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We present a technique for recovering the spectrum of a non-Markovian bosonic bath and/or non-
Markovian noises coupled to a harmonic oscillator. The treatment is valid under the conditions that the
environment is large and hot compared to the oscillator, and that its temporal autocorrelation functions are
symmetric with respect to time translation and reflection—criteria which we consider fairly minimal. We
model a demonstration of the technique as deployed in the experimental scenario of a nanosphere levitated in a
Paul trap, and show that it would effectively probe the spectrum of an electric field noise source from 102 to
106 Hz with a resolution inversely proportional to the measurement time. This technique may be deployed in
quantum sensing, metrology, computing, and in experimental probes of foundational questions.
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Introduction.—Noise is an unavoidable feature of all
physical measurements, and often their main impediment.
The study of noise in quantum physics is a field in its own
right [1,2], and the peculiar structure of the noise spectrum
is of central importance to quantummetrology [3] and more
generally to the theory of open quantum systems [4].
However, in the majority of treatments, the exact nature
of the noise spectrum is left as an unknown quantity—if it
is not idealized as Markovian, it will typically be ascribed a
simple structure, such as Ohmic [5], though a larger
taxonomy exists [6].
In this Letter we introduce a scheme which is capable of

measuring the spectrum of arbitrary noises or bosonic
baths. In itself this constitutes a new quantum sensing tool
comparable to other spectrometers [7–9], but it may also be
used to improve existing techniques by helping metrologi-
cal schemes which deal with noise [10]. It can be enacted
on any harmonic oscillator which can be prepared in a cold
initial state, and whose resonant frequency may be varied.
Since the vast majority of quantum sensors, and indeed
quantum experiments, are based around the behavior of
harmonic oscillators, this implies a potentially wide range
of applications.
One direct utilization which we will demonstrate in this

work would be to study the structure of the electric field
noise found in electric particle traps, which arises from the
electrodes and is determined by several factors [11] in a
way not yet fully understood [12,13]. To make this
demonstration, we will model the specific scenario of an

electrically levitated charged nanosphere; in such a setting,
the environmental noise conditions are such that an
accurate reconstruction of the electric field noise spectrum
ought to be possible over a wide range—between 102 and
106 Hz. Further, this ability to accurately characterize the
environmental noise spectrum may find application in
quantum computing, where such knowledge would enable
the development of optimized dynamical decoupling pro-
tocols tailored to the specific environment of the qubit(s)
[14]. It may also find applications in short-range force
sensing [15,16], where the spectrum characterizing the
interaction between the force being studied and the behav-
ior of the oscillator can be subjected to a similar treatment.
Here we make a proposal in three parts. First, we

describe a mathematical formalism through which the
spectrum of a general bosonic bath coupled to a quantum
harmonic oscillator may be recovered through experiment
(granted certain assumptions, and up to a degree of
uncertainty). Second, we propose a specific experimental
scenario which is particularly suited to this task (that of a
levitated nanoparticle) and demonstrate its theoretical
performance. Third, we examine an example case—that
of an electric field noise with a nontrivial spectrum—and
show how the experimental scenario of the previous section
would be able to recover this spectrum through the
suggested technique.
Formalism.—We begin by considering a Hamiltonian

which describes a harmonic oscillator S coupled to a
bosonic bath of independent harmonic oscillators B:

PHYSICAL REVIEW LETTERS 123, 230801 (2019)

0031-9007=19=123(23)=230801(6) 230801-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.230801&domain=pdf&date_stamp=2019-12-02
https://doi.org/10.1103/PhysRevLett.123.230801
https://doi.org/10.1103/PhysRevLett.123.230801
https://doi.org/10.1103/PhysRevLett.123.230801
https://doi.org/10.1103/PhysRevLett.123.230801


Ĥ ¼ ĤS þ ĤB þ ĤI ; ð1Þ

in which the three terms above represent the system, bath,
and interaction Hamiltonians, respectively. Setting ℏ ¼ 1,
they are given by

