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Abstract 

Objectives 

To assess the performance of MAIC matching on first moments or higher moments in 

unanchored comparison cross study comparisons, under a variety of conditions. A 

secondary objective was to gauge the performance of the method relative to propensity 

score weighting (PSW). 

Methods 

A simulation study was designed based on an oncology example, where MAIC was used to 

account for differences between a contemporary trial where patients had more favourable 

characteristics, and a historical control. A variety of scenarios were then tested varying the 

setup of the simulation study, including violating the implicit or explicit assumptions of MAIC. 

Results 

Under ideal conditions and under a variety of scenarios MAIC performed well (shown by a 

low mean absolute error [MAE]) and was unbiased (shown by a mean error [ME] around 

zero). The performance of the method deteriorated where the matched characteristics had 

low explanatory power, or there was poor overlap between studies. Only when important 

characteristics are not included in the matching did the method become biased (nonzero 

ME). Where the method showed poor performance, this was exaggerated if matching was 

also performed on the variance i.e. higher moments. Relative to PSW, MAIC gave similar 

results in the majority of circumstances, though exhibited slightly higher MAE and a higher 

chance of exaggerating bias. 

Conclusions 

MAIC appears well suited to adjust for cross trial comparisons provided the assumptions 

underpinning the model are met, with relatively little efficiency loss compared to PSW. 

 



Key words 

MAIC; Signorovitch weighting; Propensity score; single arm trial; historical control 

  



Introduction 

For the assessment of comparative efficacy, interventions are ideally studied in a head-to-

head clinical trial. Where such trial evidence is not available, techniques such as indirect 

comparisons (Bucher et al., 1997), or network meta-analysis (NMA) (Jansen, 2011) can 

provide estimates of the relative efficacy of interventions. However where trials either have 

substantially different comparator arms, no available link to connect them (i.e. a 

disconnected network), or lack control arms entirely, options are more limited; meta-

regression requires a large number of studies to recover information on differences in patient 

characteristics between trials, whilst propensity score techniques (i.e. propensity score 

matching or propensity score weighting [PSW]) require access to patient level data 

(Rosenbaum and Rubin, 1983), which are frequently not available for at least one of the 

relevant comparators. 

This lack of access to patient level data for comparator trials is a limiting factor in many 

health technology appraisal submissions. The reasons for the lack of access can be 

complex, but often involve the data being owned by a competitor manufacturer, 

confidentiality reasons, or the data being inaccessible due to the passage of time. Where 

this patient level data are not available, Matching Adjusted Indirect Comparison (MAIC) has 

been proposed (Signorovitch et al., 2010). Analogous to PSW, MAIC involves weighting the 

patient level data available (usually from a manufacturer’s own trial) to match the aggregate 

characteristics of the target trial for which individual patient data are unavailable. 

The result of the MAIC weighting can be used in two approaches – firstly to account for 

differences between trials in predictive characteristics, with the results subsequently used to 

inform NMA (this is often termed an ‘anchored comparison’). Alternatively, MAIC is used to 

weight one study to match the population of a second trial, allowing for cross-trial 

comparisons (this is termed an ‘unanchored’ comparison). Each of these approaches aims 

to minimise bias in estimates of comparative efficacy – for example accounting for one 

population being younger or having better performance status. 



While the promise of MAIC is considerable, the method is relatively new, having been first 

described in 2010. As of December 2019 there were 126 publications listed on PubMed 

addressing the approach (including the original conceptual papers), with little consistency in 

the application of the technique. The only formal guidance available is a NICE Decision 

Support Unit Technical Support Document report and associated publication (Phillippo et al., 

2016, 2017), which defines terminology, reviews the theoretical validity of the method, and 

suggests best practice (i.e. in unanchored MAIC include all prognostic and predictive 

characteristics). This work however does not give guidance on how the method should be 

applied in specific circumstances, and indeed highlights the need for simulation studies to 

understand the properties of the method; whilst two simulation studies simulation studies 

have been published, these focus on the use of MAIC in ‘anchored’ indirect comparisons, as 

opposed to the unanchored form (Kühnast et al., 2017; Petto et al., 2019). 

As the majority published MAIC applications consider unanchored comparisons (as an 

alternative to a naïve comparison), we examined the performance of the method under such 

conditions. To do so, we conducted a simulation study to understand the performance of the 

method under different data structures and assumptions, with a secondary objective of 

comparing the efficiency of alternative matching approaches: Unanchored MAIC matching 

on first moments (MAICFM), MAIC matching on first and second moments (i.e. matching on 

the mean and variance; MAICHM), and PSW. PSW is included as although it is not a direct 

comparator to MAIC (it requires patient data for both trials), it represents the most widely 

respected approach to weighting. Thus it is therefore possible to gauge the loss of efficiency 

by only being able to match to the moments of the data using unanchored MAIC, as 

opposed to matching using patient data from both studies (as in PSW). 

