations of the inviscid, incompress

ible model, studied in [77], and are parabolic in 9 subject to given starting 

conditions 9 = 0.

2.3 Numerical methods

We decided that a computational solution of the inviscid, incompressible equa

tions (2.31a-d) should first be attempted in order to verify the results presented 

in [77]. Since the detailed quantitative form of the solutions depends very 

strongly on the initial conditions, a re-creation of some numerical results with 

the same initial conditions and others with a novel set-up was attempted. The 

assumption was that a close correspondence between both sets of numerical 

results — derived independently, and with perhaps subtle differences in style 

— would both imply the veracity of the results and provide a strong basis of 

belief in the numerical approach for the new work in Chapter 5, which starts 

with the technique to be described here and then renders it fourth-order accu

rate via compact differencing. It should be noted that only a summary of the 

techniques and results is given in this section. A more detailed description of 

the numerical techniques will be provided in Chapter 5.
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The variable 6 acts as a time-like variable in that the governing equa

tions exhibit a parabolic dependency on it, suggesting a forward-marching 

approach, solving the equations in successive planes 9 = constant. As an ini

tial attem pt, the first order ^-derivatives are made first-order accurate with a 

backward-difference. The first- and second-order derivatives in the plane are 

made second-order accurate by using central-differencing in the planes 6 =  con

stant. The solution of the difference equations thus obtained requires either a 

fully implicit solution of the resultant block-tridiagonal system, or an implicit 

line-by-line approach combined with iteration for convergence. The inversion 

of a block-tridiagonal matrix is somewhat involved, and the implicit/ iterative 

method is widely used with success, as discussed in [65, p.87]. With the su

perscript n denoting the 0-step, we assume that all variables are known at the 

72-level, and proceed to solve at the {n +  1)-level. The subscript j  denotes the 

gridline perpendicular to the 7/-axis, and k that for the 2-axis, so that j  = 1 

corresponds to y = 0 and k = 1 to z = 0. In this way, for example, the 

backward differencing in 9 for the derivative ^  at the point {j, k) is

r r ( n + l )  _  T t {t i )

. (2.32)

and ^  would be replaced by the central-space difference

Y j i n + l )  _  r r ( n + l )

j + l , k  j — 1 ,7 c  / f )  o o \

for example, and so on in the usual fashion; see for example [65].

The approach now is to assume total knowledge of the variables ahead of 

and behind the line j ,  but total ignorance of them on that line. We solve 

for the variables on the line j  and sweep in the direction of increasing j .  At 

any given iteration level we use values from the previous iterative level for the 

variables on line j  +  1. On the first iteration, the converged value from the
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previous 0-plane is used ahead of the line. Thus all first-order ^-derivatives of 

a variable X  on the line j  can be replaced in terms of the known values from 

line j  — I and the assumed values from the line j’ +  1. We are left then with a 

tridiagonal system in k on the line j ,  resulting from the discretisation of the z- 

derivatives, with a known right hand side. This and other resulting tridiagonal 

systems are solved by a standard inversion algorithm, closely resembling that 

in [21, pp. 77 ff].

Once j j ,  corresponding to the wall y = yi, is reached, the newly-derived 

values at each point in the plane of the cross-section are compared with the 

results from the previous iteration. If the maximum absolute difference is 

within a prescribed level of accuracy, then the results are said to have converged 

and we advance to the next 0-level. If convergence has not been obtained, by 

which we mean there persists a large absolute difference in values of at least 

one of the variables at at least one point between successive iterations , then 

we continue to iterate at the present plane.

The coupled system of equations we wish to solve can be written

Uff VUy 4- WUz — ~Pi(0) J (2.34a)

Re 4- VRy  4- WR^ = 2AUy , (2.34b)

R  = ^ 2d'^ 5 (2.34c)

y  = —fpz J W  = 'ipy . (2.34d)

In these equations, R  denotes the scaled streamwise vorticity (Wy — Vz), 

and equation (2.34b) is derived by cross-differentiating equations (2.31c) and 

(2.31d). Also ^ 2̂  represents the two-dimensional (2D) Laplacian operator 

d'^/dy'^ -I- Idz^, and equation (2.34c) arises from the definition of the vortic

ity. The variable ip represents the scaled stream-function defined by (2.34d), 

introduced in light of the mass conservation for the cross-plane fiow implied
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Figure 2.5: Plots o î 2U/tt, 21//?:, 2W/'ïï, 2R/'k profiles at 0 =  1 for a 161 x 161 

grid, and a step size of 0.00002. The starting condition is given by (2.39). 

Plots are on lines of constant y at intervals of 1/8, from y =  0, but note that 

for W  and R  the results for y =  2 are not shown here, as in this second-order 

accurate scheme, they diverged significantly from the solution.
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0 0.125 0.25 0.375 0.5 0.625 0.75 0.675 1

Figure 2.6: Plot of 2W/'k profile at ^ =  1 from Figure 2.5. Also shown on 

the right hand side for comparison is the corresponding profile from [77], with 

kind permission of the authors.

by equation (2.31a). The boundary conditions at each ^-station are

//
-0 =  0 at the duct boundary , 

Udydz = constant (for all 6).

(2.35a)

(2.35b)

The second of these conditions is the result of integrating the continuity balance 

at higher order.

In fact, equation (2.34a) can be further simplified. For a uniform duct 

cross-section, a double integration of equation (2.34a) and an application of 

Green’s theroem yields

Pi =  0 , (2.36)

since the boundary conditions (2.35a,b) hold. Thus (2.34a) becomes

Ue T  VUy +  W U , = 0 . (2.37)
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Figure 2.7: Comparison of the double integral of R  over three grids. Bot

tom to top. {A9 ,Ny,Nz)  — ( loooo ’ so ’ ïôô) ’ — ( 20000 ’ ëô’ Ï2Ô)’

(A0, Ay, Az) = (50000’ so’ îeô)'

The coupled equations are solved as described above in the following order. 

Assuming that values of V  and W  are guessed at the level n + 1, we proceed to 

solve (2.37) to obtain It is then possible to solve (2.34b) for and

subsequently we solve (2.34c) for It is then straightforward to solve

the explicit, algebraic equations (2.34d) to update the values of and

p^(n+i) Yhe solution of the Poisson equation could be made more accurate 

and its convergence more rapid if successive over relaxation as described in 

[21, ppl58-161] and [65, ppl07ff] were used, but as a first attem pt we solve 

it as a semi-implicit tridiagonal system as outlined above. The derivatives at 

the boundaries are treated by forward- or backward-differencing, initially with 

only two points near the boundary. Since there is no perpendicular fiow at 

the walls, the equations to be solved there are different. They become simple, 

algebraic expressions which provide the top and bottom rows in the tridiagonal
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matrices.

In general, the coordinate y runs from ^ =  0 (the “bottom” of the duct) to 

y = V\ (the “top”), and z runs from z = 0 (the wall at the inside of the bend) 

to z = zi (the wall at the outside of the bend). For the numerics, we consider 

a 2 X  1 duct, taller than it is wide, and take the entrance values

[U, V, VK] =  [Ui, Vj, W,]{y, z) at 0 =  0 , (2.38)

to be

[Ui, Vr, Wi] = 2c[yVS -  + z^y -  zy, 0,0] , (2.39)

where c =  10“^7T /̂4. Thus the flow enters the bend with no swirl. Other ini

tial swirl conditions, and more general smooth cross-sections were considered 

in [77], although the zero initial swirl case above captured the essence of the 

flow structure. As the authors discussed, the speciflcs of the downstream flow 

are highly dependent on the intial conditions (a common feature, of course, of 

nonlinear systems), although the bulk development follows predictable paths 

of development. These predictions were obtained both from numerical ex

periments as detailed above and asymptotic analyses, for which the reader is 

referred to [77] as only the correspondence between the present numerical re

sults and those in [77] will be examined here. We shall also consider a novel 

set of initial conditions to be described shortly.

Figure 2.5 presents the profiles of the four principal flow variables at the 

end of the bend. These second-order accurate profiles compare very favourably 

with the fourth-order accurate results presented in [77] in terms of their shape, 

sign, and magnitude. In Figure 2.6 we reproduce with kind permission of 

the authors the graph of 2Wj'K obtained in [77] which shows that the result 

computed here is very close to the result of [77].
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y-2

y-2

Figure 2.8: Plots of Ui, Vj, Wj, and Rj  profiles for a 101 x 101 grid, from 

equations (2.40a-c).
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In the caption of Figure 2.5 we mentioned that the results for W  and R  

on the wall y = 2 were not shown because they diverged significantly from 

the corresponding results of [77]. Such numerical edge effects were absent in 

the results of the compact-differencing schemes of [77] and are also absent in 

the compact-differencing schemes presented in Chapter 5. As discussed above, 

further work to eliminate these effects was not undertaken here — the close 

comparisons possible between the current results and those of [77] were taken 

as a strong basis upon which to build the fourth-order accurate compact- 

differencing scheme for the compressible inviscid case, the method and results 

of which will be presented in Chapter 5.

It is important to demonstrate that the numerical results are virtually 

independent of the grid upon which they are computed. There are many 

techniques available to do this, and indeed this is almost an industry in itself, 

see for example [66], with some extremely sophisticated strategies now available 

{e.g. [86]). But the most common is grid refinement, whereby the grid is 

made successively finer, within the bounds of computational ability. A related 

method, naturally, is to coarsen the grid, the assumption being that once an 

upper bound is placed on the coarseness of the grid, the results of the finest grid 

will be presented. There are several ways to quantify the numerical uncertainty, 

but here we will satisfy ourselves that if the results visibly converge after grid 

refinement then the code is verified. The details of the quantification methods 

can be found in [66].

Thus Figure 2.7 presents the numerical evaluation of the double integral 

of R  over three grids, with clear convergence of the data. Note that the com

putations were run beyond the bend =  1) and a flattening of the curve is 

apparent here in the absence of the bend effects. The observed linear growth
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e

Figure 2.9: Plots of U and R  profiles at ^ =  1, and the double integral of R, 

for a 101 X 101 grid, and a step size of 0.00001. The starting conditions are 

(2.40a-c).
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Figure 2.10: Surface plots of the stream-function 'ip a,t 0 = 0 (left hand side) 

and 0 = 1 (right hand side). Solutions for the initial conditions (2.40a-c).

followed by a flattening is in line with one of the analytical results of |77| which 

predicted linear growth in the bend of the double integral of R  when the iner

tial forces were small. This prediction is discussed in some detail in [77] and 

will also be considered in the compressible inviscid work of Chapters 4 and 5. 

The bending at ^ =  1 is numerically smooth and is physically smoothed by 

the mechanism described in §2.1.

A second set of solutions for the 2 x 1  duct was obtained for the following 

previously un-examined initial conditions. These conditions involve non-zero 

relatively large initial swirl:

^  sin  ( ^ )  sin{'ïïz)
 ̂ cos{2a'Ky)cos(Aa'Kz)

(2.40a) 

(2.40b) 

(2.40c)

here a = 0.11. These initial conditions are shown graphically in Figure 2.8.

Vi = - — sin{7Ty)cos(27Tz) ;
7T

Wj = -cos{7Ty)sin(27Tz) ;
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We plot the profiles obtained numerically at 0 =  1 of C/ and R  in Figure 2.9, 

along with the double integral of R. We note that the large negative value of R  

apparent on the line y = 2 is possibly a numerical effect as we have mentioned 

before, but we do not here have a higher-order scheme to establish this. The 

double integral of R  does not appear to have grown linearly with 9 which could 

serve to emphasise that the prediction of linear growth mentioned above on 

p.53 is only for small inertial forces and/or large distances downstream.

Figure 2.9 shows, in comparison with Figure 2.5, that the solutions are 

highly dependent on the initial conditions, as discussed above on p.43, although 

the bulk properties are maintained. For example, we note that the double 

integral of U is known to remain constant by (2.35b), and (2.37) implies that 

U is conserved following a particle, and so the change in the profile of U 

apparent between Figures 2.8 and 2.9 is due to the swirling motion of the fluid 

alone. Although this was also so in the case (2.39), the swirl-effect on U was 

less visible since the swirl was weaker. We also observe that the surface plots 

of Figure 2.10 show clearly how the “cellular” structure of the cross-flow at the 

onset of the bend (left-hand graph) becomes severely distorted at the end of 

the bend (right-hand graph). Indeed, the four-cell structure seen at 0 =  0 is 

mixed around through the length of the bend and is replaced by a two-cell 

structure at 0 == 1.

Finally here we reproduce a simple analytical solution from [77] which holds 

for both an arbitrary cross-section and arbitrary input conditions, when 9i ^  1. 

We assume that the inertial effects are small, which corresponds either to a low 

input swirl, and/or a small turning angle ^i, and/or a small a. At the start of 

the bend, U is of order unity and since V, W  are small in comparison with U, 

(2.37) implies that U remains close to its input value. Thus when Vi,Wi  are
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zero, (2.34b) implies

R  % 2 \ e ^  . (2,41)
dy

For example, for any Ui and a rectangular 2 x 1  duct cross-section, we can 

derive:

[i?, 'ijj, V, W] ~  2A9[2(di 4- ^2)? (̂ 1^2, (1 — 2z)di, 2{y — 1)^2] , (2,42)

where di = y^ — 2y, d2 = — z, as reported in [77], In [77] these predictions

were shown to agree well with their more accurate numerical results. We 

observe that (2.42) suggests that particles on any one of the walls will remain 

there throughout the flow, gradually being advected into a corner, and that 

(of course) no particles are advected onto the walls to “replace” these particles.



Chapter 3

The Compressible Inviscid case

When compressibility is introduced the Euler equations are no longer closed, 

and we must obtain at least one more equation to close the system. To do 

this, we need to consider the thermodynamic aspects of the flow. In order 

to make any headway, further assumptions are made of the fluid, beyond the 

“dryness” or inviscidness already mentioned. As we shall see, these include a 

notion of “continuity” somewhat akin to that involving the Knudsen number 

in the problem of the applicability of the Navier-Stokes equations (see e.g. [78, 

p.7]), and great simplification of the atomic or molecular composition of the 

fluid enabling more concise descriptions to be obtained. Only as much detail 

as is immediately required can be entered into here, and the reader is referred 

to such texts as [22], [35], and [53]. Dimensional quantities are considered but 

without the subscript d for clarity.

The equations of direct interest to the present thesis are given in §3.3.

56
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3.1 Thermodynamics

In the following discussion, a (thermodynamic) system is a quantity of matter 

separated from its surroundings by an enclosure which need not consist of a 

solid boundary, but need only be a closed surface. Heat and mass may be trans

ferred through an enclosure. A system in which all macroscopically-measured 

quantities are independent of time is said to be in equilibrium. Equivalently, 

if we define a current as the flux of a quantity such as heat, then a system is 

in equilibrium if and only if there are no currents of any kind.

The foundations of all work in thermodynamics are the principal laws of 

thermodynamics, summarised in words as follows.

Law : There exists a variable of state, the temperature 6.

Law : Energy can be neither created nor destroyed; heat and 

mechanical work are equivalent.

2"  ̂ Law : It is impossible in any closed system for heat to be conveyed 

from one body to another at higher temperature.

3̂  ̂ Law : It is impossible — by any procedure whatsoever — to reduce a 

system to absolute zero (0°K/ — 273.16°C) in a finite number 

of operations.

Variables that depend only on the state of the system — and not the path 

taken between states — are referred to as variables of state, and include the 

pressure p and the volume V. By this definition, variables of state are perfect 

differentials. If the value of a variable of state depends on the mass of the 

system, then we refer to it as extensive, and denote it by an upper case letter. 

Otherwise it is intensive — in which case the quantity it refers to is called
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a specific quantity — and is represented by a lower case letter. Variables 

of state are uniquely defined for any equilibrium state of the system, and 

indeed the difference in values of a variable of state between two equilibrium 

states is independent of the process by which the first state was transformed 

into the second. The 0*̂  Law introduces another variable of state unique to 

thermodynamics, the temperature 6. As we shall see, the 1®̂ and 2"  ̂ Laws 

introduce and define the variables of state internal energy, E, and entropy, 5, 

respectively.

The Law defines a variable of state E, the internal energy. The change 

in internal energy of a system is equal and opposite to the work done on and 

the heat added to a system. That is, if a system is transformed from a state 

of equilibrium A  to that of B, by a process involving an amount of work W  

and in which a quantity of heat Q leaves the surroundings, then

E b - E a = Q + W  . (3.1)

By considering for example the work done on a cylinder of air by a moving 

piston (see [53, pp.5-6]) we can obtain the following equation:

de = dq — pdv . (3.2)

Note that in this form, the mass-dependent, or extensive variables have been 

replaced by their intensive counterparts. By the definition of e, de is a per

fect differential, whereas q and w depend on the process employed. To avoid

confusion, some texts then write de = ôq — pSv. The internal energy measures 

the energy of the fluid due to the molecular activity — it is proportional to 

the vibrational, rotational and translational (over the order of the mean free 

path) energies of the molecules. In this sense, it is also not surprising that de 

is path-independent.
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Most natural processes do not pass through successive states of equilibria 

and are termed non-static. However, an infinitesimally slow process does pass 

through equilibria and is termed quasi-static. In the plane of any two state 

variables, a quasistatic process A B  \s represented by a curve from point 

A  to point B  and conversely. The locus of the curve passes through all the 

intermediate states assumed in the process.

It is always possible for a process A —> B to be reversed by a process 

B  A, but this usually results in some global change to the system and 

its environment. Only if this change were absent would the process (and its 

inverse) be called reversible. Thus a process is reversible if W  and Q are 

added in such a way that no currents are produced — the system remains 

in equilibrium throught the process of change of state {i.e. a process for 

which AB =  Q +  W).  As one would expect, most natural or “spontaneous” 

processes are irreversible. Paraphrasing [22, p.6] we say that whilst quasi

static processes may be either reversible or irreversible, a non-static process is 

always irreversible. A benefit of assuming a process to be reversible is that the 

equations derived for equilibrium conditions can be employed in an analysis 

at each stage in the process. If no heat is exchanged between system and 

surroundings at any point in a process then it is described as adiabatic.

Our aim in this Chapter is to provide additional equations to close the 

Navier-Stokes equations when compressibility and viscosity are taken into ac

count. To do this, we need a way to equate other variables of state, such as 

temperature (a nebulous concept here, but effectively defined by the 2"  ̂ Law 

and related to the internal motions of a fluid particle), pressure and density to 

our new variable of state, the internal energy. This is done in two stages.

Firstly, we note from experiment that at low densities (or rather, at densi
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ties typically found outside of shock regimes), gases approximate the behaviour 

of thermally perfect gases, which are defined as those satisfying

pv =  R { 6  +  ^o) 5 (3.3)

where i? is a characteristic constant of each gas known as the species gas

constant {R = 287 J/(kg deg K) for air), and 6 q is a characteristic temperature 

which is the same for all gases. To be more precise, (3.3) defines a family of 

perfect gases for each value of R, and any real gas will closely approximate its 

corresponding perfect gas at low enough densities^. Since is the same for 

all gases (273.16°C) we define a new temperature T  — measured in degrees 

Kelvin — by T = $ P 9q. S o then

p =  pRT  . (3.4)

The second stage is to postulate a simple, linear relationship between the 

internal energy and the temperature. This seems like not too great a leap 

of faith, given the interpretation of the internal energy being a measure of 

the small-scale motion of the molecules, and the temperature being related 

similarly to molecular activity. In fact, if we define the specific heat to be the 

rate of heat addition q with respect to the temperature T, measured either at 

constant volume or constant pressure, then from (3.2) we obtain

 ̂At very high densities — such as in strong shocks in a hypersonic regime —  additional 

problems may also occur which will invalidate the assumptions of unconstrained equilibrium. 

See for example [49, p.8-3].
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In these expressions, Cy is the specific heat measured at constant volume, and 

Cp is the specific heat measured at constant pressure. Then from (3.2) we 

obtain

dc
^ ^ ~ d T '  (3.6a)

(S )/
It is clear that u is a natural variable of state for e. Does there then exist 

another variable of state, related to e, for which p becomes the natural choice 

of independent variable? Indeed there does, and it is called the enthalpy, 

h = h{p,T) given by

h = e + pv . (3.7)

The quantity pv is known as the displacement energy or the flow work. Imagine 

a surface — the control surface — surrounding a particle of the fluid. When 

the control surface is deformed by the pressure on it, work is transferred to 

the unit mass contained within, and this change of energy is quantified by the 

flow work. See [35, p.7]. From this we can write the first law as

dh = dq-\- vdp , (3.8)

whence

o r  ' (3.9b)

For a perfect gas, it is possible in addition to obtain (see e.g. [53, p .12]):

Cp — Cy = R  ,

e(T) =  J  CydT +  const. , (3 .10 )

h{T) = J  CpdT +  const.
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The remaining assumption to make of our fluid is that it is perfect, which 

entails the gas being thermally perfect, continuous, homogeneous, and calori- 

cally perfect This last is that Cy (and Cp) is constant, and hence by the above:

e =  CyT , (3.11)

as required. The constant of integration has been taken such that e(T =  

0 ) =  0 , which conforms to a notion of absolute zero being the temperature at 

which all molecular activity ceases. When analysing flow where dissociation 

(the splitting of compounds into smaller products with much longer mean free 

paths) and other chemical processes do not occur, and for low-temperature, 

non-hypersonic flows, the assumption of a perfect gas is usually valid.

An interesting and important question remains. Given two equilibrium 

states of a system, is it possible — using a priori measurements of both states 

— to determine which will change into the other? A formal answer to this 

question is provided by the 2"  ̂ Law, which furnishes us with a new variable of 

state called the entropy, S. The deflnition proceeds as follows. It is possible 

to show that for a reversible change of state of an adiabatically closed system:

P = - § .  (3.12)

We now try to write E  as à function of two variables — y  as before and a new 

one, S  — such that

T#'
By applying the chain rule to dE  we flnd in comparison with the extensive 

version of (3.2) that

TdS  = dQ . (3.14)
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Integrating bewteen two equilibrium states gives us

/ • fS b  —  S a  —  I  -7^

for a reversible process. Following [53, pp. 17-20] we now re-define the 2̂ ^̂  Law 

as follows:

• There exists an extensive variable of state S', the entropy, and an intensive 

variable T, the absolute temperature. The entropy difference between 

two states A  and B  is given by

>B
Sb -  S a == / ; f .

where the integral refers to any reversible process leading from A to B, 

and T  is identical to the temperature defined by the perfect gas law, 

(3,4).

For a closed system {i.e. one that exchanges neither heat nor work with 

the surroundings), S  increases in any spontaneous process. The system 

reaches equilibrium when S is at a maximum.

Note that if we allow an arbitrary process, then (3.16) becomes

Sb — Sa ^  j  • (3.17)

In fact, if we transform a system from state A to state B by means of some 

process A —>■ B, then

S b ~~ Sa = ^ S q +  A S'* , (3.18)

where AS* is the entropy produced in the system by means of the process, 

and A So is that carried into the system through the walls (evaluated by some 

integral of d Q /T  over the surface area of the walls of the system and throughout
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the time of the process). For all processes, ASi  ^  0, but in a reversible process 

ASi  =  0  in which case (3.18) reduces to (3.16). See [2 2 , p.9]. Entropy measures 

the “quality” of the energy in the system or, equivalently, the system’s disorder. 

As S  increases, the distribution of the energy throughout the fluid increases 

and so the “useful” energy decreases (see [35, p.7]).

3.2 Equations of flow

We start with an inviscid, non-conducting fluid, and we attem pt to derive an 

Energy Equation: an equation for the thermodynamic energy of the fluid in 

the same way that the Navier-Stokes equations describe the momentum.

To analyse the flow by following fluid particles we make two assumptions. 

The first of these is the grossly simplifying assumption that the moving gas 

particles are at all times in thermodynamic equilibrium, and so the thermody

namic properties of each are functionally related. In addition, we think of the 

fluid as a thermodynamic system, with the particles as self-contained thermo

dynamic entities, separated from the rest of the fluid (the surroundings) by 

perfectly heat-conducting walls. Thus wherever the word “system” has been 

used above, the arguments and results derived are now taken to apply to the 

fluid particles embedded in their surroundings. The surface of the arbitrary 

control volume defining a fluid particle must move with the local fluid velocity, 

and its size must be small enough so that the thermodynamic properties are 

invariant inside, but large enough to contain many millions of molecules so that 

those properties still have meaning. A molecule has no “temperature” because 

the definition relies on the mean motion of many millions of such molecules.

In summary, we require that a gas particle has no inhomogeneities; is large 

compared to the mean free path (in some kind of limiting sense); and that
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local state variables do not change significantly over the order of the mean 

free path. In addition, D /D t  is taken over a time increment larger than that 

separating the collision between two molecules. These assumptions are violated 

for example in the upper atmosphere and in strong shock regimes, [22, p.43]. 

The assumptions are analagous to the result that the Navier-Stokes equations 

are valid only if the length scale L  of the flow is much larger than the mean 

free path Ï  of the molecules, that is the Knudsen number K n  =  ^ is small. In 

practical terms, it is claimed in [48, p.6 ] that the continuum hypothesis holds 

for K n  < 0.2, with kinetic theory and the Maxwell-Boltzmann equations used 

for higher values of Kn.  See also [78, p.7].

We expect the energy law to resemble

heat added +  work done on the fluid =  increase in energy,

but for a fluid in motion it is more edifying to consider the rate of change of 

energy and expect an equation of the form

rate of heat addition +  rate of work on the fluid

=  rate of increase of energy in the fluid.

The variable for the intensive heat addition is q, representing only heat 

absorbed by the volume of fluid by radiation or convection from the surround

ings, but not latent heat caused by a transformation of the fluid. This latter 

is a surface term and will be included only when viscosity is considered. The 

rate of work on a fluid is caused by the pressure and any volume forces, and 

in future considerations, frictional forces. The total energy of all of the fluid is 

pe -H \pu^ per unit volume, and the energy equation is

2^^^) ~  Pfi'^i ~  • (3.19)
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Subtracting (e +  times the continuity equation from (3.19) we obtain

(5 “')=

Multiplying the Euler equations by Ui and subtracting the result and (3.20) 

from (3.19), and simplifying with the continuity equation, gives

Equation (3.19) shows that kinetic energy is interchangeable with work 

done by the pressure and body forces. Equation (3.21) is the Law of 

Thermodynamics for a system (here, a particle) in equilibrium. It implies 

that a particle moves only through successive states of equilibrium.

From (3.2) and (3.16) in differentials we have

de = Tds — pdv , (3.22)

which together with (3.21) yields

S=l-  (''')
With no heat addition, changes in state of a fluid particle are isentropic:

g  =  0 .  (3.24)

which is the case for adiabatic processes of the particle. These occur when the 

whole system is adiabatic, and the fluid is inviscid and not heat-conducting. 

These are sufficient but not necessary conditions for isentropy, as can be seen 

from the following discussion. When is a particle’s process adiabatic? We 

want no heat addition or subtraction from the fluid particle — we require its 

processes to be adiabatic. This is achieved by firstly asserting that the whole 

system must be adiabatic, as any bulk heat addition will affect our particle.
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This is not enough, however, as viscosity might still generate radiative heat, 

and so we insist that our fluid is inviscid. Finally, two neighbouring particles at 

different temperatures will, by dint of the 0*̂  Law, exchange heat through their 

diabatic “walls”, and so we now need further that our fluid is non-conducting. 

When all these conditions are satisfied, then q = 0.

It is important to note that (3.24) does not imply that entropy is constant 

everywhere, but just for a particle, i.e. along particle paths. However, if the 

flow is steady then the streamlines coincide with the particle paths and s is 

constant along streamlines. The constant will in general vary from streamline 

to streamline. If it does not, and s is constant everywhere, then the flow 

is said to be homentropic, or isentropic everywhere. General conditions for 

homentropic flow are given by Crocco’s Theorem — see [83, §1.3]. As above, 

these equations can be re-cast in terms of the enthalpy, such as in the well- 

known theorem of Bernoulli (see e.g. [83, §1.3]).

By substitution into (3.2) from equations (3.6a) and (3.4), and by equation 

(3.16) in differentials we obtain

ds = ^  = c , ^  + R ^  . (3.25)

By defining the adiabatic coefficient (also known as the isentropic exponent) 

7  := ^  we can rewrite R  as {'j — l)cy, and hence

The isentropic condition is then

=  Kexp  • (3.26)

P A . (3,27)
or

P Pres

where the constant of proportionality is usually non-invariant and in steady
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flow depends on which reservoir (hence the subscript res) the streamline origi

nates from, so we can say

~  =  (3.28)

where 'ip is the streamfunction (if it exists).

The important relation

p = Kp^  (3.29)

will be referred to as the polytropic equation of state. For homentropic flow, 

f{ip) is constant and so p = kp'^ with k invariant. This is equivalent to there 

being just one reservoir from which all streamlines originate; that is, the flow 

is a “uniform stream at inflnity”.

The energy equation has many equivalent forms: it can be stated in terms of 

either the intensive internal energy e, the intensive enthalpy h or a combination 

of the two, and in integral or differential form. We shall here perform brief 

analyses on the full energy equation including the dissipative terms — those 

involving the dissipation of heat and consequent production of entropy, as these 

shall be required for §§4.3.1 and 4.3.2. The form to be used here is that found 

in [63, p.62]:

where $  =  ^  is the dissipation function.
O X j  U X k  J

(3.30b)

Note that here the dissipation function has been given in terms of Cartesian 

velocity components u*, i =  (1,2,3). More generally, the rate-of-strain dyadic 

g  satisfies g  =  Cijiiij = Cijâiàj where eij is the Cartesian rate-of-strain tensor, 

ii {i = 1,2,3) are the Cartesian unit vectors, and ài (i = 1,2,3) are the unit 

vectors of an orthogonal curvilinear system, and • [V /i -f (V/li)^] àj
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(see e.g. [63, pp61ff]). Also note that no bulk heat addition (a volume term) 

has been included in (3.30a) since we have assumed the walls of the duct 

to be adiabatic, and hence there are no heat sources or sinks. Formally, this 

assumption fixes one wall boundary condition as the adiabatic condition =  0

on the wall, where y is the coordinate normal to the wall. The term ^  

is the surface heat term and comes from Fourier’s law of heat conduction: k 

— the coefficient of thermal diffusivity — is zero in inviscid flow, and the 

dissipation function is also absent. Equation (3.30a) is true regardless of the 

presence of body forces as the momentum equations have been used in its 

derivation.

From the equation of state of a perfect gas (3.4):

CpDT =  CyDT +  D  ^ . (3.31)

Thereafter we apply the compressible continuity equation and so obtain

+  =  . (3.32)

Combining this identity with the perfect gas assumption (so that e =  c„T), 

and with (3.31), we find in our steady case that

pCp(u . V )T  =  [u . V )p +  V  . ( k V T )  +  0  . (3.33)

We discover in [63, p.61] that an equivalent form of 0  is

^  =  2/i[eij]^ +  A ’ (3.34)

where is the Cartesian rate-of-strain tensor, and we have the usual Stokes 

relation = 0. However as above, the rate-of-strain dyadic E_ satisfies E_ =

tijiiij  =  eijàiàj, where ài = 1, 2, 3), are the unit vectors of an orthogonal 

curvilinear coordinate system, and ê - depend only on finding the dyadic V u .
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Consequently, we need only calculate the dyadic V it in a curvilinear system,

as is done in [63, p.6 6 ]. So in dyadic form, (3.33) becomes

pCp(u . V )T  =  (u . V ) p  +  V  . (kV T )  +  0  , (3.35a)

where ^  = 2fi ^  — ^ (V  . u)^^ , (3.35b)

and g  : E  denotes the double dot product of two dyadics ([63, p.33]).

We now apply the full non-dimensionalising factors, remembering that 

with our perfect gas assumption the specific heats are invariant, and we non- 

dimensionalise k and T  on representative upstream values k^o and Too, and 

p on a representative value poo- We thus obtain the non-dimensional steady, 

viscous, compressible energy equation:

p{u . V )T  =  Ec [u . V )p  -f . (/cVT) -f- (3.36)

where we have three dimensionless groups:

E c = ^  , Pr  = ^  , Re = , (3.37)
('pj-OO ÔO P'OO

and we have formed the composite group Se = Ec • Pr  • Re  for convenience.

The groups in (3.37) are known as the Eckert, Prandtl, and Reynolds numbers,

respectively.

The following results hold for incompressible fiuids:

k = constant ; p = constant ; p =  constant (3.38)

such that Pr = constant. See e.g. [15, p.77]. The following broadbrush 

discussion should shed some light on these relationships. Consider two ad

jacent laminae of the fiuid moving relative to one another. The shear stress 

at their mutual boundary is proportional to the velocity gradient normal to 

the boundary, and the constant of proportionality is the viscosity, p. From a
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kinetic theory point of view, the viscosity is a consequence of an exchange of 

molecules with kinetic energy surpluses or defecits between the laminae (c./. 

Chapter 6 ). Thus the inviscid assumption is consistent with assuming no heat 

conduction in the fluid because conduction is also a product of molecular ex

change. Since different fluids have different molecular compositions, it is clear 

that jjL will depend on each fluid, but the density is also important in deter

mining /i since this affects the number of molecules which can be exchanged 

per unit of time. Thus if density is invariant then fj, must be also due to the 

above (in fact, in [22, p.232] this is quantified as // oc pvlp where v is the 

mean thermal speed and Ip is the mean free path). In a compressible fluid, 

raising the temperature increases the thermal velocity and increases the likeli

hood of exchange. In an incompressible fluid on the other hand, temperature 

merely increases the vibrational energy of the more-strongly bound molecules, 

meaning that p, is less dependent on T.

It should be noted that there is some discussion as to where one should 

take a representative upstream value of the temperature. In [67, p.210] we 

see a non-dimensional factor based on the difference between the wall and the 

free-stream temperature, and a scaling based solely on the wall temperature 

is not uncommon. However, in a system not dissimilar to ours, [37, pp.241-3] 

scales solely on the core temperature, as we have done. Certainly this is not 

a trivial decision, as we shall see later in Chapter 4 when we briefly discuss 

the Chapman-Rubesin constant, and the reader is referred to the discussions 

in [10].

Under the assumption of isentropy — which holds if the fluid is inviscid — 

so that p = kp'^, then scaling on the core value, we find from the equation of
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state that

=  Cpi'y -  l)Too . (3.39)
Poo

But then since also a%. = we have
°0  Poo ’

E c = { ' ^ -  1)M ^ , (3.40)

if the fluid is compressible, where Mqo is the upstream Mach number. Note 

that for incompressible flow, = oo and so this form of the Eckert number is 

not valid. Since 7  — 1 =  0.4 for air, and since our flow is not hypersonic (but

sufficiently fast that Mqo is of 0(1)), our Eckert number is of order unity. The

Prandtl number is also of order unity for air from e.g. [67]. Consequently, S  

is of 0 {e~^).

By elementary kinetic theory, k must be a linear function of fi and so 

when Cp is constant (as in our calorically perfect gas assumption), the Prandtl 

number ^  must be invariant throughout the flow, and in [22, p.231] we flnd 

P r  =  (97^  J where 7  as before is the adiabatic constant Cp/cy.

With this formulation, we have:

(Q/y — 5)
k =  CpH—  ------  (dimensional), (3.41a)

and so k = fj, (dimensionless). (3.41b)

Inserting (3.41b) into the energy equation, we finally write

p(u ■ V )T  =  Ec

This form agrees with that found in [10, p.25] and elsewhere.

{u  . V )p +  — V  . (//VT) +  — 0 (3.42)
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3.3 Summary of equations

The equations which we will use in Chapters 4 and 5 are summarised as follows. 

The steady energy equation is:

p{u ■ V )T  =  Ec ( u . V )p  +  V  . (p V T )  + (3.43)

with the dimensionless groups Ec, Pr, Re, and Se defined on page 70, and the

dissipation function 0  defined in equation (3.30b). In the compressible and

inviscid case,

E c = { ' i ~ l ) M l ,  (3.44)

where M^o is the upstream Mach number. The dimensionless equation of state 

of a perfect gas is

(3.45)

and in the case of inviscid fiows we can use the polytropic equation of state

p = Kp'^ , (3.46)

where K  in general varies from stream line to stream line.



Chapter 4 

The Compressible Inviscid case, 

continued

4.1 Introduction

In this chapter we formulate the Compressible Inviscid (Cl) problem. This 

case is an extension to include compressibility of the work in [77] which was 

summarised in Chapter 2. Since the density p is no longer constant we have 

an additional unknown in the Euler equations and so need an extra equation 

to close the system. This equation is the inviscid form of the energy equation 

formulated in the preceding chapter. The analysis studies the downstream 

evolution of the perturbed flow variables. We will briefly discuss the inclusion 

of viscosity, though we will not draw any conclusions on the flow structure 

in such cases. However, the perturbation expansions in the viscous cases are 

essentially the same as those of a fully non-linear inviscid approach, subject 

to an assumption of attached flow, and so they will be useful in §§5.3 and 

5.4. Finally, we will present asymptotic analyses of the governing equations,

74
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studying the far-downstream effects of the bend as well as the influence of 

corners in the cross-sectional profile. These analytical results are found to 

show close correspondence with the numerical work to be presented in Chapter 

5. Note that the full sets of governing equations for each case which we study 

in this chapter are summarised in Appendix A. In this chapter, dimensional 

quantities are once again indicated by the subscript d -

4.2 Formulation of Cl

The dimensionless incompressible continuity equation (2.1a) is now replaced 

by the compressible form V  . (pu) = 0, which we consider together with the 

dimensionless Euler equations p { u . V )it =  — Vp. We also use the inviscid en

ergy equation which we obtain by dropping Fourier’s term and the dissipation 

term from (3.43), and replacing the dimensionless T  by {'yM^p)/p from (3.45) 

and (3.44) . This leads to the following form of the energy equation:

p{u , V ) p  —'yp{u . V ) p  = 0 . (4.1)

As an aside, we note that this form is also attainable from the Bernoulli

equation in terms of the total enthalpy H  = h + ^UiUi, which transforms to:

^UiUi -F CpT = constant for a particle, (4.2)

since the total enthalpy is constant following a particle in inviscid, steady,

adiabatic, non-conducting flow [49, p.8-7], and h = CpT if the fluid is calorically 

perfect. An ideal fluid has e = CyT and so remains constant following

a particle. Finally, using the Euler equations and the standard relation e =

, we can confirm equation (4.1).

The discussion of the swirl-shear considerations immediately prior to equa

tion (2.26) is still valid here since the duct geometry is the same and so we will
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assume the same expansions of the velocities as Chapter 2. We assume that 

the pressure expansion is

p = Po{0 ,y,z)-\-epi{è,y,z)-\-e^P2 {9 ,y ,z )  + . . .  . (4.3)

A leading order balance of the governing equations yields

Poe = Poy = Poz = 0 , (4.4)

so that po is a constant. Next, a balance of magnitudes implies that the 

leading-order size of the density is of 0 (1 ), and so we consider the density to 

be perturbed as follows:

p = p(ë, y, z) + ep{§, y , z ) -{ - . . .  . (4.5)

The relevant form of the energy equation (4.1) then yields

^  + Vpy + W p,  =  0 (4,6)

in the bend, suggesting that reservoir values of p are conserved for each particle. 

Consistent with our assumption of a uniform uni-directional upstream flow we 

take p to be uniform at ^ =  0 , such that p is a constant for all 6 .

Examining the equations at the next highest order suggests that piy =  0 =  

Piz, and furthermore that an 0(e)  centrifuging term needs to be absorbed into 

the pressure gradient in order to be able to balance the dynamics, analogously 

to the incompressible case. Thus the pressure expansion (cf. (2.27)) is:

Po P epi{6 ) A  ^^P2 (9 ,y, z) + . . .  . (4.7)

Note once again the appearance of the centrifuging parameter A, since the 

term of which it is a factor is absent when wall curvature is absent.
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Since p is invariant we may set it to be unity since it is now the uniform 

“representative upstream value” p/poo with which we non-dimensionalise the 

equations. That is, we now write

p =  1 +  ep +  . . .  . (4.8)

Note that although po is similarly invariant, we cannot set it equal to unity 

without loss of generality, since we do not non-dimensionalise the pressure 

on a representative pressure “pdoo”, but on twice the dynamic pressure-head 

PdooU^oo- Unlike the incompressible case the constant po will appear explicitly; 

in the energy equation.

