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The significant increase in precision that will be achieved by Stage IV cosmic shear surveys means that
several currently used theoretical approximations may cease to be valid. An additional layer of complexity
arises from the fact that many of these approximations are interdependent; the procedure to correct for one
involves making another. Two such approximations that must be relaxed for upcoming experiments are the
reduced shear approximation and the effect of neglecting magnification bias. Accomplishing this involves
the calculation of the convergence bispectrum; typically subject to the Limber approximation. In this work,
we compute the post-Limber convergence bispectrum, and the post-Limber reduced shear and magni-
fication bias corrections to the angular power spectrum for a Euclid-like survey. We find that the Limber
approximation significantly overestimates the bispectrum when any side of the bispectrum triangle,
li < 60. However, the resulting changes in the reduced shear and magnification bias corrections are well
below the sample variance for l ≤ 5000. We also compute a worst-case scenario for the additional biases
on w0waCDM cosmological parameters that result from the difference between the post-Limber and
Limber approximated forms of the corrections. These further demonstrate that the reduced shear and
magnification bias corrections can safely be treated under the Limber approximation for upcoming surveys.
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I. INTRODUCTION

Weak gravitational lensing can be a powerful tool to
better constrain our knowledge of the currently favored
standard model for the Universe, the Lambda cold dark
matter model (ΛCDM). A useful manifestation of this
effect is cosmic shear: the distortion of the observed shapes
of distant galaxies due to weak gravitational lensing by the
large-scale structure of the Universe (LSS). By measuring
this distortion in large samples of galaxies, we can probe
the LSS. Since the development of this structure depends
on the fundamental properties of the Universe, measuring
these distortions allows us to constrain cosmological
parameters. Using the technique of tomography (where
the observed population of galaxies is divided into different
redshift bins), three-dimensional information can be
obtained. In particular, cosmic shear can put strong con-
straints on the dark energy [1].
Contemporary cosmic shear surveys [2–4] are able to

carry out precision cosmology competitive with recent
probes of the cosmic microwave background [5].
Additionally, impending Stage IV [1] weak lensing
experiments such as Euclid1 [6], WFIRST2 [7], and

LSST3 [8], will have over an order-of-magnitude more
precision than existing surveys [9].
This presents a challenge: approximations made in our

theoretical analyses may no longer be valid. Accordingly, a
thorough examination of these effects is necessary. One
such approximation, that is regularly made, is the Limber
approximation. In this, only wave-modes in the plane of the
sky are considered to be contributing to the lensing signal.
The impact of relaxing this approximation, together with
the Hankel transform and flat-sky approximations, for a
Euclid-like experiment has been evaluated [10]. Two
further effects that have recently shown to be important
for Stage IV experiments are the reduced shear approxi-
mation and magnification bias [11]. Compounding the
complexity of correcting for any one such approximation
is that the procedure for doing so often involves making one
of the others.
In this work, we focus on the reduced shear approxima-

tion and magnification bias, and their interdependency with
the Limber approximation. When cosmic shear is probed,
the quantity measured is reduced shear, rather than shear
itself. Under the reduced shear approximation, the statistics
of one are taken to equal those of the other. On the other
hand,magnification bias refers to the change of the observed
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galaxy number density due to individual sources or patches
of the sky being magnified. Magnification bias also affects
probes of galaxy clustering [12–14]. These two effects are
treated together because their corrections take mathemati-
cally similar forms [15]. However, these corrections depend
on the convergence bispectrum, and typically evaluate this
quantity under the Limber approximation.
Here, we forgo the Limber approximation when calcu-

lating the convergence bispectrum. Subsequently, we mea-
sure the resulting change in the magnification bias and
reduced shear corrections for a Euclid-like survey, and
compare it to the sample variance of the survey. We also
demonstrate that the resulting change does not induce
significant biases in inferred w0waCDM cosmological
parameters if neglected.
This paper is organized as follows: In Sec. II, we present

the theoretical formalism. We begin by reviewing the basic
cosmic shear power spectrum calculation. We also describe
two additional components of the observed shear power
spectrum: noncosmological signals from the intrinsic align-
ments (IA) of galaxies, and shot noise. Next, the reduced
shear and magnification bias calculations are reviewed. We
then discuss the convergence bispectrum with and without
the Limber approximation. Additionally, we explain the
formalism we use to predict any resulting biases in inferred
cosmological parameters. Following this, in Sec. III,
explain our methodology; discussing modeling specifics
and our choice of fiducial cosmology. Finally, in Sec. IV,
we present our results and discuss their consequences for
Stage IV experiments. We first discuss the impact of the
Limber approximation on the convergence bispectrum, and
then the resulting impact on the reduced shear and
magnification bias corrections.

II. THEORY

We begin by reviewing the first-order calculation of the
cosmic shear angular power spectrum. Next, we describe
the corresponding corrections for the reduced shear
approximation and magnification bias, and their depend-
ence on the convergence bispectrum. Finally, the calcu-
lation of the convergence bispectrum, with and without the
Limber approximation, is explained.

