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Abstract 
 

Background: Glaucoma is the most frequent cause of irreversible blindness worldwide. There is no 

cure, but early detection and treatment can slow the progression and prevent loss of vision. It has 

been suggested that artificial intelligence (AI) has potential application for detection and management 

of glaucoma. 

Sources of data: This literature review is based on articles published in peer-reviewed journals.  

Areas of agreement: There have been significant advances in both AI and imaging techniques that are 

able to identify the early signs of glaucomatous damage. Machine and deep learning algorithms show 

capabilities equivalent to human experts, if not superior.  

Areas of controversy: Concerns that the increased reliance on AI may lead to deskilling of clinicians.   

Growing points: AI has potential to be used in virtual review clinics, telemedicine and as a training 

tool for junior doctors. Unsupervised AI techniques offer the potential of uncovering currently 

unrecognised patterns of disease. If this promise is fulfilled, AI may then be of use in challenging cases 

or where a second opinion is desirable.  

Areas timely for developing research: There is a need to determine the external validity of deep 

learning algorithms and to better understand how the ‘black box’ paradigm reaches results. 

 

Key words: artificial intelligence, machine learning, deep learning, machine learning classifiers, ‘black 

box’ algorithm, glaucoma  
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Background 

 

Glaucoma is the most frequent cause of irreversible blindness worldwide1,2. It is currently regarded as 

a group of diseases that share characteristic features of an excavated optic neuropathy and visual field 

(VF) defects2 which indicate damage at the level of the lamina cribrosa in the optic nerve head. 

Glaucoma is largely asymptomatic until the advanced stages of the disease when considerable 

irreversible damage has taken place2. Although there is no cure, it is important to identify individuals 

with glaucoma at high risk of progression to ensure early diagnosis and prompt treatment to minimise 

visual loss. In order to maximize the benefit from scarce resources, it is also important to differentiate 

individuals at high risk of glaucomatous progression from those that will not progress to significant 

visual loss in their lifetime3. 

There are two mechanistic categories of glaucoma, namely open-angle glaucoma and angle-closure 

glaucoma. Glaucoma can further be categorised by whether it is primary (usually idiopathic), or 

secondary4,5. While there is no universally accepted classification scheme for glaucoma, one of the 

most cited classification schemes is that of Foster et al6, who in 2002 offered a cross-sectional 

classification scheme for diagnosing glaucoma in population-based prevalence surveys, with cases 

diagnosed on the basis of both structural and functional evidence of glaucomatous optic neuropathy. 

Structural changes refer to optic nerve damage and retinal nerve fibre layer (RNFL) defects, whereas 

functional changes refer to visual field (VF) defects.  This scheme has established a clear, evidence-

based standard that many others have subsequently used, and one that has been integrated into the 

UK’s National Institute of Health Care Excellence (NICE) guidance3.  

Advances in ophthalmic imaging in recent years have helped to improve detection and monitoring of 

glaucomatous progression7. Optical coherence tomography (OCT) imaging was first introduced in 

1991 and is now the "industry standard" technique for retinal and optic nerve head imagining. 

Substantial, rapid improvements have since been made in image acquisition, spanning time domain-

OCT (TD-OCT) to spectral domain-OCT (SD-OCT) and finally swept source-OCT (SS-OCT), with faster 

scans and higher axial resolution achieved with the latter. Current images allow the identification of 

discreet cellular layers in the retina. Such rich images offer new opportunities to identify novel signs 

of disease, to improve detection of early stage disease, but also present challenges to humans in the 

extraction and interpretation of the relevant data. 
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Imaging techniques and artificial intelligence (AI) 

 

In recent years there have been significant advances in ophthalmic imaging techniques that allow us 

to identify the signs of glaucomatous damage and quantitatively monitor structural changes as the 

disease progresses7. The trade-off is the demand on time for increasingly complex image 

interpretation. Automation of image analysis would help mitigate this. 