ĤS ¼ ωm

�
â†âþ 1

2

�
; ð2Þ

ĤB ¼
X
α

ωα

�
b̂†αb̂α þ

1

2

�
; ð3Þ

ĤI ¼ −q̂
X
α

gαq̂α; ð4Þ

where ωm represents the mechanical frequency of the
oscillator and â†, â, q̂ give its creation, annihilation, and
position operators, respectively. Similarly, we decompose
B into α modes, whose creation, annihilation, and position
operators are b̂†α, b̂α, and q̂α, respectively. The interaction
between the system and the α mode of the bath is described
through a position-position coupling whose strength is
given by gα ¼ mαω

2
α whose value can be settled by an

appropriate choice of the bath oscillator masses.
The first description of the dynamics of this type of

system was given by Caldeira and Leggett in their seminal
paper [17], in which they derived a master equation for this
scenario using the Born-Markov approximation, valid in
the limit of high temperatures of the bath. This result was
improved by Hu et al. [18], who derived a master equation
which is exact, and valid for any temperature. The subject
has more recently been studied in Refs. [19,20], where the
Hu et al. master equation was derived in the form

d
dt

ρt ¼ −i½ĤS − ΞðtÞq2; ρt� þ ΓðtÞ½q̂; ½q̂; ρt��
þ ΘðtÞ½q̂; ½p̂; ρt�� þ iϒðtÞ½q̂; fp̂; ρtg�; ð5Þ

with ρt the density matrix at time t, and p̂ the momentum
operator. It is Eq. (5) which we shall use as a jumping off
point for developing our formalism—it is very general—for
example, the bath need not be thermal for the equation to be
valid. It must, however, begin in a Gaussian state. (For an
example of a spectrometer which could probe non-Gaussian
noise, see Refs. [21,22].) In Appendix 1 of the Supplemental
Material we detail an alternative derivation [23].
The exact definitions of the time-dependent coefficients

ΞðtÞ, ΓðtÞ,ΘðtÞ, andϒðtÞ are given through recursive series
expansions and can be found in Ref. [19]. However, in the
limit of a weak coupling between the system and bath (a
limit which we will now assume), one can safely make a
first order approximation which greatly simplifies the
expressions for these coefficients. Further to this, we will
consider only the regime where the damping effects of the
bath upon the system will be negligible compared to its

heating effects, which is mathematically equivalent to
assuming that the bath correlation function is real [19].
Note that, in the case of thermal baths, the assumption that
dissipative effects are negligible is equivalent to assuming
that the temperature of the bath is much higher than that of
the system. We will go into further detail regarding these
simplifications in Appendix 1 of the Supplemental
Material.
Taking these simplifications, one gets ΞðtÞ ¼ ϒðtÞ ¼ 0

and

ΓðtÞ ¼ −
Z

t

0

dsCðt; sÞ cos½ωmðt − sÞ�; ð6Þ

ΘðtÞ ¼
Z

t

0

dsCðt; sÞ sin½ωmðt − sÞ�
mωm

; ð7Þ

in which Cðt; sÞ ¼ Tr½B̂ðtÞB̂ðsÞρB� is the two-time corre-
lation function for the bath operator B̂ ¼ P

αgαq̂α. The
Fourier transform of Cðt; sÞ—the spectrum of the noise
function in frequency space—is the object which our
spectrometer will ultimately uncover through a study of
its impact upon the system. Using these simplifications,
Eq. (5) becomes

d
dt

ρt ¼ −i½ĤS; ρt� þ ΓðtÞ½q̂; ½q̂; ρt�� þ ΘðtÞ½q̂; ½p̂; ρt��: ð8Þ

For the spectrometer to function as a viable measurement
instrument, we must of course select an observable to
monitor. Here we show that the number operator n̂ ¼ â†â is
ideal. It is experimentally straightforward to measure, and
can be used to recover Cðt; sÞ unambiguously.
The equation of motion for the expected occupation

number can be found via ðd=dtÞhn̂it ¼ Tr½n̂Lρt�, in which
Lρt is a superoperator on ρt which summarizes the right-
hand side of Eq. (8). Using this, the cyclicity of the trace,
and a little algebra, we find that

d
dt

hn̂it ¼
1

2mωm

Z
t

0

Cðt; sÞ cos½ωmðt − sÞ�: ð9Þ

Now, if we assume that the correlation function is invariant
with respect to both time reversal and time translation, i.e.,
that Cðt; sÞ ¼ Cðjt − sjÞ, we can rewrite the right-hand side
of Eq. (9) in a more convenient form by using the relation

