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Alfstmct

Mycobacterium tuberculosis {Mtb) is an intracellular pathogen that has a major impact 
on human health. Control of tuberculosis has proved extremely difficult, particularly 
in developing and underdeveloped countries; this has been exacerbated by the variable 
efficacy of BCG, the current vaccine, and by the increasing prevalence of drug 
resistant strains. Effective immunity against Mtb involves cell-mediated mechanisms. 
Dendritic cells (DC) are likely to play a critical role in the induction of a cellular 
response to Mtb since they are the most efficient antigen-presenting cells (APC) for 
priming naïve T cell lymphocytes. In this study we have investigated the interaction 
between Mtb and DC, and how that interaction might be used to generate protective 
immune responses.

Working with a dendritic cell line and using electron microscopy we have shown that 
coincubation of DC with M.tuberculosis results in the rapid internalisation of the 
mycobacteria. Twelve hours after infection the mycobacteria are found within 
membrane-bound phagosomes. By 96 hours we could see some lysis of the DC 
although there was no evidence of apoptosis; the presence of Mtb was more difficult to 
detect by this stage. Over a 5-day period, the viability oiM.tuberculosis that had been 
phagocytosed by DC was found to decline slightly, whereas an identical inoculum was 
able to replicate in cultured macrophages. We therefore investigated the mechanisms 
associated with this growth suppression and found that both oxygen and nitrogen 
radicals where involved.

Changes in cytokine production by DC infected with Mtb were observed, with a 
significant up-regulation of cytokines involved in Thl and Tel responses. Similar 
results were obtained when primary bone-marrow derived DC were infected with Mtb. 
Characterisation of surface molecules expressed by DC which had been infected with 
Mtb confirmed the maturation process of the cells with significant up-regulation of the 
CO stimulatory molecules B7-1 and B7-2 and increased expression of MHC class II 
molecules and ICAM-1. This response was found to be dependent on the rapid 
activation of the nuclear transcription factor NF-kB, and was independent of TNF-a 
release. We also demonstrated expression of c-Rel and Rel-B proteins in 6-activated 
DC.

In addition to these in vitro studies, we have also demonstrated that M/ô-activated DC 
are extremely efficient in priming naïve murine T cells and that this immune response 
does not require T cell help. Mf6-activation of DC also results in efficient cross 
priming of T cells specific for Mtb. These responses enable Mr6-activated DC to 
confer protection against challenge with viable Mtb, with levels of protection as good 
or better than those conferred by BCG.

The further understanding of the mechanisms involved in the interaction of 
mycobacteria with DC, and the mechanisms underlying the transfer of protective 
immunity, should provide important insights for the development of novel approaches 
to immunotherapy or for the development of new vaccines.
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1 TNTRODUCTION

1.1 Mycobacterium tuberculosis

Mycobacterium tuberculosis {Mtb), commonly known as the “tubercle bacillus” is an 

Actinomycete and belongs to the group of slow growing Mycobacteria; it divides just 

once every 14 hours when growing optimally in culture medium. Mtb is Gram-positive 

and although normally aerobic, can adapt to microaeropbilic environments. Mtb grows 

at an optimum temperature of 37°C and its morphology can vary, but usually consists 

of straight or slightly curved rods approximately 1pm in length. Mycobacteria have an 

unusual cell wall with a high lipid content, which makes them more resistant to the 

activity of antibacterial agents than most other bacteria. Mtb is a facultative 

intracellular bacterium, since it has the capacity to multiply and survive inside 

phagocytic cells such as macrophages, adapting to the biochemical and biophysical 

conditions of its host.

1.1.1 Aetiology and transmission

Mtb causes tuberculosis (TB), a disease that kills 2 million people each year; it has 

been estimated that between 2000 and 2020, nearly one billion people will be newly 

infected with Mtb (WHO, 2000). These frightening numbers are compounded by the 

variable efficacy of the vaccine BCG, by the spread of HIV and by the emergence of 

multidrug-resistant strains of Mtb. Situations where social infrastructure and health 

care systems have broken down create ideal conditions for the spread of Mtb, as does 

the increased migration of people (Lifson, 2000).



TB spreads through the air, in droplets that are inhaled and reach the alveoli of the 

infected individual. Once infected, most individuals do not develop clinical disease. 

