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To sustain the continuous high-rate charge current required for fast charging of electric vehicle batteries, the ionic effective
diffusion coefficient of the electrodes must be high enough to avoid the electrode being transport limited. Tortuosity factor and
porosity are the two microstructure parameters that control this effective diffusion coefficient. While different methods exist to
experimentally measure or calculate the tortuosity factor, no generic relationship between tortuosity and microstructure presently
exists that is applicable across a large variety of electrode microstructures and porosities. Indeed, most relationships are
microstructure specific. In this work, generic relationships are established using only geometrically defined metrics that can thus be
used to design thick electrodes suitable for fast charging. To achieve this objective, an original, discrete particle-size algorithm is
introduced and used to identify and segment particles across a set of 19 various electrode microstructures (nickel-manganese-cobalt
[NMC] and graphite) obtained from X-ray computed tomography (CT) to quantify parameters such as porosity, particle elongation,
sinuosity, and constriction, which influence the effective diffusion coefficient. Compared to the widely used watershed method, the
new algorithm shows less over-segmentation. Particle size obtained with different numerical methods is also compared. Lastly,
microstructure-tortuosity relationship and particle size and morphology analysis methods are reviewed.
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Lithium-ion battery (LIB) electrodes have complex porous
microstructures that are linked to their macroscopic performance.
Typical LIB macroscale electrochemical models1–10 are based on
porous electrode theory11–15 and thus abstract microstructural
heterogeneity of composite electrodes using effective macroscopic
properties. Four microstructure parameters are usually considered:2

(i) the porosity e; (ii) the specific surface area S ,p used to scale the
reaction current; (iii) the particle diameter d ,50 which controls
the maximum diffusion length of the solid phase diffusion; and
(iv) the tortuosity factor t ,i which denotes the effect of the
convoluted, tortuous, path of the pores that hinders the Li-ion
diffusion along the direction i. Parameters and acronyms are
referenced in Table I. Achieving an accurate estimation of these
parameters is essential to provide accurate predictions in agreement
with experimental data.16,17 Fast ion transport along the electrode
thickness (i.e., low tortuosity factor for a given porosity, cf. Eq. 1) is
necessary for the battery to sustain continuous high-rate discharge or
charge currents, important, for example, for the fast charging of
electric vehicle batteries.17–21 Tortuosity factor is deduced from the
normalized effective diffusion coefficient (defined as the ratio
between the effective diffusion coefficient Deff i, along the direction
i and the bulk, dense, diffusion coefficient Dbulk) and the porosity
(cf. Eq. 1).22 Previous work has demonstrated tortuosity factor is a
key parameter to enable fast charging for thick electrodes.17 It is
then relevant for automotive applications to design LIB electrodes
with the lower tortuosity factors to facilitate fast charging.

While tortuosity factor can be experimentally determined,16,23 its
value can also be obtained through a homogenization calculation
performed on a three-dimensional volume reconstruction of the
electrode microstructure obtained either by X-ray computed tomo-
graphy (CT) or focused ion beam scanning electron microscopy
(FIB-SEM). Details can be found in the literature for the numerical

calculation16,24–26 and the experimental imaging.26–29 However, the
homogenization calculation is an indirect determination of the
tortuosity factor, as it computes the normalized effective diffusion
coefficient and then only deduces the tortuosity factor using Eq. 1.
This method does not give any insights about the intrinsic relation-
ship between the microstructure morphology and the tortuosity
factor, which is valuable information for designing tailored low-
tortuosity electrodes. In the battery community, the standard micro-
structure-tortuosity relationship is the Bruggeman’s analytical
law30,31 (cf. Eq. 2) and its empirical counterpart, the generalized
Archie’s relationship32,33 (cf. Eq. 3). The limits of the Bruggeman’s
analytical law have been extensively discussed in the literature. Its
validity is restricted to unisize isotropic (i.e., spherical) particles in
an electrode with moderate to high porosity.16,31,33,34 The
Bruggeman law fails to capture the tortuosity factor of low-porosity
and/or non-spherical particles such as anisotropic flake-like
graphite.16 The empirical Archie’s relationship is more flexible, as
it introduces two microstructure-dependent parameters, gi and a ,i
with i being the investigated direction. Although it has demonstrated
accurate correlations, each new microstructure type requires a new
set of parameters gi and a ,i which drastically limits its predictive
capability for new microstructures.16,26 Furthermore, gi and ai do not
have a geometric definition that could be used to design a low-
tortuosity factor electrode. Several other porosity-tortuosity factor
relationships, also relying on additional nongeometrically defined
parameters, have been proposed in the literature.35–37 Many of these
relationships tend to disagree for the low porosity range.36,37 There
is then an identified need to establish a microstructure-tortuosity
relationship based not only on porosity, but also on additional
geometrically defined parameters, in order to provide a more generic
relationship that will apply on a wider range of different micro-
structures, eventually producing valuable design recommendations
for low-tortuosity and low-porosity (hence high-rate) electrode
materials.

In this work, two issues of microstructure-tortuosity correlation
are addressed: lack of genericity, which limits prediction solely tozE-mail: francois.usseglioviretta@nrel.gov

*Electrochemical Society Member.

Journal of The Electrochemical Society, 2020 167 100513

https://orcid.org/0000-0002-7559-8874
https://orcid.org/0000-0003-4633-560X
https://orcid.org/0000-0002-9574-5106
https://orcid.org/0000-0001-9912-4772
https://orcid.org/0000-0003-0402-9620
https://orcid.org/0000-0002-1387-9531
https://orcid.org/0000-0001-7011-0377
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:oa@electrochem.org
https://doi.org/10.1149/1945-7111/ab913b
mailto:francois.usseglioviretta@nrel.gov
https://crossmark.crossref.org/dialog/?doi=10.1149/1945-7111/ab913b&domain=pdf&date_stamp=2020-06-03


microstructures for which correlation parameters have been fitted,
and use of nongeometrically defined parameters, which prevents
design recommendations. To achieve this, pore topology and particle
morphology of various electrodes are quantified through a set of
geometrically defined metrics using a novel particle identification
algorithm, and then correlated with the tortuosity factor and the
normalized effective diffusion coefficient. The new established
correlations stand for a wide range of microstructures (NMC and
graphite) with different porosities and particle shape and can be then
considered generic, in contrast with the empirical Archie’s relation-
ship, which is microstructure specific. The tortuosity factor is then
defined directly (i.e., as a function of defined geometric parameters)
rather than indirectly (cf. Eq. 1), which enables design recommenda-
tions. An open-source electrode library is used (cf. paragraph section
Electrode library, over-segmentation, and particle identification) so
that other groups can compare identification results with their own
methods. The next two sections review microstructure-tortuosity
relationships and particle size and morphology analysis methods
reported in the literature, as well as their limits.
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Review of Microstructure-Tortuosity Relationship

Tortuosity factor encompasses all the contributions of the
microstructure, not only the porosity, in the normalized effective
diffusion coefficient. Several authors38–43 have attempted to give a
geometrical definition of the factor of tortuosity, thus a direct
definition instead of the indirect definition given by Eq. 1. Two
geometric properties are commonly considered in addition to the
porosity and are illustrated in Fig. 1 for different geometries.

First, the sinuosity of the microstructure is quantified through the
geometric tortuosity t ,geo i, usually defined as the average shortest
distance within the pores from the face normal to the direction i of
the microstructure domain to the opposite face á ñli normalized with
the domain’s length along the same direction Li (cf. Eq. 4 and
Fig. 1a). Geometric tortuosity is an oriented parameter with a
direction: t +geo i, and t -geo i, are the geometric tortuosity along
direction i calculated from bottom to top and from top to bottom,
respectively. Domains with a small field of view, or case-study
geometries, may have a different number of paths between opposite
faces from bottom to top and from top to bottom, which can result in
t t¹+ -geo i geo i, , (cf. Fig. 1a). Geometric tortuosity is usually
determined by first skeletonizing the pore domain, or finding its
medial axis, and then calculating the shortest paths using graph
theory on this simplified representation of the
microstructure.40,41,44–46 Although, the skeletonization algorithm
will induce a bias in the analysis as the extracted topology may be
different depending on what algorithm has been used.40

Furthermore, other criteria than the shortest path can be used, such
as highest permeability path for maximal flow.47
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L
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i
, [ ]

Second, the variation of the section area along the pathways38–43

(cf. Fig. 1b) is described with the constriction factor b, the
constrictivity d, and the geometric constrictivity d .geo The constric-
tion factor, initially introduced by Petersen,38 is defined as the ratio
between the large section Amax (the bulge) of radius rmax and the
small section Amin (the bottleneck) of radius rmin of the pore domain
embedded in periodically ordered spherical particles (cf. Eq. 5).
Because the particles are aligned, his case study corresponds to a
unit geometric tortuosity. Petersen38 analytically demonstrates that
the diffusion within this simplified pore medium, which exhibits
periodic constrictions, is controlled by the constriction factor.
Michaels39 demonstrated later that the variation of the section area
has a much higher impact on the effective diffusion than the distance
between the bottleneck and bulges. Holzer et al.40 have fitted the
effective normalized diffusion coefficient according to Petersen’s
result (cf. Eq. 6). However, the simple geometry used in Petersen’s

Figure 1. (a) Tortuosity factor is a combination of both the geometric tortuosity tgeo and the constriction factor b. In this example, there are three shortest paths
from bottom to top noted + -li ,1 3 and four from top to bottom noted - -l ;i ,1 4 (b) Tortuosity factor due to the constriction factor; (c) Tortuosity factor due to the
geometric tortuosity; (d) Unit tortuosity factor.
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study limits the use of this relationship for actual, more complex
electrode microstructure geometries. Holzer et al.40 have then
proposed to characterize the constriction factor directly from actual
microstructure tomography through a particle-size distribution
analysis that combines a continuous particle-size distribution
(c-PSD) algorithm to get the average largest section á ñAmax and a
mercury intrusion porosimetry (MIP) simulation to calculate the
average smallest section á ñAmin (cf. Eq. 7). Indeed, size distributions
calculated with MIP simulation tend to overrepresent the bottle-
necks, thus providing an estimation of the minimum radius.40

However, the choice of using c-PSD to determine the maximum
section is disputable, as c-PSDs are known to underestimate the
actual particle size, especially for non-spherical particles.48,49

Furthermore, another drawback of this approach is that both MIP
simulation and c-PSD calculations are isotropic, which implies the
deduced constriction factor is isotropic, while an oriented definition
would suit better this parameter, as discussed later in this section.
Note that Holzer et al. have chosen the opposite area ratio for the
constriction factor compared with the initial Petersen’s definition:
b  1,Petersen while b  1Holzer (cf. Eqs. 5 and 7). The constrictivity d
introduced by Brakel and Heerjes42 is used to decompose the
tortuosity factor between the geometric tortuosity and the constric-
tivity (cf. Eq. 8).29,42 As defined, the constrictivity determination is
indirect: it is deduced from the geometrical tortuosity, the porosity,
and the normalized effective diffusion coefficient. To achieve a
direct determination (i.e., based only on geometrically defined
parameters), the constrictivity is correlated with the geometrically
defined constriction factor (cf. Eq. 9). Because the constrictivity is
an oriented parameter, it implies that the definition of the constric-
tion factor should also be anisotropic. The constrictivity obtained
from such a correlation is named geometric constrictivity and noted
d .geo For instance, Holzer et al.40 have established an empirical
relationship for porous olivine diaphragms (cf. Eq. 10). The normal-
ized effective diffusion coefficient is then a function of geometri-
cally defined parameters: the porosity, the geometric tortuosity, and
the constriction factor through its correlation with the geometric
constrictivity. Another interest of this approach consists in its
orthogonality: while the tortuosity factor is a combination of
geometric tortuosity and geometric constrictivity for complex
electrode microstructure, some simple geometries exhibit either no
geometric tortuosity or no geometric constrictivity (cf. Fig. 1).
Parameter orthogonality for actual microstructures is discussed in
detail in the paragraph section Tortuosity-microstructure correla-
tion.
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In addition to these geometric parameters, several authors have
pointed out the role of the particle alignment for non-spherical
particles on the tortuosity factor.16,50,51 Pore embedded between
ellipsoid-like particles exhibits a much lower tortuosity factor along
the direction aligned with the ellipsoids long diameter compared
with the direction orthogonal with it.16,50,51 Indeed, particle align-
ment impacts both geometric tortuosity and constriction factor, as
illustrated in Fig. 2. This illustration suggests that constriction factor
should be defined as an oriented parameter. These three geometric
parameters are not independent, which implies that a microstructure-
tortuosity relationship can include all of them or only a subset of
them. The definition of the constriction factor, geometric tortuosity,
and particle elongation used in this work is given in the section
Particle morphology and pore topology parameter determination.