A. The first-order cosmic shear power spectrum

The change in the observed ellipticity of a distant galaxy
due to weak lensing by the LSS is dependent on the reduced
shear, g:

gαðθÞ ¼ γαðθÞ
1 − κðθÞ ; ð1Þ

where θ is the source’s position on the sky, γ is the shear,
and κ is the convergence. These two terms encode the two
different types of distortion from weak lensing; shear is the

anisotropic stretching that makes circular distributions of
light elliptical, and convergence is the isotropic increase or
decrease in the size of the image. The index α encodes the
fact that the shear is a spin-2 quantity. Now, in the weak
lensing regime, jκj ≪ 1 so the reduced shear approximation
is typically made for Eq. (1):

gαðθÞ ≈ γαðθÞ: ð2Þ

The convergence of a galaxy image in tomographic
redshift bin, i, is given by the projection of the density
contrast of the Universe, δ, along the line-of-sight over
comoving distance, χ, to the survey’s limiting comoving
distance, χlim:

κiðθÞ ¼
Z

χlim

0

dχδ½SKðχÞθ; χ�WiðχÞ: ð3Þ

Here, SKðχÞ is a function which accounts for the curvature
of the Universe, K:

SKðχÞ ¼

8>><
>>:

jKj−1=2 sinðjKj−1=2χÞ K > 0 ðClosedÞ
χ K ¼ 0 ðFlatÞ
jKj−1=2 sinhðjKj−1=2χÞ K < 0 ðOpenÞ:

ð4Þ

Also, Wi is the lensing kernel for bin i [16]:

WiðχÞ ¼
3

2
Ωm

H2
0

c2
SKðχÞ
aðχÞ

Z
χlim

χ
dχ0niðχ0Þ ×

SKðχ0 − χÞ
SKðχ0Þ

; ð5Þ

where Ωm is the dimensionless present-day matter density
parameter of the Universe, H0 is the Hubble constant, c is
the speed of light in a vacuum, aðχÞ is the scale factor of the
Universe, and niðχÞ is the probability distribution of
galaxies within bin i.
We can then relate the spin-2 shear to the convergence, in

spherical harmonic space, with:

γ̃αi ðlÞ ¼ TαðlÞκ̃iðlÞ; ð6Þ

where l is the spherical harmonic conjugate of θ, the
“prefactor unity” approximation [10] has been made, and
TαðlÞ are trigonometric weighting functions with the
definitions:

T1ðlÞ ¼ cosð2ϕlÞ; ð7Þ

T2ðlÞ ¼ sinð2ϕlÞ; ð8Þ

where ϕl is the angular component of vector l with
magnitude l.
For an arbitrary shear field, we can construct two linear

combinations of the shear components: a curl-free E-mode,
and a divergence-free B-mode:
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ẼiðlÞ ¼
X
α

Tαγ̃αi ðlÞ; ð9Þ

B̃iðlÞ ¼
X
α

X
β

εαβTαðlÞγ̃βi ðlÞ; ð10Þ

in which εαβ is the two-dimensional Levi-Civita symbol,
where ε12 ¼ −ε21 ¼ 1 and ε11 ¼ ε22 ¼ 0. In the absence of
higher-order systematic effects, the B-mode then vanishes.
We are left with the E-mode, for which we can define auto
and cross-correlation power spectra, Cγγ

l;ij:

hẼiðlÞẼjðl0Þi ¼ ð2πÞ2δ2Dðlþ l0ÞCγγ
l;ij; ð11Þ

where δ2D is the two-dimensional Dirac delta. Under the
Limber approximation, where it is assumed that only
l-modes in the plane of the sky contribute to the lensing
signal, the power spectra themselves can then be written as:

Cγγ
l;ij ¼

Z
χlim

0

dχ
WiðχÞWjðχÞ

S2KðχÞ
Pδδðk; χÞ; ð12Þ

where Pδδðk; χÞ is the matter overdensity power spectrum.
Comprehensive reviews of this standard calculation can be
found in [17,18].

B. Intrinsic alignments

In fact, the angular power spectrum we measure from the
ellipticities of galaxies contains not only the cosmic shear
contribution of Eq. (12) but also other, noncosmological
parts. One such contribution comes from the intrinsic
alignment (IA) of galaxies [19].
Galaxies that form near each other do so in similar tidal

environments. This causes those galaxies to have preferred,
intrinsically correlated, alignments. The ellipticity of a
galaxy, ϵ can be described to first-order as:

ϵ ¼ γ þ γI þ ϵs; ð13Þ

where γ ¼ γ1 þ iγ2 is the cosmic shear term, γI is the
contribution from IAs, and ϵs is the galaxy’s source
ellipticity in the absence of any IA. The theoretical two-
point statistic (e.g., the power spectrum) calculated from
Eq. (13) consists of three types of terms: hγγi; hγIγi,
and hγIγIi.
The first of these terms corresponds to the cosmic shear

power spectra from Eq. (12). Meanwhile the other two
terms result in additional contributions to the observed
power spectra, Cϵϵ

l;ij, so that:

Cϵϵ
l;ij ¼ Cγγ

l;ij þ CIγ
l;ij þ CγI

l;ij þ CII
l;ij þ Nϵ

l;ij; ð14Þ

where CIγ
l;ij represents the correlation between the back-

ground shear and the foreground IA, CγI
l;ij is the correlation

of the foreground shear with background IA and is zero
except in the case of photometric redshifts causing scatter-
ing of observed redshifts between bins, CII

l;ij is the
autocorrelation spectra of the IAs, and Nϵ

l;ij is a shot noise
term.
The additional spectra can be described analogously to

the shear power spectra, by way of the nonlinear alignment
(NLA) model [20]:

CIγ
l;ij ¼

ðlþ 2Þ!
ðl − 2Þ!