The infection remains latent for the entire period of the infected individuals life. 

Occasionally, a latent infection can develop into clinical TB, perhaps as a consequence 

of diminished immunological function caused by ageing, concurrent infection with 

another agent such as HIV, or by nutritional factors (Sperber and Gomish, 1992). 

When this occurs, it is referred to as “reactivation” or “secondary TB”. Primary TB, 

in which clinical symptoms develop shortly after infection, is also more likely to occur 

in individuals whose immune system is impaired.

Clinical TB is treated with a combination of specific antibiotics, which include 

rifampicin, isoniazid, ethambutol and pyrazinamide. A complete course of treatment 

usually lasts for 6 months. If the individual is infected with drug-sensitive Mtb, and the 

appropriate course of treatment is strictly adhered to, the treatment is invariably 

successful. However, poor compliance or inappropriate treatment regimes increase the 

risk of relapse and also favour the development of secondary drug-resistance.

Since it is estimated that one third of the world’s population is infected with Mtb 

(Sudre et a l, 1992), and for the most part this remains as latent, subclinical infection, 

the development of novel strategies to eliminate latent organisms represents a major 

challenge for the future of TB control.

1.1.2 Mtb as a pathogen of man

Robert Koch identified Mtb as the aetiological agent of TB in 1882 (Koch, 1882). 

However the mechanisms involved in pathogenesis and disease progression of TB 

have remained unclear, hindering what is now an urgent need for the development of 

new drugs and vaccines.



Pulmonary tuberculosis usually begins with infection in the alveolar spaces of the 

lower lungs. Mtb is phagocytosed by resident alveolar macrophages and more 

phagocytes are attracted to the site of infection by inflammatory cytokines and 

chemokines (Robinson et a l, 1994). The accumulation of blood-monocyte derived 

macrophages at the focus of the infection generates a granuloma, the characteristic 

“tubercle” of Mtb infection (Saunders and Cooper, 2000). In primary TB the 

granuloma can heal or persist.

As discussed above, latent, viable Mtb may persist within the granuloma for many 

years, and may eventually result in reactivation. Thus Mtb is able to survive within the 

hostile environment of the granuloma macrophages. It is this ability to survive in the 

hostile environment of the macrophage which most clearly defines Mtb as a human 

pathogen. The mechanisms that contribute to the intramacrophage survival of Mtb are 

discussed in detail in section 1.2.1.1.

1.1.3 The Mycobacterial cell envelope

The Mtb envelope is highly complex, with a high lipid content, which enables the 

mycobacteria to resist adverse conditions or chemical agents, and probably contributes 

to survival inside phagocytes. The cell wall skeleton contains peptidoglycan and 

arabinogalactan with a highly immunologically active molecule, lipoarabinomannan 

(LAM). The cell wall also contains a layer of long-chain fatty acids, called mycolic 

acids, which form a permeability barrier to polar molecules - for review see (Daffe and 

Draper, 1998).

The outer part of the cell envelope, or the “capsule”, consists of a mixture of 

polysaccharides, proteins and lipids. Capsular components are suggested to be 

involved in the pathogenecity of the tubercle bacillus, contributing, for example to



adhesion and penetration into the host cell and protecting the mycobacteria in the host 

environment (Daffe and Etienne, 1999).

The mycobacterial envelope is also important as a target of antimycobacterial drugs. 

Several of the existing drugs target enzymes involved in cell wall synthesis; for 

example isoniazid targets the inhibition of mycolic acid synthesis (Winder and Collins, 

1970) and ethambutol is thought to inhibit the incorporation of glucose into 

arabinomannan and arabinogalactan (Takayama and Kilbum, 1989). The cell envelope 

is also important in the transfer of molecules into and out of mycobacteria; the high 

lipid content creates a permeability barrier. Pore-forming molecules, or porins, are 

thought to create hydrophilic channels, which allow the access of polar molecules 

across the cell envelope (Draper, 1998).

The envelope is a dynamic structure in the growing mycobacteria, with molecules 

moving within and through the envelope. Even the very stable wall skeleton is 

continuously being reconstructed (Daffe and Draper, 1998).