AI holds great promise to revolutionise highly image-driven areas of medicine, such as ophthalmology 

and radiology. Despite recent successful testing of AI for detection and management of retinal 

disease8, doing the same for glaucoma remains technically very challenging because of the need to 

interpret a combination of structural and functional features of the disease. AI refers to “a machine 

imitating the way humans think and behave” 9. Machine learning, a subfield of AI as illustrated in 

Figure 110, learns and recognises specific features or lesions in images9. Deep learning, a subfield of 

machine learning, uses a deep neural network to classify images based on global labelling on the 

images and ‘end-to-end’ learning without a need to differentiate the defined features9,11. Machine 

learning classifiers (MLCs) are the computer algorithms that process input data, such as fundus 

photographic images, OCT (optical coherence tomography) images or VFs, and generate output data 

to classify or grade the input data12. MLCs may be supervised or unsupervised. In supervised learning, 

the input data is assigned a label or ‘ground truth’ by human involvement and as a result the algorithm 

is guided towards the “correct” output13. In contrast, unsupervised learning is where raw input data 

is processed by the algorithm and divided into groups, which may or may not match the existing 

clinical knowledge.  The term ‘black box’ is used in reference to deep learning algorithms given that 

the criteria used to make the diagnosis are unknown14,15. Increasingly recent studies are using hybrid 

methods, combining both machine and deep learning algorithms, as seen in Tables 1, 2 and 3. It is 

possible that unsupervised learning may reveal information previously unknown to the expert 

clinician13.  
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Figure 1: The relationship between artificial intelligence, machine learning and deep learning, 
adapted from Ting et al, 201910 

 

AI and glaucoma 

The application of AI in the detection, diagnosis and management of glaucoma includes both machine 

(before 2016) and deep and/or hybrid learning (from 2016). We examine tools for identification of 

structural (Table 1) and functional signs (Table 2) of glaucoma, and the combination of the two (Table 

3), based on Foster et al’s6 classification of glaucoma (i.e. a “supervised” model). Structural evidence 

comprises fundus photographs and OCT-based images whereas the functional studies address visual 

fields (VFs).  The studies in Tables 1, 2 and 3 compare glaucomatous patients with healthy individuals, 

with algorithms being trained and then tested in a validation phase. 

 
Sensitivity, specificity and the area under the receiver-operating characteristic curve (AUC) are 

reported as single values and/or the range achieved, depending on the information published for each 

study. The AUC describes how well the AI method differentiates between two diagnostic groups 

(disease vs. healthy) or two assessors (AI vs. human). Using a perfect test, the curve will pass through 

the upper left corner (100% sensitivity and 100% specificity)53 and have an AUC value of 1.0. The closer 

the AUC result is to 1.0, the higher the diagnostic performance, relative to ground truth.  

 

All studies reviewed have reported AUC values ≥ 0.80, suggesting that AI and deep learning have 

significant potential in the detection and monitoring of glaucoma. Subjects in these AI studies have 

however mostly been selected from glaucoma clinics and not the general population and may thus be 

excluding patients with early undetected glaucomatous disease. Studies that compared the 

performance of machine learning algorithms to human experts reported consistent, if not superior 

Artificial 
Intelligence

Machine 
Learning

Deep 
Learning

(from 2016)
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results for deep learning. Shibata et al30, for example, found that the diagnostic performance of their 

deep learning algorithm was significantly higher than for ophthalmology trainees with AUCs of 0.965 

and 0.726-0.912 respectively. Similarly, Goldbaum et al40, Goldbaum et al41 and Kim et al24 compared 

the performance of machine learning algorithms to glaucoma experts and found that, despite 

variation in the diagnostic accuracy between ophthalmologists, the algorithms were comparable, if 

not superior.  

Although measures such as sensitivity, specificity and AUC are commonly used in evaluating the 

potential benefit of machine, deep and hybrid learning, Shah et al54 have recently highlighted the 

limitations thereof, given that none of these measures directly address whether AI improves actual 

patient care. They suggest that a rethink is necessary in terms of how the potential benefit of AI, 

particularly with regards to patient care, is measured54. Also, given the improvements in the quality 

and precision of imaging techniques over the years, the AUC values for one study may not necessarily 

be comparable to another. Yousefi et al48, Oh et al21, Chen et al22 and Li et al23 used fundus 

photography whereas Burgansky-Eliash et al18, Haung et al19, Barella et al20 and Asaoka et al33 used 

TD-OCT. Ran et al39 used SD-OCT images and found that their 3D deep-learning system performed well 

in the detection of glaucomatous optic neuropathy in both primary and external validations. The 

studies of Omodaka et al26, Muhammad et al50 and Christopher et al51 used SS-OCT images which, with 

greater resolution, may be likely to detect subtle changes. 

