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Quantum simulators are engineered devices controllably designed to emulate complex and classically
intractable quantum systems. A key challenge is to certify whether the simulator truly mimics the Hamiltonian
of interest. This certification step requires the comparison of a simulator’s output to a known answer, which
is usually limited to small systems due to the exponential scaling of the Hilbert space. Here, in the context
of Fermi-Hubbard spin-based analog simulators, we propose a modular many-body spin to charge conversion
scheme that scales linearly with both the system size and the number of low-energy eigenstates to discriminate.
Our protocol is based on the global charge state measurement of a 1D spin chain performed at different detuning
potentials along the chain. In the context of semiconductor-based systems, we identify realistic conditions for
detuning the chain adiabatically to avoid state mixing while preserving charge coherence. Large simulators with
vanishing energy gaps, including 2D arrays, can be certified block-by-block with a number of measurements
scaling only linearly with the system size.
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I. INTRODUCTION

Quantum simulators [1–10] are devices designed to em-
ulate the behavior of quantum systems to provide new in-
sights into complex quantum phenomena [11–18], solving
complex optimization problems [19,20], or realizing models
that do not exist naturally [21]. Analog quantum simulators,
which evolve according to a designed global Hamiltonian,
offer an efficient way to implement some of these prob-
lems without the need for a complete set of local gates
and readouts mechanisms. One of the main challenges is
to certify that a large-scale quantum simulator, nontractable
classically due to the exponential divergence of the Hilbert
space with the system size, truly emulates the task that it
is designed for [22–26]. However, many certification pro-
tocols rely on full quantum state tomography [27], which
requires local addressability, and results in a number of mea-
surements that diverges exponentially with the system size.
Variational methods [28] can scale more favorably, but they
still require local addressability and implementing classical
optimization schemes becomes challenging as the system
size increases. Hence, these techniques are not suitable for
large-scale analog quantum simulators and new certification
schemes are highly sought for.

Here, in the context of semiconductor-based systems, we
propose a spin-to-charge conversion readout scheme able to
discriminate between the low-energy entangled spin eigen-
states of a Heisenberg spin array. The Heisenberg model is a
key model in condensed matter physics [29,30], spintronics
[31], and quantum technologies [32,33]. Our certification
protocol relies on global charge configuration measurements

of the simulator under different potential gradients (called
tilts) applied adiabatically along a spin chain. The strength
of our certification protocol is the ability to discriminate
between eigenstates sharing the same symmetries and total
spin (differing only in their entanglement structure) without
local spin addressing. Using global over local measurements
is here the key to develop a protocol that scales favorably.
We demonstrate how chains of N � 10 spins can be certified
with high fidelity in the required tractable regime. These finite
chains constitute the building blocks to extend our certifica-
tion protocol to larger systems, including 2D arrays. Here,
a modular approach is developed. The simulator is certified
block-by-block, resulting in a number of measurements which
scales linearly with the system size as well as with the number
of eigenstates to discriminate.

II. MODEL

To study the Heisenberg model we consider N electrons
hopping among N sites (half filling) in a 1D lattice, following
the Fermi-Hubbard model:

H = t
∑
〈k,l〉

∑
σ=↑,↓

(c†
k,σ

cl,σ + c†
l,σ ck,σ ) +

N∑
k=1

ε̃knk

+V
∑
〈k,l〉

nknl + U

2

N∑
k=1

nk (nk − 1), (1)

where ck,σ (c†
k,σ

) is the annihilation (creation) fermionic op-
erator for an electron at site k with spin σ , number operator
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FIG. 1. Schematic of the system. (a) Chain of interacting elec-
trons confined in the sites of a regular lattice. (b) Potential gradient
(tilt) applied across the chain aiming at a change in the charge
configuration. (c) Low-energy spectrum and corresponding charge
configuration in the tilted system. (d) Geometry of a spin ladder of
size 2 × 4 sites, where tunneling and Coulomb interactions between
neighboring sites in both vertical and horizontal directions are t and
V , respectively.