 

Methods 

Aims & design 



Our review of published MAICs found that the majority of published applications are in 

oncology (23 applications), compared to 30 in all other diseases combined - a further 5 

papers discussed the method without a specific example. For this reason we based our 

simulation exercise on time-to-event data, comparing an intervention to a ‘historical control’ 

(Pocock, 1976). In keeping with the literature on historical comparisons, the individuals in the 

target population for the contemporary trial of the intervention (termed Population A) were 

assumed to have more favourable characteristics than the patients who received the 

historical control (termed Population B), leading to a bias in favour of the intervention (Moroz 

et al., 2014). A simulation study was therefore programmed to mimic such circumstances to 

understand the effectiveness of MAIC in removing the bias in such naïve comparisons. The 

study was designed using guidance on best practice for simulation studies in medical 

statistics (Burton et al., 2006; Morris et al., 2019). 

Data generating mechanism 

In the study, six patient characteristics (X1 , … , X6 ) were simulated; four assumed to be fully 

observed and available for matching (X1 , … , X4 ), whilst two (X5 , X6) were assumed to be 

unobserved. In the base case, these were all assumed to be uncorrelated. The four 

observed covariates were simulated from the same distributional form (in the base case a 

normal distribution), providing a bias of half a standard deviation for each characteristic in 

favour of the intervention. Unobserved characteristics were drawn from the same 

distributions for both populations - implicitly assuming they do not bias the comparison 

although these do add variability in outcomes (as is seen in reality). Four characteristics 

were selected for matching as this is in line with analysis of cancer data identifying 

prognostic cancers such as in bladder cancer with three prognostic characteristics (Bellmunt 

et al., 2010), and in line with previous MAICs where Phillippo et al. (2019) found a median of 

six characteristics were adjusted for (range 1-13). Each characteristic was then multiplied by 

an effect size for that characteristic (β1, … , β6). The sum of these products were added to a 

constant (intercept) and then used as a linear predictor (LP) in a Weibull proportional 



hazards survival model with a corresponding survival time (Y) sampled for each patient both 

with and without receiving the intervention. In other words for each patient the Linear 

Predictor 𝐿𝑃 = ∑ β𝑖X𝑖 + 𝑐6
𝑖=1  with survival outcomes for each patient then sampled from the 

corresponding distribution 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛼 = 1.3, exp(𝐿𝑃)). In each run of the simulation study 

patient characteristics (X1 , … , X6) were resampled, as were different effect sizes (β1, … , β6 , α) 

as shown graphically in Figure 1. By allowing these parameters to vary, we are able to 

ensure the result holds for the distribution in general, as opposed to only testing a specific 

specific distribution. 

As the objective of the study was to understand the performance of MAIC under different 

assumptions, a large number (n=1000) of patients was simulated for Population A (treated), 

and Population B (historical control), survival times were assumed to be observed until 

death, and no data were assumed to be missing. This simulation setup (a large number of 

patients with fully observed survival times and no missing data) was chosen to ensure the 

study assessed the matching methods, and not the variability of outcomes in individual 

patients, or approach to extrapolation and/or missing data (as would have been the case had 

censoring been assumed). In practice such data are unlikely to be fully observed or available 

for all studies, though methods do exist for digitisation of survival outcomes (Guyot et al., 

2012), estimation of missing data (Gabrio et al., 2019; Leurent et al., 2018), and 

extrapolation of survival times (Latimer, 2013) which can be implemented alongside 

matching procedures. 

Methods under investigation 

A naïve comparison contrasts the observed outcome in Population A of the intervention 

(YA_INT) with the outcomes seen in Population B of the historical control (YB_HC). This 

comparison is subject to bias caused by the more favourable characteristics in Population A. 

Matching methods (both MAIC and PSW), attempt therefore to reweight YA_INT with the aim 

of estimating the effect of the intervention in Population B (what would be YB_INT). This can 

then be compared with the observed historical control outcome (YB_HC) for a fair comparison; 



the result which would have been obtained had a controlled study of A versus B been 

performed in Population B. Due to being simulation study the data generation mechanisms 

are known, and thus outcomes can be computed with and without the intervention for both 

groups. By comparing the estimated effect to the (unobserved) true effect, the success of 

both MAIC and PSW in estimating this true effect can be assessed. 

Reweighting was then conducted by matching the observed patient characteristics in 

Population A, to the characteristics in Population B. This was done using three approaches; 

firstly using MAIC matching on the means (first moments) of Population B, MAICFM, 

matching was then conducted using also the standard deviation of the summarised data 

from Population B i.e. matching also on higher moments, MAICHM – this approach was also 

proposed in the original MAIC paper by Signorovitch et al.(Signorovitch et al., 2010): "For 

example, given the baseline mean and standard deviation of age, it is straightforward to 

compute the mean of squared age, which can then be treated as a separate mean baseline 

characteristic for matching". Finally PSW was conducted, where weights were calculated for 

all patients (assuming access to individual patient data for both trials) – this allowed us to 

assess the impact of not having access to the individual patient data from the historical 

control by comparing MAIC methods to the gold standard of PSW. Each set of weights 

(MAICFM, MAICHM and PSW) were then used to estimate outcomes on a per-simulation 

basis. 

Outcomes of the study 

To ascertain the effectiveness of matching methods, the Cox proportional hazard was 

estimated for each method used; a naïve comparison of YB_HC and YA_INT, as well as between 

the reweighted value of YA_INT seen with MAIC, and PSW. Using this point estimate of the 

hazard ratio, three outcomes were calculated; the mean percentage error (which overall 

should be zero for an unbiased method), the mean absolute percentage error (a lower value 

leading to more accurate predictions; over and under predictions are both penalised 

equally), and the coverage probability (whether the 95% interval for each estimated hazard 



ratio contained the ‘true’ value). In addition, for the weighting methods, whether the point 

estimate of the hazard was more accurate than the corresponding naïve comparison was 

calculated – this was used to determine how often a method would be more likely to 

introduce bias than remove it.  