Z
t

0

dsCðjs− tjÞcos½ωmðs− tÞ�¼1

2

Z
t

−t
dyCðyÞeiωmy: ð10Þ

Introducing the Fourier expansion of CðyÞ,

CðyÞ ¼ 1

2π

Z
∞

−∞
dνC̃ðνÞe−iνy; ð11Þ

Eq. (9) becomes
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d
dt

hn̂it ¼
1

4πmωm

Z
∞

−∞
dνC̃ðνÞ sin½ðωm − νÞt�

ðωm − νÞ ; ð12Þ

which can be solved to get

hn̂it¼hn̂i0þ
1

2πmωm

Z
∞

−∞
dνC̃ðνÞsin

2½ðωm−νÞt=2�
ðωm−νÞ2 : ð13Þ

This equation contains the basic capabilities of the
spectrometer, and as such it demands some examination.
In the white noise limit C̃ðνÞ ¼ Dp with Dp being
some positive constant, it gives the well-known behavior:
hn̂it ¼ hn̂i0 þD0

pt, where D0
p ¼ Dp=4mωm quantifies the

heating rate due to momentum diffusion. While the integral
in Eq. (13) is of course unsolvablewithout knowing C̃ðνÞ, its
form allows us to estimate the function of interest. The
function sin2ðθt=2Þ=θ2 forms a peak around θ ¼ 0 of width
4π=t. For us, this means that the envelope of the peak will
serve analogously to a flared δ function, selecting the effects
of C̃ðνÞ in the region of ν ¼ ½ωm − ð2π=tÞ;ωm þ ð2π=tÞ�.
We can deploy this approximation, in Eq. (13), replacing the
integral with C̃ðωmÞðπt=2Þ and rearranging to get

C̃ðωmÞ ¼
4mωm

t
ðhnit − hni0Þ: ð14Þ

Note that although this is appears to be linear in ωm, the
dominant termwill typically be the hnit of Eq. (13), in which
the coefficient in front of the integral is∝ 1=ωm, neutralizing
the linear scaling, and that hnit has a more complicated
dependence upon ωm in the integrand related to the noise
spectrum. If ωm is changeable, this will allow us to scan
through the range of available frequencies and see how C̃ðνÞ
behaves across the range with an error ∝ 1=t. This, then,
forms the protocol for the spectrometer: to take measure-
ments of hn̂it at different values of ωm, and use the results to
reconstruct C̃ðνÞ via Eq. (14). The accuracy of this
reconstruction will be improved with an increasing time t
taken per measurement.
Equation (13) has the same structure as Eq. (18) from

Ref. [24], which focuses on the decoherence of super-
conducting qubits resulting from their interaction with a
classical noise. However, there are fundamental differences
between the two approaches. First of all, the systems
interacting with the noise considered in Ref. [24] are
qubits, while we consider a harmonic oscillator. More
importantly, in the approach used in Ref. [24], in order to
study the noise spectrum for high frequencies it is neces-
sary to introduce pulse sequences which, if properly
designed, allow for the suppression of the effects of the
low frequency parts of the spectrum. In this respect, our
approach is simpler, since in order to measure different
frequency regions of the noise spectrum, one needs simply
to change the trap’s frequency.

