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ABSTRACT

During the 1990s the world-wide offshore industry has been increasingly developing 

oil and gas fields in deep water -  classified here as generally above 3001metres (984 

feet) water depth -  often combined with production from reservoirs at higher 

temperatures. Subsea pipelines form an essential element of these developments and 

one of the limitations on deep water development has been the inability to provide 

large diameter conventional steel pipelines and risers capable of withstanding large 

external hydrostatic pressures.

The work presented in this thesis investigates the performance of multi-layered pipe 

cross-sections for the required increase in hydrostatic pressure capacity and thermal 

insulation for such subsea pipelines. A fundamental investigation into the structural 

mechanics of such multi-layered pipes is presented with an emphasis on three 

principal issues -  The mechanics of multi-layered pipe loading due to internal 

pressure, its collapse due to external pressure, and the behaviour of such pipe 

geometry when in a free submerged catenary configuration.

Initially, the stresses induced by internal pressure have been investigated based on the 

Lame’s equations. The results were compared with a finite element analysis and 

demonstrated good agreement. The stress distribution due to internal pressure was then 

investigated for a wide range of multi-layered pipe geometries and Young’s Moduli of 

the core material. Comparisons are also presented with the stresses within equivalent 

single walled pipes. The much more complex external pressure problem was then 

addressed. The stability of a cylindrical multi-layered shell is a complex problem and 

in response to this, the investigation presented in this thesis followed a staged 

approach. Based on the previous work of Raville (1955), an elastic classic model was 

developed. Following this, using the concept of an elastic foundation, a new 

formulation was developed to derive critical external pressure loads. This work has 

been compared to that of Montague (1975) for critical external pressure based on two 

dimensional elastic plastic deformations up to maximum shear stress or Tresca failure 

theory. In addition, another approach for the elastic plastic model has been developed 

based on three dimensional Mises failure theory. A finite element analysis was then



used to compare results from these different approaches for obtaining the critical 

external pressure. These four methods are used for a comparative investigation of 

collapse pressure predictions for a wide range of pipe geometries and Young’s Moduli 

of the annular material. These comparisons give an indication of the applications of 

these methods and also give some insight into possible collapse Imechanisms for multi­

layered pipes.

This thesis also examines the performance of a multi-layered pipeline in an 

underwater catenary configuration and compares this to the performance of a single 

walled equivalent pipe. This was done by the development of an analytical catenary 

model aimed at optimising the catenary geometry around the two critical stress points 

of the catenary (the top connection at far position and touch down point at near 

position). The results demonstrated the significant improvement that multi-layered 

pipes could deliver for reductions in top tension and steel wall thickness when used in 

a catenary configuration.

In overall terms, this work demonstrated that multi-layered subsea pipelines can 

provide a wide range of structural performance benefits both locally and globally. 

Locally, appropriate design and material selection can yield combinations of reduced 

steel volume and greater internal and external pressure capacity. In global terms, the 

buoyancy contribution from the thicker walls of multi-layered pipe will yield 

significant'reductions in top tension when in a catenaiy configuration.

This investigation has only examined a relatively narrow range of structural benefits 

of multi-layered pipes. Much further work needs to be done on local structural 

behaviour, internal layer bonds, on the internal damping of such pipes, and on the 

mechanics of the pipe segment connections.
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1. Introduction

1.1 Pipes -  offshore and sub-sea applications

The use of cylindrical shell members has, for a long time, been associated with 

aerospace and submarine structures. In the last two decades, however, the 

exploitation of offshore oil reserves has led to the construction of structures in which 

unstiffened and stiffened cylindrical shells have been extensively used as primary 

structural members. Such cylindrical shells are also used as compliant dynamically 

sensitive structures such as pipelines, vertical risers and tethers.

Demand from the modern world for non-renewable oil and gas resources has 

motivated industries working in this field to explore and produce hydrocarbons in 

increasing quantities. Geological processes, over long time scales, lead to the 

accumulation of oil and gas in subsurface reservoirs. The main goal of the oil 

industry is to discover these reservoirs and to extract as much oil as possible from 

them as cheaply as possible. Over the last seventy years, the industry has identified 

almost all of the hydrocarbon reservoirs underneath on-shore sites -  these being 

capable of production at low cost. Such reservoirs in the Arabian Gulf, and 

increasingly in the Russian Federation, provide a substantial proportion of the 

world’s needs. However, the industrial importance of hydrocarbons has meant that 

most countries in the world require secure access to locally controlled supplies. This 

has prompted offshore exploration and production in many areas -  the Gulf of 

Mexico, North Sea, offshore Mexico and Brazil and in the seas off China and 

Australia.

In such offshore developments, the oil industry now faces new technological 

challenges. The exploitation of a reservoir may be divided into three main phases -  

the first being a geological survey which determines the location of a potential 

offshore hydrocarbon reservoir below the seabed. The second phase is exploration 

drilling which requires a rig and facilities to drill a well down to the zone of interest. 

Production tests will then be carried out to discover if there is oil in sufficient 

quantities to make the third and last phase economically feasible. The drilling phase 

lasts for up to three months and carries the most risk since the whole investment of 

many millions of dollars in the well may have to be written off. The third and last
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phase -  that of oil production is the most expensive. A production unit has to be 

designed, fabricated and installed capable of producing well fluids, separating the oil 

from water and sand and pumping it through pipelines to ships or onshore sites to 

reach a refinery. In the refinery, the oil will be converted into petroleum and other 

derivatives. This phase can last from 3 to 25 years, requiring that the production 

facilities be designed for long term use.

Since Roman times, the main means of transporting and managing liquids has been 

the pipeline. A single hollow circular cylinder is the most basic concept of a pipe. 

However, the oil industry also needs special pipes such as risers. A riser is the 

slender pipe structure that carries petroleum from the well head at the seabed up to 

the surface platform. Another important type of pipeline is the export line from the

production unit; designed to 

deliver produced oil to ships 

or onshore sites for delivery to 

refineries. Any riser structure 

has two parts, the dynamic 

segment and the static 

segment that is laid or buried 

on the seabed; see Figure 1.1.1 

There are also other types of 

slender structures such as 

control umbilicals -  carrying

offshore floating platform
sea level

riser - dynam ic application

touch dow n point

sea bottom /  flo w lin e  - static application

Fig. 1.1.1 F loating production system  — riser sketch.

hydraulic or electric lines for control of subsurface equipment, and also for well 

annulus access -  allowing intervention in the well or for gas lift purpose -  for 

injection of water or gas injection into the reservoir, and so on.

Any riser has to cope with high internal and external pressures, the latter being a 

function of water depth. It also has to resist the aggressive chemical environment of 

the open sea and loads due to currents and waves. The traditional solution for 

pipeline systems is the steel pipe, manufactured in big diameters by welding and 

protected against corrosion. The internal diameter of the pipe, nominal pressures, 

and weather information of the installation site are the main parameters used to

15



determine the required wall thickness. This wall thickness could be the parameter 

that would make the whole pipeline project feasible or not.

Consider an offshore pipeline where the steel strength and wall thickness is such that 

the design can be welded with good and reliable results. It means that the pressures 

involved, water depth, installation, and laying requirements have resulted in stresses' 

compatible with the design code and welding standards that are being used. On the 

other hand, there is an important limitation of welded steel pipes that arises from 

water depth. As water depth increases, hydrostatic pressure rises proportionally, so 

the steel strength or wall thickness of such a pipeline has to be increased to cope with 

external pressure loads. However, the maximum available steel strength is limited by 

the grade of steel being used. If the steel grade is improved for increased strength, 

the steel becomes more difficult to weld and hence less reliable. In addition, the wall 

thickness can only be increased up to a point due to manufacturing capabilities and 

also by the welding process employed. In conclusion, the maximum possible wall 

thickness of a steel pipe determines a clear limit to external hydrostatic pressure 

loads, in other words the maximum water depth in which it can be installed.

Steel pipe applications fall clearly into two areas. The first of this is the static 

application in which the pipe is not subjected to cyclic loads or varying tension and 

bending during its service life. The second of these is dynamic applications where 

the steel pipe has to withstand cyclic tension and bending throughout its life. Of 

course, any offshore static pipe system has to be installed before it starts operation 

and the loads induced during the installation phase are cyclic and typically worse 

than the loads faced during service. As a consequence, installation procedures have 

to be carefully considered for any offshore pipeline design. Such installation 

procedures can be divided into two phases -  the first being manufacturing and 

handling procedures that ensure the integrity of the pipe during fabrication, storage, 

and transportation and the second being the installation or laying phase for deploying 

the pipeline on the sea bed.

Offshore pipeline installation operations can use several approaches. These are 

illustrated in Figures 1.1.2 to 1.1.5 by line drawings reproduced from the brochures 

of engineering contractors working in the field. The most common and cheapest
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lay barge w elding stations

sea level

stinger

sea bottom

Fig. 1.1.2 P ipeline installation — S-lay method.

installation method is the S-lay 

method shown in Figure 1.1.2. 

Here the pipeline is horizontally 

welded in stretches on a lay 

barge. It is then gradually paid 

out and deployed on the seabed 

through a stinger assembled on 

the barge’s stern. During the 

whole laying operation the 

pipeline is kept in tension and at

Diving support vessel

a specific laying angle. Unfortunately, this method is restricted to sites of up to 

500 m water depth. The main governing parameter during laying operation is the 

maximum stress obtained in the 

sag bend, this stress needs to be 

kept below a safe level 

recommended by internationally 

agreed codes.

Another installation method is the 

bottom tow; see Figure 1.1.3. In 

this method, the pipeline is 

welded and assembled onshore.

----

sea  bottom

Fig. 1.1.3 Pipeline installation — bottom  tow method, 

filled with an inert gas and towed to the installation site by two installation ships 

holding the pipeline close to the seabed. The newest method for deep water laying is

the J-lay, see Figure 1.1.4. In this
Inclined ramp

W ater level

pipeline

S a g  bend

method the ship or rig pays out 

the pipe into the water vertically 

and the pipe bends near to the sea 

bottom before it assumes the 

horizontal position on the seabed. 

The final option is the reel 

method that requires the whole 

pipe to be welded and
Fig. 1.1.4 P ipeline installation -  J-lay method.
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manufactured onshore and

then reeled in a big radius

reel on a special ship. During

this reeling operation, the

pipeline has to be bent

through plastic deformation

to match the ship reel radius,

see Figure 1.1.5. It means

that during the laying

. operation the pipe has to be
Fig. 1.1.5 Pipeline installation -  reel method.

plastically deformed again just before installation on the seabed. The pipe wall 

thickness and steel material properties need to be designed to be compatible with 

this hardening process to keep the induced residual stresses within a safe range.

Installation vesse l

S ea  lev e l

S ea  bottom

1.2 Concept of multi-layered pipes

Dynamic pipes or risers are needed to assure continuity of flow between the well and 

floating rig and also between the rig and an onshore site or a refinery. The lengths of 

these risers are small compared to the complete pipeline length. However, they

require a complex design to cope
External thennopiastic layer

D ou b le  cross-w ou n d  ten sile  armours 
Interm ediate thennopiastic layer 

Zeta spiral

Intennediate
thennopiastic layer

Interlocked
Steel carcass

with cyclic and dynamic loads 

during long term service. A 

flexible pipe is one common 

solution for dynamic 

applications. These pipes are 

composed of concentric layers of 

helically wound inter-locked 

strips and wires together with 

polymer cylinder layers, see Figure 1.2.1. Each of these layers is designed to fulfil a 

specific function such as providing resistance to external pressure induced collapse 

and internal pressure containment, whilst maintaining the ability to bend to a small 

radius of curvature (say from Im to 6m). Such flexible pipes are manufactured in 

both unbonded and bonded construction.

ApDlications
Production crude/gas Test/K ill

Export gas Annulus control
G as lift 
G as injection

Fig. 1.2.1 U nbonded flexible riser, 
(from Coflexip Stena Offshore)
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The unbonded form allows adjacent layers to slip past each other whereas the 

bonded form uses vulcanising and adhesives to lock the layers together. Each form 

of construction has its merits and drawbacks although unbonded pipes cover internal 

pipe diameters ranging from 2 inches to about 12 inches. The flexible pipe solution 

has two main drawbacks for the oil industry. The first is the geometric increase of 

price with diameter and collapse pressure; the second is a manufacturing limitation 

in terms of diameter. At present, flexible pipes for deep water are only manufactured 

up to about 12 inches internal diameter.

O uter layer - S tee l----------------------

Intermediate layer - Composite 

Inner layer - S te e l----------------------

Fig. 1.2.2 M ulti-layered pipe concept.

Steel pipes have been used for 

dynamic applications such as 

tensioned drilling and production 

risers for many decades now. 

However, their most appropriate 

application is in shallow to 

moderate water depths. These 

risers also impose tight 

horizontal offset limits on

floating surface vessels and require large capacity tensioners on the surface vessel. 

As a consequence there are very few deep water vertical steel riser designs deployed 

at present.

Taking all of the above into account, the objective of this thesis is to investigate the 

structural mechanics of a new multi-layered pipeline concept that overcomes some 

of the limitations of present day pipe designs. The concept proposes a pipe cross- 

section where an inner and outer steel wall surrounds an annulus made up of a 

homogeneous non-metallic material. As shown in Tigure 1.2.2, the separation of the 

steel wall into an inner and outer layer can potentially offer six advantages:

(1) The reduction of steel wall thickness in each steel wall makes it possible to 

circumvent thickness related welding problems and hence enables the pipe to 

achieve higher external pressure capacity;

(2) The separation of the structure in inner and outer steel walls substantially 

increases the bending stiffness of the pipe wall therefore contributing to its 

collapse resistance;
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(3) The higher external diameter of the outer shell and the annulus filler material 

leads to a better distribution of internal stresses.

(4) The increased volume of the pipe wall can provide increased buoyancy force -  

although of course it also affects greater hydrodynamic inertia and drag 

forces.

(5) The annulus material can provide extra damping properties to the whole 

structure reducing the effects of vortex induced vibration for risers facing 

severe current profiles.

(6) The annulus material can also provide insulation for high temperature product 

applications combined with part protection of the inner layer material.

British steel has developed a product called Hydrotherm which uses the concept of 

multi-layered pipe. However, this pipe-in-pipe concept does not take into account the 

structural role of the core material. The product is designed to deliver additional 

insulation protection not strength. Other developments have used the pipe-in-pipe 

concept in offshore application, however, their aim was always insulation purposes.

1.3 General overview of the thesis

The overall objective of the work in this thesis is to investigate the structural 

mechanics of such multi-layered pipes from several viewpoints -  these being:

(a) An analytical and finite element analysis based investigation of the behaviour 

of such pipes under internal pressure.

(b) Continuation of the above work, considering multi-layered pipe behaviour and 

collapse under external pressure;

(c) An evaluation of the effect of increased buoyancy of multi-layered pipe in 

typical offshore catenary riser configurations and comparison of this 

performance with that of an equivalent single walled pipe.

The thesis is divided into six parts starting with a comprehensive literature review. 

This describes several studies on the stability of shell structures. Most of them use 

numerical solutions calibrated with experimental data mainly to set parameters that 

take imperfections into account. However, these studies deal with specific single 

cylindrical pipelines that have only one layer. On the other hand, some limited
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research has been reported on multi-layered structures, most of them, related to 

aeronautical applications of sandwich shell structures. Some of the most relevant 

derivations and developments of theory that are referred to and used in the main 

body of the thesis are presented in Appendices 1 to 4.

The main body of the work presented starts firstly with the analysis of internal 

pressure and presents a simple extension of Lame’s stress and strain analysis of 

single walled pipe to a multi-layered cylindrical structure. A comparisonjusing a finite 

element analysis package is carried out here to verify results. The analytical model is 

used to compare the structural mechanics of single walled and double walled pipes 

on a like-for-like basis. This is done by comparing the von Mises stresses in the two 

configurations using the same cross-sectional area of steel. These comparisons are 

presented for a wide range of pipe geometries and Young’s Moduli of the annular 

layer.

The second part of the work is concerned with analysis of the buckling of a multi­

layered pipeline structure due to external hydrostatic pressure and uses three 

analytical models to investigate the problem. Two of them, the elastic spring layers 

and the thin sandwich wall consider elastic collapse only. The third method is a 

theory based on alîmitedvon Mises stress state, where the skin layers deform 

plastically before the core buckles. The results from all three analyses are compared 

with results from a finite element package. Again the collapse pressures obtained 

from the three analytical models and the finite element analysis are compared for a 

wide variation of pipe geometries and material properties of the annular material.

The comparisons! give an indication of the applicability of the four {différent methods 

used and also give some insight into the way in which collapse with external 

pressure is likely to occur for a multi-layered structure.

The third part of the work investigates the specific global problem of the effects of 

using a multi-layered pipeline in a deep water catenary configuration. The additional 

buoyancy due to the thick wall and to smaller core material density impart 

significant buoyancy to a multi-layered pipe which in turn will reduce catenary top 

tension requirement. On the other hand, the core material could be selected also to 

induce more weight for big diameter gas pipelines. This part of the work seeks to
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quantify these system level improvements and compares these to the effect of using 

single walled pipe in this application.

The analytical work is applied to several case studies in section six to quantify the 

typical structural performance gains achieved. The thesis concludes with a 

discussion and conclusions section.
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2. Literature review

2.1 General ideas on stability of shell structures

A fundamental performance requirement for subsea pipelines is their ability to 

withstand external hydrostatic pressure -  proportional to the water depth and rising 

at a rate of 10.055 kPa per Imetre of water depth. This pressure collapse load is a 

critical design case for moderate to deep water pipelines and risers.

The collapse of a pipeline due to external pressure is caused by a structural elastic 

instability. This is strongly influenced by imperfections in or ovality of the cross- 

section which may be introduced during manufacture of the pipe. The basic concept 

of structural stability, using the principles of energy conservation in mechanical 

systems, can be explained as follows: Figure 2.1.1 illustrates a ball bearing on a 

smooth surface remaining stable after a small displacement in the case of (a), 

unstable after a small displacement in (b) and in locally neutral equilibrium in (c). 

For each case, the ball bearing is seeking its lowest energy state of equilibrium.

(a) Stable (c) Neutral(b) Unstable 

Fig. 2.1.1 Stability Conditions.

Similarly in the case of a strut column, elastic stability or buckling due to axial

compression loads can be explained as shown in Figure 2.1.2. Under smaller loads,

the strut column compresses axially without bending (see Figure 2.1.2(a)). At the

critical axial load, a state of lower energy is reached with column bending, seejFigure

2.1.2(b), leading to the strut column buckling phenomenon. At this critical load,

therefore, the strut column has becomdiasticaiiyinstable. The development of the

instability is strongly influenced by a small perturbation in the strut column

perpendicular to its axis.

The neutral equilibrium condition is defined as the situation where exists a transition
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from stable to unstable equilibrium of the 

column, this load is usually referred to as 

the critical load. To determine the critical 

load for a column, the problem have to be 

solved and the load that will keep the 

structure in both equilibrium configuration 

in a straight line and in a slightly bent 

configuration. This method is called the

method of neutral equilibrium.
Fig. 2.1.2 Strut colum n axial collapse.

The most used approach for the stability of shells are based on linear elasticity 

concepts. The linear theory predicts stresses and deformations for shells which have 

very small or deformations within the elastic limit. These deformations assumed that 

the equilibrium equations for deformed elements are the same as if they were not 

deformed and Hooke’s law applies. The non-linear theory of elasticity is c o n c e rn e d  with 

cases where large deflections take place. Such large deflectiorfare often required 

when dealing with post buckling problems. The non-linear theory for shell*leads to 

more complex equations and for this reason are more limited.

A typical collapse failure mode is that of ductile collapse. The term ductile collapse 

implies the study of structural behaviour in situations when a structural material is 

loaded beyond the regime of its linear response. The term material non-linearity is 

more commonly used to characterise this situation.

A paper by Donnell 715/ in 1956 on the effect of imperfections on buckling of 

cylinders founded the basis for the geometric non-linear analysis of shell structures. 

This paper used the concept of imperfections based on the mathematical modelling 

factor U, or unevenness factor, assumed to depend only on the material and 

manufacturing process. The buckling of thin cylinders under external pressure is 

studied by finite-deflection theory, assuming the same modelling of imperfections as 

had been assumed in Donnell’s previous paper 716/ of 1959. Unlike the axial 

compression case, only a small elastic post buckling reduction in resistance is found, 

and this only for long cylinders. However, if reasonable imperfections are assumed, 

failure loads initiated by yielding are found to be of the same order as those indicated
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by experiments.

In numerical, non-linear, large deflection analyses of marine structures, use is made 

of various general upper and lower bound theorems. The collapse theorems 

applicable to static and dynamic loads can be found in standard textbooks. For cyclic 

loads, Polizzoto /59/, 1993 presents several useful theorems.

The use of the finite element method (FEM) to determine the eigenvalue of a shell 

structure provides only the upper bound to the collapse load. This implies that the 

structure may collapse under a smaller load. In general safety can be ensured and 

over design can be avoided by either using the lowest upper bound or the maximum 

lower bound. Berak and Gerdeen /6/, 1990 presented the basic theory for applying 

collapse theorems in finite element analysis. Mackenzie et al. 744/ and 7457, 1993 

used the collapse theorems in an elastic compensation method to obtain upper and 

lower bound solutions. Piche 7577, 1993 presented a useful method for estimating the 

lower bound buckling load using matrix norms.

A review of modem literature on stmctural analysis leads to the conclusion that 

computational techniques are obviously predominant among the different approaches 

and is used as a means for the practical solution of the'problem. The reason behind this 

statement can be found in the rapid development of powerful computers and in the 

availability of efficient and reliable software. Advanced finite element techniques 

that have been developed over the last 25 years have accumulated long-term 

experience and insight into the mechanical behaviour of structures and structural 

elements by generations of engineers. Nevertheless, these numerical computations 

are based on mathematical models, and so they are dependent on the validity of 

assumptions and suppositions, such as:

• material properties and constitutive relations;

• idealisation and simplification of construction details;

• imperfections and the initial state of displacements and stresses;

• boundary conditions and the influence of adjacent structures;

• external loads and their simplified distribution in space and time;

• temperature and o ther. environmental conditions.
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Therefore, the importance of experiments remains for checking theoretical 

perceptions, for confirming the theory and in highlighting its weak points and 

uncertainties.

There are basically two fundamental approaches to classical mechanics that form the 

foundation of structural mechanics and the theory of structures. The first is the 

Newtonian or vectorial approach that is the basis of the equilibrium method. This 

approach goes back to Newton and uses the equilibrium condition as an axiom to 

establish the governing differential equations of the problem. The integration of this 

differential equation then yields the required solution. The second approach goes 

back to Leibniz and Lagrange and uses a scalar function termed the work function as 

the starting point. The equilibrium of the system is then associated with a stationary 

value of this function. Since this work function is usually given in the form of an 

integral, the problem of finding the equilibrium equation is to find the extreme 

values of this integral. The method of finding such a value is a subject treated in a 

branch of mathematics known as the calculus of variations. Since all work and 

energy methods are some special forms and variants of the Lagrangian method, this 

subject is mathematically and historically closely linked to the development of the 

calculus of variations founded by Euler and Newton.

The energy method leads to the same differential equations as does the equilibrium 

method. However, there are reasons for using energy methods rather than 

equilibrium method. The energy method is more analytical than the equilibrium 

method the source of error is, therefore, different. The equilibrium method depends 

more of the geometrical and mechanical visualisation of the system. In energy 

methods the differential equation and the boundary conditions are established 

provided the corresponding variational principle is found. Moreover, energy 

methods are limited in use because it is difficult to solve differential equations 

exactly except for simple shapes and structures. Another reason for using energy 

methods is to provide a short solution for otherwise very complicated problems, as 

can be seen for some highly statically indeterminate structures. Finally, there are 

philosophical reasons for studying energy methods that have been stressed by 

Helmholtz with relation to duality present in several problems. For this reason the
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inverse problem of the calculus of variations becomes of great importance. In 

addition, there is another limitation employing energy method in comparison with 

equilibrium method only conservative systems possess a work function. Therefore, a 

limited number of engineering problems can be solved using the energy methods.

The mathematical problem is to solve a set of homogeneous differential equations 

with homogeneous boundary conditions. In general suchlproblems only have a trivial 

solution. But the coefficients of the equations depend on the magnitude of the basic 

load, and the load for which a nontrivial solution is possible I is known as the critical 

load. This is a typical formulation of an eigenvalue problem. This technique may be 

used to illustrate the Euler strut column, (see Figure 2.1.2). The basic load is P. It is 

possible to formulate equilibrium equations for the finite portion of length x  along 

the axis of the column with a total length of /. The elastic law gives M  -  Pw = 0 

where M  = - E l  • w'" is the moment in the column as a function of x. This leads to an 

homogeneous differential equation for w:

w H w = 0 (2.1.1)
E l

The boundary conditions are w=0 for both ends of the column are also 

homogeneous. The problem may now be solved in the well-known way leading to 

the critical load solutions, P̂  ̂ in (2.1.2), where n is an integer number. The Euler

load denoted by P^ is obtained for n=l.

(2 .1.2)

2.2. Application methods for shell structures

The most important consideration for conventional offshore single walledpipelines is 

the resistance to collapse of the tube bearing the combined action of hydrostatic 

pressure and bending moment. Once the internal diameter to pass the flow rate has 

been determined for a particular design, there is a requirement to determine the wall 

thickness. To obtain the wall thickness maximum hydrostatic pressure loads in 

conjunction with axial loads and bending moment and the allowable stress in the 

pipe wall need to be considered. An interesting physical phenomenon for pipelines 

under external hydrostatic pressure is that under certain conditions, a local buckle
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can propagate along the pipe length. Thus the propagation pressure under these 

conditions is an important parameter for the design of subsea pipelines.

The allowable stress in a pipeline wall is limited by the codes and regulations that 

include design criteria such as those prepared by Battelle, Shell and Det Norske 

Veritas (DnV). The Battelle criterion is the result of a research programme headed 

by the Deep Water Offshore Pipeline Group, from 1973 to 1979, and was validated 

for up to 900 m of water depth. The Shell rules are the result of a joint industry 

project co-ordinated by the Shell Development Company, from 1974 to 1977 -  the 

goal being the laying of a 30 inch pipeline in 914 m water depth. The DnV criterion 

is a result of a study carried out by DnV. There are also other well known codes and 

standards issued by international organisations for pipeline stressing.

The state of the art of pipeline design as well as that of subsea structures in general 

has been developed as the offshore industry has needed to work in deeper water with 

larger diameter pipeline systems. Considering the uncertainty of the manufacturing 

process that induces imperfections in a pipeline's roundness, the design process still 

needs experimental data and empirical relations to reach a safe and reliable design. 

The cost of a pipeline system is of the order of hundreds of million of dollars. Any 

improvement in the design parameters with respect to wall thickness therefore 

implies a huge economy. On the other hand, the potential danger that a failed oil 

pipeline represents for the environment also needs to be considered with great care. 

Therefore, any improvement in this field needs to be backed by well-founded 

analytical work and good experimental results supporting it. Today there is a lot of 

work being conducted on collapse and propagation pressure on single walled 

pipelines.

The most important parameter to be defined during design is the wall thickness. This 

parameter will command the whole design, its installation, manufacturing and 

welding design. The structural integrity needs to be checked during initial pipe 

laying and trenching as well as during operation. Pipe stresses can arise due to 

external and internal hydrostatic pressures, pipe bending on an undulating seabed, 

and temperature induced stresses. Subsea pipelines laying on the sea bed without 

burial have to possess sufficient stability, that is, submerged weight to ensure that
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lateral current and wave forces do not cause the pipe to move. The required 

submerged weight is achieved either with concrete coating or by an increase of the 

wall thickness. There are four primary load conditions that are considered during a 

pipeline design: the pipeline laying and burial, the pipeline installed but non- 

operational, the testing prior to operation and the normal operation.

The installation and testing conditions normally need to be such as to withstand 

specific environmental criteria such as current profile, wave height and period that 

are unlikely to be exceeded during these phases. In the remaining conditions, 

however the riser part of a pipeline is expected to survive to maximum likely 

environmental conditions such as the 100-year return period current profile and 

wave height with an acceptable margin of safety.

There are several international codes of practice that deal with requirements and 

design criteria for pressure vessels, pipelines and risers. These are:

• Det Norske Veritas has, for a long time, published rules for design of ships 

with detailed recommendations for structural analysis. At the start of offshore 

operations rules were also developed for offshore structures. The DnV code 

includes rules for the design of different types of shells elements.

• DnV Standard for Insurance Warranty Surveys in Marine Operations -  Part 

2:RP5-Lifting.

• DnV 1981 -  Det Norske Veritas rules for the design construction and 

inspection of submarine pipelines and pipeline risers.

• DASt, 1980, Deutscher Ausschuss fur Stahlbau, Richtlinie 013. Treats a large 

number of shells elements and load cases.

• DIN 18800, Teil 4, Stahlbauten, Stabilititatsfalle, Beulen von Schalen.

• ASME Code Case N-284, 1980. The ASME code gives indications on how the 

results of computer programs for buckling analysis should be interpreted.

• ECCS, 1988, European Convention for Construction Steel work, develops 

recommendations forlthe design of shells with respect to buckling.

• API RP 2A, 1982, American Petroleum Institute, Washington D C.

• API-SPEC, 1977, Specification for fabricated Structural Steel Pipe.
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• API RP 17B -  Recommended Practice for Flexible pipe.

• BUREAU VERITAS -  NI 364 DTO ROO E -  Non bonded Flexible Steel 

Pipes Used as Flow-Lines

• VERITEC -  Guidance’s for Flexible Pipes

• NACE RP-01-75 -  Control of Internal Corrosion in Steel Pipelines and Piping 

Systems

• ANSI B 3 1 .4 -  American National Standards Institute -  Liquid petroleum 

transportation piping system.

• ANSI B 31.8 -  American National Standards Institute -  Guide for gas 

transmission and distribution piping system.

• IP-6 -  1973 -  Institute of Petroleum, Petroleum pipelines safety code.

• BS 5500, Specification for Unfired Fusion Welded pressure Vessels.

• BS 8010 Annex B and C -  British Standard for pipeline system and subsea 

pipelines (1990).

This review concentrates on internal and external pressure issues with some other 

issues also covered on the performance improvement of multi-layered subsea 

pipelines.

During this literature review, a lot of prior work was found on cylindrical shells.

This review is, however, confined to work that is relevant to underwater pipelines 

and cylindrical shells with medium to thick walls and exclude material on very thin 

shells. There is also considerable previous work on propagation pressure in thin 

walled metallic pipes, which is not described here. The relevant prior work on single 

walled pipes is presented in four sections below which are initially listed here for 

convenience.

- On buckling propagation pressure of single walled pipe;

- On buckling of single walled pipe due to pressure load only;

- On buckling of single walled pipe under axial load;

- On buckling of single walled pipe with combined loads.

On buckling propagation o f single walled pipe:

Dyau and Kyriakides in 1993 721/ presented work on the propagation pressure of
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long cylindrical shells under external pressure. Local imperfections induced in long 

tubes subjected to high external pressures can lead to local collapse, from which a 

propagation buckle can be initiated. This results in catastrophic collapse of large 

sections of the structure. The propagation pressure is the lowest pressure at which 

such a buckle will propagate. For common steel tube structures the propagation 

pressure is typically half an order of magnitude lower than the collapse pressure of 

the intact tubes. This paper deals with experimental and analytical results for 

establishing propagation pressure. A three dimensional analysis, in combination with 

experimental results, is used to demonstrate a mechanism of initiation of propagating 

buckles in long tubes and to study the parametric dependence of the propagation 

pressure and the effect of axial tension.

Dyau and Kyriakides 719/ in 1993, also worked on the localisation of collapse in 

cylindrical shells under external pressure. It is well known that long cylindrical 

shells used in many practical applications involving external pressure loading 

collapse catastrophically due to limit load instability. The limit load is due to 

interaction between geometric non-linearities and material non-linearities due to 

plasticity. This paper addresses the mechanism of collapse triggered by the limit load 

instability. It is found that following the limit load the collapse quickly localises to a 

section of the shell a few diameters long. The deformations and stresses in the region 

of localisation grow with decreasing overall pressure whereas the rest of the 

structure remains intact and retains only a small residual effect from the limit load 

instability as it unloads. However, under favourable conditions the localised collapse 

triggers an instability that propagates along the length of the shell and has the 

potential of catastrophically collapsing the whole structure. The characteristics of the 

localisation are parametrically studied through experiment and analysis.

Kyriakides and Chang in 1992 736/ worked on the effect of axial tension on the 

propagation pressure of long cylindrical shells. The paper describes the results of an 

experimental study in which the propagation pressure of long metal tubes was 

measured in the presence of a constant axial load. Tension was found to significantly 

reduce the propagation pressure.

Wierzbicki and Bhat 7767 in 1986, worked on the initiation and propagation of
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buckles in pipelines. The paper derives a simple closed-form solution for the 

pressure necessary to initiate and propagate the buckle down the tube. The 

calculations are performed assuming that the dominant effect on plastic energy 

dissipation was from the circumferential bending mode. Using a rigid plastic 

material idealisation a simple moving hinge model which describes the deformation 

of a ring into a dumbbell shape is proposed. Strain hardening effects are taken into 

account in an approximate way. The propagation pressure is shown to be controlled 

by the thickness to diameter ratio of the shell and the ratio of the work hardening 

modulus to the flow stress of the material. The resulting analytical solution for 

propagation pressure is compared with the experimental results of Kyriakides et al, 

1984 740/ and the previous analytical solution due to Palmer and Martin 19751551. 

The solution for the initiation pressure is derived on the basis of the same structural 

model in conjunction with a new conceptual model for buckle initiation. The 

solutions for both pressures are shown to correlate well with experimental results 

reported in the literature.

Kyriakides, Yeh and Roach 739/ in 1984 worked on the determination of the 

propagation pressure of long circular tubes. The paper attempts to model quasi-static 

steady-state propagation through a plane strain large deflection, inelastic analysis of 

the collapse of a circular ring. An energy balance type of argument is used to obtain 

a lower-bound estimate of the propagation pressure from the ring response. The 

result is compared with experimental results obtained from stainless steel and 

aluminium tubes having diameter to thickness ratios ranging between 100 and 10. 

Good agreement with experimental results was found for ratios D7t>20.