After changing coordinates to the cylindrical polar coordinates introduced 

in §2 .2 , and examining the above governing equations to leading order in e, 

we normalise the resulting equations. The normalisations of 6  and of the 

velocity components remain the same as (2.30a) and (2.30b), but the pressure 

components are normalised differently, and we also introduce a normalisation 

of p:

Pi =  , (4.9a)

P2
a^6 \ oP

P 
a^6 \

h  = (4.9b)

P — nnO • (4.9c)

The governing equations are then:

Uy +  fU, =  0 ; (4.10a)

Ue + VUy +  WU, = -p[{0)  ; (4.10b)

Vg 4- VVy -f WVz = ~P2y ; (4.10c)

Wg +  VWy +  WWz = -P2z  +  A(2U +  p) ; (4.10d)

{pe T Upy 4- WPz) = p'\{P) 4- A W 6 \ . (4.10e)



CHAPTER 4. THE Cl CASE, CONTINUED 78

The appearance of the normalising factors in the final equation is noted and 

apparently unavoidable here; it signals a strong dependence of the fiow struc

ture on these parameters, as described later in this chapter and in Chapter 5. 

The relative strength of a 6 l to 'ypo will be taken as of order unity throughout, 

in keeping with realistic values for the physical duct in question and for air, 

although in §4.4.5 we will consider other balances.

We observe here that if there is no swirl at the entrance to the bend then

in the absence of viscosity no vorticity is generated and the fiow remains ir-

rotational throughout. If in addition the static enthalpy is also uniform then 

the fiow is homentropic by Crocco’s theorem and so we then derive from the 

polytropic equation of state (3.46) the results

P = (4.11a)

1
P2 =  2 (4.11c)

However, in a discussion on the validity of these results, we first note the 

parabolic nature of the coupled set of equations. In this sense no information is 

passed upstream at this level, and so for example an initially homentropic fiow 

would remain so throughout the bend. It should be noted that although there 

is only one physical reservoir — the expansion chamber behind the bursting 

diaphragm — this is not where we take the reservoir values. The bursting of a 

diaphragm creating a “. . .  ragged initial wave” ([89, p.137]), the traversing of a 

precursor bend, and the possible passing of an (entropy-generating) shock all 

suggest the presence of inhomogeneities in the variables at the start of the bend 

where reservoir values are taken. Thus the quoted homentropic results (4.11a- 

c) are not physically realistic here, since at the very least Crocco’s Theorem
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would then require the flow to be uniform and irrotational everywhere at the 

start of the bend.

4.3 Viscous fluids

In this section we derive the governing equations which would hold should 

viscous effects become important in the core rather than being conflned to 

thin wall layers. With the inclusion of viscosity, leading order variation in the 

velocity component u is required in order to satisfy the no-slip condition at 

the walls, and the polytropic equation of state (3.46) no longer holds since 

is not constant. Furthermore, the leading-order variation in u means that a 

new balance of swirl and curvature must be considered, as we will see below.

4.3.1 Incompressible Viscous flow (IV)

In this case we must use the steady Navier-Stokes equations

Pd (ud • ^ d)ud = —^ dPd +  5 (4.12)

and the incompressible continuity equation (2 .1a). As in §2 .2 , the balance of 

swirl and curvature is dictated by the centrifuging term Since there is 

now leading order variation in u this centrifuging term is no longer a constant 

to leading order and so cannot be absorbed into the pressure expansion. It is 

necessary, therefore, to consider a new level of incident swirl. The radius of 

curvature is to be considered flxed throughout by the physical speciflcations 

of the motivating problem and is denoted by a, and we now take

a  =  ae^ (4.13)
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to be of order unity. In §2.2 we mentioned that a in practice is typically 8 , 

and thus that e ~  |  there. With the new balance (4.13) we now have e ~  

being larger. Furthermore, we now consider a slightly shorter section of the 

bend (though still larger than the original entry flow problem considered in 

§2.1), such that the total angle turned through is smaller than before. Thus if 

6  is the angle appearing in the nondimensional equations, then 9 = e9, where 

now 9 is order unity. (An alternative would be to consider the same level of 

swirl, but a larger radius of curvature.)

We non-dimensionalise exactly as before, and in addition the coefficient of 

viscosity jio — which remains constant here due to incompressibility (see the 

discussion in §3.2) — scales out of the equations. This introduces the Reynolds 

number

Re = , (4.14)

and we will take eRe to be of order unity. Thus Re is typically large here.

As an aside, we note that the Gortler number based on the cross-sectional 

distance is defined in [36] as

a  = 25Re^ , (4.15)

where 6  = h o / cld ^ measure of curvature in the stream-wise direction. Here 

then G ~  1 , which is perhaps not surprising when one considers that the 

Gortler number is the ratio of the product of the inertial and centrifugal terms 

to the square of the viscous terms. Since Re was chosen to retain the leading 

order viscous terms — i. e. so that the leading order ratio of inertia to viscous 

terms was 0(1) — an order unity Gortler number ensures that both centrifugal 

and viscous terms are retained in the governing equations.

We consider new perturbations of the fiow quantities imposed by the ge
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ometry because our swirl-shear balance a  has changed. The expansions are:

p  =  P o { 6 ) - \ - e ^ P 2 { 0 , y , z ) 4 - (4.16a) 

u  = {Ü,0,0){ê,y,z) + e{Ü ,V ,W )( 6 , y ,z )  P . . .  , (4.16b)

with a leading-order variation in U to enable no-slip to be satisfied as discussed 

earlier. Since it is similar to the analysis showing that po =  1 in the Cl case, 

we have omitted the work showing pi =  0 in the above expansion.

Following the change of variables and substitution of the perturbed forms 

into the Navier-Stokes and continuity equations, we need to normalise the 

resulting equations. The direct introduction of a centrifugal variable A creates 

more problems than it solves, and so we normalise as follows:

9 = 6i9 ;

«'i-i
Po=Po

1
P2 = 

cLIld —

e

5 (4.17a)

■IV,W] ; (4.17b)

(4.17c)

,2P2 ; (4.17d)

Re , (4.17e)
a 6 i

where Rcre acts as a reduced Reynolds number. Note that once again the bend 

runs from 9 = 0  to 9 = 1 .

The governing equations are thus reduced to

Üq +  T kFz — 0 5 (4.18a)

OÜe +  VÜy +  W Ü ,  =  -p'o(ff) +  , (4.18b)

ÜVff +  VVy -f- W Vz = ~P2y + p  5 (4.18c)

ÜWe + V W y + W W ,  -  Ü^ael = , (4.18d)
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where + ^ 2)- The appearance of the parameters a  and 61 in (4.18d),

similarly to the Cl case, is again noted and apparently unavoidable. This 

problem did not arise in the II case because the analogue of the curvature 

term —Ü^q.9\ was constant and absorbed into the pressure expansion.

It is important to note that the more strongly non-linear inviscid incom

pressible equations (to be referred to as the NLII case) can easily be derived 

from the above by omitting the viscous terms, since we have set the order unity 

part of the velocity expansion to be variable. More formally, if Re  n i then 

the viscous effects will be confined to a thin wall region until large distances 

are attained on this length scale. The core flow for order unity values of 6  

would thus remain inviscid and be treated by the large Reynolds number limit 

of the above fully non-linear equations. This will be considered in §5.4.

4.3.2 Compressible Viscous flow (CV)

We now come to the fullest case of this thesis. The steady, compressible viscous 

continuity and Navier-Stokes equations are ([63, pp.62-9]):

V/) ■ (pdUd) = 0 , (4.19a)

Pd {Ud • ^ d )Ud = —' ^ dPD +  ^ d {^D^D • '^d) +  +  Vjrp(V£) . u^))

d P d  • ^ d )'^d  +  ^ d P d  a  ( V D  A U d ) •

(4.19b)

For the reasons given in [63, §2.10 & §2.13], we assume that Stokes’s relation 

holds and so take Xp = —\ p d - The Navier-Stokes equations become:

2
Pd {u d  • ^ d ) u d  =  —^ d P d  ~  d [p d ^ D  • U d ) +  P d Ç ^ ^ u d  +  V z ? ( V £ ) . u d )) 

+  2 ( V ^ d ) u d  +  ^ d P d  a  (VjD a  U d ) •
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We retain the geometry introduced in the incompressible, viscous case where 

e = 0 (a~2 ). The variations and the non-dimensionalising factors of each flow 

quantity are obvious combinations of the above cases, with additionally the 

expansion of /i taken as

/i =  fL{§, y, z) +  €p,{§, y, z)  + . . .  , (4.20)

and we consider the same swirl-shear conditions as the IV case. However, p is 

no longer conserved along streamlines because the polytropic equation of state

(3.46) no longer holds. The expansion and normalisations of the pressure are 

those for the IV case — i.e. (4.16a) and (4.17c,d). The governing equations 

are then

{pÜ)e + {pV)y + {pW),  =  0 , (4,21a)

p{DÜe + VÜy +  WÜ,)  =  -p'o(e) + ^  [ÜlÜy)y + (/Z^),] ,

(4.21b)

p{ÜVq +  VVy +  WVz) = ~P2y +  {fi^y)e +  {iWz +  pWy)z

+ ~  ~  P’Üe)y , (4.21c)

p{ÜWe +  VWy +  W W , -  Ü ^aej)  =  ^  \{pÜ,)e + (jiV, + p.Wy)y

+ -^{2pWz — pVy — pDe)z • (4.21d)

The unknowns in this system are Ü ,V ,W ,p 2 , p, and p,, and so at least a

further two equations must now be derived in order for this set of equations

to be well-posed and solvable. To leading order, in the prescribed cylindrical 

polar coordinates with the given expansions — including T  = T{9,y,z)  -h 

tT{ 6 , y , z ) - \ - . . .  since p ocT  — and normalisations we obtain from the energy



CHAPTER 4. THE Cl CASE, CONTINUED  84

equation (3.43);

p {ÜTe +  V f  y + t v ü )  =Ec  [ %  (g) +  ^  {{tlfy)y + [ m . )
 ̂ ,  (4.22)

where we have reduced the group Se defined after equation (3.37) analogously

to Rcre- We note in passing that the effects of viscous dissipation are likely to 

be small, and that this would influence a detailed study of this case.

The new variable T  is functionally related to fi by various formulae (see 

for example [48, pp.22-23]) and an appropriate choice here is Chapman’s Law 

l^D =  CdTd , where is the Chapman-Rubesin constant. The earlier discus

sion on page 71 about the choice of dimensional factor now takes on even 

greater import, since it becomes clear that Cd cannot be chosen to simulta

neously agree with the wall and free-stream values of T. This issue — and 

alternative relations of to — is discussed in some detail in [10, p.28-33]. 

However, if we let the dimensionless Chapman-Rubesin constant be denoted 

by c//, then we obtain:

p, = chT  . (4.23)

As discussed in [10], in particular for large wall temperatures, the value of ch

can be chosen to agree with Sutherland’s Law, but it often proves useful to an 

analysis to take c// to be unity. A benefit of such a simple relationship is that 

T is usually easier to measure empirically than fx.

The final equation to complete the system is the equation of state of a 

perfect gas, po =  PdRTd - When nondimensionalised for compressible flu

ids this equation takes the form (3.45). Substituting the given perturbation 

expansions, we have:

PO =  . (4.24)
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The more strongly non-linear compressible inviscid equations (which will be 

referred to as the NLCI case) can readily be derived from the above equations 

by neglecting the viscous terms. The formal reasoning behind this is the same 

as that on page 82. This case will be considered numerically in §§5.3 and 5.4.

4.4 Analysis of the Cl case

In this section we derive results which further simplify the governing equations 

and provide useful predictions of the flow development. Some of these predic

tions will provide tests of the numerical accuracy in the subsequent chapter. 

We also consider simple analytical solutions to the equations. In §4.4.2 we 

analyse far-downstream limits of the Cl case, and in §4.4.3 we examine the 

influence of sharp corners in the cross-sectional profile on the flow structure.

The following work features some novel arguments based on the approach 

of parts of [77), which we here extend to the Cl case. It is interesting to note 

that some of the qualitative results of the II case reported in [77] carry over to 

the compressible case, and comparisons will be drawn where appropriate.

4.4.1 General flow properties for  ̂~  1

For clarity, we indicate in Figure 4.1 the length scales of relevance to the weakly 

non-linear cases.

Two pressure components appear in the governing equations of the Cl case 

(4.10a-e), and we make the assumption that pi is obtainable from a bulk 

integral. The second pressure term p2 is eliminated by cross-differentiating 

equations (4.10c) and (4.10d) which introduces the streamwise vorticity R  =  

Wy — Vz as defined previously in §2.3. Thus equations (4.10c) and (4.10d)
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reduce to:

Re +  VRy  +  WRz  =  A(2 Uy +  py) . (4,25)

Furthermore, in light of the continuity equation (4.10a) which implies mass 

conservation in the cross-section, we introduce the (two-dimensional) stream- 

function 'ip such that

ipy = W  , i>z = —V  ■ (4.26)

The introduction of 'ip means that we also have the Poisson equation

V̂ D'fp = R  , (4.27)

where V2 0  = dy + as before. Since the walls are impermeable (in addition 

to being adiabatic) we have as a boundary condition no normal flow at the 

walls and so we take -0 =  0 on the walls. In more detail, we deflne the total 

stream-function as

^  — ”00 T ^01 4- 6^02 +  . . .  , (4.28)

where 0o is a constant and 0 i normalises to 0  deflned by equation (4.26). The 

impermeability of the walls requires ^  =  constant there, and thus that for all 

z ^  1 we have 0 j =  0 on the walls.

Let us now examine the pressure component p\ {9). The analagous term in 

the II case was shown in §2.2 to be a constant for all 9 and we now prove that 

this result also holds in the Cl case.

The leading-order balance (4.10a) of the continuity equation involved the 

0[e) terms. Examining at the e^-level yields:

+  i^p)y  +  (W p) ^  +  {ÿy +  ~  {pe +  =  0 5 (4.29)

before normalising. In this equation, the variables V  and W  are the 0{e^) 

terms in the expansions of v and w, and the expansion of the stream-function
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Figure 4.1: The different length scales. With a fixed, (T) indicates the entry 

length scale (a: ~  1 or 0 ~  a~^) while @  indicates the full bend length scale 

of the weakly non-linear inviscid work (0 ~  1). For a longer bend in which the 

viscous wall layers have a sufficient development distance to fill the duct, the 

strongly non-linear viscous cases of §4.3 might be seen far downstream on the 

full bend length scale.

(4.28) requires

Vy + Wz =  —'lp2yz + '02yz “  0 • (4.30)

With the result (4.30), a double integral of (4.29) across the plane of a cross- 

section yields:

a  If If Ûè W  dydz  =  0 .

(4.31)

An application of Green’s Theorem to the second integral above gives 

j [ {pV)y +  {pW% dydz  =  j  (pW)  dy -  (pV) dz

= 0 ,

where P  is the perimeter of the duct cross-section, whilst the definition of the 

stream-function in the last integral in (4.31) yields

J j  W  dydz  =  f j  ipiy dydz  =  J  = 0 . (4.33)

(4.32)
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With the above results (4.31) becomes

— J J  p dydz +  a —  J J  U dydz = 0 , (4.34)

following normalising. A similar double integral and application of Green’s

Theorem to the leading order balances of the energy and ^-momentum equa

tions (4.10e) and (4.10b) gives

^ I J  p d y d z = ^ ^ ^  and ±  J J  U dydz = - A ^  , (4.35)

where A  is the duct cross-sectional area. Combining these results with (4.34) 

shows that

(  —---- 1 ^ = 0  for all 6 , (4.36)
dS VtPo j

and since for full generality Po 9  ̂ we conclude that

%  = 0 for all e . (4.37)
da

Hence pi must be constant for all 9.

As a consequence of (4.37) the 0-momentum equation (4.10b) and the en

ergy equation (4.10e) simplify to:

Ue +  VUy +  WU^ = 0 ; (4.38a)

+  W p, =  ATH^ , (4.38b)

where T =  As mentioned on page 78 above, we will take T ~  1 through

out, except in §4.4.4 where we consider other balances. We observe that since

(4.38a) implies that U is conserved along streamlines, and that since we have 

just shown that the double integral of U is also conserved, then evolution of 

the profile of U will be due only to mixing by the swirl.

The Green’s Theorem technique used above can be gainfully applied to the 

Cl vorticity equation (4.25), with the result that 

d
dO

J  J  R  dy d z  — A ^  J  {JJt — UJ) d z  +  J  {pt +  pb) d ^  , (4 .39)
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where the subscripts t and & denote the values at the top and bottom of the 

duct, respectively. Equation (4.39) differs from the corresponding result (equa

tion (4.5)) in [77] where f f  R  dydz was driven only by 2A f(Ut  — Ub) dz. How

ever, the prediction that f f  R  dydz is constant beyond the bend where A =  0 

still holds. Extending the argument presented in [77] and described briefly on 

page 55, we note that when the inertial forces are small, due for example to 

low entrance swirl or small turning angle, then equations (4.38a) and (4.38b) 

respectively suggest that

U ^ U i { y , z )  and p ^ p i { y , z ) ,  (4.40)

throughout the bend. Thus (4.39) predicts linear growth with 6  of the double 

integral of R  when inertial forces are small. In fact, equation (4.25) in this 

small-inertia case would explicitly imply linear growth, since it becomes

This prediction of linear growth in the bend will be tested by the numerics in 

§5.2.

Finally in this section we note by the way that the following is an exact 

solution to the governing equations:

U = U{z) , p = p{z) , V  = W  = R  = 'ip = 0 , p 2 = A J  {2 U + p) dz , (4.42)

with U{z) and p{z) arbitrary, and this also holds when A =  0 if we take 

U{z) = 1 = p{z) — that is, if uniform conditions hold in the upstream straight 

section. However, the preceding argument and the numerical results to be 

shown in §5 .2  both seem to suggest that this form of solution in the bend is 

unlikely.
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4.4.2 Predictions for large 9

In this section we analyse the full governing equations (4.10a, 4.38a, 4.25, 

4.38b) in the limit 0 —>■ oo in order to study the downstream influence of 

the bend. We compare the predictions of the separate cases of A becoming 

zero at ^ =  1 and it remaining unity; that is, we compare the case when the 

bend ends at ^ =  1 to the case when it is maintained indeflnitely. We will 

also compare the results with the analogues of [77] and in §5.2 we will show 

numerical support for the predictions.

Bend off

In this regime the bend ends at 0 =  1 and so the fluid then enters a straight sec

tion. We consider the effects of the bend on the flow structure far downstream 

in this straight section.

Consider a generic flow variable F{9,y ,z)  and suppose that beyond the 

bend F  satisfies

Fg +  VFy P W F ,  = 0 ,  (4.43)

which implies that F  is conserved along particle paths (which here coincide 

with streamlines). Furthermore, a double integral of (4.43) combined with an 

application of Green’s Theorem gives

- ^ [ f  F  dydz = 0 , (4.44)

which suggests that beyond the bend the double integral remains constant for 

all 9. If F  is of 0(1) in the bend then as 0 —>■ oo we conclude that F  must 

remain of order unity beyond the bend since it is conserved along streamlines 

and the double integral is constant. Therefore in the limit ^ oo the generic



CHAPTER 4. THE Cl CASE, CONTINUED  91

variable F  is independent of 9, that is:

F  ^  Foo{y,z) as 9 oo , (4.45)

and Foo then satisfies (4.43) with no ^-derivative. We observe from equations 

(4.38a, 4.25, 4.38b) that U, R, and p satisfy the above conditions on F  when 

A is zero {i.e. beyond the bend termination) and hence we conclude that

N ^ U o o { y , z )  , R —̂ Ro o { y , z )  , p —̂ Pooi y j ^)  , 9 oo .

(4.46)

Since the vorticity R  is conserved along streamlines following the end of the 

bend, V  and W  must also reach a 0-invariant state, and thus p2 tends to a 

constant. The constants Foo{y,z) are strongly dependent on the initial con

ditions since it is the initial values which are evolved through the bend. This 

strong dependence on the initial conditions highlights the effects of the duct 

entry conditions even far downstream of the end of the bend.

With the additional result concerning p, these results are the same as those 

for the II case in [77] and we conclude that at this level compressibility does 

not significantly affect the far-downstream behaviour of the velocities reported 

in [77], though it will differ in detail, since the evolution of p is coupled to 

that of R  and hence U in the bend. This close correspondence in the straight 

section between the far-downstream bulk behaviours of the II and Cl cases 

was not expected a priori.

Bend m aintained

Since the continuity equation (4.10a) and the 0-momentum equation (4.38a) 

are independent of A,

U —y Uoo{y,z) as 0 —y oo (4.47)
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for the same reasons as above. Furthermore, a double integral of (4.38b) in 

the cross-section gives

^  II ̂ ^  ^  II  ^  ’ (4 48)

since the double integrals of the inertial terms on the left hand side vanish 

through the usual application of Green’s Theorem. Since we have already 

shown in equation (4.33) that the right hand side of (4.48) is zero, we conclude 

that

 ̂I I P ^  0 , (4.49)

which in fact holds true regardless of the value of A. The evolution following 

a particle of the quantity {p — ATz ) , whether A is zero or unity, is

(p -  ATz)g 4- y  (p -  ATz)^+fF(p -  ATz),

=pe +  Vpy + W p,  -  h . y w  (4.50) 

=0

by equation (4.38b). Hence (p — ATz) is conserved for particles, and remains 

of 0(1) for all 6 . This result, in combination with the conservation of the 

double integral in (4.49) suggests that

p-^poo{y,z)  as 6 ^ 0 0 , (4.51)

and Poo satisfies (4.38b) with no ^-derivative.

When the inertial forces are small the prediction of linear development of 

R  from equation (4.41) still holds. However, initially small inertial forces may 

grow significantly when the bend is maintained. To investigate, we take the 

double integral of equation (4.25) and set A =  1 :

de J J  ^  = ‘2 J  { U t -  Ub) {pt -  pb) dz , (4.52)
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with the subscripts taking on the same meaning as before. Since {Ut — Ub) —>■ 

{Coot — Uoob) = constant by (4.47), and similarly for p from (4.51), we predict 

an eventual constant linear growth in R  with 9, and similarly for V  and W.  We 

conclude that in the case of initially small inertial forces, R  will grow linearly 

with 9 until the inertial forces are sufficiently strong that the development 

becomes non-linear, just as it would be from 0 =  0 if the initial inertial forces 

were of 0{1), as we saw with the development of the initial conditions (2.40a-c) 

in §2.3. However, we have also predicted that in the limit 0 —> oo the vorticity 

R  will have a constant linear growth rate. This contrasts with the bend-off 

case, where all variables attained a ^-independent state beyond the bend. We 

note equation (4.25) implies that any initial Uj profile which has non-zero y- 

derivative Ujy will generate vorticity, and this observation together with the 

numerical results in Chapter 5 seems to confirm these predictions, since they 

imply that {Ut — Ub) and {pt — Pb) are in general non-zero, as required for the 

above linear growth prediction. Indeed, since no normal flow at the wall exists, 

and since the corners are stagnation points, a particle on a wall will remain 

there throughout the flow and be advected towards a corner. Since the fluid 

in general forms one large streamwise vortex (as shall be seen in Chapter 5) 

this argument lends physical credence to the notion that the right hand side 

of equation (4.52) tends to a non-zero constant. Furthermore, the numerical 

results in §5.2 also directly support the linear-growth prediction.

Once more we note that the ^-independent state of U and the linear growth 

of R  were also predicted for the maintained bend in the II case considered in 

[77]. The distinction between the two cases is that in the Cl case the double 

integral of the vorticity is additionally being driven by a density integral. Both 

integrals on the right hand side of equation (4.52) eventually become indepen
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dent of 6, and are effectively determined by the initial conditions set at ^ =  0 

through the integral throughout the bend-length. It is interesting to note once 

again that the initial conditions affect the flow even far downstream.

Since we are currently assuming that the bend and its effects are maintained 

indefinitely, it is likely that as 0 —>■ oo some new flow structure will occur. To 

investigate this we set 9 = A9*, where A 1 and ~  1 , and expand the 

principal variables as follows:

U =  Uq T A ^U\ +  . . .  5 (4.53a)

P =  Po +  A ^Pi +  . . .  ; (4.53b)

R  =  Ai?o 4“ -^1 4“ . •. ; (4.53c)

Ip = A'ipo +  ^1 +  . . .  , (4.53d)

while V  and W  have a form similar to R. These expansions are suggested by 

the above results as 0 —> oo. In fact, Uq and po must match with Uqo and poo 

in the limit 6* —> 0 +.

The leading-order balances of equations (4.38a), (4.25), and (4.38b) with 

A =  1 are the following quasi-planar equations:

VoUoy 4- WqUqz =  0 ; (4.54a)

VoRoy +  WqR qz = 0 ; (4.54b)

yoPoy 4" WqPqz = TITo • (4.54c)

A higher-order examination of (4.25) with A =  1 gives

Roe* 4- (Voi?2y 4- ViRiy 4- V î^oy) 4- {WqR2z 4- W\Riz  4- W 2R 0Z)
(4.55)

— TUoy 4“ POy •

Rewriting the inertial terms on the left hand side of equation (4.55) by means 

of the higher-order balances of the continuity equation, and with the given
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terms in the expansion of the stream-function necessarily being zero on the 

boundaries, a double integral and application of Green’s Theorem yields:

A
de^ J J  Rq dydz ~  ^ J  ~ Uob dz J  pot — Pob dz . (4.56)

But since Uq and po match with Uoo{y,z) and poo{y,z), respectively, as 6* -> 

0+, equation (4.56) implies that R q grows linearly with 6*. Thus if

^ 0  =  (4.57)

for some order unity R q then f{9*) = bO* for some order unity constant b. We 

conclude that for large 9

R  ~  N R o ~  A9*Ro{y, z) = 9Ro(y, z) ,
(4.58)

i.e. i? ~  9Ro{y,z) ,

and similarly for V  and W,  whilst U = Uoo{y,z) and p = poo{y,z). Thus at 

this large scale the flow behaviour for order unity 9 continues as U and p no 

longer evolve downstream, but R, V,  and W  continue to do so and depend 

linearly on 9. Consequently, the cross-plane flow continues to grow and whilst 

the down-duct velocity u remains 1 4- 0 (e), the cross-plane velocities v and w 

become 0{e x A) and we see the hint of a more strongly non-linear regime 

downstream. In addition, we note that the slopes of the streamlines are

|  =  V « J  « 5 9 )

and so the slopes are increasing linearly with 9 here. This also serves to 

highlight the ever-strengthening swirling motion of the fluid, and to suggest 

a more strongly non-linear regime to come: that regime is to be addressed in 

§§5.3 and 5.4.
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4.4.3 The corners

The sharp corners in the duct cross-sectional profile are also of interest here. 

Novel arguments and results are presented below based on an approach given 

in [77] in which the flow near the corners was also of interest. The following 

work is in the bend with 6 of 0{T) and with A =  1 .

Without loss of generality, at 0 =  0 we set the initial condition that p =  0 

on the walls and we observe that since W =  0 for all ^ on z =  0 and z = z\ 

(as there is no normal flow), p remains zero on these two walls throughout the 

flow. In some sense these two walls do not “feel” the compressibility as the 

governing equations on these two walls reduce to those of the II case. We will 

refer to this fact in the “proofs” below.

After a sufficient development region — say when 0 ~  1 — we assume that 

near any corner in the cross-section the behaviour of R  is

R  -  S-" (4.60)

for some small azimuthal distance s from the corner and for some positive 

constant n  to be found. Suppose that close to a corner we choose one wall, 

such that we take z constant and let y —>• 0 (with y = s) on this wall and so 

the vorticity equation (4.25) becomes

R q -\-VRy = 2Uy (4.61)

there. As discussed, this is equivalent to the II vorticity equation on this wall, 

and so we can use the result from [77] that n = | ,  i.e.

(4.62)

and thus R  has singular behaviour near the corners.
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We now assume that

p ~  s~^  (4.63)

for some unknown m > 0. Considering a side y = constant and letting z —>■ 0

(with z = s) reduces equation (4.38b) to

PQ +  W p, = r W  , (4.64)

and since we know the behaviour of R  near the corner from (4.62) this in turn

becomes:

pg -  =  -3 T z#  . (4.65)

For the homogeneous equation associated with (4.65) we have pe effectively 

balancing —Sz^pz. More formally, we use the method of Lagrange to show 

that the complementary function is

p =  p{6 +  za) . (4.66)

A particular integral is p =  Tz such that the general solution is

p{6,z) = g{6 + z^) p T z  (4.67)

for some function g. The initial conditions on the sides y = constant are p = 0 

on 9 = 0, as set above, and so p(zi) =  —Tz for all z. Thus:

p{9, z) =  T(z — (^ +  z 3 )^) . (4.68)

Since we assumed in equation (4.63) that p ~  z“ ”̂ , this is only consistent with 

(4.68) if m < 0 — a contradiction. Hence we conclude that there is no algebraic 

singularity in p close to the corners of the cross-section. It is therefore likely 

that p stays finite there.



CHAPTER 4. THE Cl CASE, CONTINUED  98

4.4.4 The T — e balance

In this section we return briefly to the balance of terms in T  deflned on page 

8 8 . We first make the observation that if T <C 1 and if p/ =  0 then the Cl 

case reduces to the II case, in eflPect, since equation (4.38b) suggests that p 

would be conserved along streamlines. On the other hand, let us consider the 

governing equations of the Cl system if T is large. The definition of T on 

page 88  suggests that the case T 1 corresponds to either increased entry 

swirl, increased turning angle, a gas with a lower gas constant 7 , a decreased 

leading-order pressure term po, or some combination of these. All of these 

possibilities suggest a greater significance for the inertial effects, which could 

increase the importance of the compressibility through the evolution given by 

(4.38b) and could lead to more strongly non-linear behaviour.

In order to investigate the case of T  ^  1 we rescale the variables of the 

governing equations (4.10a, 4.38a, 4.25, 4.38b) as follows:

U ^  TU  p ^ T p

V  ->■ T&y P2 Tp2 (4.69)

6>->-T“ 20.

We allow for a smaller 9 length scale because we expect the more influential 

inertial effects to dominate over a shorter length scale. The leading-order 

balances of the governing equations are:

Vy +  W , =  0-, (4,70a)

Un +  VUy +  W U ,  =  0 ; (4.70b)

V§ +  VVy +  WVg — —p 2y (4.70c)

Wg +  VW y +  W W , -  2AU =  -P2z +  Ap ; (4.70d)

Pê +  ^Py +  =  AW . (4.70e)
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No normalisation factors appear explicitly in this system of equations, very 

much like the governing equations (2.31a-d) of the II case.

The parameter T cannot increase without bound, however, as we still wish 

to perturb about the straight-duct solution (u,v,w) = (1,0,0). This suggests 

achieving a balance between T and e. To do so, we let

B = Te ~  1 (4.71)

and when 9 = T  2^ we perturb the straight-duct solution as follows:

ÎZ =  1 -f- BLJ T . . .  ! (4.72a)

v = B T - W  + . . .  ; (4.72b)

w = B T - 2 W -\ - . . .  ; (4.72c)

P — Po P ^Pi +  T  - ' ' I (4.72d)

p = p -\- Bp +  . . .  , (4.72e)

where all the variables given are functions of [9, y, z). Then upon substitution 

into the full, dimensionless continuity, Navier-Stokes, and energy equations we 

find that

^ [ ( p  + Bp){l + BÜ)] +{ { p  + B p )v )  +(^{p + Bp)W^ = 0  , (4.73a)

{p +  Bp)

y

%(1 +  BÙ)Ü^ + VVy + w ù }  =  - ^ ( p o  +  % ) «  ,a

(p +  Bp) - (1  +  BU)Vÿ + VVy +  WV,
a  P2y ,

(p +  Bp)

7(Po +  Bpi)

i ( l  +  BÜ)Wg + VWy +  W W ,  -  ^ ( 1  +  BÜ)'

i ( l  +  BÜ)(p + Bp)y + V(p  +  Bp)y + W(p  +  Bp)

— —(p +  Bp)(l +  BÜ)(pa +  Bpi)ÿ .

(4.73b)

(4.73c)

=  -p2z , (4.73d) 

(4.73e)
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In deriving the above equations leading-order balances also showed that (po +  

Bpi) is a function of 6 only. We note that when 3  1 the rescaling of the 9

length scale brings us into the geometry discussed in §4.3. Furthermore when 

B ^  1, the above equations suggest that the flow becomes more fully non

linear. The geometry where 6 ^  in effect, combined with the more fully 

non-linear equations and expansions above, will be seen in §§5.3 and 5.4 when 

we study the fully non-linear scheme.

4.4.5 Discussion

In §4.4 we have reformulated the governing equations of the Cl case in terms 

of the streamwise vorticity R  and the stream-function 'ijj. By examining bulk 

integrals of the energy, ^-momentum, and higher-order continuity equations, 

we were able to show that the pressure term pi is a constant for all 9. We 

also predicted linear growth with 9 for the double integral of R  in the bend, 

and linear growth of R  in the case of small inertial forces. Both predictions 

are found to be supported numerically in the next chapter. We observed 

that analogous results hold in the II case studied in [77]. These predictions 

require A =  1 and thus from an engineering standpoint it is clear that since 

the vorticity grows linearly whilst the bend is maintained, the bend-length 

should be minimised. The growth in vorticity is presumably detrimental to 

the efficacy of the resultant jet at the exit of the duct since energy must be 

extracted from the streamwise flow in order to generate the swirling motion, 

and because adjacent swirling external jets interact more strongly through the 

Coanda effect. Furthermore, the evolution of density variations means that 

the exit profile will not be the ideal uniform exit profile.

We also noted an exact, though physically unlikely, solution (4.42) to the
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governing equations of the Cl case. Though this “stratified” result seems un

likely given the physical conditions prior to the bend, at the very least it can 

be said to capture the idea of the radial centrifuging in the bend. We also gave 

a partial solution (4.11a-c) in the case of homentropy, a physical situation 

which we observed is perhaps unlikely to occur.

In order to study the far-downstream effects of the bend we considered the 

limit 6 oo 0 Î the governing equations in the two cases A =  l f o r 0 ^ ^ ^ 1  

only, and A =  1 throughout. In the first case, the bend-off case, we showed that 

the principal flow variables attained ^-invariant states far downstream, whose 

values depended strongly on the initial conditions, suggesting that minimising 

disturbances prior to and at the onset of the bend are crucial to suppressing 

the evolution of swirl and density variations. We note here, for example, that 

initial profiles satisfying

Uly =  0 , P l y  = 0 , Rj = 0 (4.74)

imply that no swirl or density variations are generated in the bend. Hence sup

pressing initial swirl and variations in y of the density and down-duct velocity 

will reduce the detrimental growth of p and R.

In the second case, when the bend is maintained, we showed that U and 

p both attain ^-invariant states, but that the vorticity R  grows linearly with 

6. W hat is more, we showed that this linear growth continues for large 6. 

This result again stresses the importance of minimising the bend-length if the 

growth of R  is considered undesirable. Again, the far-downstream behaviour 

was influenced by the initial conditions, effectively integrated throughout the 

bend. The continued linear growth also hints at a strongly non-linear regime 

far downstream which has connections with the work in §§5.3 and 5.4.

In a general discussion here, we note that in the balance (4.54c) the changes
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in fluid particle density are simply advective, by which we mean that a particle 

responds to the local fluid conditions as it continues to swirl into regions of 

higher or lower density, but the density profile in the plane becomes constant 

in 6. Furthermore, the governing equations appear to be a special case, in 

the sense that if the driving term of (4.38b) involves derivatives of W  (or of 

V) then linear growth in p occurs when A =  1 . In a final point, we observe 

that when A =  1 it is tempting to analyse equation (4.38b) by solving along 

characteristics. In this case, the equation becomes

§  =  T iy  , (4.75)

and the ^-momentum equation is

D W
~  ~P2z +  2t/ P p .  (4.76)

Differentiating along the characteristic seems to suggest then that

^  =  T(2[/ -  P2.) , (4.77)

which in turn suggests that p ~  as 0 -> oo. Following this result, a similar 

analysis of equation (4.25) suggests that i? ~  as 0 —>• oo also whilst C7 ~  1 

still, implying that there is a new length scale to consider where 6 oc Ln{A)  +  

9* for A 1 and ~  1. However, the formal change to characteristic 

coordinates by transforming {9, y, z) t-4 {9,77, () involves W  and thus equation 

(4.77) would no doubt reduce to one in which the ^-invariant prediction would 

emerge.

The singularity in R  close to the corners was an interesting result in [77] 

and was shown to hold in the Cl case also. We were in addition able to demon

strate that no such singularity exists in the density p and this result will be 

tested numerically by the results in §5.2. The authors of [77] were aware that
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corner singularities in R  could possibly interfere with the far-downstream nu

merical work and so in some of their computations they smoothed the corners 

via conformai mappings. These smoother profiles eliminated the vorticity sin

gularity but the authors noted that the bulk flow properties remained the same 

as those for a rectangular cross-section. At a boundary layer length scale in 

turbulent flow in a duct with sharp corners the corners introduce secondary 

flow patterns, as discussed in reference to the literature in Part II of the present 

thesis. From an engineering viewpoint, sharp corners in the duct cross-section 

are to be avoided.

Finally, in §4.4.4 we showed that when the parameter 5  =  Te is of order 

unity, i.e. T  is large, then the inertial effects become more dominant and the 

equations become more fully non-linear over the length scale ^ ~  ea. This 

observation provides a link between the Cl study and the fully non-linear Cl 

case, to be considered in §§5.3 and 5.4. We note in passing that when <C 1 

the equations of §4.4.4 reduce to the Cl case studied in the rest of this chapter.



Chapter 5

Numerical solutions

Having formulated and made analytical predictions for the Cl problem in 

Chapter 4, we will solve the coupled governing system of equations numer

ically in this chapter. The second-order accurate techniques presented briefly 

in §2.3 were first applied to the Cl case but the results of that approach will 

not be shown here. Instead, the accuracy of the results is improved in this 

chapter by using fourth-order accurate techniques based on compact differ

encing for the derivatives in the cross-section and mid-point averaging for the 

^-derivatives. These techniques are explained in §5.1 below. The strategy was 

to first extend the second-order accurate techniques to the Cl case, building 

on the confidence in the second-order accurate techniques gained from their 

favourable comparison with the results of [77] in §2.3. These second-order 

accurate Cl results supported the fourth-order accurate results and so only 

the fourth-order accurate results will be shown in §5.2 below. We note that 

throughout this chapter the parameter T  is taken to be unity.

In §§5.3 and 5.4 we follow on from the work in §4.4.4 by tackling and solv

ing numerically the fully non-linear compressible inviscid (NLCI) case. The

104
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numerical scheme is run over a wide range of initial conditions and parameter 

values and we present analytical work to support the results, as well as numer

ical solutions to the fully non-linear incompressible inviscid (NLII) problem. 

We also demonstrate that the numerical scheme qualitatively connects with 

the Cl results in certain limits.

The fully non-linear cases allow for a leading-order variation in the stream- 

wise velocity u to account for a stronger interaction between the curvature- 

induced swirl and the streamwise motion.

5.1 Numerical strategy for the Cl case

The finite-difference formulae for the derivatives of a variable X  arise from 

rearrangements of a Taylor series expansion of X  in terms of the grid sizes 

Axi.  The accuracy of the finite-difference approximations is given by the 

power of the first term in the truncated part of the rearranged expansion. For 

example, the central-space difference expression

xr(n+l )  _ j-r{n+l)

2Ay

■ QG fTiTT-on i n  RQ  1  1C c o r * r iT ir l_ r k r r l«
dyfor ^  as given in §2.3 is second-order accurate because the expansion is trun

cated immediately prior to the term in (Ay)^. In this chapter, we use fourth- 

order accurate techniques, based not on directly retaining more terms in the 

expansions but on treating derivatives as variables themselves. Solving second- 

order accurate finite-difference equations for the derivatives and then substi

tuting these values into the finite-difference form of the equation we wish to 

solve is the essence of compact differencing, which we now explain in a little 

more detail.