The studies in Tables 1, 2 and 3 also show variation in the size of the cohorts used, with some using 

small cohorts (<100). Burgansky-Eliash et al’s18 study, for example, included 47 glaucomatous and 42 

healthy eyes and Barella et al20 included 57 glaucomatous and 46 healthy eyes which is likely to 

introduce bias. These cohort sizes contrast sharply against studies such as that of Wang et al46 where 

44,503 eyes were used. 

Another important limitation of the AI studies is the external validity of the deep learning algorithms 

with regards to real-world populations. Many researchers have trained their algorithms on relatively 

homogenous datasets25,59 and directly from glaucoma clinics, increasing the risk of Berkson’s bias. The 

algorithms are most accurate when applied to images or data from a very similar population as that 

used in the training stage. AI will be less accurate when applied to a population with a different age, 

racial or socio-demographic makeup14
.  

Despite the above limitations, it has been postulated that unsupervised deep learning may provide 

new insights into disease mechanisms55,58,59. This is of particular interest for prediction of 

glaucomatous progression (e.g. from suspect to established glaucoma, or from early to late visual loss) 

as there remains a large element of diagnostic uncertainty. It is possible that the ‘black box’ paradigm 
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could offer new insights. In 2018, Poplin et al55 published a study that illustrated the potential to 

identify previously unrecognised features in ophthalmic images. They reported that their deep 

learning algorithm was able to predict cardiovascular risk factors that were previously unknown to be 

present or quantifiable in retinal images, including age (with a mean absolute error within 3.26 years) 

and sex (AUC 0.97), something that humans cannot do. In the same year, Kazemian et al56 also 

published a paper describing the first clinical decision-making tool that is able to generate a 

personalised prediction of an individual’s glaucoma disease trajectory at different target IOPs, using 

VF and tonometric data. Previous applications of deep learning in glaucoma have been limited to 

classification rather than forecasting. However, in a recent study, Wen et al (2018)57 found that deep 

learning networks, using real-world datasets, not only had the ability to recognise and classify patterns 

of glaucomatous VF loss but also generate predictions for future VFs up to 5.5 years, from a single VF 

with a correlation of 0.92 between the mean deviation of predicted and actual future Humphry Visual 

Fields (HVF) . Further research, including prospective longitudinal studies, is needed to substantiate 

this preliminary finding. It is hoped that deep learning programmes may reveal unrecognised features 

in retinal images that will enhance our detection, diagnosis, monitoring and management of 

glaucoma, and also improve the cost effectiveness in healthcare systems. 

Unsupervised deep learning methods may produce results that challenge current practice. For 

example, ophthalmologists grade the severity of retinal disease based on agreed guidelines. Deep 

learning computational processes do not adhere to set guidelines but instead are developed by the 

computer through pattern recognition through thousands of training images such as the trials of Ting 

et al25, Li et al29 and Medeiros et al36 which used data inputs in excess of 32,000 images. Although deep 

learning algorithms have proven to be highly sensitive and specific, it is possible that computers may 

incorporate non-retinal related features such as artefact59, poor pupillary dilation or the presence of 

a media opacity into their analyses which may possibly confound the results14. Some concern has been 

raised by physicians and patients that the ‘black box’ paradigm may leave us in the dark as to how the 

algorithm has reached its results58, i.e. the algorithms identify and extract relevant features 

independently and learn from these until an optimal performance is achieved. Further work by human 

investigators will be necessary to clarify new patterns detected using this method in order to gain a 

fuller understanding, acceptance and implementation into routine clinical practice60. In order to 

translate AI clinically the scope and breadth of its use alongside current assessment needs to be 

considered. Some patients may also perceive the use of personalised health data as an invasion of 

privacy. The challenge therefore is for clinicians to act as the interpreter between AI and the patient. 
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Unlike the best human clinicians, current AI programs are unable to take a holistic approach to patient 

care (i.e. consider all ophthalmic diseases or medical conditions, as well as patient treatment 

preferences) or consider other external contributing factors to management such as social and 

psychological aspects61
. Some have raised concern that increased reliance on automated image 

analysis may lead to deskilling of clinicians61, which may hinder future clinicians’ ability to make 

decisions based on clinical signs61
.  It can however be argued, that deep learning could be a valuable 

training tool for junior doctors and an adjunct for more challenging cases where there is diagnostic 

uncertainty or where a second opinion is desirable. Deep learning may also help reduce human error14 

thereby raising consistency across medical professionals. Over reliance on technology may potentially 

be harmful at times if/when technology fails, and “output” is accepted without question. There are 

clear medico-legal implications in this scenario62. As AI enters medical practice, physicians will need 

to know and understand how the law will assign liability for injuries that arise from interaction 

between algorithms and practitioners62.  