Whatever the microstructure-tortuosity factor relationship is, the
tortuosity factor should always converge towards 1 as the porosity is
increasing. This implies that the contributions or weights of these
additional geometric parameters (geometric tortuosity, constriction
factor, and particle alignment/elongation) is decreasing with the
porosity, i.e., their values are less important. Contrariwise, for the
low porosity range, not taking them into account can lead to
inaccurate tortuosity predictions. This explains the wide prediction
spread in the low porosity range obtained with porosity-tortuosity
factor relationships reported in the literature.36,37 Evaluating particle
morphology (to deduce particle elongation and alignment) and pore
topology (to deduce geometric tortuosity and constriction factor) is
then particularly essential for establishing microstructure-tortuosity
factor relationships valid in the low-porosity range for a wide type of
electrode materials that could be used to provide practical design
recommendations for LIB electrode design for electric vehicle
applications.

Figure 2. Tortuosity illustrated for periodically aligned ellipsoidal particles for diffusion path (a) normal with the ellipsoid long diameter and (b) aligned with it.
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Review on particle size and morphology analysis methods.—
Particle shape and size can be quantified through optical observation
of the powder. However, particle spatial distribution and alignment
within the electrode microstructure, which controls both the con-
striction factor and the geometric tortuosity (cf. Fig. 2), requires
more in-depth observation techniques such as CT and FIB-SEM.
Metrics to characterize particle size and morphology are well
defined.52 However, three-dimensional volume reconstructions ob-
tained with these techniques usually do not show distinct particles,
but rather a unique connected cluster (cf. Fig. 3 and Refs. 16, 49).
While some methods allow for calculating particle size without
identifying distinctively particles (c-PSD,48,53,54 MIP simulation,53

covariance,16,25,49,55 chord length,56 and intercept method57,58), they
provide no or limited (e.g., size anisotropy16) information on the
particle morphology. Therefore, a proper particle identification or
segmentation step is required prior to the morphology analysis.
Particle identification is challenging as no unique definition exists
for what a particle is for a connected cluster. Furthermore, LIB
electrode material particles exhibit different geometric features (e.g.,
cracks) and shapes (e.g., quasi-spherical, flake-like) that prevent the
use of a simple geometric definition (cf. Fig. 3). In addition, particles
with significant cracks could be considered as distinct particles.
Also, the bottleneck critical size used to visually distinguish
(respectively, merge) adjacent geometric features into two particles
(respectively, one particle) is highly subjective, especially for
microstructures that exhibit a wide particle size distribution (cf.
Fig. 3). Therefore, a particle identification numerical method should
be parameter-free to avoid subjectivity issues.

Discrete particle-size distribution (d-PSD) algorithms are com-
monly used to label particles from a connected cluster.53,59–67

This family of algorithms is based on the same approach: simulating
a user-defined phenomenon (e.g., erosion,64 flooding or
immersion,59–62,67 drop of water principle,65 or seed growing66)
within the microstructure segmented image, and then identifying the
particles based on the simulation result interpretation. These algo-
rithms identify particle bulk (called seeds66 or catchment basins65

depending on the employed method) and particle connections
(called dividing, or watershed, lines65 or concave bottle necks48)
to label distinct particles. Once labelled, a set of metrics such as
equivalent diameter and sphericity can be deduced.48,52 Most d-PSD
methods are based on the Euclidean distance map (EDM), which is
the minimum distance to the domain’s boundary64,68–70 (cf. Eq. 11).
A visual representation is given in a previous work.49 These
algorithms often consider the EDM as a topographical relief60 and
are based upon the mathematical morphology notion of watershed
line. Watershed line is an essential tool developed by Beucher
and Lantuejoul,71 initially for segmenting images, which delimit the
zone of influence of each phase or particle. A large number of
methods have been developed to calculate them.65 One of the most
common watershed algorithms consists in marking the opposite
EDM minima as water sources and then progressively flooding the
domain, considering the opposite EDM as a topography map, each
source point being the bottom of a distinct lake (i.e., the immersion
of flooding approach).59–62 When two lakes, or catchment basins,
meet each other, an imaginary dam is placed on their boundary to
prevent distinct lakes from merging.60 The union of all dams are the

Figure 3. Two-dimensional slices extracted from CT volumes for (a) graphitic anode and (b) nickel-manganese-cobalt-oxide (NMC) cathode. (a) Solid red lines
represent hand-made particle identification based on the assumption that particle external contour is roughly spherical, while dash lines are alternative plausible
particle identification without any shape presupposition. In this example, the pore 3D domain is fully connected. (b) NMC quasi-spherical particles appear to be
connected, with bottlenecks of various size (blue lines) that make their identification subjective.
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watershed lines, which delimit the influence zone of each catchment
basin.59,60 The iterative process stops when all voxels of the phase
have been attributed to a lake, which are then interpreted as distinct
particles. Illustrations and results of this method can be found in a
previous work.49 Immersion-type algorithms are still developed,
with an emphasis on parallel computation in order to increase the
size of analyzable domain in a decent time.67,72 Alternatively,
Cousty and Bertrand65 have formalized the “drop of water”
principle, for which a drop of water falling on a topographic surface
(represented by the EDM opposite) follows a descending path until it
reaches a stable position, the local minimum of the EDM opposite.
In this approach, the watershed lines are the separating lines of the
domain of attraction of each catchment basin. Saadatfar et al.66 have
developed another EDM-based method, which considers the local
EDM maxima as distinct seeds, one for each individual particle. A
region growing algorithm is then used until all voxels of the phase
have been attached to the initial seeds’ voxels.66 Lastly, Münch
et al.64 have developed a splitting recognition algorithm, based upon
a stepwise erosion process of the binary image, that will progres-
sively disconnect touching microstructure features and then identify
them. This algorithm also uses the EDM as eroded regions are
identified based on their distance from the domain’s boundary.

Due to the absence of any particle morphology assumption, d-PSD
methods are expected to provide particle sizes closer to the actual
sizes, compared with those obtained with a spherical assumption
(continuous particle-size distribution, noted c-PSD),48,49,73 especially
if particles are actually non-spherical. However, because watershed
methods are gradient based, they usually suffer from over-segmenta-
tion or over-identification due to the presence of concavities on the
particle surfaces (e.g. non-smooth interfaces), which induce a noisy
gradient image and generate a lot of irrelevant, oddly shaped small
particles.59,60,62,64,74 Correct watersheds lines can be then lost in a
mass of irrelevant ones, even if the gradient image has been previously
filtered.59 Several authors have proposed methods to limit
over-segmentation.49,64,73 Adjacent catchment basins can be merged
according to some criteria, or preexisting knowledge of the geometric
features to be identified can be used to perform an initial marking
step.59 Münch et al.64 use an additional parameter to control the
magnitude of the erosion process, which can be tuned to reduce over-
segmentation. Usseglio et al.49 proposed to discard particles assigned
with a diameter lower than the one obtained with a c-PSD algorithm
and reassign their voxels to adjacent particles, assuming that the
smallest possible geometric feature that can be considered as a particle
is the largest sphere and everything below is an artifact (i.e., assuming
c-PSD gives the particle size lower bound). Except for case study
geometries (e.g., spheres66) with no surface roughness, the outcome of
a d-PSD algorithm is difficult to predict due to the absence of a
morphology constraint.64 Therefore, visual inspection is required to
validate the identification results. Furthermore, some methods use
parameters either to control the magnitude of the physical mechanism
simulated64 or to filter the gradient image, such as by merging nearby
local minima based on a user-defined critical distance.70 However, the
choice of these user-defined parameters reduces the result’s unicity.
Lastly, d-PSD methods suffer from a border effect that underestimates
the size of the truncated particles located at the domain’s boundaries.
Münch et al.64 proposed two methods to correct this edge effect: (i) an
unspecific particle volume correction factor applied on all particles
based on the fact that the probability of larger particles being truncated
is higher than for smaller particles, and (ii) a specific particle volume
correction factor of 2n applied only on particles truncated by n
adjacent planes, assuming particles are randomly oriented.

Aim and organization of the article.—Tortuosity factors have
been determined in previous work16,49 with an indirect approach
(cf. Eq. 1), thus without establishing a direct microstructure-
tortuosity correlation valid for a wide range of different micro-
structures and involving only geometrically defined parameters.
Such relationships are essential to provide design recommendations
for low-tortuosity and low-porosity electrode materials. Particle

morphology and pore topology analysis are required to provide the
parameters of the desired microstructure-tortuosity relationships, and
a particle identification step is needed prior to the particle mor-
phology analysis of typical LIB electrode reconstructed volumes.
Section Particle size and morphology original algorithms introduces
two novel algorithms used to calculate particle size and to identify
particles. Section Particle morphology and pore topology parameter
determination defines the morphology and topology parameters that
are extracted from the particle identification. SectionMethod applied
with reference geometries illustrates particle identification per-
formed on case-study geometries, with a reference watershed
(immersion approach) method and the novel algorithm. Section
Methods applied with electrode library shows results obtained on
tomography-based LIB electrode reconstructed volumes. The elec-
trode open-source library is described in paragraph section Electrode
library, over-segmentation, and particle identification. Particle sizes
obtained with different methods are compared in paragraph section
Particle size comparison, particle and pore morphology results are
shown in paragraph section Particle morphology, and pore topology
(i.e., geometric tortuosity and constriction factor) in paragraph
section Pore topology. Finally, paragraph section Pore tortuosity
factor correlation with microstructure geometry shows microstruc-
ture-tortuosity correlation established based on the metrics results
discussed in the two previous paragraphs section. Discussion and
conclusion sections conclude the article.

Particle Size and Morphology Original Algorithms

In this work, particle sizes are evaluated through a set of different
numerical methods: covariance, from specific surface area, c-PSD,
and watershed (immersion), with algorithms detailed in previous
work.49 In addition, two new methods are introduced and are
detailed in the paragraph below: Euclidean distance map fitting
(EDMF) and pseudo-Coulomb repulsive field (PCRF). Table II
summarizes the pros, cons, and assumptions of each method.

Euclidean distance map fitting method.—Euclidean distance
map (EDM), also called Euclidean distance transform, is defined for
each point x of the investigated phase V as the shortest distance from
this point to the phase boundary ¶V (cf. Eq. 11). Previous work
shows an illustration of such a map.49 The EDM is calculated with
the MATLAB built-in function bwdist based on a linear time
algorithm.68 The EDM cumulative function C R d,EDM

sphere( ) of a sphere
of radius R is defined as the volume sum of all the infinitesimally
thin layers distant from the sphere boundary with a distance superior
or equal to d, normalized with the sphere volume (cf. Eq. 12).
Applied to an arbitrary microstructure phase V discretized in N
voxels xi of volume W, the EDM cumulative function C dEDM ( ) is the
volume sum of all the voxels distant from the phase boundary with a
distance superior or equal to d, normalized with the phase volume
(cf. Eq. 13).
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The Euclidean distance map fitting (EDMF) original method
consists in finding R so that the difference between C R d,EDM

sphere( )
and C dEDM ( ) is minimal. An example is shown in Fig. 17c. If the
microstructure is constituted of nonoverlapping spheres with a unique
radius R, then this method provides the exact radius. Even though the
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fitting step relies on a spherical assumption, the calculation ofCEDM is
assumption-free. Furthermore, this method is parameter-free.

The general approach used in this original method is to first
choose a function F known as a function of a parameter P for a
reference geometry G, then to fit F with P to match the function
calculated on an arbitrary domain so that the fitted value of P would
provide an approximation of P for this domain. Here, F is the
Euclidean distance map cumulative function, P the characteristic
size, and G a sphere. This approach has been used in a previous
work,49 with F being the covariance function and G an infinite
medium constituted of spherical particles with a unique diameter. It
is believed by the authors that other doublets (F, G) exist to
determine the characteristic size of an arbitrary domain.

Discrete particle size distribution: pseudo-Coulomb repulsive
field method.—The original method presented in this section is a
discrete particle size-distribution (d-PSD) algorithm that provides

particle size but also identifies distinctly particles that is valuable to
quantify particle morphology and pore topology metrics defined in
section Particle morphology and pore topology parameter determina-
tion used to correlate tortuosity factor. The new method is expected to
be more robust than the reference watershed method for reasons
detailed in this section. The novel method is described below.

Boundaries of the investigated phase are considered as fixed
walls, positively charged. Imaginary positively charged particles are
then dropped or generated between these fixed walls (i.e., within the
phase volume). We will call these imaginary charged particles
“charged points” to avoid confusion with active material or lithium-
ion particles. Because both points and walls are charged with the
same polarity, they repulse each other according to a pseudo-
Coulomb’s law (cf. Eq. 14). Since walls are fixed, only the charged
points will move from their initial position. Points are pushed away
from the phase boundary and converge toward particle centers.
Eventually, the sum of the trajectories that converge to the same

Table I. Nomenclature. 1As defined in this work.