The compact-differencing approach treats both dependent variables and
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their derivatives as unknowns and tridiagonal formulae are set up to solve 

for them. Once these are solved the governing equations become effectively 

explicit. For example, for the equation

Ue +  VUy +  WU, = 0 (5.2)

we define A = Uy and B  = Uz and then solve

=  j y  )  (5-3a)

)  ■ (5 3b)

As with the numerical work of §2.3 we wish to avoid inverting block tridiagonal 

matrices and so employ an implicit-iterative approach. We solve (5.3a) “semi-

implicitly” by sweeping in y as described on page 44 above and solve (5.3b)

fully implicitly by solving the tridiagonal system directly. Since we now have

A  and B  the following discretisation of (5.2),
/-7-(n+l) _  t A'b )

_________i l L  y i 'B .+ l )  ^ ( n + l )  , pr^(n+l) p , { n + l )  _  Q

becomes simply an explicit algebraic equation for This is done to all

the computed equations, with iterations for convergence as before. We note 

that storage and running time savings compared with a second-order scheme 

can be substantial.

The second improvement in accuracy involves averaging the ^-derivatives 

at a mid-point n + ^ which effectively makes these derivatives second-order 

accurate. This is done for the generic variable X  by letting

^ = 5  ( ^ i r ’ + .  (5.5)

where X  is the mean value at the mid-point. Then = 2X — X^^^ and

in the first-order backward difference formula for X q we get

=  ('-')
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We solve for all variables — including the derivatives treated as such — at the

mid-points.

The compact-differencing approach effectively turns each of the governing 

equations (4.10a, 4.38a, 4.25, 4.38b) into a triple consisting of three triplets: 

two tridiagonal systems for the derivatives and one explicit system for the 

equation itself. The equations are solved in the following order. Firstly, we 

solve the triple associated with the ^-momentum equation (4.38a) for every 

point in the plane 9 =  constant. The density equation (4.38b) is solved next, 

followed by the vorticity equation (4.25). The triple associated with the Pois

son equation (4.27) is then solved for 'ip, but the solution technique is a little 

more involved, as we will now explain. Let Gj^k denote ipyy at the grid-point

(j ,k)  and the 0-level n 4- Similarly, let Hj^k denote ipzz at the grid-point

(j, k) and the 0-level n - f - T h e  triple is then:

1 5  1 1
+  -^Gj^k +  — “  2VT& +  ^j+i,fc) ; (5.7a)

1 5  1 1
+  ̂ j,fc+i) ; (5.7b)

Gj^k +  Hj,k = Rj,k • (5.7c)

We sweep in lines of j  = constant again, and so we sum the first two triplets 

above and rearrange to form the tridiagonal equation:

■ipj^k-\ -  2 ( -rrUvi +  7Â7T2 )\(A i/)2  (Az)^;'^:'''' (Az2)
5 1 1

=  -̂ ĵ,k -  Ĵ pÿÿi +  '̂ 3+i,k) +  (Gj-î k +  Gĵ î k +  Hĵ k-\ +  Hĵ k+i) •

(5.8)

In this equation as in all the others, we are solving on the line j  whilst variables 

are known on the line j  — 1 and values from the previous iteration are used for 

the values on the line j  4 - 1 . At this stage in the calculation, R  has been found



CHAPTER 5. NUMERICAL SOLUTIONS 108

at all {j, k) from the previous triple. After solving for 'ipĵ k we perform two 

additional calculations to update G and H,  Having thus solved the Poisson 

equation it only remains to find the fourth-order accurate terms ipz = —V  and 

ijy = W  by solving two compact-differencing tridiagonal equations.

As in §2.3 the equations simplify on the walls of the duct, but also here one

sided derivatives have to be taken. The polynomial formulae for the derivatives 

at the boundary can be found by taking a Taylor expansion of the variable 

about the wall location, and then retaining as many terms as necessary for the 

required level of accuracy. This leads for example to the expression

(0) —  2 2 ( A y ) 2  1 5 6 C /4 ,fc -l-2 1 4 C /3 ^ fc — 1 5 4 C / 2 , f c + 4 5 [ / i , f c )  .

(5.9)

Furthermore, the Dirichlet boundary condition 'ip = 0 is applied on the walls.

The coupled governing equations have an elliptic nature in the cross-plane, 

and so with the sweeping technique repeated iterations are necessary for in

formation from the boundaries to diffuse through to the interior points. Thus 

at least ten iterations are carried out before convergence testing is performed. 

The greatest absolute difference in all variables between one iteration and the 

next is a measure of the convergence of the outputs, and the outputs are said 

to have converged when this maximum absolute difference is within some pre

scribed level of accuracy. All of the results in §5.2 are accurate to at least 10~®. 

Since the iterative method leads to convergence here, relaxation as referenced 

on page 48 is not needed. Following convergence, we find the value for the 

generic variable X  at the level n -f 1 from

=  2%"+i -  . (5.10)

These values are stored as the solutions.
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Finally here we note that f f  R  dydz will be denoted DD  hereinafter. This 

integral was calculated by a compound application of Simpson’s Rule, as given 

for example in [24, p. 130].

5.2 Numerical results and discussion for the Cl 

case

5.2.1 Zero initial swirl

The first computation we will present is for a 2 x 1 duct with the zero entry- 

swirl initial conditions (2.39). Three computational grids were considered. The 

coarse grid had the triple (A 6 ,A y ,A z )  equal to ( ^ 5  3̂ 5^ )-  The other two 

grids were a medium grid at ^ ) ,  and a fine grid at ( ^ ,  ^ ) .  As

in §2.3 we generally present only the reults of the fine grid calculations, but 

following the discussion on page 51 we use the results over the other grids to 

show that the results are virtually grid-independent. Specifically, the left hand 

side of Figure 5.1 shows the computed values of D D  against 9 over the three 

grids, whilst the right hand side shows the computed values of p at the point 

(0,0.5) against 6. In both cases, significant grid effects can only be seen beyond 

^ =  30 which we will later show is beyond the limit of accuracy. In all cases, we 

set the maximum allowable error as 10“®. We note that the sudden bending 

seen in both graphs in Figure 5.1 are in fact numerically smooth transitions 

to a ^-invariant state caused by the end of the bend. Physically, the sudden 

bending is smoothed by the mechanism described in §2.1. The developments 

of DD  and p in the bend 0 ^  0 ^  1 are shown in more detail in Figure 5.4, 

and are described in the discussion accompanying that figure.
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0

Figure 5.1: DD  and p(0,0.5) against from three grids. The initial conditions 

are (2.39), and in both cases A =  0 for 0 > 1.

With the convergence testing and iterative procedure described in §5.1, the 

fine grid computation needed the fewest iterations — typically 20 in the bend, 

but increasing steadily with 6. In the straight section beyond the bend all 

three grids required no more than the 10 forced iterations, but when the bend 

was maintained the number of iterations required continued to grow.

Figure 5.2 shows the [/-profile at 0 =  1 has changed little from the initial 

profile at 0 =  0 which is consistent with the analytical prediction (4.40) and 

the discussion accompanying (4.43). However, although the flow entered the 

bend with the swirl and p uniformly zero, a small swirl and variation in p have 

developed by ^ =  1 as shown in Figure 5.3. The effect of the small non-zero 

swirl can be seen in Figure 5.2: the [/-profile has been slightly mixed around 

as is evident in the graphs of the values at 0 =  1. We observe also a slight off- 

symmetry in z of the profiles which corresponds to the streaming of the fluid 

towards the outside wall as a consequence of the centrifugal effects. This off-
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y-2

0.125 0.25 0.375 0.625 0.75 0.875 0.125 0.25 0.375 0.625 0.75 0.875

Figure 5.2: U at 0 =  0 (left hand side) and dX 9 = 1. The initial conditions 

are (2.39).

symmetry was also seen in the II results of §2.3 but is more pronounced here. 

We also note that the improvement in accuracy in the compact-differencing 

approach has removed the numerical edge-effects discussed on page 51 which 

were apparent in the second-order accurate results of §2.3.

The left hand graph of Figure 5.4 shows linear growth of the swirl — 

measured by the double integral of the vorticity over the cross-plane — between 

6 = ^ and 0 =  1 as predicted by (4.52) and the accompanying discussion. Since 

the evolution of p is driven by W  the similarity between the two profiles seen 

in Figure 5.3 is to be expected. However, by considering a point in the cross- 

section we observe that in the bend W  grows linearly (in keeping with the 

linear growth of the swirl) whilst p grows non-linearly, as shown in the graph 

on the right hand side of Figure 5.4.
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0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

0.125 0.25 0.375 0.625 0.75 0.875 0.125 0.25 0.375 0.625 0.75 0.875

Figure 5.3: V, W, R, and p profiles at 0 =  1. Fine grid results, with the initial 

conditions (2.39).



CHAPTER 5. NUMERICAL SOLUTIONS 113

Figure 5.4: Left hand side: DD  against 6. Right hand side: FF(0.5,0.25) 

(dashed line) and p(0.5,0.25) against 6. The initial conditions are (2.39).

R esults for large 6

We first observe that the double integral of p in the plane of a cross-section 

can act as a test on numerical accuracy since the prediction is that the double 

integral remains zero from (4.49). Therefore, as soon as

// > E , (5.11)p dydz

where E  denotes the defined level of accuracy (here, E  = 10“®), the numerical 

results are deemed no longer valid. Furthermore, since the double integral 

of p is zero for all 9 regardless of the value of A, as p evolves it must do so 

anti-symmetrically to maintain this result, i.e. it is constrained to grow in a 

manner in which the volume beneath a surface plot of p is always zero.

Bend off

Using the test of accuracy effectively defined by equation (5.11) we observe 

that when A =  0 for ^ > 1, the numerics are valid up to ^ =  30 as shown in
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Figure 5.5: f f  p dydz against 6. The limit of numerical accuracy is reached 

at 0 =  30.5, beyond which the integral is greater than 10~® for the first time. 

The initial conditions are (2.39).

Figure 5.5. No numerical results will be presented for 6 > 30.

A plot of DD  in Figure 5.6 shows excellent agreement with the prediction 

in the discussion accompanying equation (4.39) that DD  should grow linearly 

for 0 ^  ^ ^  1 when A =  1 and be constant thereafter where A =  0. We remark 

again that the sudden bending caused by the end of the bend is numerically 

smooth on a short length scale.

In line with the prediction from the energy equation (4.38b) when A =  0 

that p is conserved along streamlines, the surface plots in Figure 5.7 suggest 

that p following a particle is not evolving, but that the profile is being swirled 

in line with the clockwise (looking downstream) helical motion suggested by 

Figure 5.3. We also predicted in (4.46) that all variables would attain a 6- 

invariant state by some large 9. Although, as shown in the top two graphs in 

Figure 5.8, the stream-lines in the cross-section change little between 6 = 1
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Figure 5.6: DD  against 9. The initial conditions are (2.39).

and 0 =  30 in line with this prediction it seems apparent that the numerics 

cannot be run far enough to detect the ^-invariant state that would be the 

product of the mixing of the profiles seen between Figures 5.7 and 5.8.

In conclusion, the numerics appear to support the predictions related to 

the double integrals of R  and p and suggest that the quantities are conserved 

along streamlines, supporting the predictions of §4.4.2. However, the predic

tion in (4.46) that after a sufficiently long downstream distance the effects of 

mixing would lead to 0-invariant states of the principal flow variables cannot 

be supported directly by the numerics, although they are in keeping with the 

logical steps taken to reach that prediction. If we define the turn-over distance 

as the downstream distance traversed by the flow whilst one complete rotation 

of the fluid in the plane takes place, then an approximate value for the turn

over distance can be found from the graphs of V  and W  in Figure 5.3. Even 

towards the centre of the duct the turn-over distance is greater than 100 and 

so the numerical restriction of 0 =  30 perhaps limits the chances of detecting
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fully-mixed profiles.

Bend m aintained

In this section A =  1 for all 9. In the bend-off case we argued from equation

(5.11) and Figure 5.5 that the restriction of numerical accuracy was reached at 

6 = 30.5. In the bend-maintained case a similar graph in Figure 5.9 suggests 

that the restriction of numerical accuracy is reached near 9 = 3.9.

The graph on the left hand side of Figure 5.10 shows the downstream 

development of the bulk swirl DD = f f  R  dydz. The prediction from equation 

(4.52) and the accompanying discussion was of a linear increase in DD  for 

as long as the inertial terms remain small, which we see between 9 = 0 and 

around 9 = 2 m  Figure 5.10. By around 0 =  2 we can deduce from Figure 

5.11 that the initially small inertial terms have grown significantly and are now 

comparable in magnitude to the non-zero initial R  in (2.40a-c). As predicted 

for the larger swirl case in the discussion accompanying (4.52), DD  appears 

to grow non-linearly between around 9 = 2 and the restriction of numerical 

accuracy 9 = 3.9. Furthermore, examination of W  at some interior points 

in the right hand side of Figure 5.10 supports the claim that R, V, and W  

grow linearly whilst the inertial terms are small. In addition, the graphs of 

Figure 5.11 are plotted with a constant scale to demonstrate the anticipated 

continued growth and development of the stream-function ÿ) and the vorticity 

R.

As with R  above, the surface plots of the density variation p shown in 

Figure 5.12 do not exhibit the far-downstream behaviour predicted in §4.4.2. 

The prediction for p was the emergence of a ^-invariant state as ^ oo, but 

in fact p appears to be still evolving between 9 = 1 and 9 = 3. Once again
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p

Figure 5.7: Surface plots of p at (left to right, top to bottom) 0 = 1, 10, 20, 

30. Fine grid results, A =  0 for ^ > 1 and with the starting conditions (2.39).
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Figure 5.8: Surface plots of the stream-function ip at (left to right) 9 = 1  and 

9 = 30. Plots of U and R dii 9 = 30. Fine grid results, A =  0 for  ̂ > 1 and 

with the starting conditions (2.39).
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Figure 5.9: f f  p dydz against 6. The limit of numerical accuracy is reached 

near 6 = 3.9, beyond which the integral is greater than 10“® for the first time. 

The initial conditions are (2.39).

we conclude that the numerics cannot run sufficiently far to detect the far- 

downstream predictions. We do, however, observe that the density profile is 

being swirled by the effects of R  and that the growth in the values of p along 

the walls may be due to the accumulation of fluid near the corners, since as 

discussed in §2.3 particles on a given side are constrained to stay on that side. 

We also recall that the discussion on page 92 showed that p would remain of 

0(1)  for all 9 and we note that the numerics do not contradict this prediction.

Finally we mention that, in line with the prediction that U is conserved 

along streamlines, the results in Figure 5.13 show the -profile being swirled 

in the cross-section.
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W(0.25,0.K

W(0.5,0.25).

«1.5,0.75)

e

Figure 5.10: DD  against 9 and various W  against 9. The initial conditions 

are (2.39).

The corners

We observed on page 116 that with the bend maintained beyond ^ =  1 the 

restriction of numerical accuracy was reached sooner than in the bend-off case. 

This earlier break-up of the results could be caused by a more rapid increase 

in the accumulation of truncation and rounding [i.e. numerical) errors. This 

greater accumulation of the inevitable numerical errors is perhaps due to the 

errors contributing to the driving terms in the governing equations. However, 

a physical candidate for the error-generation is the predicted singular response 

of the vorticity close to the corners of the duct cross-section after a sufficient 

development region shown by (4.62), which would be expected to continue to 

grow whilst A =  1 . In fact, between 9 = and ^ =  4 the magnitude of R  

close to two of the corners has become very large, as shown in Figure 5.14, 

supporting the prediction of a singular growth near the corners. The density 

variation p was predicted in equation (4.68) to grow no more strongly than 0 ,̂
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Figure 5.11: Constant-scale surface plots of the strearn-function ^  and the 

vorticity R  at (left to right) 0 =  1, 2, and 3. The initial conditions are (2.39).

and the graphs of Figure 5.12 appear to support this claim.

5.2.2 Non-zero initial swirl

In this section we briefly show some results of the numerical solutions for a 

2 x 1 duct with the initial condtions (2.40a-c). The same grids as §5.2.1 were 

used and similar demonstrations of grid convergence were available which we 

will not reproduce here; only results from the fine grid will be shown. With the 

bend terminated at ^ =  1 the limit of accuracy was reached just beyond 9 = 2 

only, whilst when the bend was maintained the limit of accuracy was reached 

by just before 9 = 2. In §5.2.1 the maximum distance the numerics could be 

run differed by an order of magnitude between the bend-off case and the bend- 

maintained case, but this is not so here. The strong growth of the already large
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Figure 5.12: Surface plots of the density variation p at (left to right) 0 = 1 , 2 , 

and 3. The initial conditions are (2.39).

vorticity in the bend is thought to cause the blow up near 6 = 2 regardless 

of whether the bend has terminated or not. Since no large values of 6 can be 

reached by the numerics we shall only present here solutions for the principal 

flow variables at the end of the bend dX 6 = I. We note that weaker initial 

swirl conditions such as those in |77] were considered: the numeric solutions 

were able to run further downstream and bulk predictions were supported, but 

again the far-downstream limits were not attained.

In Figure 5.15 we can see that once again, as in the incompressible solution 

shown in Figure 2.10, the four-cell structure of ^  has evolved to a two-cell 

structure by  ̂ =  1. The structure of i? at 0 = 1 is perhaps less easy to 

describe qualitatively, but large values of R  have evolved towards the top of 

the duct.

The left hand graph of Figure 5.16 shows the p-prohle at ^ =  1. Although 

p is clearly responding to the large values of R  near the top of the duct, it is 

one order of magnitude smaller than R  there and has quite a different overall 

form to R. The two remaining graphs in Figure 5.16 show the development of 

p and W  at two sample points of the cross-section. The centre graph shows a
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Figure 5.13: U at 0 =  1 (left hand side) and 0 =  3. The initial conditions are 

(2.39).

development familiar from the zero initial swirl case shown in Figure 5.4 with 

W  growing linearly with 0. The right hand graph, however, shows that W  may 

grow non-linearly at a fixed point; even though the evolution of p following a 

particle is driven by IT, it is possible for p and W  to behave very differently 

at a fixed point in the cross-section.

Finally, in Figure 5.17 we see that U has not grown in magnitude but the 

[/-profile has been mixed by the action of the vorticity R  in keeping with the 

predictions of §4.4.

5.2.3 General discussion

The work in §5.2 has provided specific numerical results to confirm many of 

the predictions of §4.4. It has shown that between 0 =  0 and 0 =  1 a non

zero swirl and density variation will in general develop and grow linearly even 

if the initial swirl and density variation are zero. The swirl distorts slightly
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Figure 5.14: i? at 0 =  3 and 6 = A. The initial conditions are (2.39).

the profile of the downstream velocity U through a mixing mechanism. For 

those industrial applications seeking to minimise exit swirl the desirability of 

suppressing initial swirl was demonstrated by the solutions based on the initial 

conditions (2.40a-c): the non-zero initial swirl grew non-linearly in the bend 

and caused even greater distortion of the downstream velocity U.

In a straight section beyond 6 = 1 the bulk predictions of §4.4.2 were 

confirmed, but the numerical schemes were unable to run to sufficiently large 

9 to detect the far-downstream prediction of ^-invariant states of the principal 

flow variables. Although R  and p were predicted to be constant following a 

particle beyond the bend, the continued swirling motion can distort the profiles 

to a significant extent suggesting that if close-to-uniform profiles are desired at 

the downstream duct exit, the length of any straight section beyond the bend 

should be minimised.

Maintaining the bend beyond 6 = 1 caused stronger growth in the swirling 

motion and led to more pronounced adverse effects on the density- and U-
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Figure 5.15: Constant-scale surface plots of the stream-function ip and the 

vorticity R a.t 6 = D (left hand side) and  ̂ = 1. The initial conditions are 

(2.40a-c).

profiles, as predicted in §4.4.2. The far-downstream predictions of continued 

linear growth of R  and the development of ^-invariant states for the other prin

cipal flow variables was again not detected before the restriction of numerical 

accuracy was reached, and we noted that this restriction arose at a smaller 6 

than in the bend-off case. However, the strong response of the vorticity and 

the density variations suggest that the bend length — and inertial forces in 

general — should be minimised if near-uniformity of profiles at the duct exit 

is required.

Finally, the predictions of a singular response in R  close to the corners was
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0 0

Figure 5.16: Left: ^ at 0 =  1. Centre: p (solid) and W  at (0.5,0.25). Right: p 

(solid) and W  at (0.5,0.5). The initial conditions are (2 .40a-c).

confirmed and may even have been the cause of the break-up in the numerical 

solutions. The growth of this singular behaviour — becoming significant indeed 

by around 0 = 4 in the bend-maintained case — could cause adverse effects 

for industry. No singular response of p was detected near the corners in line 

with the predictions of §4.4.2.

We observe finally here that the current numerical scheme functions well 

over a wide range of parameter values and initial conditions.

5.3 The NLCI case

5.3.1 The governing equations of NLCI

Following on from the opening comments of this chapter on page 104 we will 

now formulate the fully non-linear compressible inviscid (NLCI) case.

We observed on page 85 that the governing equations of the CV case reduce 

to those of the NLCI case when Re %$> aL We recall the relevant streamwise 

length scale of this case in Figure 5.18. Although the momentum and continu

ity equations are the same, neglecting viscous effects changes the form of the
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Figure 5.17: [/-profiles at 0 = 0 (left hand side) and 0 = 1. The initial 

conditions are (2.40a-c).

energy and state equations. Let us then first write the NLCI continuity and 

momentum equations, which from (4.21a-d) are:

(pU)0 +  (pV)y +  (pW)jz — 0 ;

p(i7% + ya, + iFi/,) = ;

piÜVff +  VVy +  WV^) = -P2y ; 

p { L J W 0  T  V W y  +  I V W z  —  A . Ü ^ c x 0 i )  =  — p 2 z  •

(5.12a)

(5.12b)

(5.12c)

(5.12d)

In §4.3.2 we did not introduce A into equation (5.12d) since we could not 

do so through a formal substitution. However, a derivation of the governing 

equations in the straight section (where A =  0 and x = r0) from first principles 

yields equations (5.12a-d) but without the final term on the left hand side 

of equation (5.12d). Consequently, we can include the parameter A in the 

governing equations and thus the equations will hold in both the straight and 

the curved sections of the duct. We recall that the expansions of the velocities.
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pressure, and density are:

{u,v,w) = ( Ü , 0 , 0 ) e { Ù , V , W ) . ; (5.13a)

p = P o e p i e p 2 . ; (5.13b)

p =  p +  ep +  . . .  , (5.13c)

where we have normalised the equations (5.12a-d). We emphasise that no

factors of A appear in the expansions. Furthermore, leading order balances of 

the y- and z-momentum equations have led to the conclusion that

Po=Po{0) (5.14)

only. Similarly, we can show that pi is a constant which can be taken to be zero 

without loss of generality. Finally, we recall that we considered a new balance of 

swirl (measured by e) and curvature (measured by the non-dimensional aspect 

ratio a of the bend), such that the parameter a  = ae^ appearing in equation 

(5.12d) is of 0(1). This new balance was chosen to ensure that some effects of 

the centrifuging experienced by the flow in the bend would appear to leading 

order in the equations. We noted on page 79 that this new swirl-curvature 

balance corresponded to a change in the level of swirl since throughout this 

thesis the geometry of the bend is fixed by the motivating physical set-up.

In the absence of viscosity we are able to use the polytropic equation of 

state (3.46), whose leading-order balance provides an equation coupling po and 

P-

Po =  Kp^  , (5.15)

where K  in general varies from streamline to streamline in steady flows but is 

uniform to leading order here due to assumptions of upstream homogeneity. 

Then equation (5.15) shows that

p = p(6) ,  (5.16)
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Figure 5.18: When Re ':$> a 2 the core flow remains largely inviscid over the 

length scale @  indicated, in which 9 = 0 {a~2 ). Far downstream the core 

viscous effects described by the equations of §4.3 might be seen.

which simplifies (5.12a). We note in passing that the same relation (5.15) can 

be derived by considering conservation of following a particle.

The pressure term p2 will be eliminated in the usual way by cross- 

diflPerentiating equations (5.12c) and (5.12d) and introducing the vorticity R, 

and we will assume that po is known from a conservation of mass flux in a 

manner to be described in the subsequent section. However, the normalised 

equations (5.12a-d,5.15) in their current form seem to exhibit a doubly-infinite 

range of initial values for the pair {po, p). This problem suggests re-examining 

the normalising factors in light of the new balances available from the poly

tropic equation. A standard approach yields the normalisations:

9 =  9i9 ;

[D,V,W] = 

[P,p0,p2]  =

U,
V w

a9i ’ a9i

P n P i
TTq

P2

(5.17a)

(5.17b)

(5.17c)

The normalising factors and ttq are to be determined and we have the
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relation

pn = TTo (5.18)

from (5.12b) un-norm alised. B y choosing to  norm alise p and po on their initial 

values at the entrance to the bend we can reduce the doubly infinite range of 

(p,Po) to a single com putational case where the initial conditions on p and po

are that they are both unity at 0 =  0. More formally, we set

Pn =  p(0) and 7To=po(0), (5.19)

which together with (5.18) yields the conclusions:

•  Po(0) =  1 =  p(0) as m entioned above, and

•  Po(0) =  p(0).

Substitu ting the norm alising factors into the un-norm alised equivalent of equa

tion (5.15) gives

^  =  K{p{0)r-^ . (5,20)

Since th is is true for all values of 9 it is true at 0 =  0, which im plies that 

K{p{U))^~^ = 1 and thus

Po =  . (5.21)

In summary, by norm alising p and po on their initial values we have only one 

case to  consider num erically where p and po are coupled by equation (5.21) 

and are both  unity at 0 =  0. We conclude this section by noting that the 

norm alising factors and the non-dim ensionalising factors for p and po suggest 

that at the start of the bend the dim ensional variables take the form:

Pd (0) =  PdooP(O) ; (5.22a)

Pd(0) =  PdoqHD^p{U) = Pd(0)C/c>oo • (5.22b)
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We present these relations to emphasise that under experimental conditions 

generality of the initial density and pressure is preserved.

5.3.2 The numerical strategy for NLCI

The NLCI case retains the parabolic nature of the previous cases, enabling 

us once again to march forward in 6. The equations in each plane 9 = con

stant also retain their elliptic nature, requiring an implicit/iterative approach 

as previously employed in the II and Cl cases and described in §5.1. The 

numerical scheme we will now describe is a fourth-order accurate compact dif

ferencing scheme as outlined in general in §5.1 but with some novel solution 

methods necessitated by several features of the NLCI governing equations. 

However, we note at the outset that a complete numerical solution of the cou

pled three-dimensional Euler equations is a difficult problem requiring other 

special computationally intensive techniques.

Firstly — as in all the previous numerical work in §§2.3, 5.1, and 5.2 — we 

eliminate p2 and introduce the vorticity R  = Wy — Vz by cross-differentiating 

the y- and ^-momentum equations. This converts the governing equations to:

{pU)e +  p(Vy + W,) = 0;  (5.23a)

UUe + VUy + WU,  =  -  ; (5.23b)

URq +  VRy  4- WRz = —R{Vy 4- Wz) 4- UzVq — UyWQ 4- ‘lAUUyCx,9\ ; (5.23c) 

p =  (5.23d)

However, we cannot introduce a two-dimensional stream-function ip as we did 

in the II and Cl cases since this would not be consistent with the continuity 

equation (5.23a). Furthermore, in the II and Cl cases we were able to show
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that Po =  0 for all 0 by a higher-order balance of the continuity equation com

bined with an integration of the ^-momentum equation. In the NLCI case each 

higher-order balance of the continuity equation (and other equations) is cou

pled non-linearly to the other balances in such a way that no simplifying result 

is forthcoming. Consequently another means of determining po is used. The 

method within each iteration involves using the integrated continuity equation 

to optimise po as it responds to the mass flux through the duct. In more detail, 

the strategy used at each ^-station is outlined as follows.

• The latest iterative value of po{0) (on the first iteration at each 0-station, 

this is the value from the previous 0-station) is used as the initial estimate 

for Po at the current station.

• This value is substituted into equation (5.23d) to determine p at this 

station.

• Having determined po and p we can solve equation (5.23b) for U using an 

implicit/iterative approach as described in §5.1, and employing stream- 

wise lagging of U.

• A double integral in the cross-section of the continuity equation (5.23a) 

yields the result

J J  pU dydz =  constant . (5.24)

The current values of p and U are substituted into a Simpson’s Rule 

integrating routine, and this latest-known value of the double integral at 

this 0-station is compared with the calculated value at 0 =  0. After two 

values of po have been tried (the second value being the first value plus a 

small constant) an optimised value is determined via a Newton-Raphson
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formula. The tolerance level for the test is:

< 10"^^ . (5.25)J J  pU dydz -  J J  piUj dydz

• A value of po{9) which leads to the test being satisfied at the current 

iterative level implies that equations (5.23d & 5.23b) are satisfied to 

0(10-13).

• The vorticity equation (5.23c) is now solved for R.

•  We then solve two Poisson equations: one for V  and one for W  as follows. 

Using the definition of R  we write:

Vyy +  Vzz = {^y)y +  ^ y z  ~ Hz • (5.26)

This equation requires knowledge of Vy which in the compact-differencing 

approach is treated as a dependent variable, but otherwise this equation 

is solved by the Poisson-solver used in §5.1. However, in §5.1 where we 

solved a Poisson equation for ^  with a known right hand side we had 

the boundary condition 'ip = 0 on the walls. In the present case we only 

know the latest-known values of R  and that there is no normal flow at 

the walls. We combine these facts, the definition of R, and six-point 

one-sided polynomial discretisations of the derivatives to generate in

formation at the walls. The implicit/ iterative scheme for this Poisson 

equation is swept in the j-direction with the information we have just 

generated feeding in as the boundary conditions in the tridiagonal sys

tem. Sweeping in the /^-direction such that the tridiagonal problem at 

each k involves 0 as the first and last elements in the array of values on 

the right hand side (since we know V  is zero on ji =  0 and j  = j j )  leads 

to greater numerical instability.
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• The Poisson equation for W ,

Wyy +  Wzz = (PKz)z +  Vyz A Ry , (5.27)

is solved in a similar fashion, with the implicit/ iterative scheme swept in 

the /c-direction.

• Having solved for the variables in equations (5.23a-d) we test the con

vergence error on R  (since po, and U have already been optimised to 

0 (1 0 “ ^ )̂) to an accuracy of 1 0“® and iterate until convergence is reached.

5.4 Results and discussion for NLCI

The parameters a  and 6i are important to the flow development since they 

appear explicitly in equation (5.23c). The computations in this section were 

performed with

a = l  , ^  (5.28)

for consistency with the discussion in Chapter 1 , where we explained that the 

typical angle the duct turns through is and that in Chapters 2 and 4 where 

we mentioned that a  is of 0(1). Varying a  and/or 6i is analagous to varying 

the initial balance of the inertial forces as discussed for the II case on page 

54, or to varying T in the Cl case as discussed in §§4.4.4 and 4.4.5. Similar 

general conclusions hold here. As with the II and Cl cases in §§2.3 and 5.2, 

respectively, we take a duct with a 2 x 1 rectangular cross-section.

The numerical scheme was sensitive to the initial conditions, and we found 

that the numerics reached their greatest extent downstream when the variation 

on U was relatively small. Thus we chose the initial condition:

Ui =  1 -f- 0.0025 ^ —  2/  ̂T 2/^^ “  y ^ \  • (5.29)
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Figure 5.19: Left hand side: error (measured on R) over three grids. Right 

hand side: R(0.5,0.25) over three grids. The initial conditions were (5.29, 

5.30).

The initial conditions on po and p are that they are both unity as discussed in 

§5.3. With these initial conditions the computational scheme works over a wide 

range of parameter values: we will show how the magnitude of A affects the 

solutions, and also study both zero and non-zero initial swirl. Analytical work 

will also be presented which compares very well with the numerical results. 

With the above decision to fix a  and 6\ in mind, the principal parameter here 

is A, and we will present the results and discussions in sections concerning 

different values of A, beginning with the flow in the bend when A =  1 .

5.4.1 Numerical results and discussion for A =  1 

Zero initial swirl

In this case we take

Vi =  {) =  Wi (5.30)
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in addition to (5.29). Computations were performed over three grids, defined as 

follows: the coarse grid had (A^, Ay, Az)  = ^ ) ;  the medium grid had

(A0, Ay,  Az) =  (2I0 , jL, i ) ;  and the fine grid had {A9, Ay, Az)  =  (3# , ^ , ^ ) -  

In each case the error terms measuring the rate of convergence between suc

cessive iterations grew to be larger than the prescribed level of accuracy (1 0“®) 

beyond 6 = 0.4 as shown in the graph on the left hand side of Figure 5.19. 

We note that although the fine grid computation showed convergence beyond 

9 = 0.5 we are unable to show that results between ^ =  0.4 and 0 =  0.5 are 

sufficiently grid-independent and consequently we will only present results up 

to ^ =  0.4. The graph on the right hand side of Figure 5.19 shows how closely 

the values of i? at a point in the cross-section agree over the three grids. We 

observe that although 0(1) values of 9 are reached by the NLCI numerics the 

scheme is not sufficiently accurate to run for the entire length of the bend from 

0 =  0 to 0 =  1. Nevertheless, the results obtained are interesting and useful, as 

we shall see. We will discuss the limitations of the numerics in §5.4.8. Similar 

comparisons over three grids were also made in each of the subsequent sections 

of this chapter. In each case the numerical results were accurate to at least 

9 = 0.4 and only the finest grid results will be presented.

We observe from the graph on the right hand side of Figure 5.19 that in 

the NLCI case as in the II and Cl cases we see linear growth of the vorticity 

R  in the bend. With the scaling 9 = e9 — where on page 80 we mentioned 

that e % (2 \ / 2 )“  ̂ — we deduce that the real growth rate is of 0 (1 0“ )̂ from 

the graph, and in the Cl case it was also of 0 (1 0 “ )̂ from Figure 5.11.

The numerical solutions for U are plotted in Figure 5.20. There is almost 

no mixing effect of the swirl apparent at this level, which we attribute to 

the extremely weak swirl which we will shortly plot. Correspondingly weak



CHAPTER 5. NUMERICAL SOLUTIONS 137

y-2

0.125 0.25 0.375 0.625 0.75 0.875

■37T

"3 7 2 "

0.125 0.25 0.376 0.625 0.75 0.875

1.0000000000

0.9999999995

0.9999999990

0.9999999985

0.9999999975
0.2 0.25 0.3 0.35 0.4
e

Figure 5.20: Top: U at 9 = 0 (left hand side) and 9 = 0.4 (right hand side),

plotted on lines of constant y. Bottom: po (solid line) and p against 9. The

initial conditions were (5.29, 5.30).
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evolution of the pressure term po and the density p can also be seen in Figure 

5.20. However, both po and p appear to be exhibiting at least linear growth 

by 0 =  0.4.

The form of the evolution of V^ VF, and R  from their zero initial values 

is interesting. The basic shape of the profile is established early, with the 

subsequent development being essentially one of magnitude. We also note that 

the results shown in Figure 5.21 are more symmetrical in the z-direction than 

their analogues in the Cl and II cases shown in Figures 5.3 and 2.5, respectively, 

but perhaps less symmetrical in the p-direction. Furthermore, the profiles in 

Figure 5.21 are more greatly distorted than the Cl and II analogues, especially 

near the inner and outer walls z =  0 and z = 1. Put another way, the form 

of the profiles in Figure 5.21 more closely resemble the form of the profiles in 

the Cl case in the central region of the duct, and this could be because the 

magnitude of U is smallest there — for a given y — which brings the NLCI 

case closer to the Cl case.

One simple analytical solution in the current parameter regime with A =  1 

and zero initial swirl is found by assuming that the initial [/-profile is an 

arbitrary funtion, Ui{z). Then a solution of the governing equations (5.23a-d) 

is:

U = Uj{z) for all 6 ; po = 1 = plor al\9 ; R  = Ri  = 0 for allO . (5.31)

We note that when Vj or Wj  is not zero the above prediction that R  = Rj  for 

all 6 is not valid. Running the numerical scheme with

U, =  1.05 -  0.1(2 -  \ f  (5.32)

and zero initial swirl indeed reveals no evolution of any quantities. The nu

merics in this case can continue indefinitely, so we have here decided simply
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Figure 5.21: F , W,  and R at 6 = 0.2 (left hand side) and 9 = 0.4 (right hand 

side), plotted on lines of constant y. The initial conditions were (5.29, 5.30).



CHAPTER 5. NUMERICAL SOLUTIONS 140

Figure 5.22: po (left hand side) and p against 6. The initial conditions were 

(5.32, 5.30).

to show in Figure 5.22 that p and po do not evolve between ^ =  0 and 6 = 1.

Non-zero initial swirl

In this parameter regime, we take Uj as defined by (5.29) and and Rj

as:

(iry \
— j  C0s{7Tz) ;

Wi = acos sin{'Kz) ;

57t _ . (Tïy\ .
Rj  =  — —asin j  siniTïz) ,

(5.33a)

(5.33b)

(5.33c)

where a =  0.0001. We note that the numerics do not work satisfactorily for 

â > 0 .0 0 0 1  and this was also true in subsequent sections of this thesis where 

we vary the size of A. Smaller values of ü were also considered with the 

largest possible value taken to study the most interesting case. However, with 

the relatively weak level of swirl defined in (5.33a-c) the numerical scheme
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performed at least as well in terms of the maximum downstream distance 

attainable as the zero initial swirl case. Three different computational grids 

were compared to establish grid convergence and the results we present are for 

the finest grid, defined as (A 6 ,A y ,A z )  = ( ^ ,  We note that the Vj

and Wj  defined in equations (5.33a) and (5.33b) were chosen such that

Viy +  Wiz = 0 , (5.34)

which from equation (5.23a) imposes:

(p ^^)9L=o =  0 - (5.35)

This result implies that particles are simply being swirled around in the straight 

section immediately prior to the onset of the bend.

Figure 5.23 shows the evolution of U between ^ =  0 and 6 = 0.4. As in the 

zero initial swirl case above U shows very little effects of the mixing induced 

by R  since R  remains weak throughout. However, the evolution of p and po is 

stronger than was the case with zero initial swirl as we can see by comparing 

the relevant graphs in Figures 5.23 and 5.20.

The evolution of V  and W  as shown in Figure 5.24 seems strongest towards 

the inner and outer walls z =  0 and z =  1. In greater detail, we first recall that 

the particles on the inner and outer walls are constrained to stay on those walls 

since there is no normal flow. However, at small distances from the inner and 

outer walls the normal flow W  is growing rapidly in magnitude. This could 

perhaps be hinting at the appearance of edge layers on these walls across which 

W  develops rapidly. The parallel flow V  is also growing strongly close to the 

inner and outer walls implying that the strength of the swirl is large there. 

The flow parallel to the bottom and top of the duct, measured by W  there, is 

correspondingly large. Overall, the solutions hint at relatively rapid rotation
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Figure 5.23: Top: U at  ̂ =  0 (left hand side) and 6 = 0.4 (right hand side),

plotted on lines of constant y. Bottom: po (solid line) and p against 9. The

initial conditions were (5.29, 5.33a-c).
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Figure 5.24: V, VF, and R  at 9 = 0 (left hand side), 9 = 0.2 (centre) and

9 = 0.4 (right hand side), plotted on lines of constant y. The initial conditions

were (5.29, 5.33a-c).
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Figure 5.25: Left hand side: i?(0.25,0.125) against 9. Right hand side: 

f f  R  dydz against 9. The initial conditions were Ui = 1 and (5.33a-c).

of the fluid close to the walls combined with a comparitively slowly rotating 

central region.