Kyriakides, Babcock and Elyada 7407 in 1984, worked on the initiation of 

propagation buckles from local pipeline damage. The paper deals with the initiation 

of a propagating buckle in offshore pipeline. If the external pressure is high enough, 

then a propagating buckle can be initiated by locally denting the pipe. Such a buckle 

will propagate at any pressure above the propagation pressure of the pipe. The 

pressure at which a local geometric imperfection transforms itself into a propagating 

buckle is known as the initiation pressure. This pressure depends on the geometric 

characteristics of the damage. The paper restricts itself to a parametric study of
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damage produced by point, knife and plate indent. It is found that the geometry of 

these types of damage can be well represented by the ratio of minimum diameter to 

maximum diameter of the most damaged section.

On buckling of single walled pipe due to pressure load only:

Yeh and Kyriakides 774/ in 1986, worked on the collapse of inelastic long thick- 

walled tubes under external pressure both experimentally and analytically. A two- 

dimensional non-linear formulation of the problem is presented. It is general enough 

to include initial geometric imperfections of the tube cross section such as initial 

lovality and wall thickness variation. In addition, the effects of residual stresses and 

of initial inelastic anisotropy are considered. Experiments on tubes with D/t values 

between 10 and 40 were carried out with good agreement between experiments and 

theory provided all parameters are modelled correctly. A study of the effect of the 

various parameters of the problem on the collapse pressure is also presented.

Yeh and Kyriakides 775/ in 1988, worked on the collapse of deep water pipelines. 

The paper describes a series of full-scale collapse experiments using X-42 and X-65 

grade steel tubes. The initial geometric imperfections of the tubes were measured 

using a specially designed scanning facility prior to collapsing them under external 

pressure. Geometric deviations from a circular shape were recorded at 90 points 

around the circumference. The wall thickness was also recorded at the same points. 

At least 31 circumferential scans were made over lengths of 9 diameters. The stress- 

strain characteristics in the axial and circumferential directions were measured for 

each tube. The measured parameters were used to calculate numerically the collapse 

pressures of the tubes.

Kyriakides and Yon in 198 4 7377 worked on the collapse of circular confined rings 

under external pressure. The paper presents a study of the large deflection collapse 

of circular rings confined in a rigid cavity under external pressure. The ring is 

assumed to be inextensible and to have an initial localised imperfection that causes a 

small section of its circumference to be detached from the confining wall. The cavity 

formed is pressurised and its growth examined. The formulation is general enough to 

allow for large deflections of the ring as well as material non-linearities.
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Li and Kyriakides 742/ in 1991, worked on the response and stability of two 

concentric, contacting rings under external pressure. The problem considered 

involves two concentric, smoothly contacting rings under external pressure. The 

outer ring is initially circular but the inner ring has a localised initial imperfection 

that causes a small section of the ring to be detached from the outer one. Pressure is 

applied externally but also in the cavity formed by the imperfection. The formulation 

used is general enough to allow for large deflections with the material of both rings 

assumed to be linearly elastic. The non-linear response of the structure was found to 

be characterised by a limit load type of instability. The mode of collapse and the 

limit load are shown to depend on the geometric characteristics of the two rings and 

those of the initial imperfection.

On buckling o f single walled pipe under axial load:

Bandyopadhyay, Shteyngart, and Eckert in 1994 75/ worked on the plastic buckling 

of cylindrical shells. Cylindrical shells exhibit buckling under axial loads at stresses 

much less than the respective theoretical critical stresses. This is due primarily to the 

presence of geometrical imperfections even though such imperfections could be very 

small (for example, comparable to thickness). Under internal pressure, the shell 

regains some of its buckling strength. For a relatively large radius-to-thickness ratio 

and low internal pressure, the effect can be reasonably estimated by an elastic 

analysis. However, for low radius-to-thickness ratios and greater pressures, the 

elastic-plastic collapse controls the failure load. In order to quantify the elastic- 

plastic buckling capacity of cylindrical shells, an analysis program was carried out 

by use of the computer code B 0S0R 5 developed by Bushnell of Lockheed Missiles 

and Space Company. BOSOR was developed as a special purpose program for the 

analysis of buckling and vibration of axisymmetric shells under otherwise rather 

general conditions. BOSOR determines the buckling load by use of eigenvalue 

theory. The analysis was performed for various radius-to-thickness ratios and 

imperfection amplitudes.

Heinen, Hennenberg and Fischer 7297 in 1994 worked on the stability of elastic shell 

structures by setting up generally valid stability equations for shells. After 

transformation into integral equations, ordinary time dependent differential 

equations are derived through series expansion of the disturbance-induced
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displacements. Any fundamental state can be substituted in these equations, and its 

kinetic stability can be investigated. This is demonstrated in this paper for cylindrical 

shells subjected to sudden axial loads.

Donnell and Wan /16/, in 1950, published a basic paper on the effects of 

imperfections on buckling of thin cylinders and columns under axial compression. 

The paper introduces the concept of imperfections in the mathematical model 

through the unevenness factor that depends only on the material and manufacturing 

process. The paper presents results using finite-deflection theory.

On buckline o f single walled pipe with combined loads:

Bai, Igland, and Moan /3/, in 1995, worked on the collapse of thick tubes under 

combined tension and bending. This paper presents finite element analyses of the 

collapse behaviour of thick tubes (10 < D/t < 40) under pure bending and combined 

tension and bending loads. Parametric studies of collapse moment and critical 

curvature for thick tubes under pure bending have been carried out to study the 

effects of diameter to thickness ratio D/t, yield parameter to Young's modulus ratio 

(Jy/E, strain-hardening parameter n and material anisotropy parameter S  . Formulae 

to predict collapse moment and curvature are derived based on these parametric 

studies. It has been confirmed that the modelling uncertainty of the derived 

equations is small. The responses of thick tubes under combined tension and 

bending have been studied. The effect of loading paths is presented. Criteria to 

determine ultimate collapse of tubes, for example, limit load, extreme fibre strain 

and mean axial strain, are discussed. Parametric studies have been carried out on the 

effect of the collapse envelopes on diameter to thickness ratio D/t, material grade, 

strain-hardening parameter n and material anisotropy parameter S. Formulae for 

moment-tension, curvature-tension and curvature-axial strain envelopes are 

proposed based on the sensitivity study.

Estefen 724/ in 1994, worked on the ultimate strength behaviour of submarine 

pipelines under external pressure and bending. Moan et al 746/ in 1994, worked on 

limit states for the ultimate strength of tubular subjected to pressure, bending and 

tension loads.
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Kyriakides and Ju /38/ in 1992, worked on the bifurcation and localisation 

instabilities in cylindrical shells under bending. This two-part series of papers is 

concerned with the response and various instabilities that govern the behaviour of 

circular cylindrical shells under pure bending. Part I describes the experimental study 

and Part II presents the numerical simulation of the various phenomena observed 

experimentally. Experiments were conducted on long aluminium 6061- T6 shells 

with 11 different diameter-to-thickness ratios ranging from 60.5 to 19.5. For such 

geometry, the structural response and inherent instabilities are strongly influenced by 

the plastic characteristics of the material. Thinner shells were found to develop short 

wavelength periodic ripples on the compressed side of the shell. The shells buckled 

locally and collapsed soon after the appearance of the ripples. Thicker shells were 

found to exhibit limit load instability as a direct consequence of the iovality of the 

shell cross-section caused by bending. Following the limit load, the jovality was 

found to localise, leading to the eventual collapse of the shells. For shells with 

intermediate D/t values, short wavelength ripples developed at the same time as 

localisation of ovalness was recorded. The shells buckled locally and 

catastrophically following the development of a limit load.

Ju and Kyriakides 732/ in 1992, covered the bifurcation and localisation instabilities 

in cylindrical shells under bending. This second phase study is concerned with the 

prediction of the response and various instabilities found in Part 1 above to govern 

the elastic-plastic flexure of circular cylindrical shells. Sanders' shell kinematics and 

the principle of virtual work were used to formulate the problem. A Rayleigh-Ritz 

procedure was used to discretize the problem. The resultant non-linear equations were 

iteratively solved using Newton's method. The three types of behaviour involving 

bifurcation into short wavelength ripples, localisation following the attainment of a 

natural limit load and interaction of the two was studied. In each case the predicted 

response was found to be in very good agreement with experimental results.

Dyau and Kyriakides 1121 in 1992, presented work on the response of elastic-plastic 

tubes under combined bending and tension. This paper is concerned with the 

response of long, relatively thin-walled tubes bent into the plastic range in the 

presence of axial tension. The work is motivated by the design needs of pipelines
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installed and operated in deep offshore waters. The problem is studied through a 

combination of experiment and analysis. In the experiments, long metal tubes were 

bent over a smooth, circular, rigid surface (mandrel). Bending of the tubes was 

achieved by shear and axial ends' loads. The experimental arrangement is such that a 

significant section of the test specimen is loaded and deformed in an axially uniform 

fashion. The > ovality induced in the specimen was measured as a function of the 

axial load in the tube for two mandrel radii. A two-dimensional numerical 

simulation of the problem has been developed and validated against the 

experimental results. This analysis was used to conduct a parametric study of the 

effect of tension on the ovality induced in a long tube during bending.

Ju and Kyriakides 731/ in 1991, worked on the bifurcation buckling versus limit load 

instabilities of elastic-plastic tubes under bending and external pressure. Commonly 

used procedures for installing offshore pipelines can induce substantial bending to 

the line in the presence of external pressure. These combined loads can lead to 

catastrophic collapse of the structure. For typically used steels and higher diameter- 

to-thickness ratios {D/t), bending is limited by a bifurcation type of instability; for 

lower D/t values, the structures exhibit limit load types of instabilities. Similar 

distinctions can be made for bending in the presence of external pressure. Previous 

work (Corona and Kyriakides, 1988) addressed primarily the limit load types of 

instabilities. In this paper, this analysis is extended to include bifurcation 

instabilities. The predictions from the two types of analyses are critically compared 

to experimental results and recommendations about the regime of applicability of 

each are made.

Corona and Kyriakides 710/ in 1991, worked on experimental investigation of the 

degradation and buckling of circular tubes under cyclic bending and external 

pressure. Cyclic bending of tubes into the plastic range of the material leads to a 

progressive accumulation of jovality of the tube cross-section. Persistent cycling 

leads to local catastrophic buckling of the tube. This paper presents an experimental 

study of the problem. The main objective of the study was to establish the effect of 

the cyclic bending history and of the external pressure on the rate of accumulation of 

ovalness and on the onset of instability. The cyclic loading histories examined
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include curvature symmetric bending, bending about a mean value of curvature and 

moment-controlled bending about a mean value of moment. The rate at which 

ovalness accumulates in curvature-controlled cyclic bending was found not to be 

significantly affected by a mean curvature in the cycles. Moment-controlled bending 

about a mean moment leads to ratchet in curvature as well as in ovalness. External 

pressure accelerates the accumulation of ovalness and leads to buckling in fewer 

cycles than in the corresponding pure bending cases. This was found to be true for 

all bending histories considered. Significant similarities were observed between the 

response and onset of instability in the monotonie bending case and all cyclic 

bending cases. For a group of aluminium tubes' instability was found to occur when 

the ovalness of the cross-section reached a critical value. This critical value was 

found to be relatively independent of the bending history followed.

Ellinas and Croll 723/ in 1986, worked on the elastic-plastic buckling design of 

cylindrical shells subjected to combined axial compression and pressure loading. 

The paper describes a procedure for predicting the elasto-plastic axisymmetric 

collapse of cylinders subjected to combinations of axial compression and pressure 

loading. This allows the modelling of radial pressure induced deformations, 

boundary effects and initial geometric imperfections in terms of an equivalent 

imperfection in a column type bifurcation analysis. Together with the incorporation 

of more rational means of specifying geometric tolerances, it is used to develop 

compact design-orientated procedures for predicting safe loads for this form of 

elasto-plastic collapse of cylinders.

Murphey and Langner in 1985 752/ presented work on ultimate pipe strength under 

bending collapse and fatigue. The paper deals with pipeline installation in deep 

water. The suspended pipe spans were subjected to significant bending and external 

pressure loads, including cyclical bending and to a lesser extent tension and torsion 

loads. They present some relations for predicting ultimate buckling and collapse 

loading conditions as well as the deformation of pipe under loads less than ultimate 

and the fatigue life of pipeline girth welds under cyclic loads.
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2.3 Composite shell structures under external pressure

The composite cylinder structure has not been studied as extensively as the single 

cylinder. Multi-layer and double walled shell structures appear more recently in the 

development of new materials. The target is the aeronautical industry where weight 

versus strength is often more important than the cost itself. Therefore, most of the 

work done on sandwich or double walled shells has been for aeronautical 

applications.

There are also two books on sandwich construction /58/ by Plantema, 1966 and 111 

by Allen, 1969. These books describe structural sandwich construction and include 

the whole theory for its analysis.

Montague has addressed the double-skin composite construction structural 

problem aimed at subsea applications for pressure vessels -  see /49/ in 1979,750/ in 

1981 and 751/ 1969. He describes theoretical and experimental work on steel- 

concrete-steel composite cylindrical shells subjected to external pressure. The results 

present good correlation with failure predictions on a lower bound analysis. He 

reaches the conclusion that this form of construction can be relied upon to provide a 

totally stable structure up to the pressures causing yielding of the steel skins with a 

reserve of strength beyond this pressure. The conclusion is that the composite shell 

is insensitive to initial non-circular imperfections up to an external pressure that 

causes the steel skins to yield. Up to this pressure, the radial displacements are 

nearly axisymmetric. A vessel with concrete filler will sustain a higher pressure 

before the steel skins start to yield than will a similar vessel with a resin-glass filler 

because the concrete is stiffer.

The problem of the thick cylinder under external pressure including the sandwich 

structure has also been addressed by Baker 747 in 1972 in the last chapter of his book. 

He presents a summary of sandwich type construction that is a composite 

construction consisting of three integrally attached layers. The middle layer of the 

sandwich is the core; the outer and inner layers are the facing sheets. He based his 

work in the papers by Zahn and Kuenzi 7797 in 1963 on buckling of cylinders for 

sandwich construction in axial compression-orthotropic cores; March et al 7437 in 

1958, on buckling of sandwich cylinders in torsion; Kiciman et al 7337 in 1961, on
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the stability of honeycomb sandwich cylinders and Kuenzi et al 734/ in 1965 on 

sandwich cylinders of finite length under uniform external pressure. Most of the 

work done in the stability of sandwich structures was based on the previous work of 

' Raville in 1954 and 1955.;

Raville has derived expressions for the buckling of sandwich cylinders under 

uniform external lateral pressure for long cylinders 763/ in 1954, including skins of 

moderate and unequal thickness 7647 in 1955, and including finite length 7657 in 

1955. These works were issued on the ANC-23 panel on sandwich construction of 

the Department of the Air Force-Navy-Civil subcommittee in the Forest Products 

Laboratory of United States Department of Agriculture Forest Service. Following 

this work Norris and Zahn 7547 in 1963 issued numerical results and algebraic 

equations based on the Raville mathematical model that results in practical curves 

and a simplified equation which can be easily used for prediction of buckling loads 

on sandwich panels.

The work done by Choo et al 7117 in 1991, addressed the limit strength of composite 

sandwich cylinders subjected to external pressure. Zhou et al in 198 5 7807 also 

worked on the computation of non-linear instability for multi-layered cylindrical- 

shells.

Brown and Hyer in 1994 787 showed the influence of layer waviness on the stress 

state and failure pressure of thick cross-ply composite cylinders loaded by external 

hydrostatic pressure. Layer waviness is idealised as a single isolated region of 

waviness in an otherwise perfect cylinder. The waviness occurs in only the 

circumferential direction and is assumed to extend indefinitely in the axial direction. 

Waviness is assumed to occur because particular circumferential layers experience 

local radial displacement during consolidation, resin richness and resin depletion 

occurring on either side of the locally displaced layers. Stresses are computed by 

using a finite element analysis that models the isolated region of waviness in the 

cylinder on a layer-by-layer basis. Some details of the model are discussed; the 

model accounting for a range of amplitudes of waviness, a range of cylinder radius- 

to-wall thickness ratios, and whether the isolated waviness is located near the inner 

radius or near the outer radius of the cylinder wall. The paper illustrates the
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behaviour of the three primary stresses, namely inter laminar shear, inter laminar 

tension, and fibre-direction compression, all of which are important to failure. 

Pressure capacity is determined by applying the maximum stress failure criterion. It 

is shown that inter laminar shear, while absent in the perfect cylinder, can be 

responsible for a 50% reduction in pressure capacity relative to the wave-free perfect 

cylinder. Also it is shown that fibre-direction compressive stresses are increased by 

the presence of waviness, and that inter laminar normal tensile stresses caused by the 

waviness are potentially responsible for failure.

Bonanni 111 in 1994 presented a paper on the stability analysis of thick-section 

composite cylinders under hydrostatic pressure including three-dimensional (3-D) 

effects and non-linear material response. The work described in this paper integrates 

a 3-D micro-mechanics-based non-linear constitutive model for laminated composite 

materials into 3-D structural analyses performed with the ABAQUS general-purpose 

finite element code. The non-linear model and its incorporation into ABAQUS are 

described. The method is demonstrated through 3-D stability analyses of thick, 

unstiffened AS4/3501-6 carbon/epoxy circular cylinders under external hydrostatic 

pressure. The results of two-dimensional (2-D) shell finite element analyses of these 

cylinders are also presented for comparison. The cylinders analysed are 

geometrically identical and are subjected to the same loading and boundary 

conditions. Five different ply lay-ups are considered, including cross-ply, quasi­

isotropic, and layers oriented at 45 degrees. Modelling the non-linear material 

response is found to reduce the predicted cylinder collapse load by up to 50% when 

layers oriented at 45 degrees to the cylinder axis are present in the laminate. The role 

of material non-linearity in the plane of the laminate versus through-thickness non- 

linearity is discussed for the cylinders analysed.

Dong and Etitum 714/ in 1995 presented work on three-dimensional stability analysis 

of laminated anisotropic circular cylinders. A linear bifurcation stability of laminated 

anisotropic circular cylinders is investigated on the basis of three-dimensional 

elasticity using Biot's incremental deformation theory. A finite element code 

employing radial discreteness is formulated for the calculations. By this approach, 

the laminate's thickness profile may be composed of an arbitrary number of bonded
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elastic anisotropic layers, each of which may have its own mechanical properties, 

thickness and initial stress state. Using a solution that is periodic axially and 

circumferentially in the variational derived equilibrium equations yields an algebraic 

eigenvalue problem, where the critical (lowest) eigenvalue is sought. It represents 

the ratio of the buckling stress state to initial stress state and its associated 

eigenvector contains the radial distribution of the displacements. A parametric study 

on a series of regular symmetric and antisymmetric cross-ply and angle-ply 

laminated composite cylinders under axial compression and torsion was conducted, 

where the data can be used to assess the accuracy and range of validity of stability 

predictions based on shell theories. An example of the axial compression of a thick- 

walled laminated composite cylinder is presented to illustrate an instability 

phenomenon where internal and surface deformations are present.

Chryssostomidis and Papadakis 712/ in 1994 worked on the buckling analysis of 

sandwich shell structures subjected to hydrostatic load. This paper examines the 

buckling phenomenon of sandwich cylindrical shell structures subjected to 

hydrostatic pressure. Global bifurcation buckling is considered, and the effect of 

discrete ring stiffeners on the critical pressure is analysed. The local buckling 

problem is discussed, including the influence of the shape and the thickness of the 

core stiffeners on the critical load. Finally, the paper treats the sensitivity of local 

and global buckling on the thickness distribution between the inner and outer shells 

of the sandwich structure.

Hamidzadeh and Chandler 728/ in 1991 worked on the circumferential vibrations of 

three layered sandwich cylinders. The problem of forced vibrations of three layered 

cylinders of infinite extent subjected to boundary stresses that do not vary along the 

axis is considered. Linear viscoelastic theory is employed and the vibration of a thick 

single cylinder is accurately formulated. A solution fori a cylinder with three 

constrained layers is developed by utilising the stresses and displacements at all 

interfaces, and by complying with the compatibility requirements at each interface. 

Computed results are compared with an available approximate solution and 

satisfactory agreement is established. The reported solution is exact and is not 

limited to thin cylinders.
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DiSciuva and Carrera / 13/, in 1990, worked on the static buckling of moderately 

thick, anisotropic, laminated and sandwich cylindrical shell panels. This paper deals 

with the development of linearized equations governing the buckling behaviour of 

moderately thick, anisotropic, laminated and sandwiched cylindrical shell panels 

faced with fibre-reinforced plastic under uniform shear and normal membrane 

forces. The formulation takes into account the transverse shear flexibility. Two 

approaches for the approximate solution of the elastic stability equations are 

developed. The first approach is an analytical approach of the Galerkin type and 

rests upon the principle of virtual work. The second is a finite-element displacement 

approach. Some numerical results are presented and compared with other results 

from the open literature.

Dominger and Rammerstorfer 718/ in 1990, worked on layered composite shell 

elements for elastic and thermoelastic stress and stability analysis at large 

deformations. A finite shell element for layered fibre reinforced composite shells has 

been developed. The degeneration principle is used in combination with specific 

kinematics assumptions. The thermoelastic material is either described by the 

behaviour of the local components, that is fibre and matrix material laws and 

geometrical configuration in each layer, or by the overall orthotropic layer material 

laws. Thickness integration for obtaining the different contributions to the shell 

element's stiffness matrix is performed analytically and prior to the numerical in­

plane integration. This leads to a considerable saving in computer time during the 

incremental-iterative analysis. Geometrical non-linearity in terms of large 

deformations and material non-linearity in terms of layer cracking are taken into 

account. Accompanying eigenvalue analyses allow the determination of the -  

sometimes rather complicated -  buckling behaviour with non-linear pre-buckling 

deformations.

Palchevskii 756/ in 1988, worked on the stability of a multi-layer cylindrical shell 

with inter-layer pressure. The problem of the stability of a cylindrical shell or 

circular ring with one side connected to a surrounding elastic or absolutely rigid 

space has been studied in a number of investigations. In solving this problem for thin 

shells it is possible to neglect the variation of the shell geometry as a result of

43



subcritical behaviour, and also changes in the area of contact with the surrounding 

space during the loss of stability. Consequently, the solution can be obtained as a 

linear formulation, as in the present paper.

2.4 Discussion of the literature review

The literature review was divided in two main blocks, the first (section 2.2) being 

concerned with the single walled cylindrical shell. In spite of the fact that 

this work is not directly related to multi-layered pipes, the review identified 

concepts and issues that are relevant to the work of this thesis.

The propagation of buckles is a very important topic for offshore pipelines because 

its occurrence can lead to huge consequential losses of revenue. In fact, the design 

requirement to avoid propagation of buckles governs the wall thickness definition 

according to some standards (for example the Institute of Petroleum IP-6 code). In 

practice design includesbuckling arrestors which consist of local increases in the wall 

at some position along the pipeline. The device acts to increase locally the external 

pressure resistance and is thus able to block the buckling propagation and isolate the 

amount of pipe damaged. The review of the literature in this field presents most of 

the fundamental work that guides designers and regulatory authorities in this field. 

The review shows that the field has been thoroughly explored in theoretical terms 

and that theories are validated by experimental data *

The work on collapse pressure analysis of single walled pipes is discussed in greater 

detail in the following section 2.5 and is, therefore, not considered further here.

Section 2.3 of the review investigates previous work on composite shell stmctures 

under external pressure. There was much less directly relevant work that was found 

on the specific problem addressed here - that is underwater pipes with a 

homogeneous annular material surrounded by thin steel shells. The majority of the 

relevant prior work was concerned with aeronautical applications and honeycomb 

constructions. The most relevant work found was that of Raville in a series of papers 

/63/, 764/ and 765/ from 1954. He has developed an elastic stability analysis based on 

Timoshenko’s theory to determine the collapse pressure of a multi-layered cylinder. 

Another later investigation by Montague 7477 in 1975' has extended the approach to
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an elasto-plastic failure of the annular material.

Exhaustive attempts were made during the literature review to find appropriate 

experimental data to use in the present research. The only appropriate work that 

reported experimental data in sufficient details to enable it to be used was from 

Montague /47/. He provided all the appropriate geometric and material properties 

details to enable a comparison with theory. The limited amount of other 

experimental work found had insufficient supporting data to enable it to 1 property

2.5 Theoretical background to present work

This last section of the literature review brings together the specific elements of the 

previous work that form the starting point of the work presented in this thesis on the 

collapse of multi-layered pipes under external pressure.

This previous work is based ultimately on the analysis of a single wall cylinder subjected 

to external pressure which has been considered extensively in the literature. 

Timoshenko /73/, 1936, (art. 11.5, page 474), presents a good overview of the 

classic approach to the problem although Donnell /17/, 1976, (art. 7.3 page. 406), 

Brush 191, 1975, (art. 5.5a, page. 161) and Flugge H I I, 1973, (art. S.2.2.3, page 459) 

also deal with the subject in comparable depth.

The stability equations for cylindrical shells have been available in the literature 

since the late 1800s. For cylinders subjected to axial compression, Lorenz presented 

the earliest analytical solutions, in 1911. Solutions for buckling under uniform 

lateral pressure were given by Southwell in 1913 and by Von Mises in 1914. In 

1932, Flugge presented a comprehensive treatment of cylindrical shell stability, 

including combined loading and cylinders subjected to bending. Results for 

cylinders subjected to torsional loading were given by Schwerin in 1925 and Donnell 

in 1933.

The Donnell equations form the basis for more stability analyses in the literature 

than any other set of cylindrical shell equations. The equations give accurate results 

for cylindrical panels that are relatively flat before deformation and for complete 

cylindrical shells whose displacement components in the deformed configuration are
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rapidly varying functions of the circunferential co-ordinates. In recent years much 

more of the work in shell analysis has been oriented toward computer based 

solutions. In such case simplicity of the governing equations is of less importance. 

As a consequence, interest in the Donnell equations has diminished.

The complete derivation for the buckling of circular rings and tubes under uniform 

external pressure and the buckling of a tube of finite length under uniform external 

pressure, torsion and tension is used as a starting point in some of the work 

presented here. The appropriate analysis is presented again in Appendix A. 1. The 

principal result from this analysis is the critical external pressure, for buckling of 

a circular ring is:

E (  h "
^cr - (2.5.1)4(1-

where R  is the mean radius of the ring, h is the wall thickness, E  is the Young’s 

modulus and v is the Poisson ratio of the wall material. This very well-known result 

demonstrates that the collapse pressure of such structure is proportional to the cubic 

ratio of the wall thickness to the mean radius. Another form of the above result is:

where I  is the second moment of cross-section area about its centroid. When written in 

this form, it is clear that the critical pressure of a long tube is directly proportional to 

the second moment of area of the wall and cubically to the inverse of the mean radius. 

Therefore, a multi-layered pipe, which implies a significant increase in this second 

moment of area, should as a first approximation, deliver a greater collapse pressure.

The pitfall in this first approximation is that the above solution was derived based on 

a thin wall (membrane theory) with the whole structural system behaving elastically 

thus the stresses induced through the walls during the axissymmetric pressure loading 

must remain below the yielding stress, <7 .̂ If the external pressure qy, at which

yielding in the extreme fibre begins is to be calculated, including an ovality wy, the 

following equation from Appendix A. 1 can be used:

2 —-  + (1 + 6mn)q^ 
m
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where, m = R jh , and n = w j R ,  where vvi is the maximum initial radial deviation 

from a circular form, R is the mean radius of the ring, h is the wall thickness, qy is the 

external pressure at which yielding begins, and o^  is the yielding stress.

These formulations give a good insight into the problem of the buckling of cylindrical 

shells. Among the main parameters that govern the buckling load is the initial ovality. 

Small variations of ovality leads to a very large drop in the collapse pressure as 

pointed out by Timoshenko /73/, figure 7-9 page 293.

The solution for tubes of finite length also presented in Appendix 2 uses the same 

basic assumptions! as elastic membrane theory. This solution was originally proposed 

by Flugge 1211, 1973, for the buckling of a cylinder with finite length subjected to 

uniform external pressure, axial load, and torsion. Several key points come out from 

this analysis. Finally, the external pressure capacity of the pipe increases considerably 

when it is subjected to axial tension. In addition, an increase in internal pressure does 

not perceptibly improve the axial load. For external pressure loads only, the 

formulation also demonstrates that for very long pipes, the solution converges 

asymptotically to the solution of rings, equation (2.5.2). In addition, when the pipe is 

shortened, (length smaller than 50 times the mean radius) the critical external pressure 

increases and the wave mode of failure would be greater than 2. Figures A.2.7 and 

A.2.8 from Flugge 1211 and reproduced in Appendix 2 and illustrate these tends.

The classic approach for multi-layered pipe with finite length was developed by 

Raville /65/, 19f 5.These results have the same general tend, see Appendix 4 section 

A.4.3. On the other hand, multi-layered pipes that incorporate an intermediate material 

need a methodology that brings in the interaction of the intermediate layer.

The basic work of Raville /63/, 1954, addresses the problem of a long sandwich pipe. 

Because of the relevance of this methodology^ Raville's derivation is also 

presented in Appendix 4. He derives the following relationship

_ Z { X- b l a f

' "  V  -  1 + W '  '

where and are respectively the Young’s modulus and Poisson ratio of the
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faces,/ i s  the thickness of the faces, a and b are respectively the mean radius of the 

outer and inner faces. The principal assumption of Raville is that the Young’s 

Modulus, and shear modulus, of the core are infinite.!This leads to the above 

simple relationship of equation (2.5.4). However, it should be noted that his work 

includes also the effects of finite and -  see Appendix 4.
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3. Stress analysis of multi-layered cylinder with internal pressure

3.1 Introduction

The objective of this part of thesis is to investigate the stress distribution inj multi­

layered long cylinders with an intermediate layer of a different material subjected to 

an axisymmetric loading due to internal pressure. Using axisymmetric loading on a 

cylinder under internal pressure considerably simplifies the resultant stress and strain 

analysis. In particular, the work compares the structural performance of a single pipe 

and an equivalent double walled pipe utilising the same weight of steel in terms of 

the von Mises stress per unit pressure difference between the inner and outer 

surfaces. This is done for a wide variation of pipe geometry and stiffness of the 

annular inner layer. Section 3 gives the methodology developed for this whereas 

the results are presented in section 6.

First, the single layer cylinder problem is reviewed. The solution is then extended for 

multi-layered cylinders by using deformation compatibility relationships between the 

layer interfaces. A computer program, using FORTRAN code, was then written to 

perform all the analyses presented here. The analytical solution has also been 

compared with results obtained from the finite element package called ABAQUS.

The main assumption employed in the analysis is that the multi-layered cylinder has 

inner and outer layers or faces made from a material of high Young’s Modulus such 

as steel with the intermediate layer or core made of a less stiff material. Thus the 

core is taken to have a Young’s Modulus Ec that is less than that of the faces Eg, The 

comparisons of internal stress are made between the multi-layered pipe and a single 

layer pipe using the same amount of material of high Young’s Modulus. It means 

that the material of the single layer is split into two thinner layers that will constitute 

the faces of the equivalent multi-layered pipe.

In considering the stresses on an element of the pipe wall, it is assumed that there are 

no axial forces on the pipe. There are, therefore, only two main stress components: 

the hoop or circumferential stress and the radial stress. However, to have a better 

representation of the actual stress state of the element, the von Mises criterion is , 

used. This can be written as
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^  Mises hoop ^  Radial ^  hoop ^  Radial ‘ (3.1.1)

Comparisons between the multi-layered pipe and an equivalent single walled pipe 

are made for a range of parameter ratios. The first of these is the ratio m, of the 

Young’s Modulus of the core material (Ec) to the high Young’s Modulus material 

(Es) then m = E j E ^ . The other parameter ratios used are the outside diameter to 

wall thickness ratio for the single layer pipe O D j t , the thickness ratio of the core to 

the inner face rf = c o j and position of the core relative to the inner and outer faces 

as described by ratio X ~  f \ h  ^od generic position in the wall thickness 

p  = . Figure 3.3.1 shows the pipe radius nomenclature, see also the I Table 3.11

Symbol Value

Inner face thickness / . b-a

Core thickness CO c-b

Outer face thickness f i d-c

Total thickness t d-a

Core thickness ratio 1 (c-b)l(b-a)

Core position X (b-a)l(d-a)

Radial position P (r-a)/(d-a)

Table 3.1.1 Ratios nomenclature for multi-layered pipe.

The comparisons are made considering variations on the Young’s modulus

relationship betweeithe materials used in the faces and the sandwiched materialsw =  E^ j E ^  , 

the diameter to thickness ratio for the single layer pipe O D j t , and the thickness ratio 

of the core to the faces rj and position of the core % .

The results are summarised graphically. The radial position r, along the wall of the 

single cylinder as well as for the composite cylinder was also normalised with the 

total wall thickness. Therefore, the parameter p is zero for the inner radius position 

and one for the outer radius position.

3.2. The single layer pipe

Consider a two dimensional element of a long, thick walled single layer cylinder of 

uniform material strength under internal pressure, as shown ini Figure 3.2.1. There are
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Hoop stress

Radial stress

Fig. 3.2.1 - Single walled pipe cross-section.

no axial forces or forces parallel to 

the cylinder axis. Therefore, no 

stresses act in that direction. The 

hoop stress Gh, will act on both 

radial surfaces of the element in the 

circumferential direction along 

with the radial stress ov. Since the 

weight of the element is neglected 

in the force system acting on the 

element both these stresses will 

vary with radial position, but are constant with angular position 6. This is a standard

thick cylinder analytical solution that can be written as

2_ a^Pi~b^p, (p,-p,)g^fc-
'  b ^ - a ^  ( b ^ - a ^ y ^  ’

_ a^p,-b^p, ( p , - p , ) a V  
b ^ - a ^  [ b ^ - a ^ y ^  '

(3.2.1)

where p\ and pe are respectively the internal and the external pressures, a and b are 

respectively the inner and the outer radius of the cylinder, and r is the generic radial 

position. Figure 3.2.1 illustrate this nomenclature. These results are well known as 

Lame’s equations, available in standard structural textbook such as Boresi, Schmidt 

and Sidebottom, 1932 (fifth edition 1993) - Advanced Mechanics of Materials, page 

440. Note that the sum of the stresses is always a constant. This is a consequence of 

the two dimensional nature of the loading. The deformation relation can also be 

written as

i - y ,
V - a -

r + 1+v,  Y p, - p .
y - a - r

(3.2.2)

Where, u is the radial strain, E and are respectively the Young’s Modulus and 

Poisson ratio of the cylinder material.