Parameter (transport-related) Range Symbol Unit

Porosity [0, 1] e —

Tortuosity factor along direction i >1 ti —

Effective diffusion coefficient along direction i >0 Deff i, -m s.2 1

Bulk (dense) diffusion coefficient >0 Dbulk -m s.2 1

Empirical Archie’s relationship pre-exponential term along direction i Fit gi —

Empirical Archie’s relationship exponential term along direction i Fit ai —

Geometric tortuosity along direction i >1 tgeo i, —

Geometric tortuosity along direction i, from bottom to top >1 t +geo i, —

Geometric tortuosity along direction i, from top to bottom >1 t -geo i, —

Shortest distance along direction i >0 li m
Domain’s length along direction i >0 Li m
Constriction factor along direction i [0, 1]1 bi —

Constrictivity factor along direction i [0, 1]1 di —

Geometric constrictivity along direction i [0, 1]1 dgeo i, —

Constriction factor (Petersen definition38) >1 bPetersen —

Constriction factor (Holzer definition40) [0, 1] bHolzer —

Bulge section area along direction i >0 Amax i, m2

Bottleneck section area along direction i >0 Amin i, m2

Parameter (particle-related) Range Symbol Unit
Specific surface area >0 Sp -m 1

Equivalent diameter >0 d m
Particle mean equivalent diameter >0 d50 m
Particle elongation or aspect ratio: d1 and d2 in-plane dimensions, d3 through-plane dimension >0 d d d: :1 2 3 —

Particle elongation x, if not specified otherwise = +x d d d 23 1 2(( ) )/ / >0 x —

Sphericity [0, 1] y —

Corrected sphericity [0, 1] yc —

EDM cumulative function of a sphere [0, 1] CEDM
sphere —

EDM cumulative function of an arbitrary domain [0, 1] CEDM —

Pseudo-Coulomb field >0 F̄ —

Pseudo-Coulomb field parameter 2 or 3 k —

Acronym Name
LIB Lithium-ion battery
CT Computed tomography
NMC Nickel-manganese-cobalt-oxide
c-PSD Continuum particle-size distribution
d-PSD Discrete particle-size distribution
EDM Euclidean distance map
EDMF Euclidean distance map fitting
PCRF Pseudo-Coulomb repulsive field
FIB-SEM Focused ion beam scanning electron microscopy
MIP Mercury intrusion porosimetry
CAMP Cell Analysis, Modeling, and Prototyping
MCMB Mesocarbon microbeads
CBD Carbon-black domain
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Table II. Summary of the different particle size methods employed in this work with pros (+) and cons (−).

Results outputs

Methods Assumptions Spatial locationa) Anisotropyb)
Particle

identificationc) Comments
CPU
cost Referencesd)

c-PSD Spherical particles Yes No No (−) Size underestimation Light 48, 49, 53,
54

(+) Adequate for quasi-spherical par-
ticles or channel-type geometries

Covariance Spherical particlese) No Yes No (+) Intermediate calculation can be
used to calculate specific surface
area

Light 16, 25, 49,
55

(+) Can evaluate periodicity, if any
(−) Requires large volume for the
statistical analysis to be precise en-
ough

From specific
surface
area

Non-overlapping spherical par-
ticles with no surface rough-
ness

No No No (−) Surface roughness bias results Light 25, 49, 75

EDMF Spherical particlese) No (particle size) Yes
(distance to surface)

No No (+) Provides both particle diameter
and distance to surface

Light This work

Watershed
(immersion)

None Yes Yes Yes (−) Over-segmentation Heavy 49, 59–62

(−) Edge effect (truncated particles)
PCRF None Yes Yes Yes (+) Less over-segmentation Heavy This work

(−) Edge effect (truncated particles)

a) Not only is average diameter d50 known, but also the local diameter d x .( ) This is valuable to evaluate spatial heterogeneities, edge effect, and/or graded electrodes. b) Diameter is known along the three spatial
directions. c) Particles are identified distinctly from the analysis of the fully connected domain. It can be used to quantify particle morphology and pore topology through a domain’s skeletonization. d) c-PSD,
covariance, and watershed methods used in this work are detailed in previous work.49 e) Spherical particle assumption is used only to fit the algorithm result. The assumption is then less strong than for the c-PSD
method where spherical assumption is used to directly calculate the algorithm result.
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stable position defines a unique particle. The method is illustrated in
Fig. 4. We call this method in this work the pseudo-Coulomb
repulsive field (PCRF) method.

The pseudo-Coulomb field F̄ is calculated as described here (cf.
Fig. 4a). First, voxels that belong to the complementary phase but are
adjacent to the investigated phase are identified and noted w,¯ and
represent the fixed wall. Then, for each voxel xi that belong to the
investigated phase, the local value of F xi¯ ( ) is calculated (cf. Eq. 14),
with n as the number of wall voxels and lij a line of sight binary value: 1
if a straight path exists between xi and wj and 0 otherwise (cf. Eq. 15).
In the example shown in Fig. 4, the stable local minima of F̄  are not
the two spheres’ centers. The value of k is set to 2 by default to keep the
analogy with Coulomb’s inverse-square law, although different values
can be tested (higher values decrease the contribution of distant walls).
This is the only parameter of the method and its impact on the particle

identification is discussed in sections Method applied with reference
geometries and Methods applied with electrode library.
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The second step consists of simulating the displacement of charged
points within the microstructure according to the field F̄ to identify
particles. A 3D array P is first initialized (zero) and will keep track

Figure 4. (a) Illustration of the calculation of the pseudo-Coulomb field F̄ for a case-study geometry. The domain’s wall is positively charged (+). (b) Actual
stepwise displacements of charged points (in magenta) as used in the algorithm according to the sign of F.¯ Stable and unstable positions (end of displacement)
coincide with the local minimum of F .¯  (c) Displacements of charged points (magenta, orange, and grey) according to the gradient of F̄ (not used in the
algorithm).
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of the particle identification process, with p as the number of
particles identified (p is initialized at 0). An initial position x̄ is
randomly chosen within the microstructure and assigned to

= +P x p 1.( ¯) Then the discrete displacement  ¢x x¯ is calculated
with ¢ = +x x sign F x .¯ ( ¯ ( ¯)) The charged points are then moving
stepwise according to the sign of F,¯ i.e., either positive or negative
(cf. Fig. 4b), and not according directly with the gradient of F x¯ ( ¯) (cf.
Fig. 4c). Stable points between the two approaches, however, are
identical. Three cases are then possible:

1. If the new position verifies ¢ Îx phase, ¢ ¹x x̄ and ¢ =P x 0,( )
then ¢ = +P x p 1,( ) = ¢x x¯ and a new step  ¢x x¯ is calculated
(cf. Fig. 5a). The complete trajectory t of the particles is saved
in memory, as explained later.

2. If the new position brings back the point to a previous location
of the current trajectory or if the point displacement stalls (cf.
Fig. 5b), i.e., respectively ¢ = +P x p 1( ) and ¢ =x x,¯ then the
particle number is incremented = +p p 1. A complete stop
corresponds to a stable or unstable position of F,¯ while a
backtracking can happen if the local minimum actual position is
between two voxel positions. The last two positions x̄ and ¢x are
also saved and correspond to the particle center of attraction. A
new initial position x̄ is randomly chosen among the points not
already assigned to P, and the algorithm continues until all
voxels of the phase have been assigned to a particle number p.

3. The last case corresponds to ¢ Îx phase, ¢ ¹P x 0,( ) and
¢ ¹ +P x p 1,( ) which means the point intersects another

trajectory that belongs to a particle previously identified (cf.
Fig. 5c). In such a case, all voxels of the current trajectory t are
assigned to ¢P x ,( ) i.e., = ¢P t P x( ) ( ) and the particle number is
not incremented. Note that if we calculate the next displace-
ments, the trajectory will overlap with the one just intersected.
A particle is then defined as the sum of all the trajectory that
converge to the same final location. A new initial position x̄ is
randomly chosen among the points not already assigned to P,
and the algorithm continues until all voxels of the phase have
been assigned to a particle number p.

The method is domain agnostic, as it can be applied separately on
the solid (cf. Fig. 4) or pore (cf. Fig. 6) phase identically depending
on what information is wanted: solid particle morphology or pore
topology, respectively (cf. section Particle morphology and pore
topology parameter determination). To avoid confusion, the identi-
fied regions are named “particles” and “pore segments” when
referring, respectively, to the solid domain and the pore domain.

Four post-processing steps are performed to improve the particle
identification. First, particles with adjacent centers of attraction are
merged. Second, it has been observed that in some cases, a
chessboard pattern emerges at the intersection between two particles
(cf. Fig. 6a). Such numerical artifact is derived from the discrete
displacement step. Voxels that belong to such a pattern are identified
and assigned to the particle with the nearest center of mass (center of
mass, or centroids, are calculated for each particle, ignoring the
voxels that belong to chessboard patterns). The operation is repeated
until no chessboard pattern is detected. Third, particle continuity is
checked. If they are found to be noncontiguous (in rare occasion, the
chess-pattern removal algorithm induces such noncontinuity), the
largest cluster is kept while all the other smaller clusters are assigned
to the particle for which they share the largest interface. Lastly, one-
voxel-sized particles are removed, and their unique voxel is assigned
to the particle for which they share the largest interface.

Some particle identification algorithms suffer from over-identi-
fication or over-segmentation, which leads to small irrelevant
features.59,60,62,64,74 In the case of the watershed method, such
artifact issue is exacerbated as the basin source locations are derived
from the minimum distance from the boundary, thus a unique
distance value. Because of this, multiple irrelevant basin sources
may be incorrectly generated if the phase surface is rough. In this

work, the local field value used to simulate the point displacement is
based on multiple distance values (cf. Eq. 14). Because of this,
surface roughness is expected to cause less over-segmentation and
then the new method is expected to be more robust than the
reference watershed method. Over-segmentation of both methods
are compared in section section Method applied with reference
geometries and section Methods applied with electrode library. In
order to remove any over-segmentation, the same technique pre-
viously developed for immersion watershed49 is applied. Briefly, it
consists in reassigning voxels for which the diameter is lower than
the diameter of the largest sphere that contains it without over-
lapping the complementary phase (cf. Fig. 6b). This over-segmenta-
tion correction method is not specific to the pseudo-Coulomb
repulsive field method and can be used for any other d-PSD
algorithms. In this work, it is also used to correct watershed over-
segmentation results, as done previously.49

The general approach used in this original method is to simulate a
mechanism M within an arbitrary domain, for which the result
interpretation I allows to determine a parameter P. Here, M is
dropping charged points between fixed walls charged with the same
polarity, I is the points trajectory draw the particle, and P is the
particle identification. Similarly, for watershed methods, M is
flooding the domain with a liquid, I is the catchment basins linkages
correspond to particle-to-particle connections, and P is also the
particle identification. It is likely that other doublets (M, I) that could
provide a good particle identification exist.

Particle Morphology and Pore Topology Parameter
Determination

Once particles and pore segments are identified, whatever the
method is, particle morphology and pore topology can be quantified
based on a set of metrics.52 Indeed, d-PSD algorithms are used on
the solid domain (identified regions are named “particles”) to deduce
solid particle equivalent diameter, elongation, and sphericity, and on
the pore domain (identified regions are named “pore segments”) to
deduce pore constriction factor and pore geometric tortuosity, as
described in this section. Note that all metrics defined below are
domain agnostic. For instance, pore sphericity or diameters can be
calculated using the same description (simply replacing “particle”
with “pore segments” in the definition).

Equivalent diameter.—Particle equivalent diameter d is calcu-
lated using p=d V2 3 4 1 3[( ) ]/ / with V being the particle volume
defined as the volume sum of the voxels assigned to the particle.
Sizes of truncated particles at the field of view boundary are not
corrected. Mean particle diameter d50 or á ñd is calculated according
to a rule of mixture weighted by the particle volumes:

= á ñ = å åd d dV V .50 / The particle average volume á ñV is then
deduced: pá ñ = á ñV d4 3 2 .3( )/ /

Particle elongation or aspect ratio.—Particle aspect ratio
d d d: :1 2 3 of particle p is defined as follows:

= -d x xmax mina a a( ) ( ) with voxels Îx p¯ and xa as the voxel
coordinates, for =a 1, 2, 3 .[ ] Particle elongation is defined in this
work as d d d d,1 2 1 3/ / and d d ,2 3/ thus as normalized aspect ratio and
not as ellipsoids long and short diameters. Average particle elonga-
tion is calculating according to a rule of mixture weighted by the
particle volumes: á ñ = å å " ¹d d d d V V a b.a b a b/ / / Particle
elongation is illustrated in Fig. 7.