Deep learning programmes require large datasets for training and testing of the algorithm. However, 

infinitely increasing the size of the dataset used may not necessarily improve the diagnostic 

performance of the algorithm and instead may increase the risk of false connections forming10
.  As 

highlighted above, it is possible that the algorithms are incorporating non-retinal related features14,59. 

It also does not necessarily follow that the addition of a large input of healthy participant data will 

improve the diagnostic performance10
. There is also the added complexity of multiple ocular 

pathologies coexisting. Clear guidance for the optimal number of cases needed for training is 

needed10. Future work is also needed to optimise the ability of algorithms to differentiate 

glaucomatous optic neuropathy from both healthy eyes and those with other ocular comorbidities 

such as age-related macular degeneration, diabetic retinopathy, hypertensive retinopathy, optic disc 

drusen and swollen optic nerve heads in addition to also monitoring the progression of the disease. 

The performance and external validity of AI will depend on a myriad of features in the training 

dataset10
. 

AI and deep learning techniques offer a tantalising promise of more precise and earlier detection of 

sight-threatening disease. This would focus the attention of both patient and ophthalmologist on the 

importance of compliance with treatment and maintaining follow up14. Earlier detection and more 

intensive, personally-targeted treatment of glaucoma may help slow or arrest the disease progression 

and allow patients to maintain their independence, their career and driving licence for longer. On a 

national scale, this may provide a more cost effective14 approach as fewer people will be reaching 
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more advanced stages of the disease, thereby minimising the care costs and lost tax revenue. If those 

at high risk can be reliably identified, low risk individuals could avoid unnecessary ‘medicalisation’.  

An additional, empowering concept is a marriage of AI with telemedicine10, in which the 

telecommunications allow for remote diagnosis and treatment of patients, particularly in rural areas.  

This combination offers enormous healthcare benefits on a global scale, in particular to poorer, non-

industrialised countries. However, although AI holds great promise, it is unlikely that it will replace 

human interpretation entirely but rather serve as an adjunct in the diagnosis and management of 

glaucoma patients. AI will cause a revolution in healthcare, and transform the relationship between 

doctor and patient, and require the medical profession to embrace new ways of working, and the 

need to acquire new skills.  

Conclusion 
 
Glaucoma is the most frequent cause of irreversible blindness worldwide. There is currently no cure, 

but early detection and more intensive treatment of glaucoma can slow progression and help prevent 

loss of vision. Significant advances in ophthalmic imaging in recent years present both opportunities 

from more detailed images, and challenges from the demand for sophisticated image interpretation. 

There is also a need to reduce medicalisation of the large number of people who will not lose vision 

in their lifetime, and thereby reduce the burden on healthcare services and budgets, while improving 

quality of life.  AI tools for image analysis could help achieve all of these goals.  

 

AI has sparked considerable global interest in recent years. Developing machine algorithms that can 

emulate human intelligence, analyse images and reach diagnostic end points holds great power for 

the field of medicine. The current literature review shows promise for the use of AI in automating 

glaucoma detection and more sophisticated monitoring of glaucoma. There are a number of 

limitations that still need to be addressed before AI can be integrated into clinical practice. Despite 

these limitations, AI has the potential to revolutionise the future management of glaucoma in adults. 
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Table 1: Summary of structural key studies 

 Author Year No. of 
images/eyes 

Imaging modalities AI method/ algorithm  Sensitivity Specificity Accuracy AUC 

M
ac

h
in

e
 le

ar
n

in
g 

Bowd et al16 2002 108 glaucomatous; 
189 healthy eyes 

Confocal scanning 
laser 
ophthalmoscopy of 
the optic disc 

Machine learning: SVM 
linear, SVM Gaussian, MLP, 
LDF 

0.78-0.81 
 

All at 0.90 
specificity 

- 0.906-0.96 
 

Huang et al17 2005 89 glaucomatous; 
100 healthy eyes 

Stratus-OCT (RNFL 
thickness and optic 
nerve head analysis) 