3.3. The multi-layered cylinder -  analytical model

Relationships for stresses and strains may be developed for the multi-layered 

cylinder in the same fashion as carried out above for the single layer cylinder. The 

geometry of such a cylinder can be defined by the inner face radius a, the outer face
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radius d, the intermediate layer having as inner radius b and outer radius c. The 

internal and external pressures will have the same nomenclature of pi and pe 

respectively. In this case, two more pressures need to be defined that will be acting 

on the two internal interfaces of the pipe. These are defined by p\ and p2 as shown in

Figure 3.3.1.

core
The expressions for the stresses 

along the radius are similar to the 

expressions of (3.2.1) as function 

of the internal and external radii 

and the pressures on the layer. The 

solution for the double walled 

cylinder is obtained by 

determining the pressure on the

Fig 3.3.1 M ulti-layered pipe cross-section. intermediate layer. These

pressures are obtained by using the strain compatibility relationships for the 

displacement of the cylinder surfaces at the boundaries of outer and inner layers and 

the intermediate layer.

Using <5, and ̂ 2 as the displacements of the cylinder surfaces of the intermediate 

layer at its inner and outer boundaries, at radius h and c respectively, three cylinders 

with the following geometry and pressures can be defined as described in Table

3.3.1 below:

C ylinder layer Y oung’s Inner O uter Inner Outer Inner O uter
modulus radius radius pressure pressure displacem ent displacem ent

1 inner layer Es a b P, P i u, u,
2 core layer Ec b c P i P2 s, 82
3 outer layer Es c d P2 Pe Ü2 u.

Table 3.3.1 N om enclature for m ulti-layered pipe.

Using, this nomenclature the compatibility equations can be determined. Note that 

the displacements at the boundaries of each layer are evaluated:

M, = 6 ; , ^2 -  ^2 • (3.3.1)

Combining the displacement given by equation (3.2.2) with compatibility equations

(3.3.1) gives:
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- a }

(b^ + c ^ )p i  - 2 c^P2

c : - 6 :

(c  ̂ +ûf )̂/7i -2d^p^

+ W

+ P2V,

m,

J_
m

(3.3.2)

where m is the ratio E j E ^  'defined above. This is a system of two equations and two 

unknown V ariab lesp i and p 2. Rearranging in matrix form gives:

2'b^ 'in

M  = b ^ - c ^  
a^+b^ b^+c^
b^-a^^ c^-b^ -m + mv, V,

c^+d^  b^+c^
d^-c^^ c^-b^ •'w+v, mv,

2 c^ m
b ^ - c ^

P =

M  ■ p = b

p -, 2'd^
P\

.Pi .
b =

2 4  =
(3.33)

p - M  '

These equations may be solved with simple FORTRAN computer program.

Based on this solution a comparison between the structural performance of the 

multi-layered pipe and the conventional single walled pipe subjected to internal 

pressure is carried out for a wide range of pipe geometry and stiffness of the 

intermediate material.

The objective is to evaluate the level of the stresses along the wall of the multi­

layered which has the same amount of steel as a single walled pipe subjected to 

the same internal pressure. This means that the conventional single walled pipe will 

have its wall split in two thinner walls and an intermediate material is placed into the 

annulus space. Obviously, the intermediate material being examined should have 

lower strength and thus cost in comparison with the skins.

The structural performance is measured as the ratio between the von Mises stresses 

reached in the radial direction (normalised by the wall thickness) in both pipes, 

i.e. the multi-layered pipe construction and the conventional single walled pipe.

The main presentation of the results and the discussion of these are in section 6.1. 

However, in general terms the comparison demonstrated lower level of stresses in
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the skins of the double walled pipe than that seen in the single walled pipe. It 

suggests that the multi-layered pipe configuration improves the structural 

performance of the pipe by withstanding the same amount of internal pressure and 

yet reducing the stress level in the skins.

3.4 ABAQUS Modelling

The finite element package ABAQUS /I /  version 5.5, 1995 was used to perform the 

internal pressure stress and strain analysis for ’ the validation of the analytical model 

described in the previous section.

The ABAQUS system includes a general purpose finite element program, an 

interactive pre-processor used to create models for ABAQUS and an interactive 

post-processing program which displays and output lists from restart and results files 

written by ABAQUS.

Since the ABAQUS analysis modules are batch programs, the objective is to 

assemble an input file which describes a problem so that ABAQUS can provide an 

analysis. Input files for complex simulations can be large, but can be managed 

without too much difficulty by using the convenience features built into the 

program’s input structure.

An input file for ABAQUS contains model data and history data. Model data define 

a finite element model, the element nodes, element properties, material definitiolis, 

and so on. History data define what happens to the model - the sequence of events or 

loading. The definition of a step includes the procedure type such as static analysis, 

the modelling of transients as well as control parameters for time integration or for 

the non-linear solution methodology, the loading, and output options.

First, the single walled cross-section was solved based on the well-know analytical 

solution for the stress and strain distribution along the radius of a single walled 

cross-section. After that a finite element model was prepared to perform the 

comparison with the analytical | results. The construction of the input file will be 

described later in this section. Figure 6.1.1 in JSection 6 I  illustrates a comparison 

between the results obtained jfrom the finite elem ent model and the analytical solution. jThis
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figure indicates excellent agreement as is to be expected.

The input file for ABAQUS follows a standard procedure. There are five blocks 

which define the problem to be solved by the program. The first is the node 

definition and generation; the second defines the element mesh or the way the nodes 

are connected to form the elements that will compose the whole finite element 

model. The third block is the material or materials definition, which | has to be 

linked with a set of elements. The fourth block defines the loading case and the 

boundary conditions. Finally, the fifth block establishes the form and variables that 

will be printed in the output file.

The selection of the element type is one of the key i decisions of a finite element 

problem. ABAQUS offers a huge range of element types. After considering the 

merits and drawbacks of very many of these, it was decided to perform this analysis 

using two types of elements -  the axisymmetric element CAX8H and the plane 

strain element CPE8H. The problem was solved with both element types and gave 

almost exactly the same results. However of these two, the axisymmetric element 

CAX8H was used to produce the results of several geometries because the nodes and 

element mesh for this element type is much easier to define.

Based on the input file of Listing number 3.2.6-A, the multi-layered ABAQUS 

model was built, solved and verified against the analytical model developed in 

section 3. In this file, it was necessary to define another material set to represent the 

different material properties of the core and a new element mesh to model core 

thickness as three layers. To perform analysis using the plane strain element, a 

FORTRAN code was written to generate the node mesh which was used later to 

form the elements and consequently the finite element model. This model could 

selectively be represented by half or a quarter of the cylinder. Using suitable 

boundary conditions, the symmetry of the half or quarter cylinderl is exploited to 

reduce both computer time and disk space. A simple FORTRAN code was produced 

for the mesh generation to calculate the cartesian co-ordinates of each node in a 

cylindrical form and write the results in a suitable format to be input directly in the 

ABAQUS input file. This code gives the node numbers with the comma 

separation added to comply with ABAQUS standard input format. The basic input
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data for this program are the inner and outer radius of each layer, the number of 

nodes in each layer, the generation angle and the total angle. The relation between 

the total angle and the generation angle will be the number of nodes in the 

circumferential direction. It used 10 degrees for generation angle and 180 degrees for 

the total angle. The number of elements in the thickness was fixed in 100. Figure

6.1.2 in section 6 presents a comparison between the results obtained with the input 

file for multi-layered cross-sections and the analytical model developed in section 3. 

Good agreement is demonstrated by the comparison.

The input file for the multi-layered analysis is described in detail below. The lines 

starting with an asterisk (*) denote a command line which demands a specific action 

from ABAQUS. The first block of the input file contains the information to define 

the finite element node mesh. The command * HEADING is reserved to input the 

title of the input file. The commands *NODE and *NGEN are used to define the co­

ordinates of the nodes. The command *NODE defines for each node number a co­

ordinate associated with it. The command *NGEN generates several nodes between 

two nodes already defined using equal distances between them. It is useful to use the 

*NSET command to give a name to a given node set.

• First block:

^HEADING
THICK CYLINDER - INTERNAL PRESSURE - COMPOSITE 
*RESTART,WRITE,OVERLAY 
*NODE 
1, 10.
201,20.

1001.10..0.05
1201.20..0.05
2001. 10..0.1 
2201,20.,0.1 
*NGEN,NSET=SIDE 
1,201
*NGEN
1001,1201
2001,2201

The second block defines the element mesh. The ^ELEMENT command defines the 

type of the element among those described in the element library of ABAQUS.
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There are several types and the selection of the element is the most important 

information to be input to the finite element system. The element type is directly 

related with the solution of the problem. For this analysis the axisymmetric element 

CAX8H. The reasons to use the axisymmetric element type CAX8H are two. First, 

the node mesh and element mesh can be easily defined without using a node mesh 

generator, ABAQUS has built in all necessary features to generate the axisymmetric 

mesh. Secondly, the results showed for the single walled cylinder with a mesh 

composed of axisymmetric elements CAX8H demonstrated a good agreement with 

the analytical solution.

In addition, the selection of the element type is a difficult task and only experienced 

engineers are able to do so. Therefore, this analysis was performed based on 

recommended and tested element type.

The command *ELGEN is used in the second block to generate the elements that 

will compose the structural model. This command has several features and 

properties to make the mesh generation more user friendly. The command *ELSET 

is similar to the command *NSET, although, it is used only to define a name for a 

set of elements rather than nodes.

• Second block:

*ELEMENT,TYPE=CAX8H
1,1,3,2003,2001,2,1003,2002,1001
*ELGEN
1, 100,2
*ELSET,ELSET=INNER
1
*ELSET,ELSET=OUTER
100
*ELSET,ELSET=STE,GENERATE
1,40
81,100
*ELSET,ELSET=COM,GENERATE
41,80

The third block is to define the material properties associated with element numbers. 

This block starts with the command * SOLID SECTION where the material name 

and the element set is defined. The next command is ^MATERIAL and ^ELASTIC
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which define the material elastic properties for a given element set. An isotropic 

material is assumed if nothing is specified. In this multi-layered analysis, two elastic 

materials sets have been defined to represent the material of the skins (STEEL) and 

the core(COMPOS). The analysis is applied only to the elastic regime of the 

materials.

• Third block:

*SOLID SECTION,MATERIAL=STEEL,ELSET=STE
*MATERIAL,NAME=STEEL
^ELASTIC
30.E6,.3
*SOLIDSECTION,MATERIAL=COMPOS,ELSET=COM
*MATERIAL,NAME=COMPOS
^ELASTIC
30.E4,.3

The fourth block is to impose the boundary conditions and the loading parameters. 

The command *BOUNDARY defines the constraints applied to the model based on a 

set of nodes. The constraints could be for displacement and rotation in any direction 

according to the three dimensional system of co-ordinates of the problem. The 

loading parameters start with the command *STEP which define a loading case. This 

problem uses only one loading case which is the internal pressure applied in the 

inner surface. The pressure used is 15,000 at the inner surface and zero at the outer 

surface. The command * STATIC defines a ramp to gradually build the load defined 

in the command *DLOAD.

• Fourth block:

^BOUNDARY
SIDE,2
*STEP,NLGEOM,INC=50
*STATIC
. 1, 1.
*DLOAD 
INNER,P4,15000 
OUTER,P2,0

The last block of commands is to define the output file. The finite element program 

ABAQUS allows several combinations of output. For this analysis, the output was 

prepared to output the radial and hoop stresses along the radius as well as the strain
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in the centroidal position of each node.

• Fifth block:

*PRINT,RESIDUAL=NO 
*NODE PRINT 
U
*EL PRINT,POSmON=NODES,SUMMARY=NO 
S
*ELFILE,POSITION=CENTROIDAL,SUMMARY=NO
S
*END STEP
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4. External pressure analysis

4.1 Overview of approach

4.1.1 Summary of techniques

This chapter is concerned with a comparative investigation of analytical methods 

for determining the collapse pressure of multi-layered cylindrical pipes. The work 

uses three analytical models. Two of these - the elastic foundation model and a 

classic elastic collapse model - are based on analyses developed by others but 

applied here for the range of parameters typical of the offshore application of multi­

layered pipes. The third analytical model is a further development of an elasto- 

plastic analysis proposed by Montague (1975). Montague used two dimensional 

Tresca and Mises criteria for his analysis of a structure with thin outer and inner 

shells. Because of the presence and importance of axial forces in offshore multi­

layer pipes, it is necessary to use a three dimensional von Mises criterion and also 

develop the analysis further to apply for thicker walled shells. This is done here and 

the results of the updated criterion and enhanced analysis are compared against 

Montague’s original experimental results.

The comparative investigation also includes finite element analysis using two and 

three dimensional analysis.

The three analytical models and the finite element approach are first summarised 

below:

(1) The Elastic Foundation Model

This model is based on the conventional theory for the buckling analysis of 

rings. It has been developed to apply to multi-layered pipes by considering each 

layer of the pipe as a stand alone layer linked to the other two layers by a set of 

springs. The characteristics of the boundaries and | their interactions are not 

considered. The elastic collapse pressure and the wave failure modes are then 

evaluated for each layer.

(2) A Classic Elastic Analysis for Collapse

This classic elastic method is a further development of an approach originally 

reported by Raville (1954) in a set of papers. The main assumption of this
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analysis is that the multi-layered pipe wall is continuous although shear stresses 

along the layers are considered. The boundaries between the layers are treated as 

a continuous link.

(3) An Elastic-Plastic Collapse Model

This analytical model is substantially developed further based partly on the ideas 

originally proposed by Montague (1975). This work examined submerged 

pressure vessels with very thin faces and based collapse on a two dimensional 

Tresca failure criteria only. The further development of the analysis described in 

this section considers the onset of plastic stresses in all layers of the multi­

layered pipe with the analytical model has been extended further to apply to 

thicker faces and uses a failure criterion based on three dimensional von Mises 

stresses. Thus, as also explained above, axial pressures can also be taken into 

account.

(4) Finite Element Analysis

Finally, the ultimate model in terms of accuracy , finite element analysis 

(FEA) was also used. The ABAQUS FF A package was utilised with two 

approaches. The first used a two dimensional model assuming that axial 

deformations did not influence the stress state of each element. This is a 

representative model for very long lengths of pipe. The second approach used 

a three dimensional model to ensure that the collapse pressure evaluated was 

the best estimate available.

This section refers to the existing analytical methods that are used for this 

comparative evolution of collapse pressures and also presents the development of 

the extended methods.

The results of the comparative evaluation are presented at a later stage in section 

6.2 .

4.1.2 Basic Properties of Sandwich Structures

This subsection describes two fundamental properties of sandwich structure that 

apply to multi-layered pipes. The issues raised arose from the background research
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into the mechanics of sandwich structures. It was discovered that work on the 

mechanics of sandwich structures has not been sufficiently widely reported in the 

usual sources of research literature. Plantema (1966) and Allen (1969) give 

particularly good and complete overviews of this field.

The definition of sandwich structure is a three-layer consisting of two skins or 

faces of dense and high-strength material separated by a thick intermediate 

layer of low density material which have a much lower Young’s Modulus and 

tensile strength. The intermediate material layer is called the core of the 

sandwich. Obviously, the bending stiffness of this construction is greater than 

that of a single construction of the same total weight made of the same material 

as the faces.

The core has to guarantee the following important characteristics. It has to 

possess a sufficient stiffness in the direction perpendicular to the skins in order to 

ensure that they remain parallel and at a fixed distance from each other. It should 

be stiff enough in shear to avoid the structure i behaving as two independent beams 

under bending loads. Moreover, the core must also keep the faces flat avoiding 

the possibility of the faces locally buckling in their own pla/ie or wrinkling under 

the influence of compressive stress. In addition, it is also important that the 

adhesive between the faces and the core does not allow substantial relative 

movements between the contact surface.

Aeroplane and missile structures were the main application during the early 

development of sandwich type construction. They employ sandwiches with metal 

faces and honeycomb and corrugated cores. Building panels are used as a semi 

structural application and can be designed to deliver a better insulation for sound 

and heat. The building panels, like aircraft panels, should be light in weight but, 

unlike aircraft panels, they must be cheap. In the offshore industry the sandwich 

structure is still notjroutinelyutilised. However, considering the new demands for 

deep water applications where weight and collapse resistance play an important role 

such sandwich structures have an obvious future.

This subsection uses two examples below to illustrate two key properties of
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CO

sandwich structures which affects the structural strength and elastic collapse of 

multi-layered pipes presented in the remaining sections of this chapter.

The first of these is concerned with the 

role of the core material in keeping the 

faces a set distance apart.

An element of a typical cross-section of a 

sandwich construction is presen 1 in 

Figure 4.1.1. The faces are taken with equal 

thickness,/, and the core thickness is co. 

The sandwich section is taken of unit 

width, which is, no restriction.

Considering a hinged beam with such OL 

cross-section, the stresses and strain are determined, by the use of ordinary theory 

of bending. The well-know relationship between the bending moment M  and the 

curvature 1/R is M = -  El jR  . Using the notation for flexural rigidity D = E l , the 

flexural rigidity of a sandwich beam is

Fig. 4.1.1 E lem ent o f a sandw ich beam.

+ E. CO
(4.1.1)

6  2  '  12 

where Ê  and Ê  are the Young’s Modulus of the faces and the core respectively. On 

the right hand side of this equation, the first two terms represent the stiffness of the 

faces and the third the stiffness of the core. In practical sandwich structures the 

second term is dominant. The first term amounts to less than 1% of the second term 

when CO I  f  > 4.77 . The third term would be less than 1 % of the second term when 

E jE ^  > 54 , provided coj f  > 4.77 .

The second example analysis below is used to illustrate the role of shear in the 

sandwich core material in maintaining the structural integrity of the sandwich strut 

column in bending and buckling.

In literaturebookssuch as Allen /2/, 1969 and Plantema /58/, 1966 treat total 

deflection of a sandwich strut column, w, as a sum of two partial deflections -  those 

due to bending Wb and due to shear Ws.
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The buckling of a sandwich strut column can be determined using this principle. 

Assuming a flexural rigidity D, and a length L. The Euler load, ,

represents the smallest thrust at which the strut column will reach the neutral 

equilibrium or becomes unstable after being given some lateral displacement. In the 

case of sandwich strut column, shear deformations occur in the core. These reduce 

the stiffness of the strut column and the critical load would be less than the Euler 

load defined above.

Consider a sandwich strut column, shown in Figure 4.1.2. The flexural stiffness is 

shown in equation (4.1.1). Neglecting the first and the third term the bending rigidity

of the sandwich strut column becomes: D = E j { c o  + f f  / l . When the thrust P

reaches the critical axial
P load two superimposed 

displacements, Wb -  the

ordinary bending 

^  displacement and, Ws -  the

additional displacement

Fig. 4 .1.2 Hinged sandw ich strut colum n associated with the shear

deformation of the core, occur. At a typical section x along the strut column, the 

bending moment is

M = f  (%  + w ,) = - D w l . (4.1.2)
The thrust P at the section jc is P{w[ + w ') and is acting perpendicular to the mean

axis of the sandwich strut column. This represents the shear force that is related to 

the shear deflection by

(4.1.3)

where S is the shear stiffness is given by (see Allen 111, 1969, page 17 - equation 

(2.15a))

= (4.1.4)
W ,  CO

where Q is the normal shear force on the section, and G is the core material shear 

rigidity. The term Ws may be eliminated from (4.1.2) after differentiating once to 

yield a differential equation in Wb:
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w ^ + k ^ w l= 0  , (4.1.5)

where =
D ( l - P / S ) '

The solution is
= C; sin + Q  cos + Q . (4.1.6)

The total deflection, Wb+Ws may be obtained from equation (4.1.2) by differentiating

(4.1.6) twice and inserting the result in the right hand side to yield:

D (  ^  2 . _ 2 ) C,sinfl,.x-C2C0Sfl,x ,. ,
sm ox-C jfl, cosa,%)=—----j— ---------— . (4.1.7)

The boundary conditions are w=0 at %=0. This gives C2 = 0. The condition w=0 at 

x=L requires that C\ vanishes, in this case the strut column remains straight. For the 

stability criterion where C\ is non-zero, the strut column buckles since sin fcc = 0 . 

The buckling loads therefore correspond to the values ^ = « • ;r/L  and can be shown 

to be

^  "  1 + n V  S ^  = r i= l,2 , - ,  (4.1.8)

where s = Û S / k ^D . Considering the two extreme cases when the shear stiffness is 

infinite and when the bending stiffness is infinite, respectively, it is found from 

equation (4.1.8) that the smallest buckling loads are

for (4.1.9)

Ps = S , for O - 4O0. (4.1.10)

P e  is the Euler load, and so for infinite bending stiffness, the buckling load is 

equal to the shear stiffness. Equation (4.1.8) can now be written in an alternative 

form:

(4.1.11)

The above basic analysis, also given in the referred literature, gives an overview 

of the structural behaviour of multi-layered constructions. It illustrates how 

important is the core material role in the buckling resistance. Therefore, the core 

material should perform elastically and has to be at the same time strong enough in 

shear to keep the faces apart and avoid local wrinkling. For hydrostatic pressure 

loading, the deformation would be axisymmetric and will induce compressive
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stresses on the component layers. In that sense, depending on the application, the 

core could be of soft (plastic) or hard (ceramic) material. The latter would 

significantly increase the buckling pressure. On the other hand, it will impose 

restrictions on the bending characteristics of the pipe. The plastic material, would 

not significantly improve the buckling resistance, and would need special attention 

for shear and face wrinkling.

The aeronautics industry has solved the wrinkling problem using metallic 

honeycomb cores. This solution could also be applied in offshore pipes. The 

intermediate spaces of the metallic honeycomb can be filled with expanded plastic 

with good insulation characteristics and the honeycomb structure would guarantee 

the sandwich structural performance.

The books of Allen 111, 1969 and Plantema /58/, 1966 give a complete derivation 

and discussion of the bending and buckling of sandwich strut beams. It should be 

pointed out that the behaviour and response of sandwich construction is 

fundamentally based on the mechanics characteristics of the core material.
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q = - \ ) ~  « = 2,3,4,..., (4.2.1)

4.2 The elastic foundation model

4.2.1 Introduction

The principle of rings on elastic foundation to model distributed reactions loads is 

well established in engineering stress analysis. This principle can be used to derive 

a simple mathematical model for the elastic buckling of each layer of a multi­

layered pipe.

4.2.2 Circular ring buckling under external fluid pressure

A modem version of the classical circular ring buckling problem is presented by 

Brush and Almroth, 1975. Their derivation is repeated in Appendix 3 to give the 

reader a more complete development of the theory for its application to multi­

layered pipes. The fundamental equation arising from this work [equation (A.3.37)] 

is repeated below. The collapse pressure q is given by

E
a

where « is the wave mode, E  is the Young’s modulus of the wall material, I  is the 

second moment of the area of the ring wall about an axis through the mean radius, 

and a is the mean radius of the ring.

4.2.3 Circular ring on elastic foundation

The solution given in (4.2.1) can be extended to include the stabilising influence of 

an elastic foundation. The ring is considered completely filled with a soft elastic 

medium that is treated as an infinite set of uncoupled radial springs. For such a 

foundation the pressure qf, per unit length, between ring and foundation is given by

q ^ = - k f W ,  (4.2.1)

where kf, is a known constant representing the foundation elasticity modulus. This 

solution is also developed in Appendix 3 [see equation (A.3.49)]. The expression 

derived from this for the collapse pressure qcr is:

^^^=( «^—l)— « = 2,3,4,... (4.2.2)
^  («  ̂- i j

For = 0 , equation (4.2.2) reduces to equation (4.2.1). For given values of El, kf,
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and a, the value of n may be determined by trial i  and error to give the smallest q„ ,

[The result from equation (4.2.2) will be explored in the next section and used as the 

basis of the elastic foundation multi-layered pipe collapse model.

4.2.4 Elastic layer approach for multi-layered pipe

This analysis has been developed by the author by following the approach 

described in the last two sections.

A multi-layered pipe is taken to be composed of three elastic layers. Using this 

approach, a critical pressure for each layer can be found provided the other layers 

deform radially only and elastically. Therefore, according tc|the material and 

geometric characteristics of each layer it will act as an infinite set of uncoupled 

radial springs with specific elastic modulus.

For determination of the radial elastic modulus of the layer consider the multi­

layered pipe of Figure 4.2.1 (a). Using the nomenclature given. Figure 4.2.1 (b), (c), 

and (d) show the elastic foundation model. The radial displacement of the first or 

inner layer m, as a function of the radial position is given by

M, (r )= C ,r  + — , b > r > a .  (4.2.3)
r

where r is the radial position and a, b are the inner and outer radius of the inner 

layer. The constants Ci and C2 are functions of the material, geometric dimensions, 

and radial pressures applied on the layer boundaries. E\ and v, are the Young’s 

modulus and the Poisson ratio respectively of the inner layer material. The radial 

pressures pi and p\ are the inner pipe pressure and the radial contact pressure on the 

boundary between the inner and the intermediate layers. Thus

=
1 -v , ra V , - è V ,  1 C P^-P i  ]

I J . (4.2.4)
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In order to find the elastic modulus K\ equation (4.2.3) is re-written to isolate the 

contact pressure for r = b . This gives

Pi ■u^{b)+F^{p.). (4.2.5)

Where K\ is the elastic foundation modulus of the inner layer and F\ is a function 

only of the inner pressure. Thus

E,{b^-a^)  2a V ,
è [ a ^ ( l + V | ) + è ^ ( l - v , ) ]  ' « ‘ 0 + V | ) + è ^ ( l - v , )

In the same fashion, the radial displacement in the second or intermediate layer 

«2 and in the third or outer layer m, can be written as a function of the radial 

position

C

(4.2.6)

(4.2.7)

b p , - c  /?2 

V y

1 - h V .

u^{r)=C^r + — , d > r > c ,  
r

P1- P 2

(4.2.8)

(a)

(c)

(b)

Fig. 4.2.1 Elastic foundation model. 
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£ 3 J [ d ^ - c ^ j

Q  -

According to jFigure 4.2.1, a is the pipe inner radius, b and c are respectively the 

outer radius of the inner layer or the inner radius of the intermediate layer and the 

outer radius of the intermediate layer or the inner radius of the outer layer, d  is the 

outer radius of the pipe; p\ and p 2 are respectively the radial contact pressures 

between the intermediate layer and the inner layer and the intermediate layer and 

the outer layer; p\ is the inner pressure of the pipe and pe is the external pressure on 

the pipe. Equations (4.2.7) and (4.2.8) may also be written in the same fashion:

p, =AT23 (4.2.9)

P2 =Ky^’U^{c)+F^^{pX (4.2.10)

Pi =̂ 3 '« 3(c )+ ^ 3( p J -  (4.2.11)

Where K23, is the elastic foundation modulus of the combination of the intermediate 

and the outer layers and F23 is a function only of the external pressure; K \2 is the 

elastic foundation modulus of the combination of the inner and intermediate layers, 

and F i2 is a function only of internal pressure. However, equations (4.2.9) and

(4.2.10) have respectively the terms p 2 andp\, therefore, these terms have to be 

substituted by functions. In the first case {p\,p^  and in the latter (p2, Fe)- Using 

compatibility relations, see section 3:
2.

2 a p. 2c mp2

Fi = b ^ - a ^  c ' - F
a^+b^ b^+c^

+
(4.2.12)

2 m-Vj  -\-mV2

P i  —

b ^ —a^ —b

2Z?Vi . '^d^Pe 1
c ' - F  d ^ - c

F + c "  c^+d^  
+ ■

1 1
 Vo +v,  —

(4.2.13)

c - b  d - c ^  m m
Assuming the following change of variables the elastic foundation modulus may be

written as follow.

^23 —

A = a ^ - b \  B = F - c \  C = F + c "  

D = c ^ + d \  E = c ^ - d \

[{m-v^m+V2m)E + D]p + mED + mÊ

(4.2.14)

[(wr —WÎV2 “ V3+V2V3 + (1 —V2)f)] B —V^E^ + ( \—V2 ^)DE — D 2 b
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^23 -

K̂ 2 —

F ,2  =

K , =

[(/M—/7IV2 "Vj+V2V3)e + (l — V2)^] B —V + { l —v^'jDE —

______________{[(mV2 -1  - V ,)fi- mC]A- B C - B ^ } ______________ ^

[(jTi —mV2 +V2 "*"̂ 1̂2) ^ 0 " ^ ^ 1 X'] A+v^B^ 2)CB~C^

_(g + cX2A + g  + C)p,___________________________________

[ipi—MIV2 '*‘^ 2"*"̂ 1̂2) ^ X' ]  A+Vjf i^+( l+V2X'^“ ^^

mE
v Æ - D  c

&  F ( £ - P ) p
V  t^E — D

(4.2.15)

Using these results for specific material and geometric parameters the buckling 

pressure and the buckling mode may be determined based on an equation similar to 

(4.2.2). This is done here using the following notation, q \2 is the buckling load and 

«12 is the buckling mode of the outer layer with the inner and the intermediate 

layers acting as an elastic foundation. In the same way, 2̂3 and «23 are respectively 

the buckling load and buckling mode for the inner layer with the intermediate and 

outer layers acting as an elastic foundation. Finally, q n  and «13 are respectively the 

buckling load and buckling mode of the intermediate layer assuming that the outer 

and inner layers act as elastic foundations (see Figure 4.2.5 for reference). Then

^1;

2̂3

1̂:

= («12^-l)-

= («23'‘ - l ) -

=  (« 13' ' - O '

£■3/3 1 K.

Ell, K 23

£ 3/3
+ • K,

V 2 y 

b + c

« = 2,3,4,... (4.2.16)

[(è +  c ) / 2 f  (n,3^ - l )  2  ^

Based on equations (4.2.16) the three buckling loads and their respective buckling 

modes may be found by incrementing the values of the buckling mode «=2,3,4,... 

and minimising the value of q. The solutions of these equations, depending on the 

parameters of the multi-layered pipe, may differ. However, a good design should 

optimise layer performance to obtain a better buckling resistance.

It should be pointed out that here this model assumes completely elastic behaviour 

of all layers immediately before buckling. In addition, there is no consideration of
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the nature and behaviour of the boundaries, which are fully connected during the 

whole axisymmetric deformation. This may be too unrepresentative an assumption. 

However, for a range of multi-layered pipe geometries, the method can give a good 

indication of the elastic collapse load. Also, this approach may yield a means of 

optimising the thickness of each layer of the multi-layered pipe provided the layer 

thicknesses were chosen to have similar collapse pressures to each other. Based on 

this model, when the external pressure reaches the collapse load, all layers would 

fail simultaneously rather than individually.
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4.3 Combined buckling of multi-layered cylinders

4.3.1 Introduction.

The buckling model presented in this section was originally presented by Raville, 

1954 in a series of papers. Initially, some aspects of Raville’s work are reproduced 

here and then used as a basis for a method to predict the collapse pressure of multi­

layered pipes. The complete review of Raville’s papers is included in Appendix 

A.3.

There are not many works published in the literature related tô  bending and collapse 

of sandwich shell structures that possess cores rigid enough to deliver a 

significant contribution to the bending stiffness of the structure. The complexity of 

such a problem is still under researched. There are the particular problem of 

sandwich shell structures with an anti-plane core, one which take into account only 

the stiffness in the cross-section plane in which the shear stress normal to the faces 

throughout the depth of the core is assumed constant. Such shells differ from 

ordinary homogeneous plates because the bending deformations are enhanced by the 

addition of a non-zero shear strain in the core and of direct strains in the core, 

perpendicular to the faces.These shear strains and the direct strains in the core are 

directly related ' to i the possibility of wrinkling or instability of the faces in its 

own plane.

The problem of sandwich shell structures has been addressed in the literature by 

two methods. In the first method equations are established to define the equilibrium 

of the separate faces and of the core to prescribe the necessary continuity between 

them. The result is a set of differential equations that are solved in particular cases 

for the transverse deformations of the shell. In the second method, the problem is 

divided into two separate parts which may be called the bending problem and the 

wrinkling problem. In the bending problem,it is assumed that the core is anti-plane 

and also infinitely stiff in the direction perpendicular to the faces. This excludes the 

possibility of wrinkling instability in the faces, but it allows the evaluation of the 

effect of core shear deformation on the deflections and stresses in the shell 

structure. In the wrinkling problen^the core elastic properties are considered but 

the task is simplified by permitting the mean planes of the faces to deflect in the
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longitudinal direction only, not in their own planes. Therefore, overall bending of 

the shell is not considered, but wrinkling and local distortion under concentrated 

load can be analysed.

4.3.2 A long cylinder under uniform fluid pressure.

Consider a multi-layered cylinder with thin, isotropic walls of stiff material 

separated by an orthotropic core of weak material. It means that the bending and 

shear in the walls or faces may be neglected, and the only stress components 

present in the core are the normal stresses on surfaces parallel to the faces and the 

transverse shear stress. The solution is not limited with respect to core thickness, 

since elastic theory is used. The result based on the assumption of membrane 

theory for the faces is repeated below (see Appendix 4 section A.4.1).

+

k { \ - k }

e A - v })

M / a y
{bla f  

^l  + bja ^

V

LV
2G

+ 2
re A {b/a f

4 E J b/a yJ

InA
a

p _ m - b l a f
{bja)

 K
a

1 +  -  
a

+A-K{\~bla)Ÿÿ^--\^ + A-bla)

V

LV2G
- 1

re A

bja 

(b la f
+ e A A )

4 E , f
\ + bla 

bja yj

1 ( l - 6 /a y
4 bja

= 0 . (4.3.1)

where p  is the critical external uniform pressure, and G^q are respectively the

Young’s modulus and the shear modulus of the core material, and are

respectively the Young’s modulus and the Poisson ratio of the faces m aterial,/is 

the thickness of the faces, a and b are respectively the mean radius of outer and 

inner faces, and x: is a numeric factor given by:

1
K  =

1 +  -
b ^ / / ,  b lo g -  

aa E^a

Equation (4.3.1) yields two positive roots for p  being largely separated one from 

the other. The lower root corresponds to the critical pressure p^- Consequently, 

can be obtained with good accuracy if the terms containing p^ are neglected.
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Examining results from equation (4.3.1) for certain limiting cases| demonstrates 

that, if either E^ov G^q is set to zero the critical pressure becomes also equal to

zero. This is to be expected in view of the assumption of membrane faces. On the 

other hand, if either or are taken to be infinite, equation (4.3.1) becomes

The value of Per obtained from (4.3.2) should be compared to the value obtained 

from the formula for the critical pressure on a long homogeneous cylinder if the 

second moment of area used is equal to the second moment of area of the spaced 

faces of the sandwich cylinder. The formula for the critical pressure on a long 

homogeneous thin cylinder is

(4.3.3)

If the mean radius, R is taken equal to the mean radius of the sandwich cylinder,

P  = (a + 6 )/2 , and I  is made equal to the second moment of area of the spaced

multi-layered cylinder faces, /  = f ( a - b Y / 2 , equation (4.3.2) may be written as

Comparison of equations (4.3.2) and (4.3.41) shows that they would be equal if both 

denominators of the right-hand sides are equal:

(\ + b/a)
1 + — ^----- , when 6/a = 1. (4.3.5)

For thin cylinders the ratio b/a « 1. As this ratio decreases from a value of 1, as 

can be seen in Figure, 4.3.5, equation (4.3.2) become less accurate since it is 

derived on the basis of it being a thin cylinder with the pressure applied on the 

middle surface and thus fails to represent a thick cylinder with pressure applied 

on the outer surface only.
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The solution presented by Raville 

/63/, 1954 is accurate for multi­

layered cylinders with materials and 

dimensions |in accordance with the l:asic 

assumptions applicable. The core 

assumptions are sufficiently 

representative of a typical 

honeycomb sandwich construction.