One simple analytical solution is given by

t/ =  1 for all 0 ; po = 1 = p for all 9

Under these conditions (5.23c) reduces to

R q T V  Ry T W  Rz =  0 , 

since the continuity equation (5.23a) reduces to

Vy T W z = 0 .

(5.36)

(5.37)

(5.38)

Equation (5.37) suggests that R  is conserved along streamlines. The prediction 

at any fixed point in the cross-section would thus be that the value of R  at such 

a point changes only very slowly as the weak swirl brings different particles 

onto that point. We note that if Vj and Wi  were zero then R  would remain
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Figure 5.26: Left hand side: R ât 6 = 0. Right hand side: i? at 0 =  1.4. The 

initial conditions were (5.32,5.33a-c).

zero. Furthermore, by integrating (5.37) over the plane of a cross-section and 

with the usual application of Green’s theorem we predict that

//R  dydz = constant for all 9 . (5.39)

Running the numerics under these conditions the analytical predictions (in

cluding no evolution of U, po, and p from (5.36)) are upheld, as we see in 

Figure 5.25. Specifically, the left hand side of Figure 5.25 shows R  visibly 

evolving only after a downstream distance sufficient for the swirl to have ad- 

vected particles with different values of R  onto those points, whilst the right 

hand side shows j j  R  dydz remaining constant to within the prescribed level 

of accuracy as predicted. We note that the numerics are able to run reliably 

to 0 =  5 under these conditions.

Finally, we recall that on page 138 we predicted that if the initial swirl is 

non-zero then R  would evolve in the case that Uj =  U[{z) only, whilst U, po, 

and p would be conserved. The numerical results, which run as far as 0 =  1.4
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Figure 5.27: po (left hand side) and p against 6. The initial conditions were 

(5.32, 5.30).

downstream, are shown in Figure 5.26 and confirm this prediction.

5.4.2 Numerical results and discussion for A =  0 

Zero initial swirl

The prediction for this case from equations (5.23a-d) is that — regardless of 

the form of Ui — there will be no evolution of any of the flow variables in 

equations (5.23a-d) throughout the flow. This is because the driving terms in 

the vorticity equation (5.23c) are zero at 0 =  0 and remain so. The numerics 

run as far as desired with no evolution in any variables as predicted. For 

example, in Figure 5.27 we see po and p remaining constant at their initial 

values of unity between 0 =  0 and 0 =  5. The general conclusion is that if the 

flow enters a straight section with zero initial swirl and any po and p of 0 (1) 

then no evolution of the principal variables occurs.
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Figure 5.28: The effects of the value of A on the maximum numerically valid 

9. The initial conditions were (5.29, 5.30).

N on-zero initial swirl

For a range of non-zero initial swirl conditions the numerical solutions ceased to 

be physical — by which we mean that f f  pU dydz > 1 0 “ ^̂  — by 0 of (9(10“ )̂. 

It seems as if the numerical scheme is unable to work under conditions of zero A 

when evolution occurs, and a discussion of this problem is contained in §5.4.3. 

Equations (5.23a-d) suggest that in this case evolution would in general occur, 

although we are unable to offer any numerical evidence for this.

5.4.3 Discussion of the numerical limitations imposed by 

the size of A

The numerical difficulties encountered in the non-zero initial swirl case of §5.4.2 

suggest examining the stability of the numerical scheme for various values of 

A. We use the phrase “maximum numerically valid to indicate either the 

last 9 for which the error is smaller than 10“® (indicating that beyond this 9
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the results will no longer converge) or the last 6 for which f f  pU dydz < 10“ ^̂  

(indicating that beyond this 6 the results will no longer be deemed physically 

valid), whichever of the two is the smaller.

Figure 5.28 shows that the numerical scheme depends very strongly on 

0(A ). Specifically, it appears that the scheme works only for A of 0(1) — 

say for 0.7 < A < 5. Since the computational equations (5.23a-d) were de

rived with the assumption that A is of 0(1) it is perhaps no surprise that the 

numerical scheme does not work outside of this restriction. However, we note 

that the Cl numerical scheme was also derived with the assumption that A 

is of 0 (1 ), and the fact that the Cl scheme worked for a range of A serves 

to emphasise once more the versatility of that numerical scheme. A similar 

numerical comparison of the effects of 0(A ) on the stability of the scheme with 

various non-zero initial swirls yields the same conclusions.

5.4.4 The NLII case

The fully non-linear incompressible inviscid (NLII) case is obtained by omit

ting the viscous terms from the IV case governing equations (4.18a-d) for the 

reasons discussed on page 82. This leads to the NLII governing equations:

U$ -\-Vy -\- Wz =  0 ; (5.40a)

UUe +  VUy T  WUz = -Po(e) ; (5.40b)

UVe + VVy + WVz = -P2y ; (5.40c)

UWe +  VWy  +  W W z -  AU'^aOl =  -pzz • (5.40d)

We note that we have introduced the centrifugal parameter A into (5.40d) as 

we did in (5.12d) for similar reasons to those given in the discussion following 

(5.12a-d). It is apparent that equations (5.40a-d) are simply the NLCI equa-
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Figure 5.29: The NLII po (solid) and the NLCI po against 6. The initial 

conditions were (5.29, 5.30).

tions with p =  1 for all 9. This observation provides a method of solution: 

simply set p =  1 in the NLCI scheme. Having made the necessary change to 

the numerical scheme the computation was performed over three grids and vir

tual grid-indpendence was once again established to at least 6 = 0.4. We will 

show results from calculations with the fine grid {A9, Ay, Az)  = ( ^ ,  ^ )-

For zero initial swirl Figure 5.29 shows the evolution in the NLII case of 

Po with 9 and contrasts it with po for the NLCI case. It is apparent that po 

grows less strongly in the NLII case than in the NLCI case.

The graphs in Figure 5.30 show that at this level the NLII results are 

quantitatively very close to the NLCI results shown in Figure 5.21. We saw 

previously in §5.2 that the Cl results were qualitatively similar to the II case. 

The quantitative differences between Cl and II which are not so apparent be

tween NLCI and NLII are perhaps attributable to the longer distances through 

which the weakly non-linear numerics are able to run.
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Figure 5.30: The NLII U, V, W,  and R  at 9 = 0.2 (left hand side) and 9 = 0.4 

(right hand side). The initial conditions were (5.29, 5.30).
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Figure 5.31: The NLII f f W  dydz against 6. The initial conditions were (5.29, 

5.30).

We observe once again that U has not evolved between 6 = 0 and 9 = 0.4 

and that it has not visibly responded to the weak swirl. The swirl is growing 

linearly in the bend, however, and to illustrate this we show in Figure 5.31 that 

f f  W  dydz grows linearly with 6. Other important aspects of the solution are 

similar to those of the NLCI solution with which the NLII solution so closely 

corresponds.

5.4.5 A link between NLCI and Cl

In another validation of the numerical scheme we now investigate whether the 

NLCI numerics are able to qualitatively recreate the Cl results of §5.2. This 

should occur in the regime:

6 — oo I A —y 0 I {Uj — l) —y 0 (5.41)
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Figure 5.32; po and p against 6 for the initial conditions (5.42a, 5.30).

Consequently, we set:

U, = l + (2.5 X  10-6) +  yz'^

A =  10-6 ;

E  = 10-13 ,

yz (5.42a)

(5.42b)

(5.42c)

where E  is the maximum allowable error (previously set at 10“®). We will 

perform the computation over the fine grid defined in §5.4.1.

Figure 5.32 shows that in the regime (5.42a-c) the pressure term po and 

the density term p both remain at unity until relatively large values of 9 are 

reached. This agrees with the Cl case where the leading order components 

of the pressure and density were fixed at unity and only the higher order 

components evolved. In Figure 5.33 we show that f f  R  dydz grows linearly 

with 6 as was predicted (and confirmed numerically) in the Cl case. We also 

note that the magnitude of R  is consistent with the Cl case given the change 

in length scale and size of e.
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Figure 5.33: f f  R  dydz against 9 for the initial conditions (5.42a, 5.30).

In an observation unrelated to a connection with the Cl case we note that 

very close to the bend entry it appears that the total integrated vorticity 

over the plane of a cross-section is briefly positive before beoming negative 

downstream, perhaps hinting at strong initial asymmetry in the vorticity.

A flnal analytical correspondence between the Cl and NLCI cases is to note 

that when C// =  1, then for general V j r ,  Wj  and for any A:

C/ =  1 for all 6 and po = 1 = p ior all 6 ; 

R q -\- V  Ry -f- W  Rz =  0 .

(5.43)

(5.44)

That is, the system reduces to the Cl or II case with A =  0. In words, a 

fully non-linear description of compressible inviscid flow with a uniform entry 

[/-profile, general entry swirl, and any A corresponds to a weakly non-linear 

description of either compressible or incompressible flow with uniform entry 

[/-profile, general entry swirl and zero A. This fact serves to emphasise the 

importance of the initial non-uniformities of U in driving the evolution of the 

flow.



CHAPTER 5. NUMERICAL SOLUTIONS 154

5.4.6 Further analytical support for the NLCI numerics

More confidence in the numerical solutions is implied by the following analyt

ical work.

Sm all A, o rd e r u n ity  6

We first suppose that as A becomes small the response of the principal flow 

variables over 0{1)  values of 6 will be correspondingly small. Thus when

A = ÔA , where (5 <C 1 , (5.45)

we assume:

U — Uq T  6U\ +  . . .  5 (5.46a)

R  =  R q +  ÔRi 4 - . . .  5 (5.46b)

p = P o 5pi T . . .  ; (5.46c)

Po =  Poo +  ^Poi +  • • • 5 (5.46d)

and similarly for V  and W  from equation (5.46b). Examining the computa

tional equations (5.23a-d) to leading order yields:

{poUo)o +  Po {Voy +  ^oz)  =  0 ; (5.47a)

UoUae + VoUoy +  WoUoz =  ; (5.47b)
Po

UqR oo +  VoRoy -f WqR qz = —R q (Yoy +  Wqz) +  VoeUoz — WoyUoy ; (5.47c)

Poo =  Po • (5.47d)

Thus the leading order components of the principal flow variables satisfy

the straight-duct equations when A is of 0{S). This suggests that as in the 

II and Cl cases, we can linearise the governing equations (5.23a-d) about the
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straight-duct solution, which in the case of zero-initial swirl we demonstrated 

in §5.4.2 featured no evolution of U  with 6. Therefore, for 6 of 0{1)  and 

A =  we take:

U = Uo{y,z)  +  SUi (e , y , z )  +  0(S^)  ; (5.48a)

R  =  SRi {6, y,  z) +  0{S^)  ; (5.48b)

P =  Po (S) +  5pi {0, y,  z) +  0(5^) ; (5.48c)

Po =  Poo{0) +  Spoi{9, y,  z)  +  0(5^) , (5.48d)

and similarly for V  and W  from equation (5.48b). The leading order balance 

of the [/-equation (5.23b) is pooe =  0 which implies that poo =  1 for all 6. The 

polytropic equation of state (5.23d) then implies that po =  1 for all 9 also, and 

thus:

p = l  + ôpi{9,y,z)-\-0{ô^)  (5.49a)

Po =  1 +  ôpoi{9, y, z) +  0{ô ‘̂) . (5.49b)

Then the leading order balances of the remaining equations (5.23a-c) are:

{Ui 4- UqPi )$ 4- Viy 4- Wiz =  0 ; (5.50a)

Uu + V i ^  + W i ^  = - ? ^  -, (5.50b)
U q U q U q

Rie  — 2AUoya9i — W ie — — I- V w -rf-  . (5.50c)
Uq Uq

By elim inating U\ from equations (5.50a) and (5.50b) we obtain

—C/o(t/oPi0 4- V\y 4- Wiz) 4- ViUoy 4- W i Uqz = —poie , (5.51)

and by integrating equation (5.50c) w ith respect to  9 we obtain:

Ri =  {2AUoya9l)9 — W i ~ ^  4- , (5.52)
U q U q
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which implies linear growth in 9 of the leading-order vorticity when A is small. 

Alternatively, we note that equation (5.52) can be rearranged to give:

{UoWi)y -  [UoVi), =  {2AUoUoyael)e (5,53)

which suggests that Wi,Vi oc 6, and thus that Ri  oc 9. This set of analytical 

conclusions is consistent with the small-A numerical results shown in §5.4.5.

The predicted linear growth in Ri  suggests that {Ui Uopi) will grow in 

proportion to 9  ̂ from the balance of the continuity equation given by (5.50a). 

Therefore we consider a new length scale when 9 is of 0{6~^) since {Ui -\-UqP\) 

will have grown to be of 0{S~^) at this stage. This suggests we consider the 

following expansions when 9 = 5~^9 and A =  6Â:

U = UQ[9^y,z) + . . .  ; (5.54a)

R  = 6 ^ R Q { 9 , y , z ) . ; (5.54b)

p = pQ{9,y,z) +  . . .  ; (5.54c)

Po =Poo(^,y,'^) +  • • • • (5.54d)

The expansion (5.54d) comes from the behaviour of poi implied by (5.51), 

expansion (5.54c) comes from (5.54d) together with the polytropic equation 

(5.23d) and is consistent with pi oc 9“̂ as above, and similar expansions to 

(5.54b) exist for V and W .

Examining (5.23a) to leading order in Ô yields

{PqUq)q +  Po iYoy +  ^Oz) = 0 3 (5.55)

while (5.23b) becomes

UoUos +  VoUoy +  WoUo, =  (5.56)
Po
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to leading order. The leading order balance of (5.23c) gives

UqHqq +  V^R^y +  W qR qz — ~ R q {Voy +  IToz) +  UqzVo9 ~  UoyWog +  2ÂUoUoya6i .

(5.57)

The polytropic equation of state (5.23d) becomes:

Poo — Po • (5.58)

Furthermore, leading order balances of (5.12c) and (5.12d) yield poo =  Poo(^) 

only, and similarly for po from (5.58). We note that there must be matching 

of the leading order components as ^ 0+ with the previous case as 0 ^  oo.

The above equations imply that at this new stage, the leading order com

ponents of the principal variables are governed by the same coupled set of 

equations as the leading order components in the case when A and 6 are of 

order unity. The results and predictions for that regime, which was the main 

focus of §§5.3 and 5.4, will carry over to this regime. Thus for example there 

would be continued linear growth of the vorticity at this new stage, whilst the 

streamwise velocity would be weakly mixed. Physically, we have considered 

here the effects of a weaker bend over a longer development distance, so the 

connection with the previous case is perhaps to be expected. We note that 

the numerical solutions do not extend far enough downstream to test these 

analytical results when 6 is of and are not generally reliable unless A

is of order unity.

Sm all 6, o rd er u n ity  A

In final support of the numerics which, when A is of 0(1) only extend to 

relatively small 6, we examine the entry region where 9 is small and A is of 

0(1). We aim to show, for example, that Roc 9 here since this is the numerical
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prediction seen in §5.4.2. Thus when d =  (50 for <5 <g 1, we take

R  = 0R + O(ô^) , (5.59)

and similarly for V  and W,  in order to match as ̂  oo with the 0 of 0(1),

A of 0(1)  prediction of linear growth as 0 —>■ 0-h. We take U to be of order

unity and similarly for p and Pq, that is:

U = Uq(0, y, z) +  0(0)  ; (5.60a)

p = pq(0) +  0(6)  ; (5.60b)

Po = Poo(0) +  0(6)  . (5.60c)

The leading order balance of continuity (5.23a) is

(PoUo)§ = 0 , (5.61)

whilst the leading order balance of the -equation (5.23b) is:

PoUqUqq = ~Pqq§ • (5.62)

Expanding (5.61) gives ^  suggesting that

(Vo == z) (5X33)

where F(0 =  0) =  1. Then (5.61) implies poF = 1 for all 0. Substituting for

po into (5.62) and letting ' denote differentiation with respect to 0 yields

which is a contradiction unless (5.62) is satisfied trivially, that is unless p'qq = 

0 =  F ' . Thus, using also the polytropic equation:

Poo =  1 =  Po for all 0 ; (5.65a)

Uo = Ui(y, z) for all 0 . (5.65b)
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The leading order balance of the ^-equation (5.23c) together with the above 

results (5.65a,b) yields:

(UtW)y -  {U,V),  =  (2kU,U,yael)0 . (5.66)

Thus the dominant behaviour is Roc 9. These conlcusions are consistent with 

the numerics in §5.4.1 since in that section we saw U ^  Ui for all 9 studied, po 

and p staying very close to their initial values of unity, and R  growing linearly 

with 9.

5.4.7 Re-examination of the fully non-linear results

In the fully non-linear schemes of §5.4 we optimised po, and therefore also p, 

to within 10~^  ̂ while solving all other variables to within an accuracy of 10~®. 

We note that the calculated pressure and density variations are less than 10“®, 

which suggests that the other variables experience po and p as unity throughout 

the calculation. Indeed, optimising po and p to 10“ ®̂ when C/, V", and W  are 

known only to within an accuracy of 10“® may not be a workable approach. 

The numerical results thus appear to suggest that po and p remain constant 

in both the NLCI and the NLII cases. By running the numerical schemes for 

NLCI and NLII with po and p prescribed as unity throughout we can show 

that the numerical predictions for the other computed variables in both cases 

remain the same as reported. In particular for the NLCI case, we show in 

Figure 5.34 the profiles of C/, y , W, and R  oX 9 = 0.4 generated with a 

prescribed po and p (left hand side) and with po and p allowed to vary (right 

hand side). We observe that they correspond very closely with each other, 

in line with the above discussion. The same is also true of the NLII case, as 

shown in Figure 5.35. The results in Figures 5.34 and 5.35 were computed over 

a fine grid.
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Figure 5.34: NLCI: U, V, W, R  at 6 = 0.4, on lines of constant y. Left hand 

side: po,p prescribed as unity throughout. Right hand side (first shown in 

Figures 5.20 & 5.21): po,p permitted to vary. Initial conditions: (5.29, 5.30).
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Significantly, when po and p are prescribed the numerical blow-up occurs 

at the same ^-station as when they are allowed to vary in both the NLCI and 

the NLII cases. This also seems to support the above discussion in which we 

suggested that po and p remain unity in both cases.

We observe that when pQ = l  = p the NLCI case reduces to the NLII case, 

since then (5.23a-d) reduce to (5.40a-d) (with (5.40c) and (5.40d) replaced by 

a single equation for R). We note that this is in marked contrast to the weakly 

non-linear Cl case of §§4.4 and 5.2 in which a definite compressibility factor p 

was present, evolved significantly throughout the bend, and was coupled with 

the fiow development, distinguishing the Cl case from the II case. We also 

showed in §4.4.2 that this varying p infiuenced the far-downstream behaviour of 

the fiow in the weakly non-linear study — an important role for compressibility 

not apparent in the fully non-linear study.

Analytically, we observe that in the NLII case the ^-momentum equation 

(5.40b) can be written as

{Udi + Vdy + Wd,)  (po +  ^ t / ' )  =  0 . (5.67)

Furthermore, a double integral of the NLII continuity equation (5.40a) gives

//U dydz = constant for all 9 . (5.68)

Equation (5.67) implies that the quantity po +  is conserved following a 

particle, such that if po decreases, \ U “̂ increases and conversely. But since 

P o  =  Po{9) only, any evolution of p o  away from unity is the same for all particles. 

In this way, a decrease, say, in po leads to an increase in for all particles. 

But this is clearly in contradiction with (5.68) since cannot increase for all 

particles whilst f f  U dydz remains constant. This argument suggests that po 

is constant for all 6 in line with the above arguments based on the numerical
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Figure 5.35: NLII: U, V, W, R  ât 0 = 0.4, on lines of constant y. Left hand 

side: po prescribed as unity throughout. Right hand side (first shown in Figure 

5.30): Po permitted to vary. Initial conditions: (5.29, 5.30).
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work. We observe that the continuity equation is in effect a compatibility 

condition which provides a test to ensure that the flow remains source-free. 

For the NLCI case the conserved quantity following a particle is

^ ~Pô  d" — (5.69)
7 - 1  " 2

from (5.23b) and (5.23d). Once more we see that if po decreases then 

increases and conversely. The NLCI continuity equation (5.23a) suggests that

ff Pq U dydz =  constant for all ^ , (5.70)

which is not immediately in contradiction with a falling po and rising U (or

vice versa). However, the (y, z)-invariant change in po forces a response in

which differs between particles with different U. This suggests that the

change induced in f f  U dydz cannot simply be scaled by the (y, z)-invariant 
1 1 

factor Pq in such a way that Pq f f  U dydz remains constant. This argument

suggests that po and p remain unity for the NLCI case as was suggested by the

numerical arguments given above. This line of reasoning also implies that U is

conserved following particles, which combined with the above result that the

double integral of U is also conserved, suggests that U evolves only through a

mixing mechanism as in the weakly non-linear cases.

5.4.8 Final discussion of the NLCI results

In §§5.3 and 5.4 we have solved numerically the governing equations of the 

NLCI case, (5.12a-d), and those of the NLII case, (5.40a-d), over a wide 

range of parameter values. As in the II and Cl cases, the entry profile of U 

has been shown to be very important in the downstream evolution of the flow 

since it is conserved for the 0(1) values of 6 considered here. Furthermore, in 

another feature of the fully non-linear results which is in qualitative agreement
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with the weakly non-linear results, Ui drives the evolution of the vorticity R  

in the bend even when Rj = 0. Various non-zero values of initial swirl give 

qualitatively similar results which, in combination with U driving the evolution 

of R, highlights the desirability of suppressing variations in the initial profile 

of U.

The numerical schemes perform well for 0[1)  values of 6 when the impor

tant parameter A is of 0(1), and are stable for both zero and non-zero initial 

swirl. For example, when A =  1 and the variations in t//, Vj, and Wj  are 

relatively large numerical restrictions are reached by around 6 — 0.4. In this 

final section of §5.4 we will discuss the possible causes of the break-up in the 

results.

The first point we note is that the analytical work for small A in §5.4.6 

shows no hint of an analytical blow-up, and thus it is likely that the difficulties 

experienced by the numerical scheme as A becomes small — which occured 

regardless of the size of the initial swirl — are numerical blow-ups rather than 

physical ones. In an effort to minimise in all parameter regimes the accumu

lation of numerical errors we advanced the schemes in 9 once the results at 

the current ^-station had converged to within the prescribed level of accuracy 

without forcing a minimum number of iterations as we did in §§2.3 and 5.1.

Of the candidates which we shall discuss for the general break-up in the 

solutions when A is of 0(1), some are numerical whilst others are physical. In 

the former category is the solution method for the Poisson equations (5.26) 

and (5.27). As we discussed on page 133 we do not have accurate boundary 

information for V  and W  on all the walls and this could lead to the accumu

lation of errors as they are diffused through the computational domain from 

the boundaries. Another potential source of numerical errors is the size of the
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variations in U[. As \Uiy\ and |% |  are allowed to increase, the numerics break 

up for smaller values of 9. However, this occurs only when the curvature is 

present, since even when \Uiy\ and \Uiz\ are of 0(1) the numerics are able to 

run for long downstream distances when A is zero. Another possible numerical 

source of the break-up is the development of the higher-order velocity com

ponents. In particular, if we consider the expansion of the non-dimensional

streamwise velocity u given in (5.13a) and extend it to

u = U Ç.Ù -f- , (5.71)

then examining the continuity equation to higher orders in e yields in the NLII 

case:

^ j j ù d y d z  = 0-, (5.72a)

dydz + [ j  ^  dydz =  0 , (5.72b)

after normalising. Equation (5.72a) suggests that the initially 0{e) part of u 

remains of 0{e) throughout the bend, whilst (5.72b) suggests that the growth 

of the 0{e^) part of u is proportional to f f W  dydz. Since we saw in Figure 

5.31 that f f  W  dydz grows linearly with 9 it is possible that Ù is growing 

sufficiently strongly to interfere with the leading order solutions as 9 increases.

Amongst physical sources of the break-up is the possibility that the flow is 

becoming supercritical, i.e. there is a change of type. At the onset of the bend 

the Mach number M  = where is approximately 0.85. Although

the leading-order part of the density remains unity it is possible that if strong 

growth in the higher-order components occurred then the total density could 

decrease with increasing 9. This would bring the Mach number M  closer to 

unity, perhaps suggesting that the flow is becoming supercritical. We note in
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this context that a higher-order balance of the continuity equation yields

 ̂II ̂ ^ 2/^ ^  =  0 , (5.73)

where p is the 0{e) part of the density. Since (5.73) suggests that p remains 

of order unity throughout the bend, a decrease in density would have to come 

from the significant growth of a higher-order density component.

It is also possible that thin edge layers are generated near the walls to allow 

for significant 0-variation, as descibed in [77, pp.336-337]. It is thought that 

the emergence of such layers could interfere with the numerical schemes which 

do not account for their presence.

Furthermore, we cannot rule out the possibility of a physical singularity 

downstream.

A final suggestion for the cause of the break-up is to draw a loose analogy 

with the reversed-fiow singularity mechanism reported in [73]. In this mecha

nism, non-zero values of the viscosity are required for the singularity to occur. 

The analogy is that curvature acts like viscosity here, in the sense that when 

A is zero the break-up is absent.

Finally for this discussion, we repeat that a complete numerical solution 

of the three-dimensional Euler equations is a difficult problem requiring other 

special computationally intensive techniques. Even when such techniques are 

used in commercial CED packages, the schemes work well in one dimension but 

are described as having “horrible performance” and being “uncodable” in three 

dimensions [39]. The long length scale 9 in the present study renders the cou

pled governing equations parabolic, simplifying the computational approach as 

the numerics can be marched forward in 6. However, numerical errors due to 

truncation and lack of detailed boundary information will still be accumulated 

throughout the computational domain.
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In conclusion, we note that the aim of the numerical work in this chapter 

and the thesis in general is to generate data which interact with the analytical 

work, and conversely. The numerical schemes used in §§5.3 and 5.4 certainly 

generate interesting data for 0{1) values of 9 which we have shown to be 

consistent with the analytical work of §5.4. We do observe, however, that 

from a purely numerical point of view supposedly more advanced techniques 

do exist, although whether they would work well under the conditions relevant 

to this thesis is not known. For example, multigrid and unstructured grid 

approaches appear to be quite successful, as shown by [86] and [12]. In a 

vorticity-dominated flow through a duct — a case not considered in the present 

thesis — [61] suggests that rotational Euler solvers work well.



Part II

The effects of turbulence
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Chapter 6

Introduction to the turbulent

boundary layer

Consider a fluid-conveying duct whose cross-section is not strongly curved (in 

a sense we will deflne more precisely later in this chapter), and suppose we 

are sufficiently far away from the complicating effects of corners in the duct 

cross-sectional profile. At sufficiently small distances from the interior wall, 

the turbulent boundary layer (TBL) becomes our object of study, where the 

effects of inertia, viscosity, and turbulence all come into play as the fluid is 

brought to rest over a very short distance normal to the wall. This part of the 

thesis models the behaviour of the TBL in a duct, including the effects of duct 

curvature in the streamwise direction.

In the first section of this chapter, we present a brief history of the descrip

tion and modelling of turbulence, introducing concepts which are formalised 

in §6.2. We define the geometry and velocity perturbations of the problem in a 

form consistent with the results of Part I of this thesis. The rest of this chapter 

is concerned with the discussion of the relevant physics and the formulation of

169
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the governing equations, with reference also to Appendix B.

6.1 History and overview

Experimental results are of course very important in seeking to understand the 

structure and behaviour of turbulence in general, and this understanding is es

sential in building models of the turbulent effects on the governing equations. 

Such models are hybrids of two approaches, one based on physical understand

ing, and the other on analyses of empirical data. Thus we see physical ideas 

— building on an understanding of the fundamental nature of turbulence — 

creating the framework in which an engineering approach seeks to curve-fit 

formulae to experimental data. We shall consider a representative model, the 

Cebeci-Smith model, though other models exist with the same or similar basis. 

The creators of the Cebeci-Smith model freely admit that it “. . .  [does] not im

prove any fundamental understanding of turbulence” ([15, p.255]), However, 

the Cebeci-Smith model is in reality a very successful engineering model based 

on a long history of physical ideas extending back to the 19̂  ̂ century, as we 

shall see in the following discussion, which is based on that in [15].

As discussed in [15, §2.3], the apparently randomly fluctuating variables 

of turbulent flows suggest an approach based on mean quantities. Since tur

bulence is inherently unsteady, time-averaging of the data seems appropriate. 

This approach has the added benefit that fluctuating variables can now be 

written as the sum of the time average and a fluctuation, as the following 

example for the velocity component u* shows:

Ui{xi, t) = Ui{xi) 4- u”{xi, t) , (6.1)

where a bar denotes the time average and the double prime denotes the imposed
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fluctuation. Upon substitution into the unsteady Navier-Stokes and continuity 

equations, this formulation generates extra terms which are not present in 

the laminar case. These terms either involve the transport of turbulence, or 

are density-generated terms. Consequently, the system of equations has been 

“re-opened” in the sense that there are now fewer equations than there are 

dependent variables. Physically, the turbulent transport terms appear because 

of the strong coupling of the velocity fluctuations to the mean flow and the re

opening is to be expected a priori, since averaging implies a loss of information. 

However, the appearance of source terms in the continuity equation leads to a 

contradiction with respect to the (mean) streamlines, since it implies mass is 

exchanged across them.

The resolution of this problem is mass-weighted averaging, first employed in 

this context by Van Driest. In essence, the mass-weighted average of a quantity 

takes the time average of the density and the quantity measured together, and 

divides it by the time average of the density:

=  ^  . (6.2) 
P

The variable is then re-written as a mass-weighted average plus a superimposed 

velocity fluctuation. That is:

Ui{xi,t) = Ui (xi) 4- u'i {xi,t) , (6.3)

where the single prime denotes the imposed fluctuation (and similarly for other 

variables).

The mass-weighted average formulation has the added advantage of making 

the variables more readily measurable in the laboratory (see [15, p.53]). Formal 

relationships between time-averaged and mass-weighted averaged quantities 

exist, but these will not concern us here (the interested reader is referred to
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[15, §2.4] and elsewhere).

As we shall see in more detail in §6.2, the mass-weighted average approach 

removes the source term from the continuity equation, but still re-opens the 

system of equations as other turbulent transfer terms are still present. A 

description of these terms is therefore called for to close the system of equations 

— this is the so-called closure problem.

A reply came from Boussinesq, who in 1877 suggested that the turbulent 

transfer terms should be modelled after the viscous transfer terms as being 

proportional to a local velocity gradient. The turbulent transfer terms are 

often referred to as Reynolds stress terms as a consequence of the analogy 

between Boussinesq’s formulation and the Newton laminar stresses. The con

stant of proportionality — whose form would occupy the modellers from then 

until the present day — became known as the eddy viscosity. In effect, the 

eddy-viscosity formulation reinstates a constant of proportionality between the 

anisotropic component of the turbulent stresses with the anisotropic part of 

the mean rate-of-strain, as explained in [64, p. 102]. The proposal is thus that 

the effective viscosity /.igff of the fluid is

Teff  = P  l^T , (6.4)

where /xl is the laminar (molecular) viscosity, and fir is the turbulent viscosity. 

Note that in practice ht Both the eddy-viscosity and the molecular

(laminar) viscosity have units of lengthx velocity. In the case of (1 1 -, the char

acteristic length is the distance of the mean free path of a molecule and the 

characteristic velocity is the mean molecular velocity. The characteristic ve

locity for iiT can be taken as ^ /K  where K  = \u\u[ is the turbulent kinetic 

energy. With this formulation, the choice of length scale is not yet clear, since 

the eddy viscosity could also be local. After all, even 500 years ago Leonardo
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da Vinci had some intuition of the cascade structure of eddies — an observa

tion of a multitude of length scales which would seem to prohibit the notion 

of a single representative length.

In 1926, Prandtl assumed that there is a characteristic length when he 

proposed the concept of the mixing length, which is in effect the small distance 

between eddies. In this formulation, the eddy viscosity /j,t  is given by

du 
dy

where Im denotes the as-yet unknown mixing length.

The mixing-length hypothesis (MLH) of Prandtl can be seen as an exten

sion of one explanation of the effects of Newton stresses. The effects of laminar 

viscosity can be derived as a result of the interchange of fluid particles of differ

ent speeds between adjacent laminae moving relative to one another.However 

the laminar viscosity is molecular — a property of the fluid unaffected by mo

tion. This is not true for /ij’. By extension, for the turbulent part Prandtl 

proposed a mechanism whereby the fluctuating component of the velocities 

carried particles between various loci of mean velocity, assuming again that a 

characteristic length Im exists, but without suggesting what Im might be.

Van Driest suggested modelling Im as

Im =  Ky[l -  e ^] , (6.6)

with K (the von Karman constant, an important parameter, as we shall see later 

in Chapter 8) and A  (a damping parameter) being empirically determined, and 

this suggestion was later improved by several authors. Prominent amongst 

them in relation to this thesis was Tuncer Cebeci’s improvement in [13]. This 

model was gradually improved and its utility was shown in many regimes (such 

as external flows with curvature in [16] and references therein, unsteady flows
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with fluctuations in the external velocity in [14], and more besides), driven 

and quantifled by the experiments of his collaborator A.M.O. Smith. This led 

to the Cebeci-Smith model which we shall employ in this thesis and which is 

explained in great detail with many examples in [15], An excellent introduction 

to the nature of turbulence, and to the development of the MLH, is given in 

[15, §§l-6j.

The composite nature of TBLs is shown in Figure 6.1, which is adapted 

from [17, Fig.6.6]. The flows in the inner and outer layers merge smoothly via 

a thin logarithmic layer. As will be seen, the Cebeci-Smith model is a two-tier 

mixing length model, in which the TBL is treated as a two-tiered object, with 

the eddy-viscosity having a different formulation in each tier. The velocity 

proflles along with the eddy viscosity and stresses merge smoothly across the 

unknown junction between the two tiers of the model.

The Cebeci-Smith model itself was chosen because it is “...particularly  

successful” ([64, p.108]) in terms of engineering predictions. It has also shown 

itself to be widely applicable (see the above discussion, and e.g. [60]), as well as 

extendable. Other two-tier mixing-length models exist, for example involving 

the outer layer improvements to Cebeci-Smith by Baldwin and Lomax, the 

model of Johnson and King, and so on, the details of which can be found 

in [64], for example. Of these, Cebeci-Smith is probably the simplest and 

performs well under a wide regime of physical configurations, and so it will 

suffice here, where the finest details tend not to be required yet. Indeed, it is 

an important point that the results obtained in this thesis are valid for any 

two-tier mixing-length model — choosing a specific model enables us to obtain 

numerical answers, and to make comparisons with experiment (where of course 

data is model-invariant).
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Outer layer

/  Log-law\ 
\  region J

Inner layer
(Buffer zone)

Viscous sublayer

(Linear sublayer)

Figure 6.1: Schematic of the layers of a high Reynolds number TBL, drawn 

to a scaled wall normal coordinate on a logarithmic scale (not indicated). The 

outer layer, which typically accounts for 90% of the thickness of the TBL, 

is not drawn to scale. In low Reynolds number flow there will be a viscous 

superlayer between the outer layer and the external flow ([67, p.556]). The 

detailed structure of the inner layer is not a part of the analysis of this thesis.

There are reasoned objections to the eddy-viscosity/mixing-length approach, 

since it assumes a local equilibrium of transport coefficients, as discussed in 

[64, p. 107]. A more general, but analytically and numerically harder^, ap

proach is to use extra equations to model the turbulent transport of energy, 

and so on. Such approaches are called one- or two-equation closure models, 

since they close the system by the introduction of one or two additional par

tial differential equations; our algebraic approach is sometimes referred to as a

zero-equation closure model. We note that l | ,  and other hybrid models are 

^The computational advantage of an algebraic model is quantified in [18].
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also possible and can work well, see e.g. [3]. One- and two-equation closure 

models — outlined for example in considerable detail in [64, §5] — will not be 

used here, since the physical situation differs sufficiently from those in previous 

studies that an understanding of the basic mechanisms should first be sought.

Since the details of a two-tier mixing-length model depend on experimental 

data, it is natural to compare any analytical or numerical results with experi

ment. Perhaps surprisingly, there appears to be little empirical data for TBLs 

in ducts with the particular level of duct curvature assumed throughout this 

thesis. One experimental investigation which studied a similar level of cur

vature to the present motivating problem is [30]. However, the experiment 

involved a rectangular duct of much larger aspect ratio than we consider in 

this thesis (the height of the duct was 33 inches (83.8cm) whilst the width 

was 2.5 inches (6.4cm)) which effectively excludes any secondary flow in the 

cross-section. Furthermore, measurements are made only further downstream 

than is considered in the forthcoming work. As a result, no comparisons with 

the data in that study can be made.

The apparent lack of empirical work for TBLs in ducts with the curvature 

considered herein may be due to the duct curvature of interest lying somewhere 

between strongly curved, such as an elbow in a duct, and weakly curved, which 

is several orders of magnitude weaker than the strong case. Experiments in 

these two regimes have been performed, for example by [68] in the first instance, 

and [42] in the second. However, the present study is aimed not at confirm

ing experimental results, nor at proving the utility of a particular model (as 

is the case for example in the useful contribution [60]), but at investigating 

a physical situation commonly arising in industrial settings. An additional 

challenge when trying to make comparisons with experimental data is that
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experimentalists often measure higher-order statistical quantities such as the 

double-correlation terms, which are important in understanding the turbulent 

transport of energy but are not considered herein. Additionally, both experi

mentalists and theorists are interested in coherent and transient structures in 

TBLs (see for example [43] and references therein). The work in this thesis, 

on the other hand, is largely concerned with the development of velocity and 

pressure profiles, and how, for example, these influence the core flow, since it 

is the bulk behaviour of the whole duct flow which is of importance to the 

motivating industrial problem.

In the introduction to §5.4 of [64], Piquet discusses the various caveats 

to bear in mind when consulting experimental pipe-flow data. For example, 

the Reynolds number can be defined in several ways; the question of whether 

the flow is fully developed; the presence of secondary flows due for example 

to a small aspect ratio of the cross-section; and the reliability of measuring 

techniques. He also questions the accuracy of DNS simulations as they are 

not free of scale effects. A particular example of a DNS comparison with 

experiment is [29], in which the comparison with experiment on some computed 

quantities is only “...reasonably good”. [64] also provides some interesting 

comparisons of the performance of various models.

In contrast to our specific level of curvature, there is an abundance of 

data for straight-duct flows in two and three dimensions (see for example 

[59, 56, 20, 51, 52]) in the region downstream of that where the TBLs de

velop and start to merge. This region is studied analytically and numerically 

for straight ducts in two and three dimensions in our Chapter 8 below and 

favourable comparisons with the aforementioned empirical data are found. 

Since the approach to Chapter 8 is an extension of that used in Chapter 7
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below, some confidence in the results of that chapter is also implied. In the 

absence of experimental comparisons for the results of Chapter 7, every effort 

both analytical and numerical has been undertaken to show strong consistency 

between the sometimes surprising analytical predictions and the numerical re

sults.

Given the obvious significance to airfoil performance, the TBLs over flat 

plates and thin airfoils, and questions of the turbulent wake structure and 

separation conditions have received much attention, both analytical and nu

merical. Though questions concerning the stability, transition, and separation 

of the boundary layer, and their influence on growth and development, will 

not be discussed here — the boundary layer is instead assumed to be turbu

lent from the start (in line with the discussion in [91, §D2.1]) and to remain 

attached throughout — representative work in these areas can be found in 

[72, 15, 79, 9, 50, 95]. The last two of these include work on how curvature 

affects transition (see also [67, pp.500-8]).

Important theoretical work on the two-tiered asymptotic structure in the 

limit of large Reynolds number can be found in [26] and references therein. This 

reference is important to the present study, since it shows that the two-tier 

mixing-length formulation is valid for three-dimensional flows in general, since 

previous work had concentrated on three-dimensional axisymmetrical flows at 

best.