Sphericity.—Sphericity y of a particle with a volume V and a
surface area ¶V is defined as the surface area of an ideal sphere of
volume V divided with the surface area of the particle ¶V:
y = ¶V r V3 ( )/ with p=r V3 4 ,1 3( )/ / simplified in Eq. 16.
Sphericity quantifies the roundness of a particle: for a sphere
y = 1, otherwise y < 1 and is decreasing as the particle shape is
getting different from this ideal shape. However, the surface area of
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a sphere of volume V discretized in cubic voxels is six times the
disc area,49,75 then the corrected sphericity is defined as
y = ¶V r V9 2 ,c ( )/ simplified in Eq. 17. The latter expression is

used in this work to calculate sphericity. Average particle sphericity
is calculating according to a rule of mixture weighted by the particle
volumes: y yá ñ = å åV V .c c /

Figure 5. Voxel assignment to a particle numerated p illustrated during charged-point displacement. (a) Standard displacement, (b) displacement reaches F̄ 
local minimum, and (c) current trajectory (in orange) intersects with a previous trajectory (in magenta). Trajectories are merged: the particle is the sum of all the
trajectories which intersect themselves.
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Constriction factor.—Constriction factor bi along direction i is
deduced from the pore domain identification. Once all the pore
segments are identified, the average pore segment elongation á ñd d ,a b/

volume á ñV , and diameter á ñd are deduced (cf. previous paragraphs).
These average properties are used to define an equivalent ellipsoid of
same volume ¢ = á ñV V and same elongation ¢ ¢ = á ñd d d d ,a b a b/ /
representative of the average pore segment (cf. Fig. 7, top right). The
area of the disc normal to the direction i and that intersects with
the ellipsoid centroid, á ñA imax , provides an estimation of the average
maximum section area (the bulge) normal to this direction (cf. Eq. 18).
The interface between adjacent pore segments are fitted with the
equation of a three-dimensional plane, to deduce the interface normal
n ,j¯ with Îj N1, ,[ ] N being the number of interfaces, and =n 1.j¯ 
The interface area Aj is also calculated (cf. Fig. 7, bottom right). Since
the interface area is the sum of voxel faces, its value is overestimated

Figure 6. Example of post-processing steps illustrated on the pore domain of an NMC electrode CT image. (a) From left to right: (i) binary image, (ii) pore
segment identification (PCRF method) with chessboard patterns (circled in red) localized at the bottlenecks between some neighboring segments, and (iii) pore
segment identification after chessboard pattern removal. Please note chess pattern is not systematic. (b) From left to right: (i) binary image; (ii) pore segment
identification (PCRF) with small irrelevant segments identified at the bottlenecks. Some voxels of these segments could be assigned to larger pore segments
circled in red; (iii) Voxels for which - -d PSD x c PSD x( ) ( ) are marked; and (iv) reassigned to neighbored pore segments iteratively until no voxels verify
- -d PSD x c PSD x .( ) ( )

Figure 7. (Left) Example of pore identification for four pore segments (third direction is not shown for clarity’s sake). Pore segment aspect ratios d d d: :p p p,1 ,2 ,3
of pore segment p are visualized with dashed boxes. (Top right) Determination of the oriented average maximum section areas á ñAmax i, and (bottom right) of the
oriented average minimum section areas á ñAmin i, along direction i, which are used to calculate the oriented constriction factor b .i
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and must be corrected with a factor of 2/3 using a spherical
assumption.49,75 The average minimum section area (the bottleneck)
normal to the direction i, á ñA ,imin, is then defined as the average
interface area weighted with n e. ,j i¯ with d d d=ei i i i1 2 3[ ] (cf. Fig. 7
bottom right and Eq. 19). For instance, if the interface normal is almost
parallel with e1 and perpendicular with the two other directions on
average (i.e., á ñ ~n 1 0 0¯ [ ]), then the bottleneck section area along
direction 1 á ñAmin,1 is almost equal to the average interface area

á ñA2 3 ,/ while the two other directions á ñAmin,2 and á ñAmin,3 are almost
0. lastly, the constriction factor bi along direction i is defined as the ratio
of á ñA imin, over á ñA imax, (cf. Eq. 20). As defined, the construction factor
is an oriented property, as suggested by Fig. 2.
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Geometric tortuosity.—Geometric tortuosity tgeo i, along direc-
tion i is also deduced from the pore domain identification. Once pore
segments are identified, the pore domain is skeletonized using a
graph analogy: graph nodes are the pore segments’ centers of mass,
while graph edges connect nodes that correspond to adjacent pore
segments in contact (cf. Fig. 8). Edges are bidirectional (undirected
graph) and weighted by the edge distance. To calculate t +geo i, or
t -,geo i, sources nodes are all the nodes that correspond to pore
segments in contact with the first (or last, respectively) slice of the
3D field of view normal with the direction i, while target nodes
correspond to pore segments in contact with the last (or first,
respectively) slice of the 3D field of view normal with the direction i.
Then, the shortest distance +li k, (respectively -li k, ) from source node
k to any target nodes are calculated with the Dijkstra algorithm76,77

for all source node k (the MATLAB built-in function distances is

used). Source nodes that do not have a path to a target node are
ignored. They correspond to isolated (i.e., non-connected) pore
domains. Distances from field-of-view boundaries to source and
target nodes are added. The average shortest distance á ñ+li (respec-
tively á ñ-li ) is then deduced and normalized with the domain’s length
Li along the direction i to provide the geometric tortuosity t +geo i,
(respectively t -geo i, ) (cf. Eq. 21). As already discussed in paragraph
1.1 and illustrated in Fig. 1, t +geo i, and t -geo i, may not be equal. Their
difference is discussed in paragraph section Pore topology. In this
work, the geometric tortuosity along the direction is the mean value
of t +geo i, and t -geo i, (cf. Eq. 22).
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Method Applied with Reference Geometries

Reference geometries without surface roughness.—Predicting
the outcome of a discrete particle-size algorithm for complex
topologies such as LIB electrode materials is a difficult exercise
due to the absence of morphology constraint. It is then recommended
to first test such algorithm on simple geometries to get an under-
standing of how the method works, and to evaluate the identification
relevance, as the ground truth (i.e., the expected identification) is
known most of the time. Identifications achieved with watershed
(reference method) and PCRF methods are compared for a set of ten
geometries (cf. Table III). These geometries have no surface
roughness, except for the domain discretization in pixels. To
compare their relative over-segmentation, results are shown without
the over-segmentation correction method discussed in paragraph
section Discrete particle size distribution: pseudo-Coulomb repul-
sive field method. Since watershed identification is based on the
opposite EDM, the latter is also shown in the table. The pseudo-
Coulomb field F̄ is also shown, as PCRF identification relies on it.

Both algorithms performed similarly for the first four cases #1–4
(except for a minor edge effect in #4): a unique sphere (#1) and its
complementary volume (#2) and overlapping spheres (#3) and their

Figure 8. (a) Pore segment identification (PCRF method) illustrated for a pore domain two-dimensional slice of an NMC electrode (white background is the
solid particles). (b) Undirected graph of the pore domain weighted with the edge distance. Pore segment equivalent diameter is represented by a disc. (c) Graph
visualization of a pore three-dimensional domain.
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Table III. Particle identification illustrated for case-study two-dimensional geometries compared between watershed immersion method (reference)
and PCRF method (new method). Cases 1–4 provide similar identification, while Cases 5–10 are better with the new method. Over-segmentation is
not corrected on purpose for the sake of the comparison. The number of identified particles is noted n.

Binary
image

Watershed method Pseudo-Coulomb repulsive field method (PCRF)

Opposite
EDMa)

Particle
identificationc)

Pseudo-Coulomb field F̄ (illustrated with k = 2) Particle
identificationc,d)

sign F e. 1( ¯ ) sign F e. 2( ¯ ) F̄ a,b)
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complementary volume (#4). Cases 1 and 3 correspond typically to
solid particle analysis, while Cases 2 and 4 better suit the pore
topology analysis. Note that the bottleneck identified in Case 4
would provide the exact section area Amin used to calculate the
constriction factor b. For the remaining Cases 5–10, the new PCRF
method achieved a better identification compared with the reference
watershed method.

Case 5 tests algorithms for spheres connected with a long
channel: watershed failed to distinguish spheres from the channel,
while PCRF identified the distinct geometries with minor errors.
Note that the best algorithm to use for such spheres and cylindrical
channels is actually the c-PSD method as it will provide two sizes:
sphere diameter and cylindrical diameter. Cases 6–8 test algorithm
responses for spheres with inclusions. Case 6, a sphere with a
centered spherical inclusion, is a particularly tough case to resolve as
the local maximum of the distance map is theoretically a continuous
ring. There are two possible solutions to this problem: either
considering the domain as a unique particle, or as the union of an
infinity of one-dimensional particles radially oriented. While both
algorithms fail to achieve either solution, over-segmentation is
halved for the PCRF method. One reason that explains this
numerical result is the numerical error: the absolute maximum of
the calculated EDM is not a ring, but isolated pixels far from each
other that prevent merging. Additionally, since the geometry is
theoretically symmetric, any tiny asymmetry due to the pixel
discretization would shift the identification process of both methods
in one direction. Case 7 relaxes the problem difficulty by giving an
orientation to the inclusion. PCRF correctly identified the four
distinct regions, while the watershed method failed. Case 8 relaxes
the difficulty by breaking the inclusion symmetry. Even though it
can be subjective to decide what should be the perfect identification
for such a case, the PCRF result is better than the watershed result
based on the large odd (i.e., with a 90° angle) shapes present in
watershed identification but absent from the PCRF result. The odd
shapes identified with the watershed algorithm are similar to those
found in the literature.64 Lastly, Cases 9 and 10 test algorithm
performance for cracked particles. For both cases (an open crack in

#9 and a closed crack in #10), the identification is better for the
PCRF method.

The choice of the parameter k (cf. Eq. 14) did not change the
identification of Cases 1–5 and 7, slightly impacts Cases 6 and 8, and
significantly changes Cases 9 and 10, with a better identification
obtained with k = 3. Identifications obtained with k = 1 are not
shown as they were systematically less adequate, which disqualifies
this value. Over-segmentation for these geometries can be reduced,
and in some instances completely removed, using the correction
discussed in paragraph section Discrete particle size distribution:
pseudo-Coulomb repulsive field method (cf. Figs. 6 and 9). However,
it is preferable that the initial over-segmentation is the lowest
possible so that the result keeps a strong link with the identified
catchment basins (watershed method) or center of attraction (PCRF
method). For further validation, particle identifications obtained with
the watershed method using the algorithm developed in a previous
work49 has been compared with the MATLAB built-in function
watershed (cf. Fig. 9). Our in-house watershed algorithm shows less
over-segmentation, but it is also slower.

Reference geometries with surface roughness.—The origin of
over-segmentation is often explained in the literature64 by noisy
Euclidean distance map induced by small concavities at the particle
surface (i.e., surface roughness). Geometries investigated in the
previous paragraph have no surface roughness, expect for the
domain’s discretization in pixels. Therefore, their EDMs are not
noisy. However, they still exhibit significant over-segmentation with
the watershed method (Cases 6–10) and in one case (#6) for the
PCRF method. The source of their over-segmentation lies in the
geometry’s theoretical symmetry and the theoretical absence of
preferential direction (e.g., Case 6). Any asymmetry or preferential
direction induced by the pixel discretization actually controls the
identification process. Indeed, adding directions (Case 7) or breaking
the symmetry (Case 8) reduces the over-segmentation. These ideal
geometries are not representative of actual LIB electrode materials,
for which particles and geometric features are never completely
symmetrical. Therefore, testing or illustrating identification

Table III. (Continued).

Binary
image

Watershed method Pseudo-Coulomb repulsive field method (PCRF)

Opposite
EDMa)

Particle
identificationc)

Pseudo-Coulomb field F̄ (illustrated with k = 2) Particle
identificationc,d)

sign F e. 1( ¯ ) sign F e. 2( ¯ ) F̄ a,b)

a) Local minima (dark blue) indicate the centers of attraction. b) Iso-lines are shown. Iso-values are following a geometric progression for visibility’s sake. c)
Results are shown without the over-segmentation correction discussed in paragraph section Discrete particle size distribution: pseudo-Coulomb repulsive
field method and illustrated in Fig. 6. If over-segmentation occurs, the particle identification obtained after its correction is shown in Fig. 9. d) PCRF is used
with parameter =k 2. If particle identification obtained with =k 3 differs, then it is also displayed.
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Figure 9. Comparison between the particle identification obtained with watershed method using (a) our in-house algorithm and (b) the MATLAB built-in
watershed function. Over-segmentation correction allows for removal of most of the over-segmentation for the chosen example (residual tiny artifacts are circled
in red). The number of identified particles is noted n.

Figure 10. (a) Over-segmentation induced by surface roughness applied to perfectly smooth geometries. (b)–(c) No over-segmentation is induced by surface
roughness applied to rounded geometry, except for some tiny features located at the particle surface which are insignificant for volume averaged analysis. The
number of identified particles is noted n.
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algorithms on symmetric smooth geometries tests the algorithm
over-segmentation sensitivity with symmetry, while over-segmenta-
tion for actual microstructure electrodes comes from surface rough-
ness and not from symmetry, as there is no ideal symmetry in these
materials. Evaluating identification algorithms on symmetric fea-
tures without surface roughness is then a biased approach, as it is not
representative of their performance on actual microstructures.