Experimental scheme.—As we can see in Eq. (13), the
rate by which the harmonic oscillator will heat depends
strongly upon its mechanical frequencyωm and the strength
of the noise source in the region around that frequency. By
taking account of the initial phonon number n0 and the
effects of other baths coupled to the system, this can be
used to probe the spectrum of the noise induced upon the
system by the bath of interest B. The effectiveness of such a
probe will be determined by the following factors.
(i) The range over which its mechanical frequency ωm

can be adjusted.
(ii) The lower limit of the temperature in which the

oscillator can be prepared, with twofold purpose. Firstly,
the colder the oscillator, the more accurate the approxi-
mation made above in which the bath has significantly
higher energy than the oscillator, allowing us to ignore
damping effects; and secondly, the lower the value of hn̂0i,
the lower its spread, and the more accurately Δn̂ can be
deduced.
(iii) The accuracy with which the other baths not being

measured can be estimated. In particular, the approximation
that they are Markovian (and hence possess a flat spectrum)
must be reasonable.
(iv) The accuracy with which hn̂it can be measured.
(v) The ability to increase or decrease the coupling to the

bath of interest B. This is not strictly necessary, but as
shown in Ref. [25], such a capability is essential in certain
contexts for distinguishing between the effects of interest
and the effects of other baths.
(vi) The duration of the experiment—as shown in the

previous section, the longer we can let the system get
heated by the bath, the higher the accuracy of the spectrum
measurement.
We claim that an experiment built around a charged

levitated nanosphere is well suited to these needs. A
“hybrid-type” trap, composed of a quadrupole electric field
trap working in conjunction with an optical trap as
described in Refs. [25,26], is ideal: it has an exceptionally
low noise floor, it is capable of cooling the particle to a very
low occupation (in principle, to the ground state) using the
techniques outlined in Ref. [27], and the mechanical
frequency can be changed at will over the impressively
wide range from ∼100 to ∼106 Hz. The Paul trap used to
levitate the nanosphere is structurally the same as those
used as ion traps: an oscillating electric field holds a
charged particle in a harmonic well with variable frequency.
The theoretical modeling of noise sources affecting the

levitated sphere is a well-trodden path [25,28–32]. Full
details of the specific baths treated are available in
Appendix 3 of the Supplemental Material [23], but for
the purpose of the following section, we will combine them
into a single Markovian bath possessing the two-time
correlation function Cðt; sÞ ¼ δðt − sÞDp. We take a
high-temperature approximation for this Markovian bath,
allowing us to neglect any damping effects it might induce.
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Then this bath adds to Eq. (13) as a linear term D0
pt. The

mechanical frequency is given by [26,33]

ωm ¼ V0βQffiffiffi
2

p
mΩdd2

; ð15Þ

where Q is the number of elementary charges attached to
the nanosphere, β is a form factor of the trap geometry, and
V0 is the amplitude of the ac voltage applied to the
electrodes—the dc component being set to 0. The mass
of the nanosphere is given by m, d gives the distance to the
end cap electrodes, and Ωd is the driving frequency of the
trap. The range of ωm which can be reliably tested over is
constrained by the stability of the trap [34], as well as by
physical restrictions on various parameters.
Probing the spectrum of electric field noise.—The

system described above takes generality as one of its main
strengths—it could be used to analyze any noise source to
which it could be coupled to, and over a wide frequency
range. By way of example, we now demonstrate how such a
system could be used for a particular real-world applica-
tion, which could be achieved with current technology.
The specific structure of the electric field noise which

affects the levitated particles in Paul traps remains unknown
[12]. Here we demonstrate how our protocol could be
utilized to reconstruct it. A simpler but less realistic
example, where a noise with a purely Gaussian spectrum
is considered, is given in Appendix 4 of the Supplemental
Material [23]. Taking achievable parameters for experi-
mental factors (such as background gas pressure, electric
field noise, and environment temperature), and using an
example of a R ¼ 50 nm sphere with the density of silica
ρ ¼ 2300 kg=m3 and a charge of Q ¼ 103e, we can expect
a heating rate from conventional sources of D0

p ≤
100 phonon=s at frequencies higher than 103 Hz.
The basic formulation for the heating rate due to electric

field fluctuations in terms of phonons per second is given
by [12]