The appearance of [26] came at a time when the increasing power and 

availability of computers meant that complex three-dimensional TBL flow- 

fields were being computed. The impetus for these numerical studies — in the 

absence of sure theoretical footing — was the relatively frequent appearance 

of three-dimensional TBLs in industrial applications.
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The introduction to [26] contains a review of the outstanding contempo

rary “controversial” issues with regard to the three-dimensional TBL structure. 

The controversies seemed mainly to hinge around the frequently-encountered 

polarisation of views on the interpretation of data, as either the “absence of 

evidence” or the “evidence of absence”. The paper resolves these important 

issues raised by the empiricists, and it provides firm footing for the present 

thesis.

As the above discussion and the novel work below in Chapters 7 and 8 

hopefully show, industry can provide interesting situations in this area which 

have not been considered in sufficient depth and which yield exciting new 

science.

6.2 Modelling and other considerations

The full, dimensional continuity and Navier-Stokes equations are

Cty: +  - ^ — {pdUdj) = 0 ; (6.7a)
Old cfx^j

Mtm:  [poUDi^Dj) =  ~  • (6.7b)
d t j )  U X u j  UX£) i  O X D j

As alluded to in §6.1, we split the stress tensor tdij into a laminar part and 

turbulent part. The laminar part (tl)dzj is the usual stress dyadic containing 

the divergence and the deformation terms:

(r.)z,« =  + fD ( I g  +  ^ )  • (6.8)

The modelling of the turbulent or Reynolds stress (j^)Dz; is of great import 

as we have discussed above.

We consider the flow to be steady and, in order to make some headway.
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incompressible and hence obtain

Cty: ^  =  0 ; (6.9a)
O X £ ) j

Mtm: , (6.9b)
OXDj PD OXDi pD OXDj

where now ( r . ) « ,  =  ( | j  +  g s )  . (6 .9c)

At this point, we recall that a turbulent flow is characterised by random fluc

tuations about a mean flow, and that we seek to predict the mean flow by 

casting the equations in terms of the mass-weighted averages as deflned on 

p. 171 above. All the terms in the governing equations (6.9a-c) involve mass- 

weighted averages and so the tildes are omitted.

The issue at hand is the turbulence closure problem of §6.1: having intro

duced an unknown quantity, the Reynolds stress, how now to describe it in 

order to close the equations? Beyond the many excellent discussions on this 

problem referenced in §6 .1 , the choice boils down to the number of additional 

equations to introduce in order to model the double correlation terms such as

u'pi'j which appear in {TT)Dij- For example, we could introduce a transport 

equation for the Reynolds stress but, as discussed in [15], although the equa

tion highlights the way in which the Reynolds stress is transferred, it confers 

no knowledge of its distribution. Note that in the core we shall take for any 

b j

<  1 , (6.10)
UDidoiUoj

meaning that the inertia terms dominate there as in Part I.

The length scales and length functions are non-dimensionalised on the 

width of the duct, /ip, the velocities on the typical centreline velocity in the 

duct, Udoo7 and pressure and the Reynolds stress on twice the dynamic pressure 

head, poU^^ .  Finally, the laminar stresses are non-dimensionalised as usual
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on which eventually leads to the introduction of the Reynolds number 

Re, here defined as

Re =  . (6.11)

As mentioned in §6 .1 , care must be taken when comparisons are drawn with 

other studies as various length scales and velocities can be taken to define Re 

in a duct TBL.

It is known (see e.g. [81]) that in the limit of large Reynolds number 

the TBL has a two-tiered structure (a common feature of singular pertur

bation problems — see e.g. [67, pp.519-20]) and that this also holds for 

three-dimensional TBLs ([26]). Furthermore, the work in [26] confirms the 

defect-function form of the velocity in the outer layer of a three-dimensional 

TBL, whilst [67, p.548] proves that the universal law of the wall holds in the 

case of duct fiow. We will therefore consider two-tier algebraic models. Most 

of these assume Prandtl’s mixing-length hypothesis as described in §6.1 and 

are extensions of the work of Van Driest in 1956 as discussed above. In such 

formulations there is an outer layer, where the main balance of forces is be

tween inertia and turbulence, and an inner layer where turbulent and laminar 

viscous stresses balance. The layers merge in a logarithmic zone, and in fact 

even finer layer structure is apparent on smaller length scales (see e.g. [15]). 

In order to use a forward-marching numerical scheme in Chapters 7 and 8 , we 

must also assume that there does not exist any reverse fiow. A final implicit 

assumption is that the walls of the duct are perfectly smooth. In reality, of 

course, all physical surfaces have non-zero roughness, and this roughness in- 

fiuences not only the transition to turbulence of a TBL, but also the turbulent 

fiow development, see [67, pp.526ff].
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Figure 6 .2 : Coordinate configuration. The thin dotted line in the right hand 

diagram indicates the boundary layer.

6.3 Derivation of equations

Consider a duct at rest, lying such that the bulk fiow is in a horizontal direction, 

with two coordinate directions in the wall and one normal to the wall. With 

reference to Figure 6.2, the direction in the wall running downstream {i.e. in 

the direction of monotonically increasing duct length) we will denote xi with 

corresponding velocity u\. The other wall direction which runs around the 

wall in a cross-section normal to xi  we will denote X2 with velocity component 

U2 - This direction is periodic and runs in the negative orientation, that is, 

clockwise looking in the direction of increasing Xi. Let the circumference of 

the duct at any xi-station be C{xi). Then the periodicity of X2 ensures that

(6 .12)

for all X2 , where n £ Z  and (  is any variable. Finally, the wall-normal coordi

nate will be Xs with velocity component u^. It is oriented to point towards the 

interior of the duct, thus completing the orthogonal right-handed triad. Im

plicit in this definition is that on a boundary-layer length scale, x^ is “short”.
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and thus that we avoid problems arising from different values of X3 from dif

ferent points.

The derivation of the governing equations involves determining the non- 

dimensionalising factors, and considering the relative orders of magnitude of 

each term in the continuity and Navier-Stokes equations. This can be a lengthy 

process, particularly when curvature is present. In order not to unduly weigh- 

down this section of the thesis, the detailed derivation can be found in Ap

pendix B, whilst here we present the results of that derivation.

In the following set of equations we use the metrics hi of the orthogonal 

curvilinear system which are defined by the length-segment

(ds)^ =  hi{dxiY  -f ^2 (^X2)  ̂+  hz{dx^Y (6.13)

and whose nature is discussed in Appendix B. The curvature terms K\  and K 2 

defined formally in equation (B.5b) also appear. In essence, K\  measures the 

rate of change with x\  of the circumference of the duct, whilst K 2 measures 

the streamwise curvature of the duct.

The full non-dimensional formulation is:

(6.14a)
hi dxi /12 dx2 dx3 

ui dui U2 dui dui 0 1 dp 1 d'^ui
hi 0 x 1 /12 dx2 0 x 3 hi 0 x 1 Re dxi

U i dU 2  , U2 dU 2  , ÔU2 _. , ^  2 1 , 1 d ‘̂ U2
 1" T T 'â  ^ ----------K 1U 1U 2  +  K 2 U 1  —  —  — — ----------1-  —  r. 2hi dxi  /12 dx 2 dx3 /i2 dx 2 Re dx^

d /  „  du2
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where in the above equations we have

Re^Ü2XI

B  =
X II d x z  J d x z  J

aiUtÔi

X3 < X3J ,

X3 > X3J ,

(6.15a)

where

6 i =
poo

L

tti =  0.0168 , 02 =  0.16

{ui + ul) i
dX3 , Ut = («1 +  ul) 2 |i3=

(6.15b)

'0

The boundary conditions are:

X3e

u  = {ui,U2 ,Us) = 0  on T3 =  0 ; (6.16a)

non-wall stresses = 0  at 0:3 =  0 , all stresses = 0  at X3 ^  Xse ;

U  —  “1 ^ 0 0  3<t X^  —  3 : 3 g  ,

(6.16b)

(6.16c)

where Uqo is the core flow. Finally, we require continuity of eddy viscosity 

B,  velocity components Ui , i =  1 , 2 , and the shears | ^  , 2 =  1 ,2  across the 

unknown junction x^ = x^j. Note that 223 matches automatically with the core 

flow as in [78, p.20].

Having derived the full equations, we can now apply them to specific situ

ations. In all the subsequent work we will assume that the duct has constant 

cross-sectional area^ which implies

K i  = 0 . (6.17)
^For a demonstration of the effects of sudden changes in cross-sectional area, see e,g.

[59].
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In §6.4 we examine the inlet flow in a straight duct, and in §6.5 we formulate 

the problem for the entry flow in a curved duct, which is to be analysed in the 

subsequent chapter.

6.4 Inlet flow in a straight duct

Following [15, p.780], we see that if K 2 = 0, a solution of the a:2-momentum 

equation which satisfles the boundary conditions is

U2 = 0  , p = p{xi) . (6.18)

The condition K 2 = 0 corresponds to a straight duct, hence in a straight 

duct the TBLs are two-dimensional. More formally, the problem of a straight, 

constant cross-section duct with inlet flow is formulated as follows. When

Ki = K 2 = 0 , U2 = 0 , hi =  /i2 =  /i3 =  1 , p known, (6.19)

we have: 

Cty:

Xi-mtm: Ui~-----h W3

dui dus _ 
dxi dxz

dui dui dp 1 d'^ui d (  ^d u \
+ +

B =
a2x\

üiôi

1 — exp Re\
26 (IWJ) du\

dxz

B
dxi dx^ dxi Re dx^ dx^ \  dx^ 

where in the above

(6 .2 0 a) 

; (6 .2 0b)

coo
where ai = 0.0168 , 02 =  0.16 and Si = (1 — wi)

Jo

3 ^3 ^  ^3J 3 

3 Xs > X3J , (6.21)

dx3 .
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The boundary conditions are:

IX =  0  on rrs =  0  ; (6 .2 2 a)

non-wall stresses = 0  at 0:3 =  0 and all stresses = 0  at T3 ^  xse ;

(6 .2 2 b)

Ul = 1 at ^3 =  xse ; (6 .2 2c)

and continuity of eddy viscosity B, Ui, and across the unknown junction

^3 — ^3J •

The layered structure of the TBL has a thickness of the outer tier of 0{e), 

for ê <C 1, with a defecit from freestream velocity also of 0(e). The inner tier 

is of 0(Re~^e~^) thick, and in this layer ui is now of 0{e). The two tiers merge 

via a logarithmic behaviour in the velocity defecit in the outer layer and the 

velocity in the inner layer. It is also known (see e.g. [81]) that

ê =  {Ln{Re))~^ , (6.23)

where we are taking Re':^  1 such that ê <C 1 as above.

Let us first examine the small defecit in the outer layer. In this layer, the 

major balance of forces is between inertia and the Reynolds stresses. Following

[60] we expand as follows:

Ul = 1 èuii {L7i{e))ui2L d" T . . .  5 (6.24a)

1X3 =  è^Usi -h {Ln{e))u^2L • • • • (6.24b)

In this expression, uu  is the “small defecit” discussed above, and the subscript 

L denotes the logarithmic term. The expansion for 7x3 comes from balancing 

continuity, after the usual setting x^ = exs where % is of 0(1). This allows us 

to find the displacement thickness to leading order (and in fact to some higher 

orders), but more formally and for higher order determination of the fiow
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field and displacement thicknesses, the unknown junction position x^j should 

also be expanded asymptotically, as discussed briefly in [60, p.2 0 ]. These 

expansions and length scales suggest that (5i is of 0 {e^), and thus the expansion 

will be

^5 \  +  ê̂ (Z/7î(ê))(52L T -b . . .  . (6.25)

Under the inlet conditions, we are sufficiently close to the entrance tha t the 

only change in pressure comes about locally due to an external displacement 

of the potential flow field. By the definition of ^i, the slope of the TBL — and 

hence the displacement of the external fiow field — is of 0{e^). Therefore the 

external induced pressure near the edge must be of 0[e^). Since pressure does 

not vary across the height of the TBL by (B.14), this is also the size of the 

internal flow field pressure, and hence:

p = e^pi +  . . .  . (6.26)

Armed with this information, the leading order balance of the Ti-momentum 

equation is:

duii
dxp

^   ̂ « %  (4 ( ^ ) ' )  for Æ3 < 27)

forX3>X3J .

With the exception of a difference in normalising, (6.27) is the same as [60, 

(3.3b)], and we are thus able to quote the principal result: (5i oc xi. In fact, 

the prediction is that

Si{xi,X2 ) = e^xi +  0{e^Ln{e)) , (6.28)

from ([60, (3.18)]). Therefore — at the very least in an axisymmetric duct — 

we can suppose that the TBL will have grown to fill the duct by a distance of 

downstream.
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The correspondence between the inlet flow in a straight duct and the flow 

over a flat plate aligned with the flow is due in part to the simplicity of the 

duct cross-section and its straightness in this example, which together make 

the duct developable, as formally deflned in Appendix B. The same is not true 

of a curved duct. Furthermore, interaction with the external flow will happen 

earlier than for a flat plate, as effectively any edge effects (from core turbulence, 

or centrifuging, etc.) are amplified as the edges approach one another towards 

the centre of the duct (see e.g. [67, p.605] and [82]).

Note that the neighbourhood of a corner in the cross-section has very strong 

curvature, breaking our assumptions, and leading to more complex behaviour 

than this essentially two-dimensional result, as mentioned in Appendix B.

6.5 Entry flow in a curved duct

Let us now return to the curved duct case, and consider the entry region. 

The short-scale analysis here deliberately omits the upstream influence effect 

described in §2.1 because our current concern is more with the flow properties 

relatively far downstream (at large X\) on the short length scale. Further, we 

reiterate that the cross-sectional curvature is taken small in relation to the 

the boundary layer thickness, such that hs = 1 and = 0. Maintaining 

a constant, regular cross-section such that Ki = 0  then ensures h2 = ^2(3:2) 

only. An axisymmetric duct would furthermore take /i2 =  c G It is worth 

noting that though the duct will be assumed to have constant curvature, this 

is not to say that K 2 is constant. For example, in a duct of simple cross-section 

bending in a horizontal plane through the centre of each cross-section, it can
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be shown that

"  ~ R  +  f L )  ’
where R  is the radius of curvature of the inside bend, and f { x 2 ) is the unam

biguous projection of the duct wall onto a horizontal plane through the centre 

of the duct. It is clear that in general K 2 will be a non-constant function of X2 

for such a duct. Note also that for a circular cross-section, the sign of (6.29) 

ensures that should Dean-type counter-rotating vortices with allied boundary 

layers exist, then they would have the correct orientation (see e.g. [7]).

With the above discussion in mind, the governing equations are:

cty: ^  : (6.30a)hi uxi /12 0X2 dx^
Ul d u i  U2 d u i  d u i  1 d p  1 d'^ui

Xi-mtm: — —----- h — ^-----h u^— K 2U1U2 — — — % h —  ^ 2
All 0 X1 /12 0x 2 ox^ hi 0 x 1 Re ox^

Ul dU2 U2 dU2 dU2 2 I d p  1 d ‘̂ U2
a:2-mtm:   H — ^---- \-K2Ui = - — - -----1- -5 - - ^

hi dxi  /i2 dx 2 dxs /12 dx 2 Re dx^
d  /  _  du2

+ 5 : 1 % )  : <“ >

where B  is given by equation (6.15a) and the equations are subject to the 

boundary conditions (6.16) and the junction boundary conditions previously 

described.

A simple solution when 1A2 =  0 is 112 =  0 and p known by mass-conservation. 

However, when K 2 ^  0, it is clear that W2 =  0 is no longer a solution, that is:

duct curvature three-dimensional TBLs. (6.31)

It is also reasonable to wonder if U2 =  iii is a solution when there is a core 

flow such that Uqo = (1 , 1 , 0 ). Some simple algebra shows that this is possible 

if and only if K 2 = 0. However, we shall later see that in the straight section
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of the entry region, U2 differs only by a multiplicative constant from Ui in the 

outer layer.

6.5.1 The core flow perturbations

Knowledge of the form of the core flow in the entry region is also required for 

the matching as xs —>■ oo. Previously when studying the flow in the bend, 

we used cylindrical polar coordinates {6 , y, z) where: ^ =  0 +  corresponds to 

the start of the bend and 9 was considered to be of 0(1); y is a vertical 0(1) 

direction in the duct cross-section; and z =  r  — n is an 0 (1) radial direction 

in the duct cross-section, where a Z$> 1. Thus the distance traversed in the 

streamwise direction was of 0 (r • ^) =  0 (a) and the duct was much longer 

than it was wide and tall (that is, it was slender). This geometry — and the 

velocity perturbations given for it below — will be referred to as “the full bend 

case”.

To re-consider the entry section, we must take 0 «C 1. However, as discussed 

in Part I, the entry section of the curved duct includes the end of the adjoining 

straight section where cylindrical polar coordinates are not necessarily a good 

choice of coordinates. To overcome this we will write all of our equations in 

terms of 9 but declare that in the straight section, a; =  ^ in effect where 9 has 

been written as 9 = e9, e a~^ and velocities have been suitably normalised 

with terms of a  =  ae 1. We note that a; ~  1 where ^ ~  e, and upstream 

influence is again omitted for the reason stated earlier. The normalisations 

and centrifuging terms in the equations will carry A terms, where A =  1 in 

the bend and A =  0 in the straight section, just as in Part I. Thus the derived 

and stated equations will hold in both the far-upstream and far-downstream 

parts of the entry region.
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In the core flow when ^ 1 we had the results that when

t j  = 1 tU  +  . . .  ,

V  = (V + . . .  , (6.32)

W  = eW  +  . . .  ,

then the following are true:

• U is 0(1) for all 6 ]

• V,W,  and the vorticity R  = Wy — Vz are proportional to Ô for all 6 .

Thus as 0 —>■ 0+ we expect ÿ  ~  , IT ~  and (^Ü — 1  ̂ ~  e. That is, we

expect V eŸ , IT —> elT and U = Ü when 0 ~  e. Then the asymptotic

limit as ^ 0+ of the core equations (2.31a-d) from the full ^ ~  1 system is:

1/ +  IT, =  0 ; (6.33a)

Ue = 0] (6.33b)

Vg = —P2y i (6.33c)

ITg -  2AU = - P 2z . (6.33d)

Now let us consider the core equations in the entry region, where we take:

9 = eë ] (6.34a)

Ü = 1 eÜ +  . . .  ; (6.34b)

V  = e^V + . . .  ; (6.34c)

IT =  e^IT +  . . .  ; (6.34d)

p = 1 + epi(9) + A - — — J + €^p2 (9 ,y, z) + . . .  , (6.34e)

with the form of p chosen to absorb some of the lower-order centrifuging terms,

as we did in Part I. Substituting into the full Navier-Stokes equations we
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obtain:

Üë = -Pië ; (6.35a)

ÿë = - p 2y ; (6.35b)

Wë 2 AÜ =  —p2z • (6.35c)

Recall that upstream influence is omitted, which accounts for the relative 

smallness of the V, W  effects. Furthermore, the continuity equation reduces 

to Üë = 0  which implies —pië =  0 in agreement with the above and ensures 

consistency of the continuity equation. We stress once more that our attention 

is on large values of 9, far downstream. The governing equations become:

Üë = 0 ] (6.36a)

Vë = ~p 2y ; (6.36b)

TTg — 2AU =  —P2z • (6.36c)

Equation (6.36a) suggests that U = Ui{y,z) over the entry region and the 

equation C/g =  0 as 0 —>■ oo is consistent with =  0 as 0 -> 0. This suggests 

that the weak ^-dependence of U in the bend emerges only as the swirl becomes 

comparable to the streamwise velocity perturbation. Matching also requires 

that

lim p2 =  limp2 , lim R  = lim R , (6.37)
ë^oo e^o ë-^oo

where R = Wy — Vz- Furthermore, since Ü is of 0(1) for all 6 , the term Wë 

is effectively driven by a term of 0(1), and so W  is of 0(0) as 0 —>• oo. More 

formally, by cross-differentiation from (6.36b,c):

Rë -  2 AÜy = 0 , (6.38)

and since Üy is of 0(1) for all 0 we have ~  1 for all 0 as soon as A =  1 , i.e.:

R  6 for all 0 . (6.39)
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Thus we see that the swirl increases linearly downstream of the entry region 

after the bend is entered, prior to which it remains constant. Consequently as 

6  ^  oo, the velocity components Ÿ , W  —>■ oo in proportion to 6  and so the 

matching with the full bend case where V , W  ^  e is satisfied. Of course, since 

Ü§ = 0, the matching with Ü = 1 eU is also assured.

It is worth noting that a perturbation of the order of to the uniform 

streamwise fiow (whilst retaining 0{e^) forms for V  and W)  can easily be 

shown to be incorrect, since this yields potential flow equations far upstream 

of the entry region with no driving terms, and although Ü can grow sufficiently 

here to match with the full bend case, the downstream asymptotic matching 

for the swirl is impossible. The swirl grows linearly to match the next regime, 

and Ü remains of 0(1). Equations (6.34a-e) are useful here because they 

determine the form of the external matching for the TBL in the entry region.

6.5.2 The boundary layer perturbations

Recalling the small parameter ê = {Ln{Re))~^ in the TBL, we perturb the 

boundary layer velocities as follows:

wi =  1 +  ê û i . . .  ; (6.40a)

U2 = e^Û2 . . .  ; (6.40b)

Us =  e^us. . . .  (6.40c)

The form of the perturbations arise by considering an imposed disturbance 

about a uniform streamwise fiow. We regard ê, e as being comparable, at least 

in the initial argument, and then generalise this later. The 0{e^) magnitude 

of the swirl (the magnitude of U2 in effect) is taken to facilitate the eventual 

matching of U2 with the external 0{e^) swirl, as will be described below. The
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magnitude of stems from a balance of continuity.

We recall that and so as X3 -> oo we have U2 —> Q, where Q is

either ÿ  or W in the previous formulation depending on location. Thus

Û2 —y 5 (6.41a)

where /? =  e~^e . (6.41b)

The balancing parameter /?, which here emerges naturally in the matching of 

the TBL velocities with the core flow, will be shown to be a vital parameter 

in the development of the TBL in the curved duct, leading to quantitatively 

different behaviour depending on its magnitude.

As above, we will impose the condition of constant cross-section as we run 

downstream — our duct is a prism, curved into a bend. This assumption of 

constant cross-section suggests that /12 =  /̂ 2(^2) only, in which case Ki = 0 . 

By definition (see Appendix B) therefore, X2 has zero geodesic curvature, and 

as a consequence X2 is a geodesic. Since the triad {xi,X2 ,Xs) is orthogonal, X2 

being a geodesic implies that the lines of Xi are the geodesic parallels of X2 . A 

theorem of Gauss, quoted in [54, p.293], then yields the convenient result:

h2 = I ,

(6.42)
such that ds^ = h\dx\  +  dx\  -f- dx\ ,

which we shall use henceforth.

The size of the curvature term K 2 is important here. We have been careful 

throughout to ensure that the forms of the velocity expansions agree with the 

level of curvature. By reference to the fixed geometry of the duct in question 

— and by considering the fact that the core flow (at the wall) must satisfy the 

TBL equations (at the edge)— we conclude that K 2 ^  e . Note that this is a 

result of the magnitude of the radius of curvature of the duct inner wall which
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serves as an order of magnitude for K 2 = ^ 2(^2). We will write

K 2 = eK2 . (6.43)

What does this equation imply for the nature of hi? Since by equation (B .ll) 

hi is of 0(1) (and clearly it must be by its definition) then equation (6.43) 

suggests

/ii =  1 +  chi . (6 .4 4 )

In this way, for example, 

that is:

=  (6.45b)

and all occurences of hi will vanish from the leading order equations. This is

really no different from the way in which the  ̂disappeared (or rather, was

constant) to leading order in the equations in Part I.

The leading order balance of the continuity equation (6.30a) is then:

Note that the core flow satisfies this equation as Æ3 —> 0 0 .

Let us consider the order of magnitude of each of the terms in the Xi-
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momentum equation (6.30b), based on the above discussion. We find that

m du\
h\ dxi  ̂ 5

-, du\ -3
2̂ X2 ~  e  ,

du\
 ̂dxz ^  c ,

K 2U1U2 ~  e e ^  ,

1 dp 
h\ dx\ ~  ê (to retain)
1

Re dx\
_A_ (9X3 V 9X3 J ~  r 'O (B )  .

(6.47)

Additionally, we must assume that We do not know at this stage the

form of the pressure perturbation, but we do know that the pressure gradient 

must be retained here. We also must find the order of magnitude of the 

eddy viscosity, B,  and expect it to be of 0 {e )̂ in order for it to balance 

the dominant inertia term on the left hand side, in which case we will write 

B  = P Ê .  Considering first the order of magnitude of the inner tier form of B  

from equation (6.15a) we see that

B  -  [1 - +
:2 \  2

i.e.: B  ê ,

A Ù  - 2 %and B = for X3 < xsj .

(6.48a)

(6.48b)

(6.48c)

In the outer tier, we note that the factor Ut is of 0(1) and consider 6 i:

{ul +  ul)^
0 i =

poo

L
T ■ (6.49)

'0 (« le + « L ) =

The denominator is of 0(1), 13 is of 0(ê), the velocity expansions ensure the 

terms of 0 (1) cancel, and so we conclude that:

5, =  + 0{êLn{e))  . (6.50)
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Thus in the outer layer we have confirmed that B  = e^B with

ê  = aiôi for Tg > X3J . (6.51)

dui _  _d_ I «2^3 ( ü )  , ^3 <  XSJ ,

dxi dxi dxs 1  ̂ aüi _ _ _, xs > X3J .

The leading order balance of the Xi-momentum equation is thus:

(6.52)
dû\ 
dxz

Since the core flow, where all stresses vanish, must satisfy these equations, we 

can conclude that

- ê =Sf ’
because the pressure field p does not vary across the height of the TBL from 

(B.14). Although in general this matching involves a factor of /?, we know that

duie = 0 (6.54)
dxi

in the entry region because ÜQ\ŷ z-̂ o = 0 there. The pressure gradient thus 

disappears at this level, and we are left with:

%  ^  I  “ 2 â i j  ( % â t )  > %  <  ’  / g  g g x
, X3>X3J .

The ^2-momentum equation is complicated by the retention of the 7 2̂^! 

term to leading order. In the core flow, the analagous term was which, 

since Ü = 1 4- . . . ,  yielded a term of 0 (a~^) = 0 {e), whilst the rest of the 

equation was of 0{e^). This necessitated including a A^ term in the pressure 

expansion in order that the momentum equation could be balanced to leading 

order in e .̂ A naïve examination of the 0:2-momentum equation (6.30c) gives:

dû-:
dxi + ([^"2] +  è[2eK2Ûi] + 0{eê^) — T

d  f  ̂ dÛ2
dx^K V  dx:^

(6.56)
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Once again we need to incorporate a curvature term into the pressure expan

sion. This was relatively easy in the core since we had a specific wall geometry, 

and with the result (6.44) it is easy here also. Firstly, it is clear that the pres

sure gradient in the ^ 2-direction must be of 0 {e^) in order to be retained to 

leading order. Then, recalling that hi = hi{x2 ) only, the expansion for the 

pressure p is

p = Po P P ^hi-\-e^p2 {xi, X2 ) ■ , (6.57)

where the constant po is known from the straight section upstream, and we 

have already shown that ^  = 0. Furthermore, since the core flow

satisifies the equations at the edge, we observe that

= ^  + (6.58)
0 x 2 dx\

Note here the explicit appearance of /? and its implicit influence in both terms 

involving edge values. Hence p is known to all relevant orders, and the X2- 

momentum equation becomes:

, % > ^3J .

(6.59)

dxi \  dxi

It is clear that the governing equations have become quasi-two dimensional, 

in the sense that we can independently solve (6.55) for Ui, before solving

(6.59) for Û2 with known Ui (consistent with this cross-flow being an order of 

magnitude smaller than the main flow), before finally solving the continuity 

equation (6.46) for Û3.

However, the appearance of /3 in the equations, its hidden influence through 

the pressure gradients, and such equations as (6.41a,b), seem to suggest the



CHAPTER 6. INTRODUCTION TO THE TBL  199

existence of at least three regimes of interest — —

and that three different sets of equations, with three different sets of boundary 

conditions, will need to be considered in the entry region. This is not the case, 

as we will see in our analysis of the governing equations (6.55) and (6.59) in 

the next chapter.



Chapter 7

Analysis of the turbulent 

boundary layer in a curved duct

In this chapter we explore the solutions of the governing equations of the three- 

dimensional TBLs in a curved duct, (6.55) and (6.59), in a variety of parameter 

regimes via analytical and numerical methods. The numerical strategies in 

Chapter 7, which involve no more than standard finite-differencing, show that 

surprising results are obtained for the cross-flow.

The numerical computation of TBLs in three dimensions has been much 

studied. Various approaches are possible with two alternatives being direct 

computation from either the Navier-Stokes equations or from the boundary 

layer equations. An improvement to both is the “wall function method” devel

oped in [90] from earlier work. The beneflts of such an approach can be seen 

in computations of the near-wall flow, since perhaps a 50% reduction (claimed 

by [90]) in the grid refinement required in this region is attainable. Although 

we do not consider a numerical evaluation in this region, we should mention 

that the wall function method was put on an important footing by [26].

2 0 0
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7.1 The /5-split

As we discussed at the end of the previous chapter, it seems that to solve the 

governing equations (6.55) and (6.59) three different regimes corresponding to 

the order of magnitude of ^  need to be considered. One possibility to resolve 

this predicament is a scaling of Æ3 . However, it is fairly easy to show that this 

leads to a contradiction on the size of 61 in different ^-regimes. In fact, we can 

find exact solutions — not just asymptotic expansions — which enable us to 

study but one solution space for all three different regimes in the entry region.

We will refer to the following exact solutions of equations (6.55 & 6.59) as 

the P-split:

ui = Pûi +  1 • ûi ; (7.1a)

xl2 = P‘̂Ù2 -\-pÜ2 , (7.1b)

where ûf —>■ 0 for i =  1 , 2 as Æ3 —>■ 00  such that the upper boundary conditions 

on Ui are satisfied by Ui. That is, uie = /5 wi|x3->oo and similarly for U2e- 

However, we have already seen that u\e — /0C/|waii such that the edge value of 

identifies very naturally and simply with Î7|waiiî and similarly for Ü2 and Q. 

Furthermore, ui will accommodate the lower boundary conditions, as will be 

discussed below.

The /?-split emerges naturally when one considers the nature of the match

ing of U\ and Ü2 with the core flow. We know that ûi ~  ^  at the edge, and 

that it is a function of X2 only there, by the nature of the core flow. But it 

is clear that û\ must also have an (9(1) component to account for the lower 

boundary condition on U\ of no slip. Similarly, a consideration of (6.59) shows 

that Ü2 is driven by  ̂^  +  2 AT2[/| and also by 2 PK 2Ü1 , suggesting

that Û2 is driven by an 0 {P‘̂) term and an 0 {P) term, prompting the form of
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(7.1b).

The full benefits of this approach have yet to be described here, and at 

first sight it appears to be an added complication, as we have replaced two 

variables by four. However, we claim the following simplification of (7.1a,b):

üi = file ; (7.2a)

Ü2 = U2e ' (7.2b)

In other words, fii and Ù2 are independent of X3, and we are left with only 

two variables to solve for, namely U\ and Ù2 . In the process of examining the 

various ^5-balances of the equations, we will prove (7.2a,b) and examine the 

consequences of substituting the solution (7.1a,b) into (6.55 & 6.59).

Checking on (7.2a,b)

The 0(1) balance of (6.55) is:

d i l l  I  ( ( a ^ a i ^ )  j  ,  X 3 < X 3 J

doc I "
, x z > x ^ j

(7.3)

while the 0 (/?) balance is:

< X3J
(7.4)

and the 0 (/? )̂ balance is:

“25ÏJ ((%Ê^) , ^3 < ^3J ,

0 = {  /  (7.5)
0 , X3> X3J .

Before we examine the a;2-momentum equations, notice that j3 is still not ap

pearing explicitly in the equations governing U\. In addition, equation (7.3) is
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implying that üi is slowed by the stress at the wall. In reality, the stress will 

vary due to curvature, and this is linked with the buoyancy idea discussed in 

Appendix B. Furthermore, in an effort to establish (7.2a), let:

üi = üie +  üib , (7.6a)

where clearly =  0 by definition, (7 .6b)

and =  0 by the matching with the core fiow, (7.6c)

and üib ^  0 as ^3 —>• oo. This form — with an 0(1) variation from the edge

value — is consistent with the claim that üi is part of an exact solution for 

Ui. Consequently, equation (7.4) becomes:

^  ̂  I “'«fe < X3J

I , X 3 > X 3 J

(7.7)

dxl

and equation (7.5) becomes:

(7.8)
, Tg < Xsj ,

0 , X3> X3J .

The inner part of equation (7.8) has the solution

uib = Cl • Ln{xs) , (7.9)

for some function Ci{xi,X2 ), for all x^ in the inner layer. We will now show that

this leads to a contradiction on the no-slip condition at the lower boundary

unless Cl =  0, in which case we will have proved (7.2a).

As Tg -> 04- we enter the lower tier when xs -4- Re~^e~^xs (see for example 

[60, p.23]), and the above equation then suggests

üib ~  —ciLn{Re) — 2ciLn{e) 4- CiLn{xs) . (7.10)
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This means that, from the original expansion of ui,

=  1 +  e{I3ûi +  ûi) +  . . .  ,

=  1 +  6Wi +  EÛ\ T . . .  ,

~  1 +  ewie — Cl/? — 2cieLn[e) +  eciLn{x’i) +  . . .  as we enter the inner tier.

(7.11)

But if ^  1 we have a contradiction as then ui 0 as 3:3 -4- 0+ whenever

Cl ^  0 . Since we require the solutions (7.2a,b) to work for all orders of 

we must take Ci =  0, giving the solution un, =  0 in the inner layer. Clearly, 

the solution un, =  0 also satisfies trivially the outer part of (7.7), and also all 

the boundary conditions, including matching across the junction with the zero 

form in the inner part. Hence we have established (7.2a). As an aside, let us 

note that we will shortly show that

wi ~  Ln{xz) -  ^Ü^{xi ,X2)  , (7.12)

as Æ3 -4 0+, where is the streamwise core fiow at the wall, as usual. 

Consequently, together with (7.2a) we see that:

Ui ~  1 — êLïi(^Re) — 2êZ/?i(ê) T êLni^x^) — ^Üuj T EÛŷ . . .  , (7.13)

with the first two terms (as presented) cancelling since ê = {Ln{Re))~^, and 

the last two terms (as presented) also clearly cancelling, as are required to 

satisfy the no-slip condition.

We next examine the various balances of the 3:2-momentum equations

(6.59), after making the substitutions (7.1a,b). There is now no longer any 

higher order balance analagous to (7.5) to give us the behaviour of Û2- In

stead, we obtain the following balances.
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First, to 0{P): 

dÜ2
dxi

+  2 K 2Ü1 = <
( =;2 du} du2 \
\  3 9X3 9X3 J

9 x §

X3 < Xsj 

X 3 >  X 3 J

(7.14)

and to O(j80:

dûo dû 2e +
f  =2drndm)  
\  3 9x3 9x3 J 373 < X3J 

X 3 >  X 3 J

(7.15)

Note that there has been some cancellation of the terms on the righthand side, 

and that, importantly, /3 no longer appears explicitly in the equations. Also 

note that both equations are satisfied at the edge of the TBL as Æ3 —>■ 00  where 

all stresses are zero. In order to establish (7.2b) we postulate, analogously to 

the earlier (7.6a), that

U2 — Ur2e T ' 2̂b 5

where =  0 by definition,
0x3

(7.16a)

(7.16b)

and 7/26 —> 0 as X3 -> 0 0 . The postulate encompasses the assumption that 7/26 

is not a constant, and we will now derive a contradiction to this assumption. 

The 0 { p )  balance then yields:

dû 2 6

dxi
=  <

d2_d_ (  =2 dui dÜ2b \  
9X3 V ''3 dx3 9x3 J X 3 <  X 3 J  

X 3 >  X 3 J

(7.17)

This equation suggests that as X3 —̂ 0+:

0 =
d 1 dü

dx:̂
X

2 6
3  -3:3 dxi

(7.18)

We can then conclude that

7/26 ~  C2 Ln{x 3 ) as 3:3 0 +  , (7.19)
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where C2 ^  0. This leading order behaviour near the wall, upon substitution 

into the original expansion of U2 , gives:

U2 ~  ^y>2e T ^C2Lti{x^^ +  eêÜ2 +  • • • J (7 .2 0 )

and to satisfy the no-slip condition we require U2 =  0 on % =  0. Since C2 /  0 

then U2 —> ê C2Ln{xs) as Æ3 —> 0+, leading to a contradiction. That is, if Ü2b 

is not a constant, then it satisfies nontrivially (7.17), which predicts a leading 

order behaviour for Û26 which contradicts the no-slip condition. Therefore, we 

conclude Û26 =  0, as although any constant satisfies the equations (7.17), only 

Ü2b = 0 satisfies also the boundary condition as % —> 0 0 . Hence:

Û2 = Û2e exactly. (7.21)

Again, we will later show that

such that

2
Ü2 ~  —H 2X^Lu{xj,^ — !3u2 as Æ3 —>• 04- , (7.22)

Û2

2
U2 =  ê Ct2 4“ eê—K2X^Lïi{x^^ — e^Û2 4- . . .  , (7.23)

U2

with the first and last terms, as presented here, cancelling in order that U2 

satisfies the no-slip condition.

We have thus established that throughout the outer layer il\ and Ü2 simply 

retain their edge values — where they identify exactly with the values of the 

core fiow at the wall — and our task is reduced to solving (7.3) for Ui and (7.14) 

for Ù2- The main factor /5 has completely disappeared from the equations, as 

have the pressure terms, the matching with the core is accommodated, the 

lower boundary conditions will be considered shortly, and (7.14) retains its 

nontriviality since a term in K 2 is still present (so that Û2 =  0 is not a solution).
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F u rth e r  analysis

Before we go on to solve the equations, we have to specify the lower boundary 

conditions. Returning for a moment to the equations (6.55) and (6.59) we 

can determine the lower boundary conditions on ûi and Û2 . As Æ3 ^  0+, the 

inertia and pressure terms are small in comparison with the turbulent stress 

terms. Starting with (6.55), this yields the equation:

This equation gives the following near-wall asymptote, after solving and ex

amining balances as X3 -> ê~^Re~^X3 :

ui ~  c^Lnixs) H- ki{xi ,X2 ) , (7.25)

where C3 =  1 so that as the inner tier is entered the leading order identically 

unity part of the velocity expansion is cancelled, and where the unknown 

deficit function ki of 0 (1) can be determined at a later stage by expanding 

in the inner tier. Equation (6.59) behaves slightly differently as the wall is 

approached, because the centrifuging term also remains, given that we now 

know Ui is large as x^ -> 0-f-. That is we have:

d /_2^ui dÛ2 
dxs \   ̂dx3 dx3

With the asymptotic behaviour of ui from (7.25), equation (7.26) yields the 

behaviour
2K

U2 ~ ----- ((%3 +  c^Ln{x^)  +  {di — 2)^3 4- ^2) , (7.27)

involving the unknown constants C4, ^1,^ 2.

Then the asymptote for üi is:

ÜI ~  Lnixs)  4- ki{xi,X2) -  PÜ^{x2) , (7.28)
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which can be tidied up by setting ki = k i ~  jSÜw, if desired. Later on, we shall 

further determine k\. In a similar fashion, we have:

2K
Û2 ~  — -xzLn{xz)  +  k2[xi,X2) -  P'^Qw . (7.29)

The interpretation of (7.28) and (7.29) is that the deficit functions ki are 

infiuenced by the edge values, and that these infiuenced 0(1) parts are what 

the inner tier feels when examined on a smaller length scale. This suggests 

that there will be some edge effects, ^ 2-dependence, and some cancelling of 

the edge values, even on the shorter length scale much closer to the wall. The 

viscous sublayer has been shown elsewhere to be more sensitive to external 

influences in other respects, such as the sensitivity of A+ (see e.g. [41]).