Geometries are modified to investigate the impact of surface
roughness on identification algorithms. A simple approach consists in
randomly assigning the pixels at the domain boundary, either to the
domain or to the background. This method is enough to test
geometries with initially no surface roughness at all (cf. Fig. 10a).
For such geometries, the watershed method is extremely sensitive with
the surface roughness, generating a lot of irrelevant structures (i.e.,
over-segmentation), while far less artifacts are generated with the
PCRF method, for the reason explained in paragraph section Discrete
particle size distribution: pseudo-Coulomb repulsive field method. For
rounded geometries (e.g., Case 3 in Table III), which already start with
a non-smooth boundary due to the pixel discretization (i.e., with a
1-pixel-thick surface roughness), a thicker surface roughness is
generated by upscaling the geometry obtained with the random pixel
assignment method used previously (cf. Fig. 10b). A stronger surface

roughness is obtained by upscaling an initial coarse geometry several
times (cf. Fig. 10c). No over-segmentation is induced with either
method. Surface roughness is then more an issue for channel-type
geometries, for which the EDM local maximum is a continuous line,
rather than for particle-type geometries, for which the EDM local
maximum is a point at the particle center.

Methods Applied with Electrode Library

Electrode library, over-segmentation, and particle identifica-
tion.—Electrode library.—A three-dimensional reconstructed vo-
lumes open-source data set from a previous work16 is reused. It
corresponds to a variety of LIB 7 cathodes Li(Ni0.5Mn0.3Co0.2)O2 from
TODA America Inc. (noted NMC in this work) and 7 anodes CGP-
A12 graphite from ConocoPhillips Inc. (noted A12 graphite in this
work). Calendered (noted C) and uncalendered (noted UC) electrodes
were fabricated by the Cell Analysis, Modeling, and Prototyping
(CAMP) facility at Argonne National Laboratory and imaged by
University College London with micro- and nano-CT. Details of the
preparation, imaging, and segmentation can be found in Ref. 16.
Segmented volumes investigated in this work correspond to the case
where the background domain volume fraction is the combined

Figure 11. Particle identification without over-segmentation correction between watershed (reference) and PCRF methods for (top left) A12 graphite, (top right)
SLC1506T and (bottom) NMC microstructures, applied for solid (top rows) and pore (bottom rows) domains. Red circles indicate some over-segmentation and
odd particle shapes.
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volume fraction of the pore and the additive phase (i.e., carbon binder).
Therefore, the binary domain contains: 0 (background) = pore +
additives, and 1 = active material. This choice results from the
inability to distinguish the additives from the pore phase with X-ray
CT. The reader is invited to read16 for details about the segmentation.
In addition, five other graphite electrodes have been manufactured by
CAMP: SLC1506T, SLC1506T2, SLC1520P (natural coated graphite),
MCMB (artificial mesocarbon microbeads standard type G15), and
BTR BFC-10 (artificial graphite Targray SPGPT805), with porosities
of 0.374, 0.345, 0.351, 0.381, and 0.321, respectively, and thicknesses
of 44, 70, 45, 48, and 49 μm, respectively. All five samples share the
same weight ratio of the anodes previously investigated.16 Imaging and
segmentation for these new electrodes have been done in a similar way
compared with the previous data set.16 Open-source tomographic data
are also available.78 Porosity of the total 19 electrodes investigated in
this work are listed in Table V.

Over-segmentation.—Watershed and PCRF identifications are
shown in Fig. 11. To provide a fair comparison, both results are
displayed before over-segmentation correction. The watershed method

Figure 12. Particle identification before and after over-segmentation correc-
tion illustrated for a A12 graphite microstructure (solid domain). While some
artifacts are completely removed (white circles), some odd shapes are not
corrected because of their large size (red circle). In addition, odd shapes may
be corrected but still result in an over-partition of the particle (orange circle).
In contrast, PCRF generates initially far less over-segmentation, with most of
the artifacts located at particle interconnection, which results in a better final
identification (also visible in Fig. 6).

Figure 13. Identification achieved for the solid (left) and pore (right) domains, with PCRF method and after over-segmentation correction, illustrated for a A12
graphite, SLC1506T graphite, and NMC microstructures.
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generates a significant number of irrelevant artifacts with odd shapes,
similar to those reported in the literature.64 In contrast, identification
obtained with the PCRF is much less noisy. Little difference is
observed between the identification obtained with different values of k
(2, 3, and 4). There is then no real reason to choose one value over
another. For the rest of the article, k = 3 has been chosen.

Over-segmentation correction and final identification.—Most of
the small irrelevant artifacts are removed by using the over-
segmentation correction algorithm discussed in paragraph section
Discrete particle size distribution: pseudo-Coulomb repulsive field
method, even for the watershed images. However, the final identi-
fication still appears visually better with the PCRF method rather
than with the watershed method due to a better initial identification
(cf. Fig. 12). Figure 13 shows an identification obtained with the
PCRF method, after over-segmentation correction. No or very few
artifacts are visible for the three different microstructures.

Until this point, all identification results have been calculated from
two-dimensional slices. This allowed for visual evaluation and com-
parison of the two identification methods, as all of the domain topology
is visible. However, quantifying particle morphology and pore topology
requires work on three-dimensional volumes. From this point, all

morphology and topology results are obtained from identification
performed on three-dimensional volumes using the PCRF method
with k = 3. To achieve 3D identification in a reasonable time, volumes
have been cropped and image resolution has been downscaled (2×).
Figure 14 shows such an identification. Visual interpretation of the
identification results for the quasi-spherical NMC particles is possible
in 3D. However, due to the complex particle 3D morphology of the two
graphite electrodes, it is not possible to visually interpret identification
results obtained from a 3D volume plotted in 2D slices.

Particle size comparison.—Particle sizes calculated with the
numerical methods listed in Table II are shown in Fig. 15 for all the
electrodes. NMC and SLC1520P electrodes have the largest particle
sizes, while A12 and SLC1506T have the smallest and SLC1506T2,
MCMB, and BFC-10 have intermediate sizes. The c-PSD system-
atically provides the lower bound due to three reasons. First, the
spherical assumption induces a constraint that limits the particle size
as discussed in Refs. 48, 49, 73. For instance, the diameter of the
largest sphere contained within an ellipsoid is the smallest ellipsoid’s
diameter. Second, the particle volume not contained within the
largest sphere is assigned to smaller spheres, which induces an even
smaller volume average particle size. Figures 16a and 16b illustrate

Figure 14. Identification obtained on three-dimensional volumes (black is pore domain).

Figure 15. (Top) Active material mean particle sizes calculated on various NMC and graphite electrodes, using c-PSD, specific surface area Sp ( =d S6 p50 / ),
EDMF, watershed, PCRF, and covariance; (bottom) Active material mean particle size normalized with c-PSD.
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these two sources of underestimation. Particle elongation induces a
significant particle size underestimation. For instance, for an
ellipsoid of diameter ratio 1:1:2, the ellipsoid equivalent (respec-
tively, largest sphere) diameter is ∼1.58 (respectively, ∼1.24) times
higher compared with the mean diameter obtained with the c-PSD
method. Because of these tiny sphere diameters, particle-size
distributions calculated with c-PSD exhibit a peak for the very
small diameters, absent for d-PSD algorithms such as watershed and
PCRF (cf. Figs. 17a and 17b). Particle elongation decreases
sphericity as defined in Eq. 17, which controls the difference
between the equivalent ellipsoid diameter and the mean c-PSD
diameter (cf. Figs. 16c and 16d). Flake-like particle (i.e., elongation
1:1:x with x < 1) induces a stronger decrease of sphericity and size
underestimation compared to an oblong ellipsoid (i.e., elongation
1:1:x with x > 1). Third, inclusions or cracks of any size within a
particle will drastically reduce the calculated mean c-PSD, as

illustrated in Fig. 16b. Contrariwise, discrete particle-size algorithms
such as PCRF are likely to consider that a relatively small crack or
inclusion will not partition a particle into smaller particles
(cf. Fig. 16b). Therefore, c-PSD strongly underestimates actual
particle size, as already reported in the literature.48,49,73 Differences
between c-PSD and d-PSD results are stronger for graphite than for
NMC electrodes and will be discussed in the paragraph section c-
PSD underestimation induced by the spherical assumption.

The largest diameters are calculated with the watershed and
PCRF methods. Indeed, as opposed to c-PSD, these two d-PSD
algorithms do not rely on any morphology assumptions. Similar
diameters are obtained between the two methods for NMC, while
higher values are reported for graphite electrodes with PCRF (cf.
Fig. 15). This indicates that particle identification is roughly
independent of the d-PSD algorithm for quasi-spherical particles
such as NMC (cf. Fig. 13) after over-segmentation is corrected,

Figure 16. (a) c-PSD size underestimation illustrated with an ellipsoidal particle; (b) c-PSD size underestimation and corrected sphericity calculated as a
function of ellipsoid elongation 1:1:x for one ellipsoid; (d) c-PSD size underestimation as a function of corrected sphericity; (e) Diameter map comparison
between c-PSD and PCRF methods for a SLC15020P particle with a tiny void inside.
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while particle identification of more complex morphology is more
dependent of the choice of the d-PSD algorithm, even after over-
segmentation correction. Some particles are still over-partitioned
after over-segmentation correction with the watershed method,
indicating that their size is underestimated (cf. Fig. 12). This
suggests that PCRF provides a better estimation of the particle
diameters. Because of over-partitioning, watershed size distributions
exhibit smaller highest diameters compared with PCRF (cf. Figs. 17a
and 17b). Particle-size distribution indicates that both active material
particles and pores have a wide unimodal diameter distribution (cf.
Figs. 17a and 17b), indicating that modeling phases with a unique
mean diameter is an oversimplification.

The EDMF method calculated diameters similar with those
obtained with the watershed method (cf. Fig. 15). Even though
EDMF provides less information (no diameter spatial distribution and
no particle morphology analysis) compared with the watershed method,
it is also simple and much faster. Therefore, it is a very interesting
method to characterize particle size of quasi-spherical particles (such as
NMC), as EDMF, watershed, and PCRF provide similar diameters for
such particle morphology. In addition, the distance-to-surface distribu-
tions, which is the definition of Euclidean distance map (cf. Eq. 11), are
also plotted in Figs. 17c and 17d. Such an alternative metric provides a
relevant characteristic diffusion distance.

Covariance provides intermediate values among the different
methods (cf. Fig. 15). However, to obtain a relevant fit of the
equivalent diameter as detailed in Ref. 49, a large volume is
required, which has prevented getting a diameter for some of the
electrode volumes. The diameters reported in the Fig. 15 are the
average of the diameters calculated along the three directions.

Lastly, the diameters have been also determined by first calculating
the specific surface area of the active material particles (with the

“direct” method as detailed in Ref. 49 with a corrective factor of 2/3),
and then applying the relationship, diameter equal to six times the
specific surface area inverse, which only stands for nonoverlapping
spherical particles with no surface roughness. Even though the results
are quite coherent with EDMF and watershed methods (cf. Fig. 15),
and that such simplification is often used in the literature,16 the authors
strongly recommend not relying on this method as surface roughness
can alter the result. For example, spherical particles in Fig. 10b have
very similar diameters while having very different specific surface
areas, due to a difference in surface roughness. To illustrate this, the
graphite particle mean diameter of SLC1506T2 has been calculated at
different voxel sizes, and thus different surface roughness, by applying
a downscaling algorithm on the whole volume (cf. Fig. 18). As voxel
size gets coarser, the surface details vanish while the particle volume
is still preserved (as demonstrated by the nearly constant c-PSD
diameters), and thus the specific surface area decreases and the
diameter deduced from it increases. While diameters obtained from
c-PSD are stable with voxel size (as particle volume is quite
insensitive with image resolution), diameter obtained from the specific
surface area is not (as surface is very sensitive to image resolution).
Even worse, specific surface area is expected to diverge as imaging
performed with a higher image resolution will reveal new, finer
surface details not visible at a coarser image resolution. The analysis
of the specific surface area fractal behavior is beyond the scope of this
paper and questions the definition and dimension of specific surface
area used in battery models for real microstructures. Indeed, should the
battery community keep the current definition of this parameter, which
results in a fractal behavior (thus a dimension between 2 and 3 for the
surface, while using a dimension of 2 in the battery model equation),
or redefine this parameter so that a finite converging value could be
determined? To the authors’ knowledge, this issue has not yet been

Figure 17. SLC1506T2 size distribution of (a) active material particles and (b) pores calculated with c-PSD, watershed, and PCRF methods; (c) Active material
particle and (d) pore distance to boundary distribution of SLC1506T2 (not to be confused with diameter). Distributions have been smoothed using a moving
average filter. (c) Insert shows the Euclidean distance map cumulative function (C ,EDM cf. Eq. 12) and the fitted cumulative function for a sphere (C ,EDM

sphere

cf. Eq. 13) used to determine the particle diameter.
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investigated thoroughly in the lithium-ion battery field, although some
work has been done for fuel cell microstructures.79 Therefore, it is not
recommended to rely on surface area to deduce particle size unless the
particle surface is numerically smoothed prior to the calculation.