Machine learning: LDA, 
MD, ANN, LDA with PCA, 
MD with PCA, ANN with 
PCA 

50.6-98.8 
 

All at 0.90 
specificity 

MD 97.66% 0.821-0.991 
 

Burgansky-
Eliash et al18 

2005 47 glaucomatous; 
42 healthy eyes 

Stratus-OCT Machine learning: SVM(8), 
LDA(8), GLM(4), SVM, LDA, 
RPART(8), RPART, Rim 
area, Mean NFL, Mean 
macula 

0.468-0.925 
  

All at 0.95 
specificity 

74.2-96.6% 
 

0.839-0.969 
 

Huang et al19 2007 64 glaucomatous, 
71 healthy eyes 

Stratus-OCT Machine learning: 
automatic labelling with a 
self-organizing map and 
decision-tree methods 

0.73 0.92 83% - 

Barella et al20 2013 57 glaucomatous; 
46 healthy 
 

SD-OCT Machine learning: RAN, 
NB, RBF, MLP, ADA, ENS, 
BAG, SVMG, SVML, CTREE 

22.5-63.1 
 

All at 0.90 
specificity 

- 0.733-0.877 
 

Oh et al21 2015 386 (257 training; 
129 testing) 

Colour fundus 
photographs 

Machine and deep learning 
ANN: Model 1, 2, 3, 4 and 5 
 

0.522-0.826 
 
  

0.789-0.859 
 

72.3-84% 
 

0.635-0.890 
 

Chen et al22 2015 99 training; 551 
testing followed by                  
650 training; 1676 
testing 

Colour fundus 
photographs 
 

Deep learning CNN: ORIGA 
dataset, SCES dataset 

- - - 0.831 followed 
by 0.887 

D
e

e
p

 le
ar

n
in

g Li et al23 2016 585 training, 65 
testing 

Colour fundus 
photographs 

Deep learning: AlexNet, 
GoogleNet, VGG-16, VGG-
19 

- - - 0.7187-0.8384 

Kim et al (a)24 2017 1,080 (680 training, 
200 validation, 200 
testing) 

Colour fundus 
photographs 
 

Deep learning: high 
resolution CNN 

- - 87.9%  - 
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D
e

e
p

 le
ar

n
in

g 

Ting et al25 2017 125,189 training; 
71,896 testing 

Retinal images Deep learning: CNN 0.964 0.872 - 0.942 

Omodaka et al26 2017 114 training; 49 
testing 

SS-OCT Machine learning: Neural 
network 

- - 87.8% - 

Cerentini et al27 2017 HRF 45 fundus 
images, RIM-ONE r1 
158 images, RIM-
ONE r2 425 images, 
RIM-ONE r3 159 
images 

Colour fundus 
photographs 

Deep learning: HRF, RIM-
ONE r1, RIM-ONE r2, RIM-
ONE r3, HRF + RIM-ONE r1 
+ RIM-ONE r2 + RIM-ONE 
r3 

- - 86.2-94.2% 
 

- 

Raghavendra et 
al28 

2018 1,426 (837 
glaucomatous, 589 
healthy) 

Colour fundus 
photographs 

Deep learning: CNN 0.980 0.983 98.13%  - 

Li et al (a)29 2018 48,116 images Colour fundus 
photographs 

Deep learning: CNN 0.956 0.920 - 0.986 

Shibata et al30 2018 Training: 1,364 
glaucomatous; 
1,768 normal 
Testing: 60 
glaucomatous; 50 
normal 

Colour fundus 
photographs 

Deep learning: Deep 
ResNet versus 
Ophthalmology residents 

- - - 0.965 (versus 
0.726-0.912) 

Ahn et al31 2018 467 advanced 
glaucoma; 289 early 
glaucoma; 786 
healthy  

Colour fundus 
photographs 
 

Deep learning, Machine 
learning: 
Simple logistic classification 
model and CNN, Transfer-
learned GoogleNet 
Inception v3 

- - 77.2-87.9% 
 

0.93-0.94 
 

An et al32 2019 208 glaucomatous, 
149 healthy eyes 

Colour fundus 
photographs, SD-OCT 

Machine learning and deep 
learning CNN 

- - - 0.942-0.963 
 

Asaoka et al33 2019 4,316 images (1,371 
glaucomatous, 193 
normal eyes) 