1

ðlþ 1=2Þ4
Z

χlim

0

dχ
S2KðχÞ

½WiðχÞnjðχÞ

þ niðχÞWjðχÞ�PδIðk; χÞ; ð15Þ

CII
l;ij ¼

ðlþ 2Þ!
ðl − 2Þ!

1

ðlþ 1=2Þ4
Z

χlim

0

dχ
S2KðχÞ

niðχÞ

× njðχÞPIIðk; χÞ; ð16Þ

where the intrinsic alignment power spectra, PδIðk; χÞ and
PIIðk; χÞ, can be expressed as functions of the matter power
spectra:

PδIðk; χÞ ¼
�
−
AIACIAΩm

DðχÞ
�
Pδδðk; χÞ; ð17Þ

PIIðk; χÞ ¼
�
−
AIACIAΩm

DðχÞ
�

2

Pδδðk; χÞ: ð18Þ

Here, AIA and CIA are free model parameters to be
determined by fitting to data or simulations, and DðχÞ is
the growth factor of density perturbations in the Universe,
as a function of comoving distance.

C. Shot noise

The final term in Eq. (14) is the result of the uncorrelated
part of the unlensed source ellipticities; represented by ϵs in
Eq. (13). For cross-correlation spectra this term is zero,
because the ellipticities of galaxies at different comoving
distances should be uncorrelated. However, for auto-corre-
lation spectra, assuming that the tomographic bins in the
survey are equipopulated, it is written as:

Nϵ
l;ij ¼

σ2ϵ
n̄g=Nbin

δKij; ð19Þ

where σ2ϵ is the variance of the observed ellipticities in the
galaxy sample, n̄g is the galaxy surface density of the
survey, Nbin is the number of tomographic bins used, and
δKij is the Kronecker delta.

D. The reduced shear correction

The reduced shear approximation can be relaxed by
Taylor expanding Eq. (1) around κ ¼ 0, and retaining terms
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up to and including second-order so that Eq. (2) becomes
[11,16,21]:

gαðθÞ ¼ γαðθÞ þ ðγακÞðθÞ þOðκ3Þ: ð20Þ

By substituting gα, as defined by Eq. (20), for γα in Eq. (9)
and recomputing, we recover Eq. (11) plus a second-order
correction term:

δhẼiðlÞẼjðl0Þi ¼ ð2πÞ2δ2Dðlþ l0ÞδCRS
l;ij

¼
X
α

X
β

TαðlÞTβðl0Þ

× h gðγακÞiðlÞγ̃βj ðl0Þi þ Tαðl0ÞTβðlÞ
× h gðγακÞjðl0Þγ̃βi ðlÞi; ð21Þ

where δCRS
l;ij is then the reduced shear correction to the

angular power spectra. This takes the form:

δCRS
l;ij ¼

Z
∞

0

d2l0

ð2πÞ2 cosð2ϕl0 − 2ϕlÞ

× ½Bκκκ
iij ðl1;l2;l3Þ þ Bκκκ

ijj ðl1;l2;l3Þ�; ð22Þ

where Bκκκ
iij and Bκκκ

ijj are the three-redshift convergence
bispectra. Due to the assumption of isotropy in the
Universe, we are free to choose ϕl ¼ 0.

E. The magnification bias correction

The density of galaxies observed by a survey is also
altered by gravitational lensing [22]. This effect manifests
in two competing ways. In one, individual galaxies are
magnified; causing their fluxes to be increased. Given that
any galaxy survey will have some flux limit, this can cause
sources that should otherwise be excluded having their flux
increased enough to be included in the sample. On the other
hand, the patch of sky around such sources will also be
magnified. This would result in the galaxy density in that
patch of sky being diluted. The net effect on the number
density is known as magnification bias, and depends on the
slope of the intrinsic, unlensed, galaxy luminosity function,
at the survey’s flux limit.
In the weak lensing regime, the observed galaxy over-

density accounting for magnification bias, in tomographic
bin i, can be expressed as [22,23]:

δgobs;iðθÞ ¼ δgi ðθÞ þ ð5si − 2ÞκiðθÞ; ð23Þ

where δgi ðθÞ is the intrinsic, unlensed, galaxy overdensity in
bin i, and si is the slope of the cumulative galaxy number
counts brighter than the survey’s limiting magnitude, mlim,
for the redshift bin i. Here, we have assumed that fluctua-
tions in the intrinsic galaxy overdensity are small on the
scales of interest. The slope of the luminosity function is

si ¼
∂ log10 nðz̄i; mÞ

∂m
����
mlim

; ð24Þ

where nðz̄i; mÞ is the true distribution of galaxies, evaluated
at the central redshift of bin i, z̄i.
In practice, accounting for magnification bias is equiv-

alent to replacing the true shear, γαi , by an “observed” shear,
within the estimator used to determine the angular power
spectrum from data:

γαobs;iðθÞ→ γαi ðθÞþ γαi ðθÞδgobs;iðθÞ¼ γαi ðθÞþ γαi ðθÞδgi ðθÞ
þð5si−2Þ× γαi ðθÞκiðθÞ:

ð25Þ

Analogously to the procedure for reduced shear, we now
substitute Eq. (25) into Eq. (9) and recompute the E-mode
product average. Source-lens clustering terms are negli-
gible [15], so we recover Eq. (11), and an additional
correction term:

δhẼiðlÞẼjðl0Þi ¼ ð2πÞ2δ2Dðlþ l0ÞδCMB
l;ij

¼
X
α

X
β

TαðlÞTβðl0Þð5si − 2Þ

× h gðγακÞiðlÞγ̃βj ðl0Þi
þ Tαðl0ÞTβðlÞð5sj − 2Þ
× h gðγακÞjðl0Þγ̃βi ðlÞi: ð26Þ

The corresponding correction to the angular power spectra,
δCMB

l;ij, is

δCMB
l;ij ¼

Z
∞

0

d2l0

ð2πÞ2 cosð2ϕl0 − 2ϕlÞ

× ½ð5si − 2ÞBκκκ
iij ðl;l0;−l − l0Þ

þ ð5sj − 2ÞBκκκ
ijj ðl;l0;−l − l0Þ�; ð27Þ

which is equivalent to Eq. (22) with factors of ð5si − 2Þ and
ð5sj − 2Þ applied to their respective bispectra contributions.
Accordingly, these effects can both be computed for the
computational cost of computing one.

F. The convergence bispectrum

The corrections encompassed by Eqs. (22) and (27) both
rely on calculating the convergence bispectrum. In its most
general form, the observed convergence in spherical
harmonic space, on a sphere is

κ̃i;lm ¼ 4πil
Z

χlim

0

dχWiðχÞ
Z

∞

0

d3k
ð2πÞ3 jlðkχÞ

× 2Y
�
lmðk̂Þδ̃ðk; χÞ; ð28Þ
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where jl are spherical Bessel functions, 2Y
�
lm are spin-

weighted with spin ¼ 2 spherical harmonics, δ̃ is the
density contrast of the Universe in spherical harmonic
space, and k is a spatial momentum vector with magni-
tude k ¼ jkj.
Then, the bispectrum is the three-point counterpart of the

power spectrum, and is defined on the sphere as [24]:

hκ̃i;l1m1
κ̃j;l2m2

κ̃q;l3m3
i ¼ Gl1l2l3

m1m2m3
× Bκκκ

ijq ðl1;l2;l3Þ; ð29Þ

where Gl1l2l3
m1m2m3

is the Gaunt integral:

Gl1l2l3
m1m2m3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4π

r

×

�
l1 l2 l3

0 0 0

��
l1 l2 l3

m1 m2 m3

�
; ð30Þ

in which the final matrix on the right-hand side (rhs) is the
Wigner 3j-symbol.
However, Eq. (29) is highly challenging computation-

ally, due to the multiple nested-integrals that need to be
calculated. Fortunately, this calculation can be simplified
by recognizing that, given that the convergence is a
projection of the density contrast, the convergence bispec-
trum is a projection of the matter bispectrum, Bδδδ, and the
matter bispectrum is separable. This means that it can be
expressed as the linear sum of products of functions of
momenta:

Bδδδðk1; k2; k3; χ1; χ2; χ3Þ ¼
X

n1;n2;n3

f1;n1ðk1; χ1Þ

× f2;n2ðk2; χ2Þ × f3;n3ðk3; χ3Þ;
ð31Þ

where n1, n2, n3 are power-law indices in their respective
functions. For a review of why this holds true, see [25].
Now, the convergence bispectrum can be expressed as:

Bκκκ
ijq ðl1;l2;l3Þ ¼

1

ð2π2Þ3
Z

χlim

0

drr2½Ið1;n1Þl1;i
ðrÞ

× Ið2;n2Þl2;j
ðrÞIð3;n3Þl3;q

ðrÞ þ perms:�; ð32Þ

within which:

Iða;naÞln
ðrÞ ¼ 4π

Z
χlim

0

dχWðχÞ
Z

∞

0

dkjlðkχÞjlðkrÞ

× k2fa;naðk; χÞ: ð33Þ

Spherical Bessel functions are highly oscillatory, making
the integrals in Eq. (33) a significant computational
challenge. To bypass this, we can realize that the integral
in k will peak when χ ≃ r, and replace the k-integral with a
Dirac delta function, δD:

Iða;naÞln
ðrÞ ≈ 4π

Z
χlim

0

dχWðχÞ π

2r2

× fa;naðk ¼ l=r; χÞδDðχ − rÞ

≈
2π2

r2
WðrÞfa;naðk ¼ l=r; rÞ: ð34Þ

This is the application of the Limber approximation.
An additional complication is that the analytic form of

the matter bispectrum is not well known. Using second-
order perturbation theory (2PT) yields a simple expression
for this quantity [26]:

Bδδδðk1; k2; k3; χ1; χ2; χ3Þ ¼ 2F2ðk1; k2Þ × Plin
δδ ðk1; χ1Þ

× Plin
δδ ðk2; χ2Þ þ cyc: perms:;