Scenario analyses 

Scenario analysis were then conducted with three broad aims – varying the characteristics of 

the simulation study, testing the limits of where MAIC can be applied, and then violating the 

assumptions implicit or explicit in the approach. 

In changing the setup of the simulation study, several factors were considered, including the 

survival model used, type of variables used in matching (binary as opposed to continuous), 

relative importance of covariates, and efficacy of treatment. These were extended in testing 

the limits of MAIC by matching also on nuisance parameters i.e. variables that were not 

linked to outcomes, or variables were linked in a non-linear fashion. Further scenarios 

considered the degree of overlap between the two studies, and correlation between 

parameters). 

When considering the violation of assumptions in MAIC, the simulation was altered to test 

the effects of the unobserved parameters (X5, X6) also being important and either correlated, 

or uncorrelated with (X1 , … , X4). The effect of outcome distributions of (X1, … , X6) was then 

explored deviating from the initial assumption of normality (the lognormal was used), with 

also trimmed distributions of X used (mimicking trials which have inclusion and exclusion 

criteria, such as age limits).  

A final set of sensitivity analyses involved varying the number of patients available for 

matching with the base case settings. In these scenarios the number of patients available in 

Population A and Population B were varied individually and jointly to include n=30, n=300, 

and n=3000 patients. The aim of these scenarios was to understand the relative importance 

of the number of patients in each trial, and how the level of error was affected by the number 



of patients in each study. Technical details of all scenario analyses conducted are presented 

in Table 1. 

Implementation 

The simulation study was programmed in the statistical software R version 3.6.1 (R Core 

Team, 2017), with survival curves simulated using the stats package, and Cox proportional 

hazards and robust standard errors (using the ‘sandwich’ method) calculated using the 

survival package, Monte Carlo Standard Errors were calculated using the mcmcse package. 

Plots were created using ggplot and ggsurvplot. Truncated distributions were sampled using 

the MSM package. To account for Monte Carlo error, 5000 iterations of each scenario were 

performed. 

 

Results 

Figure 2 shows the modelled survival for one iteration of the simulation study, with a naïve 

comparison comparing the Population B historical control data (blue line, with median 

survival of 9.2 months, mean survival of 11.4 months over all simulations) to the data on the 

intervention from Population A (black line, median = 13.4, mean = 16.8 months). However, 

had patients had the same distribution of covariates i.e. not had more favourable 

characteristics, the outcomes that would have been seen are those seen by the green line 

(median = 12.3, mean = 15.2 months). This bias in survival curves (a median bias of 1.1 

months, median bias of 1.6 months) due to more favourable patient characteristics leads to 

an underestimate of the hazard ratio, favouring the intervention; in the case rather than the 

‘true’ value of 0.75, it is estimated to be 0.70.  

Over 5,000 simulations, the results of the base case analysis (Table 2, Figure 3) indicate 

MAIC (both (MAICFM and MAICHM) to be unbiased - shown by the mean error being centred 

around zero, and accurate (absolute percentage error of 3% in estimating the true HR). In 

the vast majority (90%+) of scenarios the 95% confidence interval contained the true HR, 



and in only 2% of scenarios was the error greater than in a naïve comparison. Indeed in the 

base case both form of MAIC performed similarly to propensity weighting. These results are 

shown graphically in Figure 3 using a violin plot; this presents the density of the percentage 

error, with a bar chart overlaid to show the quartiles of the error distribution for each method. 

These findings held when the setup of the simulation study was changed (Table 1, Table 2). 

The only areas of concern identified were those where either the explanatory variable power 

was low or the treatment effect large (with reweighting then introducing bias in all forms) – of 

note are the MAE, coverage probabilities, and chance of estimates being worse than a naïve 

comparison. Again, a similar pattern was seen with MAICFM performing nearly as well as 

PSW in terms of mean percentage error and coverage probability, though MAICHM 

performed slightly less well than the other two methods in having lower coverage 

probabilities, and more often giving estimates with a higher level of error than a naïve 

comparison. 

Sensitivity analysis introducing complexities to the outcome model caused the performance 

of all matching methods to worsen but remain broadly adequate. The main concerns 

identified were the inclusion of variables not linked to outcomes in the matching (which 

would reduce the precision of estimates), or if characteristics are already well matched 

between studies. Whilst the same pattern in performance generally remains (MAICFM, 

matching or outperforming MAICHM with both being outperformed by PSW). 

Where the assumptions underpinning matching methods were violated, performance was 

considerably worse (as may be expected). Where variables are not included in the matching 

but linked to outcomes (and not correlated with other characteristics), there is an increase in 

both mean error and absolute error in the estimation of the treatment effect. Indeed, this is 

the only scenario where the mean error is non-zero for MAICFM demonstrating that should 

important variables be omitted that are more prevalent in one population, bias will not be 

adjusted for appropriately. Where the data are correlated this bias is mitigated, although the 

MAE remains higher than in many other scenarios. 