Particle morphology.—Active material particles and pores mor-
phology metrics, corrected sphericity yc (cf. Eq. 17), and elongation
are reported in Table IV. Both phases for most electrodes have very
similar in-plane diameters, i.e., ~d d 1,1 2/ with in-plane over
through-plane diameters roughly identical and higher than one, i.e.,

~ >d d d d 1.1 3 2 3/ / These indicate that the active material and pore
particles’ typical morphology is an ellipsoid with a short diameter
along the electrode thickness and identical in-plane diameters.
However, pores and active materials particles do not share the same
morphology, especially for the NMC, as their respective sphericities
are different (discussed more in detail in the next paragraph). NMC
active material particles are quasi-spherical with a relatively small
elongation, while A12 graphite particles are significantly elongated,
with their sphericity and elongation linearly correlated (cf. Fig. 19).
One NMC data point (4-NMC-C) shows a significant offset, attributed
to truncated particles that bias the particle morphology analysis.
Indeed, 4-NMC-C is significantly thinner (34 μm) compared with the
other NMC electrodes (88–160 μm) (cf. Table II of Ref. 16).
Calendared NMC electrodes (noted NMC C) are slightly more
elongated and less spherical than their uncalendared counterparts,
(noted NMC UC) while having similar particle sizes. This indicates
that calendaring slightly modified the particle morphology.
SLC1520P, SLC1506T, SLC1506T2, and MCMB have intermediate
sphericity and elongation compared with A12 and NMC electrodes.

Sphericity and elongation distribution.—Sphericity and elongation
averaged values only provide a limited insight into the particle
morphology. In-depth analysis has been performed on three electrodes,
1-NMC-C, SLC1506T2, and 5-A12-C, which respectively covers the
high, intermediate, and low sphericity (cf. Fig. 19). Sphericity as a
function of equivalent diameter is plotted for each individual active
material particle and pore in Figs. 20a and 20b. The region covered by
the points {diameter, sphericity} is different for each microstructure,
like a fingerprint. Indeed, these microstructures are significantly
different: quasi-spherical for 1-NMC-C, channel-like for SLC1506T2,
and cracked-potato-shape for 5-A12-C (cf. Fig. 20a inserts). Large
active material particles tend to be less spherical for SLC1506T2 and 5-
A12-C, while such a trend is not visible for 1-NMC-C. Point clouds and
average metrics for 5-A12-C and SLC1506T2 are similar between
active materials and pores (cf. Table IV and Figs. 20a and 20b).
Contrariwise, pores of 1-NMC-C are significantly less spherical. This
result is derived from the active material particle morphology: the

complementary volume of a channel-like phase (e.g., SLC1506T2) is
also a channel-like structure, while the complementary volume of
spheres (e.g., 1-NMC-C) is a star-shape, as depicted in the insert of
Fig. 20b, which is much less spherical. Lastly, active material particles
and pores of 5-A12-C have equally complex shapes. Differences in
pore morphologies implies differences in permeability, i.e., the ability
of the porous electrode to be filled with the electrolyte. Sphericity
distributions are shown in Fig. 20c, with NMC and 5-A12-C having the
narrower and the wider distributions, respectively, while SLC1506T2
exhibits an intermediate dispersion.

Similarly, particle elongation distributions have also been calcu-
lated for these three electrodes (cf. Fig. 21). Elongations d1/d2 are
centered around one for both electrodes, elongations d1/d3 and
d2/d3 are roughly identical for each microstructure (but different
between electrodes), and through-plane over in-plane elongation are
significantly different between electrodes (see Table IV). As with
sphericity, distributions NMC and 5-A12-C exhibit the narrower and
the wider distribution, respectively, while SLC1506T2 has an
intermediate dispersion. This result indicates that active material
and pore particle morphology heterogeneity is different between
electrodes, with heterogeneities of 1-NMC-C, SLC1506T2, and
5-A12-C in ascending order.

Figure 18. (a) Active material mean particle diameter and (b) specific surface area calculated as a function of voxel size for SLC1506T2. Volume fractions are
conserved within the range of voxel size investigated: porosity varies from 0.400 to 0.407.

Figure 19. Active material particle mean corrected sphericity plotted as a
function of the solid particle elongation 1:1:x (i.e., +d d d 23 1 2(( ) )/ / ).
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c-PSD underestimation induced by the spherical assumption.—
Active material particle size differences between c-PSD and d-PSD are
significantly larger for graphite than for NMC electrodes (cf. Fig. 15).
Particle morphology analysis is used to estimate the relevance of the c-
PSD spherical assumption, and thus the relevance of the c-PSD result.
The ratio between the d PCRF

50 and -d c PSD
50 is plotted as a function of

active material sphericity in Fig. 22. The difference increases as the
sphericity decreases. Indeed, as sphericity is decreasing the spherical
assumption of the c-PSD method is getting less relevant and the c-PSD
underestimation is worsened, while the PCRF method is expected to
provide a value closer to the actual diameter as it does not rely on any
morphology assumption. This result clearly demonstrates that the c-
PSD method does not provide a relevant lower bound for diameter but
can be considered as an incorrect value when investigating non-
spherical materials. Note that a high ratio (2.8) has been also reported in
the literature.73 The trend plotted in Fig. 22 is expected, as it measures
the relevance of the spherical assumption and therefore provides an
indirect validation of the particle identification step, as both sphericity
and d PCRF

50 are derived from the particle identification. Discrete particle-
size algorithms are not as available as the c-PSD method due to their
higher complexities; therefore, one could use the ratios from Fig. 22 to
provide a better estimation of the particle diameter based on a simple
c-PSD calculation and a prior knowledge of the particle sphericity. For
comparison, results obtained with ideal ellipsoids are also shown in
Fig. 22. While the same trend is obtained, differences arise as sphericity
does not uniquely characterize particle shape.

Pore topology.—Pore morphology metrics, porosity e, constric-
tion factor b ,i geometric constrictivity d ,geo i, geometric tortuosity
t ,geo i, and tortuosity factor ti along direction i are reported in
Table V. Volume fraction from recipes for both pore and additives
(carbon-black domain, noted CBD) are given for information. As
stated in paragraph section Electrode library, over-segmentation,
and particle identification, volumes are segmented so that the “pore”
domain is the union of the void and the additive phases. If not
specified otherwise, the term e refers to the volume fraction of the
segmented combined phase pore and CBD. Constriction factor as
geometrically defined in section Particle morphology and pore
topology parameter determination (cf. Eq. 20) ranges from 0 (worst)
to 1 (ideal). Geometric tortuosity as geometrically defined in the
same paragraph section (cf. Eqs. 21 and 22) ranges from 1 (ideal) to
plus infinity (worst). Tortuosity factor as indirectly defined in the
introduction section (cf. Eq. 1) ranges from 1 (ideal) to plus infinity
(worst) and has been calculated using the open-source MATLAB
software package TauFactor,24 as done in a previous work.16 If the
additives were to be considered, higher tortuosity factors would be
obtained as detailed in previous work.16 Among the investigated
electrodes, porosity ranges from 0.387 to 0.617. For most electrodes,
in-planes metrics are similar (i.e., b b t t~ ~, ,geo geo1 2 ,1 ,2 and
t t~1 2) and through-plane transport metrics are worst (i.e.,
b b< ,3 1,2 t t> ,geo geo,3 ,1,2 and t t>3 1,2). Correlation between these
parameters is specifically investigated in paragraph section Pore
tortuosity factor correlation with microstructure geometry.

Figure 20. Corrected sphericity as a function of equivalent diameter for (a) active material particles and (b) pores. (a) Inserts show a 2D slice extracted from a
subvolume of the electrode segmented volume. (c) Distribution of corrected sphericity (sphericity is weighted with the particle volume).
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Geometric tortuosity distribution and asymmetry.—Contrary to
tortuosity factor, for which a unique value is obtained per volume and
direction, geometric tortuosity offers more granularity as its value is the
average of all the shortest paths as illustrated in Fig. 1a. Furthermore,

geometric tortuosity may be asymmetric, as discussed in paragraph
section Review of microstructure-tortuosity relationship and section
Particle morphology and pore topology parameter determination (cf.
Eq. 21 and Fig. 1a). Geometric distributions are plotted for three

Table IV. Particle morphology characterized with corrected sphericity and elongation for active materials and pores for all electrodes. Mean values
have been weighted with the particle or pore volume.

Active material particles Pores

Sphericity
Elongations

Sphericity
Elongations

Electrodes yc d d1 2/ d d1 3/ d d2 3/ +
d

d d 2
3

1 2( ) / yc d d1 2/ d d1 3/ d d2 3/ +
d

d d 2
3

1 2( ) /

1-NMC-UC 0.9115 1.0426 1.1225 1.1134 0.8945 0.6500 1.0610 1.0780 1.0620 0.9346
2-NMC-UC 0.8933 1.1234 1.1856 1.0900 0.8789 0.6488 1.0960 1.1050 1.0490 0.9285
3-NMC-UC 0.8700 0.8750 1.0160 1.2095 0.8987 0.6510 0.9574 1.0186 1.1180 0.9361

1-NMC-C 0.8597 1.0250 1.1810 1.2010 0.8396 0.6559 1.0380 1.1270 1.1340 0.8846
2-NMC-C 0.8687 0.9850 1.0940 1.1540 0.8897 0.6651 1.0170 1.0810 1.1110 0.9124
3-NMC-C 0.8613 1.0392 1.1876 1.1834 0.8435 0.6609 1.0613 1.1669 1.1552 0.8613
4-NMC-C 0.8449 1.0319 1.4217 1.4204 0.7037 0.6767 1.0466 1.3719 1.3655 0.7306

5-A12-UC 0.5523 1.0091 1.4379 1.5062 0.6793 0.5988 1.0523 1.4089 1.4263 0.7054
6-A12-UC 0.5857 1.0310 1.4249 1.4518 0.6952 0.6046 1.0587 1.3877 1.3935 0.7191
7-A12-UC 0.4927 1.0219 1.3763 1.4112 0.7175 0.5864 0.9945 1.3145 1.4028 0.7360

5-A12-C 0.5501 1.0184 1.4691 1.5218 0.6687 0.6025 1.0465 1.5026 1.5288 0.6598
6-A12-C 0.5719 1.0743 1.4377 1.4031 0.7040 0.6108 1.0404 1.4539 1.4773 0.6823
7-A12-C 0.5873 1.0664 1.3954 1.3882 0.7185 0.6117 1.0798 1.4517 1.4299 0.6941
8-A12-C 0.5836 1.0830 1.5420 1.5206 0.6530 0.6043 1.0370 1.5254 1.5592 0.6484

SLC1506T 0.5989 1.0956 1.3020 1.2486 0.7841 0.6384 1.0897 1.2788 1.2356 0.7954

SLC1506T2 0.7090 1.0113 1.0958 1.1371 0.8957 0.6860 0.9919 1.1222 1.1923 0.8641

SLC1520P 0.6945 1.0342 1.4167 1.4301 0.7025 0.6986 1.0357 1.3997 1.4093 0.7120

MCMB 0.6237 1.1193 1.2379 1.1798 0.8272 0.5871 1.0338 1.3007 1.3216 0.7627

BFC-10 0.6036 1.0679 1.5144 1.5363 0.6556 0.6145 1.0901 1.6181 1.5754 0.6263

Figure 21. Solid particle and pore elongation distribution for (a) d d ,1 2/ (b) d d ,1 3/ (c) d d ,2 3/ and (d) +d d d 2 .3 1 2(( ) )/ / Indices 1 and 2 refer to the in-plane
dimension, while index 3 refers to the through-plane dimension (i.e., along the electrode thickness).
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electrodes in Fig. 23. Very little asymmetry is obtained, as expected
for such large volumes. Narrow distributions are calculated for all
geometric tortuosity except for the through-plane direction of 5-A12-C.
This result indicates that 5-A12-C graphite microstructure exhibits a
geometric tortuosity heterogeneity, i.e., depending on their entry point,
lithium ions have a significantly different shortest path length to reach
the current collector from the separator, and vice versa. In other words,
submillimeter in-plane regions of the electrode have access to
significantly different shortest path to reach the opposite in-plane
region. It can be assumed that diffusion path length will also be
heterogeneous for this electrode.

Pore tortuosity factor correlation with microstructure geo-
metry.—Previous sections have been focused on analyzing the particle
morphology and pore topology metrics independently. In this section,
they will be correlated with the tortuosity factor to deconvolute each
microstructure geometric parameter that contributes to its value.

Tortuosity-porosity correlation.—Tortuosity factors are plotted
as a function of porosity in Fig. 24 for all electrodes and directions.
The generalized Archie’s relationship (cf. Eq. 3) is fitted for NMC
and A12 electrodes separately. As expected, the correlation stands
only when limited to a single type of microstructure. However, it
clearly appears that porosity alone cannot explain the variation of
tortuosity factors when all different microstructures are considered,
especially along the electrode thickness. Furthermore, while both in-
plane tortuosity factors are rather similar, through-plane tortuosity
factors are much higher. Limitations of tortuosity-porosity correla-
tion are detailed in the introduction section.