1.1.3 The Mtb genome

The mycobacterial genome, as with most other bacteria, consists of one single, circular 

chromosome plus other extrachromosomal elements such as plasmids and phages. The 

mycobacteria belong to the high guanosine/cytosine (C+G) group of Gram-positive 

bacteria, with a G+C content of 62-70% with the exception o ï M.leprae which has a 

G+C content of 56% (Clark-Curtiss et a l, 1985).

The complete sequence of the genome of Mtb strain H37Rv, the most widely used 

laboratory strain of has been determined (Cole a/., 1998). Approximately



4,000 genes have been identified; of these approximately 40% have a clearly 

identifiable function, a further 40% can be identified as belonging to previously 

identified classes of genes, and 20% are completely unknown.

A number of broad features can be described from this huge amount of genomic 

information:

(i) Mtb has a much broader range of metabolic capabilities than previously 

thought. This includes the ability to adapt to anaerobic environments, in 

addition to growing aerobically.

(ii) A significant part of the genome encodes genes involved in lipid synthesis 

and lipid metabolism.

(iii) Mtb has a wide range of mechanisms for different levels of gene 

regulation. This includes 13 sigma factors, several eukaryotic-like 

serine/threonine protein kinases, 11 sensor histidine kinases, and more 

than 100 transcriptional regulator proteins.

(iv) Approximately 10% of the genome encodes a family of closely related 

genes (termed PGRS sequences). The function of this highly conserved 

family of genes/proteins is unknown, but a role in antigenic variation 

(Cole et a l, 1998) or virulence (Cole, 1999) has been suggested.

The challenge now is to exploit the genome information to understand the molecular 

basis of mycobacterial pathogenicity, immunogen (city and immunopathology. A 

range of post-genomic techniques are now available to facilitate this type of analysis. 

Comparative genomics involves the detailed comparison of the genomes of closely 

related species or strains. In addition to the Mtb H3?Rv genome, a variety of other 

mycobacterial genomes are currently being sequenced. These include a recent clinical



isolate of Mtb-CDC 1551 (Valway et a l, 1998) BCG, M.leprae^ M.bovis and 

M.smegmatis; comparisons of these genomes will provide important clues as to the 

molecular basis of pathogenicity, host-range, etc.

Targeted gene deletion techniques or random mutagenesis approaches (using 

transposons, illegitimate recombination or signature-tagged mutagenesis) are now 

available to investigate genes of unknown function and to identify genes, which are 

important in pathogenesis (Cole, 1999). Techniques such as proteomics (Rosenkrands 

et al., 2000) or microarray analysis (Talaat et a l, 2000) are available to investigate the 

global genomic response to different growth conditions; such techniques will be used 

over the next few years to understand genes which are important for intracellular 

growth and survival.

1.2 The immune response in tuberculosis

The first line of defence against Mtb involves phagocytes of the innate immune 

system; these cells play a crucial role in the initial control of the infection, and in the 

subsequent direction of the adaptive immune response. The initial inflammatory 

response to the invading mycobacteria involves neutrophils, macrophages and 

dendritic cells which, following attachment of the mycobacteria, engulf the bacteria 

and release a range of cytokines that influence the behaviour of other cells of both the 

innate and acquired immune system. This subject will be discussed further in section 

1.2.6 .



1.2.1 invasion of the host cell

The invasion of the host cell- most commonly the macrophage- is not initially a 

destructive process; Mtb is an intracellular pathogen and relies on the macrophage 

environment for nutrients. At the same time the macrophage responds by producing 

toxic products aimed at eliminating the infectious agent. This balance can lead to 

unrestricted cellular growth of Mtb on the one hand, or elimination of the infection, on 

the other. Under some circumstances, a balance is maintained whereby the bacteria 

can survive without multiplying in the macrophage for several years. This 

phenomenon is known as “latency” or “dormancy”(see section 1.3).

1.2.1.1 Phagocytosis and the intracellular fate of Mtb

The adherence of Mtb to the macrophage is mediated by a variety of receptors, 

including complement C l, C3 and C4 (Schlesinger et a l, 1990), mannose 

(Schlesinger, 1993) and Fc receptors (Nibbering et a l, 1989). Previous work has 

identified mannose units at the terminal end of LAM as the mycobacterial ligand for 

the mannose receptor (Schlesinger et a l, 1994).