Whilst MAIC as a method was broadly comparable to PSW, it did perform notably less well if 

the patient data available to use for reweighting (Population A) used a different distribution to 

the historical control – either through a different distribution, or trimmed characteristics 

limiting the overlap with both forms of MAIC exhibiting much increased levels of mean 

absolute error (indicating inaccuracy). In particular MAICHM in such instances performed 

exceptionally poorly (on both mean error, mean absolute error and coverage probability), 

and frequently exacerbated bias compared to a naïve comparison (Table 2). 

The final set of analyses relate to the numbers of patients available in Population A and 

Population B, and is shown in Figure 4. In analyses with low patient numbers (n=30) either 

for matching or in the control, although matching methods appear unbiased (shown by the 

median error being around zero), they are highly imprecise due to the low patient numbers 

(tabulated results are available in Supplementary Table A1). As the number of patients 

increases the precision of methods improves, though a clear pattern emerges (comparing 

the North East versus South West off-diagonals in the figure) that for MAIC it appears more 

important to have more patients to use for reweighting (i.e. the individual patient data), than 

greater precision on the moments to be matched (i.e. the aggregate data). 

 

Discussion 

Under ideal conditions where the method is indicated, MAIC appears to be a valid and well 

performing method to address bias in cross-study comparisons. This finding however does 

not remain constant where certain assumptions are not met; for instance if important 

uncorrelated (and imbalanced) variables are omitted from the matching, sample size is too 

low, or the variables matched on have only a limited impact on outcomes. Whilst noting the 

limitations of the approach, the performance is broadly comparable to those produced by the 

more established method of PSW (which requires access to the patient level data from the 

historical trial). Most reassuringly is that under normal conditions, MAIC rarely exacerbates 



bias compared to a naïve comparison. It is likely however that due to the study design i.e. 

data simulated from normal distributions, this is likely to flatter MAIC relative to PSW; in 

more complex examples including confounding by indication, the additional data available to 

PSW is likely to lead to improved estimates. Similarly PSW would not be applied blindly, with 

data being able to be trimmed to match as necessary, further improving estimates. 

Whilst MAIC matching on the first moments of the patient characteristics (MAICFM) appeared 

to work well on all endpoints, the same cannot be said for matching on higher moments 

(MAICHM). Whilst in many scenarios it performed similarly to MAICFM, in no scenarios did it 

provide a meaningful advantage, whilst also showing the potential for large errors (many of 

which are likely to be seen in practice – for instance non-normally distributed data). Due to 

the lack of clear advantage, and clear potential for harm based on the results of this study, it 

is not possible to recommend the use of MAICHM as standard – careful justification should be 

given if it is to be used beyond sensitivity analyses. If MAICHM is to be used, we would also 

note higher moments of binary variables should not be matched on; as highlighted by a 

reviewer “once the mean is matched the variances would also be matched” – a point we had 

also overlooked – in this scenario the poor performance of MAICHM is due to our own 

effective misspecification of the model. 

Although MAIC appears to function well as an approach based on the lack of bias and 

improved accuracy compared to a naïve comparison, there are conditions highlighted by this 

study that should be met in order for MAIC to be used appropriately, and circumstances 

where we would caution against a reliance on MAIC-derived analysis. In addition to the need 

for sufficient sample size, we suggest that there be good overlap between the studies 

included – explicit assessment of such overlap would therefore seem appropriate where 

MAIC is to be used. Similarly the demonstration (where possible) of the link between 

matched characteristics and outcomes should be performed – for instance in a third dataset 

and using clinician input. We would also use caution with MAIC where there does not appear 

to be a large difference bias between studies – either because patient characteristics do not 



influence outcomes, or because the difference between trials is small. Similarly where an 

intervention effect is large, MAIC may not be required – for instance where there is a 

dramatic improvement in function following the delivery of an intervention(Glasziou et al., 

2007) -in such instances matching methods appear to have a substantial chance of 

overcorrection. The same criteria may be considered appropriate for propensity score 

analyses, though we acknowledge that the additional data available in propensity score 

based analysis allows data to be analysed to avoid such issues; for instance aligning 

inclusion and exclusion criteria on datasets. 

The high coverage probability (included as is convention in simulation studies (Morris et al., 

2019)) demonstrates that in the majority of cases the 95% confidence interval around the 

estimated outcome for MAIC does include the true value. It should be noted however that 

the use of MAIC results in a lower effective sample size, and thus greater uncertainty in the 

resulting 95% interval (seen with the larger standard errors in the study); how useful this is 

therefore relative to the point estimate of the effect. For this reason we have focussed 

interpretation on the more informative mean error and mean absolute error when interpreting 

results. 

We believe that, although the study presented here is comprehensive in the areas 

investigated, further studies are required. In particular we highlight that we have conducted 

our analysis on simulated data. Whilst we are able to establish where the limitations of the 

methods lie, further work (including simulation studies and data analysis) is needed on how 

many parameters can feasibly be matched with different sample sizes, given the distribution 

of data seen in the real world. Similarly understanding which variables should be included in 

matching appears important – for instance with several candidate variables linked to 

outcomes, at which point should the link to outcomes be considered too weak to include in 

matching? Similarly how characteristics are included is a point for future research; should 

age be used as a continuous variable, or in a grouping? There are numerous commonly 

used variables (particularly laboratory measured values) to which this question applies. Until 



such information is known, the provision of sensitivity analyses with alternative model 

specifications seems prudent. 