SD-OCT Deep learning: Deep 
learning Transform model 

86.6% 0.90  - 0.937 

Lee et al34 2019 100 glaucomatous, 
100 healthy 

Red-free fundus 
photography 

Deep learning: Deep 
learning classifier 

0.929 0.844 - 0.939 
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D
e

e
p

 le
ar

n
in

g 

MacCormick et 
al35 

2019 ORIGA: 605 (501 
glaucomatous, 149 
healthy), RIM-ONE: 
159 (39 
glaucomatous, 35 
glaucoma suspect, 
85 healthy) 

Colour fundus 
photographs 

Deep learning: Spatial 
model 

- - - Internal 
validation: 
0.996, External 
validation: 0.910 

Medeiros et al36 2019 32,820 pairs of optic 
disc photographs 
and SD-OCT RNFL 
scans from 2,312 
eyes  

SD-OCT: optic disc 
photographs 

Deep learning: CNN - - - 0.944 

Phan et al37 2019 3,312 images (369 
glaucomatous, 256 
glaucoma suspects, 
2,687 healthy) 

Fundus photographs Deep learning (DCNNs): 
VGG19, ResNet152, 
DenseNet201 

- - - 0.995-0.999 
 

Thompson et 
al38 

2019 9,282 pairs of optic 
disc photographs, 
SD-OCT optic nerve 
scans form 490 
patients 

Optic disc 
photographs, SD-OCT 

Deep learning: CNN ResNet - - - 0.945 

Ran et al39 2019 Total 6921 SD-OCT: 
((4877: 60% 
training, 20% 
testing, 20% 
primary validation) 
(2044 for external 
validation)) 

SD-OCT Deep learning: 3D deep-
learning system 
- Primary validation 
- External validation 

 
 
0.89 
0.78-0.9 

 
 
0.96 
0.79-0.86 

 
 
91% 
80-86% 

 
 
0.969 
0.893-0.897 

 
Key:         ADA = Ada Boost M1, ANN = artificial neural network, AUC = area under the curve, BAG = bagging, CNN = convolutional neural network, CTREE = classification tree,  DCNNs = 

Deep convolutional neural networks,  ENS = ensemble selection, GLM(4) = generalized linear model using 4 parameters, HRF = high resolution backgrounds, LDA = linear 
discriminant analysis, LDA(8) = linear discriminant analysis using only 8 parameters, LDF = linear discriminant functions, MD = Mahalanobis distance, MLP = multi-layer 
perceptron, NB = Naïve-Bayes, NFL = nerve fibre layer, OCT = optical coherence tomography, PCA = principal component analysis, RAN = random forest, RBF = radial basis 
function, ResNet = Residual Learning for Image Recognition, RNFL = retinal nerve fibre layer, RPART = recursive partitioning and regression tree, RPART(8) = recursive 
partitioning and regression tree using only 8 parameters, SD-OCT = spectral domain OCT, SS-OCT = swept source OCT, SAP = standard automated perimetry, SVM = support 
vector machines, SVM(8) = support vector machine using only 8 parameters, SVMG = support vector machine Gaussian, SVML = support vector machine linear 
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Table 2: Summary of functional key studies 

 Author Year No. of images/eyes Imaging 
modalities 

AI method/ algorithm Sensitivity Specificity Accuracy AUC/Other 

M
ac

h
in

e
 le

ar
n

in
g 

Goldbaum et al40 1994 60 glaucomatous, 60 
healthy eyes 

VFs Machine learning: Back 
propagation learning method 

0.65 (versus 
0.59 for 
glaucoma 
experts) 

0.74 for ML 
network 
(versus 0.71 
for glaucoma 
experts) 

67% 
(comparable 
to glaucoma 
experts) 

- 

Goldbaum et al41 2002 156 glaucomatous, 
189 healthy eyes 

SAP Machine learning: STATPAC 
Global Indices and statistical 
classifiers, Machine Classifiers 

0.61-0.67  0.76 -0.79  - 0.884-0.922 
 
 

Goldbaum et al42 2009 939 glaucomatous, 
1,146 healthy 

HVFs Machine learning: VIM  0.89-0.955 95%  - - 

D
e

e
p

 le
ar

n
in

g 

Asaoko et al43 2016 171 glaucomatous, 
108 healthy visual 
fields 

SAP VFs Deep learning: Deep FNN  
Machine learning: RF, Gradient 
boosting, support vector 
machine, NN 