The range of applicability of this 

solution could be increased if the 

effect of the thickness of the faces onFig. 4 .3 .1  C om parison  betw een  (4 .3 .2) and (4 .3 .4) 

the overall stiffness of the cylinder were considered in the stability analysis. This

could be performed by the use of shell theory rather than membrane theory 

with regard to the faces. Raville^next work /64/, 1955 has also addressed this latter 

problem.

4.3.3 Buckling of multi-layered cylinder with face stiffnesses

The last section refers to a long cylinder with thin faces where the membrane 

theory has been employed and a simplified solution was obtained with faces of 

equal thickness. Raville /64/, 1955 issued a supplementary development of his 

previous work to present a solution for the stresses and critical pressure that apply 

to sandwich cylinders having moderately thick faces of unequal thickness. In this 

case, bending moment and transverse shear in the individual faces were considered. 

It was assumed, as before, that buckling takes place at stresses below the elastic 

limit of the sandwich materials.

The faces are assumed to be homogeneous and isotropic and are analysed on the 

basis of shell theory rather than membrane theory.

The solution is further described according to Raville 764/ in Appendix 4 section 

A.4.2. However, the results are summarised below.
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centroid

Fig. 4 .3 .2  D im ensions o f the cross-section 
o f a sandw ich with faces o f unequal 

thickness.

In his work Raville /64/, 1955 evaluated the 

collapse pressure based on a polynomial, 

which results from an expansion of the 

determinant of a fourth order matrix, where 

the critical pressure was a function of Ycr ’ 

see Appendix 4. Therefore, the lower root 

of corresponds to the critical load on 

the cylinder. The critical load is

(4.3.6)

where E/ and are respectively the

Young’s Modulus and the Poisson ratio of the skins, a and/i are respectively the 

radius of the mean surface and the thickness of the outer skin, ŷ  ̂is a numerical 

factor that corresponds to the critical pressure in the solution of the determinant 

of the characteristic matrix.

A simpler expression for this determinant is obtained if the modulus of elasticity of 

the core in the radial direction is assumed to be infinite. Under this assumption, the 

value of 7 ,., may be written as:

1 + I f ' -V a ;

2

4 -

J i  “ j « 7 2  J

(1+'/>, ) t ^ + (1+ ) - + « V ( i + 0 , )(i+ )
. / 2  ^

£//.
where y/ =

1-
f2 (4.3.7)

2Ĝ gh(\ - v j  j ’ I2û" \2b‘

This equation with n=2, yields values of 7 ^̂ within 3% of the values obtained from 

the whole expansion of the determinant for normal sandwich constructions. For 

cylinders having very thin faces (membrane faces assumption) of equal thickness, 

the values of 0, and 0 , are assumed to be zero, and for n=2, the above equation 

reduces to
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y„ = ------------T -■   ^  • (4.3.8)

The value of critical load is then determined from the definition (4.3.6). Equation

(4.3.8) can be used as a good approximation to the critical load on cylinders with 

membrane faces.

4.3.4 Buckling of multi-layered cylinder of finite length

The theoretical analysis of the buckling of a circular cylinder o f , multi-layer 

construction subjected to fluid pressure with finite length is reviewed in Appendix 

A.4.3. This work was based on the previous work of Raville (1955) /63/, 

and Norris and Zahn (1963) /54/.

The solution obtained is based on the assumption that the multi-layered cylinder 

elements are composed of isotropic, membrane faces and an orthotropic core. The 

mathematical solution of the problem , which is in the form a characteristic 

determinant of sixth order, is applicable to multi-layered cylinders of any length 

and of any core thickness. The core is considered to have such low load carrying 

capacity in the tangential and longitudinal directions as compared to the faces that 

the normal stress in the core in these directions and the shear in the core planes 

perpendicular to the faces and in these directions may be neglected. This 

assumption is likely to represent the annular cores of most practical multi-layered 

pipe construction. The action of the core and faces is related by the assumption that 

their displacements are equal at the interfaces between the core and faces. It means 

that the pipe wall is considered to buckle and behaves as an elastic continuum.

The solution is obtained solving the matrix denoted by N  [see Appendix 4 section 

A.4.3]. The lowest negative value of a  for which this determinant equals zero is 

proportional to the critical pressure on the sandwich cylinder; this value of a  will 

be referred to as . After this value is found, the value of the critical pressure is 

obtained from the definition as:
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^cr ~
g / /

a ( l - v ; )
a . (4.3.9)

Norris and Zahn /54/, 1963 presented a paper referred to as FPL-07 which contains 

curves and I formulae for calculation of the critical external pressure of finite length, 

circular cylindrical shells with sandwich walls. The skins are isotropic and their 

individual stiffness is not taken into account. The core is orthotropic, i.e. only 

normal stresses perpendicular to the faces and shear stresses in the cross-section 

plane are taken into account.This work is based on the solution of equation (51) on 

page 23 of the Raville’s report 1844-B /65/, 1955 for buckling coefficient. The 

determinant of this equation was simplified by assuming that transverse Young’s 

Modulus of the core {Ec) was infinite. Their paper includes a change in the variables 

and gives the following formula for collapse pressure:

2 2 / /
Qcr = k . (4.3.10)

k = V

3 2 „ /
-f- —  Va n'^ + -

9 \ 3J

- 1 )

y

1
3

l - i - 4 V a
V

where, L  is the cylinder length, h is the distance between the skins mean surfaces, 

r is the mean radius of the sandwich cylinder, d  is the thickness of the sandwich,

7 /4 r  2/ i
are numerical

factors, and the Poisson ratio material of the faces, is assumed to be equal to 

1/3.

This approach allows a quick assessment of the critical external pressure and was 

used to generate the curves, included in section 6 ^ , for comparison with other 

methods.

79



4.4 Buckling of multi-layered cylinder using an elastic plastic approach

4.4.1 Introduction

The work by Montague /47/, /48/, and 749/ has shown through experimental results 

that a double-skinned composite circular cylindrical shell under external pressure 

may have the buckling pressure predicted based on elastic plastic theory. This work 

assumes that the multi-layered construction has two thin skins and the core is 

isotropic. Moreover, Montague concludes that the construction reduces the 

sensitivity to initial imperfections because the wall has greater resistance to the 

formation of circumferential lobes. In addition, the elastic instability pressure of 

the shell is correspondingly increased. Because both elastic instability and 

instability following local yielding are unlikely, the failure of the shell will be due 

to material strength failure. Unlike instability, material failure is highly predictable.

In Montague’s 7477, 1975 work the collapse consists of a totally elastic stage which 

ends when the steel skins reach a yield stress condition in the circumferential 

direction. This occurs approximately at the steel boiler pressure, i.e. at the pressure 

which would cause circumferential membrane yielding if the shell wall of the two 

skins combined into a single thickness. The shell then proceeds to withstand 

increased external pressure with a reduced radial stiffness until failure eventually 

takes place when the core material reaches a yield or ultimate stress condition. 

Because the core is more flexible, it will withstand high strains before this happens.

The theory proposed by Montague has been extended and modified here to cope 

with offshore multi-layered pipes. The assumption of thin wall is removed and the 

method extended so as to be applicable to a large range of multi-layered pipe sizes. 

In addition, the boundary conditions have been generalised to allow the input of a 

generic axial stress. Moreover, the bucking or collapse has been obtained from a 

three dimensional von Mises failure criterion rather than two dimensional Tresca as 

used by Montague.

The method predicts the buckling or collapse pressure assuming that the pipe will 

fail after all its layers have reached the plastic condition. For a range of large wall 

thicknesses, this approach always gives a smaller buckling load than that predicted
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by elastic models. It is often mentioned in the literature as the lower bound 

buckling value. A comparison of results using this method is presented in section 

6 .

4.4.2 Elastic plastic model

Consider a multi-layered pipe as shown in Figure 4.4.1. The inner and outer layers 

are made of a high strength material like steel. The core or intermediate layer is 

made of an isotropic material. The main stress and strain relationships for the 

system are derived here for three stress/strain states - firstly when all three layers 

behave elastically and secondly when the inner or outer layer reach the yield stress 

but the core remains elastic. Finally, both inner and outer layer in the yielding 

condition and the core remaining elastic are considered.

The auxiliary relations from 

pipe geometry are:
I I fa c e s

I I core

Fig. 4.4.1 M ulti-layered pipe cross-section

a,

«2 =c^ - b ^  

a,

a* = 6 = - a :
a^ =  V.. - m v .

(4.4.1)

The multi-layered pipe 

showed in Figure 4.4.1 has 

three layers. The faces comprise the first or inner layer and the second or outer 

layer. They are made of the same material, with Young’s modulus and Poisson 

ratio v^.. The core is made of a different material with Young’s modulus Ec and

Poisson ratio v ,̂. The nomenclature for radii, stresses and pressures are presented 

below:
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Layer Position Radius Hoop
stress

Radial
stress

Axial
stress

Pressure

layer 
or skin

inner surface a ĥli (Tr„ Pi
outer surface b ĥ\o (TrW Pi

Core inner surface b ĥci (Trc, Pi
outer surface c ĥco P2

2"  ̂layer 
or skin

inner surface c ^hli <̂r2i P2
outer surface d ^hlo <̂r2o <̂x2 Pe

Table 4.4.1 Multi-layered pipe stress nomenclature.

For all layers in the elastic regime the constitutive equations (Lamé equations) can

be written to supply the stresses in radial and circumferential directions. The axial

stresses are taken to be constant through the thickness of each layer. The hoop

stresses (in the circumferential direction) will have the subscript h and radial

stresses will have the subscript r. A radial generic position point will be denoted by

r. It is obvious that the radial stresses acting on the surfaces of each layer are equal

to the negative value of the correspondent pressure. For the first layer the stresses

are:

_ a ^ p , - b ^ p ,  (p,
O ,1 — -------;------- ;-------r

y - a ‘

b > r > a .

Stresses in the first layer evaluated at the outer surface, r = b are: 

_  ~{b^ +^^)pi
^h\o - ^r\o=-Pl

Stresses in first layer evaluated at the inner surface, r = a are:

_ {b̂  + a^)p.-2b^p^

(4.4.2)

(4.4.3)

Constitutive equations for the second layer or outer layer are:

{ p , - p ^ Y d

(4.4.4)

hi d^-C ^

d > r> c .

c^p ^ - d ' ^p ,  I { p , - p ^ Y d ‘
d - c ‘

Stresses in second layer evaluated at the inner surface, r = c are:

_ (d'^+c^)p^-2d'^p^
^hii - d ^ - c ' rli P i

(4.4.5)

(4.4.6)
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Stresses in second layer evaluated at the outer surface, r = d  are: 

_  2 c ^ - ^ c ^ ) p e
hlo ^r2o -  ~ Pe  •

Constitutive equations for the core or intermediate layer are:

_ b̂ p, -ĉ P2 jp2-p,)t>̂ c
c ^ - b ^  { c ^ - b ^ ) r ^

(4.4.7)

-
b^Pl~C^P2 _^_^2-P,y>^C-

c ^ - b -

c > r > b .

Stresses in core evaluated at the inner surface, r = b are: 

(c^ +b^)p^ —2c^P2
^

Stresses in core evaluated at the outer surface, r = c are: 

_  '^b^Px -  (c  ̂+b^)pi
^hfo - <̂ rfo -  ~ P l

(4.4.8)

(4.4.9)

(4.4.10)

Provided that geometry and external pressure are known and the internal pressure 

is assumed to be zero stress equations show two unknowns p\ and pi- Therefore, 

once they are determined the hoop and radial stresses on the whole wall thickness 

may be evaluated directly. In order to determine these pressures compatibility 

equations have to be written. Table 4.4.2 i shows the nomenclature used for strains:

Layer Position Hoop
stain

Radial
strain

Axial
strain

layer 

or skin

inner surface
C r „

outer surface ^h\o Cn, Co,
Core inner surface ^hci C r c , C , c ,

outer surface ^hco r̂co C jc c o

2"  ̂layer 

or skin

inner surface ^hli ^rli ^x2i

outer surface ^hlo £rlo C jc 2 o

Table 4.4.2 Multi-layered pipe strain nomenclature.

The axial and circumferential strain relations for the three layers are given below

with the radial compressive stresses having been substituted by the corresponding

negative boundary pressure.
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P Pi) p Pi)  / \
^xli — p  » ^xlo -  E ,  ’ W/

p _^X2~^.(^^A2/“ P2) p _(^x2-^X(^A2«-pJ  /L\
^z2, -  p  ’ ^x2o -  r  ' I#/

/  f '
P _ ^xc~^c(^ / ,g  ~ P l )  p _  <̂xc - ^ À ^ h c Q - P l )  / \
-̂td p  ’ ri ’

7  \ 7  \ (4.4.11)
p _  ^Al, Pi) p _  ^Alo a )  / j \
^Ah “  r, ’ ^hlo -  j7 'E^

P _(^Ac, -^ .((^ ;c2-P 2) p _(^hco-^s((^x2-Pe)  /_\
Â2i — p ’ *̂ h2o ~ r  ' \CV

P _ ^Ad~^c(<^;cc~Pl) p _ <^hcQ-'^ci^xc- P2 ) / ^ \
^Ad -  p  ’ Âco ~  p  ' \J )

4  -Ec

The axial strain equations should be equal to each other. However, based on the 

previous assumptions, only two equations among them are linearly independent. 

The independent equations are

^xlo-^xci’ ^x2i~^xco’ (4.4.12)

and represent continuity on contact boundaries of the intermediate layer. In other 

words, the outer surface of the inner layer will displace by the same amount as the 

inner surface of the intermediate layer. In the same way the displacements of the 

outer surface of the intermediate layer have to be equal to the displacement of the 

inner surface of the outer layer. Therefore, the circumferential compatibility 

equations are

e*i. =«*0- £/,2, = £ to - (4.4.13)

The longitudinal stress equilibrium offers two alternatives. The first is for a pipe 

under a tension or compression T. The second is for a pipe with a blind flange on 

one end. It means that the same external pressure is acting on the flange. This 

boundary condition affects only the right hand side of the following equation. In 

the first case it would be equal to T/% and in the second to -cfpe. Then

{b  ̂- a ^ } j +  {c  ̂- b ^ } j ^  + {d^ - )j^2 =~^^Pe T jn  . (4.4.14)

Circumferential equilibrium gives two equations - the first being for the outer layer 

and the second for the inner layer:

+ (4,4,15)
-b p ,  = (b -a p „ ,„ .
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Where <T„,„ = j <7„dr = - r - ^ , and cr„„ =ja^^dr=  v "  *® average
: { b - a )  i  { d - c )

hoop stresses on the inner and outer layers.

Consider that the yielding stress of the inner and outer layer material is c^y. In order 

to determine the external pressure which the inner or outer layer reaches the 

yielding limit should be investigated in both cases. In the first case, the inner layer 

yields and the outer and intermediate layers remain in the elastic zone. In this case 

the external pressure pei may be found by combining eleven equations in matrix 

form. These equations are one for longitudinal stress equilibrium (4.4.14), two for 

circumferential equilibrium (4.4.15), four for compatibility (4.4.12) and (4.4.13), 

and the four hoop stress relations (4.4.3), (4.4.6), (4.4.9) and (4.4.10). Taking the 

average Mises stress cr^, in the inner layer to be equal to the yield stress of the 

material the value of the external pressure pei may be determined by the linear 

system of equations. The average Mises stress in the first layer is given by

(Jmu = +^hliPi ’ (4.4.16)

V  —

Grouping these eleven equations setting the eleven unknowns to (cTxi, Gxz, CTx 

cJhio, Gh2i, CJh2ni, cJhco, Ghci, Pu Pi, Pel} and rearranging in matrix form yields:
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■«6 Û4 «2 0 0 0 0 0 0 0 0 ■ -d ^ P e  *

- V , 0 mVc 1 0 0 0 0 -  m «7 0 0

0 1 -  m 0 0 - V . v 0 mv^ 0 0 «7 0

0 0 0 0 0 «4 0 0 0 0 - a . ^  h\o

1 0 -  m - V , 0 0 0 0 mv^ «7 0 ^  him 0

0 0 0 « 6 0 0 0 0 0 a, 0 ^hli = 0

0 mv^ 0 0 1 0 -  m 0 0 «7 ^  him 0

0 0 0 0 0 0 0 Ü2 0 - 2 6 " a, ^  hco 0

0 0 0 0 0 0 c - d 0 0 0 c ^  hci Idp^

0 0 0 0 a — b 0 0 0 0 - b 0 Pi 0

0 0 0 0 0 0 0 0 «2 - a , 2 c " . . Pi . . 0 .

(*) B oundary  cond ition  on the p ip e ’s end. (4.4.17)

Setting external pressure to unity (Pe=l) and assuming the internal pressure is zero 

(Pi=0), equation (4.4.17) is solved. This procedure makes all unknown variables 

proportional to p^. To evaluate the actual value of p^, the average Mises stress in 

the inner layer should be taken to reach the yield stress value. Substituting the 

value of Pi in equation (4.4.4) the value of is obtained. Using this <7̂ ,1, value 

and the result of (4.4.17) in (4.4.16) the average Mises stress in the inner 

layer may be obtained per unit of external pressure. The actual external 

pressure is p^  ̂ = . With these results, all stresses and strains on the multi­

layered pipe may be determined.

The radial displacements of the boundary surfaces of the core follow from the 

strain relation as , follows:

^ . Wc = «k , • c ■ (4.4.18)

The change in thickness of the core is (Wc -̂Wc). This will be negative, indicating 

that the core becomes thicker with the application of external pressure to the shell. 

The solution of equation (4.4.17) describes the total elastic behaviour of the 

multi-layered pipe. However, at external pressure peh the average Mises stresses in 

the inner face will reach the elastic limit. The elastic limit could be reached by the
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outer layer rather than the inner. In this case equations (4.4.16) should be changed 

to allow the second layer average Mises stresses to reach the yielding condition:

^M2o -  +(^h2oP2+ Pe^ -^^xlPe ’

^M2i -  yl^h2i^ ~^h2i^x2 +^x2^ +^h2iP2+ ?2^ » (4.4.19)

M l  2

In the same fashion the system of linear equations in (4.4.17) is solved for an 

external pressure unity of (pe=l). The value of a is obtained from (4.4.7) and 

then substituted in (4.4.19). The value of pe2 is determined based on the average 

Mises stress in the outer layer ^od the yielding stress is, therefore,

Pe2 — ^syl^M2  '

Following the determination of the external pressure, depending on whatever layer 

had reached the yielding condition first, all the stresses on the multi-layered pipe 

can be obtained.

On the other hand, when this happens the constitutive equations previusly used 

cease to be true for whichever face has yielded. There is no doubt that, normally, 

the yield of the outer layer l follows quickly after yield of the inner, see Figure

4.4.2 - assuming that the elastic modulus of the core is small compared with that 

of the faces, and any subsequently higher pressure will be sustained by a sandwich 

wall with plastic faces and an elastic core. Assuming that no form of instability 

takes place, the eventual failure of the shell will follow due to failure of the core 

material.

This process will now be followed step by step but, before doing so, it is necessary 

to establish constitutive relations for the faces after loss of elasticity. These are 

performed using the three dimensional form of the von Mises criterion.

Suppose that at external pressure, pe=p&{, the inner face reaches the yield condition. 

It is supposed that the other face is still elastic as well as the core. Without 

referring to a particular example, it is not known whether the inside skin or outside 

skin will first reach the yield condition. Suppose that the inside layer yields first, it
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follows that, at p^=pe\ - For the first increment of external pressure p ^ ,̂ where 

Pe -  Pel +  Pel * Assumlng that the yielding limit is reached by the 3D-Mises stress 

condition of the first layer all strains would be plastic. Denoting any increments in 

the variables with a hat symbol, when the external pressure is incremented by p^^

the increment in hoop stress in the inner layer will be zero , as will be the 

increment in radial and axial stresses. Thus,

(T ,,=0, (T,, =0, p, = 0 . (4.4.20)

Also, if it is assumed that the strain rate is the sum of the elastic and plastic 

components, the strain equation for the inner layer in incremental form (4.4.11) 

may be replaced by

^hio=^hiop’ (4.4.21)

where is the plastic component of the circumferential strain rate in the outer

surface of the inner layer. It is assumed that the inner layer is completely plastic. 

Apart from these adjustments, previous equations, written now in incremental 

form, will describe the wall behaviour whilst the inside layer is plastic and the 

outside face and core are elastic. The equation (4.4.17) should be modified to give 

the incremental variables, including the plastic deformation . Therefore, using

(4.4.19) the incremental pressure ( ) that allows the outer face to reach the

elastic limit may be determined interactively. Dropping one of the equations

(4.4.15) and equation (4.4.3) the matrix has now only nine equations and 

unknowns.

The solution of (4.4.22) describes the incremental stresses and strains appropriate 

to the outer layer and the core in the elastic condition and the inner layer in the 

plastic condition. The equation remains valid as long as, in the inner layer, the von 

Mises stress is equal to the yield stress (cr^, = ).



«4 «2 0 0 0 0 0 0 0

0 mVc 0 0 0 - m 0 4 0

0 - m 0 0 0 mVc 0 0

mVc 1 0 - m 0 «7 0 0

1 - m -V , 0 m v c 0 a. 0 0

0 0 0 0 0 «2 f l , 0 0

0 0 «4 0 0 0 “ «3 0 0

0 0 0 0 «2 0 a, 0 0

0 0 0 c - d 0 0 2c 0 0

0

^H2i 0

^hlm 0

^hco = 0

^hci 0

P2

^h\op 0

^xlop _

(4.4.

22)
(*) Boundary condition on the pipe’s end.

Using an iterative numerical procedure such as Secant or Régula falsi methods the

value of Pg, is determined. Solving F {p ^̂ ) = = 0±to lerance , the value

of Pel is found for very small tolerances (10'^) within a few iterations. Following 

this solution, the average von Mises stress in the outer layer and as well as in the 

inner layer have reached the yielding limit.

However, if during this pressure increment, the second layer had reached the 

plastic limit rather than the first. The increment in hoop, axial, and radial stresses 

in the outer layc are taken as zero. The pressure pj  on the outer layer of the core 

will be proportional to the increase in the external pressure. Therefore,

p 2 ~  Pe2’ c
(4.4.23)

The strain rate is now plastic. The strain equation for the inner layer in (4.4.11) 

may be replaced by

^h2i = ĥ2ip ’ (4.4.24)

where is the plastic component of the strain rate in the inner surface of the

outer layer. The!following equations, written in incremental form, will |describethe wall 

behaviour whilst the outside layer is plastic and the inside layer and core are
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elastic. Therefore, the increment now will be + Pei > being ( p^^ ) the

incremental pressure that jallows the inner face to reach the elastic limit whilst | the 

outer layer jis in the plastic condition. In the same fashion |dropping one of equations

(4.4.15) and (4.4.6) the matrix has also nine equations and unknowns including the 

plastic deformations •

Using the same procedure, the value of p^^ is | determined iteratively. Solving 

^(P e i)  = ^sy ~^M\ =0±tolerance  the value of p a  is determined. Following this 

solution, the average von Mises stresses in the outer layer and as well as in the

inner layer have reached the yielding limit.

«6 «2 0 0 0 0 0 0 0

-V , mVc 1 0 0 - m ^7 0 0

0 — m 0 0 0 0 0 Es

mVc 1 0 0 — m a-j 0 0

0 0 0 a — b 0 0 - b 0 0

0 mVc 0 0 — m 0 0 4 0

0 0 0 0 0 ^2 -fli 0 0

0 0 0 0 «2 0 -2 b ^ 0 0

0 0 «6 0 0 0 a. 0 0

0

^  h\o -a- jdp^Jc

^  Mm 0

= 0

^hci

Pi -lcdp^2

^hlip -a^dp^Jca^

_̂ xlip _ 0

(4.4.

25)

(*) Boundary condition on the pipe’s end.

In practice, whichever layer becomes plastic first, the other will follow after a 

relatively small increase in pressure and both layers will be in the plastic condition. 

Suppose that this case happens for the increment p^ when Pe = Pu'^ P u ^  Pe then:

^hVi ~  ^h\o ~  ^hli ~  ^hlo  —  A  ~  P i — Pe • (4.4.26)

Substituting this, in the previous stress relations for the core

^hco = -
da,
car ^hci -

led (4.4.27)
a.
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The strains relations become

c -  ~^X^hco -  Pe die)  _  (7^ -V  A ,  p - S  p - p
~ ’ ^h2i ~ ^hlip ’ ^h\o ~ ĥlop ’

p _  ^hci ^ x c  p _ ^hco ^c %c Pe x oo\

where, 6 , = a ,, = £,2 = = ĥxop = , and ê,^. = .The increment

to the hoop, axial, and radial stresses for both faces vanishes. For core failure the 

von Mises stress average in the core should reach the yield point. Following the 3- 

D von Mises criterion;

^Mco = ^|^hco^ -^hco^xc -^^xc^ +^hcoP\ ^P \  ^^xcP\  »

^Mci = V^Ad^ -^hci^xc ^^hciPl'^ Pi +<^xcPl ’ (4.4.29)

„  _ ^Mco “*■ ̂ Md
Me 2

Where -p\ and -pi are the radial stresses in the inner and outer surfaces of the core 

respectively during the last pressure increment with both faces plastic and only the 

core in the elastic regime. During this external pressure increment, all stresses in 

inner and outer layers will remain unchanged once they are in | the plastic condition. 

Then dropping the equations related to these pressures, the incremental form 

reduces to the matrix in equation (4.4.30).

In the same way, the system of linear equations in (4.4.30) is solved iterative. The 

increments in p\ and p 2 are zero. However, the compressive radial stress on the 

outer surface of the core will be proportional to the increment of the external 

pressure according to the circumferential equilibrium equation (4.4.15), therefore, 

P2 = P g d jc . The pipe continues to behave in a stable manner with increasing

pressure as long as the core remains in the elastic condition. The design of the pipe 

structure should be such as to ensure that buckling eventually takes place due to 

strength failure of the core material. It is a simple matter, knowing the yield stress 

of the core, to estimate the value of external pressure at which its stress state will 

reach some failure criteria based either on Tresca or von Mises.
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mv^ - m  0

0
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0 0 

0 E

mv^

0

0

- m E,

1 0 0

0 0 0

0 

E. 

0

0 0

^hco

ĥ\op

p̂hlip

6,

0

0
(4.4.30)

(*) Boundary condition on the p ipe’s end.

Apart from the average von Mises stress on each layer other criteria may be used 

such as Tresca by changing the step by step relations accordingly. However, by 

applying von Mises criteria for all layers, the results showed a better match with 

experimental results, see Figure 4.4.2. In this Figure, the theoretical result using 

Tresca the present work model and the experimental results are presented. The 

experimental data were obtained by Montague, 1975.

A computer code has been developed by the author to perform the analysis

described above using the

14

1 3

7
(MPa)

E xp erim en ta l data  
(M o n ta g u e , 197 5 )

T h eoretica l 
b eh aviou r  
(p resen t w ork )

T h eoretica l 
b e h a v io u r (T r e sc a )  
(M o n ta g u e  1 975 )

experimental data 

included in Montague, 

1975. The multi-layered 

pipe characteristics are:

6 8 10 

4., 10'
12 14 16

Fig. 4 .4 .2  C om parison of theoretical and experim ental; external 
pressure behaviour with hoop strain inner surface o f the core.
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• Geometry • Material
0=59.1 mm, 6=60.5 mm, Es=200 GPa, = 0 .28 , =193.1 MPa ,
c=68.0 mm, <f=68.8 mm. £^=4.38 GPa, v , = 0.38, = 61.5 MPa.

Table 4.4.3 shows the results obtained. Figure 4.4.2 presents a comparison between 

the external pressure behaviour with experimental data from Montague, 1975 and 

his Tresca approach. It can be seen that the von Mises approach predicts the 

experimental buckle pressures more closely. It should be stressed that this example 

is for very thin layers or skins. For thicker layers, the von Mises approach would 

give better results.

Yield of inner Yield of outer Yield of
layer layer core

/?e=5.6 MPa /?e=6.1 MPa Pe=12.9 MPa
Pressures

Boundary inner layer/core (MPa) 3.41 3.52 10.34
Boundary core/outer layer (MPa) 5.60 6.11 12.85

Inner layer
Axial Stress (MPa) -110.4 -110.4 -110.4
Hoop Stress inner surface (MPa) -225.9 -137.0 -137.0
Hoop Stress outer surface (MPa) -223.0 -223.0 -223.0
Radial Stress inner surface (MPa) 0 0 0
Radial Stress outer surface (MPa) -2.97 -2.97 -2.97
Mises Stress inner surface (MPa) 195.7 195.7 195.7
Mises Stress outer surface (MPa) 190.5 190.5 190.5
Mises Stress aver, surface (MPa) 193.1 193.1 193.1

Outer layer
Axial Stress (MPa) -102.2 -137.0 -137.0
Hoop Stress inner surface (MPa) -193.2 -227.7 -227.7
Hoop Stress outer surface (MPa) -191.0 -225.1 -225.1
Radial Stress inner surface (MPa) -3.41 -3.52 -10.34
Radial Stress outer surface (MPa) -5.60 -6.11 -12.85
Mises Stress inner surface (MPa) 164.4 195.3 195.3
Mises Stress outer surface (MPa) 160.6 190.9 190.9
Mises Stress aver, surface (MPa) 162.5 193.1 193.1

Core
Axial Stress (MPa) -4.89 -5.84 -10.7
Hoop Stress inner surface (MPa) -7.17 -8.23 -73.7
Hoop Stress outer surface (MPa) -6.73 -7.68 -66.3
Radial Stress inner surface (MPa) -2.97 -2.97 -2.97
Radial Stress outer surface (MPa) -3.41 -3.52 -10.34
Mises Stress inner surface (MPa) 3.82 4.74 67.2
Mises Stress outer surface (MPa) 2.89 3.61 55.8
Mises Stress aver, surface (MPa) 3.35 4.18 61.5

Strains
Axial - all layers (10'^) -0.236 -0.361 4.199
Hoop - at radius=6 (10'^) -0.956 -1.114 -15.640
Hoop - at radius=c (10'^) -0.818 -0.942 -13.318

Displacements
At radius=6 (mm . 10'^) -0.0578 -0.0674 -0.946
Atradius=c (mm. 10'^) -0.0556 -0.0640 -0.906
Core thickness (mm) 7.502 7.503 7.541

Table 4.4.3 Theoretical stress and strain results based on Montague (1975)
experimental data.
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4.5 ABAQUS analysis

As has been done before, the finite element package ABAQUS /I/, was used to 

predict the buckling pressure for multi-layered pipes. The idea was to have results 

from an independent and well-known commercial structural analysis program to 

compare with results from the three analytical models described above.

The ABAQUS buckling prediction based on eigenvalue assessment is described in 

detail in section 2.2.3 of the User’s Manual III with the buckling analysis procedures 

given in section 10.2.2. The two dimensional numerical solution described here 

followed conventional practices in such analysis. However, the three dimensional 

approach had to be developed from scratch. ABAQUS uses the classical eigenvalue 

analysis to estimate the critical (buckling) load for structures that carry their design 

loads primarily by axial or membrane action rather than by bending action. Their 

response often involves very small deformations prior to buckling.

The classic eigenvalue buckling problem, in the finite element context, is stated as 

follow:

1) Given a structure with an elastic stiffness matrix, ;

2) Loading pattern defined by the vector Q'^ ;

3) Initial stresses and load stiffness matrix,

where the superscripts N  and M refers to degrees of freedom of the whole model and 

the subscript i represents the mode. The solution is to find load multipliers 

(eigenvalues). A,, and buckling mode shapes (eigenvectors), 0,.̂  , which satisfy

The critical loads are given by A. Q .The smallest load multiplier and the associated 

mode shape correspond to the critical load and failure shape mode of the structure.
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This built in feature for evaluation of the eigenvalues of a loaded structure described 

above was then used forjthe prediction of the critical external pressure on j multi-layered 

pipes.

The set of command lines for ABAQUS input to solve this three dimensional 

problem is described as follows: First, a node generation facility was developed.

This is one of the most important tasks since the whole element mesh needs! to be 

generated based on node co-ordinates, which have to be defined in this step. After 

that the element type is defined and based on the node numbers and their co­

ordinates the elements mesh can be generated to build the complete finite element 

model. The material definition command and the element generation command are 

used to set the materials properties and the corresponding element material 

definition. Once the model is ready and its mechanical properties are defined, 

definition of boundary constraints and loading enables the analysis to be performed. 

The definition of the boundary constraints and loads is based on element or node 

groups which are constrained to deform in particular directions. The loads are 

defined based on program features and special commands that allow the user to 

define loading in several forms. Another feature in the ABAQUS input is the 

*BUCKLE command that defines the eigenvalue problem.

The command that defines an hydrostatic pressure load combined with the command 

that defines the eigenvalue problem sets the input to solve the critical pressure on the 

multi-layered pipe. At least half of the cylinder has to be considered otherwise the 

buckling shape modes would be restricted to only those that will fit in the structural 

section supplied by the user. Therefore, it was necessary to build a 180 degrees mesh 

to allow a complete eigenvalue analysis of the multi-layered pipe composed of three 

layers.