ð35Þ

where Plin
δδ is the linear matter power spectrum, and:

F2ðk1; k2Þ ¼
5

7
þ 1

2

k1 · k2
k1k2

�
k1
k2

þ k2
k1

�
þ 2

7

�
k1 · k2
k1k2

�
2

:

ð36Þ

These expressions are valid in the linear regime, where
l1;l2;l3 < 100 (see e.g., [27]). In order to be able to
accurately capture the behavior of the bispectrum beyond
this range, we must obtain fitting formulas from N-body
simulations [28–30]. In this work, we use the fitting
formula of [28], to allow consistent comparison with the
results of [11]. Then, in Eq. (35), Plin

δδ is replaced by Pδδ,
and F2 is replaced by:

Feff
2 ðk1; k2Þ ¼

5

7
aðns; k1Þaðns; k2Þ

þ 1

2

k1 · k2
k1k2

�
k1
k2

þ k2
k1

�
bðns; k1Þbðns; k2Þ

þ 2

7

�
k1 · k2
k1k2

�
2

cðns; k1Þcðns; k2Þ; ð37Þ

where ns is the scalar spectral index, and a, b, and c are
fitting functions detailed in [28].

G. Fisher matrices and biases

We estimate the biases in cosmological parameters that
will be inferred from a Euclid-like survey due to neglected
systematic effects, by using the Fisher matrix formalism
[31]. The Fisher matrix is defined as the expectation of the
Hessian of the likelihood:

Fτζ ¼
�
−∂2 lnL
∂θτ∂θζ

�
; ð38Þ

where L is the likelihood of the parameters given the data,
and τ and ζ refer to parameters of interest, θτ and θζ.
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Assuming a Gaussian likelihood, the Fisher matrix can be
rewritten in terms of only the covariance of the data, C, and
the mean of the data vector, μ:

Fτζ ¼
1

2
tr

�∂C
∂θτ C

−1 ∂C
∂θζ C

−1
	
þ
X
pq

∂μp
∂θτ ðC

−1Þpq
∂μq
∂θζ ;

ð39Þ

where the summations over p and q are summations over
the variables in the data vector. In the case of cosmic shear,
we can take our signal to be the mean of the power
spectrum, so the first term in Eq. (39) vanishes. For cosmic
shear we can express the covariance, under the assumption
of Gaussianity, as:

Cov½Cϵϵ
l;ij; C

ϵϵ
l0;mn� ¼

Cϵϵ
l;imC

ϵϵ
l0;jn þ Cϵϵ

l;inC
ϵϵ
l0;jm

ð2lþ 1ÞfskyΔl
δKll0 ð40Þ

where δK is the Kronecker delta, Δl is the bandwidth of l-
modes sampled, and fsky is the fraction of the sky surveyed.
The resulting Fisher matrix can then be expressed as:

Fτζ ¼
Xlmax

l¼lmin

X
ij;mn

∂Cϵϵ
l;ij

∂θτ Cov−1½Cϵϵ
l;ij; C

ϵϵ
l0;mn� ×

∂Cϵϵ
l0;mn

∂θζ ;

ð41Þ

where ðlmin;lmaxÞ are the minimum and maximum angular
wave numbers used, the sum is over the l-blocks, and
where ði; jÞ and ðm; nÞ are redshift bin pairs.
The Fisher matrix can then be used to calculate the

expected uncertainties on our parameters, στ, using the
relation:

στ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF−1Þττ

q
: ð42Þ

In the presence of a neglected systematic effect in the
signal, the Fisher matrix formalism can be adapted to
measure how biased the inferred cosmological parameter
values will be [32]:

bðθτÞ ¼
X
ζ

ðF−1ÞτζBζ: ð43Þ

Then Bζ is given by:

Bζ ¼
Xlmax

l¼lmin

X
ij;mn

δCl;ijCov−1½Cϵϵ
l;ij;C

ϵϵ
l0;mn�×

∂Cl0;mn

∂ζ ; ð44Þ

where δCl;ij is the value of the systematic effect for bins
ði; jÞ. In this work this systematic effect is the difference
between the post-Limber and Limber approximated
reduced shear and magnification bias.

III. METHODOLOGY

To study the impact of relaxing the Limber approxima-
tion in the bispectra and corrections terms of a Euclid-like
survey, we adopt the modelling specifications of [33].
Accordingly, we compute our chosen quantities for l-
modes up to 5000, as these are required for such a survey to
meet its precision goals with cosmic shear. We also
take the fraction of sky covered by the survey, fsky to
equal 0.36, and the intrinsic variance of observed elliptic-
ities to have two components, each with a value of 0.21,
so that the intrinsic ellipticity root-mean-square value
σϵ ¼

ffiffiffi
2

p
× 0.21 ≈ 0.3.