nk = ∑
σ=↑,↓ c†

k,σ
ck,σ counts the number of electrons at site

k, t is the tunnel coupling between neighboring sites, ε̃k is the
local potential at site k, V is the Coulomb interaction between
adjacent sites, and U is the on-site energy and 〈k, l〉 means
summation over the nearest neighbor sites k and l . In the
case of a homogeneous 1D array, i.e., ε̃k = 0, and without
Coulomb interaction, i.e., V = 0, the Hamiltonian Eq. (1)
is solvable [34]. Throughout this paper we consider a chain
made of an even number of sites N , with on-site energy U/t =
40, Coulomb interaction V/t = 10. These values are chosen
to match an experimental situation detailed in Sec. VIII. The
local potential is of the form ε̃k = (k − 1)ε where ε is the
potential difference between two adjacent sites. A schematic
of the system is shown in Fig. 1(a). Note that the Hamiltonian
H commutes with the total number of electrons

∑
k nk , for all

values of ε. Thus, the filling factor is a conserved quantity.
In a homogeneous lattice (ε̃k = 0), whenever U�t , the low-
energy eigenstates take the charge configuration (1, 1, . . . , 1)
and the system effectively becomes a Heisenberg spin chain
with exchange coupling J∼t2/U (with possible corrections
due to V ) [35]. These eigenstates form a low-energy manifold
separated by units of U from the eigenstates with double
charge occupancies for which the map to the Heisenberg
model fails. For even N the ground state |S1〉 is always a
global singlet with total spin Stot = 0. The first two excited
states |T1〉 and |T2〉 are triplets with the total spin Stot = 1. The
fourth eigenstate is again another global singlet |S2〉. In a chain
of length N = 4 these four eigenstates form the low energy
manifold. It is worth emphasizing that the total spin is also
a conserved quantity of the Hamiltonian H . This means that
even at finite local detuning ε each eigenvector of the system
always conserves its total spin.

III. CHARGE CONFIGURATIONS

Many-body spin eigenstate measurement is a challenging
task. For example, |S1〉 and |S2〉 have the same total spin
Stot = 0 and share various symmetries (e.g., SU(2) invariance)

FIG. 2. Singlet charge configurations. Charge occupancies of a
chain of length N = 4 for the state: (a) |S1〉; and (b) |S2〉. (c) Energy
spectrum of the first three singlet eigenstates.

making them difficult to be distinguished locally. To achieve
spin eigenstate readout, we apply a potential tilt across the
chain, i.e., a finite ε, to provide enough energy for electrons
to overcome U , as shown in Fig. 1(b), and then the charge
configuration is measured. Since the eigenstates are always
orthogonal, their experimentally measurable charge configu-
rations depend on their spin state. This constitutes the core of
our certification method.

We now develop the evolution of the charge configurations
versus tilt for a chain of N = 4. Longer chains are discussed
in Sec. IX. The charge configurations of the two singlet
eigenstates |S1〉 and |S2〉 as a function of ε/t are plotted in
Figs. 2(a) and 2(b). The charge configuration changes for both
eigenstates around ε/t∼13.4 and one electron moves from
either site 4 (in the case of |S1〉) or site 3 (in the case of
|S2〉) to site 1, creating two different charge configurations
for |S1〉 and |S2〉. At around ε/t∼30 in the eigenstate |S2〉
an electron moves from site 4 to site 2 resulting in the
charge configuration (2,2,0,0). Finally, at ε/t∼50 the charge
configuration of |S2〉 evolves to (2,1,1,0) while |S1〉 rearranges
to (2,2,0,0). All these charge configurations are summarized
in Fig. 1(c). To understand the charge dynamics we plot the
energies of the first three singlet eigenstates in Fig. 2(c).
Any charge movement in the eigenstates corresponds to an
anticrossing between two eigenstates with the same Stot. This
is evident at ε/t∼13.4, ε/t∼30 and ε/t∼50 where ES1 and
ES2 , ES2 and ES3 , and ES1 and ES2 again anticross, respectively.
Interestingly, the charge occupancy spike which occurs in
|S2〉 at ε/t ∼ 13.4 just before the first charge movement [see
Fig. 2(b)], can also be associated to an anticrossing, between
the |S2〉 and |S3〉 states [see inset of Fig. 2(c)].

A similar analysis can be performed for the triplet states.
The charge configurations of the two triplets |T1〉 and |T2〉
are depicted in Figs. 3(a) and 3(b), respectively. The charge
configuration of both eigenstates changes around ε/t∼13.4
and one electron moves from either site 4 (in the case of
|T1〉) or site 3 (in the case of |T2〉) to site 1. In Fig. 3(c) we
plot the energy eigenvalues of both |T1〉 and |T2〉 as functions
of ε/t showing an anticrossing at the charge transition point
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FIG. 3. Triplet charge configurations. Charge occupancies of a
chain of length N = 4 for the state: (a) |T1〉; and (b) |T2〉. (c) Energy
spectrum of the first two triplet eigenstates.