In order to survive the toxic environment of the macrophage following phagocytosis, 

Mtb has evolved a number of strategies. Entrance into the phagocyte by way of the 

mannose receptor could itself be a survival strategy, in that this has been claimed to 

avoid generation of toxic superoxide anions (Venkataprasad et a l, 1999; Yu et a l,

1999).

One of the best-characterized survival strategies is the ability to inhibit phagosomal 

fusion with lysosomes and hence avoid exposure to toxic lysosomal enzymes. 

Inhibition of phagosome-lysosome fusion was first described by Armstrong and Hart 

in 1971 (Armstrong, 1971), and similar strategies have been described for other



intracellular bacteria and parasites such as Salmonella, Bordatella pertussis and 

Legionella (Ishibashi and Arai, 1990; Steed et a l, 1991; Hacker et a l,  1991). More 

recently, this process of inhibition of phagosome-lysosome fusion has been shown to 

be associated with the arrest of phagosome maturation. This is thought to be associated 

with the failure to acidify the mycobacterium-containing phagosome by exclusion or 

inactivation of the proton pump ATPase (Sturgill-Koszycki et a l, 1994; reviewed by 

Russell et a l, 1997). An alternative or additional mechanism of avoiding phagosome 

lysosome fusion has recently been described. It has been shown that cholesterol is an 

essential component of the macrophage for the uptake of Mtb (Gatfield and Pieters, 

2000). Mtb is taken up at cholesterol-rich domains of the macrophage plasma 

membrane; this ensures that the phagosome is coated with a protein called TACO 

(tryptophane aspartate-containing coat protein) (Ferrari et a l, 1999) TACO-coated 

phagosomes do not fuse with lysosomes.

It has also been claimed that Mtb can avoid exposure to lysosomal enzymes by 

escaping from the phagosome into the cytoplasm (McDonough et a l, 1993) similar to 

what has been described for Listeria monocytogenes (Drevets et a l, 1992). However, 

this has not been confirmed by others.

1.2.1.2 Intracellular killing of Mtb by macrophages

As discussed above, Mtb avoids exposure to low pH and harmful lysosomal enzymes 

by blocking maturation of the phagosome. In addition, a variety of other mechanisms 

are used by macrophages to control the growth of Mtb. These include the production 

of radical oxygen and radical nitrogen intermediates (ROI and RNI respectively), a 

variety of other antimicrobial molecules, and mechanisms involving apoptosis of the 

host macrophage. It is likely that such mechanisms act synergistically to control the



10

intracellular growth of Mtb. Oxygen independent antimicrobial mechanisms include 

the production of bactericidal proteins such as Cathepsin D (Converse et al., 1996; 

Vishwanath et a l, 1997) and defensins (Lichtenstein, 1991), which can damage the 

mycobacterial membrane. Macrophages can also produce lysozymes that are able to 

damage the bacterial cell wall, and Lactoferrin (Bezwoda et a l, 1985) which 

complexes with iron, depriving the bacteria of an essential growth element. The 

production of RNI, which are generated during the conversion of arginine to citrulline 

is an important antimycobacterial mechanism (Figure 1.1); mice which lack inducible 

nitric oxide synthase (iNOS) or in which the RNI pathway is inhibited, are extremely 

susceptible to infection with Mtb (Chan et a l, 1992).

NO Synthase

0 2 NO

L-Arginine Citrulline

Figure 1.1 -  The production of nitric oxide via the L-arginine pathway

Oxygen dependent mechanisms of killing mycobacteria involve the formation of 

redcDi'e oxygen intermediates (ROI) such as H2O2, superoxide anions and
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myeloperoxidase; these ROI can cause lipid peroxidation and damage to the cell 

membrane. They can also damage DNA and proteins, and in some cases alter the 

phagosomal pH, although it has been suggested that such mechanisms are unlikely to 

be significantly involved in killing Mtb (Chan et al,  1992).

Free fatty acids (FFA) found in macrophages, such as arachidonic acid, display strong 

2caX\-Mtb activity in vitro. This activity of FF A is synergistic with the activity of 

RNI and with the H202-halogenation system, reinforcing the fact that many of these 

antibactericidal activities of macrophages act in concert and are not mutually exclusive 

(Akaki et a l,  2000). Furthermore, as mentioned above, the failure to produce ROI and 

RNI results in enhanced infections in mice. Mice that lack a functional subunit of the 

phagocyte cytochrome b are unable to produce ROI and mice which are deleted for the 

iNOS inducible gene fail to produce RNI, resulting in the enhanced intracellular 

growth of Mtb (Adams et a l,  1997).