- - - - 0.926  

Yousefi et al44 2016 1,117 glaucomatous, 
859 healthy eyes 

SAP VFs Machine learning: GEM, VIM  0.899- 0.930 0.938- 0.97 - 0.81- 0.86 

Li et al (b)45  2018 4,012 images (3,713 
training, 300 testing) 

HVFs 30-2 and 
24-2 

Deep learning: Deep CNN 
Machine learning: SVM, RF, KNN  

0.932 
 
 

0.826 59.1-87.6% 
 

0.966 

Wang et al46 2018 44,503 eyes (26,130 
subjects) 

VFs Machine and deep learning - - 87.7% 0.77 

 
Key:          AA = Archetypal analysis, CNN = convolutional neural network, FNN = feed-forward neural network (FNN), GEM = Gaussian mixture model with expectation maximization, HVFs 

= Humphrey Visual Fields, KNN = k nearest neighbour, ML = Machine learning,  NN = neural network, RF = random forest, RNFL = retinal nerve fibre layer,  SAP = standard 
automated perimetry, SVM = support vector machine, VF = Visual field, VIM = Variational Bayesian−independent component analysis−mixture model. 

 

 

 

 



 14 

 Table 3: Summary of combined structural and functional key studies 

 Author Year No. of images/eyes Imaging modalities AI method/ algorithm  Sensitivity Specificity Accuracy AUC 

M
ac

h
in

e
 le

ar
n

in
g 

Silva et al47 2013 62 glaucomatous; 48 
healthy 

SAP VFs, SD-OCT-RNFL 
thickness 

Machine learning: BAG, 
NB, MLP, RBF, RAN, ENS, 
CTREE, ADA, SVML, SVMG 

0.8225-
0.9516 

0.5645-
0.8387 
 

- 0.777-0.932 
 

Yousefi et al48 2014 107 glaucomatous, 73 
healthy eyes 

Colour fundus 
photographs, SAP VFs, 
SD-OCT – RNFL 
thickness 

Machine learning: 
Bayesian Net, Lazy K Star, 
Meta Classification – 
Regression, Meta 
Ensemble Selection, 
Alternating Decision Tree, 
RF Tree, Classification and 
Regression Tree 

0.56-0.73 
 

0.90 - 0.82-0.88 
 

D
e

e
p

 le
ar

n
in

g 

Kim et al (b)49  2017 499 (399 training; 100 
testing) 

SAP VFs, SD-OCT – RNFL 
thickness 

Machine and deep 
learning: RF, C5.0, SVM, 
KNN 

0.967- 
0.983 
 

0.95- 0.975 
 

97-98% 
 

0.967-0.979 
 

Muhammad et 
al50 

2017 102 (57 glaucoma; 45 
glaucoma suspect) 

SS-OCT, SAP-VFs Hybrid deep learning: 
HDLM, RNFL probability 
map, OCT quadrant 
analysis, VF 

- - 63.7-93.1% 
 

- 

Christopher et 
al51 

2018 235 (179 glaucomatous; 
56 healthy) 

SAP VFs, SS-OCT Machine learning: RNFL 
PCA, Mean cpRNFLt, SAP 
MD, FDT MD 

- - - 0.83-0.95 
 

Masumoto et 
al52 

2018 982 glaucomatous; 417 
healthy 

Ultrawide fundus 
photographs, AP VFs 
 

Deep learning: Normal vs 
all glaucoma, early, 
moderate, severe 

0.775-- 
0.909 

0.753- 
0.958 

- 0.830-- 
0.934 

 
Key:          ADA = Ada Boost M1, AUC = area under the curve, BAG = bagging, CTREE = classification tree, ENS = ensemble selection, FDT = frequency doubling technology, HDLM = hybrid 

deep learning model, KNN = k-nearest neighbour, MD = mean deviation, MLP = multi-layer perceptron, NB = Naïve-Bayes, OCT = optical coherence tomography, PCA = principal 
component analysis, RAN = random forest, RBF = radial basis function, RF = random forest, RNFL = retinal nerve fibre layer, SAP = standard automated perimetry, SD-OCT = 
spectral domain OCT, SS-OCT = swept source OCT, SVM = support vector machines, SVMG = support vector machine Gaussian, SVML = support vector machine linear, VF = 
visual fields 
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