ε/t∼13.4. As we will see later, even for larger systems, the
final charge configurations are always (2, . . . , 2, 0, . . . , 0) for
|S1〉 and (2, . . . , 2, 1, 1, 0, . . . , 0) for |T1〉. We will show that
this important feature can be used for certification.

IV. STATES DISCRIMINATION

First we consider the ideal case in which the potential tilt-
ing is performed adiabatically for all eigenstates. The number
of required tilts depends on the number of eigenstates to be
discriminated. For instance, to distinguish between |S1〉 and
|T1〉 only one tilt, namely ε/t � 50–60, is needed as |S1〉
takes the configuration (2,2,0,0) and |T1〉 goes to (2,1,1,0).
Only two tilts are required to fully distinguish the four lowest
eigenstates. For instance, by tilting to ε/t = 35, |S2〉 can be
fully distinguished, with configuration (2,2,0,0), and |T2〉, with
configuration (2,1,0,1). However, both |S1〉 and |T1〉 share
the same configuration (2,1,1,0) and cannot be distinguished.
Therefore, another charge configuration measurement must be
performed at a larger detuning ε/t∼50–60 when the charge
configuration for |S1〉 changes to (2,2,0,0) while |T1〉 remains
in the (2,1,1,0) configuration. The key feature of our proposal
lies in its scalability: only two tilts are needed to fully distin-
guish the four lowest eigenstates, irrespective of the system
size (see the Sec. IX). In fact, for distinguishing n low-energy
eigenstates, only n/2 tilts are required.

V. ADIABATIC EVOLUTION

In a practical scenario, to readout the many-body spin
eigenstate, we tilt the system, initially prepared in one of
the low energy eigenstates, adiabatically such that it remains
in the local eigenvector of the Hamiltonian at any time
τ . The eigenstates can be discriminated by measuring the
charge configuration at different potentials ε. The tilt potential
varies as

ε(τ ) =
{

τ
Tmax

εmax, for: τ � Tmax,

εmax, for: τ > Tmax,
(2)

(a)

(b)

(c)

(d)

FIG. 4. Adiabatic evolution. Charge occupancies in the evolution
of a system of length N = 4 when Tmax = 2 × 104/t and the system
is initialized in the state: (a) |S1〉; (b) |T1〉; (c) |T2〉; and (d) |S2〉. This
choice of Tmax results in an adiabatic evolution only for |S1〉 and |T1〉.

where εmax is the maximum tilt potential considered here to be
εmax/t = 70. For any initial state |�(0)〉 the system evolves to
the state |�(τ )〉 according to the Schrödinger equation under
the action of the time-dependent Fermi-Hubbard Hamiltonian
described in Eq. (1). The choice of Tmax is important as it
results in different system dynamics. Adiabaticity, which no-
tably protects the evolution against Landau-Zener transitions
while sweeping through anticrossings, is achieved for slow
dynamics and large Tmax. An upper bound for Tmax is, however,
set by the coherence time of the system, as decoherence
occurs at the charge transitions which are swept through. In
Fig. 4(a) we plot the charge occupancies for the quantum
state |�(τ )〉, taking Tmax = 2 × 104/t , as a function of time
when the system is initially prepared in the state |S1〉. The
charge configurations are very similar to the real eigenstates
displayed in Fig. 2(a), with the fidelity of the evolution
F = |〈�(τ )|S1(τ )〉|2 remaining above 0.98 throughout the
evolution, which demonstrates that the adiabatic condition is
well satisfied. In Fig. 4(b) we depict the charge occupancies
when the system is initialized in the state |T1〉. Again the
charge configurations are very similar to the ones for the
real eigenstate shown in Fig. 3(a) with the fidelity above
0.97 throughout the evolution. In Figs. 4(c) and 4(d) we plot
the charge occupancies of the state |�(τ )〉 when the system
is initially in the state |T2〉 and |S2〉, respectively. In these
two cases, the evolution is very different from the charge
configurations of the local eigenstates given in Fig. 3(b) and
Fig. 2(b), respectively. Here Tmax is not large enough to keep
an adiabatic evolution for these two eigenstates and their
fidelity reaches levels as low as ∼0.2. In fact, to make the
evolution adiabatic for |S2〉 and |T2〉 one has to take Tmax to
be (107 − 108)/t due to smaller gaps between higher energy
eigenstates. For instance, in a chain of length N = 4, the
energy gaps between the first two singlet and triplet states
are (ES2 − ES1 )/t = 0.2231 and (ET2 − ET1 )/t = 0.0913, re-
spectively. However, these gaps become smaller for higher
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TABLE I. Minimum energy gaps for both singlet and triplet
states during the evolution of the system for εmax/t varies from 0
to 70.