Infection with Mtb can induce programmed cell death or apoptosis of macrophages by 

pathways not necessarily dependent on NO production (Rojas et al,  1998). The role of 

macrophage apoptosis in controlling growth or killing of Mtb is unclear. Some groups 

have claimed that apoptosis of cells infected with intracellular pathogens may benefit 

the host by eliminating a supportive environment for bacterial growth (Keane et al,

2000), or by preventing the spread of the pathogen by sequestration in apoptotic 

bodies (Fratazzi et al,  1999). On the other hand, Mustafa and colleagues (Mustafa et 

al,  1999) claim that apoptosis via the Fas-Fas ligand pathway constitutes a novel 

evasion mechanism for Mtb because it protects the macrophage from attack by 

cytotoxic T cells and the activation of bactericidal mechanisms by Thl lymphocytes. 

There is also a link between apoptosis and RNI production, via the Nramp 1 gene
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(Rojas et a l,  1997). Nramp 1 is thought to be involved in the control of NO 

production in response to macrophage activation, and apoptosis was found to correlate 

with NO-production, suggesting that apoptosis may be a critical mechanism by which 

Nramp 1 controls mycobacterial growth in macrophages (Rojas et a l,  1997). It is now 

clear that the mechanism for inducing apoptosis is important in determining the 

outcome for the mycobacteria. Lammas and colleagues (Lammas et a l,  1997) 

compared the fate of intracellular BCG when macrophages were induced to apoptose 

by complement-mediated lysis, Fas ligation, CD69 ligation and by addition of 

exogenous ATP. Only ATP was found to induce both cell death and killing of the 

BCG, supporting earlier findings with BCG (Molloy et a l,  1994) and M.avium 

(Laochumroonvorapong et a l,  1996). This ATP-induced killing of mycobacteria by 

macrophages has been shown to be mediated by the pore-forming purinergic receptor, 

P2X7 (Lammas et a l,  1997). The availability of P2X7 knockout mice will establish 

the importance of this mechanism in the in vivo infection.

Proteins released by CD8+ T cells can also cause lysis of the Mtb infected macrophage 

by the release of perforins and granzyme (Stenger et a l,  1997). Granulysin directly 

kills extracellular Mtb, altering the membrane integrity of the bacillus and in 

combination with perforin decreases the viability of intracellular Mtb (Stenger and 

Modlin, 1998); recent work illustrates that this intracellular CTL-mediated killing of 

Mtb is independent of nuclear DNA degradation (Thoma-U szynski et al,  2000).

1.2.2 The role of the macrophage in initiating immune responses

As discussed above, the macrophage acts as the host cell in which Mtb can survive and 

multiply, or be killed as a result of immune mechanisms. In addition, the macrophage
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plays a key role in initiating both innate and acquired immune responses. It is clear 

that, immediately following infection with Mtb, macrophages release a wide range of 

inflammatory cytokines and chemokines. Among proinflammatory cytokines, IL-ip 

(Wilkinson et a l,  1999), TNF-a (Rojas et a l,  1999; Manca et a l,  1999) and IL-12 

(Ladel et a l,  1997) have been shown to be upregulated in Mf^-infected macrophages.

A wide range of chemokines and proteins involved in cell migration have been 

reported as being produced by macrophages following infection with Mtb. Thus the 

chemokine IL-8 is produced by human alveolar macrophages (Pace et a l,  1999), the 

monocyte cell line THPl (Friedland et al,  1993) as well as bronchial epithelial cells 

(Wickremasinghe et al,  1999) and polymorphonuclear granulocytes (Riedel and 

Kaufmann, 1997). Other chemokines which have been reported to be upregulated in 

Mr6-infected macrophages include osteopontin (or ETA-1; (Nau et a l,  1997)), MCP-1 

(Lin et a l,  1998; Sadek et al,  1998; Friedland et a l,  1993), M lP-la (Sadek et al, 

1998; Kasahara et al,  1998) and RANTBS (Sadek et a l,  1998), Thus it would appear 

that one of the major roles of macrophages following Mtb infection is to mobilise and 

recruit a wide range of other immunoregulatory and effector cells to the site of 

infection.