In addition to the need for further research, we would also highlight that this study compared 

two approaches (MAIC and PSW), however others approaches are available and could be 

considered suitable. In particular we would highlight Simulated Treatment Comparison (STC) 

(Caro and Ishak, 2010) where access is not available to the individual patient data from both 

trials. STC is a regression based method and requires an outcome model be constructed 

and thus is subject to different assumptions such as the role of missing data and the need to 

specify an approach to model construction. Whilst STC and MAIC have yet to be compared, 

STC is able to overcome one of the key limitations of MAIC – that the population of interest 

may not be the one in the historical control, but rather may be that of Population A, or indeed 

have different characteristics altogether. For this reason further work comparing MAIC and 

STC in ‘real world’ problems would therefore be advantageous. 

Whilst an imperfect tool, MAIC appears to be a useful method for the estimation of 

comparative efficacy. Although not without disadvantages, it performs similarly to PSW 

under the majority of scenarios even though in the real world PSW would not be an available 

comparative method (as individual patient data may not be available for two studies). 

Provided careful consideration is given to the circumstances in which it is used, MAIC has 

the potential to provide accurate and estimates of relative efficacy. We would however urge 

analysts to carefully examine the assumptions inherent in the approach to determine its 

suitability for a given problem. 
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Table 1: Parameters used in the base case and changed to form each scenario analysis 

 

Scenario Base case Scenario setting 

 
Changing the setup of the simulation study 

 

All variables are binary 
Covariates 1 to 4: 
Population A: XA ~ N(0.3, 0.1) 
Population B: XB ~ N(0.25, 0.1) 

Covariates 1 to 4: 
Population A: XA ~ Binomial(probability = 0.3) 
Population B: XB ~ Binomial(probability = 0.25) 

Exponential distribution used as the 
survival function 

Survival: Y ~ Weibull(shape = 1.3, scale =  
                                     exp(2+∑Xβ)/ TreatmentHR)) 

Survival: Y ~ Weibull(shape = 1,  
                                  scale = exp(2+∑Xβ)) 

Explanatory variable power is low Covariates 1:4: β ~ N(0.5, 0.2) 
 

Covariates 1:4: β ~ N(0.1, 0.05) 

Explanatory variable power is high Covariates 1:4: β ~ N(1, 0.4) 

Treatment effect is low 
TreatmentHR= Hazard ratio of 0.75 

TreatmentHR= Hazard ratio of 0.9 

Treatment effect is high TreatmentHR= Hazard ratio of 0.2 

Covariate sampling is reversed i.e. 
Population A less favourable 

Covariates 1 to 4: 
Population A: XA ~ N(0.3, 0.1) 

Covariates 1 to 4: 
Population A: XA ~ N(0.2, 0.1) 

 
Exploring the limits of MAIC 

 

Half the matched parameters are 
nuisance parameters Covariates 1:4: β ~ N(0.5, 0.2) 

 

Covariates 1:2: β ~ N(1.0, 0.2) 
Covariates 3:6: β ~ N(0.0, 0.2) 

All the matched parameters are 
nuisance parameters 

Covariates 1:4: β ~ N(0, 0.2) 
 

The effect of parameters is non-
linear 

Survival: Y ~ Weibull(shape = 1.3, scale =  
                                     exp(2+∑Xβ)/ TreatmentHR)) 

Survival: Y ~ Weibull(shape = 1.3, scale =  
                                     exp(2+∑exp(Xβ))/ 
                                     TreatmentHR)) 

Small difference is covariate 
sampling (0.1SD) 

Covariates 1 to 4: 
Population A: XA ~ N(0.3, 0.1) 
 

Covariates 1 to 4: 
Population A: XA ~ N(0.26, 0.1) 

Large difference in covariate 
sampling (1SD) 

Covariates 1 to 4: 
Population A: XA ~ N(0.35, 0.1) 

Parameters correlated 

Underlying health: 
Population A: HA ~ N(0.3, 0.1) 
Population B: HB ~ N(0.25, 0.1) 
Covariates 1:4: 
X ~ N(0, 0.1) + H 



 
Violating assumptions implicit or explicit in MAIC 

 

Missing parameters correlated with 
observed parameters 

Covariates 5 & 6: 
X ~ N(0, 0.2) 

Covariates 5 & 6: 
X ~ mean of parameters 1:4 + N(0, 0.1) 

Missing parameters uncorrelated 
with observed parameters 

Covariates 5 & 6: 
Population A: XA ~ N(0.3, 0.1) 
Population B: XB ~ N(0.25, 0.1) 
Covariates 1:6: β ~ N(0.35, 0.15) 

Non-normal distributions sampled in 
Population A 

Covariates 1 to 4: 
Population A: XA ~ N(0.3, 0.1) 
Population B: XB ~ N(0.25, 0.1) 

Covariates 1 to 4: 
Population A: XA ~ Lognormal(SDlog = 0.5,  
                                                 meanlog = log(0.27)) 

Non-normal distributions sampled in 
Population B 

Covariates 1 to 4: 
Population A: XB ~ Lognormal(SDlog = 0.5,  
                                                 meanlog = log(0.22)) 

Trimmed patient characteristics in 
Population A (no poor performers) 