The spatial growth rate of the TBL, measured to an extent by (5i as intro

duced in equation (6.50), is as follows. Expanding the integrand of (6.49) we 

see that
POO

^1=  (file -  fil) dxs . (7.30)
Jo

But then the /?-split has ui = -I- ûi, where fiie =  /5fii, so that

POO

=  /  ( - f i l )  dxs . (7.31)
Jo

Then an integration of (7.3) across the layer proceeds as follows:

dûi - (  düi
dx^ — CLlài

düi
* 3 ^ 0 0  V  9X3

(7.32)
X3->0+dxi \ d x

Since ûi —> 0 on approach to the edge of the TBL, and since we have the lower

boundary condition (7.28) as well as continuity of ûi across the junction, we

can establish from the definition (7.30) that

=  02 • (1) (7.33a)

= >  ^1 =  0 2 %i . (7.33b)
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We are now in a position to solve equations (7.3) and (7.14) and we have 

noted that they are independent of P and so we need only search in one solution 

space. However, the interpretation of (7.3 & 7.14) together with the ^-split 

(7.1a,b) is of course dependent on the size of P and yields three interpretations 

in the entry region, and three qualitatively and quantitatively different regimes 

far downstream, as follows.

• If /3 <C 1 the solutions from equations (7.3) and (7.14) dominate, and 

the edge effects are weak since the curvature-induced swirl is weak in 

comparison to the magnitude of the turbulent fluctuations. The scalings 

in (7.1a,b) ensure that the curvature is driving only a relatively small 

cross-flow. The result (7.33b) suggests that a new stage will develop 

at (4C e“ )̂ when the TBL grows to fill the duct. This merged or 

merging case will be the subject of the subsequent chapter.

• If ̂  ~  1, both curvature and turbulence are important and the behaviour 

of the TBL in the entry region depends on the solution of equations (7.3) 

and (7.14) and on the ^3-independent core terms carried down from the 

edges. There will be a new stage at ~  when interaction of 

the TBL and the core occurs. This is a weak form of interaction as 

defined by [67, p.377]. It is likely that at this stage an amendment to 

the Cebeci-Smith model would need to be considered in order to account 

for the interaction, and the influence of the curvature at this new length 

scale. It is at present unclear what form such a modification would take, 

but likely candidates involve modified buoyancy-like terms as mentioned 

in Appendix B and expanded upon briefly here. The inner and outer 

expressions for the eddy-viscosity can be modified by multiplying each
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by 5^, where

^  =

where a is the radius of curvature as before, and j  = 7 for convex walls 

and j  =  4 for concave walls. This modification was introduced in [11] 

wherein also it was found experimentally that modification is required 

when the streamline curvature exceeds a certain threshold in relation to 

the total boundary layer thickness 699; in particular when ^  This

is certainly not the case in the entry region where the threshold is exceed 

only if the Reynolds number is of O(IO^), but would become important 

further downstream in the ~  1 case.

• Finally, if ^  1 the core flow dominates the TBL solutions (from

(7.1a,b)), which is to be expected, since in this case the interpretation is 

that the turbulence is weak. There will be a new stage at e~  ̂ («C 

when the core becomes fully developed and the TBL remains thin. In 

this case, there will be no real impact on the core flow results presented 

in Chapter 2 since the TBL is thin throughout the bend under consider

ation.

In the next section, we present similarity solutions of (7.3) and (7.14) for 

ùi and Ü2 .

7.2 Similarity solutions

7.2.1 Solution for ui

In the far field downstream, beyond any entry effects near the start of the bend 

(see e.g. [67, pp658ffj), similarity solutions can be expected for ûi and Ü2 . We
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suppose that

ÜI = ÜI (y,X2) ,
% (^35)

where we dehne y = — ,
Xi

and furthermore that the a;2-dependence is separable from the ^/-dependence. 

Therefore we have:

^1 =  f{x2)f{y)  • (7.36)

This change of variables yields:

I  =

where ' denotes differentiation with respect to y. Substitution into (7.3), to

gether with the result (7.33b), gives:

2a2y//'(/' + y/") , y < y j \
- y f '  =

where b = a2fli for clarity, and where y j  =

16/"
(7.38)

Inner part o f (7.38)

By separation of variables, we see that

/> 2 )  =  K  , (7.39)

for some generally non-zero constant K.  Then a rearrangement of the inner

part yields:

y f ' ( 2 a 2 K { f  +  yf")  +  1) =  0 , (7.40a)

such that y f  =  0 or / '  +  y f "  + =  0 . (7.40b)
2fl27v
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The first option in (7.40b) suggests that f  = 0 and hence that ui is a constant. 

This solution has to be rejected, as the logarithmic merging with the inner tier 

would not then be possible. We therefore consider only the second option in 

(7.40b), and set h = yf ' ,  so that:

whereby h =  ^  ' (7.41b)

for some constant C5. Therefore

=  +  &  (since y ^ O ) ,  (7.42a)

hence: /  =  +  ^ L n ( y )  +  ^  , (7.42b)

for some scaled constant dg.

The lower boundary condition requires

ûi ~  1 ’ Lnixf)  +  C?(l) as Æ3 — 0+ , (7.43a)

and therefore that /  ~  1 • Ln{y) +  0(1) as Æ3 —> 0 +  . (7.43b)

Hence we must take C5 =  1. Finally then, in the inner layer we have:

üi = K  ■ f  = - - ^ y  +  Ln{y) +  c/3 • (7.44)
10L2

Outer part of (7.38)

The outer part of equation (7.38) is

/"  +  | / '  =  0 .  (7.45)

Solving by means of the integrating factor gives

K
f  =  % ' A A  , (7.46a)

roo  -  poo
such that /  e ~ ^  dÿ , (7.46b)

J y ^  J y
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Ûwhere y is a, dummy variable, and cg is an unknown constant cg scaled on  e 2 6 . 

Scaling on the integrating factor ensures that numerical work concerning üi 

involves finite values. Using the upper boundary condition ûi 0 as X3 —>• 00  

yields the solution:

=  cg / e 26 dy . (7.47)
J 0 0

ui =  K - f  =

As discussed above, it is perhaps no surprise that the downstream streamwise 

behaviour is very similar to that for fiow over a flat plate at zero incidence, as 

described in [60].

M atching

The remaining unknown constants cg, dg, and yj  are determined by the three

junction conditions of continuity of / , / '  and the stress — i.e. y '^ f  = a\ —

across yj.  That is, we require:

I pyj (%2_ ÿ 2)

/  : - T T - y j  +  Ln{yj)  +  dg =  cg /  e 26 dy - (7.48a)
Joo

f  : =  cge "̂26 =  Cg ; (7.48b)
2fl2 Vj

stress: + Vj = • (7.48c)
ZÜ2

The solutions^ to these three equations are:

yj  = 0.3022 ; (7.49a)

C6 =  0.184 ; (7.49b)

di =  2.14 . (7.49c)

 ̂We take the larger of the two values of yj  obtained from (7.48c) since otherwise the 

junction is not in the outer layer.



CHAPTER 7. ANALYSIS OF THE TBL IN  A CURVED DUCT  214

Note that once yj  and cê have been determined from (7.48c) and (7.48b), 

we have to solve the rather more involved (7.48a) for dg. To do so, we either 

note that
poo poo p y
/  d t =  dt — dt ,

J v  Jo  Jo

er fiv)

where erf{y)  is the error function at y, and therefore that

(7,50a)

At this point, we know yj  and b and so can calculate the integral and hence 

d] from (7.48a), after looking up the requisite values of e r f  either in tables, 

or by calculating from a commercial program such as Mathematica. In fact, 

the value quoted above was further validated by a simple integration program 

based on Simpson’s Rule.

In summary:

U\ =  <
-^^(2/) +  2.14 , 7/< 0.3022 ; (7 51)

dÿ , 2/ >  0.3022.

Near-wall asym ptote of üi

We consider in a little more detail the near-wall asymptote of ûi. Currently, 

we know from equation (7.28) that

iLi ~  Ln[x^) 4- ki(x i ,X 2 ) -  PÜyj{x2 ) ,
(7.52)

or equivalently Ui ~  Ln{xz) +  A:i(a:i, ^ 2) , 

where k\ — ki~pÜw  as before. But we have also derived the similarity solution

U\ = —- — y 4- Ln{y) 4- 2.14 (7.53)
Zfl2
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for y < 0.3022. Recall that the coefficient of 1 for the Ln  term was determined 

by the requirement that (7.53) has the same behaviour as (7.28) near the wall. 

Continuing this idea, we insist that:

Ln{xz) +  ^1 (3 1̂5^2) =  Ln(x 2)  -  Ln{xi) — —  h 2.14 , (7.54a)
2&2%1

and therefore that

k\{xi, X2 ) =  PÜyj{x2 ) +  2.14 -  Ln{xi) . (7.54b)

It is interesting to note that the effects of the core flow — carried down through 

the layer by the ^3-independent term l3Üw — will be felt by the inner tier of 

the TBL through the action of the deficit function ki. In a similar fashion, it 

is clear that 13‘̂Qw will contribute to the 0 (1) deficit function k2 {x\,X2 ), and 

we can expect to see some ^ 2-dependence emerging in the inner layer.

7.2.2 Solution for Ü2

The similarity form of Ü2 is the following:

Ù2 = X^g{x2)g{y) , (7.55)

where as before A is identically zero in the straight section, and identically 

unity in the curved section, and y = as before. Note that once again 

we have separated the xi- and a:2-dependence. Analagously to ûi, we now 

substitute into (7.14) after making the change of variables and obtain:

. f - S l A s - r f . î f e C A I / J " » ' " » " ’ " ’' • (TA6)
^bx^ ^gg” , y > y j ,

where we recall that /  is known as the equations are quasi-two dimensional 

(ùi can be found independently of Ù2), and ÂT2(A =  0) =  0 by definition. Note
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that when A =  0 the unknown -dependence ^(0:2) will disappear from the 

equations.

Then in the absence of curvature, the equations become:

, I o^iy^f'g'Y , y < y j  \ ,
- y g  =  \  (7.57)

I V  , y > y j  ■

The inner part here has the form

f ) h '  4- y{l  4- 2^2/ '  4- 0,21/f " )h  = 0 , (7.58)

where h = g' and /  is known in effect from (7.51). Thus the equation to solve

in the inner layer is:

y(l -  + h = 0 .  (7.59)
ZÛ2

So

h = c j ( - -  A  I . (7.60a)
y  2o2 

and thus

g = C7Ln{y) — 4- Cg , (7.60b)

involving the unknown constants C7 and cg.

Thus

Û2 = g{^2) {^iLn{y)  — i ^ y  +  cg^ , (7.61)

that is, Ü2 appears to behave like ui in the absence of curvature. However, 

Ù2 is asymptotically yLn{y) near the wall, suggesting at the very least that 

C7 =  0 in the above. The outer part of (7.57) is the same as that for / ,  and 

so again an analagous result holds for Ü2 here. The usual matching across the 

junction, as well as with the lower boundary conditions, would supply values 

for the unknown constant of integration.
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Considering now the general curved case, where A =  1 and Æ2 ^  0 ,̂ the 

equations to solve are:

(7.62)
bgg” , y  > y j  ,

where this time g is retained in the equations.

Inner part o f (7.62)

Substitution of (7.51) into (7.62) yields the governing equation for g in the 

inner part:

gg -  0>2gg' -  a2ygg”{l -  - ^ y )  +  K 2 {— + 2Ln{y) +  4.28) =  0 . (7.63)
ZCL2 CL2

By the usual methods associated with separation of variables, we can rearrange 

this equation until one side involves a ratio of ̂ 2-dependent terms and the other 

a ratio of y-dependent terms, and thus both sides must be equal to the same 

constant. Thus

g{x2 ) oc K 2 , (7.64)

and the magnitude of the constant of proportionality can always be absorbed 

into the scalings of Ù2 such that Ü2 is independent of it. However, an advanta

geous choice for the magnitude of the constant is 2 in order to cancel the factor 

of 2 in the driving term in (7.62). The sign of the solution depends on the sign 

of the separation constant, which we shall determine as follows. Suppose

«2  =  xigg =  2pK2Xig(y) ,
(7.65)

where p = ±.1 to be determined.

^Note, however, that K 2 may be 0 at certain points of the cross-section —  say at the 

inside and outside of the duct of circular cross-section.
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and let us examine the behaviour of (7.63) near the lower wall. We know

that as ^ > 0+, gg ~  2 p K 2yLn{y). Substituting this form into (7.63) and

gathering terms of like order, we see that in the limit:

Left hand side [—2a2P+2.1A\Y[—a2pLn{y)+Ln{y)]+[^.I>py—-^y]-\-\pyLn{y) ] ,
2ü2

(7.66)

which ~  0 in the limit only if p =  +1. Hence

Ü2 = 2K2Xig{y) . (7.67)

The associated homogeneous equation of (7.63) is:

&2 (̂1 — ;;— y){99Ï' +  (̂ 2 (9 9 )' ~  {9 9 ) =  0 , (7.68a)ZÜ2

or g • C{g) =  0 

where C{g) = 022/(1 -  - ^ 9 )9 ” +  0 2̂ 9 ' ~  9 ,ZO2

(7.68b)

and since we know g[x2) ^  0 we conclude that here we must — for the com

plementary function — solve C{g) = 0. One possible solution method is to 

expand about yj, supposing that the equation is analytic everywhere, î.e., to 

let:
00

9 = ^ f n { y - y j T . (7.69)
n=0

This yields an infinite regression of recursion relations of the form 

— f o  +  Û2/1  +  «22/(1 — ^^2/)(2 / 2) =  0 ;

— f i  +  2 0 2 /2  +  ^22/(1 — ^ ^ 2/)(6 / 3) =  0 ;

- / 2  +  3 0 2 / 3  +  «22/(1 -  — 2/)(12/4) =  0 ;
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If we knew a priori the behaviour of Ü2 at the junction — specifically, if we 

knew g{yj) = fo and g'{yj) = f i  — then we would have the complementary 

function. Since we do not, we have to consider another approach.

With the substitution z =  ^ y ,  (7.68) is transformed to

^(1 — +  y  — =  0 , (7.71)

where ' now denotes differentiation with respect to z. We next compare this 

equation to the general hypergeometric equation

z(l -  z)w" +  [ckg -  (cKi +  0:2 +  T)z)]w' — a i a 2W =  0 , (7.72)

whose solution is given in [27, p.310]. We find that:

1

a ,  =  4  +  * ^ ;  (7-73)

#3 =  1 ,

such that the formula yields one solution, namely

 _______ 1 r (# i  +  /g)r(ai +  %\/7 +  k) ( 7  7 A)
r ( a i ) r ( a i + î % / 7 ) ^  ki k \ -

Here F is the Gamma function. Substitution of this formula into (7.71) yields 

the coefficient of z" as:

r(cKi TL l)r(cKi +  ly / j  +  77- +  1) 1
(n +  1)! 2(n —1)!

F(ai +  n)F(ai +  7\/7 +  n) 1
nl 2(n — 2)1

F(cKi +  77 +  l)F (c K i +  t y / r  +  77 +  1) 1
(77+ 1)! 2 (77)!

r ( # i  +  ? ^ )r (# i +  2 \ /7  +  77) 1 , X

nl nl  ̂  ̂ ^
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Simplifying this coefficient, we find that it involves a factor of

[(n^ — n +  2) — — tt. +  2)] (7.76)

and is thus 0. At this stage, we have found one solution to the associated 

homogeneous equation. Furthermore, numerical values for the above, obtained 

from either Mathematica or NAG^ routines, give the first few terms in the series 

as:

Pi =  1 +  2z +  +  0.445z^ +  0.222z^ +  0.125z^ +  . . .  . (7.77)

It is a straightforward exercise to check that these first few terms satisfy the 

equation. A second, linearly independent solution can be found by a reduction 

of order, with the substitution

p(z)=G(z)pi(z) . (7.78)

Once the second solution p2 is found, a particular integral can also be deter

mined by considering a linear combination of pi and p2 and then employing 

the Wronskian and Green’s Functions (see for example [27, ppSOSff]). By the 

above technique, we can demonstrate that

r  ^  éÿ  , (7.79)
Jv y9i

G = c
' ŷ

based on 02 =  0.16. Note that the singularity is at p =  0.32 =  2^2 and since 

yj = 0.3022, setting y j  as an upper limit is perfectly acceptable, in order to 

fix the constant. The value of c would come from matching with the outer 

solution as usual. It is also possible to verify — analagously to above — that

satisfies the equation.
^The Numerical Algorithms Group, Ltd.: http://w w w .nag.co.uk.

http://www.nag.co.uk
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For a particular integral of (7.63) we consider by inspection

g{y) = pLn{y) -\-qy-\-r , (7.81)

for p,q ,r  Ç. SR. By identifying like terms, the solution is:

P = - l  ; <1 = ^  ; r  =  -2 .1 4 . (7.82)
Z02

Let us then write down the putative general solution of equation (7.63):

Ü2 = 2k2Xig{y) ,

/  rvj ^ — 25w \  1
where g{y) =  1 +  c /   —  dy gi{y) -  Ln{y) +  — y -  2.14 ,

V Jy y 9 \  )

1 V7

(7.83)

However, we offer no proof that the above expression converges or can be 

made to match with the outer layer solutions which we find next, and indeed 

we will seek a numerical solution to the inner part of (7.63) in §7.3.

Outer part o f (7.62)

The equation for the outer part is

-  99') +  2 ^ 2/  =  hgg" , (7.84)

where once again we stress that /  is known from the outer part of (7.51). 

Furthermore, the result g = -{-2 K 2 can similarly be derived here. Equation 

(7.84) has the associated homogeneous equation

V  +  2 / y - ^  =  0 ,  (7.85)
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where we have disallowed the solution Æ2 =  0 as above. Again, a priori 

knowledge of Ü2 at y = y j  — or any other point in the outer part — would 

enable a solution method based on that on page 218. In the absence of such 

knowledge, we pursue other methods.

In fact, the outer part of equation (7.62) in its full form, namely

» 2/ , p 0.184 r
9 t 9 -  T = “/ (7.86)

J 00

is relatively straightforward to solve. Upon differentiation we see that

g'" + \g "  = i e - ’& , (7.87)

where we have introduced the convenient notation 7  =  Considering

this as a linear first order ODE in g", the complementary function is

=  Â 7 e -^  (7.88)

for some constant A. The factor 7  acts to reduce the order of magnitude of 

A, rendering the subsequent computation somewhat easier. It is not difficult 

to find a particular integral,

g'p/ =  y y e ~ ^  , (7.89)

leading to the general solution:

g" = j ( A  + y )e~ ^  . (7.90)

Integrating once gives:

g' =  A'yl — bje ^  +  Cg ,

where I  = e dy .
J OO

(7.91)
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But the edge condition p' =  0 at y —>• oo implies the constant of integration 

Cg is zero, since the integrands are everywhere bounded. A final integration 

yields

g = A'y f  I  dÿ - b j l  Cio , (7.92)
J OO

where Cio =  0 since ^ =  0 at the edge (the matching with the core is via Ü2 ).

Hence the solution of the outer part of (7.62) is:

g = A'j f  I  dÿ - b j l  , (7.93)
J 0 0

with A currently unknown. This expression involves a term analogous to the 

complementary error function. Once again, recourse to tables of functions, 

Mathematica, or the aforementioned integration routine based on Simpson’s 

Rule — which for example agrees with Mathematica to four decimal places for

I  dÿ — is necessary for progress to be made.

Com ments on Tg-dependence

Before moving on, it is worthwhile spending a moment examining the origin 

of the rc2-dependence in the velocity components. This dependence arises as 

follows.

• fil!— from the matching with the core fiow’s o;2-dependence (carried 

down across the whole layer).

• ui!— defined ûi =  f { ^ 2 ) f{y)  but showed that /  is in fact a constant. 

This can be scaled out of the equations to leave us with üi = f {y)  — 

that is, there is no i:2-dependence.

• Û2 :— from the matching with the core fiow’s X2-dependence (carried 

down across the whole layer).
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• Ü2 '.— defined Ü2 = Xig{x2 )g{y) and showed that g =  2 K 2 after a similar 

scaling-out as above. The solution will be Ü2 = 2K2Xig{y)^ where note 

that in a duct of circular cross-section with circumference C, K 2 may 

well be Ax 2 {x2 — |C ) , by inspection.

7.3 Numerical solutions

We have found in §7.2.2 an analytical solution to the outer part of (7.62), 

satisfying the upper boundary conditions and involving an unknown constant 

A. Having formulated a putative analytical solution to the inner part of (7.62), 

but in the absence of any proof of convergence, we now attem pt to solve 

the inner ODE numerically. Recall that the inner ODE has a singularity at 

y = 2o2 = 0.32 which is just outside the computational range y < yj  = 0.3022.

There are three junction conditions to satisfy: continuity of g] continuity 

of g'; and continuity of stress. The last is satisfied automatically here once 

the first two hold, even before we know what the solution is in the inner part. 

This is because stress continuity here means:

^^y^f'\y=0.3022 ~  l̂y=0.3022 (7.94)

Left hand side =  ^22/7 (  — %----1-----) =  0.0168(22 ? (7.95a)
V 2(22 y j  J

whilst

right hand side =  (21(22 =  0.0168(22 . (7.95b)

That is, continuity of stress across yj is satisfied automatically to our level of 

working, which can be traced to our assumption of isotropic eddy viscosity.
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Figure 7.1: The Runge-Kutta solution for g. Computed with the methodology 

described in the text, and over 100 points, with A =  0.007.

First study

The numerical problem for the inner part is a boundary value problem, running 

from the lower boundary (the wall) to the upper boundary (the junction). 

However, we start the computation slightly away from the wall (at ?/ =  A <C 1) 

because the driving term Ln{y) is singular there. The equation is of second 

order, and so we require two boundary conditions each at both y = A  and 

at ?/ =  yj. However, although the lower boundary condition on g is known 

because g = 0 there to satisfy the no-slip condition, g'{A) is not known, 

since the deficit function for g has not been determined. Our first attempt is 

therefore to treat the problem as an initial value problem and linearly optimise 

guesses of g'{A) by seeking to satisfy the junction conditions. Note that the 

junction conditions involve matching with the outer solution which brings in 

the unknown constant À. We therefore have two degrees of freedom — g'{A)
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and A  — and two constraints — continuity of g and g' across the junction. 

The overall method is as follows:

• set ^(A) =  0 and ÿ(A ) =  ol for some estimated constant a  of 0(1);

• solve between ?/ =  A and y = y j  using a Runge-Kutta technique;

• at the junction, compare the Runge-Kutta solution gRK{yj) with the 

outer solution pouter(yj) to fix A\

• next compare g'uKiVj) with Pouter(z/j) and store this difference;

• repeat each step above with a second a;

• with now two points on a linear graph of p̂ iff := 9rk{Vj) ~  Pouter(%/j)

against a , interpolate using Newton-Raphson to obtain the optimal value

a*;

• finally, run the routine with a*.

The Runge-Kutta technique is used to solve a system of linear, first-order 

ODEs. Setting

' (7d%0
Z2 = g ' ,

the system of equations to solve becomes:

z[ = Z2 ] (7.97a)

z '2 =  ——̂ — ——j(200Z/7t.(p) — 625p -|- 428 — 32%2 T 200z\) , (7.97b)

based on 02 =  0.16.

We used a commercially-avaliable NAG  Runge-Kutta routine integrated 

into our own program. The routine is called “D 02PCF” and also calls on
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another NAG  routine “D02PVF”. The latter enables the user to specify the 

number of pairs to be used in the Runge-Kutta method, and our program ran 

with three different pair numbers: a 2(3) pair (quoted accuracy 10“^-10“^); 

a 4(5) pair (quoted accuracy 10“^-10“®); and a 7(8) pair (quoted accuracy 

better than 10“^). A comparison was made between all three levels of accuracy 

which showed the results to have converged. Furthermore, in a bid to increase 

accuracy, we used a NAG  complementary error-function routine to find the 

integral I, by writing:

1 = . (7.98)

The integration of I  dÿ was by our own Simpson’s Rule integrator.

The solution in the outer tier was not considered important here, since it 

can be shown from equation (7.93) that the solution tends monotonically to 

zero as y —> cxo. All that is important is the value of the unknown constant A  

in solving the inner part, and this is found as a stage of the above strategy. 

Whatever the value of Â, the inner solution automatically adjusts smoothly to 

it at the junction 0.3022, and thereafter the outer solution decays to zero.

In the above discussion we overlooked another degree of freedom — A, the 

distance offset from the wall. This was to be fixed by a comparison of the 

computed results with the known asymptote at the wall, namely

g ~  — yLn{y) . (7.99)

However, it was at this point that an apparent paradox emerged. The com

puted results, shown in Figure 7.1, seemed to be of the wrong sign — the 

solutions were positive whilst the asymptote at y —>• 04- is negative.
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Figure 7.2: The directly computed solution for g (solid line) shown together 

with the curve of Figure 7.1.

Second study

Suspecting a user error in the implementation of the NAG  routines, a direct 

computation of g was attempted. For this, the initial value problem was treated 

as a boundary value problem, with a “known” junction value for g of zero, 

since it is certainly close to zero there. This direct computation followed a 

straight-forward finite-differencing scheme as introduced in Chapters 2 and 5, 

with second-order accurate central-differences, and simple first-order accurate 

differences at the boundaries. However, this computation also produced a 

positive solution, as shown in Figure 7.2, where it is plotted together with the 

curve of Figure 7.1 for comparison. The results correspond closely, differing 

only near the junction, where the Runge-Kutta method matches to the external 

solution, whilst the direct computation simply sets g zero there.
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B o u n d a ry  cond ition

The paradox concerns the asymptote of g (or of Ü2 ) derived from the governing 

equation as y -4- 0+. There seems to be no denying that the controlling 

behaviour of the asymptote is -^yLn{y) as can be confirmed by analysing the 

inner part of equation (7.62), recalling that we have taken g = 2 È 2 and that 

we anticipate the inertia terms to tend to zero in the limit. We consequently 

seek to balance the curvature and viscous terms (c./. equations (7.27) and 

(7.29)).

Considering the steps of this analysis, or those taken to derive equation 

(7.27), we see that the prediction that the controlling behaviour of the asymp

tote is ^ yL n {y )  comes from the driving term / ,  i.e., it comes from the be

haviour of the particular integral of the solution of the ODE. The question then 

emerges, how does the complementary function behave in the limit y —> 0+? 

The associated homogeneous equation to the inner part of equation (7.62)

is:

y(2fl2 — y)g” +  2^2^ — =  0 . (7.100)

Supposing now that

^ -  A?/"" (7.101)

for some m ^  0 and A /  0 as ?/ —>■ 0+, then the controlling behaviour in the 

limit comes from the y'^~^ term whose coefficient is

2a2Am(m — 1) 4- 2tt2Am =  0 , (7.102)

that is, m  has the repeated root of 0. Thus the complementary function gcF 

is

gcF = BLn[y) , (7.103)
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for some constants A  and B.  Hence the full behaviour as y —>• 0+ combining 

the controlling behaviours of the complementary function and the particular 

integral is:

g A + BLn{y)  E CyLn{y) T  Dy + 0{y^Ln{y)) as ?/—)• 0+. (7.104)

Substituting (7.104) into the full equation and balancing to each order yields 

the following relations:

0{y~^)  : —2Ü2B +  2ü2B =  0 — satisfied; (7.105a)

0{Ln{y))  : 2ü2C — 2B = 2 = E  C  given B; (7.105b)

C?(l) : B  +  4:ü2C +  2 CL2 H — 2/1 =  4.28 /  D  given /I, B, C .

(7.105c)

We recall that previously we had /I =  0 =  B, which in the above relations 

gives C =  ^  as required.

As the inner tier is entered, y - 4 -  e~‘̂ Re~^ÿ such that Ln{y) becomes 

—2Ln{e) — Ln{Re) +  Ln[y). We must in general insist that B =  0 other

wise the Ln{y) term becomes too large as the inner tier is entered — no term 

in the inner expansion will be sufficiently large to cancel it as is required to 

satisfy the no-slip condition at the wall. Hence using the relations (7.105a-c) 

we claim that:

g ^  A E — yLn{y) E — { A e  O.lAjy as y —>■ 0-f, (7.106)
0,2 d2

where the constant A  is arbitrary. The appearance of A  and its arbitrary 

nature resolves the paradox. Since we have a new degree of freedom, yet no 

new information, the programs are unable to satisfy the boundary conditions. 

That is, by setting y =  0 at the wall, we are setting a false condition, and yet 

we cannot set a non-zero value there (corresponding to A) since it is not fixed
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Direction of decreasing A

y

Figure 7.3: The appearance of a numerical boundary layer. 17 datasets are 

shown with A ranging from 0.01 to 0.0000001. Note that in each case, the uni

form grid was adjusted to ensure that the distance between two compuational- 

grid points was at least an order of magnitude less than A.

by the equations. Furthermore, we see that on this length scale, the solution 

should asymptote to a constant at the wall, with the yLn(?/)-behaviour occur- 

ing extremely close to the wall. Presumably, the constant term is cancelled by 

a corresponding term in the inner tier expansion.

F in a l s tu d y

In order to see some numerical confirmation of the above explanation, an 

alternative to the direct computation of g was sought. A strategy — dubbed 

the “5-method” — in which the governing equation was recast in terms of a 

new variable 5  defined by

5 : = 9
Ln{y)

(7.107)
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E 0 035

Figure 7.4: The effects of varying A on the location of maximum g and its 

value. (Magnified on right hand side)
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Figure 7.5: A plot of g computed directly and via the S'-method, Both data 

sets begin from A =  0.001 and are over 10,000 points.

was formulated. The boundary condition at the “wall” y = A  would be 

5(A) =  0, with the definition of 5  suggesting that the adjustment to this 

boundary condition should happen over a sufficiently short length scale so as 

to be practically invisible, and thus the asymptote to a constant value at the 

wall would be apparent.

At first, this did not seem to be the case, though as A was allowed to get 

ever closer to the wall, a numerical boundary layer did seem to appear with 

the solutions tending to a universal curve, as shown in Figure 7.3. This was 

also borne out by plotting the variation with A of both the location of the 

maximum point of g and its value in Figure 7.4.

Although this was persuasive, the large y-range over which g adjusted was 

puzzling, and of the same order as that for a direct computation of g. Indeed, 

the two methods agreed extremely closely, as is shown in Figure 7.5.

In order to feed more detailed information into the system over the crucial
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Figure 7.6: The left hand graph plots curves generated by successive refine

ments of the grid between A = 0.001 and the second point of the standard 

grid of 100,000 points. Increasing the refinement increases monotonically the 

maximum value of g. The lowermost curve has no refinement, whilst the up

permost features an additional 1,000,000 points. The right hand graph shows 

the solution parallel to the quoted near-wall asymptote, and the asymptote 

itself (dotted line) with A = 1.21.

adjustment region near the wall, we use grid refinement between the first two 

computational-grid points of a standard grid with a constant spacing ô of grid 

points. The grid spacing 6 was one order of magnitude less than A. Earlier 

work on the direct computation of g showed that grid refinement beyond this 

did not improve the results and we have seen in Figure 7.5 the close corre

spondence between the results of the 5-method and the direct-computation 

method. Increasing the refinement with A fixed generates an adjustment over 

a short distance and gives a variety of curves, as shown on the left hand side 

of Figure 7.6. We choose the level of refinement which generates a curve par-
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0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

Figure 7.7: The solid line in the graph on the left hand side is in fact two lines; 

the solutions from both grids coincide at this scale. The dotted line is the 

asymptote. In the magnified view on the right hand side, a small difference 

can be seen between the two solutions.

allel to the asymptote A  +  ^yLn{y)  near the wall, and then fix A  such that 

the curve of the solution and the curve of the asymptote coincide there. This 

solution and the asymptote are shown on the right hand side of Figure 7.6.

We now show that this result is not an artefact of the grid nor an artifice 

of the user, by showing that the result is independent of the computational 

grid. With A =  0.001, the solution shown on the right hand side of Figure 7.6 

has a standard grid of 100,000 points between A and yj  with a 3,000-point 

refinement near the wall. If we define the grid refinement density as 

where Nr is the number of refinement points between two standard points 

and Ns is the number of standard points, then this grid has a grid refinement 

density of 103%. A second computation with the same refinement density 

between points 1 and 2 of the standard grid was performed with a 500,000-
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0.6

Figure 7.8: A comparison of the (S-method results of Figure 7.7 (dotted line) 

with those of a direct computation of g after setting p(A) =  1.21.

point standard grid, and the two sets of results are compared in Figure 7.7, 

together with the asymptote. The results compare very favourably indeed, 

suggesting that the behaviour is not simply a product of the grid.

A final assurance comes from a direct computation of g with the forcing 

g{/\ = 0.001) =  1.21 over the 100,000-point standard grid (with no refine

ment) used above. The result is very close to that for the 5-method with grid 

refinement, as shown in Figure 7.8.

7.3.1 A final note on the numerical solutions

The junction boundary condition on g has been set as zero throughout this 

section, since the analytical solution in the outer part contains an unknown 

constant Â. However, we noted on page 227 that g decays monotonically to 

zero in the outer part and that the numerical solution in the inner part can 

adjust itself smoothly to a non-zero g dX yj  without difficulty. Hence we can
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declare that the above work confirms the principal result that

g ^  A p — yLn{y) P - { A - \ - 0 .1 4 ) y  as y 0+,  (7.108)
0-2 &2

though not the precise value of A  nor the precise form of g close to the junction. 

Since g decays so rapidly in the outer region, in a direct computation of the 

outer solution, g at the junction cannot be optimised to generate ^ (“oo”) =  0 

(given ^ '(“oo”) =  0) since almost any value of g at y j  satisfies these conditions.

Finally, we draw attention to [97] which studied the TBLs over curved 

turbomachinery blades. Experimental data is shown in Figure 3 of that paper 

for the cross-fiow over such a blade and it can be seen that the maximum of 

the cross-fiow velocity is very close indeed to the blade surface. Although the 

experimental study is for an external fiow with wall curvature, we note that 

flows such as that considered in this chapter in which the cross-flow involves a 

maximum velocity very close to the surface have been observed experimentally.



Chapter 8 

The merged turbulent boundary 

layer in a curved duct

In the discussion on page 209 we noted that when ^  is small the turbulent 

boundary layers (TBLs) grow to merge and fill the duct by a distance of 0(e~^) 

downstream, and so in this chapter we consider the merged (or merging) TBLs 

in quasi-straight two-dimensional or three-dimensional axisymmetric ducts, 

primarily over the length scale. In the overlap between the entry region

and the merged region the dominant velocity perturbations in the core are due 

to the blocking effect of the growing TBLs. This is because the distance of 

is much less than the distance of 0{e~^) at which the curvature effects 

in the core grow in significance. Wall frictional effects caused by the TBL are 

compared with Fanno flow in Appendix C.

238
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(centre line)y

V

Figure 8.1: Coordinate configuration.

8.1 The quasi-straight two-dimensional duct

8.1.1 Governing equations

Since this case is symmetrical about the centre-line of the two-dimensional 

duct, we non-dimensionalise the length scales on the half-width of the duct 

and study the fiow development between the wall and the centre-line. The 

other non-dimensionalising factors are the same as those in Chapter 6.

D eterm ining the perturbed forms

With reference to Figure 8.1 the length scales of this new stage have x  of 

and ^ of 0(1) and as a consequence we set

(8 .1)

where X  is of (9(1). We note that the slender layer approximation also holds 

at this stage since y <^x.

We denote the full velocities in this new stage by U and y , and then an 

integration of the two-dimensional continuity equation — which from (6.20a)
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is Ux Vy = 0 — between y = 0 and y = 1 yields

f  Ux d y P  [y]J =  0 , (8.2)
Jo

with =  0 since there is no normal flow at the wall or across the centre-line 

here. Hence if

[/ =  i /(X)4-€(7(X,i/ )  +  . . .  , (8.3)

then examining (8.2) to leading order in ê suggests that

g  =  0 (8.4)

and as a consequence we have

U = 1 €.0(^Xj 7/) -|-. . .  . (8.5)

In order to find the perturbed form of V  we next consider the overlap

between the entry region and the present new stage. This overlap region is

where the matching of the double limit a; —>■ oo and X  —>■ 0+ takes place, and 

the configuration of this region is shown in Figure 8.2. We introduce a stream 

function in the TBL defined by

=  U  , i^x =  - V  , (8.6)

with ÿ  being zero at the wall. In order to match with the TBL velocity 

perturbations of Chapters 6 and 7 when examining the overlap region we must 

have

'Ip = cY  T  +  . . .  . (8.7)

Furthermore, we can also introduce a streamfunction ^  in the core of the 

overlap region, defined by

'^y = Uc , =  -Vc , (8.8)
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core

~  G{x) +  t v  
(see page 242)

A

TBL

V>i =  0

Figure 8.2: Configuration in the overlap region.

with ^  being zero at the wall and where the subscript c denotes core velocities. 

The uniform core flow in the overlap region is perturbed by the conservation 

of mass responding to the significant blocking effect of the now large TBL, and 

so we expand

^  +  (2^2 +  . . .  . (8.9)

For a smooth matching process with the flow in the TBL, and for further 

reasons which we will describe later in this section, we must take =  0 so 

that = ty for some constant t. Therefore in the core we have

(8 .10)

In terms of the matching in the double limit y —> 0+ and T  —> cx) we note 

that y matches with éT, and èty +  matches with Furthermore, the 

core flow has an effective slip condition at the wall and so

2 1 wall = G{x) (8.11)
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for some function G{x), such that

'ipi ^  G{x) T  t Y  as y  -4- oo (8.12)

(and hence Û -4 t as y  -4 oo).

Thus where X  = ix  is of 0(1) again, which is the main stage of present 

concern, the above work shows that

Î7 =  1 +  èÛ{X, ?/) +  , , .  , (8.13a)

y  =  e^y(%,?/)4-.. . . (8.13b)

Governing equations

To leading order in ê, the two-dimensional continuity equation Ux-\-Vy = 0 is:

%  +  =  0 . (8.14)

We remark that this leading order form is related to the streamfunction com

ponent 'ipi via 'ipiy = U and ipix = —V, where 'ipi is zero on y =  0 and 'tpi 

is constant on y =  1. The value of '0i on ?/ =  1 is to be determined by the 

conservation of mass across the width of the duct and by symmetry. With 

an initially uniform flow of unit velocity in the duct of width 2 the total non- 

dimensional mass flux is 2, and so by symmetry there is a non-dimensional 

mass flux of 1 in each half of the duct. Thus either from (8.13a) or from the 

full two-dimensional continuity equation we have

1 = 1 è f  Û (X, y) dy . for all X  , (8.15a)
Jo

that is,

•1
Û{X,y)  dy = 0 for all X  . (8.15b)L



CHAPTER 8. THE MERGED TBL IN  A CURVED DUCT  243

Furthermore, the mass flux across any line joining y = 0 and y = 1 is equal to 

'ip{y =  1) — 'ipiy = 0), which yields:

'i/ji{y =  1) =  0 . (8.16)

Since the non-dimensionalisations (other than the length scale factor) are 

the same as those in Chapter 6, and since also the slender layer approximation 

still holds at this new stage, we can quote the two-dimensional form of the 

TBL a:-momentum equation without curvature from equation (6.20b):

UU, + VUy = -  (U'V')y . (8.17)

We recall that we take R e ^  1 and that we model —{U'V')y with the Cebeci-

Smith model, although we reiterate that much of what follows depends only

on assuming the mixing-length hypothesis, with a speciflc choice of two-tier 

mixing-length model providing speciflc quantitative predictions. The Cebeci- 

Smith model has —{U'V')y =  (BUy)y where

- e ® p ( - ^ î / ( |( C /y ) ^ |) ^ )  \Uy\ , y < y j ,

, l > y > y j ,  (8-18)

and ai = 0.0168 and 02 =  0.16 .