N 4 6 8 10

�E (21)
S /t 0.2231 0.1255 0.1011 0.0710

�E (21)
T /t 0.0913 0.0757 0.0684 0.0575

states as (ES3 − ES2 )/t = 0.0533 and (ET3 − ET2 )/t = 0.0238,
respectively.

Remarkably, only an adiabatic evolution of |S1〉 and |T1〉
is enough to distinguish all four eigenstates, enabling com-
plete certification. Let us consider an evolution which is only
adiabatic for |S1〉 and |T1〉, like depicted in Fig. 4. For |S2〉,
the outcome of the charge measurement will be time averaged
over the charge occupancies due to rapid charge oscillations.
Therefore, by using the same procedure, at ε/t = 35 the
states |S2〉 and |T2〉 take the configurations (1.5,1,1.5,0) and
(1.2,1.6,1,0.2), respectively, which are very distinct from each
other as well as from the configuration of |S1〉 and |T1〉. Note
that the partial charges mean that the quantum states are in
a superposition of multiple charge states. This means that
even when the evolution for |S2〉 and |T2〉 is nonadiabatic the
proposed discrimination procedure still holds.

A crucial issue for the adiabatic evolution is the estimation
of Tmax needed to evolve larger systems. As we discussed
above, it is important to keep the evolution for both |S1〉 and
T1〉 adiabatic, even if the higher energy eigenstates do not
follow an adiabatic evolution. The determination of criteria
for the validity of the adiabatic theorem has been a subject of
research for many years [36–38]. A standard criterion implies
that one has to satisfy | 〈Ṡ2(τ )|S1(τ )〉

ES2 (τ )−ES1 (τ ) | 	 1 where |Ṡ2(τ )〉 is

the time derivative of the eigenstate |S2〉 with respect to τ .
A similar criterion can be written for triplets as well. Using
perturbation theory one can show that in a pessimistic estima-
tion 〈Ṡ2(τ )|S1(τ )〉 ∼ T −1

max[ES2 (τ ) − ES1 (τ )]−1. This implies
that for the validity of the adiabatic evolution one has to
keep Tmax > 1/�E2 where �E is the the energy gap. To
see how the energy gap scales with system size we present
the minimum energy gap during the adiabatic evolution for
both singlets (i.e., �ES = ES2 − ES1 ) and triplets (i.e., �ET =
ET2 − ET1 ) in Table I. As the data show, the energy gap
decreases fairly linearly as the system size increases. This
means that for a chain of size N = 10 the time Tmax is almost
10 times larger than the one needed for N = 4.

VI. DECOHERENCE

Interaction with the environment results in nonunitary dy-
namics and decoherence. For itinerant particles, charge fluc-
tuations constitute the most common source of decoherence
[39,40], leading to destruction of the superposition of different
charge configurations. Therefore, if {Ln} represent projection
operators on the nth charge configuration, then the dynamics
is given by the Lindblad master equation

∂ρ

∂τ
= −i[H (τ ), ρ] + γ

∑
n

(
LnρL†

n − 1

2
L†

nLnρ − 1

2
ρL†

nLn

)
,

FIG. 5. Decoherence. Time evolution in the presence of deco-
herence in a system of length N = 4 when Tmax = 2 × 104/t . Charge
occupancies are given for γ /t = 0.001 when the system is initialized
in the eigenstate: (a) |S1〉; and (b) |T1〉. (c) Distance between the
charge probability distributions of |S1〉 and |T1〉 as a function of γ

when ε/t = 70.

where γ represents the decoherence strength, ρ is the density
matrix of the system, and Ln’s are the Lindblad operators.
Each Lindblad operator is given by a specific charge configu-
ration that reads

Ln = |n1, n2, . . . , nN 〉〈n1, n2, . . . , nN |, (3)

where nkis the charge occupancy of site k. In Fig. 5(a) we plot
the charge occupancies for the evolution of |S1〉 in a chain with
N = 4 for γ /t = 10−3 and Tmax = 2 × 104/t . As the figure
shows, decoherence leads to partial charge transitions and as
a consequence, the quantum states become mixtures of charge
configurations. The same evolution for the triplet state |T1〉 is
depicted in Fig. 5(b). Its evolution is less affected than for |S1〉
as there are less charge transitions.