In addition to the release of cytokines and chemokines which can orchestrate the 

cellular response, macrophages are also important as antigen presenting cells (Unanue, 

1984) Although dendritic cells (DC) are the most efficient and effective antigen 

presenting cells (see section 1.5.1), macrophages also process and present antigen in 

association with MHC Class I and II molecules, to T cells. Other accessory molecules 

such as the costimulatory molecules B7 and the adhesion molecule ICAM-1 are 

expressed in stimulated macrophages (Razi-Wolf et a l,  1992; Damle and Aruffo, 

1991; Van Seventer et al,  1990).



14

Interestingly, a number of studies have suggested that macrophages which are infected 

with Mtb have reduced antigen presenting capabilities (Gercken et a l,  1994; Pancholi 

et a l,  1993) either by inhibiting expression of MHC Class II molecules (Hmama et 

al,  1998) or other antigen presenting molecules (Stenger and Modlin, 1998), or by 

inhibiting antigen processing (Noss et al,  2000). Thus Mtb may evade recognition by 

specific T cells by reducing the antigen presenting capability of the cell in which it 

resides.

1.2.3 The role of CD4+ T lymphocytes

Cell-mediated immunity plays the key role in containing mycobacterial infection. The 

absolute requirement for CD4+ T cells has been demonstrated in mice (North, 1973; 

Orme et a l,  1992; Colston and Hilson, 1976; Tascon et a l,  1998) and in man by the 

increased susceptibility of AIDS patients to a wide range of mycobacterial infections, 

eg. (Hopewell, 1992). Selective depletion of T cell subsets, using monoclonal 

antibodies, have shown that depletion of CD4+ T cells markedly shortened survival of 

Mf6-inlected mice (Leveton et al, 1989).

One of the key roles of CD4+ T cells is to respond to specific antigens by producing 

cytokines, which activate, and increase the microbicidial capacity of macrophages. 

The main cytokine in this regard is IFNy. IFNy has been shown to induce 

antimycobacterial activity in macrophages in vitro (Rook et a l,  1986; Flesch and 

Kaufinann, 1987), and mice with a targeted deletion in the IFNy gene are less able to 

control Mtb infections than normal mice (Cooper et a l,  1993; Flynn et a l,  1993). The 

activation of human macrophages to kill Mtb by IFNy has been much more difficult to 

demonstrate (Rook et a l,  1986; Douvas et a l,  1985). However the recent 

demonstration that people with genetic defects in the IFNy pathway are more
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susceptible to mycobacterial infections (Lammas et a l,  2000; Doffinger et a l,  1999; 

Jouanguy et a l,  1999) suggests that this pathway is also important in man.

Although the main role of CD4+ T cells is thought to be to provide cytokine-mediated 

help to macrophages, CD4+ T cells have also been shown to have cytotoxic activity 

towards mycobacteria-infected macrophages (Ottenhoff and Mutis, 1990; Lorgat et al, 

1992; Tsuyuguchi, 1990; Fazal et a l,  1995; Tan et al,  1997). However the role of this 

activity in vivo is not understood.

1.2.4 The role of CD8+1 lymphocytes

Although CD4+ T cells are thought to play the major role in controlling mycobacterial 

infections, there has been increasing evidence in recent years of the importance of 

CD8+ T cells. The presence of mycobacteria specific CD8+ T cells in humans has 

been widely reported (see for example (Lalvani et a l,  1998; Lewinsohn et a l,  1998; 

Bothamley et a l,  1992b; Smith and Dockrell, 2000; Smith et a l,  1999). However it is 

work in mice which has provided compelling evidence for an important role in 

protective immunity. Cell depletion studies indicated the involvement of CD8+ T cells 

in control of Mtb infection in a murine model (Orme, 1987). Mice deficient in p-2- 

microglobulin showed increased susceptibility to tuberculosis, indicating a role for 

MHC Class I-restricted cells (Flynn et al, 1992). This was further supported by the 

demonstration that mice which lack the TAPI molecule, which is involved in transport 

of processed peptides from the cytosol to the endoplasmic reticulum for loading onto 

MHC Class I molecules, are also more susceptible to Mtb infection (Behar et al,

1999).