Covariates: 
Population A: XA ~ N(0.3, 0.1) truncated at min of 0.2 

Trimmed patient characteristics in 
Population B (no good performers) 

Covariates: 
Population B: XB ~ N(0.25, 0.1) truncated at max of 0.35 

NB: Distribution parameterisations are given as in the statistical package R to allow easy reproducibility, thus Normal distributions are given as Normal ~ 
(Mean, Standard deviation) and not Normal (Mean, Variance), and the Weibull specified using the shape (and not rate) parameter 

 

 



Table 2: Tabulated results of the base case and scenario analyses 

Method 

Mean 
Percentage 

Error  
(MCSE) 

Absolute 
Percentage 

Error 
(MCSE) 

Mean 
Standard 

Error 

Coverage 
probability 

Percent of 
scenarios worse 

than a naïve 
comparison 

Base case 

Naïve 
comparison 11.8% (<0.01) 11.8% (<0.01) 0.03 0% - 

MAICMM -0.2% (<0.01) 2.6% (<0.01) 0.03 95% 2% 

MAICHM -0.2% (<0.01) 2.6% (<0.01) 0.03 95% 2% 

PSW -0.1% (<0.01) 2.7% (<0.01) 0.03 95% 2% 

All variables are binary 

Naïve 
comparison 5.2% (<0.01) 5.2% (<0.01) 0.03 48% - 

MAICMM 0% (<0.01) 1.8% (<0.01) 0.03 98% 12% 

MAICHM 4.1% (<0.01) 4.2% (<0.01) 0.03 63% 4% 

PSW 0% (<0.01) 1.8% (<0.01) 0.03 98% 12% 

Exponential distribution used as the survival function 

Naïve 
comparison 9.4% (<0.01) 9.4% (<0.01) 0.03 3% - 

MAICMM -0.1% (<0.01) 2.6% (<0.01) 0.03 95% 4% 

MAICHM -0.1% (<0.01) 2.6% (<0.01) 0.03 95% 4% 

PSW -0.1% (<0.01) 2.7% (<0.01) 0.03 95% 4% 

Lognormal used as the survival function 

Naïve 
comparison 7.5% (<0.01) 7.5% (<0.01) 0.04 55% - 

MAICMM -6.3% (<0.01) 6.4% (<0.01) 0.05 81% 42% 

MAICHM -6.3% (<0.01) 6.4% (<0.01) 0.05 81% 42% 

PSW 0% (<0.01) 2.9% (<0.01) 0.05 99% 10% 

Explanatory variable power is low 

Naïve 
comparison 2.5% (<0.01) 2.9% (<0.01) 0.03 84% - 

MAICMM -0.1% (<0.01) 2.8% (<0.01) 0.04 95% 43% 

MAICHM -0.1% (<0.01) 2.8% (<0.01) 0.04 95% 43% 

PSW -0.1% (<0.01) 2.8% (<0.01) 0.04 95% 44% 

Explanatory variable power is high 

Naïve 
comparison 21.7% (<0.01) 21.7% (<0.01) 0.03 0% - 

MAICMM -0.9% (<0.01) 7.1% (<0.01) 0.08 94% 2% 

MAICHM -1% (<0.01) 7.1% (<0.01) 0.08 94% 2% 

PSW 0.2% (<0.01) 7.7% (<0.01) 0.09 94% 4% 

Treatment effect is low (0.9 hazard ratio) 

Naïve 
comparison 11.9% (<0.01) 11.9% (<0.01) 0.03 0% - 

MAICMM 0% (<0.01) 2.5% (<0.01) 0.03 95% 1% 

MAICHM 0% (<0.01) 2.5% (<0.01) 0.03 95% 1% 

PSW 0% (<0.01) 2.6% (<0.01) 0.03 95% 1% 

Treatment effect is high (0.2 hazard ratio) 

Naïve 
comparison 11.7% (<0.01) 11.7% (<0.01) 0.04 10% - 

MAICMM -0.8% (<0.01) 4.3% (<0.01) 0.05 94% 10% 



MAICHM -0.8% (<0.01) 4.3% (<0.01) 0.05 94% 10% 

PSW -0.1% (<0.01) 4.4% (<0.01) 0.05 94% 9% 

Covariate sampling is reversed i.e. Population A are worse by 0.5SD 

Naïve 
comparison -13.6% (<0.01) 13.6% (<0.01) 0.03 0% - 

MAICMM -0.2% (<0.01) 3% (<0.01) 0.04 95% 1% 

MAICHM -0.2% (<0.01) 3% (<0.01) 0.04 95% 1% 

PSW -0.1% (<0.01) 3% (<0.01) 0.04 95% 1% 

Half the matched parameters are nuisance parameters 

Naïve 
comparison 11.7% (<0.01) 11.7% (<0.01) 0.03 0% - 

MAICMM -0.1% (<0.01) 2.6% (<0.01) 0.03 96% 2% 

MAICHM -0.1% (<0.01) 2.6% (<0.01) 0.03 96% 2% 

PSW 0% (<0.01) 2.6% (<0.01) 0.03 95% 2% 

All the matched parameters are nuisance parameters 

Naïve 
comparison 0% (<0.01) 2.1% (<0.01) 0.03 95% - 

MAICMM 0% (<0.01) 2.9% (<0.01) 0.04 95% 64% 

MAICHM 0% (<0.01) 2.9% (<0.01) 0.04 95% 64% 

PSW 0% (<0.01) 2.9% (<0.01) 0.04 95% 64% 

The effect of parameters is non-linear 

Naïve 
comparison 11.9% (<0.01) 11.9% (<0.01) 0.03 0% - 

MAICMM -0.1% (<0.01) 2.6% (<0.01) 0.03 96% 1% 

MAICHM -0.1% (<0.01) 2.6% (<0.01) 0.03 96% 1% 

PSW 0% (<0.01) 2.6% (<0.01) 0.03 96% 1% 

Small difference is covariate sampling (0.1SD) 