A Euclid-like survey would be expected to have ten
equi-populated redshift bins, covering the range 0–2.5.
However, in this work, we only compute the bispectra and
correction terms for the autocorrelation of four redshift
bins: [0.001, 0.418], [0.678, 0.789], [1.019, 1.155], and
[1.576, 2.50]. These serve to sufficiently illustrate the
impact of the Limber approximation across the survey’s
redshift range, while avoiding the significant computational
expense of computing the 55 total bin combinations.
Next, for photometric redshift estimates, we define the

galaxy distributions in our tomographic bins as:

N iðzÞ ¼
R zþi
z−i

dzpnðzÞpphðzpjzÞR
zmax
zmin

dz
R zþi
z−i

dzpnðzÞpphðzpjzÞ
; ð45Þ

where zp is measured photometric redshift, z−i and zþi are
edges of the ith redshift bin, zmin and zmax define the range
of redshifts covered by the survey, and nðzÞ is the true
distribution of galaxies with redshift, z, defined as [6]:

nðzÞ ∝
�
z
z0

�
2

exp

�
−
�
z
z0

�
3=2

	
; ð46Þ

where z0 ¼ zm=
ffiffiffi
2

p
, with zm ¼ 0.9 as the median redshift

of the survey. Additionally, the function pphðzpjzÞ describes
the probability that a galaxy at redshift z is measured to
have a redshift zp, and takes the parametrization:

pphðzpjzÞ ¼
1− foutffiffiffiffiffiffi
2π

p
σbð1þ zÞ exp



−
1

2

�
z− cbzp − zb
σbð1þ zÞ

	
2
�

þ foutffiffiffiffiffiffi
2π

p
σoð1þ zÞ× exp



−
1

2

�
z− cozp − zo
σoð1þ zÞ

	
2
�
:

ð47Þ

Here, the first term describes the multiplicative and additive
bias in redshift determination for the fraction of sources
with a well measured redshift, whereas the second term
accounts for the effect of a fraction of catastrophic outliers,
fout. The values of the parameters used in Eq. (47) are
stated in Table I. Then, niðχÞ ¼ N iðzÞdz=dχ.
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For our fiducial cosmology, we choose w0waCDM,
which has the following parameters: the present-day
matter density parameter Ωm, the present-day baryonic
matter density parameter Ωb, the Hubble parameter
h ¼ H0=100 km s−1Mpc−1, the spectral index ns, the
RMS value of density fluctuations on 8 h−1 Mpc scales
σ8, the present-day dark energy density parameter ΩDE, the
present-day value of the dark energy equation of state w0,
the high redshift value of the dark energy equation of state
wa, and massive neutrinos with sum of masses

P
mν ≠ 0.

This model of cosmology allows for a time-varying dark
energy equation-of-state. The values for these parameters
are chosen to match those of [11,33], and are stated in
Table II.
The matter density power spectrum used in our analyses

is computed using the publicly available CLASS
4 cosmology

package [34]. Within CLASS, we included non-linear
corrections to the matter density power spectrum, using
the HALOFIT model [35]. To model the IA power spectra,
we choose AIA ¼ 1.72 and CIA ¼ 0.0134 [11,33].
Using the discussed modeling specifications, we com-

pute the convergence bispectrum, both with and without
making the Limber approximation. We compute the

bispectra for equilateral configurations where l1 ¼
l2 ¼ l3, and isosceles configurations where l1 ¼
l2 ≠ l3. We present two different isosceles configurations,
one where l3 ¼ 20, and another where l3 ¼ 100. The
separability of the bispectrum is used to reduce some of
the computational complexity of the post-Limber case. The
2PTexpression for the bispectrum stated in Eq. (35) is valid
when l1;l2;l3 < 100. Accordingly, it is also true that the
bispectrum’s individual separated components Ia;naln

, as
defined in Eq. (33), will match sufficiently well whether
only the 2PT expression or the nonlinear fitting function
expression of Eq. (37) is used in their computation, when
ln < 100. Therefore, using the 2PT expression for a
particular Ia;naln

when the corresponding ln < 100, avoids
the laborious numerical integration over the fitting func-
tions of Eq. (37) in that case; reducing the overall total
computation time.
We then compute the reduced shear and magnification

bias corrections. However, the integration over the bispec-
trum necessitated by these terms is an intractable compu-
tation to perform directly for the post-Limber case, given
the number of steps in l-space required. It would take on
the order of ∼50 weeks for just one bin autocorrelation.5 To
bypass this hurdle, we first compute the post-Limber and
Limber approximated bispectra on a grid of 1331 points in
l-space, with each li sampled logarithmically in the range
10 ≤ li ≤ 5000, for each bin. The ratio of these quantities
at each point is then taken, and these ratios are interpolated
over, using linear 3D interpolation. This gives a function
which maps the Limber approximated bispectrum onto the
post-Limber case. In computing the post-Limber reduced
shear and magnification bias corrections, we calculate the
required bispectra as in the Limber approximated case, and
use the previously interpolated function to scale these to
their post-Limber counterparts. To compute the magnifi-
cation bias correction, we require the slope of the galaxy
luminosity function. To calculate this quantity, we use the
approach described in [11]. Accordingly, we use the fitting
function for galaxy number density as a function of limiting
magnitude derived in Appendix C of [36], and calculate its
slope by using a finite difference method. For each redshift
bin, we calculate the slope at the central redshift of that bin.
For a Euclid-like survey, we take the limiting magnitude to
be 24.5 [6]. The determined slopes are listed in Table III.
We compare these corrections to the sample variance of a

Euclid-like survey. The sample variance from LSS for a
weak lensing galaxy survey is given by:

δCSV
l;ij=C

γγ
l;ij ¼

ffiffiffi
2

p
½fskyð2lþ 1Þ�−1=2; ð48Þ

where fsky is the fraction of surveyed [37].