Following the standard procedure to generate the input file for ABAQUS analysis, it 

was necessary to generate a mesh of nodes which represents the whole multi-layer 

cylinder. A FORTRAN code was developed to perform this task. In addition, 

boundary conditions have to define the symmetric behaviour of the other half of the 

multi-layered cylinder that was not included in the mesh.
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! A FORTRAN code was developed to generate the node mesh for each geometry. The 

program builds the node set for one half of an entire multi-layered cylinder in a form 

that is formatted and ready to be included in an ABAQUS input file. In addition, a 

suitable command generates the elements of each layer in a systematic way. Each 

layer has to be defined as a group of elements that will have its material properties 

defined and input. Finally, the loading and the type of problem is defined - in 

particular the external pressure is defined as acting on the outer layer only and the 

eigenvalue problem is also defined including the highest mode shape to be 

calculated.

Another similar FORTRAN code was also produced to generate the two dimensional 

node mesh to analyse the difference between the solutions for a ABAQUS two 

dimensional and a three dimensional computation. The two dimensional model is 

intended to simulate a very long pipe. On the other hand, the three dimensional 

model had to be calibrated in order to define the minimum length of multi-layered 

pipe model that needed to be used. This length was defined after several runs where 

the collapse pressure mode becomes independent of the length. In other words, the 

collapse is characterised by the same cross-section pattern along the length.

Another important issue in finite element analysis is the definition of the element. 

The element types selected for this work were CPF8 for the two dimensional model 

and the C3D20 type for the three dimensional model. The CPF8 element type has 

eight nodes arranged as a plane squared box where each wall contains three nodes. 

The C3D20 element type has twenty nodes arranged as a cubic squared box where 

each face contains eight nodes.

In both, two and three dimensional models each element extended circumferentially 

over a ten degree arc around the 180 degrees of the half pipe. The half cylinder was 

used to allow ABAQUS to evaluate the even and odd eigenvalues and the 

deformation pattern of each mode shape. The ten degree sector angle was obtained 

after testing for an acceptable compromise between ABAQUS memory usage and 

speed compared to accuracy of results.
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It is a standard result for ABAQUS that the first eigenvalue (failure in two lobes, 

n=2) is the smallest, and is therefore, the elastic buckling pressure. With the increase 

in the Young’s modulus ratio between the face material and the core material.

E j E ^  , the values of the higher failure modes tend to be of the same order of 

magnitude. However, the two lobes failure always gives the smallest value.

The result of the three dimensional model agrees with the analytical combined 

elastic solution posed by Raville (1954), which uses the same basic assumptions. 

Although, the two dimensional model gives results close to the three dimensional 

model they tend to be more conservative. This statement is elaborated on further in 

section 6.2 with graphical comparisons of the collapse pressure obtained from 

different prediction methods.

The selection of the element type was done using the same criteria used in the first 

analysis with ABAQUS described in section 3.4. The axisymmetric elements were 

disregarded from the very beginning because they do not allow the solution for 

higher buckling modes. Using axisymmetric element type the whole cylinder is 

represented by repetition of a simple slice. This way, the element mesh was 

developed for 180 degrees sector and the symmetry of such a sector was defined in 

the boundary conditions. The element selection follows a stepped approach with the 

comparison of the best match of the ABAQUS buckling result and the analytical 

solution of the perfect single walled cylinder.

In this case there is the necessity to generate the co-ordinates of the nodes in order to 

prepare an input file suitable for ABAQUS. This mesh generation was performed by 

developing a FORTRAN code which has a specific output format that can be input 

directly under the *NODE and *NGEN commands into the ABAQUS input file. The 

output includes the node numbers and its corresponding co-ordinates. This 

FORTRAN code is a program which calculates the cartesian co-ordinates of each 

node in a cylindrical form based on the geometric parameters that are input. The 

basic input data for this program are the inner and outer radius of each layer, the 

number of nodes in each layer, the generation angle and the total angle and also the 

sinusoidal imperfection. The geometry of the layers can be defined by the inner
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radius and th^ values of a  and P, these parameters define the thickness of each layer 

assuming that the skins have equal thickness. These parameters are also used in the 

comparison graphs presented in| Section 6 . The relation between the total angle and 

the generation angle will be the number of nodes in the circumferential direction. 10 

degrees was used for the generation angle and 180 degrees for the total angle, giving 

9 elements in the circumferential direction. The number of elements in the radial 

direction for each layer was fixed at 3. This value was defined after several tests 

aimed at reducing the computer time but maintaining the accuracy of the results. The 

number of elements in the longitudinal direction for the three dimensional model 

was fixed atone. The analysis was aimed at evaluating the buckling pressure due to 

external pressure loading. Therefore, it is not necessary to have more than one 

element in the longitudinal direction. Boundary conditions were also established at 

the nodes in the base of the half cylinder in order to have them behaving 

symmetrically with the other half of the cylinder. The sinusoidal imperfection was 

introduced to induce the buckling mode with very small ovality. It was observed that 

the elastic buckling (eigenvalue evaluation) always follows the two lobes mode even 

though an imperfection in other modes was input.

Section 6 shows a series of graphs presenting the results obtained from the finite 

element model and the analytical solutions. It has been noted that the ABAQUS 

results show similar trends to those obtained from the elastic models for a range of 

geometric parameters.

The input file for the multi-layered analysis is described in detail below. The lines 

starting with an asterisk (*) denote a command line which demands a specific action 

from ABAQUS. The first block of the input file contains the information to define 

the finite element node mesh. The command * HEADING is reserved to input the 

title of the input file. The commands *NODE and *NGEN are used to define the co­

ordinates of the nodes. The command *NODE defines for each node number a co­

ordinate associated with it. The command *NGEN generates several nodes between 

two nodes already defined using equal distances between them. It is useful to use the 

*NSET command to give a name to a given node set.
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The analysis developed for this buckling problem has to define a half cylinder finite 

element model as explained before. Therefore, two codes were written to generate 

the mesh I for the two and the three dimensional node mesh.

• First block:

^HEADING
MULTI-LAYER CYLINDER - BUCKLING PRESSURE - ELASTIC
^RESTART,WRITE,OVERLAY
*NODE

*NGEN,NSET=ALL

*NGEN,NSET=SIDE

*NGEN,NSET=BASE

The second block defines the element mesh. The ^ELEMENT command defines the 

type of the element among those described in the element library of ABAQUS. 

There are several types and the selection of the element is the most important 

information for the finite element system. For this analysis the plane strain element 

CPE8 was used for the two dimensional analysis and C3D20 for the three 

dimensional analysis.

The command *ELGEN is used to generate the elements that will make up the 

structural model. This command has several features and properties to make the 

mesh generation more user friendly. The command *ELSET is similar to the
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command *NSET, however, it is used only to define a name for a set of elements 

rather than nodes.

• Second block:

*ELEMENT,TYPE=C3D20

*ELGEN

*ELSET,ELSET=INNER

*ELSET,ELSET=OUTER

*ELSET,ELSET=STE,GENERATE

*ELSET,ELSET=COM,GENERATE

The third block is to define the material properties associated with element numbers. 

This block starts with the command * SOLID SECTION where the material name 

and the element set is defined. The next command is ^MATERIAL and ^ELASTIC 

which define the material elastic properties for a given element set. Isotropic 

material is assumed if nothing is specified. In this multi-layered analysis two elastic 

material sets have been defined to represent the material of the skins (STEEL) and 

the core (COMPOS). The analysis is limited to the elastic regime of the materials.
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• Third block:

*SOLID SECTION,MATERIAL=STEEL,ELSET=STE
*MATERIAL,NAME=STEEL
♦ELASTIC
30.E6,.3
♦SOLID SECTION,MATERIAL=COMPOS,ELSET=COM
♦MATERIAL,NAME=COMPOS
♦ELASTIC
30.E4,.3

The fourth block imposes boundary conditions and the loading parameters. The 

command ♦BOUNDARY defines the constraints applied to the model based on a set 

of nodes. The constraints could be for displacement and rotation in any direction 

according to the three dimensional system of co-ordinates of the problem. The 

loading parameters start with the command ♦STEP which i defines a loading case. This 

problem uses only one loading case which is the unit external pressure applied on 

the outer surface. The command ♦BUCKLE is then introduced with an additional 

parameter which is the maximum buckling mode that should be evaluated. The 

command ♦DLOAD defines the unit loading applied on the external surface.

• Fourth block:

♦STEP
♦BUCKLE
4,
♦BOUNDARY
SIDE,2
BASE,!
♦DLOAD
OUTER,P4,l

The last block of commands is to define the output file. The finite element program 

ABAQUS allows several combinations of output. For this analysis, the output was 

set to give the radial and hoop stresses along the radius as well as the strains in the 

centroidal position of each element.
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• Fifth block:

*EL PRINT,FREQUENCY=0 
*NODE PRINT, SUMMARY=NO 
U ,R F
*MODAL PRINT 
*MODALFILE 

*END STEP
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5. M ulti-layered pipes in catenary configuration 

5.1 Overview

This section now considers the global analysis of a multi-layered pipe in a catenary 

configuration in deep water. The purpose of this part of the work is to apply the local 

internal and external pressure models developed earlier to a practical offshore 

requirement of a catenary riser in deep water. The multi-layered cross-section pipe in 

a catenary must withstand not only the internal and external pressure loads but also 

those due to tension and bending. This section compares the multi-layered pipe 

cross-section with an equivalent single walled pipe subjected to all of the above 

loads. A quasi-static analysis is used to carry out the comparison. The work in this 

section was developed by the author based on the previously established catenary 

equations.

A simple and therefore economic configuration for production risers is the single 

free catenary. This geometry is very simple; the riser top connection is attached to 

the platform and then the riser length is laid on the sea bed starting from an 

appropriate top angle. There are also other possible configurations such as the lazy 

S, lazy wave, steep S, and so on, as shown inFigure 5.1.1. However, all of them

Lazy S L azy  wave Single free hanging

Steep S Steep wave D ouble hanging

Fig. 5.1.1 R isers configuration.
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require additional equipment, such as buoyancy units, and therefore will imply 

additional costs and installation procedures. The only reason for using other 

configurations, rather than the single free catenary, is connected with special 

requirements such as tension load limit of the top connection or to increase 

allowable platform horizontal motions or to reduce touch down point motions.

There are several commercial packages for analysing flexible and rigid riser 

behaviour due to hydrodynamic loads, self weight and surface vessel motions. Most 

of them compute a numerical solution based on finite difference or finite element 

methods. The numerical approach has to be used in order to solve the non-linearities 

which arise from the hydrodynamic loads and the catenary configuration.

On the other hand, when the water depth increases the static geometry and structural 

behaviour of a riser in free catenary configuration approaches that of a single cable.

It means that bending moments can be neglected - in other words the transmission of 

moments along the riser does not affect its geometry. Therefore, for deep water 

(water depths more than 300 meters), the static configuration can be evaluated and 

optimised more easily using an analytical model based on the assumption that the 

bending stiffness is neglected and the riser treated as a cable.

5.2 Static analytical model

A static analysis is presented here for a riser in deep water whose bending moment 

induced loads are negligibly small compared to the loads due to tension and self 

weight. This assumption is demonstrated to have small errors as will be shown later 

based on comparison with a finite difference based commercial analysis program 

FLEXRISER version 4 .2 1261, 1994. Another assumption is that the axial elasticity 

of the riser is not considered. This assumption also does not introduce a significant 

error in the model.

The fluid drag force, that is the hydrodynamic resistance due to the flow past the 

riser element has both normal and parallel components of force. Both of these are 

proportional to the square of current speed. It is clear that if these loads are to be 

considered, they will introduce a non-linearity into the equations. This non linearity 

will not allow straight forward integration, and therefore, the solution would have to
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Fig. 5.2.1 Free hanging riser nom enclature.

be obtained only by numerical methods. The static model below, therefore, only 

considers the zero current still water case.

Consider a single free hanging configuration as shown in figure 5.2.1 and the cable 

element showed in figure 5.2.2. The rectangular co-ordinates system is fixed at the 

touch down point, the weight per unit length is w, the top tension is Ta, the 

horizontal tension is H, and the angle measured between the riser axis and the 

horizontal is denoted by 6 .

For static analysis the equilibrium equations for the element of length ds can be

assembled based on the sum of the forces in the vertical and horizontal directions. In

this case, the drag and lift forces are not considered:

\ d T ü n e  = ^ d s ,
\ dTcosd = 0.

From (5.2.1) integrating the second equation yields

T cos6 = Const. = H . (5.2.2)

Once there are no other horizontal loads in the whole system the horizontal 

projection of the top tension should be equal to the horizontal load at the touch down 

point. This way the top tension may be written as T = H / cosd. Substituting this in
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the first equation of (5.2.1) and using the relation tan0 = dyjdx  gives

dx dx \ d x j
= w-

ds
dx

(5.2.3)

coshf —  I -  1

Integrating the above equation and using the boundary conditions that for % = 0 , 

y = 0 and dy/dx = 0 , the solution is

H , I wx 
1 —

w i_ \  H
From this solution several important relations can be written for the riser as:

w { h J [ h J

hw

(5.2.4)

T = H = H cosh
wx
H

wx

H . , - J s w \  H ^  
x = — sinh I —  = — D = -

H ) w 1/COS0 -

1 -  COS0 sinh ' (tan0) ’ 

h
sinh (tan0). (5.2.5)

w \ n  j  w

These results will now be compared with the finite difference commercial package 

for riser analysis called FLEXRISER 1261. The aim is to find the error made on the 

assumption that the bending stiffness was neglected. Figure 5.2.3 presents these 

comparisons. The main parameters for design are top tension at far position and 

radius of curvature at near position. These are critical points because they are 

subjected to the maximum stresses. It has been assumed that the top connection 

offset is 10% of the water depth from the neutral position.

Figure 5.2.3 shows that the error made, for this range, is small and conservative. The 

top tension on the simplified model is around 2% greater than the FLEXRISER 726/ 

result at 300m and approaches zero as the water depth increases. The radius of 

curvature is around 2% smaller than the FLEXRISER 726/ result and grows to about

x+dx T+dT

y+dy

Dds

wds

/  u

Fig. 5.2.2 R iser element.
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5% as the water depth increases. Geometric parameters such as hanging length and

horizontal projection show errors of less than 4% for water depths greater than

900m.

The varying error behaviour is explained by the fact that FLEXRISER is a non-linear 

finite difference code with the extent of non-linearity dependent on curvature which 

arises from water depth. The difference in the radius of curvature between the 

analytic result and FLEXRISER appearing around 1700 m water depth is, therefore, 

likely to be due to the effect of curvature based non-linear behaviour in the 

prediction from FLEXRISER.

Based on these results, one can quickly analyse and optimise the static design of a 

catenary riser using the simplified cable model. It is well known that the riser should 

be designed to cope with dynamic loads. Bearing this scenario in mind, the static 

design should be carried out allowing a safety stress margin to be used to withstand 

dynamic loading.

5.3 Assessment of critical stresses

The catenary configuration has two critical points in terms of stress. The top 

connection at the far position and the touch down point at the near position. The first
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arises because at the far position the top connection will be subjected to the 

maximum top tension. The second, because at the near position the sag bend will 

reach the minimum radius of curvature and therefore the maximum bending 

moment.

Consider the subscript a to denote the top connection and b for the touch down 

point, and also take the subscript N  for near position and F  for far position. Using the 

notation D = w x /H , the top tension may then be written as:

i  = l + ^ .  (5.3.1)
wh wh

But cosO^ , so

T  1
(5.3.2)

wh 1-COS0

The maximum top stress will be reached at the far position and is equal to the top 

tension divided by the area Aj. Using the yield stress cr  ̂ for the wall material, the

maximum axial stress of the riser can be represented by which is the relation

between the maximum top stress at far position and the wall material yield stress. 

Thus,

^  • (53.3)

Using (5.3.2) gives:

7 ^ ^  = -----   • (5.3.4)
wh ] l -c o s 0 „

Defining the reference ratio in terms of the top stress reached when 0^ = 90 ^̂ ,

leads to the fact that when the riser is in the up right vertical position, the top tension 

equals own weight or the mass per unit of length w times the water depth h. Then:

. (5.3.5)
^  y As

Therefore, the dimensionless relation denotes the ratio of the far position

axial top tension stress to the slack vertical axial top tension stress and will always 

be greater than unity. This ratio given in equation (5.3.6) is plotted in figure 5.3.1,
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(5.3.6)

It is seen that if the far point 

stress ratio grows to infinity, 

the top angle approaches 

zero. Another interesting 

conclusion is that reasonable 

values for this stress ratio 

should be larger than say 3 

but less than 10. In this 

range, the top angle from the 

horizontal will be between 

50 and 25 degrees. 

Considering a single walled

steel pipe, and keeping the riser content density and the wall yield stress fixed, the 

reference ratio is a function only of the ratio between the outside diameter and the 

wall thickness, OD/t. The reference ratio is given by

'  {ODltf
CC D — (pm “  Po ) +

 ̂Po~Pw ^
{OD/t-X)

(5.3.7)

where g is the acceleration due to gravity, is the wall material density, is the 

riser contents density, and p̂ , is the sea water density. It can be seen from figure 

5.3.2(a) that the reference ratio has a slight variation with OD/t for content 

density close to the sea water density. This figure was prepared by considering a pipe 

made of steel grade API 5LX60 and contents density for oil and gas. If the riser 

content density is low, filled with gas for example, the eĝ  value varies accordingly. 

Next the near position parameters are analysed. The main parameter is the maximum 

offset of the floating unit - typical by between 5% and 15%. The following equations 

follow from the catenary solution of (5.2.5):

(5.3.8)
H H H

s = — sinh D , h = — (cosh D -  1), and % = — D.  
w w w

Therefore,
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sinh D D
, and

.y-jc sinh D - D
(5.3.9)

h cosh D -  1 h cosh D -  1 h cosh D -  1

From figure 5.2.1 based on the following nomenclature, and remembering that the 

subscript F  is for far position and N for near position. The variables are as following

.y total length of the riser;

Sf̂  free hanging length of the riser;

5  ̂ length of riser laid on sea bed;

horizontal projection of the free hanging length; 

horizontal projection of the whole riser length; 

h water depth;

d maximum horizontal offset of the top connection.

The following relationships can then be posed:

'■LN = x.p -  2d , (5.3.10)

^LF ĉF L̂F •

Using (5.3.9) and (5.3.10) gives
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s -  X L N ĥF ^cF _ ĥN ĉN _ Siflh D
cosh Df  ̂ -1

Then,

sinh Dp -  Dj.
h cosh Dp -  1

Substituting and assuming that Ô -  d / h and A = B-\-25 gives

^j^^ D . -_DE = B ^ 2 ô  = A .
cosh -  1

(5.3.11)

(5.3.12)

(5.3.13)

The value of Dn can be evaluated with negligible error by substituting the 

hyperbolic functions in (5.3.13) for Taylor series around zero up to fifth order:

sinhD^ = + ^/v V^ ’ cosh = 1 + D^^/2 + 2 4 , to yield

(5,3.14)

From these results and remembering that tan0 = sinh D , the top angle at near 

position can be found provided that the value of A is known. It means, when the top 

angle at far position 6^̂p is known Dp can be evaluated using Dp = sinh"' (tan ).

Substituting Dp in
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equation (5.3.12) the 

value of B is calculated. 

Now, A is obtained by 

adding to B twice the 

maximum excursion Ô. 

From equation (5.3.14) 

Dn is finally determined. 

So, 6^ = tan"'(sinhD ^).

Figure 5.3.3 shows the 

relationship between 

these angles as a function 

of the offset.

In order to optimise the 

design, the bending stress
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condition reached by the pipe wall at the touch down point region (TDP) should be 

examined. The region where the minimum radius of curvature is reached can be 

obtained using equation (5.2.5), with = ! / / ; .  At the touch down point, the slope 

is y'pp = 0. Therefore,

1
.yTDP

From bending theory the bending moment is

M = -E ly"  =

(5.3.15)

(5.3.16)

The maximum bending stress in a pipe is reached when y is maximum or equal to 

half of the pipe outside diameter OD/2. Thus, at TDP the maximum bending stress is

/ X M OD E OD
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0.8

0 .7
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—  P/h=6\\0^
— P//!=8x10“’ 

P/h=\0\\Q-*

0.6

0 .5

0 .4

0 .3

0.2

0.0
10 20 3 0 4 0 5 0 7 0 9 06 0 8 0

Fig. 5.3 .4  V alues o f  touch down point stress condition OCf̂  as a 

function o f 0 ^  and the dim ensionless OD/h.

(5.3.17)

It should be pointed out that 

the second moment of area 

(/) from equation (5.3.16) 

when substituted in (5.3.17) 

is dropped. It means that the 

pipe second moment of area 

has no influence in the 

maximum stress reached at 

the touch down point. 

Therefore, whatever the 

geometry of the pipe, the 

bending stress at touch 

down point will be a 

function only of the radius 

of curvature, the outside 

diameter and material

properties. This simplification arises because the radius of curvature is not a function 

of the pipe bending rigidity {Ef) due to the fact that the riser is being treated as a 

cable. With being the ratio between the maximum bending stress and the yield
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stress of the pipe wall material {o  = E -e  ). Thus,

a ^=  —  =

y y

(T. 1 \ OD
(5.3. 18)

2-Sy r j h  h
From (5.3.8) and (5.3.15), the minimum radius of curvature may be written as a

function of top angle at near position. Thus,

H  ^  h ^  1
h cosh - 1

(5.3.19)

(5.3.20)

Based on (5.3.18) and (5.3.19), the bending stress ratio ( a ^ )  is obtained as a

function of the top angle at near position and the non-dimensional variable P/h. 

Figure 5.3.4 shows this relation graphically. Thus,

(coshZ)w-l) OD

Although the bending stress is the most important stress, the real stress condition of 

the touch down point has to incorporate the axial stresses cr^, due to horizontal 

tension, and the hoop stresses , due to hydrostatic pressure. Combining these 

stresses using the von Mises criteria the value of the stress condition can be obtained 

more accurately:

<̂ msEs = ■ (5-3-21)

Considering the element, of figure 5.3.5 and the axis convention, the bending 

stresses are acting in the same direction than the axial stresses. Then, they should be 

summed. Therefore, the stresses acting on the element are:

=CT̂ -f-cr̂ , (jy=G^=-p^,
02 = 0 (5.3.22)

The value of the bending 

stress and axial stress is a 

function of the riser 

configuration, pipe geometry, 

and material properties. On 

the other hand, the hoop and 

radial stresses are function of 

water depth, pipe geometry, 

and also material properties.

So, considering a the inner radius and b the outer radius for a single walled pipe.

Fig. 5.3.5 Wall element at touch down point.
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FREE CATENARY RISER ALGORITHM
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Fig. 5.3.6 Free catenary riser algorithm .

vy 2a^p- —{cî
(Ta = — = ^ ----- ^ , G , = E  — h , G „ = ------^ (5.3.23)

H

give the equations

^   H_
A, n [h '^ -a ^ y   ̂ H ' ^ [h^ -  a^)

Based on this approach an algorithm to optimise the design of a catenary riser may 

be built. Figure 5.3.6 shows this algorithm. The aim is to determine the optimised 

top angle at far and near position. Using the free catenary riser algorthm the designer 

can chose and optimise the top angle for near and far position of a steel catenarty 

riser based on the maximum stress reached on these positions. Next an application of 

the algorthm will illustrate its utility.

These angles will determine the whole catenary riser configuration provided the 

bending stiffness is neglected. Bearing in mind that the maximum pipe stresses have 

to comply with standards, the optimised top angles can be easily determined. For 

example, considering the following pipe geometry:

• Inside diameter = 10 inch
• Wall thickness = 0.7692 inch
• P/t ratio = 15
• Water depth = 1000 m
• Content density:

• Steel API 5LX60
• Yield stress = 4.137 10  ̂Pa
• Yield strain = 0.2%
• Young Modulus = 2.07 10̂  ̂ Pa
• Poisson ratio = 0.29
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Oil 920Kg/m^
Sea water 1025 Kg/m^ 
Gas 1.3 Kg/m^

• Density = 7850 Kg/m
• Excursion = 10%
• OD/h = 2.93 10"

From the data above, the steel pipe area and the submerged weight per unit of length 

can be evaluated. Substituting water depth and the yield stress into (5.3.5) gives the 

top axial reference stress ratio =15.43%. It means that this pipe in a vertical 

position and just hanging will reach 15.43% of the yield stress in the axial direction. 

Using figure 5.3.6, the optimised design may be found based on the curves for 10% 

excursion; OD/h=2.9 lO '̂ ; and 1000 m water depth. With a top ratio of 2.02, which 

means an axial stress at far position of 2.02 times the reference axial stress ratio or 

31.24% of the yield stress. This value gives a top angle with the vertical at far 

position of 30.41 degrees. On the next graph, using 10% excursion yields a top angle 

at near position equal to 13.91 degrees. Going up to the next graph with OD/h, gives 

a bending stress ratio at touch down point equal to 23.15%. Combining the bending 

stress ratio with axial, radial and hoop stresses at touch down point with von Mises 

criterion gives 31.24%. In other words the same stress state of the top connection at 

the far position.

O D /t 25 20 15 10

CCr 14.81% 15.12% 15.43% 15.74%

F a r  p o s i t io n
Top angle w/vertical (degree) 30.62 30.42 30.41 30.92
Top Axial stress/yield 30.18% 30.62% 31.24% 32.37%
N e a r  p o s i t io n
Top angle w/vertical (degree) 14.04 13.92 13.91 14.23
TDP Mises 30.18% 30.62% 31.24% 32.36%
TDP bending stress 21.54% 22.28% 23.15% 24.35%
TDP Hoop stress/yield 5.17% 4.55% 3.93% 3.31%
TDP Radial stress/yield 2.43% 2.43% 2.43% 2.43%
TDP Axial stress/yield 4.74% 4.79% 4.88% 5.13%

Table 5.3.1 Effect o f changes in O D /t, content oil, water depth 1000m.

W ater depth (m) 3 0 0 5 0 0 1 000 1500 2 0 0 0

CCr 4.63% 7.71% 15.43% 23.14% 30.86%

Far position
Top angle w/vertical (degree) 5 6 .8 8 4 6 .4 4 30.41 2 1 .6 8 16 .70
Top Axial stress/yield 28.48% 28.02% 31.24% 36.70% 43.30%
Near position
Top angle w/vertical (degree) 3 1 .3 5 2 4 .2 2 13.91 8 .5 9 5 .6 6
TDP M ises 28.49% 28.03% 31.24% 36.69% 43.31%

TDP bending stress 22.51% 21.07% 23.15% 27.80% 33.50%

TDP Hoop stress/yield 1.18% 1.97% 3.93% 5.90% 7.86%
TDP Radial stress/yield 0.73% 1.21% 2.43% 3.64% 4.86%
TDP Axial stress/yield 5.02% 5.37% 4.88% 4.07% 3.37%

Table 5.3.2 Effect o f change in water depth, 0 D / t = \ 5 ,  content oil.
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Riser content Gas Oil Water
CCr 8.85% 15.43% 16.18%

Far position
Top angle w/vertical (degree) 4 4 .6 0 2 8 .7 2 2 7 .0 8
Top Axial stress/yield 29.70% 29.70% 29.70%
Near position
Top angle w/vertical (degree) 2 3 .0 0 12 .87 1 1 .86
TDP M ises 29.71% 33.20% 34.94%
TDP bending stress 11.43% 25.57% 28.32%
TDP Hoop stress/yield 17.10% 3.93% 2.43%
TDP Radial stress/yield 2.43% 2.43% 2.43%
TDP Axial stress/yield 5.67% 4.42% 4.19%

Table 5.3.3 Effect o f change in riser content, 0 D / t = \ 5 ,  water depth 1000m.

The following tables have been obtained using the optimisation method aiming 

always to maintain the same stress level for the far and near position.

5.4 Comparison between multi-layered and single walled pipes

The free catenary riser design applying multi-layered pipes rather than single walled 

pipes will demand the same design procedure. However, due to its characteristics the 

multi-layered riser will allow much more design flexibility; since the density of the 

intermediate layer material can be selected to induce less submerged weight per unit 

of length in the pipe structure. Therefore, the induced stresses will drop in the same 

fashion. On the other hand, in order to match the single walled pipe hydrostatic 

pressure resistance the multi-layered pipe will need a bigger outside diameter. It 

implies according to (5.3.18), that the maximum bending stress will increase in 

direct proportion to the outside diameter. It means that the equivalent multi-layered 

walled pipe should be designed bearing in mind that the outside diameter should be 

kept as low as possible.

A rough comparison of the drop of top tension due to the higher wall thickness of 

the multi-layered pipe is shown in figure 5.4.1. The percentage represents the rate 

between the double walled pipe top tension and the single walled pipe. The density 

of the intermediate material was taken to be 50% of the sea water; the pipes were 

designed to 1000m water depth, using 30% of yield stress at the top connection in 

far position, and 10% offset. The geometric structural equivalence was met by 

equating the theoretical buckling pressure to P = \.
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To achieve an equivalent multi-layered pipe design the theoretical hydrostatic 

buckling pressure was equalised. To simplify, the multi-layered pipe will have its 

geometric characteristics reduced to two parameters provided the inside diameter is 

kept the same as of the single wall pipe. The theoretical well known equation for the 

critical external pressure ), of single walled pipe is

{Psw)cr =
\ 3

(5.4.1)
4 ( l - v / ) l « J  4( i - v / ) 10D /̂ -1

Where E, is the Young’s modulus, and the Poisson’s ratio of the wall material, t 

is the wall thickness, and R is the wall mean radius. The multi-layered pipe elastic 

buckling pressure for long cylinders is evaluated assuming the approximation of 

Raville (1954) 1621. The faces are of equal thickness/, the core thickness is co, and 

the Young’s modulus and shear modulus of the core material is to be infinite. Then

( l - 6/ a f + - / - ( l  + 6/ a y
\2ab

\  /

(5.4.2)

where a is the mean radius of the first face, and b is mean radius of the second face.
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Simplifying the equation (5.4.2) considering thin faces or membrane facing, and 

assuming the two dimensionless parameters for defining the geometry of the double 

walled pipe a  = bja and = c o / /  gives

3 ( i - « y
{PmP )cr ~ (5.4.3)

( ^ + l )  +

Equating (5.4.1) and (5.4.3) but keeping the inside diameter the same, the equivalent 

equation obtained is

OD!t = \ +
T a i l l e - / > * - - • )

(5.4.4)

This equivalence is only valid for a limited range of values of a  and P . That is 

values where the faces are thin compared with core thickness c j f  > 5. In addition, 

the material of the core should have sufficient strength to keep the faces apart and do 

not wrinkle just before buckling.

The elastic theoretical solution for double walled buckling pressure can be refined. 

However, this will lead to a very complicated equivalence equation with no practical 

application. Here the margins where the simplification used on equation (5.4.3) is 

acceptable, is evaluated. If moderately thick faces is used, the bending rigidity and 

shear in the faces have to be considered, equation (5.4.3) would become

(.Pmp \r  ~
(j3 + l ) ( l  + a ^ )  12a(l  + a ^ )  (^  + l /

(5.4.5)

Table 5.4.1 shows the comparison between (5.4.3) and (5.4.5) as a function of a  and

P i-PhiP )cr '
( l - v / )

Differ.a

(5.4.3) *10' (5.4.5) *10'
0.7 1 27.181 27.961 +2.87%
0.8 1 7.317 7.523 +2.81%
0.9 1 0.829 0.852 +2.79%
0.7 5 9.060 9.089 +0.32%
0.8 5 2.439 2.447 +0.31%
0.9 5 0.276 0.277 +0.31%
0.7 10 4.942 4.947 +0.09%
0.8 10 1.330 1.332 +0.09%
0.9 10 0.151 0.151 0.09%

Table 5.4.1 Buckling pressure for thick faces.
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P values. For values of cj f  > 5 membrane theory leads to almost the same value for 

the thick faces. For values of c / /  > 1 the error is less than 3% and the difference is 

almost independent of the values of a  . Therefore, the equivalence equation (5.4.4) 

may be used over a quite wide range.

If finite values for Young’s modulus and Shear modulus were introduced in the 

evaluation, the critical pressure, is obtained by determining the biggest roots of

the following second degree equation, which is result of the determinant evaluation -  

see Raville (1954):

{b/af 2G
+ 2

re

l - ( V a )
[b /a f

4 £ , /
\ + bja 

bja /J {b/af
 K
a

1+ ^
«y

V i  /, / \2 \

LV2G
-1

re A {b la f

+ \ - b / a
bja

\

yj

1 ( \ - b l a f (5.4.6)
4 b/a

where , G^q are the Young’s modulus and Shear modulus of the core material 

respectively, p  is the critical pressure, and

K  = - -------— V ,  , , . (5.4.7) ̂  ̂ Ef f Xnbj a  ' 

a )  Em

The difference between equation (5.4.6) and the simplified equation (5.4.3) is shown 

in figure 5.4.2 as a function of the strength of the core material and the geometric 

parameters a  and p . The core material is considered isotropic, therefore,

OfQ = E j 2 ( l  + v ^ ) . The Young’s modulus of the core material is represented by the

dimensionless number m, which is the ratio between the Young’s modulus of the 

faces and the Young’s modulus of the core, so m = j E ^ . Figure 5.4.2 shows the

range of values for a  , p , and m where the simplified equation can be used within a 

minor error. From this figure one can see that this simplified assumption leads to an 

overestimated value of the buckle pressure. In other words the simplified approach
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2.0

a=0.60 and m=10

1.8
a=0.95 and m=1000

1.6
a=0.90 and m=100^

a=0.70 and m=10

1.4
a -0 .9 5  and m=l(X)

a=0.80 and m=10

1.2
a=0.90 and m=10

a=0.95 and m=10

1.0
202 4 6 8 10 12 14 16 18

co/f

Fig. 5.4.2 M uilti-layered pipe buckle pressure com parison by considering the Y oung’s M odulus 
and Shear M odulus o f the core (pcM)\r eq. (5.4.6) and {pcM)cr^(\- (5.4.3).

leads to a bigger value for the buckling pressure. For values of a  = 0.95 and 

m = 10 equation (5.4.3) and (5.4.6) give almost the same values. As long as the 

double walled pipe becomes thicker a < 0.95 or the intermediate material becomes 

softer m > 10 the difference between them rises.

The equivalence approach in equation (5.4.4) is a good starting point for the design 

of equivalent multi-layered pipes. However, after the core material has been chosen, 

the whole equation (5.4.6) for bucking assessment should be computed to allow a 

safe design. For a better evaluation of the benefits of multi-layered construction, the 

figures 5.4.3(a) and 5.4.3(b) show the equivalence between the single walled and 

multi-layered construction for the same theoretical buckling pressure based on 

equation (5.4.4). One of the parameters a  or [5 has to be fixed in order to determine

the other for a specific single walled pipe as defined by its ratio P /t .
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Fig. 5.4.3 B uckling equivalence o f m ulti-layered pipe with singe w alled pipe, sam e internal diam eter.