Naïve 
comparison 2.5% (<0.01) 3% (<0.01) 0.03 84% - 

MAICMM 0% (<0.01) 2.1% (<0.01) 0.03 95% 31% 

MAICHM 0% (<0.01) 2.1% (<0.01) 0.03 95% 31% 

PSW 0% (<0.01) 2.1% (<0.01) 0.03 95% 31% 

Large difference in covariate sampling (1SD) 

Naïve 
comparison 22.4% (<0.01) 22.4% (<0.01) 0.03 0% - 

MAICMM -0.7% (<0.01) 6.9% (<0.01) 0.08 95% 2% 

MAICHM -0.7% (<0.01) 6.9% (<0.01) 0.08 95% 2% 

PSW 0.2% (<0.01) 7.7% (<0.01) 0.09 94% 4% 

All parameters correlated 

Naïve 
comparison 10.7% (<0.01) 10.7% (<0.01) 0.03 1% - 

MAICMM -0.1% (<0.01) 2% (<0.01) 0.03 96% 1% 

MAICHM -0.1% (<0.01) 2% (<0.01) 0.03 96% 1% 

PSW 0.1% (<0.01) 2% (<0.01) 0.03 96% 1% 

Missing parameters correlated with observed parameters 

Naïve 
comparison 11.3% (<0.01) 11.3% (<0.01) 0.03 0% - 

MAICMM -0.2% (<0.01) 2.6% (<0.01) 0.03 96% 2% 

MAICHM -0.2% (<0.01) 2.6% (<0.01) 0.03 96% 2% 

PSW 0% (<0.01) 2.6% (<0.01) 0.03 96% 2% 



Missing parameters uncorrelated with observed parameters 

Naïve 
comparison 12.6% (<0.01) 12.6% (<0.01) 0.03 0% - 

MAICMM 4.3% (<0.01) 4.6% (<0.01) 0.03 75% 0% 

MAICHM 4.3% (<0.01) 4.6% (<0.01) 0.03 75% 0% 

PSW 4.4% (<0.01) 4.7% (<0.01) 0.03 74% 0% 

Non-normal distributions sampled in Population A 

Naïve 
comparison 14.6% (<0.01) 14.6% (<0.01) 0.03 0% - 

MAICMM 1% (<0.01) 6.4% (<0.01) 0.03 63% 12% 

MAICHM 17.6% (<0.01) 17.7% (<0.01) 0.03 1% 99% 

PSW -3.7% (<0.01) 3.9% (<0.01) 0.03 73% 1% 

Non-normal distributions sampled in Population B 

Naïve 
comparison 9% (<0.01) 9% (<0.01) 0.03 6% - 

MAICMM -2.9% (<0.01) 3.5% (<0.01) 0.03 88% 12% 

MAICHM -2.9% (<0.01) 3.5% (<0.01) 0.03 88% 12% 

PSW 5.9% (<0.01) 5.9% (<0.01) 0.03 38% 0% 

Trimmed patient characteristics in Population A (no poor performers) 

Naïve 
comparison 18% (<0.01) 18% (<0.01) 0.03 0% - 

MAICMM -1.8% (<0.01) 9.3% (<0.01) 0.11 92% 14% 

MAICHM -7.6% (<0.01) 17.8% (<0.01) 0.18 90% 38% 

PSW 6.8% (<0.01) 7% (<0.01) 0.04 60% 0% 

Trimmed patient characteristics in Population B (no good performers) 

Naïve 
comparison 18.3% (<0.01) 18.3% (<0.01) 0.03 0% - 

MAICMM -0.1% (<0.01) 4.3% (<0.01) 0.05 95% 0% 

MAICHM -0.3% (<0.01) 4.3% (<0.01) 0.05 95% 0% 

PSW -5.5% (<0.01) 9.3% (<0.01) 0.09 87% 13% 
MCSE = Monte Carlo Standard Error, MAIC = Matching Adjusted Indirect Comparison, MM = Method of moments, HM = 

includes Higher moments, PSW = Propensity Score Weighting 

 

 

  



Figure 1: Data generation mechanism for the simulation study 

Survival ~ Weibull (shape = α, scale = λ) 

 

𝛼 =  1.3 

𝜆 =  𝑒𝑥𝑝
(2 + ∑ β1X1 … β6X6)

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐻𝑎𝑧𝑎𝑟𝑑 𝑅𝑎𝑡𝑖𝑜
 

β1 … β4 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.5, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 0.2) 

β5 … β6 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 0.2) 

For the intervention: 

X1 … X4 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.3, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 0.1) 

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐻𝑎𝑧𝑎𝑟𝑑 𝑅𝑎𝑡𝑖𝑜 = 0.75 

For the control: 