As decoherence affects charge transitions, it is important
to address its impact on our protocol for distinguishing be-
tween quantum states. Each measurement outcome is asso-
ciated with a charge projection operator Ln with respective
probability pn = Tr (ρLn). Distinguishing between the two
eigenstates, e.g., |S1〉 and |T1〉, is equivalent to distinguishing
between two probability distributions {pn : pn = Tr (ρS1 Ln)}
and {qn : qn = Tr (ρT1 Ln)}, where ρS1 (ρT1 ) is the solution of
the above Lindblad master equation with the initial state |S1〉
(|T1〉). Experimentally, the real probability distribution can be
obtained by averaging over M charge measurements at each
tilt. The distance (or relative entropy) defined as d (S1, T1) =∑

n pn log2
pn

qn
can be used to quantify the distinguishability

between the two distributions. The error in discriminating
between the two probability distributions after M samples
scales as ∼2−Md [41], for M large. Therefore, by repeating
the experiments at each tilt for M∼102−103 one can recon-
struct the probability distributions and discriminate between
the eigenstates when d>1. In Fig. 5(c) we plot d (S1, T1)
versus γ for a tilt set to ε/t = 70. The distance drops as γ

increases; however, it remains above 10 even for γ /t = 0.01,
thus discrimination is still achievable.
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FIG. 6. Fidelity and entropy. Evolution of the fidelity and the
entropy in a system of length N = 4 in the presence of decoherence.
For convenience, the quantities are plotted as a function of ε/t for
which ε is given in Eq. (2). Panels represent: (a) the fidelity F for
|S1〉; (b) the von Neumann entropy S for |S1〉; (c) the fidelity F for
|T1〉; (d) the von Neumann entropy S for |T1〉.

To understand the full effect of decoherence, in Fig. 6(a),
we plot the fidelity of the evolution for the state |S1〉 as a
function of time τ for different values of noise strength γ .
As the figure shows, by increasing γ the fidelity decreases. To
understand this, it is important to note that such dynamics is
not unitary. This means that the quantum state of the system
becomes mixed during the time evolution. To see this, one can
compute the von Neumann entropy of the whole system which
is defined as

S(ρ) = − Tr(ρ log2 ρ). (4)

In Fig. 6(b) we plot the von Neumann entropy of the system
when the quantum state is initially |S1〉 as a function of
time τ for different values of noise strength γ . As the figure
shows the entropy increases monotonically and sharp rises
happen during the charge movements when the charge state
is delocalized. In Fig. 6(c) we also plot the fidelity for the
quantum state |T1〉 keeping all the parameters the same as
for the singlet |S1〉. Finally, in Fig. 6(d) we plot the von
Neumann entropy of the evolution of the triplet state |T1〉 as a
function of time. Figures 6(c) and 6(d) show that the fidelity
of the triplet is slightly higher and its von Neumann entropy
is smaller in comparison with the singlet. This is due to less
charge movements for triplets, or equivalently fewer energy
anticrossings between the eigenstates, which makes the triplet
evolution less prone to decoherence.

VII. TWO DIMENSIONAL LATTICES

In a many-body 1D system with local interactions, area
laws [42] dictate that the entanglement of a subsystem with
the rest of the system in the low-energy spectrum is fixed, with
possible logarithmic corrections in critical systems [43]. This
allows for efficient simulations of the low-energy spectrum
of 1D systems on classical computers [44,45]. However, for
higher-dimensional systems for which the area grows with the

FIG. 7. Spin ladder. Charge occupancies of different sites as a
function of ε/t in a spin ladder of size 2 × 4 for different eigenstates:
(a) |S1〉; (b) |S2〉; (c) |T1〉; and (d) |T2〉. The ground state |S1〉 can be
truly certified through charge detection when ε/t > 80.