Besides the buckling pressure, the bending stress at touch down point (TDP) in the 

near position has to be checked. As has been pointed out before, when outside 

diameter increases the bending stress grows proportionally. The maximum stresses 

achieved on the wall for a typical free catenary configuration should be investigated. 

Of course, the multi-layered pipe can considerably reduce the top tension by using a 

light material in the core. However, it will lead to the design of a buckling equivalent

--------H 2 .0

--------^ .5
-------- j3=iO

--------p=20 1.8
P=50

--------p=\oo

■

1 ê

I
a: 1.4

1.2

20 25 30 35

Ratio P/t - equivalent single walled pipe

0=0.7
0 =0.8

 0=0.9

0=0.95

/

10 15 2 0  2 5  30  35

Ratio P/t - equivalent single walled pipe

(a) (b)
Fig 5.4.4 O utside diam eter ratio equivalent m ulti-layered to single w alled pipe.
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multi-layered pipe with bigger outside diameter. Figures 5.4.4(a) and 5.4.4(b) show 

the ratio of outside diameter for a equivalent multi-layered pipe (Pp) to the outside 

diameter of a single walled pipe (Pw)- It can be seen that using the multi-layered 

construction will induce more bending stresses at touch down point in near position. 

For «>0.90 the outside diameter increases less than 20% for the whole range. For 

typical offshore applications (10>OZ)/f>30) it is possible to find a suitable 

combination of parameters to avoid big increases in the outside diameter.
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6. Application studies

6.1 Multi-layered cylinder solution for internal pressure and ABAQUS.

In order to verify the solution achieved by the analytical approach presented in 

section 3, results from this analysis were compared with results from the finite 

element solid modelling package ABAQUS for several configurations. In these 

comparisons, an internal pressure of 103440 MPa (15000 psi) and a zero external 

pressure were used. The comparison is made between a single layer steel pipe and a 

multi-layered pipe with a core with material of Young’s Modulus given by

= E jm  . The single cylinder geometry is 0.254m (10-inch) internal radius and 

0.508m (20-inch) outer radius.

Figure 6.1.1 presents the radial strain, hoop, and radial stress distributions along the 

thickness for the single layer steel cylinder. Figure 6.1.2 shows the solution for a 

multi-layered pipe. In this case, the pressure gap and the internal and external radius 

are the same. However, the intermediate layer is 40% (cr;/?=0.4) of the wall 

thickness with an inner radius of ^=0.3556m (14-inch) and an outer radius of 

c=0.4572 m (18-inch). The ratio m between the steel and intermediate material 

Young’s modulus is 500. The analytical derived stresses as well as the strains match 

accurately with equivalent results from ABAQUS as would be expected.

0,0100

0.0095

0.0090

0.0085

0.0080a1
0.0075

0.0070

0.0065

0.0060

0.0055
16 18 2010 12 14

50000

201XX)

1

-KKXX)

-20000 2010 12 14 16 18Radius (inch)
Radius (inch)

Fig. 6.1.1 C om parison between the analytical model (continuous line) and A BA Q U S solution (sym bols) 
for a single w alled steel pipe - S tresses (hoop and radial) and strain in radial direction.
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o  ABAQUS - radial stress 

^  ABAQUS - h(K»p stress
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30 -
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-10  -
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2018 20
R a d i u s

Fig. 6.1.2 C om parison betw een the analytical model (continuous line) and A BA Q U S solution (sym bols) 
for the m ulti-layered pipe - S tresses (hoop and radial) and strain in radial direction, m=500.

6.2 Parametric results for multi-layered pipes under internal pressure.

This section presents a parametric study of analyses carried out to investigate the 

behaviour of the stresses and strains of different multi-layered pipe cross-sections 

under internal pressure loading. The case considered is a pipe made of steel inner 

and outer layers with the internal core layer being of smaller Young’s Modulus. The 

results are presented in graphical form.

To achieve a better understanding of the structural behaviour of multi-layered pipes, 

their stress and strain performance is presented in comparison with the equivalent 

isotropic single walled pipe. The basic criterion for this comparison is that the 

amount of steel in both pipes is the same. The multi-layered pipe differs only by the 

inclusion of an intermediate layer that splits the steel into two thinner faces. The 

graphical results from the parametric analysis are classified into three groups 

corresponding to the diameter and thickness relation of the equivalent single walled 

steel pipe. An outside diameter to wall thickness ratio OD/r equal to 10, 20 and 30 

represents the range from thick to thin wall pipes. The intermediate material stiffness 

is given as the ratio between the steel and the intermediate material Young’s 

Modulus, that is m = EjE^. . The geometry of the multi-layered pipe is also defined 

in terms of the thickness and the position of the intermediate layer. The thickness of 

the intermediate layer corresponds to the ratio 7], between the actual intermediate
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layer thickness and the total thickness of the pipe wall. The position of the 

intermediate layer defined as ratio %, gives the relationship between the thickness of 

the first steel layer with the total thickness of the pipe wall, see Figure 3.3.1 and 

Table 3.1.1. It means that if % was equal to (l - t]) /2 the core is in the centre and > 

both inner and outer steel faces have the same thickness.

For all cases presented, the inner radius of the pipe thickness is 5-inches. Beyond 

this, the various changes in geometry are given in terms of the ratios given above. 

Note that the second steel layer has thickness r ( l - r ; - % )  where t is the total wall 

thickness. Tables 6.2.1, 6.2.2, and 6.2.3 present the geometrical parameters used to 

plot the graphs for OZ)/t =10, 20, and 30. The first row of values correspond to the 

single walled steel pipe geometry based on the parameter O D jt . These are followed 

by the values for the geometry of the multi-layered pipe including the intermediate 

layer dimensions with all dimensions in inches. The Table presents values for four 

cases each case representing a particular core material thickness denoted by rf with 

this parameter assuming values of 80%, 60%, 40% and 20% of the total wall 

thickness. The value of % as explained above denotes the position of the 

intermediate layer, which in this case is always centred in the pipe total wall 

thickness.

o m = io Radius %
(inches) n

80%
10%

60%
20%

40%
30%

20%
40%

single
walled

pipe

inner
thickness

outer

5.000
1.250
6.250

5.000
1.250
6.250

5.000
1.250
6.250

5.000
1.250
6.250

inner
layer

inner
thickness

outer

5.000
0.476
5.476

5.000
0.551
5.551

5.000
0.588
5.588

5.000
0.610
5.610

core
layer

inner
thickness

outer

5.476
3.810
9.286

5.551
1.654
7.205

5.558
0.784
6.372

5.610
0.305
5.915

outer
layer

inner
thickness

outer

9.286
0.476
9.762

7.205
0.551
7.756

6.372
0.588
6.960

5.915
0.610
6.525

Total thickness 4.762 2.756 1.960 1.525
Table 6.2.1 - Pipe dimensions (in inches) for ODjt =10.

All graphs of Figure 6.2.1 were obtained for intermediate layer centred in the pipe 

wall. It means that the internal and external layers have the same thickness. Here the 

aim is to understand the behaviour of the multi-layered pipe with core intermediate
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layer material which is less stiff than steel. The Young’s Modulus ratio as m=EJEc 

of 2, 5 and 10 were used.

The results presented on the graphs as the von Mises Stress Ratio fi which is a ratio 

of the von Mises stress reached at a point in the radial direction for the multi-layered 

pipe with respect to that reached in the equivalent single walled pipe. As explained 

before, the equivalent single walled pipe is that using the same amount of steel as the 

multi-layered pipe. The non-dimensional radius parameter p  is the ratio between the 

radial position divided to the total thickness. The ratio ji plotted for the intermediate 

core layer is not relevant since it is the ratio of the stresses reached in the core 

material with the stresses reached in the equivalent isotropic steel pipe. Of course the 

stresses in the steel will be very much greater than these in the less stiff intermediate 

material.

O D /t= 2 0 Radius X 80% 60% 40% 20%
(inches) r] 10% 20% 30% 40%

single inner 5.000 5.000 5.000 5.000
walled thick. 0.556 0.556 0.556 0.556

pipe outer 5.556 5.556 5.556 5.556

inner inner 5.000 5.000 5.000 5.000
layer thickness 0.237 0.260 0.269 0.274

outer 5.237 5.260 5.269 5.274
core inner 5.237 5.260 5.269 5.274
layer thickness 1.896 0.778 0.359 0.137

outer 7.133 6.038 5.628 5.412
outer inner 7.133 6.038 5.628 5.412
layer thickness 0.237 0.260 0.269 0.274

outer 7.370 6.298 5.897 5.686
Total thickness 2.370 1.298 0.897 0.686

Table 6.2.2 - Pipe dimensions (in inches) for O D /t= 0 .

The most important result, therefore, is the value of the von Mises Stress Ratio, p, 

through the outer and inner steel faces. Values of p  greater than unity mean that the 

equivalent steel pipe is subjected to greater stresses than the equivalent multi-layered 

pipe, for the same internal pressure condition. Thus p  denotes the amount of over­

stress an homogeneous single walled pipp has to withstand to achieve the same 

performance as the double walled pipe facing the same pressure loading. Another 

interpretation of p  is that it is a measure of the greater structural efficiency 

achievable by moving from a single walled pipe to an equivalent multi-layered pipe 

with the same steel weight.

126



OD/t=30 Radius %
(inches) j]

80%
10%

60%
20%

40%
30%

20%
40%

single
walled

pipe

inner
thickness

outer

5.000
0.357
5 357

5.000
0.357
5.357

5.000
0.357
5.357

5.000
0.357
5.357

inner
layer

inner
thickness

outer

5.000
0.160
5.160

5.000
0.170
5.170

5.000
0.202
5.202

5.000
0.177
5.177

core
layer

inner
thickness

outer

5.160
1.276
6.435

5.170
0.512
5.682

5.202
0.150
5.352

5.177
0.089
5.266

outer
layer

inner
thickness

outer

6.435
0.160
6.595

5.682
0.170
5.852

5.352
0.202
5.504

5.266
0.177
5.443

Total thickness 1.595 0.852 0.504 0.443
Table 6.2.3 - Pipe dim ensions (in inches) for OD/t=0.

Another parameter plotted in Figure 6.2.1 is Mises stress along the radial direction 

divided by the difference between internal and external pressures. This ratio has 

been plotted against the same radius parameter p in order to visualise the stresses

m=2 and OD/t=U) m=5 and OD/t=lO
2.0

1.8

1.4

1.2

1.0
0.0 0.2

2.0

1.8

I.ft

1.2

1.0

0.2

//i=10 and OD/t=lO m=2, OD/t=10
2.0

 ------  rj=80%
 f?=60%
 77=40%
  77=20%

1.0

O.ft
0.0 0.2 0.4 o.ft 0.8 1.0

0.2 0.4 O.ft 0.8 1.00.0

I :

i :
1

--------  S ingle walled

------- Double wallec

............1...............

0.8 1.0 
P

Fig. 6.2.1 The M ises Stresses Ratio param eter with m ulti-layered 
pipes for core m aterials with m=2, m=5 and m=10.
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achieved in both pipes. For this case the Mises stresses for the single walled 

construction are around 20% greater than for the double walled construction for the 

same internal pressure. In other words, using the same amount of steel and the same 

pressure gap the multi-layered construction leads to a lower stress, level.

It can be observed in the graphs of Figure 6.2.1 that for an intermediate core material 

Young’s Modulus that is half of that of steel (m=2), the stress parameter j i  is greater 

than unity. It means that in this case the multi-layered pipe is demanding less 

strength of the steel than the single walled pipe.

Figures 6.2.2 (a), (b) and (c) present calculation that show the behaviour of the 

multi-layered pipe using thin walled steel pipe inner and outer layers. The ratios 

OD/t equal 20 and 30 and the Young’s modulus parameter m is equal to 2, 5 and 10.

It can be observed that as the intermediate material is made less stiff, the stress 

performance parameter (à reduces. The significance of the j i  value falling below 

unity is that there is no improvement in the structural performance. However, the 

multi-layered pipes stress performance improves as the inner and outer wall 

thickness are reduced. For OD/? equal 30 the stress performance is better than that 

of the equivalent steel pipe for all values of m. For relation ODjt =20, the parameter 

jj. is greater than unity only for intermediate stiffer materials or with m less than 5.

m=2 and 0D/t=2Q m=2 and OD/t=30
2.02.0

L —

Fig. 6.2.2(a) Single w alled pipes with OD/t equal to 20 and 30. M ises Stresses Ratio 
param eter for interm ediate m aterials with m=2 .
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/n=5 and OD/t=20 m=5 and OD/t=30
2.02.0

_____I

1.0 0.0

Fig. 6.2.2(b) Single walled pipe with OD/t equal to 20 and 30. M ises Stresses Ratio 
param eter for interm ediate m aterials with m=5.

Having demonstrated that the inclusion of an intermediate material layer improves 

the performance of multi-layered pipe when subjected to internal pressure. It is 

worthwhile investigations structural performance due to moving the intermediate 

layer away from the centre of the wall. That is with a non centred construction. In 

this case, the multi-layered pipes will have their inner layer thicker than the external 

layer. It should be pointed out here that the case of inner steel layer being thinner 

than the outer layer has not been presented because in these cases, all j i  values were 

less than 1.0 giving reduced performance compared to the equivalent single walled 

pipe. This feature has been analysed for two cases. The first with the inner layer 

equal to 30% of the total wall thickness and the second case with the inner layer

»i=10 and OD/t=2{) m=10 and OD/t=30
2.0

0.8

I   —

Fig. 6.2.2(c) Single walled pipe with OD/t equal to 20 and 30. M ises Stresses Ratio 
param eter for interm ediate materials with m=10.
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equal to 40% of the total wall thickness. In both cases, the Mises Stress Ratio 

parameter ^  has been evaluated for several intermediate material thickness.

The graphs in Figures 6.2.3 (a), (b), and (c) show the performance ratio jn for three 

single walled ODjt values of 10, 20 and 30. Note that the multi-layered pipe 

performance is better as thickness of the core layer is increased.

m=2 and OZ)/f=10 m=2 and  OD/t=\Q
2.0

 %=30%: 77=60%
 %=30%; 77=50%

;f=30%; 77=4 0 %

0.0 0.2 0 4 0,6 OS l.Op

%=40%; 77=5 0 % 
%=40%; 77=4 0 % 
;M0%; 77=30% 
%=40%; 77=2 0 %

I—" "

Fig. 6.2.3(a) - N on-centred construction effect.

It is useful, in conclusion, to present the above result in a specific manner though the 

ratio of the Von Mises stress to the pressure difference (p, ~ p^) for both the multi­

layered and single walled pipe. One case is plotted in this way in Figure 6.2.4 for 

m=2 and OD/f = 10. This figure demonstrates that both steel layers of the multi­

layered pipe have lower stresses than the equivalent single steel layer pipe.

m=2 and OD/t=20 777=2 and OD/t=20
2.0 2.0

 %=30%; 77=6 0 %
 %=30%; 77=5 0 %

%=30%; 77=4 0 %

 %=40%; 77=5 0 %
- -  p:40%; 77=4 0 %
 %=40%; 77=3 0 %
  %=40%; 77=2 0 %

C-

0.4 0.6 0.8 1.0 ().() 0.2 0.4
P

Fig. 6.2.3(b) - N on-centred construction effect.
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m =2 and OD/f=30 m=2 and O D/f=30

%=30%; 77=60% 
%=30%; 77=5 0 % 
%=30%; 77=40%

1,4

 !.. ..

L - -  —

;^40%; 77=5 0 % 
X=40%', 77=4 0 % 
%=40%; 77=3 0 % 
%=40%; 77=2 0 %

I
.r:

Fig. 6.2.3(c) - N on-centred construction effect.

Also, the stress reached in the inner boundary of the first steel layer for the multi­

layered pipe is 4.5 times the 

pressure gap of 103440 MPa 

( 15000 psi). On the other 

hand, the stress reached in the 

inner boundary of the single 

steel pipe is 5.1 times the 

same pressure gap. Therefore, 

the ratio parameter jU in this 

case is 1.13. It means that the 

full steel pipe is bearing 13% 

more stress than the multi­

layered pipe for the same 

pressure gradient in the inner 

boundary of the p ipe .

1.4

1.3

1.2

1.0

  S in g le  w a iled  pipe

 M ulti-layered  p ipe5

4

c/3
.1 3
s
I 2

I

1.000.00 0.20 0 .4 0 0 .6 0 0 .8 0

Fig. 6.2 .4  C om parison M ises stresses norm alised by the 
pressure gap (p, -  p j .
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6.3 Multi-layered pipes under external pressure

In section 4, three analytical models for external pressure have been presented for 

the multi-layered pipe. These are the elastic foundation model, the classic elastic 

model, and the elastic-plastic model. Each model has its merits and drawbacks. 

Unfortunately, experimental data are not available so as to calibrate and define the 

proper range of validity of each model. However, based on the comparison of results 

of those models between each other and with finite element analysis some insights 

into the buckling problem of such non conventional construction can be obtained.

In order to present a comparison between the external buckling pressure for the 

multi-layered pipe, a comprehensive study has been carried out. A comparison 

between results from the three methods and the finite element method package 

ABAQUS is performed. A large range of wall thicknesses and diameters have been 

considered based on the two basic parameters for the multi-layered pipe; but with the 

restriction that the inner and outer layers or faces have the same thickness {b-a=d-c), 

see Figure 3.3.1.

The following graphs were produced by fixing the parameter P, which is the ratio 

between the core layer thickness and the face thickness, p  = { c - b ) l { b - a )  and 

varying the parameter a, which is the ratio between the mean radius of the outer and 

inner layers a  = {c + d)/{a + b).

P stands for the magnitude of the core thickness. The a  parameter is related to the 

slenderness of the constructions, i.e. when it approaches unity, it implies that the 

total wall thickness in becoming small compared with the mean radius. Table 6.3.1 

shows the values of the multi-layered pipe geometry a, b, c, d, c o , f  and t for a range 

of a  and p  values based on a 20-inch inside diameter pipe (a= 10-inch). H ere /is  the 

face thickness, co is the core thickness and t is the total wall thickness. The radii a, 

b, c, and d  are shown in Figure 3.3.1.
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a P a b c d / CO t

0.95
1
3
5
10

10.000
10.000
10.000
10.000

10.267
10.132
10.088
10.048

10.533
10.530
10.529
10.528

10.800
10.662
10.617
10.567

0.267
0.132
0.088
0.048

0.267
0.397
0.441
0.480

0.800
0.662
0.617
0.576

0.90
1
3
5
10

10.000
10.000
10.000
10.000

10.571
10.282
10.187
10.102

11.143
11.127
11.121
11.117

11.714
11.408
11.308
11.218

0.571
0.282
0.187
0.102

0.571
0.845
0.935
1.015

1.714
1.408
1.308
1.218

0.80
1
3
5
10

10.000
10.000
10.000
10.000

11.333
10.645
10.426
10.230

12.667
12.581
12.553
12.529

14.000
13.226
12.979
12.759

1.333
0.645
0.426
0.230

1.333
1.935
2.128
2.299

4.000
3.226
2.979
2.759

0.7
1
3
5
10

10.000
10.000
10.000
10.000

12.400
11.132
10.741
10.397

14.800
14.528
14.444
14.371

17.200
15.660
15.185
14.768

2.400
1.132
0.741
0.397

2.400
3.396
3.704
3.974

7.200
5.660
5.185
4.768

Table 6.3.1 Multi-layered geometry as function of a  and p  (all dimensions in inches).

The comparison graphs include five continuous curves and two sets of symbols. The 

buckling pressure is presented in kilopounds force per square inch, (1 ksi= 6.895 

MPa). The continuous and thicker curves represents the elastic plastic behaviour of 

the multi-layered pipe. In this case, the buckling pressure is estimated as the pressure 

achieved when the core reaches elastically the strength limit after the two faces have 

already been in plastic condition. In addition, the yield stress for the faces and the 

ultimate stress for the core are the main parameters in the estimated buckling 

pressure. This approach was developed by the author in section 4.4.

The other continuous but single curve represents the elastic buckling based on elastic 

instability of the multi-layered wall failing on the second mode. This model assumes 

that the wall behaves a&an elastic continuous layer and also that the wall thickness is 

small in comparison with the pipe radius. In addition, the core ratio p, should be 

relatively high (P> 5) and the core Shear Modulus is considered. These results were 

based on the elastic approach formulation of Norris and Zahn /54/, 1963 (section 

4.3.4).

The three segmented curves represent the elastic foundation model also developed 

by the author, which is described in section 4.2. Each curve is related to the failure 

of one of the three layer considering the other two layers as an elastic foundation. It 

is clear that the smaller bucking value identifies the layer that would reach the
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instability condition first while the others still behaving elastically. Moreover, on the 

right of the graphs there is an extra y-axis that presents the correspondent wave 

mode for the elastic instability.

Finally, there are two sets of symbols. The black square symbols represents the 

ABAQUS results for a 2-D cylinder model and the black bullet symbols represents 

the 3-D cylinder model. The ABAQUS results were obtained for the second wave 

mode failure, elastic instability i.e. by evaluating the eigenvalues. Figure 6.3.1(a) 

include the key for the curves and points shown on the following figures. The graphs 

were produced for two main cases. For Young’s modulus ratio between the faces and 

core material m=10 and m=100. Figure 6.3.1(a) to Figure 6.3.1(e) give results for a 

smaller ratio between the Young’s modulus of the faces and the core (m=10) and the 

core thickness parameter P is set to 1, 3, 5, 8 and 10 respectively. Figure 6.3.1(f) to 

Figure 6.3.l(j) are results with the Young’s modulus parameter increased ten times 

(m=100) and the thickness parameter varies in the same way as before.

It should be pointed out that the elastic buckling model curve shows good agreement 

with the ABAQUS results mainly for p>5 and coO.S. This implies that the elastic 

theoretical model agrees with the finite element package in the range that 

encompasses its basic assumptions as would be expected. In the elastic foundation 

approach the assumption is that each layer should have a small thickness in 

comparison with its mean radius. From the range shown in Figure 6.3.1 the elastic 

foundation model has a bigger range of agreement with ABAQUS than the elastic 

model of section 4.2. Finally, the elastic plastic approach, which is not based on loss 

of stability, presents a quite linear behaviour. The greater the yield limit of the faces 

and the limit strength of the core the greater the estimated buckling pressure.

It needs to be stressed that the elastic plastic approach leads to smaller predictions of 

the buckling pressure. This can be considered as a lower bound. On the other hand. 

Figures 6.3.1 present a quite big range of parameters. For a slender pipe, that means 

high values of a, during hydrostatic pressure loading the structure is more prone to 

buckle due to loss of stability. In that sense the stresses developed in the walls would 

not exceed the material yield stresses of the individual layers of the multi-layered
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pipe. Moreover, for a quite thick wall, that means small values of a, the multi­

layered pipe would develop a higher strength to hydrostatic pressure. Due to this 

extra strength, the cylinder will reach the elastic limit of its individual layers before 

the loss of stability.

This can be compared to a single bar-column with a compressive axial load. If the 

bar has a square cross section of sides h, and a length L, the Euler load would be 

-  E l 11} . If the yield stress of the bar-coliimn material is CT̂ = the axial

load to reach the yield condition is =Eh^£y.  Therefore, for the bar slender ratio

/i/L > 1̂26 y , the bar-column will reach the yield condition before the unstable

Euler load during axial loading. For typical steel = 0.2%, than h/L>  4.93% .

This behaviour can be extended to the multi-layered pipe. For thick pipes the layers 

would reach the yield condition before loss of stability during hydrostatic loading. 

Figures 6.3.1 shows a predominant lower values for elastic plastic approach for 

values of a<0.9. It does not mean that thick wall multi-layered pipe would not fail 

by loss of stability. There are imperfections that would trigger the instability at 

smaller loads.

Another important factor that must be considered is the boundaries between the 

layers. It is assumed in the theoretical models that the layers remain fully linked 

during their axisymmetric deformations. It means that there is no slip or friction on 

the boundaries immediately before failure. In addition, the existence of 

imperfections on the individual layers is not considered in the models. The 

imperfections could be the trigger for a the loss of stability and would bring the 

buckling pressure down as demonstrated by Donnell (1956) in /I / for single walled 

cylinders.

There are no experimental results available for the data presented here to be plotted 

against and compared with. However, for multi-layered cylinders with thin skins and 

a thick core, the experimental data from Montague show a good agreement with the 

elastic plastic model, see Figure 4.4.2.
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Figure 6.3.1(a) shows a comparison between the models for a small thickness ratio 

i p =  \) and for a relatively hard core, such as concrete (m = 10), represented by the

ratio between the Young’s Modulus of the materials of the faces and core. From the

graph, it is clear that all the models converge to the same solution when the total 

wall thickness of the cylinder is diminishing, i.e. for values of æ>0.95. On the other 

hand, as the cross-section wall becomes thicker, the classic elastic solution, 

represented by the formulation posed by Norris and Zahn /54/, 1963 gives the 

smaller prediction of the critical external pressure. It is of interest to note that the 

elastic foundation solution for intermediate layer buckling shows the smaller

p= c o / f=  1, thickness core/face ratio EJE =  10, Stiffness ratio

®  Abaqus result - 3D  model 

B  Abaqus result - 2D  model

Elastic foundation model - 1st or inner layer 

Elastic foundation mtxlel - 2nd or core layer 

Elastic foundation model - 3rd or outer layer 

Elastic theory, classic - Norris and Zahn, 1963 

Eslasto-plastic mtxlel present work
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Fig. 6.3.1(a) Com parison o f external pressure models.
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solution among the elastic foundation models and at the same time gives better 

agreement with the finite element solution obtained out ABAQUS. It should be 

pointed out here that the finite element solution implies a collapse mode shape with 

n = 2 or the cylinder is buckling in the well know form of two lobes. As expected, 

the elasto-plastic model always gives smaller predictions across almost the full range 

of a. It means that for the cylinder with thicker wall, in this case identified as a<0.9, 

the theoretical models for elastic collapse cylinder do not give the lowest critical 

pressure. In addition, the elasto-plastic solution indicates a possible collapse by 

plasticity of its skins and reaching a limiting stress in the core rather than a loss of 

instability.

/3= co /f  = 3, th ickness co re /face  ratio  EJE = 10, S tiffness  ratio

n

250

12 m

y 150

1 r
0.6 0.7 0.8 0.9 1.0

a, m ean rad ius faces ra tio

Fig 6.3.1(b)

Figure 6.3.2(b) differs from the former only by an increase in the thickness ratio, 

therefore, now p =3 .  This means that the core thickness has increased relative to the 

total thickness, and the total wall thickness has diminished for the same value of a  -  

see table 6.3.1. The results show the same trend as Fig. 6.3.1(a) when the abscissa 

parameter a  approaches towards the right. However, the elastic solution that leads
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to the smaller collapse prediction is now the elastic foundation model for the outer 

layer. The classic elastic solution is now in better agreement with the 3-D FEA 

results. It should be stressed that the classic solution also assumes that the cylinder is 

collapsing with a mode shape corresponding to /i = 2.

20
j}= co / f=  5, th ickness co re /face  ratio  EJE  10, S tiffness ra tio
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Fig 6.3.1(c)

Again Figure 6.3.1(c) has approximately the same behaviour as Figure 6.3.1(b). In this 

case, the difference is again only in the thickness ratio that has been increased, now to 

a value /3 = 5. As before, the smallest solution among the elastic solutions is from the 

elastic foundation collapse for the outer layer. The classic elastic solution, the elastic 

foundation model for inner layer and the FEA have predictions of the same 

magnitude. Another interesting observation from this result is that the elasto-plastic 

result has a larger range of reasonable agreement with the elastic solution (in the range 

0.9<Cf<l).
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/3= co/f=  8, thickness core/face ratio EJE = 10, Stiffness ratio
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a , m ean rad iu s faces ra tio

Fig 6 .3 .1(d)

Figure 6.3.1(d) has been produced by changing only the thickness ratio -  this now 

being /3 = 8. Again, the elastic foundation model for the outer layer leads to the 

smaller prediction of the critical external pressure among the elastic models. It should 

be observed that the elasto-plastic result, based on the present work, shows very good 

agreement with the elastic foundation model for the outer layer in the range 0.8<a< l. 

The FEA solution also present a good match with the classic elastic approach. This 

trend has been observed in almost all of the cases considered here.

The next Figure, 6.3.1(e), shows the same trend observed in Figure 6.3.1(d). In this 

case the value of thickness ratio have been pushed even further, now to 

/3 = 10. The elastic foundation model for the outer layer also leads to the smaller 

predictions in terms of loss of stability. The elasto-plastic result now shows a larger 

range of agreement with the elastic foundation model for the outer layer over the 

range 0.75 < a  < 1. The 3-D finite element analysis continues to show good agreement 

with the classic solution.
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Fig 6.3.1(e)

Several important observations can be deduced from Figures 6.3.1(a) to 6.3.1(e).

It has required a relatively stiff core material (m = 10) such as concrete to 

demonstrate the better external pressure performance of the multi-layered 

construction. The most important observation from these figures is that collapse of a 

multi-layered cylinder with a relatively stiff core tends to have an elasto-plastic nature 

very close to the loss of stability obtained with increase of the thickness ratio p. It 

means that a multi-layered pipe with this characteristic would probably collapse in a 

combined manner somewhere between elasto-plastic type and loss of stability of the 

outer layer possibly triggered by imperfections. Unfortunately, there is currently no 

known experimental data available to support this statement. However, an inspection 

of the above figures shows that this is likely to happen.

In the next set of results, the effect of a soft (less stiff) core will be considered for the 

same range of thickness ratios.
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Fig 6.3.1(f)

Figure 6.3.1(f) shows a comparison between the models for a small thickness ratio {p 

= 1) and for a relatively soft core, such as polypropylene (m = 100), represented by the 

ratio between the Young’s Modulus of the materials of the faces and core. In this case, 

the classic solution shows better agreement with the elasto-plastic approach and 

represents the smaller prediction of the critical pressure among the elastic models. The 

elastic foundation solution gives a very high prediction for thicker cylinders or 

a  < 0.9 . On the other hand, for thin walls, «  > 0.9, the elastic foundation model for 

the outer layer shows agreement with the elasto-plastic model. The difference between 

the classic elastic solution and the FEA results in this range of parameters may be 

explained by the simplification included in the Norris and Zahn formulation that 

assumes an orthotropic core rather than the isotropic behaviour assumed by the FEA 

solution.
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Figure 6.3.1(g) differs from the former only by an increase in the thickness ratio -  

therefore, now p =3 .  The core thickness has increased relatively to the total thickness, 

and the total wall thickness has diminished for the same value of a: -  see table 6.3.1. 

The elastic foundation solutions show larger values for the critical pressure. The 

classic elastic solution, formulation of Norris and Zahn, is the smaller result for the 

whole range among the elastic models. In this case there is an important observation, 

for thin multi-layered walls (value of a > 0.9 ). In this case, the classic solution gives 

a smaller critical pressure than the elasto-plastic approach. There seems to be a 

transition point between the collapse due to elasto-plastic limit deformation and lost 

of stability under uniform external pressure loading for the multi-layered cylinder 

construction. The FEA agrees with this trend and the result shown for a =  0.95 falls 

clearly below the elasto-plastic solution line. The solution from the FEA and the 

classic solution are now getting closer to each other. This may be due the fact that 

relatively speaking, the total wall thickness is becoming smaller and the effects of the 

simplified assumptions of the classic approach are also small .
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Figure 6.3.1(h) has approximately the same trend as Figure 6.3.1(g). In this case, the 

difference is again only in the thickness ratio which has been increased to 

P= 5. The elastic foundation solution for the outer layer shows a agreement with the 

FEA results. The others elastic foundation solutions gives a very high prediction. The 

trend of lost of stability for a > 0.88 is also clear. The elastic foundation model for the 

outer layer, the classic solution and the FEA results coincide in the range 0.88 < a  < 1. 

This means that the multi-layered construction for this range will collapse from loss of 

stability. In addition, the transition point where this change in behaviour is likely to 

take place is a  = 0.88. However, for a < 0.88 the elasto-plastic solution also gives the 

smaller critical pressure prediction. The FEA and the classic solution are now closer 

for the whole range. As pointed out before, the simplified assumptions in the classic 

model approach is becoming less important when the total thickness of the wall is 

relatively smaller.
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Figure 6.3. l(i) is produced using /3 = 8 and keeping all other parameters the same. In 

this case, the elastic foundation model for the outer layer gives the smaller critical 

pressures for a > 0.78 . The 3-D FEA and the classic solution are coincident for the 

whole range of a. The elastic models clearly show that the collapse for a  > 0.9 would 

occur by lost of stability rather than elasto-plastic deformation. The elastic foundation 

prediction for the inner layer also falls below the elasto-plastic line. The trend of large 

values from results of the elastic foundation for the core layer may be explained as its 

thickness relative to the other two layers is increasing when the thickness ratio p 

increases (see table 6.3.1 ). Therefore, the loss of stability of a thicker core should not 

be expected to happen at low external pressure.

Figure 6 .3 .1 (j) corresponds to /3= 10. The same general behaviour observed in the last 

figure is also present. In this particular case, the elastic foundation model prediction 

for the inner layer shows agreement with the classic solution and the FEA results for a
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large proportion of the range ( a > 0.74 ). The elastic foundation for the outer layer 

gives the smaller prediction of critical pressure for the whole range. This indicate that 

this combination of parameters would always lead to a collapse by loss of stability. On 

the other hand, results from the classic elastic solution, the FEA results and the elastic 

foundation for the inner layer show a transition point at a  = 0.86. For values outside 

this range, the collapse would occur by elasto-plastic deformation.