In this formulation the quasi-displacement (̂ 1 is given by

where Uq is the streamwise centre-line velocity. In fact

= f  {Ua -  U) dy (8.20a)
Uq J o

= j  ^1 4- HJq -F . . .   ̂ — ^1 4- cO - f - . . .  ̂ ^1 — ^Uq 4“ . . .   ̂ dy (8.20b)
A

=  € y {Ûq — C/  ̂ dy +  . . .  (8.20c)

=  (& +  . . .  , (8.20d)



CHAPTER 8. THE MERGED TBL IN  A CURVED DUCT 244

with:

=  Uq -  f  Û dy = Ûq , 
Jo

(8 .2 0 e)

by (8.15b). Since Uq appears in the outer part of (8.18) it is clear that Uq is 

an important parameter in the merged two-dimensional quasi-straight regime.

A leading order examination of the x-momentum equation (8.17) and the 

associated form of the ^-momentum equation shows that the pressure p is 

perturbed as

p = 1 e p i { X ) e ^ P 2 { X , y ) . . (8.21)

Here Pi{X)  is independent of y while p2 {X,y)  is expected in general to be 

dependent on both X  and y. Thus to leading order in ê, in the limit of large 

Re^ the streamwise-momentum equation is:

Ux — —Pix +
, y < y j ,

(8 .22)

^ \ U y y  5 y j  <C 2/ ■'C 1 5

where âi =  üiUq . The lower boundary condition on U remains

Û ^  1 ' Ln[y) as y ^  0-\- .

By integrating (8.22) across the half-width of the duct we then obtain

[  Ux dy = -  [  p ix  dy + 
Jo Jo

Ô1 -  02
yz= l \  J y-^0+

Using now (8.15b), symmetry at ?/ =  1, and (8.23), yields

Pix = -CL2 for all X ,

(8.23)

(8.24)

(8.25)

and as a consequence we have:

Ux — Û2 +
02 2/ <  2/J ,

(8.26)

âiUyy , yj  < y < l  .



(8.27)
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The non-linear partial differential equation (8.26) and the corresponding bound

ary conditions are central to this rest of this chapter.

Since we have shown that pix  = —0-2 it is worth noting immediately here 

the origin of the parameter 02 in the Cebeci-Smith model. With reference to 

the discussion in §6.1, we recall that Van Driest improved Prandtl’s mixing- 

length model of Boussinesq’s original eddy-viscosity assumption. After setting

2  du

the Van Driest mixing-length Im has a factor of k which is experimentally deter

mined as being close to 0.4. The Cebeci-Smith model is in turn a modification

of Van Driest’s but with the same limit near the wall, namely =  0.16y^.

Furthermore, Nikuradse’s formula for turbulent pipe flow (as given for example 

in [15, pp 111-112]) also has a near-wall asymptote of Im = OAy. Hence the 

result that

Pix — —Û2 — —0.16 (8.28)

depends only on the assumption of the mixing-length hypothesis and not on 

the choice of model.

Finally in this section we examine (8.26) in the limit X  —>• 0+ with y 

remaining of 0 (1) in order to determine the core flow behaviour near the start 

of the new stage. The leading order suggests that 0{Û) = 0 { X )  in the limit, 

and in fact we deduce that

(7 =  agA: + O(X^) . (8.29)

Then we note that with the core streamfunction definition (8.9) we must have

^ly = Ü2 = t , (8.30)

which validates the earlier argument that is constant.
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8.1.2 Numerical study 

In n e r  p a r t  of (8.26)

Taking first the inner part of (8.26), we differentiate with respect to y to obtain

Ûyx =  Ü2 iy'^Ûl) . (8.31)
\  ̂yy

We set T = Ùy and T  = so that the inner part of (8.26) becomes

T~2Tx  = 2ü2yTyy , (8.32)

which is a non-linear diffusion equation. By defining the junction-fitted inner 

coordinate rj = ^ equation (8.32) becomes

Tx = j { f %  + 2a2T"2T^n) ■ (8.33)

The wall boundary condition on Î7 is O’ 1 • Ln{y) and so for T it is:

T(t7 =  0) =  1 . (8.34)

The junction condition of continuity of stress yields

=  (S) ■

The main equations here are therefore (8.33)-(8.35).

O u te r p a r t  of (8.26)

Turning now to the outer part of (8.26), we differentiate with respect to y to 

obtain the linear diffusion equation

UyX = âlÛyyy , (8.36)
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and we also define the junction-fitted outer coordinate rj = ( /Z i)  such that 

17 =  0 at the centre-line and ^ =  1 at the junction. With this change of 

coordinates in (8.36) we have

T-% =  ( ( /  -  +  âiTfjfj) . (8.37)

Symmetry across the centre-line yields the requirement

r(^  =  0) =  0 , (8.38)

while continuity of Uy across the junction, together with (8.35), gives

=  1) =  ^  . (8.39)

Thus the main equations in the outer part are (8.37)-(8.39).

Num erical scheme

The governing equations (8.33) and (8.37) are parabolic in X  and so we discre- 

tise each equation with nominally first-order accurate backward differencing 

formulae for the %-derivatives, with second-order accurate central-space dif

ference formulae for the rj and fj derivatives. The computational grids are 

fitted to the unknown curve yj  = f ( X )  by use of 77, 17; then f { X)  is linearly 

optimised at each X-station in a manner to be described shortly.

A compact differencing scheme was not applied here, for the following rea

sons. Firstly, we recall that the compact-differencing approach treats deriva

tives of the dependent variables as variables in their own right. Yet, although 

the leading order behaviour of Ù near the wall is Û ~  1 • Ln(y),  the higher 

order terms are unknown here. Written in terms of yr  = yUy, which is of 

order unity near the wall, a compact-differencing approach would require solv

ing a tridiagonal matrix for {yT)y involving the unknown part of yr  near the
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wall. Secondly, Uyy can be shown to be discontinuous a t  y  =  y j .  Thus the 

tridiagonal problem for ( y r ) y  is not obviously well-posed.

Given the junction position, the inner equation (8.33) and the outer equa

tion (8.37) together with their associated boundary and junction conditions 

each forms a closed boundary value problem. We can solve each boundary 

value problem independently before comparing values across y  = 1 = r) t o  

determine the junction position, as follows.

With an initial guess for /  we solve (8.33) for T  and (8.37) for r , with 

the current guess for /  diffusing through the computational domain of each 

boundary value problem via the computational boundaries. The important 

parameter U q  is updated from

0,2 +  0,1 Ûyy y=l
(8.40)

With the change of coordinates {X, y )  {X, fj) we can thus update Uq  by:

(8.41)
7 7 = 1

The non-linearity of (8.33) and (8.37) requires lagging of some of the vari

ables and so iteration is used until convergence is reached to within a prescribed 

level of accuracy. At this stage we have employed two of the three junction 

conditions (namely, continuity of r  and of B)  and we next optimise /  based 

on the third junction condition, continuity of Û (or equivalently of Ùx), as 

follows. Consider the absolute difference

E  =
0 \T fi 0>2Ttj

/ - I 77=1 f 77=1

(8.42)

By comparing converged values of r  and T  from two different values of /  

we can optimise /  to minimise E. The computation is then repeated with 

this optimised value of /  with iteration to convergence, before advancing to
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the next X-station. The results of this scheme were compared with those 

of a predictor-corrector approach. The solution method described above has 

higher-order accuracy than a predictor-corrector approach, and we will present 

only the high-order accurate results.

We observe that, if required, U can be determined by integrating with 

respect to y the computed values of r  and T  between 1 and y since we know 

U(i. Continuing, -0 can be found from an integration with respect to y from 

either 1 to y or 0 to y.

Initial conditions

The initial conditions for the numerical scheme are determined by considering 

the governing equations (8.33) and (8.37) in the regime where X  is small.

By connecting with the previous regime where x ^  oo we assume that in 

the inner region:

f  =  d iX  5 (8.43a)

T  = To{t])p . . .  , (8.43b)

with the constant di and the function Tq to be determined. Then (8.33) be

comes

diT' +  2a2To"r" =  0 (8.44)

to leading order. To solve this non-linear ordinary differential equation, if we 

first let Tq = H{Tq) then we find

H = -  f  +  d2 j  (8.45)

where ^2 is an unknown constant. Equation (8.45) has the solution

2(T(f -  DLn{To' + D)) = - \  + d3 , (8.46)
«2
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where D = is unknown and ds is another unknown constant. Employing 

the boundary condition (8.34) in the form To(0) =  1 then gives us

d3 = 2(1 -  DLn(l  +  D)) , (8.47)

where we have yet to determine D. The junction condition (8.35) yields

but since To =  To(?7) only, we rescale ôi by âi = à i f  and then

=  (S) •

Substituting expression (8.49) into (8.46) yields

—  +  — -  2 =  DLn  ( — +  d )  -  2DLn(l  +  D) (8.50)
02 «2 \02 /

at the junction, which we shall later use in determining the unknown constants.

For the variable r  in the outer equation (8.37) we note that the matching 

condition (8.39) across the junction becomes

r(?7 =  1) =  ^  . (8.51)

This suggests that we should take

T -  X -4 (^ )  (8.52)

in this small-X regime. In the entry region studied in Chapter 7 the y-scale 

increased linearly with x  and so in the overlap region where a; —>■ oo and

X  —>• 0+ we expect that the outer region has velocity adjustments over a

small region close to the junction. Hence we scale

fj = l - X f }  . (8.53)
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Then with this change of variable the governing equation (8.37) becomes

àidif" = - f  -  (rj + di)f '  , (8.54)

an ordinary differential equation for r , to leading order. By integrating (8.54) 

by parts with respect to fj we find

àidif '  = d i ) f  +  c?4 (8.55)

with an unknown constant d .̂ But since we have assumed when X  is small that 

the outer region is uniform far away from the junction we have thus assumed 

that f  -> 0 and f '  —>■ 0 as ?} —>• oo, so the constant c/4 =  0. The solution to 

(8.55) is then

f  =  c/gexp
—  (^ +  di)‘ 

2àidi
(8.56)

The junction condition (8.51) occurs where ^ =  0, which yields from (8.56):

The condition (8.42) used in the numerical scheme to optimise /  at each 

%-station comes from the requirement of an exact match of Ux across the 

junction. That is we require:

CLlTjj
/ - I / (8.58)

r}=l

In the small-X regime this condition becomes

àidif '
X

Û2T0

T]=0 c/i%
(8.59)

From (8.56) and (8.46) we can determine the values of f'(0) and Tq(1), which 

upon substitution into (8.59) yield

—di—dfdsexp _ /  C/2O2

2âi J Ü2 V  ̂ di
(8.60)
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Substituting the value of from (8.57) gives

c?2 =  0 ==> D =  0 = >  ds = 2 , (8.61)

the latter from equation (8.47). Finally, (8.50) now gives us

di — 2(û2 — üi) . (8.62)

All the constants are therefore determined.

In summary, the initial conditions at small values % of % are:

4
T = —exp 

A
V

2cbid-[
(8.63b)

/  == diJT ; (8.63c)

Ûq = 02Â (from (8.29) ; (8.63d)

where di = 2(02  — ài) (8.63e)

and ds =  - % - e x p ( ^ , (8.63f)
U 2 U 1 \ 2 a i  J

where ài, ü2 are already known.

R esults

The numerical scheme outlined above was run over a variety of grids and grid- 

convergence of the results was demonstrated. A typical grid had 101 points 

in each layer (that is, in both the ?7-layer and the ?)-layer), an A-step size of 

0.01, and was tested to an accuracy of 10“ °̂. We determined for each grid a 

value of X  from which to start the computation and for which the results were

stable over small modifications to this value. In the case of the above grid the
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S at X-0.1. 2, 4, 10.

Figure 8.3: Left hand side: plot of /  (solid) and Ûq against X .  Right hand 

side: the development of T  and S  with X.

computation was started from X  =  0.1. The results of this computation are 

shown in Figure 8.3.

The developments of /  and (Jq are seen to be virtually linear until around 

X  =  3.5, where a sudden bending occurs over a short distance and a far- 

downstream asymptote appears to be reached relatively quickly. In fact, the 

graph on the left hand side of Figure 8.4 shows that the linear growths which 

occur for 0(1) values of X  are very close to the small-X asymptotes of /  and 

Uq given in (8.63c) and (8.63d), respectively. The sudden bending away from 

the small-X asymptotes will be investigated analytically in §8.1.4. The graph 

on the right hand side of Figure 8.4 shows how the location of the bending 

is stable over a variety of grids. What is more, the value of / ( X  =  10) was 

stable to three decimal places over all grids which showed convergence, and 

the value of Uq (X  = 10) agreed to two decimal places. These far-downstream
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sm all-X-«— 
asym p to te  
o f /

j! sm a ll-X  asym ptote of 1/^

Figure 8.4: Left hand side: / ,  Uq , and their small-X asymptotes. Right hand 

side: closeup of the sudden bending of / ,  showing results over three grids with 

step d X  = 0.01,0.001,0.0001 and suitable refinements of the rj and fj step 

sizes.

asymptotes are

/(10) =  0.995 , %  (10) =  0.65

L arge-X  asy m p to tes

(8.64)

The apparent attainment of constant values of /  and Uq , i.e. fully developed 

fiow, for large values of X  suggests examining the governing equations (8.26)

in the limit X  —>• oo. Returning to equation (8.31) we see that the inner part

of (8.26) becomes simply

Tyy =  0 (8.65)

if X-derivatives are negligible in the limit as X  -4- oo, and thus

T =  Jiy T R , (8.66)
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with A , B  being unknown constants. The conditions (8.34) and (8.35) yield

B = 1 and A = j  -  1J , so that

T  =  ^ ^ ^  1 as X  — oo . (8.67)

Examining equation (8.36) enables us to show that in the limit % — oo 

the outer part of (8.26) becomes

Tyy = 0 = >  T = C(y -  1) , (8.68)

again provided that %-derivatives are negligible. The condition (8.39) then 

yields C =  that

"  =  ( / - % ) '

Imposing next continuity of Ux across the junction y = f  requires

âiTy = ü2Ty at y =  / ,  (8.70)

which upon substitution of the expressions (8.67) and (8.69) yields the relation

®2(/^ ~  /^) +  =  0 . (8-71)

Recall that = aillQ and so (8.71) only gives a value for /  in the limit of 

large X  when Ûq is already known in the limit. Therefore not only is Uq 

an important parameter in the development of the flow in this case, but it is 

also an important net effect, since it influences the downstream asymptote. It 

would seem at this stage that in order to determine Uq at a far-downstream 

position, a full computation in the development region leading up to the fully 

developed region would need to be done. This is certainly different from the 

laminar case where a knowledge of the pressure difference alone between the
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start and the fully developed region provides the centre-line velocity. On the 

other hand, the linear growth in line with the small-X asymptote, coupled 

with the sudden bending and attainment of the large-X asymptote described 

above, point towards a useful predictive tool for Uq and /  which we shall 

describe further in the analytical work of §8.1.4.

Finally here, if we substitute the computed large-X values of Ûq (10) given 

in (8.64) into (8.71) we obtain a cubic equation for / :

^0.995 ,

0.071 , (8-72)

-0.066 .

0 .16^(f -  f )  +  (0.65 X 0.0168)^ =  0 /  =  (

Only the first of these alternatives is physically realistic, and it is in fact equal 

to the computed large-X value of /  given in (8.64). That demonstrates a 

consistency between the current analysis and the numerical results.

8.1.3 Comparisons with experiments

In this section we compare the computed results shown in Figure 8.3 with ex

perimentally determined values of /  and Uq , as well as the prediction (8.25) 

with empirical data. The Reynolds numbers given in the experimental ref

erences were converted to their equivalent values for the choice of Reynolds 

number factors made in this chapter, and it is these equivalent values which 

are quoted below.

In Figure 8.5 we compare the prediction with the data of [51] for the two 

Reynolds numbers considered in that paper. In detail, the measurement taken 

at a given point in the duct in [51] is the non-dimensional pressure difference 

Ap  between the pressure at that point and the exit pressure. The data in [51]
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10 15
^ - w id th s  u p s tre a m  of ex it

<

10 IS
j - w id t h s  u p s tre a m  of ex it

Figure 8.5: Left hand side: comparison between (8.25) (line) and [51] at Re = 

30,800. Right hand side: comparison between (8.25) (line) and [51] at Re  =  

61,600. Ap  is the pressure difference described in the text.

is plotted with the number of half-widths running from zero at the exit in an 

upstream direction. It is clear from Figure 8.5 that the prediction (8.25) gives 

values which agree very well indeed with the empirical data.

In Figure 8.6 we compare the total centre-line velocity uq derived from the 

numerical results with three data sets from: [59] (with measured Re = 1.7 x 

10^); [20] (with measured Re = 9 x  10^); [56] (with measured Re = 2.07x 10^).

While the numerical results in Figure 8.6 certainly capture the nature and 

location of the bending very well, the value of uq is correct only to within an 

order of magnitude. However, it should be recalled that we are only consid

ering the first term in the perturbation expansion of u and that higher-order 

terms should correct the value. Indeed, a comparison of some numerical re

sults with experimental data in [60, pp.32-33] showed that including just the 

first term in the expansion gave only qualitative agreement whereas including
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Figure 8.6: Left to right: comparisons between numerical results and [59], [20], 

[56].

several higher-order terms brought the numerical predictions very close to the 

empirical values. It is interesting to note in this context that the pressure 

predictions are very close indeed to the experimental data.

8.1.4 Small-ai analysis

In this section we show or confirm that the sudden bending of /  as it approaches 

the centre-line is smooth over a short length scale. To do so, we neglect the 

outer part of the TBL model for y > yj,  based on the assumption that the 

constant ai, where âi =  cliUq , which appears in (8.22) is sufficiently small (in 

fact it is 0.0168). This helpful approximation, which corresponds to a rational 

analysis for ài tending to zero, has been previously used for example in [60], 

where it provided a check on derived results.

The major feature when âi is small is that the two linear sections of /  — 

the first when /  increases in line with its small-X asymptote and the second 

when /  is apparently constant — describe the majority of the solution, in 

agreement with the full computations presented above. See Figure 8.7.
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y  =

y =

Figure 8.7; Length scales and regions of the small-ai analysis.

N ew  scales

We consider the small bending region shown in Figure 8.7 in which we will 

demonstrate that /  bends smoothly. The scalings are:

(8.73a)

(8.73b)

where X q is constant. Furthermore, in order to neglect the outer part of the 

model we let

âi =  ôÙq (8.74)

for 6 <C 1, and we note that Uq is considered an 0(1) constant here since 

Ûq = 0 2 ^ 0  +  0 ( x ) .

The governing equations in the bending region follow from examining the 

leading order balances of (8.26). We will let denote r  in the outer part, or 

region I, of (8.26) and denote r  in the inner part, or region II.

Since y ~  1 in region II, the length scales balance to give

T "  ^  X  ^ (8.75)
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We can determine the order of magnitude of H from the junction condition 

(8.39) which gives

. (8.76)

Additionally, in the outer region we have y = 1 — A y  and so the balance of 

length scales in the outer part of (8.26) yields the relation

r. . (8L77)

Finally, we note that in the region of interest we must have

S  ~  1 (8-78)

in order to match with the incoming 0(1)  slope since /  =  202-^0 +  0{6)  there 

from (8.63c,e). This together with (8.77), gives:

a ru .u % , (8L79)

which fixes the local scalings.

Governing equations near the junction

The work above suggests expanding H as:

+  . . .  , (8.80)

so that when ÿ ~  1 a leading order examination of the outer part of (8.26)

gives the diffusion equation

(8.81)

subject to the conditions:

=  0 at ÿ =  0 ; (8.82a)

T-W =  ^  at ÿ =  f { X)  . (8.82b)
Û2
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This linear problem can only be solved once an expression for the junction 

contribution f { X)  is known, as discussed on page 265 below.

The scaling for comes from the necessity of matching r  across the junc

tion, which suggests that

(8^#)

close to the junction. On the other hand, there must also be an order unity 

variation of in order to match with the incoming flow. Therefore where y 

is of 0(1) we must have

=  To(y) +  •. • , (8.84)

with the profile ro(?/) being known. This provides the following leading order 

balance of the inner part of (8.26),

Hx ~  ^2(2/ '̂ 0 )yy (8.85)

when 2/ ~  1, subject to the conditions:

To(2/) =  0 at y = f  \ (8.86a)

Ti =  —  at y = f  ■ (8.86b)
U2

We observe that (8.86a) is consistent with neglecting the outer part of the 

model. Since the right hand side of (8.85) is a function of y only we can 

integrate directly to obtain

Ti =  Ü2X  {{yTQf)yy +  g\{y) (8.87)

for some function gi{y). The conditions (8.86a,b) yield gi{y) = thus 

giving:
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where y is of order unity.

Close to the junction, where y = 1 — A ÿ  once more, we therefore have

+  . . .  , (8.89)

and so the inner part of (8.26) becomes

=  02 , (8 90)

leading to a non-linear diffusion problem for which is discussed below on 

page 264. The local-bending problem of (8.90) and its boundary conditions has 

not been solved to date. Nevertheless it appears to allow matching upstream 

at large negative X  with the incident straight-/ form holding ahead of the 

bending region, and its downstream properties are of interest as described 

below.

Large p ositive  X

In the limit X  —> cxd, in the downstream end of the bending region, we antic

ipate the emergence of an %-invariant state /oo for / .  Equation (8.81) there 

yields

=  Aiy -f A2 as X  0 0  , (8.91)

but A2 =  0 from (8.82a). Furthermore, conditon (8.82b) gives Ai =  and

so as X  —>■ CO we know that

— 5 ÿ H-. . .  . (8.92)
(̂ 2/00

As in the discussion below starting on page 264, there may well be stream- 

wise flow development even relatively far downstream of the bending region. 

However, if we suppose for now that in this downstream region there is no
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streamwise flow development to influence the junction then, from considering 

(8.90) in the limit X  —>■ oo, we obtain:

+ , (8.93)

with /xi, / /2 unknown constants. Continuity of r  therefore requires

=  f^ifoo +  T2 ) (8.94)

while continuity of Ux  requires

=  0 2 (r^^^ )̂ÿ at ÿ = foo ■ (8.95)

Therefore, with (8.91), (8.82b) and (8.93) we deduce that

^2
/il =  ? , (8.96)

^2/00

which substituted into (8.94) gives

/i2 =  0 . (8.97)

In summary we have as % -4- 0 0 :

ÿ +  . . .  ; (8.98a)
^2 fo o

(̂2) _  +  . . .  . (8.98b)
0 2 /d

' 2 ' 00

Hence at the junction ÿ = foo we have equality of these two expressions. 

Since the predictions (8.98a,b) are obtained by considering only the leading- 

order correction term, we feel that the simplifying assumption of this section 

provides us with a useful indicative tool with Uq constant. We recall that this 

tool is predicated on the assumption on page 262 above of no streamwise flow 

development in the downstream end of the bending region.
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III

p s e u d o - w a k e  r e g i o n

Figure 8.8: Regions of the flow fleld.

Discussion

Returning to the non-linear equation (8.90) we note that the condition on 

at the junction is

(8.99)

The condition on as ÿ —>■ oo required to match with Ti in (8.84)-(8.88) 

raises some questions. If we first suppose that ~  cy in the limit ÿ oo, 

for some non-zero constant c, then in (8.84) we need to take

T " -A (2 /)  +  % (X ,3 /) (8.100)

such that f i{y) ~  Scy as y approaches the junction. This suggests setting 

f i{y) = c(l — y) such that

r "  ~  c(l - y ) - \ -  5Î2{X, y) , (8.101)

where the first term on the right hand side matches with Tq and the second 

with T\.

However, the incoming flow has ^ ^  -I- ^ from (7.51), which suggests

that T =  {yrY  =  ^1 — . With the scale change, the implication that

T-o (1 -- %): (8.102)
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near the junction seems to indicate that c =  0 in the above.

The above discussion indicates a term in ÿs becoming important, making 

the downstream region very much like the wake flow reported in [60]. The 

schematic conflguration of the regions is represented in Figure 8.8. The pseudo

wake flow for large X  feels the inflow determined by solving the non-linear 

problem for and a continued development of the interface between regions 

I and III may invalidate the results for large X  obtained above. We note 

that as the thickness of the pseudo-wake region increases (as X) ,  the region 

gradually feels the influence of the lower wall.

Finally, we observe that continuity of Ux across y = f  yields:

y-f

= 2(12

(8.103)
y=f

y 
/ = /

(8.104)
ÿ=f

Once the non-linear problem involving (8.90) has been solved for we can 

use (8.104) to determine /  precisely and hence the linear problem for on 

page 260 above can be solved.

8.2 The quasi-straight axisymmetric 

three-dimensional duct

In this section we turn our attention to the merged flow in an axisymmetric 

three-dimensional duct. The configuration diagram is shown in Figure 8.9.

8.2.1 Governing equations

Since Û2 is driven by K 2 in the downstream far-field of the entry region, from 

equation (7.14), Û2 remains zero in the quasi-straight case. Furthermore, sec-
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X  = ex

Figure 8.9: Coordinate configuration for the three-dimensional axisymmetric 

duct. Note that the boundary layer is not shown and that the duct is consid

erably longer than indicated here.

ondary fiow-generating sharp corners are absent in the cross-section if we con

sider an axisymmetric duct, and so then we only need to solve for U in the 

%-direction and V  in the wall-normal (radial) direction.

Full equations

The full dimensional general axisymmetric equations are given in [15, p.259] 

as:

Continuity:

Momentum:

■ ^ { tdPdUd ) + - ^ { r n p V  d) = 0; (8.105a)

dXD
\ d (  dÜD _ —  

t d   P d u ' v ' d

dvD
dpD 
dx D

(8.105b)
rn dyo V ^

where is a known function oI yd , bars indicate averaged quantities, and 

primes indicate fluctuating quantités, as in Chapter 6. Note that the slender 

layer approximation has been used here since xd yd far downstream in the 

merged region.
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We model the turbulent stress term with the Cebeci-Smith model as pre

viously, and re-iterate that the analysis holds in general for any two-tiered 

algebraic mixing-length model. The eddy-viscosity %  in the axisymmetric 

case is given in [15, pp.255-256] as

B d =
dUp
dyp 7tr

(8.106a)

where

L d — OAtod^ ti

ÔlD =
prop /

^  J o  V 1 -

Td

Tod

Ud

_ e x p ( - g L n ( ^ ) )

1 -  —  ) dyD 
Tod

(8.106b)

(8.106c)
{Uq )d .

We take the intermittency factor 7tr to be unity and û; =  Oi =  0.0168, as 

throughout this thesis.

Referring to Figure 8.9 we have i/d = tqd — td- Furthermore, in keeping 

with §8.1, we non-dimensionalise the length scales on tqd which we take to be 

constant. The mean density and mean molecular viscosity are also taken to be 

constant. As previously, we non-dimensionalise the velocities on the upstream 

uniform flow, the pressure is non-dimensionalised on twice the upstream dy

namic pressure head, and in the following work we omit the bars since it is 

understood that mean quantities are considered. Finally, we take Re ^  \  such 

that the laminar viscous stress terms vanish to leading order.

The non-dimensional governing equations are thus:

((1 “  y ) u ) x  +  ((1 — y ) y ) y  — 0 ;

BH,
U U x  +  V U y  — —P x  -  +  ( B U y ) y  ,

(8.107a)

(8.107b)
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where in the limit Re ^  oo the non-dimensional eddy-viscosity is:

I a2 { l - y ) L n ? { l - y ) U y  , y < y j  ;
(8.108a)

, yj  < y  < 1  ,

and

oi =  0.0168 , Ü2 = 0.16 , “  y* ^1 -  (1 — y ) d y .  (8.108b)

We observe that the curvilinear coordinate system has introduced an extra 

factor {1 — y) in the continuity equation. Further, there are now two terms 

involving the eddy-viscosity B  in the ^-momentum equations, and the form 

of B  in the inner region now contains a Ln  term which was not there in the 

two-dimensional case.

Perturbed forms

For consistency with the work of Chapters 6 and 7 and with §8.1 we take the 

following velocity and pressure perturbations when x = and y ~  1:

U = l + elJ + ; (8.109a)

V = e^V + . . .  ; (8.109b)

p = 1 êpi{X) H- i ‘̂p2 {X, y) . . (8.109c)

With these perturbations the quasi-displacement becomes:

0i = J  ^1 — (1 -f- èÛ -l-. . .  )(l  — H" . . .  )^ (l — y) dy (8.110a) 

=  6̂ 1 -k . . .  , (8.110b)

where 6i = f  {Üq -  Û){1 -  y) dy . (8.110c)
Jo
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Consequently, examining (8.107a,b) and (8.108a,b) to leading order gives:

( ( l - y ) î / ) ^ + ( ( l - ÿ ) l / )  = 0 ;  (8.111a)

Ûx =  - P i x  +  ^  ((1 — 2/)-®^!/)^ ' (8.111b)

where

(
02(1  -  y)LrP{l -  y)(jy , y < y j  ,

(8.111c)

aiSi , yj < y  < 1  .

The boundary conditions as y —)■ 0+ are:

Û ^  I ' Ln{y) +  . . .  and V" =  0 . (8.112)

Equation (8.111b) can be solved for Û and then V  can be found separately 

from (8.111a).

8.2.2 Analysis and comparisons with experiments

Integration of (8.111a) gives:

—— f  Ù{l — y)dy-\- (1 — y)V  = 0 ,  (8.113a)
aA  J q l j 0

that is: f  Ù{1 — y) dy = constant for all X .  (8.113b)
Jo

Since U is zero at X  —>■ 0+ we have

f  Ù{1 — y) dy = 0 for all X .  (8.114)
Jo

Then equation (8.110c) is

Ô1 = f  Û(i(l — y) dy — f  Û{l — y ) d y  (8.115)
Jo  Jo
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where the second integral on the right hand side is zero by (8.114). Thus

<̂i =  2 ^ ^  • (8.116)

We note that 6% in the two-dimensional duct is twice the centre-line velocity 

term Uq , whereas here it is ^Uq , which is a considerable difference between 

the two-dimensional and three-dimensional axisymmetric cases.

We observe that for a function G defined in the duct the double integral 

over the cross section is:
• 27 t  r l  r 2TT pOni pzn pu

G{x,r,(f))r drd(j)= / / G(x,{l  -  y),(f)){l -  y) {-dy)d(l)
Jo Ji

ni
G{x,y ,( f ) ){ l -y )  dyd(f) .'0 JO

In the axisymmetric case considered here all the principal variables are func

tions of X  and r  only. Then integrating (8.111b) over the cross-section yields

n
l  ^ p 2 tt p 1 p 2 n  . x

Û x { l - y )  dydcj) = - p i x  /  /  (1-2/) dyd(f)T /  /  1(1 -  y ) B Ù y )  dydcj)
Jo Jo Jo Jo  ̂ ' y

(8.118)

which by (8.114) reduces to:

i  • PlX • 27T =  27T (1 -   ̂ . (8.119)

Since =  0 at the centre-line to preserve symmetry, and by using the wall 

boundary condition on U given in (8 .1 1 2 ) together with the series expansion 

of Ln(l — y), we obtain

Pix — —2^2 ) (8.120)

which predicts a pressure gradient twice as great as the two-dimensional case.

We may compare the prediction (8.120) with the experimental data of 

[52]. Measurements of the non-dimensional pressure difference Ap between the 

current A-station and the exit pressure are plotted in [52] for two Reynolds
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i - w id t h s  u p s tre a m  of ex it ^ -w id th s  u p s tre a m  of e x it

Figure 8.10: Left hand side: comparison between (8 .1 2 0 ) (line) and [52] at 

Re = 25,000. Right hand side: comparison between (8.120) (line) and [52] at 

Re = 250,000. Ap is the pressure difference described in the text.

numbers corresponding to 2.5 x 10  ̂ and 2.5 x 10  ̂ as we have defined Re. 

We plot against distance in half-widths measured from zero at the exit and 

increasing upstream. The comparison is shown in Figure 8.10, We observe 

that the prediction (8 .1 2 0 ) compares very well with the experimental values 

particularly near the exit of the duct where perhaps the flow is more fully 

developed.

8.2.3 Small-ai analysis

In this section we utilise the numerical smallness of ui in the outer part of the 

eddy-viscosity model as we did in §8.1.4. With this approximation we will show 

that the centre-line velocity increases linearly with X  over an 0(1) section in 

the X-direction, and that far downstream the junction position yj = f { X)  is 

constant and lies very near the duct centre-line.
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The governing equation now becomes

Ux =  fl2 ^2 +  ((1 — y)^Ln^(l — y ) Û y ^ ^  (8.121)

for y < yj,  from (8 .1 1 1b,c) and (8.120). The boundary condition as y ^  0 +  

is still as that in (8 .1 1 2 ), but the requirement at the unknown y = y j  is

Ûy = 0 , (8.122)

due to the smallness of ai. In order to make the governing equation appear 

more compact we let

-^ (^ 5  y) — g ^  3 (8.123a)ZÜ2

and cr{X,y) =  (1 — y)Ln{l — y)Ûy , (8.123b)

so that (8 .1 2 1 ) becomes:

Fx =  . (8.124)
1 - 2 /

In addition we introduce the junction-fitted coordinate ^ such that 77 =  0 

at the wall and 77 =  1 at the junction. Equation (8.124) then becomes:

Fx = )  ( m  +  Y ^ )  , (8.125)

where ' denotes differentiation with respect to X .  The boundary conditions 

on F  are

Eyy =  0 at 77 =  1 , (8.126a)

and Frj ~  as 77 —> 0 +  . (8.126b)
2(%2?7

The first of these conditions requires that =  0 and hence cr =  0 at 77 =  1 . 

Then Fx =  0 at 77 =  1 and thus

Û{y = f )  = 2a2X-hci . (8.127)
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There is no significant variation in U between y = f  and the centre-line y = 1 

since we have neglected the outer part of the model, and so (8.127) gives the 

centre-line velocity as

Ûq =  2cl2 ^  T  Cl (8.128)

for X  of order unity. We note that this linear growth rate is twice that of the 

corresponding result for the two-dimensional case.

In order to determine next the far-downstream position foo of the junction

/  we consider the limit X  -4 oo in (8.125). We first observe that we expect

Fx = — 1 in the limit X  —)■ oo and so we consider

=  - 1  . (8.129)
/oc(l -  »?/oo)

Hence

cr = fU r i ' ^ fo o - ‘̂V + di)" (8.130)

for some constant di. Since <t —>■ — 1 as 77 —> 04- from (8.126b) we obtain 

di = and so

(T =  (T7Vi-277/cx, +  l)^ . (8.131)

Finally, we require cr =  0 at 77 =  1 from (8.126a) which implies {foo — 1)  ̂ =  0, 

giving:

/oo =  l . (8.132)

The small-Gi analysis has thus shown that, after linear growth in the centre

line velocity for X  of order unity, a downstream state emerges where the centre

line velocity is constant and the junction position is constant and lies very near 

the centre-line. We recall that this is an approximation to its true position. 

We conclude that the three-dimensional axisymmetric case is therefore similar 

to the two-dimensional case in the above sense, and the fiow development 

predicted here is shown in Figure 8.11.
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y

Figure 8.11: Predicted flow development from the small-âi analysis if Ux = 0 

downstream. This is a two-dimensional representation of the three-dimensional 

axisymmetric flow.

8.3 Final discussion

A significant point is that the important parameter Uq (centre-line velocity 

contribution) has “memory”, in the sense that it is coupled with the total flow 

development and cannot simply be predicted even in fully developed motion 

from a knowledge of the pressure gradient in the duct. At first sight, the 

strong dependence of the flow on Ùq  coupled with the memory of Uq  suggests 

that, in most flow situations, a substantial calculation needs to be performed in 

order to determine the far-downstream fully developed form. However, we have 

shown in this chapter that a potentially powerful predictive tool is suggested 

by the development of /  (junction position) and U q  . This development firstly 

involves /  and Uq  growing linearly, exactly in line with their entry-region 

asymptotes. Both curves then bend suddenly (where the junction position 

closely approaches the centre-line) and attain their far-downstream uniform
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values within a very short streamwise distance. This behaviour was apparent 

from the numerical results and is consistent with an asymptotic study.

Also there is a further connection with the experimental work of [2], We 

mentioned above that the pressure predictions are much closer to empirical 

values than are the centre-line velocity predictions. In [2], the pressure gradient 

was established within 15 diameters, whereas the centre-line velocity was not 

yet established after 40.



Part III

Conclusions
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Chapter 9

Conclusions and further work

9.1 Summary

The effects of streamwise curvature on the flow through ducts was studied in 

two parts in this thesis. Part I concerned the influence of curvature on the core 

flow, while Part II studied the curvature effects on the growth and development 

of turbulent boundary layers in the duct.

In C h ap te r  2, as an extension to [77], the entry region of the bend was 

studied first. It was shown that the apparent pressure discontinuity at the 

start of the bend experienced by the flow on the full-bend length scale is 

smoothed across the onset of the bend over a short entry region length scale 

due to an upstream influence. A similar mechanism acts at the end of the 

bend. Then over the longer scale we solved the governing equations of the 

inviscid incompressible case. The closeness between the numerical results and 

the analytical predictions was described in line with [77]. Solutions were also 

obtained for novel initial conditions which highlighted the dependence of the 

far-downstream flow on the initial conditions. The far-downstream behaviour

277
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is also dependent on the length of the bend and the relative strength of the 

incident swirl.

Chapter 3 provided a summary of relevant thermodynamics, including 

in §3.3 the equations necessary for the extension of the work in Chapter 2 to 

include compressibility. This led into Chapter 4 whose main focus was on 

the compressible inviscid case in which the density varies. The integrals over 

cross-sections of the leading order variable parts of both the streamwise velocity 

and the density were found to be conserved through the length of the bend, 

but the density along streamlines is driven by vorticity. The vorticity grows 

linearly with 6 . The far-downstream behaviours beyond a bend termination 

or when the bend is maintained indefinitely were also studied. In the first 

case, ^-invariant states emerge far downstream, whereas in the second case 

the variable components of the streamwise velocity and of the density attain 

^-invariant states but the vorticity grows linearly with 6 . Over a longer length 

scale this behaviour continues, suggesting the appearance downstream of a 

more strongly non-linear regime. Also, there exists a singularity in the vorticity 

close to the corners but not in the density.

Chapter 5 was principally on computations, first for the compressible in

viscid case. We employed a fourth-order accurate compact differencing scheme 

with mid-point averaging in the marching {6 ) direction. The numerics con

firmed the predictions from Chapter 4. The ^-invariant states are clearly due 

to the mixing of the profiles apparent from the numerics due to the non-zero 

swirl. Once again, the non-zero initial swirl regime highlighted the importance 

of the initial conditions and showed the strength of the mixing effects of the 

swirl (which grew non-linearly through the bend here); a four-cell structure 

was mixed around to a two-cell structure.
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Second, we addressed the fully non-linear compressible inviscid case. Bulk 

properties were derived as part of the numerical planning. The numerics were 

run over a wide range of initial conditions and parameter values. Vorticity 

grows linearly with 6  but the streamwise velocity is not mixed, and pressure 

and density evolve very weakly. In the absence of curvature no evolution occurs 

if the initial swirl is zero. When the curvature is weak vorticity grows linearly 

with 9 before connecting with a more curvature-driven region downstream. 

When the curvature is of order unity then just after the start of the curved 

section the streamwise velocity and the density are conserved, while vorticity 

evolves linearly with 9.

We examined the fully non-linear inviscid incompressible case, and we 

showed that the fully non-linear compressible inviscid case reduces to the fully 

non-linear incompressible inviscid case, in contrast to the weakly non-linear 

cases where density made a distinct difference. However, with a weakly vary

ing cross-sectional area po and p would in general be expected to vary.

The governing equations of Part I are summarised in A p p en d ix  A.