D0
EðωmÞ ¼

Q2

4mωm
SEðωmÞ; ð16Þ

in which SEðωmÞ is the spectral density of the E field noise
at the mechanical frequency of the oscillator. In Ref. [12],
by appraising and comparing a wide range of electrically
levitated experiments, Brownnutt et al. attain the following
general form for this spectral density:

SEðωÞ ¼ gEω−αd−βTγ; ð17Þ

in which gE is a scaling constant, 2d is the interelectrode
distance, and T is the temperature of the electrodes. α, β,
and γ are parameters which depend upon trap geometry and
experimental specifics. Here, rather than taking α to be a
constant, we will replace it with a structure of arbitrary

complexity to make SEðωÞ ∝ C̃ðωÞ. Accordingly, our
phonon expectation value is given by

hn̂it ¼ hn̂i0 þD0
pt

þ kE
2πmωm

Z þ∞

−∞
dνC̃ðνÞ sin

2½ðωm − νÞt=2�
ðωm − νÞ2 ; ð18Þ

in which D0
p gives the effects of all heating sources other

than the electric field noise (which, again, are taken as
Markovian and without damping), and

kE ¼ Q2d−βTγgE: ð19Þ

Now, by selecting an appropriate value for gE, we can
interrogate how well an arbitrary C̃ðνÞ could be recon-
structed in our setting, noting that Eq. (14) would need to
be updated to

C̃ðωmÞ ¼
4mωm

kEt
ðhnit − hni0 −D0

ptÞ; ð20Þ

with the term D0
pt accounting for the Markovian bath.

Note that C̃ðωmÞ depends on ωm also through hnit, which
captures the structure of the spectrum of the noise.
Figure 1 demonstrates the capabilities of the technique for

recovering a hypothetical complicated structure assigned to
the electric field noise (this structure is represented by the
dashed blue line). The solid colored lines show what the
experimentalist would reconstruct via the spectrometer,
using Eq. (20), from the measured values of hnit as a
function of ωm. The figure gives a clear demonstration of
how the resolution changes with the measurement time. The
shortest measurement time—that of the purple line—recov-
ers only the features at highest frequencies, and with poor
fidelity; whereas the long measurement time of the green
line gives a faithful reconstruction of the objective function.
An additional interesting feature is the ringing effect seen at
ωm > 105 Hz for the purple line. This ringing effect occurs
when there are features in the noise structure sharper than the
accuracy ∼1=t used for reconstructing the spectrum. On the
contrary, if the resolution used is high enough, such a ringing
is absent. As such, this ringing forms a useful component of
the tool. If the experimentalist collects data and infers a
particular noise structure from their data, theymaywonder if
there are finer-grained structures which they might have
recovered with longer measurement times. The presence or
absence of the characteristic ringing serves to answer the
question: if it is there, then the noise contains further features
to be discovered. We explain this further in Appendix 5 of
the Supplemental Material [23].
The practicability of increasing measurement times

inversely proportional to the mechanical frequency makes
the technique increasingly viable at higher frequencies; at
these high frequencies the accuracy of the reconstruction
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will be limited more by the sensitivity of the readout and
the preparation of the initial state than by the allowed time
for evolution. We also note that the electric field noise is
particularly distinguishable in this context due to its Q2

scaling, which can be used to disambiguate between the
effects of the bath of interest and those of other baths.
A further example connected to non-Markovian models

of spontaneous wave function collapse [35–40] is presented
in Appendix 2 of the Supplemental Material [23], which
also contains Refs. [41–57].
Conclusion.—It is our submission that such a method

communicated here would have a broad applicability.
Whether for the noise fields invoked by collapse theories,
or for more generic non-Markovian quantum noises, this
method may be used to detect and characterize the fields of
interest. This may be of use in a wide range of technologies,
including quantum sensing and improving quantum com-
puting architectures. Further, such a detection and charac-
terization would shine a clear light for theorists trying to
determine the physical origins of such fields—since the
specific characteristics of a field will carry signatures of its
genesis.
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