TABLE I. Parameter values used to define the probability
distribution function of the photometric redshift distribution of
sources, in Eq. (47).

Model Parameter Fiducial Value

cb 1.0
zb 0.0
σb 0.05
co 1.0
zo 0.1
σo 0.05
fout 0.1

TABLE II. Fiducial values of w0waCDM cosmological param-
eters for which the bispectra, and reduced shear and magnifica-
tion bias corrections are calculated. These values were selected in
accordance with [11,33] to facilitate consistent comparisons.

Cosmological Parameter Fiducial Value

Ωm 0.32
Ωb 0.05
h 0.67
ns 0.96
σ8 0.816P

mν (eV) 0.06
ΩDE 0.68
w0 −1
wa 0

4https://class-code.net/ 5For a PYTHON script multiprocessed across 100 CPU threads.
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Then, we define a worst-case scenario where the differ-
ence between post-Limber and Limber approximated
corrections, ΔCl;ij ≈ 0.01Cγγ

l;ij for all bin combinations
and l-modes. This corresponds to the largest difference
seen for our survey specifications, at l ≈ 5000 for the auto-
correlation of bin 1.56–2.50. Using Eqs. (39) and (44), we
then calculate the cosmological parameter biases resulting
from ΔCl;ij. For this calculation, we consider the auto and
cross-correlation spectra for all ten redshift bins expected
for a Euclid-like survey, with bin edges: f0.001;0.418;
0.560;0.678;0.789;0.900;1.019;1.155;1.324;1.576;2.50g
[11,33]. The Fisher matrix we construct contains the
parameters Ωm;Ωb; h; ns; σ8;ΩDE; w0; wa, and AIA.

IV. RESULTS AND DISCUSSION

Here, we present the effect of relaxing the Limber
approximation on the quantities examined. First, we report
the impact on the convergence bispectrum in the four
studied redshift bins. Then, we do the same for the reduced
shear and magnification bias corrections to the angular
power spectrum.

A. The post-Limber convergence bispectrum

The effect of relaxing the Limber approximation for the
equilateral configuration of the convergence bispectrum is
shown in Fig. 1, for all of the examined redshift bins. From
this, we see that, for all redshift bins, the Limber approxi-
mation overpredicts the bispectrum for l-modes below
l ∼ 60. Additionally, the overprediction worsens at lower
l-modes, and for higher redshift bins.
Furthermore, Fig. 2 shows the bispectra on the four bins

for two different isosceles configurations. The configura-
tions shown are when l1 ¼ l2 and l3 ¼ 20, and when
l1 ¼ l2 and l3 ¼ 100. For the former of these cases, we
notice that the bispectrum is overpredicted by the Limber
approximation for all l-modes. On the other hand, when in
an isosceles configuration with l3 ¼ 100, we see much the
same trends as in Fig. 1. This implies that the Limber
approximation fails for the convergence bispectrum when
any one of its sides li < 60. Similar discrepancies at
low l-modes are seen for both the equilateral and isosceles

TABLE III. Slope of the luminosity function for studied red-
shift bins, calculated at the central redshifts of each bin. These are
evaluated at the limiting magnitude 24.5. The slopes are deter-
mined using finite difference methods with the fitting formula of
[36].

Bin i Central Redshift Slope si

0.001–0.418 0.2095 0.196
0.678–0.789 0.7335 0.365
1.019–1.155 1.087 0.525
1.576–2.50 2.038 1.089

FIG. 1. Comparison of the equilateral configuration conver-
gence bispectrum with and without making the Limber
approximation, for the autocorrelation of four redshift bins
across the redshift range of a Euclid-like survey. The Limber
approximation fails when l < 60, and overestimates the bis-
pectrum. This overprediction is worse at higher redshifts and
lower l-modes.
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FIG. 2. Isosceles configuration bispectra with l3 ¼ 20 (left column), and l3 ¼ 100 (right column), for four tomographic bins across
the redshift range of a Euclid-like survey. The values of the bispectra with and without making the Limber approximation are shown.
When l3 ¼ 20, the Limber approximation overpredicts the bispectrum for all values of l1 and l2. However, when l3 ¼ 100, we see
similar behavior to the equilateral case shown in Fig. 1, in that the Limber approximation only results in over-prediction for
l1 ¼ l2 < 60. This suggests the Limber approximation fails when any one of the sides of the bispectrum triangle li < 60. Otherwise,
the trends in both displayed isosceles cases match those seen for the equilateral configuration, with overprediction worsening at higher
redshift, and lower l.
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configurations in [38], where the Limber-approximated
theoretical expression for the bispectrum is compared to the
bispectrum measured from full-sky simulations.
Accordingly, if l-modes below 60 are probed, as will be

the case for Stage IV experiments, the Limber approxima-
tion cannot be used to compute the bispetrum in this
regime. This presents a computational challenge, as com-
puting the post-Limber bispectrum is two orders-of-mag-
nitude slower than using the Limber approximation.
However, the separability of the bispectrum, discussed in
Sec. II F, offers a solution. For a given configuration, if one
of the sides of the bispectrum li < 60, only the instances of
Eq. (33) corresponding to that side need to be computed
without the Limber approximation. Furthermore, there has
recently been great success in using the FFTLog decom-
position technique to significantly speed up the computa-
tion of higher-order statistics without the Limber
approximation [24,25].