CD8+ T cells could contribute to the control of Mtb infection in one of two ways; 

either through cytotoxic mechanisms, or through T-helper activity by producing
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macrophage-activating cytokines. Support for the importance of the latter is provided 

by a number of studies. Transfer of both CD4+ and CD8+ T cells into Mr6-infected 

athymic mice, provides equivalent levels of protection; however, transfer of CD8+ T 

cells from mice with a targeted deletion in the IFNy gene is unable to protect (Tascon 

et a l,  1998), suggesting that at least in this model, IFNy production is the major role 

of CD8+ T cells. This is supported by the fact that mice which lack cytotoxic T cell 

mechanisms are little different from wild-type mice in their ability to control Mtb 

(Laochumroonvorapong et al,  1997; Cooper et a l,  1997; Sousa et a l,  1999). On the 

other hand, although in Mtb infected mice both CD4+ T cells and CD8+ T cells are 

found in the lungs as early as one week post-infection, recent data show that the 

majority of IFNy produced is by CD4+ T cells (Serbina and Flynn, 1999).

In addition to classical MHC class I-restricted CD8+ T cells, a number of other types 

of CD8+ T cells which are not MHC Class I-restricted, have been demonstrated. Some 

CD8+ T cells recognize non-peptide antigens of Mtb in the context of CDl molecules 

(Stenger et al,  1997; Gong et al,  1998). An additional class of CD8+ T cells 

recognize antigen when presented by MHC Class Ib molecules other than CDl 

(Lewinsohn et al,  1998). The murine equivalent of MHC Class Ib molecules are 

termed H2-M3, which present bacterial N-formyl peptides (Lindahl et a l,  1997). H2- 

M3-restricted CD8+ T cells with specificity for mycobacterial N-formyl peptides have 

been reported (Flynn and Ernst, 2000).

Although the role of cytotoidcity in controlling Mtb infections is unclear, recent 

evidence has suggested that killing of Mtb infected macrophages can result in 

concurrent death of the bacteria. CD8+ T cells which kill Afr6-infected target cells do 

so by granule exocytosis, in contrast to CD8 CD4 double negative (DN) cytotoxic 

cells which utilise a Fas-FasL pathway (Stenger et a l,  1997). CD8+ T cell-killing of
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infected targets involves the concerted action of perforin and granulysin, and results in 

killing of the intracellular microbe in addition to the target cell. By contrast DN cells, 

using the Fas-FasL pathway kill the target cell, but do not kill the intracellular 

microbes (Stenger et a l,  1997). Thus it is possible that CD8+ T cells can contribute to 

protection against Mtb infection by the granulysin/perforin pathway.

1.2.5 The role of other T cell subsets

In addition to macrophages, CD4+ and CD8+ T cells, many other cell types contribute 

to the recognition of and response to Mtb. A range of minor T cell subsets which often 

recognise unusual mycobacterial products have been identified. For example T cells 

expressing the yô T cell receptor, and expressing both cytotoxic and helper activities 

have been shown to recognise either heat shock proteins (Boom et a l,  1992; O'Brien 

et a l,  1989) or phosphorylated bacterial products (Constant et a l, 1994; Schoel et al,  

1994). It has been suggested that yô T cells are involved in the early, innate arm of the 

immune response to infection (Skeen and Ziegler, 1993).

DN CDl restricted T cells recognise mycolic acids (Beckman et a l,  1994) or LAM 

(Sieling et a l,  1995), both major constituents of the mycobacterial cell envelope. 

These cells are capable of producing IFNy and expressing cytotoxic activity (Porcelli 

et a l,  1992; Beckman et al,  1994), via the Fas-FasL pathway (Stenger et a l,  1997).

1.2.6 The importance of cells other than macrophages and T cells

In addition to macrophages and T cells, a number of other cell-types are thought to 

play a role in Mtb infection.

Natural killer (NK) cells are involved in the early response to Mtb infection; they 

have elevated lytic activity against M/6-infected monocytes following IL-2 or IL-12
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stimulation (Denis, 1994) and also produce IFNy (Ye et a l,  1995). Antibody- 

mediated depletion of NK cells in mice makes them more susceptible to M. avium 

infection, confirming an important role in the control of intracellular pathogens 

(Harshan and Gangadharam, 1991).