Tortuosity-microstructure correlation.—Correlation with por-
osity, geometric tortuosity, constriction factor, and/or geometric
constrictivity. Tortuosity factors are plotted as a function of geometric
tortuosity and constriction factor along the through-plane direction (
i.e., along electrode thickness) in Figs. 25a and 25b. As expected, as
geometric tortuosity (respectively, constriction factor) is increasing
(respectively, decreasing) tortuosity factor is increasing. Linear and
inverse correlations, respectively, are established between t3 and tgeo,3
(cf. Eq. 23) and t3 and b3 (cf. Eq. 24). Geometric tortuosity provides
an underestimation of tortuosity factor since the two other geometric
contributions to the tortuosity factor (porosity and constrictivity) are
not yet considered together. While some points show significant offset
from the fitted curves, as expected since only one geometric contribu-
tion is considered, it is noticeable that geometric tortuosity or
constriction factor alone is enough to fit the tortuosity factor with a
monotonic function. This result suggests that all three parameters
(porosity, constriction factor, and geometric tortuosity) are not
independent. Parameter orthogonality is investigated later in this
section. Through-plane over in-plane tortuosity factor anisotropy can
also be fitted with geometric tortuosity and constriction factor

Figure 22. Active material particle mean particle size calculated with PCRF,
normalized with diameter obtained with c-PSD, plotted as a function of the
active material particle mean corrected sphericity. Dashed line is a linear
correlation, while solid blue lines are copied from Fig. 16d to provide
comparison between results from ideal ellipsoid and actual microstructures,
with x the ellipsoid elongation 1:1:x.

Figure 23. Geometric tortuosity distribution for (a) 1-NMC-C, (b) SLC1506T2, and (c) 5-A12-C. Solid lines are for t -geo i, (i.e., paths calculated from top to
bottom) and dashed lines are for t +geo i, (i.e., paths calculated from bottom to top).
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Table V. Pore volume fraction and tortuosity-related metrics.

Volume fractions Constriction factor/geometric constrictivity Geometric tortuosity Tortuosity factor

Electrodes Recipe pore/CBD Segmentation Pore + CBD b1/dgeo,1 b2/dgeo,2 b3/dgeo,3 tgeo,1 tgeo,2 tgeo,3 t1 t2 t3

1-NMC-UC 0.491/0.112 0.587 0.2344/0.8839 0.2255/0.8541 0.2039/0.7885 1.0870 1.0940 1.1044 1.3860 1.3750 1.4660
2-NMC-UC 0.518/0.106 0.617 0.2016/0.7821 0.1955/0.7654 0.1798/0.7253 1.0875 1.1055 1.1023 1.3030 1.3940 1.4290
3-NMC-UC 0.474/0.116 0.587 0.1473/0.6573 0.1649/0.6917 0.1467/0.6561 1.1057 1.0914 1.1071 1.5260 1.3200 1.4510

1-NMC-C 0.368/0.139 0.499 0.1502/0.6625 0.1568/0.6751 0.1327/0.6328 1.1075 1.1082 1.1390 1.5450 1.5320 1.8690
2-NMC-C 0.375/0.137 0.506 0.1482/0.6589 0.1562/0.6739 0.1496/0.6614 1.1095 1.1113 1.1275 1.5930 1.5190 1.7200
3-NMC-C 0.366/0.139 0.506 0.1609/0.6834 0.1545/0.6706 0.1294/0.6279 1.0976 1.1094 1.1422 1.5500 1.5570 1.6880
4-NMC-C 0.335/0.146 0.467 0.1288/0.6271 0.1139/0.6075 0.0671/0.5724 1.0958 1.1093 1.2081 1.6850 1.7020 1.9140

5-A12-UC 0.507/0.047 0.540 0.0960/0.5893 0.1130/0.6064 0.0588/0.5705 1.0981 1.0926 1.2418 1.8070 1.7180 3.6200
6-A12-UC 0.518/0.046 0.567 0.1348/0.6361 0.1278/0.6256 0.0859/0.5817 1.0919 1.0912 1.2577 1.6290 1.6230 3.2620
7-A12-UC 0.514/0.046 0.544 0.1534/0.6685 0.1558/0.6731 0.0880/0.5831 1.1137 1.0870 1.2163 1.9800 1.7240 3.1370

5-A12-C 0.388/0.058 0.462 0.0825/0.5795 0.0963/0.5895 0.0538/0.5699 1.1098 1.0978 1.3100 1.8930 1.8560 4.6170
6-A12-C 0.363/0.060 0.415 0.0851/0.5812 0.0937/0.5874 0.0500/0.5697 1.1104 1.1024 1.3055 1.9890 1.9120 4.7250
7-A12-C 0.380/0.059 0.435 0.1207/0.6159 0.1209/0.6162 0.0721/0.5743 1.1019 1.1081 1.2916 2.0440 2.0770 4.1050
8-A12-C 0.384/0.058 0.440 0.0858/0.5816 0.0965/0.5897 0.0448/0.5700 1.1069 1.1066 1.3476 1.9710 1.9270 4.8820

SLC1506T 0.374/0.059 0.433 0.1303/0.6294 0.1173/0.6116 0.0862/0.5818 1.1351 1.1439 1.2316 2.0370 2.1620 3.0180

SLC1506T2 0.345/0.062 0.408 0.0746/0.5753 0.0803/0.5782 0.0652/0.5719 1.1567 1.1227 1.1848 2.2960 2.0520 2.4960

SLC1520P 0.351/0.062 0.407 0.1329/0.6331 0.1198/0.6147 0.0650/0.5718 1.1475 1.1469 1.3446 2.1901 2.1232 2.6569

MCMB 0.381/0.059 0.438 0.0370/0.5713 0.0375/0.5712 0.0261/0.5750 1.1193 1.1103 1.1852 1.7170 1.7380 2.6020

BFC-10 0.321/0.064 0.387 0.0593/0.5705 0.0568/0.5702 0.0270/0.5746 1.1085 1.1126 1.3690 2.0730 2.0360 5.5710

Journal
of

T
he

E
lectrochem

ical
Society,

2020
167

100513



anisotropy (cf. Fig. 25c and Eq. 25). This indicates that the oriented
definition of the geometric tortuosity and constriction factor matches
well with the diffusion anisotropy of the porous electrodes.
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Constrictivity di is deduced from the tortuosity factor ti and the
geometric tortuosity tgeo i, (cf. Eq. 8) and plotted as a function of the
constriction factor bi (cf. Fig. 26). The aim is to find a relationship
between di (a nongeometric parameter, as ti) and bi (a geometric
parameter) so that a new parameter, the geometric constrictivity

d ,geo i, is defined as a function of bi (cf. Eq. 9). Therefore, the
constriction contribution to the tortuosity factor is estimated with
dgeo i, (a geometric parameter as defined as a function of bi) and no
longer with d .i Once this empirical relationship is established (cf.
Eq. 26), the normalized effective diffusion coefficient can be
predicted knowing the geometric tortuosity, geometric constrictivity
(through the constriction factor), and the porosity (cf. Eq. 9), i.e.,
only geometrically defined parameters. The correlation d b= fgeo i i, ( )
is performed considering all the electrodes and all the directions
together (cf. Fig. 26).

d b b= ´ - ´ +9.237 0.924 0.593 26geo i i i,
2 [ ]

Figure 27 shows different tortuosity-microstructure correlations
for all the electrodes and all directions. If only the porosity is
considered, a generic correlation does not exist (cf. Fig. 27a). We
define generic correlation as a relationship that stands for a wide
range of microstructures and for all orientations. If the porosity,
geometric tortuosity, and constriction factor are considered, a
generic relationship exists (cf. Fig. 27b and Eq. 27). To achieve a
one-to-one prediction, the porosity, geometric tortuosity, and

Figure 24. (a) First in-plane, (b) second in-plane and (c) through-plane tortuosity factors as a function of porosity for all electrodes.

Figure 25. Through-plane tortuosity factor t3 as a function of (a) through-plane geometric tortuosity tgeo,3 and (b) through-plane constriction factor b ;3
(c) Geometric tortuosity and constriction factor anisotropy as a function of tortuosity factor anisotropy.
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geometric constrictivity must be considered (cf. Fig. 27c). In this
case the e d t´ geo i geo i, ,/ directly gives the normalized effective
diffusion coefficient e ti/ without any additional factor.
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Correlation with particle elongation. Through-plane tortuosity
factors t3 are plotted as a function of the active material particle
elongation 1:1:x (x being the through-plane diameter) in the insert of
Fig. 28. While a decent correlation is achieved, which suggests that
particle elongation is correlated with geometric tortuosity and/or
geometric constrictivity (as discussed later in this section), particle
elongation alone is insufficient to accurately predict the through-
plane tortuosity factor. Indeed, the porosity difference between
the calendared and uncalendared electrode induces a variation

(cf. Fig. 28a). To improve the prediction, tortuosity factor is fitted
with the product of the particle elongation with the square root of the
porosity (simply multiplying by the porosity provided a less correct
fit) (cf. Eq. 28 and Fig. 28a). Differences from the fitted line arise
from the truncated particles (edges effect) that bias the particle
elongation calculation. For instance, the NMC-UC offset point (of
elongation ∼0.7) corresponds to the 4-NMC-C electrode, which is
significantly thinner (34 μm) compared with the other NMC
electrodes (88–160 μm). SLC1520P has the largest particle size
(cf. Fig. 15), which induces a stronger edge effect compared with
the other electrodes with a similar field of view and explains the
deviation from the fitted line. In addition, particle elongation and
porosity predict tortuosity factor anisotropy well (cf. Fig. 28b).
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Parameter orthogonality. Ideally, to deconvolute the impact of
each microstructure contribution to the effective diffusion coeffi-
cient, independent parameters should be used. Results from Figs. 25
and 28 suggest that geometric tortuosity, geometric constrictivity,
and particle elongation are correlated. Particle elongation and
porosity are not correlated in the design space investigated.
Geometric tortuosity and porosity are not correlated when all
directions are considered. Geometric constrictivity generally in-
creases with porosity, but dispersion is too high to establish a proper
relationship. Contrariwise, geometric tortuosity is correlated with
particle elongation (cf. Fig. 29a) and geometric constrictivity is
correlated with geometric tortuosity (cf. Fig. 29b). Since porosity is
not correlated with the three other metrics, any tortuosity-micro-
structure relationship must consider porosity. Geometric tortuosity
can be deduced from particle elongation (cf. Eq. 30), and geometric

Figure 26. Constrictivity d t t=i geo i i, / as a function of the constriction
factor b .i Dashed line is the geometric constrictivity dgeo i, fitted so that it
matches the constrictivity, i.e., d d .geo i i, ˜ All directions are considered (i.e., i =
1, 2, and 3).

Figure 27. (a) Tortuosity factors ti as a function of porosity e; (b) normalized effective diffusion coefficient e ti/ as a function of e b t´ ;i geo i,/ and
(c) normalized effective diffusion coefficient e ti/ as a function of e d t´ .geo i geo i, ,/ All directions are considered (i.e., i = 1, 2, and 3).

Journal of The Electrochemical Society, 2020 167 100513



constrictivity can be deduced from geometric tortuosity (cf. Eq. 31).
Therefore, knowing one of these three parameters is enough to
determine the other two. As a consequence, to predict tortuosity
factor and thus the normalized effective diffusion coefficient, either
{porosity, particle elongation}, {porosity, geometric tortuosity}, or
{porosity, geometric constrictivity} is enough, as illustrated in
Fig. 28a (Eqs. 28 and 29) and 30 (Eq. 32).
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Discussion

Particle identification relevance and possible improvements.—
A significant effort has been done to assess the identification results

Figure 28. (a) Through-plane tortuosity factor t3 and (b) tortuosity factor through-plane in-plane anisotropy as a function of the product of the active material
particle elongation 1:1:x, with = +d d dx 23 1 2(( ) )/ / with the square root of the porosity e. (a) (Insert) Less accurate correlation is achieved when only the
particle elongation is considered.

Figure 29. (a) Geometric tortuosity tgeo i, plotted as a function of particle elongation xi and (b) geometric constrictivity dgeo i, plotted as a function of geometric
tortuosity. All directions are considered (i.e., i = 1, 2, and 3).
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on two-dimensional images, as it allows visual inspection.
Furthermore, the original method (PCRF) used in this work to
provide all the particle morphology and pore topology metrics has
been compared with a reference method (watershed) and proved to
be better, based on over-segmentation for both test case and CT
electrode geometries. The physics-based PCRF identification
method is more robust, as the field F̄ it relies on is deduced locally
from multiple distances, while the watershed method relies on a field
EDM deduced locally from a unique distance (the shortest distance)
and is then more sensitive to surface roughness, as thoroughly
explained in paragraph section Discrete particle size distribution:
pseudo-Coulomb repulsive field method. The absence of morphology
constraint on d-PSD algorithms, such as watershed and PCRF, is
both an advantage, as it prevents biased results due to incorrect
assumptions, and an hindrance, as it is difficult to visually judge the
identification quality for complex (i.e., non-spherical particles) 3D
microstructures such as the various graphite electrodes investigated
here. Since there is not a unique definition of a particle within a fully
connected cluster, particle identification is by definition very
difficult to validate, as the ground truth for real microstructures is
not defined. Nevertheless, the various relevant correlations estab-
lished from metrics obtained from particle identification indirectly
support the adequacy of the identification results. Namely, the
expected variations between particle elongation and sphericity (cf.
Fig. 19); c-PSD underestimation and sphericity (cf. Fig. 22);
tortuosity factor, geometric tortuosity, and constriction factor,
including their anisotropy (cf. Fig. 25); and tortuosity factor and
particle elongation, including anisotropy (cf. Fig. 28). Furthermore,
the few offset points are explained by edged effects (truncated
particles), (cf. Fig. 28a). Lastly, the fact that simple (i.e., linear or
quadratic) monotonic (i.e., strictly increasing or decreasing) correla-
tions of porosity, constriction factor (or geometric constrictivity),
and geometric tortuosity were enough to match the normalized
effective diffusion coefficient (cf. Figs. 27b and 27c) supports the
identification results. Indeed, while it is possible to fit a given
function with any non-defined parameter, the resulting correlation
may be extremely sensitive, indicating overfitting (i.e., meaningless
correlation) has been done.80 Thus, the combination of simple
monotonic relationships with meaningful (i.e., defined) variables is
a strong indicator that no or few overfittings have been performed in
this work. More complex relationships have also been established

(cf. Fig. 30), but only when these metrics were correlated between
one other, i.e., reducing the number of parameters using their non-
orthogonality but at the price of an increase of the correlation
complexity.