Part II concerned the growth and development of the turbulent boundary 

layer in the duct and the work therein holds in general for any two-tier mixing- 

length model of the eddy-viscosity. C h ap te r  6 gave a general discussion and 

the governing equations for the inlet flow in a straight duct and the entry flow 

in a curved duct were derived.

In C h a p te r  7 we showed that the velocities split into a core-flow influence 

and a fully turbulent part which in the streamwise direction behaves like that 

in a turbulent boundary layer over a flat plate. There is in general a non-zero 

cross-flow. We derived solutions for the fully turbulent streamwise and cross- 

flow velocities. The fully turbulent streamwise velocity has no dependence on
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the coordinate which runs around the duct, but the fully turbulent cross-flow 

velocity in general does. A study of the fully turbulent cross-flow velocity 

showed that at this length scale it asymptotes to a constant value at the wall. 

There are three distinct downstream regimes in the curved duct depending on 

the relative magnitudes of the swirl in the core flow and the turbulent fluc

tuations: the quasi-straight merged turbulent boundary layer; the interaction 

regime; and the regime in which the turbulent boundary layer stays thin.

C h a p te r  8 studied the quasi-straight merged case. In the two-dimensional 

case the quasi-displacement is equal to the leading order variation in the 

streamwise centre-line velocity and the pressure grows in proportion to the 

distance downstream. Computational work showed linear growth in both 

the junction position and the centre-line velocity, followed by a sudden bend

ing to the far-downstream asymptotes. An analysis based on neglecting the 

outer part of the turbulent boundary layer showed that the sudden bending 

is smoothed over a short length scale and possibly connects with a pseudo

wake flow downstream. Predictions and numerical results were compared with 

experiments.

Next, the quasi-straight three-dimensional axisymmetric case was consid

ered with predictions for the linear growth of the quasi-displacement and pres

sure. An analysis based on neglecting the outer part of the turbulent boundary 

layer suggested that the junction position increaes linearly until close to the 

centre-line before suddenly becoming constant. Comparisons with empirical 

data were made. Connections with Fanno flow are discussed in A pp en d ix  

C; the effects of the turbulent boundary layer described by a two-tier mixing- 

length model agree with Fanno flow effects in the duct.

Recommendations for industry have been collated in A p p en d ix  D with
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reference to the main text of the thesis.

§§2.1 and 8.1.4 represent joint work with Professor FT Smith.

9.2 Further work

The points 1-4 below are suggestions for areas of related study. As such, a 

more detailed outline is given for them than for the remaining points which 

extend more directly from the work of this thesis.

1. An extension mentioned in [77] to the weakly non-linear cases is to study 

the u n s tea d y  effects by replacing the operator de by the scaled operator 

dt +  de. In this way the reported results of those cases will remain 

the same in a forward-moving frame. Notably, the unsteady weakly 

non-linear compressible inviscid case cannot feature shocks. However, 

the leading-order variation in streamwise velocity in the fully non-linear 

compressible inviscid case admits the appearance of shocks in the flow. 

In this latter case the scaled operator dt is added to Ude in the equations 

(A.6a-e), creating a largely numerical problem.

In a straight duct the flow becomes quasi-one dimensional and numerical 

results would be compared with classical shock-tube properties (as found 

in any basic text book on compressible flow). Similarly, in the limit of 

large time the results should correspond to those of the fully non-linear 

case. We note that there may be an opportunity for analytical work in the 

regime when the curvature parameter A is small and a small perturbation 

is imposed upon a classical planar shock.

The above work would be an important addition since empirical data 

appears to show the presence at least of compression waves in the mo-
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tivating industrial problem [55]. Furthermore, the sudden pressure rise 

which is a characteristic of shock waves has previously been exploited in 

machines designed to sort rocks and minerals [4]. The unsteady three- 

dimensional development and propagation of an initially planar shock 

in a curved duct are not well understood and indeed we have been un

able to find any previous work which attem pts to address the problem 

in three dimensions. Much previous work concentrates on the effects on 

the propagation of the shock caused by changes in duct cross-sectional 

area. Such area changes may be smooth or sudden, large or small; for 

example, the work in [38] and more recently for two dimensional ducts 

in [44], in which it is shown that some expansion effects are genuinely 

two-dimensional and cannot be treated in a quasi-one dimensional for

mulation. Such work is also relevant to industry when ducts of different 

cross-sections are joined.

It is hoped that a study of the unsteady shock propagation would reveal 

the effects of curvature on the shock. In particular, a question of some 

importance to industry and related academic questions (see point 4) is 

whether an initially planar shock normal to both walls remains normal 

when passing through a bend, and indeed whether it remains planar at 

all. Should the shock become curved, for example, then the recent work 

of [57] and references therein may be of use. See also [19, pp.200ff].

The computation of flows with shocks is the subject of the review paper 

[58] which contains many useful references and comparisons between so- 

called “old-fashioned” methods and “more modern” ones. The numerical 

techniques employed in this thesis would be classified as “old-fashioned” 

in [58], and yet the paper concludes that such techniques can work as
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effectively as the “more modern” ones. Extending the numerical tech

niques of the current thesis to the computation of unsteady flows with 

shocks is therefore a reasonable prospect.

Finally here we note that there are several questions related to the above 

proposed extension. For example, the effects of a finite-time opening of 

the diaphragm (frequently modelled as instantaneous) is treated analyt

ically in one dimension in [92], and extended more recently to include 

disspative effects in [Ij. Additionally, industrial environments are fre

quently dust-laden, and the shock-attenuating effects of dust in a duct is 

studied in [45] and references therein which may provide starting points 

for a similar analysis in curved ducts. We also note that much work on 

shocks in ducts appears to be motivated by the compression waves gener

ated by high-speed trains entering tunnels, such as in [40] and references 

therein.

2. In unsteady compressible flows with shocks through straight ducts the 

growth of the turbulent boundary layer influences the shock propagation. 

This extension to point 1 above clearly ties in also with the turbulent 

boundary layer work of the current thesis, and in particular with the 

Fanno flow effects of Appendix C in which we mention that these effects 

tend to drive the Mach number towards unity. The influence of the 

turbulent boundary layer on shock propagation appears to have first 

come to the attention in the field of aerospace engineering, for example 

in [88] and references therein. The influence continues to be of interest 

and more recent relevant examples are [62] and cited references.

3. In addition to the unsteady effects described in point 1 above, a study
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of the p u lsa tile  nature of the motivating industrial problem would help 

to increase the physical relevance of the model. Such work may build 

on the large body of literature concerning the (viscous) pulsatile flow of 

blood through blood vessels, and also on [74] and references therein.

4. An issue of some significance to the motivating industrial application is 

the detail of the expulsion of a shock from the exit of the duct into 

the atmosphere. This addition builds naturally on the work in point 1 

above. As the shock is expelled from the duct it sets in motion the exter

nal quiescent fluid and therefore the shape and velocity of the expelled 

shock can be expected to influence the initial conditions of the resultant 

external jet (whose details are being studied by Mr P.E. Westwood at 

UCL).

A brief summary of previous work in the general area of shocks expelled 

from ducts into the atmosphere now follows. In [93], small shocks are im

posed upon the main shock and the development of these “shock-shocks” 

is studied in a kind of perturbation theory for shock waves. We note in 

passing that it is this theory, developed also in [93] for flows on curved 

walls, which is expanded in the reference [1] cited above on page 283. Of 

particular relevance to this discussion is the diffraction of shocks around 

convex corners in two dimensions studied in [93]. A strong planar shock 

diffracting around a corner of small angle becomes downstream a planar 

shock moving in the same direction as the incident shock and attached 

via a shock section curved by a Prandtl-Meyer expansion fan to a wall- 

normal planar shock which propagates along the wall. Since there is a 

maximum angle (the Mach angle) through which a shock can turn, the 

curved shock section may be replaced by a curved compression wave as
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the angle of the corner increases, as shown in [93, p. 162]. This theory is 

generalised to shocks diffracting across convex edges in three dimensions 

in [94] and tested experimentally in [69]. It would be useful to examine 

the above topic in more detail and to study the theory for curved ducts, 

incorporating predictions from point 1 above.

A review of the above literature and references therein suggests that 

the shape of the duct exit is important in determining the downstream 

external behaviour of the flow. Currently, the motivating industrial set 

up features a 90° flanged exit, but a detailed study of the exit-shape 

effects may suggest changes to this design.

Of great importance to the modelling of the external dynamics is the be

haviour of the flow as it suddenly exhausts into the atmosphere. In the 

incompressible cases, a potential flow spherical expansion is one possi

bility, while the formation of a jet of rapidly moving fluid surrounded by 

quiescent fluid is a second possibility. There is a fundamental difference 

between these two alternatives and careful examination of existing em

pirical studies would be required in order to create a physically realistic 

model. In the compressible case, it may be that as the high pressure 

region of fluid behind the shock emerges into the relatively low pressure 

atmosphere the flow expands producing an expansion fan and generates 

new wall shocks via a process similar to the original diaphragm-opening 

effect. If so, the details of [93, 94, 69] above should emerge. The work in 

[49, pp.8-34-8-37] may also be of assistance here.

Two expected outcomes of the above work would be a quantification of 

the axial decay in shock strength and an investigation of the possible 

interaction of wall shocks from adjacent ducts. Such predictions could
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be compared with the empirical work of [70].

Finally, we note that the diffraction of shocks across sharp corners in two 

dimensions produces vorticity at the corners as described for example in 

[80]. An extension of such previous work to study the vorticity gener

ated by a curvature-perturbed shock in three dimensions may also be of 

interest to industry.

5. Throughout this thesis the walls of the duct have been taken as perfectly 

insulating. In reality, sorting machines work in a variety of environments 

and temperatures ranging from sub-zero to in excess of 40°C. Although 

the present work is inviscid and non-heat conducting, a study of the 

effects of adiabatic bulk heat addition may be of interest to industry, as 

well as posing interesting academic questions. Another, related, feature 

of interest to the turbulent boundary layer study is the effect of wall 

roughness.

6. The numerical schemes described in §5.3 for solving the fully non-linear 

equations were sufficiently robust that we could make favourable compar

isons with analytical work in an order unity region of the flow. However, 

it would be desirable to have numerical solutions extending to the end 

of the bend — and preferably beyond — in order to make the study 

more complete. It is possible that the use of other numerical techniques 

such as those mentioned on page 167 could extend the validity o f the  

numerical solutions.

7. In the turbulent boundary layer work of Part II of the current thesis, 

the boundary layer was assumed to have undergone transition to tur

bulence at some unspecified point Xtv upstream of the region of study.
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Knowledge of the location of Xtr and the cause of transition (is it, for 

example, a result of an upstream influence of the onset of the bend?) 

would be useful in making the treatment more general. The reference 

[23] and references therein may be of use here.

8. In Chapter 7 we reported the behaviour of the outer part of the turbulent 

boundary layer. A study of the beh av io u r of th e  sub layer when 

subjected to the streamwise curvature would be an important extension. 

For example, a more detailed analysis of the manner in which the external 

influences are felt by the inner layer would be a part of such an extension.

9. A study of the influence of sh arp  co rners  in the duct cross-section on 

the growth and development of the turbulent boundary layers in curved 

ducts could be of use to industry. Previous work referred to in Ap

pendix B suggests that sharp corners are not desirable from the industrial 

viewpoint of maximising throughflow and minimising secondary flow (al

though we note in passing that the converse is desirable when designing 

heat exchangers, for example). A quantification of the secondary flow in 

turbulent boundary layers in the vicinity of sharp corners when stream- 

wise curvature is also present would be both useful and interesting.

10. A complete study of the downstream co re -tu rb u len t b o u n d a ry  layer 

in te ra c tio n  region if the turbulent fluctuations and the core swirl are 

comparable, as discussed on page 209, would be useful. However, this 

case presents some apparently challenging modelling issues. The buoy

ancy analogy modification to the algebraic eddy-viscosity model may 

well provide sufficiently accurate solutions. It is to be hoped that the 

reported suppression of turbulence on the convex wall of a rectangular
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duct and its enhancement on the concave wall (as discussed, for example, 

in [8, p.375]) would emerge from this analysis.

11. In the work of Part II only the leading order variations in the turbulent 

boundary layer velocities were studied. An investigation of the behaviour 

of the h igher o rd e r components would at the very least be expected 

to make the pressure and centre-line velocity predictions of Chapter 8 

correspond more closely with empirical data.

12. A study of the proposed pseudo-w ake structure far downstream of the 

bending region in §8.1.4 of the two-dimensional merged case would be of 

interest.

13. It is important to devise a numerical scheme to solve the th ree - 

d im ensional ax isym m etric  m erged (or merging) case of §8.2 and 

then to extend the theory and numerics to general cross-sections. This 

would provide numerical solutions which could be tested against empir

ical data, and help to validate the predictions of the small-ui analysis.

14. A further important extension to Chapter 8 would be to include the 

effects of c u rv a tu re  more. An analytical approach for weak curvature 

would be to study a small perturbation to the derived quasi-straight 

solutions.

The above points contain our main recommendations for further research 

in the area.
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Appendix A

Equations from Part I

A .l Incompressible Inviscid case

v; +  w , =  0 ,  (A. la)

Ue + VUy + W U , =  -p'o{9) , (A.lb)

Ve +  VVy + W V , = -P ly  , (A.lc)

Ws +  VW y  +  -  2KU =  - P u  ■ (A.ld)

A.2 Compressible Inviscid case

Vy + W, = 0 ,  (A.2a)

%  + VUy + WU, = -p'l (6 ) , (A.2b)

Ve +  VVy + WV, =  - P 2y , (A.2c)

Wi +  VWy +  WW, =  - P 2,  +  A{2U + p )  , (A.2d)

(po "VV Py -\-Wpz) — Pi{9) +  AIV $1 , ( A.2e)
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A .3 Incompressible Viscous case

U$ -\-Vy Wz — 0 ,

ü ü e  + v ü y  + w ü ,  =  -p'o(e) +  ,

ÜVe +  VVy +  WVz = —P2y +  5

UW0 + VW y +  W W , -  U^aO^ =  -P2z +
1

(A.3a)

(A,3b)

(A.3c)

(A,3d)

A.4 Compressible Viscous case

(pU)) +  (pV)y +  (pW)z — 0 ,

P ( m  +  v ü y  + WÜ,)  =  -p'oW  + [ipûy)y + { p ü , ) , ]  ,

1
p{UVe +  VVy 4- WVz) — ~P2y +  ^ — { p ^ y ) o  +  {pVz 4- pWy)

+  — pWz — pUe)y

p{ÜW e  4- VW y  4- W W z  -  Ü^aO^,) = -pzz +
1

RCfQ

-^{pVz 4- pWy)y

-{--{2p,Wz — pVy — pUe)^

p {Üfe + V f y  +  W f z )  =  (7 -  m l  

I r ,  X P
SCr

{(Pfy)y +  ip T ,) ,)  + ^  {Ü̂y + Ül)

P = Cr T  , 

pT = 'tM^po .

(A.4a)

(A.4b)

(A.4c)

(A.4d)

(A.4e)

(A.4f)

(A.4g)
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A.5 Fully Non-Linear Incompressible Inviscid case

Uff -\-Vy -\- TVg =  0 , (A.5a)

UUe + VUy + W U , =  , (A.5b)

UV$ +  VVy +  W Vz — ~P2y , (A.5c)

UWe +  VW y + W W z -  AU ^ael = -p2z ■ (A.5d)

A.6 Fully Non-Linear Compressible Inviscid case

{pU)d + piYy + Wz) = 0 , (A.6a)

p{UUe + VUy + WUz) = -p'o {0) , (A.6b)

p{UVff +  VVy +  WVz) — ~P2y Ï (A.6c)

p{UWe + VWy +  WWz -  hU'^ael) = , (A.6d)

Po = p’’ ■ (A.6e)



Appendix B 

The turbulent boundary layer 

equations in detail

As noted in [54], the choice of curvilinear coordinates can be arbitrary, but 

the various measures of coordinate curvatures associated with them are not, 

and in fact reveal an . intimate connection with the surface geometery . . . ” 

through the geodesic curvatures to be introduced below. Though the particular 

choice of curvilinear coordinates may greatly simplify the equations involved, 

the boundary conditions may in turn become overly complicated.

Orthogonality implies the length segment ds has

(ds)^ =  hl{dxi)‘̂ +  hl{dx2 )^ +  h\(dx^Y  . (B.l)

In general, the length functions hi depend on Xi, but we will make the assump

tions that the surface defined by the interior wall of the duct is regular and 

not excessively curved. These assumptions stipulate that the results hold only 

away from any corners. For some work on the secondary fiows in turbulent 

ducts induced by corners see for example [33]. More generally, by assuming 

that the surface is not excessively curved we mean to say that the curvature of
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the cross-sectional profile is small in comparison to the boundary layer thick

ness (which we shall see to be of 0{{Ln{Re))~^). In essence, this ensures that 

the walls act as if flat on a TBL length scale. In situations not to be considered 

in depth here, when this condition does not hold, then it is possible to modify 

the algebraic model . Accordingly, one approach is to model both transverse 

and streamline curvature with buoyancy terms, considered for example in [67, 

pp.602ff] and references accompanying the discussion on page 209. In such 

cases the turbulent oscillations in the transverse directions are damped due to 

centrifugal forces restricting inward motion, and a centripetal lift resisting out

ward motion ([67, pp.488-9]). Such curvature effects are reportedly stronger 

in laminar flows ([67, p.589]). As discussed in [54, p.288] and elsewhere, the 

assumption of small cross-sectional curvature leads to:

hi = hi{xi,X2 ) ; h2 = h2 {xi,X2 ) ; hs = I , (B.2)

where is the x^ metric on the boundary layer length scale such that = 1 

implies that we measure the actual distance normal to the wall.

Using standard general transformation formulae we can write the full con

tinuity equation as:

1
— — { h 2 h ^ u i )  - f  — — { h i h 3 U 2 )  +  — — { h i h 2 U ^ )  
dXi UX2 Ox^

=  0 . (B.3)
^ 1/12/13

Using either Christoffel symbols or vector geometry (see e.g. [54, p.60])), 

the components of the inertia term in the momentum equations,

{u • V )u  =  (grad u ) u  , (B.4)

in the curvilinear system can be derived. After applying the simplifications
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(B.2) they are:

/  _

grad u
hi dxi

/l2 dX2
1 du:i 

hi dxi
1 ana 

/l2 9X2

9«2
9X3
9 tt3
9X3

(B.5a)

where we have introduced the curvature parameters

1 dh2Ki =

K o  =  —

hih2 dxi 
1 dhi

(for X2 constant), 

(for Xi constant).
(B.5b)

hih2 dx2

As in [5, pp284ff] Ki  and K 2 define (the negative values^ of) the geodesic 

curvatures of X2 and Xi, respectively. We also note the definition of the Gaus

sian (or total) curvature K,  defined by:

1
K  =

hih-2
(B.6)

which is the same everywhere on the surface. A developable surface is one 

for which Æ =  0, in which case hi = 1 for all i. The Gaussian curvature is 

related to the choice of coordinates and a good general discussion of the choice 

of coordinates is given in [54, pp292-3].

The viscous term in the momentum equations is p, • div(def u), which (fol

lowing [54]) we write as:

I- dhi Tij -f- T.
hjdxj hi

_ dhj Tjj
hidxi hj

(B.7)

where ^/g = hih2hs .

 ̂We say the negative values because they can be defined without the minus sign. However, 

the inclusion of the minus sign above is more in keeping with some modern-day uses, for 

example in [26].
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Thus with the above assumptions and definitions in mind, we have the follow

ing:

Xi-mtm:
ui dui U2 dui
hi dxi  /i2 dx2

a;2-mtm: Ui du2 U2 du2
hi dxi  /i2 dx2

j:3-mtm:
du^ ^  U2 dU3

hi dxi h2 dx2

dui 
dxs 

1 drii

■U3 —  K 2U 1U 2 T  K 1U 2 —
1 dp 

hi dxi

hi dxi  /12 8 x 2 dxs 

K i{h i  — 7*22) — ■̂ 2('7'i2 — 721) ;

(B.8a)

W3
du2 _  , 2 _  1

—  K 1U 1U 2 T  K 2 U 2 —
8 x 3 

1 8t21
ho 8x‘:

^  1 8t22 ^723
hi 8 x 1 h2 8 x 2 8 x 3

— K i { t i 2 — T 21) — ^ 2 ( 7 2 2  — 7 i i )  

8u3 8p

(B.8b)

■U3
8 x 3 

1 8t31

We note that

8 x 3

_______  ̂ 1 8 x32 ^  8 x33

hi 8 x 1 / 1 2  8 x 2  8 x 3

~XiX3i — K 2X32 •

_  Hij , _

X i/i  —  „  “ 1“  'T^Tij 5

(B.8c)

(B.9)
Re

and as a consequence of incompressibility this reduces (see e.g. [54, p.25]) to:

Tij = ^ ( g r a d  u)ij +  XTij . (B.IO)

enabling us to write the viscous terms directly from (B.5a,b).

Where 5 represents the TBL thickness we have the following orders of 

magnitude in the TBL:

ui,U2 ,Xi ,X2 ,h i ,h 2 ^  1 ; X3 ^  5 ; i ^ i , i ^ 2 ~ l

with continuity ensuring U3 ô .

The continuity equation is therefore unchanged in the TBL. The left hand side 

of the Xi-momentum equation is of 0(1) and since all stresses vanish at the
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edges of the TBL, the pressure gradient felt there must be of 0(1) also, so we 

shall retain the pressure gradient (in the xi-  and o:2-momentum directions) in 

the momentum equations. This is analagous to the approach explained in [15, 

p.67]. See also equation (B.14) below.

The Newton laminar stresses in the xi-momentum equation are all of 

0{Re~^),  with the exception of

^ ^ ) i3 l =  Re~^ô~^ . (B.12)
d x 3 \ R e  J Redxj,  \dx^

We choose Re~^5~‘̂ ~  1 in order to retain this contribution, but since we take 

Re OQ the other laminar stress terms do not appear at this level. A similar 

argument exists based on dimensional quantities, c./. [15, pp.66ffj.

Arguments to determine the contributions retained from the Reynolds 

stresses are considered in detail in [15, pp.69ff], and will not be repeated here. 

The analysis in [15] enables us to write the x\- and ^ 2-momentum equations:

+  +  + K ,u \  =hiOXi h2 0X2 oxs hioxi  Reoxs yoxs

Ui du2  , U2 du2  (9^2  ^  2 1 d p  1 d  f  dur,
+  — -----1- 2/3-%------K\U\U2 +  H 2U2 — — — ------h

h id x i  h2 dx 2 dx^ h2 dx 2 Redx^ \dx^

+  ^  . (B.13b)
dxi

The leading-order balance of the Tg-momentum equation yields

d p
=  0,z.e;  p = p{xi,X2 ) ,  (B.14)

0 x 3

and so we can determine p in terms of its edge values.
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The boundary conditions are as follows:

u  =  {ui,U2 ,Us) =  0 at 0:3 =  0  (no slip) ; (B.15a)

non-wall shear stresses =  0 at 0:3 =  0 and at 0:3 ^ 0:3g ; (B.15b)

u  =  at 0:3 =  0:3g , (B.15c)

where Uy; is the core flow at the wall of the duct.

The next important step is to model the turbulent stress terms. Although 

such models arise from hypothetical considerations, the important constants 

involved are usually determined from experiments only, and the one we will 

choose is that proposed by Cebeci and Smith [15]. The decisions affecting 

this choice have been covered in §6 .1 , where also we remind the reader that a 

specific model is chosen to give us numerical answers, but that many of the 

results which follow hold in general for two-tier mixing-length algebraic eddy 

viscosity models.

Following [15] we set in the dimensional equations:

dui
-pu\u'^ =  . (B.16)

We will furthermore make the assumption of isotropic eddy viscosity, setting 

B i =  B 2 =  B . Anisotropy can apparently be significant, though only when 

the ratio of the boundary layer thickness to the radius of curvature of the 

streamlines becomes large, as discussed in [64, pp.537-8] and [67, p.640].

In the original two-dimensional formulations, it was known that a TBL has 

a two-tiered structure. In the outer layer there is a balance between inertial 

and turbulent forces, whilst in the wall or inner layer, viscous and turbulent 

forces balance. As discussed, the detailed asymptotic structure of the layers 

has also been shown to hold in three-dimensional layers in [26] (earlier work 

by [15] shows consistency) and so we will safely make the assumption here.
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Note that the outer layer is somewhat more important here as it determines 

the thickness of the boundary layer. In other applications, the inner layer can 

be the most important layer, for example in heat transfer — see e.g. [28]. The 

dimensional form of the eddy-viscosity is as follows:

B d =
L l

a U tD ^ iD  5 ^ 3 £ » e  >  >  ^ 3 D J  ,

where a = 0.0168 is an experimental constant, x^dj is the unknown junction 

between the inner and outer layers, and the so-called displacement thickness is

<5ip =  r  1 -  +  dx,u  , (B.lSa)
JO ' t̂D

where Uto =  is the total velocity . (B.18b)

In this instance, the external potential flow will impose small variations on 

itoo =  t^Doo(ljO,0) and so to leading order in that case, Ut = 1. In external 

flows, such as the flow past a swept inflnite cylinder, the external potential 

flow is varied significantly away from the free-stream and so one needs to leave 

in terms of uie and U2e (see e.g. [15, p.781]). It is the discrepancy at the edge 

which matters, and the edge values are very close to the oo values in the former 

case. Note also that we will non-dimensionalise the TBL velocities on Udoo — 

the incident dimensional core flow velocity used to non-dimensionalise the core 

flow velocities — whereas in swept-cylinder flows in [15] Ue is used, and in an 

external small cross-flow case with stream-line coordinates in [15], Us is used. 

The choice of Udcx here is not the only consistent one. In [60] the equivalent 

of the dimensional total edge velocity UtD is used, and this would lead to a 

simpler form of the outer part of the eddy viscosity, though importantly to the 

leading order which we exclusively consider herein, there would be no change
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to either the equations or the results. Choosing to non-dimensionalise the 

TBL velocities on utn would not lead to much confusion if extended to the 

non-dimensionalising factor for the core flow, since upstream of the analytical 

region we are assuming slip, and thus Udoo ~  uto- The Reynolds number 

would also be of the same order of magnitude.

In a laminar boundary layer the adjustment to the external flow velocity 

occurs smoothly, and so a definition of an “edge” and a “thickness” 6 is some

what arbitrary, as discussed in [67, p.30), though a common definition is the 

distance from the wall by which the velocity has attained 99% of the external 

value. The situation with TBLs is different since the potential (irrotational) 

external flow is non- (or weakly-) fluctuating, whilst the flow in the TBL is 

rotational and fluctuating. This defines an “edge” to the TBL, but it is an edge 

with strong spatial and temporal fluctuations, or intermittencies. The inter- 

mittency factor given on [67, p.513] can be used to define another thickness ôe 

giving the time-averaged position of the well-defined edge. In fact, Sq = 0.78(5.

We will not consider intermittency in our models as it has a complicating 

effect without generating any new information here. Consequently, the dis

placement thickness we have defined above has the most physical significance, 

since it can be thought of as the distance by which the external potential flow 

field is displaced due to the viscosity near the wall. This does not remove 

all ambiguity, since displacement thicknesses can also be defined in different 

directions. The displacement thickness in three dimensions is even more am

biguous, as described in [26, p.53). Further note that if we take the above 

definition of 6 as the distance by which u = 0.99wqo then ô % 3(5% [67, p.32] for 

a flat plate. The name of Ut — {ul 4- is the resultant velocity defecit.

In the above expression, a = 0.0168 and is generally assumed to be an
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experimentally-determined universal constant, but it has been shown {e.g.

[14]) that for low Re (typically for Re < 6000) it varies as a function of Coles’ 

parameter. This does not concern us here but see for example [15, §6.2.4] where 

the universality of this and other constants is discussed. Furthermore,

L d — KXs 1 — exp -X3
A

where k, = 0.4 is von Karman’s (dimensionless) constant.

and Af) — A~^— u.j.'  ̂ is Van P riest’s damping parameter, 

where A~̂  =  26 is a dimensionless constant.

and Ur = [ — \ is the wall friction velocity,

with — =  1/
dui
dx^ + du2

dx3

and N  =

where =

P
Ur

+
 [l — ea:p(11.8ujy,)] +  ea ;p (1 1 .8 u ^ )
'̂ 3w

Un
i>ut\ dut 

dsui

(B.19a)

(B.19b)

(B.19c)

(B.19d)

(B.19e)

(B.19f)

(B.19g)

(B.lOh)

The symbol is the dimensionless pressure gradient parameter, and usy, =  0 

since there is no mass transfer through the walls, so =  0 and =  0 so 

p+ = 0 and N  =  l.(Note that for compressible flows there exist expressions 

for A, see e.g. [15, p.217].) Thus

Lf) = 0.4^3 

with A d = 2 6 z/2
dui
dx3 +

dur
dxs

(B.20a)

(B.20b)

We non-dimensionalise U{ on Udoo as before; Xi on Id - The non-varying 

parameters ^d ^Td^Pd are factored out. Thus the eddy viscosity in the inner
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region takes the form:

B d  =  U o o o h ^ A Q x l 1  —  e x p  I  —
Re2
26 %

dui
dx3 +

du-,
dx7

X
dui
dx:i +

dû ,
dxr̂

For the outer region,

B d  — U D o o lo O -U tS i  ,

where =  T  1 -
Jo ' t̂

dx:̂

. (B.21)

(B.22a)

(B.22b)

We clearly have therefore, B d = udooIdB  in both regions. A similar non- 

dimensionalising of the Reynolds stresses yields

dnisD PdU I^  d B
dui

(B.23)
d x ^ D  I d  d x s  \  d x ^

We are now in a position to write down the TBL equations in full, retaining the 

curvature terms dictated by our chosen geometry, and employing the Cebeci- 

Smith model.



Appendix C

Fanno flow effects

Flow near the start of the long quasi-straight duct

This appendix is based on the note [75]. We consider the equation (8.111b) 

with the expression (8.111c) in the limit X  - 4- 0+. In this region, the TBL 

is not fully merged and it matches with the x ^  oo limit of the entry region 

analysis for small /5 in Chapter 7. Thus the TBL flow described by (8.111b)

does not hold in a core region of the three-dimensional axisymmetric duct, and

the outer part of the model in (8.111c) does not extend to the centre-line at 

y = I. Consequently, (8.114) no longer holds.

We note that for the variable U{X,y) ,  its mean value Ü{X)  is defined as

f r , _ l o X *̂(1 - y) _ fo 7 o (̂1 - y) ,\
‘ ’ a ‘ Ï '

Thus an integration of (8.111b) yields

TriÜ + p i)x  = 27t ( l - y ) ê Û y   ̂ . (C.2)

By the above discussion, B = 0 at ^ =  1 and so:

(Ü + pi )x  = 2a2 - (1  — y y L n ^ (l — y)Ùy , (C.3)
L J t/—>0+
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from (8.111c). The behaviour oîÛ  as y -> 0+ is given by (8.112), which gives 

us

Üx P Pix = —2fl2 • (C.4)

On the other hand, we note from [49, p.8-24] that quasi-one dimensional 

Fanno flow in a circular duct has

Pd '^D'^Dxe) P  PD xd ~  ) (G.5)

where the subscript o represents dimensional quantities, fo  is the wall friction 

factor, and Do is the dimensional diameter of the circular duct. (The general 

expression for in other cross-sections is given on [49, p.8-24]). In the

incompressible case that we study here, we take fD = p o ’ f  and thus Fanno

flow is governed by
2 fu^

uUx Px — ^  • (0.6)

Furthermore, we recall from Chapter 8 that the following hold:

T =  e~^X ; (C.7a)

u = l + eÜ{X,y) + . . .  ; (C.7b)

p = 1 P  ipi{X)  -b . . .  , (C.7c)

where ê = {Ln{Re))~^. Thus (0.6) becomes

Ü x P P i x  =  —t / ~ ,  (C.8)ê TT

to leading order.

A typical mean friction factor is /  =  0.005 as quoted on [49, p.8-27]. For 

(0.4) and (0.8) to agree here thus requires

f  = 0,167t {Ln{Re))-‘̂ , (0.9)

corresponding to a Reynolds number of approximately Re % 2.26 x 10 ,̂ which 

is certainly within the range of Re considered in this analysis.
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D iscussion

We note that the above analysis holds in general for any two-tier mixing-length 

model. The analysis described above is interesting in its own right since it 

shows that the wall frictional effects in a duct can be modelled by the mean 

influences of the growth of the TBL described by a two-tier mixing-length 

model.

In a nod towards future work here we mention that the compressible theory 

of Fanno flow yields connections between the Mach number M  and the wall 

frictional effects. It can be shown (see e.g. [49]) that Fanno flow effects drive 

the Mach number towards unity, which could have interesting ramifications for 

the design of industrial ducts conveying high-Reynolds number flows.



Appendix D

Engineering guidelines

This appendix has been organised under headings of the principal factors which 

influence the flow development in the three-dimensional curved duct.

Influence of input streamwise velocity

• Shear:— Vertical variations in the input streamwise velocity drives the 

swirl (2.34b, 4.25, 5.23c and the discussion which begins on page 88) 

and should therefore be minimised by smoothing the walls upstream, 

weakening upstream bends, and minimising variations associated with 

the opening of the valve. For example, equations (2.41, 4.41) show that 

halving the input shear halves the growth rate of the integrated swirl. 

Swirl is to be avoided since it misdirects the output jet.

• Streamwise velocity is conserved:— In all cases the streamwise velocity is 

conserved in magnitude and is simply mixed around by the swirl (pages 

54, 88, 163 and §5.2.3), suggesting that the useful {i.e. streamwise) 

energy of the flow behind the shock is largely conserved. (We recall 

that this thesis studies the flow following the shock in the motivating
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industrial system and therefore cannot account for the large pressure 

and streamwise velocity drops.)

• Turbulent effects:— The size of the input streamwise velocity determines 

the Reynolds number Re (defined again below). In turn, this influences 

the size of the parameter ^  defined on page 194 as follows:

=  eLn(Re) = eLn , (D.l)

where i'd is the kinematic viscosity. The factors in (D.l) can each be 

adjusted since: e is the level of input swirl; Udoo is the size of the input 

streamwise velocity; is the typical duct width; and ud is the kinematic 

viscosity which depends for example on the fluid used. As explained 

on page 210, the turbulent effects can be minimised over a full-bend 

length scale by making /? large; current empirical data for the motivating 

industrial system suggest that (3 is of order unity. /? can be made larger 

by increasing e,UDoo,hD and/or decreasing i'd -

Increasing e requires increasing the level of swirl which has detrimental 

effects as discussed under the next heading. Increasing Hd would entail 

greater quantities of gas per diaphragm-opening and may reduce the 

accuracy of the ejectors since they would have larger blast “footprints”. 

I'd can be reduced in several ways. Temperature reductions would work, 

but large changes are needed to make a significant difference . Increasing 

the pressure of the gas supply would presumably lead to higher pressures 

and densities in the flow behind the shock due to the ensuing higher 

shock speeds, and the increase in density would decrease as required. 

Different gases have different vd- At atmospheric pressure and room 

temperature, air has Ud = 1.5 x 10“^m^s“  ̂ while carbon dioxide has
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ud = 8.03 X 10“®m ŝ~  ̂ which is lower. Increasing the chamber pressure 

would also increase Udoo which is desirable here.

Put simply, increasing the chamber pressure could reduce the effects of 

turbulence, as could supplying the ejectors with gases with lower kine

matic viscosities than air.

Large pressure drops can occur due to turbulent boundary layer thick

nesses (blocking effect) as in Chapter 8. These will be affected also by 

curvature if j3 is of 0(1).

Influence of input swirl

• Mixing:— Swirl evolves throughout the bend, but in every case the 

greater the input swirl the stronger the swirl is by the end of the bend. 

The swirl mixes around the streamwise velocity which we suppose can 

have a positive effect with regard to the ideal nearly-uniform exit pro

file; if the flow enters the bend with a highly non-uniform profile then it 

can be mixed to a more uniform profile by the end of the bend. How

ever, due to the turn-over distance described on page 115, current typical 

bend lengths used in practice are not always sufficient to mix profiles to 

a nearly uniform state. Increasing the bend length is not recommended 

due to the relationship between bend length and swirl strength described 

under the subsequent heading.

• Density:— The input swirl drives the density evolution in the weakly 

non-linear analysis via the action of equation (4.38b). However, the dou

ble integral of the density remains constant in the bend, from equation 

(4.49), suggesting an anti-symmetric development of the density pro

file. Zero input swirl leads to density variations typically of the order of
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0.02 X e, i.e. around 0.25% of the input density, from Figure 5.3, and 

only slightly larger for the non-zero input swirl, as shown in Figure 5.16.

• Pressure conservation:— In the weakly non-linear incompressible inviscid 

and compressible inviscid analyses, the pressure term pi is conserved 

(equations (2.36) and (4.37)) in ducts of constant cross-section. This 

suggests that the pressure variations are proportional to at most, i.e. 

around 1% of the main flow. In general, a double integral of (2.34a) or 

(4.10b) gives pi by the flow rate, while p2 can be found from

=  2(AUz + VyW, -  V^Wy) (D.2)

in the incompressible case, and by a double integral of (4.10d), with 

reference to (4.49), in the compressible case. Both are influenced by the 

input swirl since they are driven by the evolving swirl in the bend. The 

fully non-linear cases had conservation of the leading order parts of the 

density and pressure (as discussed in §5.4.7) and so the variations are of 

the order of e or around 10% at most.

•  Non-linearity:— We repeat that the non-linear nature of the equations 

means that input flow conflgurations cannot be correlated directly or 

easily with output conflgurations; each input must be considered on a 

case-by-case basis. However, bulk general predictions can be made, as 

above.

Influence of bend length

• Swirl:— In all cases the swirl grows throughout the bend and thus re

ducing the bend length will reduce the output swirl. For longer bends 

the swirl over a cross-section is proportional to the bend length (by 4.58)
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and so halving the bend length will halve the output integral of the swirl. 

The effect of exit swirl on the interaction of adjacent external jets is be

ing considered by Mr PE Westwood at UCL, but generally swirl is to be 

avoided since it misdirects the output jet.

•  Density:— In the weakly non-linear compressible invisicid analysis, the 

density variation evolves following a particle in the bend but is main

tained for each particle beyond the bend termination. Shorter bend 

lengths therefore lead to smaller density variations in general. In this 

context, we mention that since vertical variations in density also drive the 

swirl through the bend (from equation (4.25)), input variations should 

be minimised through measures such as those under the topic “6'/iear” 

on page 306 above.

Influence of bend severity

•  Less severe:— Although we have assumed the same duct curvature through

out, the factor o, defined by (2.28) in the weakly non-linear cases and 

(4.13) in the fully non-linear cases, effectively measures bend severity. 

As discussed in [77, §6], a weaker bend corresponds to smaller a  and 

this can be shown to increase the strength of the swirl response since the 

bend length increases accordingly. Similar conclusions hold in the weakly 

non-linear compressible inviscid regime with additionally a stronger re

sponse of the density via equation (4.38b). The appearance of the factor 

a  in the equations of the fully non-linear cases suggests that the response 

to curvature may be weaker here but grows stronger over a longer bend 

length.

•  More severe:— Larger values of a  suggest responses over shorter dis
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tances, with the swirling motion secondary but growing rapidly in am

plitude and leading to a downstream fully non-linear region.

Influence of duct cross-sectional profile

• Corners and swirl:— Large values of the swirl appear close to sharp 

corners in the duct cross-section, as in §4.4.3. The recommendation is to 

smooth the corners, as shown in [77].

• Corners and turbulence :— Sharp corners also lead to complications with 

respect to the turbulent boundary layer development of Part II. Again, 

sharp corners are to be avoided.

• Connecting ducts:— Though not considered herein, joining together end 

to end ducts of different cross-sectional shape, or the same shape but 

different area, can have detrimental effects on the flow development, as 

referred to in the discussions in Chapter 9. The suggestion is to smooth 

such joins.
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