X1 … X4 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.25, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 0.1) 

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝐻𝑎𝑧𝑎𝑟𝑑 𝑅𝑎𝑡𝑖𝑜 = 1 

For intervention & control: 

X5 … X6 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑚𝑒𝑎𝑛 = 0.25, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 0.1) 

 

 

  



Figure 2: Example of simulated survival in the base case analysis showing the longer survival of Population A 

compared to Population B with treatment (due to more favourable patient characteristics), and the resulting bias 

in a naïve comparison to a historical Population B cohort 

 

 

  



Figure 3: Violin plot of the base case result; showing the density of the percent mean error in the hazard ratio as 

well as the quartiles of error 

 

  



Figure 4: Violin plots of the percent mean error in hazard ratio when changing the number of patients available in 

Population A and Population B 

 

  



Appendix 

 



Table A1: Tabulated results of scenario analyses varying patient numbers 

3      

Method 
Mean 

Percentage 
Error 

Absolute 
Percentage Error 

Mean Standard 
Error 

Coverage 
probability 

Percent of scenarios 
worse than a naïve 

comparison 

Population A = 30, Population B = 30 

Naïve comparison 8.9% (<0.01) 23.1% (<0.01) 0.27 90% - 

MAICMM -15.3% (0.012) 41.5% (0.011) 0.37 88% 62% 

MAICHM -12% (<0.01) 38.7% (<0.01) 0.36 88% 61% 

PSW -4.4% (<0.01) 31.4% (<0.01) 0.33 90% 60% 

Population A = 30, Population B = 300 

Naïve comparison 8.8% (<0.01) 17.1% (<0.01) 0.19 90% - 

MAICMM -12.5% (<0.01) 31.1% (<0.01) 0.28 86% 63% 

MAICHM -12% (<0.01) 30.8% (<0.01) 0.27 86% 62% 

PSW -6% (<0.01) 23.6% (<0.01) 0.24 89% 56% 

Population A = 30, Population B = 3000 

Naïve comparison 8.9% (<0.01) 15.8% (<0.01) 0.18 89% - 

MAICMM -11.9% (<0.01) 28.8% (<0.01) 0.25 86% 63% 

MAICHM -12.2% (<0.01) 29.4% (<0.01) 0.25 85% 62% 

PSW -6.1% (<0.01) 21.7% (<0.01) 0.22 90% 56% 

Population A = 300, Population B = 30 

Naïve comparison 10.9% (<0.01) 18.1% (<0.01) 0.19 85% - 

MAICMM -1.2% (<0.01) 18% (<0.01) 0.21 92% 41% 

MAICHM -1.2% (<0.01) 18.1% (<0.01) 0.21 92% 41% 

PSW -0.9% (<0.01) 18.1% (<0.01) 0.21 91% 41% 

Population A = 300, Population B = 300 

Naïve comparison 11.4% (<0.01) 12% (<0.01) 0.08 68% - 



MAICMM -1% (<0.01) 8.7% (<0.01) 0.11 95% 30% 

MAICHM -1% (<0.01) 8.7% (<0.01) 0.11 95% 30% 

PSW -0.7% (<0.01) 8.8% (<0.01) 0.11 94% 30% 

Population A = 300, Population B = 3000 

Naïve comparison 11.4% (<0.01) 11.6% (<0.01) 0.06 47% - 

MAICMM -0.9% (<0.01) 6.9% (<0.01) 0.09 94% 23% 

MAICHM -0.9% (<0.01) 6.9% (<0.01) 0.09 94% 23% 

PSW -0.7% (<0.01) 6.9% (<0.01) 0.09 94% 23% 

Population A = 3000, Population B = 30 

Naïve comparison 10.7% (<0.01) 17.6% (<0.01) 0.18 83% - 

MAICMM -1.4% (<0.01) 16.4% (<0.01) 0.18 90% 37% 

MAICHM -1.4% (<0.01) 16.4% (<0.01) 0.18 90% 37% 

PSW -1.4% (<0.01) 16.4% (<0.01) 0.18 90% 37% 

Population A = 3000, Population B = 300 

Naïve comparison 11.8% (<0.01) 11.9% (<0.01) 0.06 45% - 

MAICMM -0.1% (<0.01) 5.3% (<0.01) 0.07 94% 16% 

MAICHM -0.1% (<0.01) 5.3% (<0.01) 0.07 94% 16% 

PSW -0.1% (<0.01) 5.3% (<0.01) 0.07 94% 16% 

Population A = 3000, Population B = 3000 

Naïve comparison 11.9% (<0.01) 11.9% (<0.01) 0.03 0% - 

MAICMM -0.1% (<0.01) 2.7% (<0.01) 0.03 95% 2% 

MAICHM -0.1% (<0.01) 2.7% (<0.01) 0.03 95% 2% 

PSW 0% (<0.01) 2.7% (<0.01) 0.03 95% 2% 

 

 



Figure A1: Violin plots of mean error for scenario analyses changing the setup of the 

simulation study 

 

  



Figure A2: Violin plots of mean error for scenario analyses exploring the limits of 

unanchored Matching Adjusted Indirect Comparison 

 

 

  



Figure A3: Violin plots of mean error for scenario analyses violating the assumptions 

underpinning unanchored Matching Adjusted Indirect Comparison 

 

 

 