Figures 6.3.1 (f) to 6.3.1 (j) lead to several observations for relatively soft cores 

(m = 100) such as polypropylene on the effects of a softer core material on the 

external pressure performance of the multi-layered construction. The main 

observation from these figures is that collapse of a multi-layered cylinder with a 

relatively soft core and thin walls ( a  > 0.9 ) tends to have an elastic solution or that it 

will collapse by loss of stability. This trend increases with increase in the thickness 

ratio p. In the selection of parameters used here, it is clear that there is a transition 

point which is not exactly a point but a range of values of a  where the collapse will

1 4 5



take place by a combination of behaviours. Therefore, a combination of loss of 

stability and a catastrophic local plastic deformation should govern the failure mode 

of these multi-layered construction. Unfortunately, insufficient experimental data are 

available to support this statement. However, these points can be concluded from 

inspection of the figures presented.
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6.4 Catenary riser

It is important to consider during this work, a range of materials that can be used in 

the core. It is quite clear that the faces of the multi-layered pipe should be made of 

steel or other metallic or ductile material. The steel is far the less expensive and 

allows a huge range of alloys to provide specific applications requirements. In 

addition, the faces will need to withstand contact with the conducted fluid and the 

external environment. On the other hand, the core material presents a bigger range of 

options. The aeronautical industry has used aluminium honeycomb to ensure high 

strength and less weight at the same time. However, the deep water offshore industry

E G V (fy P ,
(GPa) (GPa) (Poisson) (MPa) (kg/m )

1 - E x p a n d e d  p la s t ic s
PVC 0.0552 0.0093 - 1.03 66
Phenolic 0.0069 0.0034 - 0.17 56
Polyurethane 0.0186 0.0048 - 0.52 72
Polystyrene 0.0110 0.0045 - 0.28 42
2 - U S c o m m e rc ia l a lu m in iu m  h o n eycom b, 1 /4 ” c e ll  s ize
.002-in foil 1.79 0.33 - 3.29 63
.003-in foil 3.01 0.52 - 6.20 94
.004-in foil 3 ^ 0 0.75 - 9.56 123
3  - R e in fo rc e d  p la s t ic  h o n eyco m b , 3 /1 6 ” c e ll  s ize
Phenolic/Glass 1.23 0.44 0.41 11.51 140
Phenolic/asbestos 1.37 0.43 0.60 10.77 149
Silicone/Asbestos 1.01 0.36 0.39 4.85 139
4 - P o ly m e r ic  m a te r ia l
Polyethylene (LDPE) 0.25 0.088 0.42 16 940
Polyethylene (HOPE) 1.40 0.48 0.45 38 970
Polypropylene (PP) 1.90 0.68 0.40 40 910
Polystyrene (PS) 3.50 1.25 0.40 85 1,100
Rigid PVC 3.50 1.24 0.41 70 1,400
Acrylic 3.20 1.14 0.40 80 1,200
Nylons 2.80 1.00 0.40 100 1,150
5 - M e ta ll ic  m a te r ia l
Steel 209 82 0.29 200-1800 7,850
Cast Iron nodular 175 69 0.26 735 7,352
Aluminium alloy 70 27 0.33 250 2,790
Titanium alloy 106 40 0.33 910 1,900
6  - C e ra m ic
Alumina 360 142 0.23 2,750.00 3,980
Low-polytype sialon (glassy phase) 300 122 0.27 3,500.00 3,245
Hot-pressed silicon nitrite 310 122 0.27 3,500.00 3,200
Reaction-bonded silicon nitrite 200 79 0.19 1,000.00 2,500
Sintered silicon carbide 410 172 0.27 2,000.00 3,100
Partially stabilized zirconia 200 81 0.23 1,850.00 5,780
7 - O th e r  m a te r ia ls
Balsa wood 2.41 0.10 - 6.21 96
Concrete 18.50 7.71 0.20 43 2,450
Araldite 4.40 1.60 0.43 61.5 840

Table 6.4.1 Core material properties (several sources).
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has other kinds of demands. The main one is the requirement for high hydrostatic 

pressure resistance. This implies the use of high compressive strength materials such 

as ceramic. Another interesting issue is the additional control of thermal insulation 

and the submerged pipe weight. These could be more important than the hydrostatic 

resistance itself for shallow water application. The multi-layered pipe construction 

may also be extended for application in surface pipelines. The properties required 

here are high tolerance to internal pressure and the possibility of achieving high 

internal diameters. In addition, the core material may be selected to deliver thermal 

insulation, weight and structural functions.

Table 6.4.1 presents a range of data for possible core material. Some materials with 

density smaller than sea water (1025 kg/m^) will provide buoyancy and, therefore, 

some relief in top tension. However, for big diameter gas pipelines, a heavy core 

would provide the additional weight necessary to keep the pipeline stable on the sea 

bed.

The multi-layered pipe can be used as a riser or pipeline. In the first case, the 

submerged weight (top tension) and the capability to withstanding bending and 

cyclic loads would be paramount to guarantee a stresses level within the safety

margin specified during 

the service life. In the 

latter, the bending and 

cyclic loads will act 

only during installation. 

The pipeline should be 

designed to withstand 

only hydrostatic 

pressure during its 

service life.

100%

Single walled pipe 
M ulti-layered (zirconia)

 M ulti-layered (alumina)
— ~  M ulti-layered (concrete) 
 M ulti-layered (PVC)

90%

ë  80%

70%

60%

50%

40%
15 20 25 305 10

O D /i

Fig 6.4.1 C om parison for equivalent m ulti-layered varying core 
material

Based on section 5, 

figure 6.4.1, presents a 

comparison between 

multi-layered and
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 Multi-layered (PVC)
  Single walled
 Multi-layered (concrete)
 Multi-layered (alumina)

Multi-layered (/.irconia)

I
I

40

10 15 20

OD/l

25 30

single walled pipes for 

different core materials in 

a free catenary 

configuration in 1000 

meters water depth, core 

thickness ratio p=3, 10- 

inch internal diameter and 

top connection excursion 

of 10% of the water depth. 

The equivalent multi­

layered pipe geometry is 

computed based on 

equation (5.4.4). The 

maximum ratio betweenFig. 6.4 .2  C om parison o f lop angle with vertical far position.

the von Mises stress and yield stress for each configuration is optimised by ensuring 

that the top connection axial stress at far position is at the same value of the von 

Mises stress in touch down point at near position. The latter includes radial 

hydrostatic, bending, and axial stresses. Figure 6.4.1 shows that for this particular 

application, if the stress level is kept below 70%, the core material can not be made 

of zirconia and for alumina the equivalent OD/t ratio single walled pipe have to be 

greater than 12. Figure 6.4.2 shows correspondent top angle with the vertical and

figure 6.4.3 shows the top tension

  Alumina
 Concrete
 PVC
 Zirconia

0.9

M 0.1

0.5

0.4
10 15 20 25 305

OD /t

ratio between the multi-layered 

and the single walled pipe for the 

corresponding configurations. It 

can be seen that all core material 

leads to a smaller top tension than 

the single walled pipe.

For a better understanding of the 

multi-layered pipes in several 

catenary configurations, concrete 

has been investigated as the core
Fig. 6.4 .3  C om parison of top tension ratio at far position.
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material. The following figures show the possible configurations that can replace a 

typical single steel walled pipe, which will be denoted by its internal diameter and 

OD/t ratio. The figures are divided in groups. The figure 6.4.4 group are for internal 

diameter of 10-inch and oil content. These figures are subdivided by letters (a), (b)..., 

these subdivisions represents different water depths and core ratios. The multi­

layered pipe equivalence was determined again by equation (5.4.4). Therefore, the 

curves corresponding to the multi-layered pipe represents the performance of the 

buckling equivalent multi-layered pipe to the single walled pipe. The %-axis of all 

figures is the outside diameter to thickness ratio, OD/t, of the equivalent single steel 

walled pipe.

The figures show the maximum von Mises stress ratio normalised by the steel yield 

stress reached on both critical points. It is assumed that the single walled pipe wall 

and the multi-layered pipe faces are made of the same steel with yield stress equal to 

60 ksi. The two critical points are the top connection at far position and the touch 

down point at near position. The figures also include the top tension and top angle 

with vertical for far position. The values presented on these figures were results from

Tup angle single walled 
Tcip angle inulti-layered 
Top tension single walled 
Top tension multi-layered

-O  Q- D - D - ?

Equivalent m ulti-layered pipe
  Single walled pipe
 Multi-layered pipe
Internal diameter=2U-ineh 
Steel laces, cr^=6()ksi 

Concrete a  ire. ni= 113 
core ratio ^ 3  
Water depth = 2IHI m 
T opexcursion= l(H  

Oil Content= 920 kg/ni'

2  65%

Top angle single walled 
Top angle multi-layered 
Top tension single walled 
Top tension multi-layered

Equivalent m ulti-layered pipe
Single walled pipe 
Multi-layered pipe 

Internal diametcr=20-inch 
Steel laces, <T.=fiOksi

Concrete core. » i= ll 3 
core ratio ^ 3  
Water depth = WHI 
Top excursion=IM  
Oil Contents 920 kg/m= 60%

= 55%

(a) W ater depth 200m ; (b) W ater depth 600m ; P=3
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a FORTRAN code based on the catenary model developed in section 5. The catenary 

configuration is optimised by making the stress condition at both critical points to be 

equal.

For the equivalent multi-layered pipe the values of top tension are always smaller. 

However, due to its bigger outside radius the bending stresses push the von Mises 

stress at touch down point to a greater value. Therefore, the designer should pay 

particular attention to the touch down point stresses. Assuming a typical value of 

70% of the yield stress in figure 6.4.4 only for configurations of p=\0, figures 

6.4.4(g) and (h), is there some restrictions for the multi-layered alternative.

Let us examine the effect of increasing the internal diameter of the pipe. Figure 6.4.5 

show the configurations for a 20-inch internal diameter pipe. It can be seen that the 

concrete core alternative for big diameter pipes are not recommended for shallow 

water applications. Only from 600m water depth are there feasible alternatives for a 

specific range of OD/t. The increase in the core ratio p for this case will worsen the 

stress problem at touch down point.
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All configurations examined until now were for oil content. Changing the content to 

gas introduces a change in the stress distribution. The next set of figures will 

demonstrate that multi-layered pipe alternative becomes even more attractive in this 

case. However, there is a limitation for 0D/r>18 the multi-layered pipe start to float,

i.e. the up-thrust is greater than its submerged weigh. Therefore, figure 6.4.6 was built 

only for 6>D/k 18. An interesting fact arises in figure 6.4.6 -  there are specific 

situations where the von Mises stress at touch down point for the multi-layered 

alternative is smaller than that for the single walled pipe. The explanation is that in 

spite of the bending stress increment induced by a greater outside radius, the reduction 

in top tension relief the axial stresses causes the observed change. It means that multi­

layered alternatives for catenary gas pipes would reduce not only the top tension but 

also the von Mises stress at touch down point.
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During the design of a multi-layered pipe it is possible to optimise the catenary 

geometry with smaller top angle with vertical that will demand a smaller hanging 

length and also smaller top tension. However, this optimisation will imply different 

values for the stresses reached at both critical points. With the aid of figure 6.4.7, 

provided there is a margin for these stresses, increasing the von Mises stress in touch 

down point at the near position, the top tension and top angle with the vertical can be 

reduced even more than the values showed in figures 6.4.6. Figures 6.4.7 (oil content) 

and 6.4.8 (gas content) were produced for a fixed single walled pipe geometry 

0D/t=\5. The x-axis is the ratio between the axial stress at the far position normalised 

by the yield stress. The other curves give the top tension and top angle at the far 

position, the von Mises stress ratio at touch down point normalised to yield stress and 

the top angle at near position. Finally, these tools will allow the designer to select and 

understand the benefits of the multi-layered alternative for riser and pipeline 

applications in the offshore industry.
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7. Discussion and conclusions

7.1 Research objectives

The objectives of this research were to investigate and build a set of tools for 

analysing and verifying the application of multi-layered pipe structures as an 

alternative to single walled pipes for deep water application in the offshore industry. 

In particular, the work was aimed at carrying out analytical investigations of the 

structural mechanics of multi-layered pipes in an attempt to understand the way in 

which such pipes withstand internal and external hydrostatic pressures. Finite 

element analysis has only been used as a confirmation tool with none of the basic 

research relying on such analysis. One potential application of a multi-layered pipe 

in deep water -  the catenary riser -  was also investigated.

7.2 Development of analysis techniques

Two approaches have been used for the structural analysis of multi-layered pipes in 

deep water. First, a local analysis has been used to investigate the stress and strain 

distribution through layers of multi-layered pipes of different materials and cross 

sections. This analysis has considered both internal and external pressure loading. 

Secondly, the global behaviour of the multi-layered pipe was investigated in a deep 

water catenary riser application to demonstrate that a multi-layered pipe could bring 

significant practical benefits as an alternative to single walled pipes.

In terms of local analysis, a set of equations have been developed in section 3 to 

predict the stress and strain distribution in the walls and intermediate material of a 

multi-layered pipe subjected to internal pressure loading. The results have been 

compared with those from the finite element program ABAQUS and have shown 

very good agreement.

In addition, for external pressure loading four methods have been used and 

developed further in section 4. The first, the elastic foundation method, considers 

that the collapse would arises as a loss of elastic stability. A second elastic approach, 

originally proposed by Raville (1954), has also been used. A third method, based on 

elastic-plastic behaviour, is than used to estimate collapse pressures when all layers 

have reached the plastic condition based on a von Mises criterion. Finally, a fourth
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method uses results from the finite element program ABAQUS to obtain a wide 

range of comparisons between results from the above methods. A comparison of 

results is presented in section 6.

The global behaviour of a multi-layered pipe in deep water catenary riser application 

is described in section 5. A static catenary based configuration analysis tool was 

developed to optimise typical designs and demonstrate the benefits of the multi­

layered pipes in comparison to equivalent single walled pipes.

7.3 Conclusions

Several important conclusions arise from this investigation. The main issue, 

however, is that multi-layered pipes would be a better choice, for the stand point of 

structural integrity, than single walled pipes for the majority of deep water 

installations. If there are any special demand such as high internal pressure and 

insulation, the multi-layered pipe would also perform better than conventional single 

walled pipe. On the other hand, a multi-layered pipe would also demand more 

expenses and the connection between pipe sections will require special attention. Of 

course, these issues would need to be balanced by the designer during a feasibility 

study.

The conclusion of this investigation are summarised below.

(1) Multi-layered pipes are feasible alternatives for application where conventional 

solutions are not feasible, such as for:

• high internal pressure requirement;

• high external pressure for deep water applications;

• submerged weight restrictions;

• top tension restrictions;

• large wall thickness as a function of high hydrostatic pressure 

requirement;

Other favourable properties of multi-layered pipes such as high thermal insulation 

properties, better dumping properties, and good impact resistance are present but 

have not been addressed in this work.
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(2) Multi-layered pipe can be used very effectively as catenary risers and perform 

better than single walled pipe. Multi-layered pipes used in this offer a significant 

reduction in top tension. However, as has been pointed out before, there are many 

other considerations to be taken into account during riser design.

(3) A multi-layered pipe generally provides a better internal distribution of stresses 

than the equivalent single walled pipe when it is subjected to internal pressure. In 

section 6, figure 6.2.4 shows the comparison between the stresses in the wall of a 

single walled pipe and a multi-layered pipe.

(4) The collapse analysis of multi-layered pipes due to external pressure presents a 

very complex problem. Much previous work in this field has addressed aerospace 

and non-offshore sandwich structures. The investigation, of this thesis has 

applied and extended three analytical based methods to apply to the deep water 

offshore multi-layered pipe. These methods are:

• an elastic foundation model based on application of conventional 

elastic foundation theory;

• the classic elastic interaction model originally proposed by Raville 

(1954);

• an elasto-plastic extension to the interaction model above.

(5) The principal conclusion of the above work on collapse can be split up between 

multi-layered pipes with soft and hard cores -  this parameter being defined by 

the ratio, m = , of the Young’s Modulus of the faces (£/) and of the core

{Ec). Values of m of around 100 or more are regarded as a ‘soft’ core whereas 

those around 10 are considered to be ‘hard’ core.

For soft cores, the elastic models (elastic foundation and extension of Raville’s 

work (1954)) lead to smaller collapse pressure estimates for thin walled multi­

layered pipes ( a  > 0.90, where a  is the ratio between the mean radius of the 

multi-layered pipe faces a  = b la )  than the elasto-plastic approach. These elastic 

methods also give the better estimates of collapse pressures for thin walled multi­

layered shells as employed in aircraft design. However, for thicker pipes used in 

offshore applications (a <  0.90), the elasto-plastic model gives smaller estimates
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for collapse pressure, and is therefore, the best technique to be used in design. 

Figures 6.3.1(f) to 6.3. l(j) illustrate these conclusions. For hard cores, with values 

of m around 10, the elasto-plastic model gives the smaller prediction for collapse 

pressure, see figures 6.3.1(a) to 6.3.1(e).

(5) The finite element program ABAQUS gives better estimates of collapse pressure 

for multi-layered pipes using 3D rather than 2D element modelling. Figures 6.3.1 

shows that the 3D analysis model gives smaller values which are closes to the 

analytical elastic solutions than the 2D model.

(6) For relatively hard core (m = 10) such as concrete, based on figures 6.3.1(a) to 

6.3.1(e) the collapse of a multi-layered cylinder tends to have an elasto-plastic 

solution very close to the loss of stability with increase of the thickness ratio p. It 

means that a multi-layered pipe with this characteristics would collapse in a 

combined behaviour between elasto-plastic and loss of stability of the outer layer 

possibly triggered by imperfections. Unfortunately, no experimental data are 

available to support this statement.

(7) For a relatively soft core (m = 100) such as polypropylene, principal observation 

from Figures 6.3.1(f) to 6.3. l(j) is that the collapse of a multi-layered pipe with 

thin walls (a >  0.9) tends to be an elastic nature due to loss of stability. This 

trend increases with increase of thickness ratio p.

7.4 Future investigations

This thesis was aimed at examining the structural mechanics of multi-layered pipes 

in depth. By necessity this meant that many additional and related issues were not 

covered.

It should be said at the outset that there are still significant theoretical, experimental 

and practical design research areas that remain to be addressed for multi-layered 

pipes. Several specific areas of further investigation arises from this research are 

described below.

The layer interface problem needs to be addressed more deeply. The combined
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elastic approach assumes that all layers work together as an integrated sandwich 

wall. The elastic-plastic analysis uses compatibility equations that impose 

continuous contact between the core boundaries during hydrostatic pressure loading. 

The elastic foundation approach replaces these layers by a set of elastic foundation 

springs. All assure that the interfaces between layers remain in continuous contact 

and are effectively very strongly bonded together. This clearly need not be the case 

in practice and the structural effects of it need to be investigated.

All three analysis approaches used here have their merits and drawbacks and they all 

give a prediction for the collapse load. However, they need to be composed with 

experimental results and the background of experimental observed structural failure 

need^ to be compared with the theories. The failure mode of a multi-layered pipe is 

important. Its collapse can be completely elastic following a theoretical wave mode 

or can be elastic-plastic and triggered by an imperfection, which will grow at a 

particular point around the pipe surface or more likely due to a combination of these. 

The behaviour of the interfaces, mainly on the post-buckling deformations also 

needs to be addressed.

Another possible future development is to perform an elastic-plastic finite element 

assessment to compare results with the 3-D elastic-plastic method included in this 

present work. Obviously, some physical tests would improve such analysis and give 

more understanding of the significance of this approach. In addition, experimental 

tests would also give a clarify the physical significance of the elastic foundation 

model, in particular when the model indicates that the core laye/Ipss stability before 

the two faces.

Recent new features in finite element analysis could also be explored to simulate the 

boundaries interaction of the multi-layered cylinder. This important interaction will 

produce a better understanding of the physics of the failure mode including the post- 

buckling behaviour of multi-layered cylinders. Of course, some experimental results 

have also to be pursued in order to calibrate the element contact properties to be 

inputted into the finite element package.

The material alternatives available for use as the core material should also be
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narrowed down for specific applications such as for pure insulation or weight and 

insulation and so on. In addition, more understanding of the behaviour of core 

materials subjected to compression is required.

The free catenary model in this investigation was developed for a static 

configuration only. There are additional dynamic loads to be considered. Future 

work needs to address the more complete problem with the application of current 

profile and wave induced loads on the catenary.
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Appendix 1

A I Analysis of external pressure for a ring

This appendix include the derivation of the buckling of circular rings and tubes 
under uniform external pressure. The ring solution was originally presented in 
Timoshenko’s book Theory of Elastic Stability 1131, 1936 pages 289 to 296. The 
nomenclature are the same as used in Timoshenko’s book.

In figure A. 1.1, the thin line indicates the initial circular shape of the ring, and the 
other line represents the slightly deflected ring on which a uniformly distributed 
pressure is acting. The lower half of the ring has been removed and the action on the

upper half is represented by a 
longitudinal compressive force S and by 
a bending moment Mo acting on each of 
the cross sections A and B. The uniform 
normal pressure per unit of length is 
given by q. The generic ring radial 
displacement is w and the displacemnet 
at A and B centre line of the ring is Wo-

The bending moment, neglecting 
squares of small quantity w and Wo, 
becomes:

M = M — qR{ŵ  ̂— w ), (A. 1.1)
with this expression for bending

s
Fig. A. 1.1 - Ring or tube under external pressure.

moment, the differential equation for the deflection curve is (see 7-4, page 291, 
Timoshenko/73/, 1936):

1 +

Considering the notation:

The general solution is

Eh^

=  \ +

Eh^

w = A, sin kO -t- cos k9 +
— M qR^ +qR^Wç.

(A. 1.2)

(A. 1.3)

(A. 1.4)
EI + qR’

Let us consider the condition at the cross sections A and D of the buckled ring, see 
f figure A. 1.1. From symmetry it is clear that

dw/
= 0,

W0V 0=0 V
—  = 0 .

dO Je^n 12
From the first of these conditions it follows that Ai=0, and from the second

• Asm—  = 0.
9

(A. 1.5)

(A. 1.6)

The smallest, non-trivial, root of this equation is k n jl  -  n and k-2. Substituting in 
the previous expression equation (A. 1.3) the value of the critical pressure is

17



obtained:

Q cr ~  ' (A. 1.7)

The radial deflections of the buckled tube, from (A. 1.4) are:
HÆ , . 2 \  r > 2  A

w  —  —  

4
^   ̂ C0S26-------^ +  (A. 1.8)

AEI 4 "E l
V J

Considering the inextensible condition which requires that v, the tangential 
displacement, vanishes at 0 = 0 and Q - n H \

= (A.1.9)

Substituting this result, the displacements become

w = W()Cos20, and v = ^W oSin20. (A .I.10)

From equation (A. 1.9) the moment Mo can be produced by applying the compressive 
force 5 at A and B (see figure A.1.1) with an eccentricity Wq. The same result is 
obtained by substituting expression (A. 1.9) into equation , (A.1.1). For 6 = ± ;r/4
and 6 = ±3;r/4 the radial displacement w is zero and the bending moment vanishes.

The solution corresponding to the smallest root k=2 has been discussed. The values 
of k=4, 6... and so on a series of other shapes of a buckled tube section with larger 
number of wave shapes in them associated with a larger critical pressure can be 
produced.

The condition of symmetry of the collapsed ring introduced a limitation in this 
solution. As a result of this assumption only even numbers have been obtained as 
solution for k. By assuming only one axis of symmetry, for instance, the horizontal 
axis AB, solutions with odd numbers k, namely, k=3, 5... and so on are obtained. The 
case k= 1 represents a translation of the ring as a rigid body and should not be 
considered. Thus k=2 is the smallest root and the corresponding distributed load is 
the critical pressure. The buckling forms of higher order associated with larger roots 
can be obtained by introducing additional constraints in the ring. Without those, 
buckling will always be in two lobes pattern as shown in figure A.1.1.

This result assumes a perfect cylinder or that there are no imperfections. However, 
failure of tubes under external pressure depends very much upon the various kinds of 
inaccuracies. The typical imperfection in tubes is an initial ellipticity, the limiting 
value of which is usually known for each type of tube from numerous inspection 
measurements. The deviation of the shape of the tube from a perfect circular form 
can be defined by the initial radial deflections w/. These deflections are simplified by 
assuming them to be of the form w. = w, cos 20. In which w\ is the maximum initial 
radial deviation from a circle and 6 is the central angle. Under the action of an 
external pressure q, there will be additional flattening of the tube. The corresponding 
radial displacements will be called w. Thus the bending moment is 
M = qR(w + w  ̂cos20). Substituting into the differential equation:

d^w
dO

+ w
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The solution which satisfy the conditions of continuity at the boundaries is

w = —̂ 1^ cos 2 ^ , (A. 1.12)

where is the critical value of the uniform pressure given in (A. 1.7). It is seen that 
at points where 0 = 0 or 6 = n the moment reaches a maximum, where

7  . (A.1.13)

For small values of the ratio qlq^r the change in the ellipticity due to external 
pressure q is neglegible and the maximum bending moment is qR times the initial 
amplitude deflection w\. When the ratio qlq^t is not small, the change in the initial 
ellipticity should be considered. The maximum compressive stress is then obtained 
by adding to the maximum compressive stress due to the bending moment M^ax the 
stress produced by the compressive force qR

qR 6qR w 

h l-^/<7
This equation can be used with sufficient accuracy provided the stresses are kept 
below the yield-point of the material. The value of the external pressure, at which 
yielding in the wall starts, can be calculated. The notation, R/h=m and wj/R=n is 
used, the equation for calculating the yielding pressure q̂  becomes:

+ (A.1.14)

2
-

—-  + (l + 6mn)q^ 
m

q̂ r- -̂--- -Qcr~^-  (A. 1.20)
m

The pressure qy determined above is smaller than the pressure at which collapse of 
the tube occurs, and it becomes equal to that of a perfect round tube when n=0.

Appendix 2

A.2 Analysis of external pressure for a pipe

This solution for a tube with limited length was originally published by Flugge 1211, 
1973, section 8.2, pages 439 to 452. The nomenclature used was the same used in 
Flugge’s book.

Flugge’s approach consider a shell shaped as a circular cylinder of length /, radius a,
subjected simultaneously to 
three simple loads: a uniform 
normal pressure on its wall, pr=- 
p, an axial compression applied 
at the edges as force P per unit 
of circumference and a shear 
load T per unity of 
circumference applied at the 
same edges so as to produce a 

torque in the cylinder. The axial axis is %, and the angular position is denoted by the 
angle 0 (see figure A.2.1). The derivatives with respect to the dimensionless co­
ordinates x/a and 0 will be indicated by primes and dots:

Fig. A.2.1 C ylindrical shell, co-ordinates and loads.
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= (  )■• (A.2.1)
d x  ' d (j)

From Flugge /27/, 1973 page 448 the following set of three equations can be written 
as:

flA' + aN*^ -  pa{u* -  w') -  Pu"- I T u *  = 0,

aN; + aN'^^ - M ;  - - pa (v "  + w*) - P v " - 2 T { V  + w') = 0, (A.2.2)

M J' + m ; ;  + M ;; + M ; + aN^ + paCw'-  v* + w” ) + Pw"-  1 T { v - w ' )  = 0.

The elastic law will be used to express the forces N  and moments M  by u, v, w and 
their derivatives. The extensional rigidity D and the flexural rigidity K  are defined 
below. Introducing the dimensionless parameters k, q^, q^, q^ and dividing them by
D:

E r K r

l - v 12( l - v ' ) ’ ^ Da^ 12a" 
T

(A.2.3)
pa P

Thus, the differential equations of the buckling problem assume the following form:

u +■
1+v

u +■
1+v
~Y~

l - v

v'* +v  w' + k
l - v

u — w + ■
l - v

w
V 2 2 ^
— q^{u — vw) — ^2̂  ~ 2q^u = 0,

v"+ w’ +k
3 - v

- ( l - v ) v ' -  2 ■w

l - v
u** - u ' " -

~q\{y  +w ) — ̂ 2̂  — 2̂ g(v + w ) — 0, 
3 - v

• V + w + 2w + w + 2w + w +

(A.2.4a)

(A.2.4b)

(A.2.4C)

q^{u - V *  + w**)-\-q2\v"-2q.^{v -w '*) = ^.
These equations describe the collapse of a cylindrical shell under the most general 
homogeneous membrane stress action. The three load parameters q are the elastic 
strains caused by the corresponding basic loads, and since this theory is based on the 
assumption that such strains are small compared with unity q^, q^, and q^ should be 
neglected compared with unity in any particular case.

When there is no shear load (T = 0, hence q^ =0) ,  the differential equations admit a 
solution of the form:

A jc
u = Acosm0 cos

a
r t  • , . AxV = Bsinmcp sm  ,

a

w = Ccosm0 sin—- ,  
a

(A.2.5a)

where

A =
nK a 

I
(A.2.5b)
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and n is an integer. The solution describes a buckling mode with n half waves along 
the length of the cylinder and 2m half waves around its circumference. This is not 
the most general solution, however, it fulfils the boundary conditions and can be 
considered as a good approxiamtion. The boundary conditions at the ends of the 
cylinder are x-=0 and x=l, and also =0,M^  = 0 . Thus the solution represents the
collapse of a shell whose ends are supported in tangential and radial directions but 
are not clamped or restricted in the axial direction. When this solution is introduced 
in the differential equations, the trigonometric functions drop out and the following 
equations are obtained:

+ C - v X - k

+ B

A '-

1+v

1- v

Am

m

+

-q^X
(A.2.6a)

= 0,

r  i + v . 1+ B-------- Am2 m H A (̂1 + 3k) — q^m^ — q2X +

+ C m +

—vX — k A '- 1- v
A m -q^X

+ C^ + k{x ' '+2X

+ B m +

3 - v
Y ~

3 - v

kX w -  q^m
(A.2.6b)

kX

= 0,

+

2m^ +1)— q^m^ — ^2A ]— 0.

(A.2.6c)

In these equations the buckling amplitudes A, B, C are unknowns and the 
coefficients between brackets form a the characteristic matrix of the collapse 
problem. Since these equations are homogeneous, they admit, in general, only the 
trivial solution A=B=C=0 indicating that the shell is not in neutral equilibrium. Only 
if the determinant of the characteristic matrix equals zero a non trivial solution for 
A,B,C is possible. Thus the vanishing of the determinant is the collapse condition of 
the shell. When the collapse condition is fulfilled a correspondent buckling mode 
according to the values of m and n is obtained. In all cases of neutral equilibrium, the 
magnitude of the deformation are arbitrary.

In collapse condition the dimensionless loads q̂  and 2̂ &nd the modal parameters 
m and A are unknows. Of m it is known that must be an integer (m=0, l ,2...); of A , 
that it must be a multiple of mtajl  («=1,2...). The buckling condition may be written 
separately for every pair m and A fulfilling these requirements and consider it as a 
relation between q̂  and 2̂ that describes those combinations of two loads for which 
the shell is in neutral equilibrium. When these equations are plotted as curves in a 

and 2̂ plane, a diagram shown in figure A.2.2 is obtained, which can be 
interpreted as follow. The origin q̂  = q2 = 0  represents the unloaded shell.

When a load is applied, the point moves along some path, as show in figure A.2.2 by 
the dotted line. As long as it does not cross any of the curves, the shell is in stable 
equilibrium; but as soon as one of the curves is reached, equilibrium becomes 
neutral, with the buckling mode defined by the parameters m and A of this curve. 
The stable domain in the q̂  and q^ plane is, therefore, bounded by the envelope of 
all curves, which is shown in the diagram by heavy line.
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Unstable

Stable

Fig. A .2.2 Stable and unstable regions in the qi, Q2 plane.

m and X .

The expanded determinant is a 
polynomial of the third degree in 
these parameters. Since they are 
very small quantities, it is 
sufficient to keep only the linear 
terms and to write the buckling 
condition as:

C, +C2^ = +C4^2 • (A.2.7)
This equation describes a straight 
line in the and plane, and 
the limit of the stable domain, as 
show in the figure A.2.3, is a 
polygon consisting of sections of 
straight lines for different pairs

The coefficients c,,C2,c^,Q  may be determined by expanding the determinant. 

Since c, turns out to be proportional to A'*, the term with X may be dropped in all 
other coefficients, and it is obtained: 

c ,  =  (1 -

C2 =(A" - 2[vA" + (4 -v )A "m ' +m"] + 2(2-v)A"/7i"
'(A.2.8)

c . = m { X  +m ) - m  (3A + m ),

From equation (A.2.8) the stability curve can be determined provided / and k are 
given. Some examples are shown in figure A.2.3, and the some conclusions are 
drawn. Although the load and the basic stress system have axial symmetry, the 
buckling mode does not ( m 0 ) but develops nodal generators. Their number 
increases as <7, increases and is higher for thinner shells. In the right-hand part of the 
diagrams the curves for shells of different lengths are so arranged that the shorter 
shell has higher critical pressures. For this reason nodal circles can not occur. 
Somewhere close to the q̂  axis the curves from different X intersect, and from 
there on toward the left long shells can buckle at the smaller load of shorter shells by 
adopting a mode with nodal circles. As a consequence, an internal pressure (^, < O) 
does not perceptibly increase the axial load q^, while an axial tension {q-̂  < O) 
increases considerably the resistance offered to an external pressure.

For the case of external pressure only, i.e. one-parametric loading and assume that 
^2 = 0 . Equation (A.2.7) and (A.2.8) then yield:

(i - v ")A V M

where, A = [X -2(vA -̂(-3A -t-(4-v)A  -i-m ^)+2(2-v)A  -t-

(A.2.9)

m

With I / na as abscissa and q̂  as ordinate every integer m yields one curve, and from 
these a festoon curve is derived. The result is curves, which rise monotonie toward the
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left, there is no doubt as to the choice of n = \,  and the abscissa may be written simply 
as l i a .

The festoon curves end with the arc corresponding to m = 2 and on the right 
approach a horizontal asymptote giving the buckling load for a cylinder of infinite 
length. When in (A.2.9) putting m = 2 and A —> 0 , it is found the asymptotic value 
to be = 3k . This result may be easily be interpreted in the following way. The 
solution presented in (A.2.5a) from which all preceding buckling formulas have been 
derived, assumes that at the ends of the cylinder w = 0, i.e. that there are bulkheads 
which prevent deflection. If the cylinder is very long, its central part is little 
influenced by the stiffening effect of these bulkheads. A circular strip of width dx, 
which may be isolate here, behaves much like a circular ring of cross section t dx.

The second moment of area of this cross section is /  = t^dx / 12 , and the load per 
unit circumference is pdx . When such a ring buckles in its plane, it gets oval 
according to (A.2.5a) with m = 2 and B = - C ,  and the buckling load is known to be:

(A.2. ,0)

A =15, m = 6

ra

- 4
128 2 0 2 6 8 10-6 •4 4

X = 21, m = 15
^ 9 -

Fig. A .2.3 B uckling diagram s for a cylindrical shell subjected to tw o-w ay thrust.
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When E is replaced by £ '/ ( l - v ^ ) ,w e  may bring this into the form = 3k in 
perfect agreement with the asymptotic value for the long shell. It may be seen that 
m = 0 cannot yield a finite value to since the denominator in (A.2.9) contains a

factor m^. With m = 1 equation (A.2.8) simplifies considerably because many terms 
cancel.