size of the subsystem, there is no general efficient approach
to simulate even the ground state of a many-body system on a
classical computer. For instance, in Ref. [46] the simulation of
the ground state in a 2D Kagome Heisenberg lattice with 48
spins through implementing all possible symmetries in exact
diagonalization puts a limit on the ability of classical comput-
ers to simulate 2D many-body systems. We demonstrate the
validity of our protocol in 2D in the context of the certification
of the ground state of a spin ladder of size 2 × 4, depicted
in Fig. 1(d), with nearest neighbor interactions of the form
given in Eq. (1). Note that the results are valid for general 2D
Heisenberg lattices. The same tilting potential ε̃k = ε̃N−k+1 =
(k − 1)ε is applied to the ladder sites k (with k � N/2) and
N − k + 1. The results are shown in Fig. 7 with the charge
occupancies of different sites for the first four eigenstates of
the system, namely |S1,2〉 and |T1,2〉, as a function of the tilting
potential ε. The charge occupancies for |S1〉 [see Fig. 7(a)] are
clearly distinct from the other eigenstates when the system is
tilted at ε/t > 80. The other higher energy eigenstates cannot
be distinguished as they share similar charge configurations
due to extra spatial freedom for electrons to restructure them-
selves.

To understand the charge configurations in two dimen-
sional systems it is very insightful to carefully check the wave
function of the simplest spin ladder, namely, a spin ring of
N = 4. When ε/t � 1, the charge wave function of the four
eigenstates are as follows:

|S1〉 =
∣∣∣∣
(

2 0
2 0

)〉
,

|T1〉 = |S2〉 =
∣∣∣∣
(

1 1
2 0

)〉
−

∣∣∣∣
(

2 0
1 1

)〉
, (5)

|T2〉 =
∣∣∣∣
(

1 1
2 0

)〉
+

∣∣∣∣
(

2 0
1 1

)〉
,

where |(n1 n2
n4 n3

)〉 represents the wave function with charge
occupation number nk at site k and for simplicity we
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have omitted the normalization factors. While for |T1,2〉 the
electrons at the two sites with occupancies nk = 1 are in spin
triplet states they take spin singlet for the case of |S2〉. This
guarantees the the orthogonality of |T1〉 and |S2〉 through their
spin degrees of freedom while both sharing exactly the same
charge wave function. The same behavior happens for larger
lattices, such as the case of size 2 × 4 in the main text, where
the ground state |S1〉 can be fully discriminated from the other
three eigenstates through a single charge detection at a high
tilting potential.

VIII. EXPERIMENTAL REALIZATION

Among existing platforms for quantum simulations [4–10],
fermionic optical lattices [47] and semiconductor systems
such as quantum dots [48–52] and dopant arrays [53,54]
offer a scalable platform with the natural presence of Fermi
statistics (as opposed to simulating fermions with bosonic
qubits via nonlocal interactions), as well as Coulomb, tun-
nel, electron-phonon, and spin-orbit interactions. The atomic
precision of scanning tunneling microscopy lithography [53]
provides the required versatility to fabricate 1D or 2D phos-
phorus donor-bound spin arrays in silicon. Calibrated charge
sensors can be defined in the proximity of the donors structure
to accurately extract charge configurations of single [55–57]
and pairs [58–63] of electron spins. State-of-the-art charge
sensors can successfully measure the charge configuration of
up to four quantum dots in an array [64,65]. A similar number
should be valid for dopant arrays too. The charging energy
of phosphorus dopants in silicon is U∼47 meV and both t
and V can be tuned via interdopant distances. For dopants
placed 10 nm apart, t is about 1 meV [66] and V about
10 meV, as considered throughout this letter. We note that
these values bring the system in a spin density wave phase,
close to a transition to a charge density wave predicted to
occur at U/V = 2 [67], which could be of interest for future
work. From these values, the evolution can be considered
as adiabatic if Tmax � 13 ns. Experimental charge dephasing
values can be converted to γ∼0.02–1 μeV [68–71]. The ratio
γ /t is found to be ∼10−5–10−3, as strong tunneling interac-
tions are considered here. As shown in Fig. 5(c), this results
in d > 20 and fidelities above 0.8 and hence certification can
be achieved in dopant systems. The hyperfine interactions,
coupling electron and nuclear spins in dopant atoms, consti-
tute another possible source of errors in dopant systems as
they mix the singlet and triplet subspaces. For the hyperfine
coupling of A∼0.4 μeV, this mixing rate is ∼A2/(ET1 −
ES1 ). As the minimum ET1 − ES1∼100 μeV is found for
N = 4 the role of hyperfine mixing rate can be neglected
in comparison with the energy gap ET1 − ES1 . However, as
the energy gap scales as 1/N2, we estimate that hyperfine
interactions and thus nuclear spin initialization will become
relevant for N > 20.