The identification algorithm could be improved by distinguishing
stable and unstable end displacement points (cf. Fig. 4b) by applying
small perturbations. Particles would be then defined as the sum of
trajectories that converge towards stable points, while unstable end
points would be assigned to the nearest identified particles. Such a
modification would improve voxel assignments near particle con-
nections.

The identification step could be greatly simplified upstream by
coating particles with a thin surface layer distinctly visible with CT
prior to the electrode fabrication and specifically for the imaging, as
particle boundary would be clearly visible. Furthermore, such an
experiment could be used to validate the identification algorithm, as
it essentially provides the ground truth.

Tortuosity-microstructure relationships relevance and possible
improvements.—Being able to establish simple monotonic relation-
ships supports the fact that porosity, sinuosity (through the geo-
metric tortuosity), and constriction (through the geometric constric-
tivity and the constriction factor) are relevant parameters to
geometrically define and predict the normalized effective diffusion
coefficient for a wide variety of microstructures (cf. Figs 27b, 27c,
and 30a). However, they are not the only geometrically defined
metrics that can predict it. For instance, particle elongation in
combination with porosity can be used instead (cf. Figs. 28, and
30b). This indicates that there is not a unique tortuosity-micro-
structure generic relationship, but several of them. This is also
supported by the large variety of tortuosity-microstructure relation-
ships reported in the literature (cf. introduction section). Therefore, it
is likely that geometrically defined metrics other than those
considered in this work could be used to correlate microstructure
topology with transport properties. Our work suggests that a
minimum of two independent (i.e., orthogonal) parameters, one
being the porosity, is enough to characterize the normalized effective
diffusion coefficient and the tortuosity factor. However, additional
parameters are required to account for the role of lower-scale solid
phase, if any, as done in previous work16 for the carbon-black
additives. It is still an open question if sinuosity and constriction

Figure 30. Normalized effective diffusion coefficient e ti/ as a function of (a) porosity e and geometric tortuosity tgeo i, and (b) porosity e and particle elongation
xi with =
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x d
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and = =x x x1 .1 2 3/ All directions are considered (i.e., i = 1, 2, and 3).
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could be defined so that their values are not correlated once
calculated (i.e., orthogonal). All microstructures investigated in
this work roughly share the same attribute: active material particles
can be characterized (on average) as ellipsoids with their two in-
plane diameters similar and their through-plane diameter slightly or
significantly smaller. While methods and parameters defined in this
work are expected to correctly characterize microstructures for
which particles have three distinct diameters, as both geometric
tortuosity and constriction factor are oriented parameters, the
relationships established in this work may be adjusted for such
different microstructures.

The geometric constrictivity approach relies on an assumption
which is not guaranteed to be true: the existence of a monotonic
relationship between the constriction factor and the constrictivity (cf.
Fig. 26 and Eq. 26). A monotonic relationship is a desired feature, as
it guarantees a relative stability for the prediction (i.e.,
b b d d>  >a b geo a geo b), and therefore a lower requirement on
the constriction factor precision. The relative dispersion obtained (cf.
Fig. 26) indicates that either the definition, the method to calculate it,
both the definition and the method, or the field of view should be
refined, improved, or enlarged to reduce this scattering. However,
the geometric constrictivity approach is not mandatory to provide
accurate prediction (cf. Figs. 27b and 28).

Geometric tortuosity alone provides a decent correlation with the
tortuosity factor (cf. Figs. 25a and 25c). However, it must be
strongly corrected (scaled) in order to provide a better estimation (cf.
Eq. 23). A possible approach to lower this underestimation would be
to define a graph weighted not only by the length between nodes, but
also by the local section area or local section area variation. Note
that this modification would essentially consist in merging both
geometric tortuosity and constriction in one parameter. As these two
parameters are correlated (cf. Fig. 29b), this parameter reduction is
justified.

Tortuosity-microstructure relationships practicability.—
Tortuosity-microstructure relationships implying geometric tortu-
osity and constriction factor or geometric tortuosity (cf. Eqs. 23, and
27) are essentially valuable from an understanding point of view,
i.e., deconvoluting the different microstructure contributions on the
normalized effective diffusion coefficient or the tortuosity factor.
However, they have little value from a design guidance point of
view, as recommending decreasing the geometric tortuosity or
increasing the constriction factor is as pointless as recommending
decreasing the tortuosity factor for improving the effective ionic
diffusion for the fast charging of thick electrodes: without additional
information, it is unclear how to control these parameters, and their
ideal values are already known.

From a calculation point of view, relationships involving porosity
and geometric tortuosity (cf. Fig. 30a and Eq. 31) can be interesting.
Indeed, while calculating geometric tortuosity through pore identi-
fication is a complex task, another path consists simply in calculating
the shortest paths considering all voxels, at the price of a much larger
graph and thus larger CPU and memory requirements. Lengths of
identified shortest paths should also be corrected to remove the
staircase bias induced by voxels. Such an approach (convert pore
domain in a graph, calculate shortest paths, determine geometric
tortuosity, and then deduce normalized effective diffusion coeffi-
cient) could replace the Laplace homogenization approach (convert
pore domain in a mesh, solve Laplace equation, and then deduce
normalized effective diffusion coefficient).

From a design guidance point of view, the most interesting
relationships are those involving porosity and particle elongation, as
both are controllable to a certain extent. One can use Eqs. 28 and 29,
which correlates directly with tortuosity factor (as well as tortuosity
factor anisotropy), with particle elongation and porosity, or Eq. 32,
which takes advantage of the non-orthogonality between particle
elongation, geometric constrictivity, and geometric tortuosity. In
both cases, it provides a much better prediction of the tortuosity
factor and of the normalized effective diffusion coefficient compared

with relying only on porosity. It also provides a strong incentive on
controlling the particle alignment during the manufacturing process
and a simple explanation of why electrodes with the same porosity
exhibit significant different effective ionic transport properties. In
this work, particle elongation required the complex particle identi-
fication step to be determined.

Particle size relevance.—Particle diameters have been thor-
oughly compared in paragraph section Particle size comparison
and c-PSD underestimation induced by the spherical assumption.
Because “particle” is not uniquely defined within a fully connected
cluster, a wide range of numerical methods exist to calculate its
diameter. However, these methods are not equivalent (cf. Fig. 15)
and especially two should be avoided: (i) c-PSD is strongly biased
due to an incorrect assumption and should be disregarded for non-
spherical particles (cf. Fig. 22), and (ii) diameter deduced from
specific surface area suffers from a fractal behavior (cf. Fig. 18) that
disqualified it. The EDMF original method presented in paragraph
section Euclidean distance map fitting method provides a valuable
alternative because it is easy to implement, fast, and provides a
similar mean diameter with the more complex watershed method.
Discrete particle size algorithms, such as the new PCRF method, are
mostly valuable when the particle morphology is far from spherical
(e.g., graphite A12) or for specifically investigating the microstruc-
ture topology as done in this work.

Conclusions

Particle identification has been performed on a set of 19 various
LIB electrode (NMC and graphite) three-dimensional microstruc-
tures obtained from CT images with a wide range of porosity, using
an novel algorithm, the PCRF method, in order to quantify particle
size and shape as well as pore topology to ultimately correlate
tortuosity factor and normalized effective electrolyte diffusion
coefficient with geometrically defined metrics. Established correla-
tions improve understanding of the different contributions of the
microstructure that control the effective ionic diffusion and provide
ways to improve it, which is valuable for fast charging of thick LIB
electrodes. Main elements are recapitulated below.

Particle identification.—The new particle identification algo-
rithm (PCRF) introduced in this work consists of dropping charged
points between a fixed domain’s boundary also charged with the
same polarity and identifying particles based on the trajectory of
these charged points according to a pseudo-Coulomb’s law. This
new method is much less sensitive to surface roughness and
geometry symmetry in regards with over-segmentation compared
with the watershed reference method for both test-case geometries
(cf. Fig. 10 and Table II) and CT-imaged battery electrodes with
complex microstructures (cf. Figs. 11 and 12). We demonstrate that
surface roughness is more of an issue for particle identification in the
case of channel-type geometries than for particle-type geometries
(cf. Fig. 10). While over-segmentation is typically attributed to
surface roughness, we illustrate that symmetry of simple test
geometries is another source of over-segmentation, as breaking
such symmetry strongly reduces the over-segmentation (cf.
Table II). Testing identification algorithms on only symmetric
geometries may bias analysis, as symmetry is rarely an attribute
for LIB electrode microstructures.

Particle size and shape.—In addition to the new PCRF method, a
second original numerical algorithm has been also introduced in this
work, although limited to calculating particle size: the EDMF
method. EDMF, numerically simple and fast, provides a lower
diameter bound with values similar to those obtained with the more
CPU-expensive watershed method, while PCRF, numerically com-
plex and slow, provides a higher diameter bound, with values
expected to be closer with the actual diameters as watershed exhibits
more particle over-partitioning in comparison (cf. Fig. 12).
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Diameters have been calculated with six different methods: specific
surface area, c-PSD, covariance, EDMF, watershed, and PCRF (cf.
Fig. 15). Particle size obtained through specific surface area proved
to be unreliable due to fractal behavior of the surface area (cf.
Fig. 18). Particle size underestimation of the c-PSD method has been
correlated with particle sphericity, as it quantifies the relevance of
the spherical assumption (cf. Fig. 22). The covariance method offers
intermediate values. EDMF and watershed provide similar larger
diameters. Lastly, PCRF gives the largest diameters, expected to be
the closest to the actual diameters among the other methods.

Particle morphology has been deduced from the particle identi-
fication step through two metrics: sphericity and elongation or aspect
ratio. On average, the particle aspect ratio is anisotropic with similar
in-plane dimensions and a slightly (e.g., NMC) or significantly (e.g.,
A12 graphite) smaller through-plane dimension (i.e., along the
electrode thickness) depending on the electrodes. Particle sphericity
and diameter provide a signature of the medium investigated, as each
different type of microstructure exhibits a different distribution (cf.
Fig. 20a). Besides, active materials and pores may or may not share
the same distribution (cf. Fig. 20b). Results show significant particle
size and shape differences between the different microstructures; for
instance, those in NMC are larger and more spherical compared with
A12 graphite. Furthermore, morphology heterogeneity is different
across all the electrodes microstructures, with more heterogeneity
calculated for the A12 graphite (cf. Figs. 20c and 21).

Tortuosity-microstructure relationships.—A set of oriented and
geometrically defined metrics has been determined from the particle
morphology analysis (particle elongation) and from the pore
topology analysis, applying particle identification algorithm on the
pore domain (constriction factor, geometric constrictivity, and
geometric tortuosity). Generic tortuosity-microstructure relation-
ships that stand for all microstructures and all directions (unlike
the generalized Archie’s relationship that is microstructure specific;
cf. Figs. 24 and 27a) were then established: normalized effective
diffusion coefficient with porosity, constriction factor or geometric
constrictivity, and geometric tortuosity (cf. Figs. 27b and 27c);
porosity and geometric tortuosity or particle elongation (cf. Fig. 30);
and tortuosity factor with porosity and particle elongation (cf.
Fig. 28). Geometric tortuosity, geometric constrictivity, and particle
elongation have been found to be correlated (cf. Fig. 29). Providing
such a generic relationship was the initial aim of this work, and their
relevance and interest, e.g., in terms of design guidance, is debated
in the discussion section.

In summary.—A novel method to identify particles or pores
embedded in a connected cluster was developed and proved to be
more robust than the reference watershed method. Particle mor-
phology and pore topology analysis enabled by the aforementioned
new identification algorithm was carried out to establish generic
correlations between geometrically defined metrics and the tortuosity
factor and normalized effective diffusion coefficient on various LIB
electrode three-dimensional microstructures from an open-source
library. It is expected that the new algorithm will be useful for future
microstructure characterization of heterogenous materials, and that the
tortuosity-microstructure relationships will provide relevant design
guidance to improve ionic transport of LIB electrodes.
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