(1 — v^)A  ̂ + kX  ̂[a  ̂ + 2(2  — v)l 
----------------- (A.2.11)

For X > 1 this equation yields values of q̂  which are larger than those obtained with 
m #  1 and therefore there is no arc m = 1 in the festoon curves showed in figure 
A.2.4. But for A < 1, i.e. for / > :7r a , (A.2.11) yields a negative value for q^, 
corresponding to an internal pressure in the shell. If A is small enough we may 
neglect A  ̂compared with unit and have:

at
= - ( l - v ') A  - a '  = - ( l - v ' ) A '  or p = (A.2.12)

This buckling of a shell whose basic stress system consists of nothing but a tensile 
hoop force.

10-“

30 40 50 60 1002 3 4 5 6 10 20

Ua

Figure A.2.4 Single walled pipe buckling pressure.
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Apendix 3 Circular ring buckling under external fluid pressure

A.3.1 Circular ring buckling

_L

T
h

Fig. A.3.1 C ircular ring subjected to uniform external pressure.

The classical circular ring buckling problem is presented by Brush and Almroth, 
191 1975. The basis and main results are repeated as follow:

Consider a ring subjected to external fluid pressure. Following the usual notation p 
is the pressure or load per unit of area and q is the load per unit circumferential 
length. For a ring of width h, as in figure A.3.1, = \hp\. Equations for

equilibrium of a ring element in a slightly deformed configuration are derived from 
the principles of stationary potential energy, as follows. The total potential energy 
is the sum of the strain energy U of the ring itself and the potential energy Q of the 
applied pressure. The strain energy of the ring may be written as

El a

The two terms are the membrane and bending strain energies, respectively, for the 
ring. A ring subjected to uniform external pressure is a conservative 
system. As such the change in potential energy of the applied loads as the structure 
deforms is the negative of the work done by the loads during the deformation. For 
fluid-pressure loading the pressure at each point on the ring surface remains normal

to the surface as the ring 
deforms. Thus the potential 
energy of the applied 
pressure may be expressed 
in terms of the product of 
the pressure q times the 
change in the area enclosed 
by the outer surface of the 
ring. Since the ring thickness 
h does not change 
appreciably during 
deformation, the change in 
area enclosed by the outer 
surface is approximatelyFig. A .3.2 Polar co-ordinate system.
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equal to the change in area enclosed by the median surface. Consequently, the 
expression for the potential energy Q is, approximately,

Q. = -q{pi^ -  A*),  (A.3.2)
were A* is the area enclosed by the median surface of the ring after deformation, 
and q is positive inwards. From equation (A.3.1), the co-ordinates of points on the 
median surface after deformation are

X *  = (fl - I -w)cos0 -  vsin0 ,
y* = (fl + w)smO + VCOS0 .

The area enclosed by the median surface is conveniently expressed in terms of a 
line integral around the periphery, as follows

A* = y * dx* +x* dy *),

(A.3.3)

2Jc

dx*
(A.3.4)

ie.
de  de\ /

Introducing equation (A.3.3) and rearrangement gives

A* = ^ |^  +av' + 2aw + v^ -  vw' + v^w + w^)de

But a ̂ de = and due to periodicity v'de = 0 , therefore,

A* = 7Ca^+ — (^aw + v^ ~vw'+ v 'w  + w^)de  .

d e .

2  Jo

Introducing (A.3.5) into equation, (A.3.2) and rearranging gives

Q. = q a \  w + —  (v^ -vw '+v 'w  + w^)
Jo |_ 2a  ̂ _

Equations (A.3.1) and (A.3.6) now give, for the total potential energy, the 
expression

J>2k
F d e ,

0

(A.3.5)

(A.3.6)

2 2
1 /  2 /w H 1V -  vw2a ^

(A.3.7)

e = v' +W i f  V -
•+— 2 a

, and K =
V - w

For equilibrium, V must be stationary. Consequently, the integral in equation 
(A.3.7) must satisfy the Euler equations of the calculus of variations. The Euler 
equations for an integrand of the form of that in equation (A.3.7) are

3v d e d v ' ~  ’ (A.3.8)
dF d dF d^ dF
dw do dw' dO^ dw"

From equation (A.3.7) the partial derivatives are

^ - 1  
dv a

dv' a

_ . v - w
E A e  -f- q

a
1 \

V —  w 2
K I ^ 

EAe + El  — I—  qw 
a  2
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dw

dF
dw'

dF

r
EAe + q

1 A

f l +  — V + W  2

a V a
1

— qv 2
\

(A.3.9)

a
- E I -

\

\
These expressions can be simplified by introducing the constitutive equations for 
the ring. The normal force component N  and the bending moment M on a cross- 
section are defined by the relations

N  = jâ d A ,  and M  = j â z d A , (A.3.10)

where c  is the normal stress in the 0 direction. Introduction of the expressions 
G =E e  and e = e + zic and integration gives

N  = EAe , and M  = EIk . (A.3.11)
Equations (A.3.11) are constitutive relations for the ring. With these relations the 
partial derivatives may be written as

dF
dv

dF
dv'

dF

a

u
a

N p + q
r 1

V —  w
V 2

1 1N  ~\—  M  H—  qw 
a 2

N  -\-q
1

a + —v +w 2 (A.3.12)

dw' a 

dF _  
dw" a

i r  1 ^
- N p

a
V

Introducing these into the Euler equations and rearranging gives the final 
expressions

aN' + M ' - a N B - q a ^ B = 0 ,
(A.3.13)

M " - a N  - a { N p )  - q a { v '+ w ) = q a ^ ,
Equations (A.3.13) are equilibrium equations for the ring for the intermediate class 
of deformation. The equations are non-linear in the dependent variables and may 
be written in terms of the five dependent variables N,M, P , v, and w. They may be 
expressed in terms of the two variables v and w alone by introducing of the 
constitutive and kinematic relations. Substitution and rearrangement gives

V +w
a

+ -  2
1 f  v — w '^

4-
A a ‘ V /

v' + w 1/^v —
 -f — -------

a 2\ a
V

v — w qa v — w
a EA

= 0,.
a
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A a ‘ a
V + w 1 (  v — w'^

-a<

■ + — 2

v '+ w  \ —
 + —

a 2

(A.3.14)
w

V a
v - w qa V + w 

EA a
qa
EA

Under axisymmetric loading, circular equilibrium configurations of the ring exist 
for all values of the applied load q. The critical load ^cr is the smallest load for 
which the ring may be maintained in equilibrium in an adjacent non-circular 
configuration. According to the adjacent-equilibrium criterion, two infinitesimally 
adjacent equilibrium configurations exist at q=qcK, the circular one and a slightly 
non-circular one. Both configurations are governed by equations (A.3.14). Let vo, 
Wo represent the circular configuration and vq+ vi, wq+ w \ the non-circular one, 
where vi, w\ are infinitesimally small increments. For the circular form, vq and its 
derivatives and wq and its derivatives equal zero. Thus

(A.3.15)
W —> Wq + Wj ,

are substituted in equations (A.3.14). In the resulting equation, the terms containing 
only q or wq may be omitted; the sum of such terms is equal to zero because wq 
represents an equilibrium configuration. Terms that are quadratic or cubic in V], wi 
may be omitted because of the smallness of the incremental displacement. The 
remaining terms are

EAa^{y',+w,) +E/(v, -w [)  - E A a w ^ { v , - w , ) - q a \ v , - w ' , )  = 0 ,
(A.3.16)

El(y^ - w { )  - EAa^ (v,' + w, ) -  EAaw^(v, -  w ') - qa^iy'^ + Wj ) = 0.
A special case of these equations for axisymmetric deformation gives 
WQ=-qa^ I  EA.  Replacement of wo by the function of q and simplification gives

EAa^(v\ + w ^ ) + E l{v^ -w \ )  =0,
/ / /  i //

EAa^iy'^ + w, ) - El{y^ -  w[) + qa^{w'^+ w, ) = 0.
Equations (A.3.17) are the stability equations for the ring subjected to external 
fluid pressure. They are homogeneous and linear in vi, w\ and can also be derived 
by application of the minimum potential energy criterion. The general solution is 
readily found for arbitrary boundary conditions. For the complete ring, however, 
the boundary requirement is simply that vi, w\ and their derivatives be periodic in 
9  . A solution of the form

Vj = B s i n n 6 , 
w, = CcosnO ,

where B and C are constants and « is a positive integer, is seen to satisfy both the 
differential equations and the periodicity requirement. Introducing (A.3.18) into 
equation (A.3.17) and simplifying gives

n(nB + C )+ /î^ ---- — (R -f wC)

(A.3.18)

A a ‘
sinnO = 0,

(A.3.19)
cosnO = 0 .
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These equations must be satisfied for all values of 6 , therefore the sine and cosine 
factors may be divided out. Rearrangement gives

n 1 +
A a ‘

1 + M'
Aa^

B + n

B +

1 + n̂
A a ‘

C = 0 ,

\ + n
LV A a ‘

qa
EA

(A.3.20)
C = 0.

For M = 1 the first equation becomes (l + / /A a  ̂)(B + C) = 0 . Therefore,
B = - C  and, from (A.3.18), = -C s in 0  and = Ceos6 . But this displacement
mode is seen to represent a rigid-body translation of the ring. The ring is 
constrained against such translation, therefore, only modes for which « > 1 should 
be considered. For a non-trivial solution, the determinant of the coefficient matrix 
of the amplitudes B, C in (A.3.20) must equal zero.

n 1 +

1 + rt

Afl"
I

A a ‘

A a ‘

\ + n
A a ‘

qa
EA

= 0. (A.3.21)

Rearrangement gives
El

— ■> « = 2,3,4,.
a

(A.3.22)
\ + l lAa^

the term / / Aa^ is much smaller than unity. For example for a rectangular cross-

sectional ring of thickness h, Aa^ = ( h ja f  j x i . For h/a < 0 .1 , l /  Aa^ < 0.0008 . 
Therefore, the term may be neglected to give the well-known relation for the 
buckling load on a ring

= ( n ^ - l ) - ^  « = 2,3,4,...,
a

(A.3.23)

the smallest eigenvalue correspond to « = 2. For that value the equation above 
gives q = 3 E l / a ^ . This result is considered the classical solution for a ring under 
external uniform fluid pressure. The next section is the application of this principle 
to develop a buckling model for the multi-layered pipe.

A.3.2 Circular ring on elastic foundation

The solution found in (A.3.23) can be extended to include the stabilising influence 
of an elastic foundation. For our purposes, a ring is considered completely filled 
with a soft elastic medium that is treated as an infinite set of uncoupled radial 
springs. For such a foundation the pressure qf, per unity of length, between ring and 
foundations is given by

q / = - k f W ,  (A.3.24)

where kf, is a known constant representing the foundation elasticity modulus.

Equations (A.3.17) has been derived based on adjacent equilibrium criterion. 
However, they could be rederived by application of the minimum potential energy 
criterion. The total potential energy of the loaded ring may be written as

(A.3.25)

where
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c / „  =
EAa In

0
EAa ^cf v '—

v '+w i f  V —
 + —

a 2V a
d e ,

B de,

2n
Q = q j  [wa + ̂  (v  ̂-  vw' + v'w + w^ jjfie .

(A.3.26)

To determine the character of the potential energy corresponding to a deformed 
configuration v = Vq , w = Wq , substituting

V —> Vq +  Vj ,

W  - + W q + W ^  ,

where the variation, v ,, w, is arbitrarily small. For the circular form, Vq and its
derivatives and w 'q and its derivatives equal zero. Furthermore, the circular form is
an equilibrium configuration for all values of q, so that SV is equal to zero and 
only the second variation need be investigated. Introducing of equations (A.3.26) 
and collection of all terms that are quadratic in V j , ŵ  gives

where
ô^v  = s ^ u ^ + ô ^ u , + ô ^ n . (A.3.27)

a

EA 
a

de

S^Ub -  — ^ { y [ - w f f  de  ,

« 0 
2n

=  - v , w , '  +  Vj'w, + w ^ p e .
0

But Wq! a = -{a/EA)q , therefore,

5 V  = ^  I  (v[ + w ^ f  + El{y[ -  w^f + (v,w{ + v,'wj + w / -  w f )]d/0 (A.3.28)
^ 0

Simplification of the integration by parts gives, for the final expression, the 
equation

S^F  = \ f " F d e ,  (A.3.29)
a •’0

where, F  = EAa^{v'^ + w ^ f  + El{y[ -  w f f  + qa^{w^^ -  w f ).
According to Trefftz criterion, the equations for loss of stability are obtained by 
introducing of F  into the Euler equations of the calculus of variations. The Euler 
equations in this case are

dF d 
3v, de  3vj'

, (A.3,30)
dF d dF d^ dF

■ + ■ = 0.
3wi de  de^  ôwj"

Introducing of the expression for F  and rearranging is found to yield the same 
stability equations in (A.3.17).
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Bearing in mind the elastic foundation pressure acting in the ring, the strain energy 
of the foundation may be written as

U ^ = - - ^ ’’q ^ w d e . (A.3.31)

Introducing equation (A.3.24) gives

u , = ^ r w ^ d e ,
Jo

(A.3.32)
 ̂ 2

and for second derivative of the foundation strain energy

(A.3.33)

Addition of this term to the expression for the second derivative of the total 
potential energy (A.3.27) and application of Trefftz criterion 5 (5 V )= 0  gives, for 
the Euler equations, the expressions

EAa^{v{ + w^) + E l{v I -w{)  = 0 ,

EAa^{vl + Wj ) - E/(v, - w { )  + qa^{w^+ w, ) - =  0 .

Equation (A.3.34) differs from (A.3.17) only in the addition of the term
in the second equation. Introducing equations (A.3.18) here leads to a pair

of homogeneous algebraic equations. The criterion that the determinant of the 
coefficients equal zero then gives the expression

(A.3.34)

14-
A a ‘

n l4-n'
A a ‘

Aa
\ + n

k^a
A a ‘ EA

= 0. (A.3.35)

Consequently,
k - i )  E l   ̂ 1 :kfû,  « = 2,3,4,...

1 4 -//A a ' ■ ( « ' - l )

As previously noted, l /  Aa^ « I . Therefore, approximately.
El 1

^ —(«^—l)— r  +  \ k fü ,  « — 2,3,4,...
a (« - I j

(A.3.36)

(A.3.37)

For ky = 0 ,  equation (A.3.37) reduces to equation (A.3.23). For given values of El, 

kf, and a, the value of « may be determined by trial to give the smallest q.
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Appendix 4 Buckling of multi-layered

A.4.1 Buckling for a long multi-layered cylinder under external pressure

The buckling model for long cylinder under uniform fluid pressure was originally 
presented by Raville, 1954 /63/. Below is presented the basis and relevant results of 
Raville’s work.

The results below were obtained to define the stress

a ^ ^ = — K,  N q = qa{\ -  k ) , and N q = qaK , 
r

where

K =
1

(A.4.1)

(A.4.2)

a E^a a
where <7̂  ̂ is the core normal stress in radial direction, q is the uniform lateral load 
acting in positve radial direction (equal to -p, where p is the external pressure), a and 
b are respectively the inner and outer skin mean radius, Nq and Nq are respectively
the face tensile force per unity of length in the outer and inner sk ins,/is  the thickness 
of both faces, f^and  are respectively the Young’s Modulus of faces and core. The 
core radial displacemnet is

=
qa‘

E r f

E , f
\ - K - \ — -— Klnr /a  

E a  '
(A.4.3)

The radial displacement of the outer and inner faces, equals the core displacement. To 
comply with the compatibility equations, these displacements may be written as:

qa (A.4.4)
E f f  E f f \ a

Following the Raville’s development four independent equations containing constants 
An, Bn, Cn, and Hn, as well as the loads q, can be obtained, see Raville, 1954 763/ page 
17.

n
B , - Q = 0 .  (A.4.5)

+
2G„ 2 n ‘E ; f

-n^C^  + nH^ = 0 . (A.4.6)

n - \

+

B.

(A.4.7)

= 0.

r
a I ^ ç g ( l -V /)
b n^Ef f I"-

(A.4.8)

Since Hn appears only in Equations (A.4.6) and (A.4.8), it is eliminated immediately
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by subtracting these equations. The result is

A„ + +
E A - y ] ) a

+ 1 B .

\
A

a -1
~b y- V

+ (rt  ̂- l ) ^ l n 6/a C_ = 0 . (A.4.9)

The final result comprises a system of three equations containing the three unknown 
constants A„, and C„. A buckled form of equilibrium is possible only if equations 
(A.4.5), (A.4.7) and (A.4.9) yields non-zero solutions for these constants; this requires 
that the determinant of the coefficients of A„, Bn, and C„ be equal to zero. The 
equation used for the determination of the critical load is obtained from this 
determinant. Specifically,

« -1

n

1

2G „ 2 I 6'  n ^ E J Kb y
n

The following quadratic equation is obtained from the expansion of this determinant,

l - ( b l a f  ''

V  ̂ J

e A A )+

(bla) 

^ i  + bja ''

2 ^

r E E J b/a /-I
InA > +

{b/ay

{b /a f

b---- K
a a

+ ■
A - \

[l -  — Y — + x:(l -  6/ a)]

LV
2Gx6

b/a n

'  Y i - ( 6M ' Y  E X i - v ; )

A
+1 +■

y
n E ^ f

\ + b/a

~ w ~ yj
1 { \ - b l a J  

A  b/a
(A.4.10)

Finally, the critical pressure for a long sandwich cylinder can be determined based on 
the above expression.

A.4.2 Buckling of multi-layered cylinder with face stiffnesses

The buckling model for long multi-layered cylinder under uniform fluid pressure with 
faces of moderate and unequal thickness was originally presented by Raville, 1954 
/64/. The development is an extension of Raville’s previous work, 1954 /63/.

It has been assumed that the faces of the long cylinder were thin enough to render 
membrane theory applicable and that the faces were of equal thickness. This 
supplementary development of this work is to present a solution for the stresses and
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critical pressure that apply to sandwich 
cylinders having moderately thick faces of 
unequal thickness. This requires that the 
bending moment and the transverse shear in 
the individual faces be considered. It is 
assumed, as before, that buckling takes place 
at stresses below the elastic limit of the 
sandwich materials.
The method of analysis closely follows the 
method used above. The same assumption, 
namely, that only transverse shear stresses and 
normal stresses on planes parallel to the faces 
are present. This assumption applies very well 

Fig. A.4.1 D im ensions o f the cross-section o f to all practical multi-layered pipe 
a sandwich wiih faces of unequal thickness, constructions because of the relatively low 

load-carrying capacity of the core materials in the tangential direction, as compared to 
that of the faces. The faces are assumed to be homogeneous and isotropic and are 
analysed on the basis of shell theory rather than membrane theory.

Considering the result obtained in equation (A.4.1), (A.4.2), and (A.4.3) and now 
taking the value of N q = and A ' = according to their unequal

thicknesses and different materials, these equations should be rewritten in the same 
fashion except for the value of k  as:

centroid

G^^= —  K, NQ=qa( \ -K) ,  and Nq = qaK, 
r

w here

K  =
1

, and

u . .  = qa

Em
2

E , f ,
\ - K ^ . i n l

E a  a J-

(A.4.11) 

(A.4.12)

(A.4.13)

Since the values for the displacement at the faces are different, according to 

u = {i^c)r=a ~ i^c)r=h ’ therefore, they become:

qa^ \ , qab
u = — ( l- /c j ,a n d  u = —  k . (A.4.14)

Following the Raville’s work, 1954 764/ page 16, four equations containing the 
parameters A„, Bn, Q , and are obtained. These are:

( « '  -  1)7(1 - k ) -  (n^ - 1) ] A„ +  [ ( « '  -  1) 7(1 -  /c) +  ( 1 +  ) -H (1 +  « > ,  ) -  / ] ] b  ̂ +

-i-j^j3-/i^(l-i-n^0i)jc„ -h | / i ( l - h ) | a  ̂ = 0,  (A.4.15) 

[n^- \]A^+ -S^{\  + (j)^)-[\ + n̂ (l)̂ ) + ̂  B,,+[^ï^(l + 0,)]c„+

-h[-n (l + 0,) ] / /„ = O , (A.4.16)
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k - i )
J2

A„ +
/ A

B.+

C +

+ n —(l + «^02) ^ « = 0, (A.4.17)

+

( « ^ - l ) In —+ «̂ (1 + 02) Q  + -«—(1 + 02) / /  = 0. (A.4.18)

Where, in each of the above equations,

Y = q 4 - ^ / ) n
’ 2G,g 2 ’ 12a" ’

Each of the terms in these equations contains one of the parameters A„, Bn, C», and //„ 
that appears in the displacement equations of the cylinder. A buckled form of 
equilibrium is possible only if these set of equations yields solutions for these 
parameters which are different from zero. This requires that the determinant of the 
coefficients of these parameters must be equal to zero. This determinant may be 
written as follows:

/ ( 1-K-) y { l - K ) + { ô „ + n % —^
n

“  (1 + 01 )“  (1 + 'î Vi )+ - ^

 ̂ -«"01a " - l
«"-1 «"(l + 0i)

T K - ^ ln - — ^ -^ -«" 02  
A  « n - l a

01

-(1 + 0,)

0 2 -a

(«"- l ) l n —+ «"(1 + 02) — (l + 02>
a a

f i  b b n

« -̂1 “ ^ « t (1 + 02)- -^ ( i + «"02) - - T ^b b » A
Since terms containing, 7 appear in two of the rows, the expansion of the determinant 
shown above results in a quadratic equation in 7 . The two roots that satisfy the 
quadratic equation are, in general, widely separated negative values. The lower in 
absolute value, 7̂  ̂ corresponds to the critical load on the cylinder. Therefore, the 
critical load is

E f A
^cr = Ï C

(A.4.20)

The results apply to long sandwich cylinders that have thin shells facings and are 
subjected to uniform external, lateral loading.
For the determination of critical load, the determinant should be expanded with n=2. 
The case n=l  represents rigid body translation of the cylinder, and values n>2 results 
in higher critical loads. The two eigenvalues of the determinant correspond to the two 
configurations shown in figure A.4.2. Obviously, the critical load showed in figure 
A.4.2(B) is considerably higher than that which corresponds to figure A.4.2(A) and is 
of no practical interest in the multi-layered cylinder problem.
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OUTER FACES 

INNER FACES

Fig. A .4.2 C onfiguration for tw o eigenvalues 
o f the stability determ inant.

A simpler expression for this determinant is obtained if the modulus of elasticity of 
the core in the radial direction is assumed to be infinite. Under this assumption, the 
value of y may be written as:

1 +
r „  = ( ' - « ' ) ■

fc/i
af .

1 +

2

^  A\ - ~ + 01  —  +  0 ,  - + n^y/
V I  A

E, f ,
where y/ =

■ 4 '
2Gr0

This equation with n=2, yields values of within 3% of the values obtained from the 
whole expansion of the determinant for usual sandwich constructions. For cylinder 
having very thin faces (membrane faces assumption) of equal thickness, the values of 
0, and 02 4re assumed to be zero, n=2, and the above equation reduces to

3 [ \ -b /a y
ï c r  -

. ' 4 : 1 + 2 E j { \ - b / a )
(A.4.21)

The value of critical load is then determined from the definition (A.4.20). In Table 
A.4.1 there are some limit cases for the critical pressure.
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I 1-------1-----

1 — — + ------
a y I2ab

1 + -
 ^

Table A.4.1 Results obtained for certain limiting cases.

A.4.3 Buckling of multi-layered cylinder of finite length

This work was originally presented by Milton Raville (1955) /65/, and Norris and Zahn 
(1963) /54/. The solution obtained is based on the assumption that the multi-layered 
cylinder elements are composed of isotropic, membrane faces and an orthotropic core.
The mathematical solution of the problem , which is in the form a characteristic 
determinant of sixth order, is applicable to multi-layered cylinders of any length and of 
any core thickness. The core is considered to have such low load carrying capacity in the 
tangential and longitudinal directions as compared to the faces that the normal stress in 
the core in these directions and the shear in the core planes perpendicular to the faces and 
in these directions may be neglected. The action of the core and faces is related by the 
assumption that their displacements are equal at the interfaces between the core and faces. 
It means that the pipe wall is considered to buckle and behaves as an elastic continuum.

The method used to establishing the stability criterion is similar in concept to that used by 
Timoshenko /73/, 1936 in the analysis of the buckling of homogeneous cylinders of finite 
length subjected to uniform external pressure.

In this analysis the cylindrical co-ordinates r , 0 ,  and z are used. The dimensions of the 
cylinder and the positive directions of the co-ordinates is indicated in figure A.4.3 The 
radii to the middle surfaces of the outer and inner faces are denoted by a and b, 
respectively, and the thickness of each face is denoted by /. The origin of the co-ordinate 
system is placed at the middle cross-section of the cylinder whose length is denoted by /.
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Since q is considered to be positive 
when it acts in positive r-direction, 
buckling occurs at a negative value of q. 
As previously showed, the cylinder at 
the instant before buckling is assumed 
to be in a state of uniform compression 
with the same stress condition existing 
in each cross-section. It means that the 
ends of the cylinder are not supported 
until after the cylinder has been initially 
compressed by a uniform load just less 
than the critical load. The radial stress 
in the core is equal to and the

circumferential force per unit length in the outer and inner faces is qa(\ -  k ) and
respectively, where q is the intensity of uniform external loading in the positive r- 

direction and k  is

"  h E f f  h ■ (A.4.22)
1-H —- - Z  In­

ez E^a a
Following Raville’s work /65/, 1955 page 18 these six equations may be written as 
follows:

1- v ,  A'

Fig. A .4.3 M ulti-layered cylinder, finite length.

n
1-h

+ \ +
1 -hv

A, + -1  )+ V, A' ] + [ - z z '-A ']  C„

M +v
+ n +

A V l- v
R ^ = 0 , (A.4.23)

+ [ - « ' - v ,A V ^ ]c„ +

1 + 4 - + ^ . »n a
1 + 1- v ,  A'

2 a"

\ n + v , b~
-h

/

9 In­
ez2

V /

=0,(A .4.24)

-l)--h V ,A ^  ^

-t-

-f-

- n^  —-A^ - l ) —In —+ v,A^ ^ I n ­
ez a a

1
a a

4

c„

a 4 a a a A a a 2 a a
D.

+ n - ^  +
1-V , A" 6"

n a
A \L  +

2  e z \
A ,= o , (A.4.25)
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+

+

—+ v . A ^ - ^ l n —+  -l)a7C A„ + - { n ^  - \ ) ^ + v  ^  +  {n^ - l ) [ X K —
a a a J | _  a a a

3 , 3  I i 2b b .  b
- n ^  —-(« ^  - l ) —In —-v .A ^ -^ I n  — - ^ + ( n ^  -ijbrK:—In —

fl a a a a a a a a
2 l 2 l  1, 1.4 l 2 I. l 3 l 2^ 2 b \  b Vf ,2 ^  ^ e ^ / 2 iV. ^

— ^  M — ^ I n — I----------A  — - — — Y  — *5—^  —  IjO C K — —
a a 2 a " " "a a a

D.

■  b ^ '  ̂ b ^ '+ V 4  + 4=0, (A.4.26)

“(̂ «0 - 1)+ Â  +  -  l ) a ( l  -  ?c)]b „

+ [- «^ -  Â  + «^a(l -  /c)]c„ + 

1+v

1-V^ 2 / \Vf-\— ^ n  + y - — - a ( l - / c ) D.

+ - « - « « ( I - k:) + 2 A
R . = o , (A.4.27)

+

+

+

a

a

B.

l b  r,2 b^ ( i  , \ b , b .2 b \  b 2 b / 2 b . b
— n — A —-— Vf\n, — ly—In — I- A —— In— \-n OCK— f-(w —IJocK — In —

a a " "

b^ 1—̂ ^  b"̂  1+ ^ /  2 b ^ . b ( b^
■n —  +  r  + ------- n ^ \ n -----

a" 4

6
a' a 

b‘

a a
C„

a" 2 a '

-  1 + M̂ In— \ a K ^
a j  a

D +

a a
l 2

6. 1n -  + - | - -  
a A fl

1 + V. 7̂̂ u
 M—r — nOCK —r2 L +

'  1-V ;
2 ---------2 A

« . = 0.

(A.4.28)
Where

= = (A.4.29)

These equations are satisfied if the constants \ ,B ^ ,C ^ ,D ^ ,L^ ,  and are all equal to 
zero. This represents the uniformly compressed circular form of equilibrium of the 
cylinder. A buckled form of equilibrium is possible only if the set of equations yields 
non-zero solutions for the constants. This requires that the determinant M  of the 
coefficients of these set of equations be equal zero:
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M  =

A , A  2 A s A 4 A s A  6

A l A 2 A s A 4 A s A e

A l A 2 A s A 4 A s Aô

A l A 2 A s A44 A s Aô

A l A 2 A s A 4 A s Aô

A l A 2 A s A 4 A s Aô
where,

r i - v , \

2
V V y

Al = - ^

A,2 = (n " - l )a ( l -K :) ;  

As +

“T^«0 +(«^ - l ) a ( l - ^ ) ;

A 4
l-v

As ~
( \ - v

; i \

A ô = -

a n
l - v \

A 2 = - l ) a K b / a  ;

l - v

A23 — —^ —Y (1 ~ ^ /  —3” +  ” l)ûfK*b j a \x\bja  ;

b

a'

A - ' ' /
a

V

w U ' - "  ' -f
a y

X ^ ^ l n b j a  
a

+
l-v. V ^

a ‘

A s  = -

 ̂ 5̂  —  \nbla + {n̂  - \ )a K b ^ la ^  ’, 
a

^ l - v ,  V ,  b*
V y

/

Aô = -
f  l-v,
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961

A + l , r = 'V

^ , + iY ^A + 5-= < ’V
A - \ )

■ [ ( ^ - t K “ + ^ r - ^ “ - ] t r = 'V  

‘■[{̂  -  I)W(I -  ,«) +  J  + ( l  +  ^ A -],r  =  ' V

A + I
+

/

, r = ‘V

A
=

o

A - l

A+X y

+ M =

‘.v /qui"g
'  _ Z ^  ^

^A+IJ V A - l V A + l
+ l = ^ V

■ :Y^A+ = 'V

^.v/qu\^X A + l îY

/

V A - lJ + ^ ( l+ " " ? )  + | y = ' V

A + l
=

A - l
+ u =

A + l
+ 1= V

u

\ Y A - l

• î Y - ^ « - = “y

^Y ^a+ ( i - j M )-= 'V

+(l+*"p) + y - =  'V



^ 6  “

V

= A

\ i  — ^

\ - i  ~  ̂

l - v

^ 1 + V f  \
^ne +

l - v
ft  ̂\ubja + ?i —̂ ln6/  ü — {S^q + l)ofK*

- V +])—+ )i -\)pCK—

- n ^ —-? i  ^ - v  fip,^ - ] ^ \n b la - \ - ) i  ^ \ n b / a
b „o b

T ~ ^ fa a u

+ n^aK— + {n^-l)DCK—\nb/a

^ 4  ----a

l - v \
/ \nb/a + X̂

l - v

+
1+ v , ^

V y
7 .2  7 .2

2

fi  ̂—^ l ^ b j Ü —Y ^ ^ b j a  —CCK—-— ——(XKlviblci
a

A 5̂ — X '^1+v  ̂ ^ 2 b^ 2 b

LV 2  y

n. —:— n CCK—T- 
a a

n^+X^ 2 •

The lowest negative value of a  for which this determinant equals zero is proportional 
to the critical load on the sandwich cylinder; this value of a  will be referred to as . 
After this value is found, the value of the critical load is obtained from the definition 
that is:

E , f
<lcr =

. ( l - v ; )
oc. (A.4.30)

Since the determinant contains the eigenvalue, a  in four of the six rows, the 
expansion of the determinant would result in a fourth order algebraic equation in a . 
Only the lowest of these roots corresponds to the actual buckling load. A literal 
expansion of the determinant of matrix M  was found to be impractical. A numerical 
solution showed to be inaccurate due to inherent difficulties involving the subtraction 
of large numbers of almost equal magnitude. Therefore, the six order determinant was 
reduced in literal form to the fourth order determinant shown on matrix TV below:
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N  =

where,

Bn

Bu Bn Bu Bu

Bn ^2 2 B23 B24

B„ ^32 B33 B34

«4, B,2 B,3 B44

+ l ) - - %
n
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A
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+VjX^ \nb/a5 . = ( ^ . + i ) f 4 4 A V 4 4 r ^ l
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+ («  ̂- l ) a x :  -
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^X -b ja  ^
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3+v /
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v .A '

1+v
V " y 
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+ A '-
l - v /  A

n aK 
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C =
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- + a { \ - K ) X ^ ,
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_  1 -v
F = ------: \nbja.

A procedure was devised from which the desired eigenvalue can be determined from 
this determinant by trial and error. For a given set of parameters containing the 
dimensions and physical constants of the cylinder, the assumed value of the eigenvalue 
is varied until the value of the determinant becomes equal zero. The numerical results 
obtained are shown in figures A.4.4 (a), (b) and (c), based on physical constant for 
honeycomb cores and two different ratios of the mean radius of inner to the outer face; 
that is a  = 0.95, and a = 0.98. The ratios E J G q , and E j G ^ ,  were chosen to
represent the average values of these quantities for honeycomb cores. The value of 

= 1, represents a cylinder that has a weak core; that is, a core having relatively low 
values of Gg, and . For this case, values of as a function of the length to 

radius ratio is showed in figures A.4.4(a) for E j G g  = 4 , and E j G ^  =10 ,  and figure 

A.4.4(b) for E j G g  =10 ,  and E j G ^ = 4 .  The value of ^ = 1000, represents a 
cylinder having a stiff core. This case was presented by figure A.4.4(c) for E j G g  = 4 , 

and E j Gg  =10 .  Since the value of ^ depends not only upon the ratio, m = E jE^ , 

but also the radius to face thickness ratio, a j f  , the range of values is quite wide. 
However, most of the constructions have dimensions and physical properties such that 
they lie between in the range between 1 and 1000.

Fig. A .4.4(a) C ritical pressure in terms o f (Xrj  ̂versus the length to radius ratio, ^ =  1
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Fig. A .4.4(b) Critical pressure in terms o f versus the length to radius ratio, ^ — \ ■

Fig. A .4 .4(c) C ritical pressure in term s of versus the length to radius ratio, ^ =  1 0 0 0  .

201