B. The post-Limber reduced shear and magnification
bias corrections

Figure 3 shows the impact of relaxing the Limber
approximation on the combined corrections to the cosmic
shear angular power spectra for the reduced shear approxi-
mation and magnification bias. Now, we see that the
magnitude of these corrections is overestimated slightly
throughout the entire probed range when the Limber
approximation is made. This is due to the fact that the
mathematical forms of these corrections, Eqs. (22) and
(27), involve integrating over two of the sides of the
bispectrum triangle.
Accordingly, mode-mixing results in bispectra with at

least one l-mode less than 60 being involved in corrections
for all l values. We also see that, once again, the over-
estimation is worse for the higher redshift bins. This is
expected, given that these trends are carried across from the
bins’ respective bispectra. The correction terms themselves
are highest at higher redshift; meaning that they are
the dominant contribution to the induced cosmological
biases [11].
However, for all bins, the difference between the

Limber approximated and post-Limber cases is below
sample variance, as seen in Fig. 4. Additionally, the
worst-case scenario cosmological parameter biases, when
ΔCl;ij ≈ 0.01Cγγ

l;ij, are stated in Table IV. Also reproduced
here, from [11], are the biases if the reduced shear and
magnification bias corrections are neglected entirely.
The bias on a parameter is considered significant when it

exceeds 0.25σ, as at this point the confidence contours of
the parameters with and without the systematic overlap less
than 90% [32]. From Table IV, we see that none of the
biases are significant. In fact, all but one of the biases have
a magnitude less than 0.20σ which means that the con-
fidence regions of those parameters having neglected the

FIG. 3. Combined reduced shear and magnification bias cor-
rections, with and without making the Limber approximation.
Corrections are displayed for the autocorrelation of four bins
across the redshift range of a Euclid-like survey, 0–2.5. Now, due
to mode-mixing, the Limber approximation overestimates the
correction terms at all l-modes. As with the convergence
bispectra, the overprediction worsens at higher redshift.
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bias have an overlap of more than 95% with the
parameters’ confidence regions when the bias is taken into
account.

We note that the bias in the inferred value of wa sits on
the threshold of significance. However, for l≲ 5000 and
all bin correlations other than the autocorrelation of bin
1.576–2.50, ΔCl;ij < 0.01Cγγ

l;ij. Given that these modes
and bins will make up the majority of observations for a
Euclid-like survey, we can safely conclude that the cos-
mological biases induced from neglecting the reduced shear
and magnification bias corrections will not be significantly
altered by whether they make the Limber approximation
or not.
Furthermore, biases from the difference between the

post-Limber and Limber approximated corrections are
significantly smaller in magnitude than those resulting
from simply neglecting the Limber approximated correc-
tions entirely. Accordingly, these correction terms can be
safely calculated under the Limber approximation for Stage
IV experiments.

V. CONCLUSIONS

Within this work, we have considered how the Limber
approximation will affect the convergence bispectrum
calculated for Stage IV weak lensing experiments.
Additionally, we also calculated the resulting impact on
the reduced shear and magnification bias corrections to the
angular power spectrum, as these quantities depend on the
bispectrum. We found that the Limber approximation
significantly overpredicts the bispectrum at l-modes
below 60, throughout the redshift range of a Euclid-like
survey.
Furthermore, we found this discrepancy worsens at

higher redshifts and lower l scales. Accordingly, we found
that the reduced shear and magnification bias corrections
are also overestimated by the Limber approximation,
although the difference was well below the sample variance
of a Stage IV weak lensing experiment. Finally, we
calculated the worst-case scenario cosmological parameter
biases that result from the difference between the post-
Limber and Limber approximated corrections. These were
found not to be significant. Hence, we conclude that the
Limber approximation is sufficient for these terms at this
level of precision.
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FIG. 4. Difference between Limber and post-Limber reduced
shear and magnification bias corrections, relative to the auto-
correlation power spectrum for four bins in redshift range 0–2.5.
The sample variance of the galaxy survey is also shown for
comparison. The overestimation of the Limber approximation
worsens at higher redshifts. However, it is below sample variance
across the probed redshift range; meaning that the Limber
approximation is sufficient when calculating these correction
terms for Stage IV experiments.

TABLE IV. Worst-case scenario biases in w0waCDM cosmo-
logical parameters from the difference in the post-Limber and
Limber approximated (labelled ‘PL-L’) reduced shear and mag-
nification bias corrections, relative to the predicted 1σ uncertainty
on those parameters [33] for a Euclid-like survey. The biases
resulting from neglecting the reduced shear and magnification
bias corrections altogether are also reproduced from [11], in the
column labeled ‘AD19’.

Cosmological Worst-case PL-L AD19
Parameter Bias=σ Bias=σ

Ωm 0.073 −0.53
Ωb 0.065 −0.20
h 0.090 0.040
ns −0.16 −0.34
σ8 −0.020 0.43
ΩDE 0.13 1.36
w0 −0.18 −0.68
wa 0.25 1.21
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