IX. LARGE CHAINS

In this section, we show how our certification protocol
scales favorably in the context of systems too large to be
tractable classically. In fact, the proposed mechanism can also
be applied to large chains with N > 4. The charge configura-
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FIG. 8. Charge configuration for a chain of size N = 8. The
charge configuration of a spin simulator with N = 8, U/t = 40, and
V/t = 10. The charge configrations are given for: (a) the ground state
|S1〉; (b) the first singlet excited state |S2〉; (c) the first triplet excited
state |T1〉; (d) the second triplet eigenstate |T2〉.

tions become more diverse as the size of the system increases.
We plot in Fig. 8 the charge occupancy evolution of the first
four eigenstates |S1,2〉 and |T1,2〉 for a eight-site chain, using
the same experimental parameters discussed above, namely,
U/t = 40 and V/t = 10. The overall picture is similar to the
N = 4 case except that there are more charge movements. The
eigenstate charge configurations as a function of ε/t for chains
of length N = 6 and N = 8 are represented schematically in
Figs. 9(a) and 9(b). It can be shown that the final configuration
of the eigenstate |S1〉 is always (2, . . . , 2, 0, . . . , 0) and for
the eigenstate |T1〉 it is (2, . . . , 2, 1, 1, 0, . . . , 0). An important
feature which arises in large chains is that the final charge
configuration of |T2〉 shows partial charge occupancies. This
is due to a superposition of charges.

Remarkably, independently of the system size we can
discriminate between the four eigenstates using only two po-
tential tilts. For instance, in the case of N = 6, with ε/t = 35
we can fully discriminate the eigenstate |S2〉 and |T2〉 from the
rest but we cannot distinguish |S1〉 from |T1〉. Note that at this
value of the potential tilt the charge measurement outcome
for |T2〉 is not unique as that eigenstate is a superposition
of different charge configurations, but due to orthogonality it
does not share any charge configuration with |T1〉 (which has
the same charge configuration as |S1〉) and |S2〉. If the charge
measurement shows the configuration (2,2,1,1,0,0), then this
means that the quantum state is either |S1〉 or |T1〉 and to
discriminate between them one has to tilt the system further to
ε/t = 70 for which the two eigenstates take different charge
configurations. The same argument is valid for N = 8 in
which the two measurements should also be performed at
ε/t = 35 and ε/t = 70 for full discrimination between the
four eigenstates. We have also performed the simulation for
N = 10 (data not shown) in which again two measurements
at different tilts are enough to fully distinguish the four
eigenstates.

For larger systems, whose ground state might become
nontractable classically and for which the global charge state
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(a)

(b)

FIG. 9. Schematic of charge configurations. Charge configurations for the first four eigenstates as the tilting potential is varied for: (a) a
chain of length N = 6; (b) a chain of length N = 8.

cannot be measured using a single detector anymore, we
propose to divide the chain into several modules. Each module
should be certified independently, which results in the total
number of measurements to still scale linearly with the system
size as well as with the number of eigenstates to discriminate.

X. CONCLUSION

We have proposed an efficient procedure for certifying the
performance of spin-based quantum simulators via discrim-
inating between their low energy eigenstates without using
quantum tomography. This task is nontrivial as the eigenstates
cannot be distinguished locally due to many-body entangle-
ment and to the eigenstates sharing the same symmetries
and total spin numbers. Our certification scheme does not
require individual spin measurement but only relies on global
charge measurements, thus facilitating practical scale up to
large system sizes. We demonstrate how a large system, not
classically tractable, can be certified block-by-block, with
a number of required measurements which increases only
linearly with the number of blocks and eigenstates to discrim-
inate. We identify realistic conditions for the block size, in

terms of charge coherence, tilt speed, and charge detection, for
our certification scheme to be implemented experimentally.
Successfully certifying all the blocks of a quantum simulator
will maximize the confidence into the outputs given by the
whole system in a classically nontractable regime. After certi-
fication of the spin Hamiltonian in the low energy regime, the
same simulator could potentially be used to reveal classically
inaccessible features such as long-time dynamics and complex
2D structures.
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