Neutrophils, phagocytes usually associated with protection against extracellular 

parasites, also play an important role in Mtb infection. In rabbits neutrophils release 

chemotaxins, which attract monocytes to the site of inflammation contributing to 

granuloma formation following mycobacterial infection (Antony et a l,  1985). These 

cells were also found to directly eradicate Mtb by oxidative killing (H2O2) or by a 

combination of components with microbicidial activity (H2O2 , MPO and Cl ) (Brown 

et a l,  1987). Also, during mycobacterial infection, T cells and macrophages are 

primed to recruit neutrophils, which may represent a way to cope with secondary 

infections (Appelberg, 1992). Depletion of neutrophils completely abrogates the 

resistance conferred by activated macrophages induced during mycobacterial infection 

(Leal et a l,  1996), and has a direct effect on bacterial proliferation (Pedrosa et al, 

2000). Most important of all is the immunomodulatory activity of these cells: they are 

capable of producing cytokines such as: TNF-a, IL-12 and IL-1(3 (Petrofsky and 

Bermudez, 1999), and hence contributing to the global cellular response to infection. 

B-lymphocytes initially were considered to have no role in the control of the Mtb 

infection. Subsequently studies indicated that B-cell deficient mice, unable to produce 

antibodies of any class, were more susceptible to Mtb infection (Vordermeier et al,

1996). However mice that are deficient in the production of B lymphocytes have 

severe lesion formation and delayed bacterial dissemination which was found to be B- 

cell dependent but not antibody-dependent (Bosio et a l,  2000). In fact the role of the 

antibodies in the Mtb infection is still poorly understood. Recent work on
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mycobacterial components have shown that the administration of LAM to mice caused 

an increase in the levels of IgM and could modify the course of the mycobacterial 

infection (Glatman-Freedman et al,  2000).

1.2.7 The cytokine network

Cytokines secreted by monocytes/macrophages following initial contact with Mtb play 

a role in determining the ultimate evolution of the immune response and are 

responsible for many of the clinical manifestations of tuberculosis (IL-ip and TNF-a 

producing fever and wasting, for example). The inflammatory response and production 

of chemokines was discussed in detail earlier (see section 1.2.2). It is this cytokine 

milieu, provided by both macrophages and dendritic cells (DC; see section 1.5.1) 

which is largely responsible for the types of T cells which are recruited to the site of 

infection and for the phenotypic differentiation of these T cells. For example IL-15 is 

thought to induce CD8+ memory T cells (Lodolce et al,  1998; Kennedy et a l,  2000) 

and is induced in macrophages by mycobacteria (Doherty et a l,  1996). Similarly IL- 

12 and IL-18 are produced by macrophages and are important in generating protective 

immunity against mycobacteria (Cooper et al, 1995; Sugawara et a l,  1999) through 

their stimulation of IFNy-production (Kohno et al,  1997; Matsui et a l,  1997 

;Okamura et a l,  1995).

As discussed earlier, the major contribution to protective immunity is through helper T 

cells (both CD4+ and CD8+) producing cytokines, which activate macrophages, 

particularly IFNy. Such T cells can be subdivided on the basis of the range of 

cytokines they produce; thus IFNy is produced by Thl cells, IL-4, IL-10 and IL-13 by 

Th2 cells, while ThO cells can have an intermediate phenotype (Mosmann and 

Cofftnan, 1989; Mosmann et a l,  1986). However, there is considerable feedback, both
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positive and negative, between Thl, Th2 and macrophage cytokine production. Thus, 

IL-10 and IL-4, produced by Th2 cells suppress Thl cells, while IFNy, produced by 

Thl cells, suppresses Th2 cells. A gross oversimplification of the pathway leading to 

protective immunity would be: macrophages produce IL-12, IL-15 and IL-18 which 

stimulates IFNy production by Thl cells; IFNy suppresses Th2 cells and activates 

macrophages to become microbicidial and to produce more IL-12, etc. TNF-a, which 

can be produced by macrophages, Thl and Th2 cells, is important in granuloma 

formation (Kindler et a l,  1989) and in macrophage activation (Bermudez and Young, 

1988) but is also responsible for much of the immunopathology associated with 

tuberculosis (Kaplan, 1994), emphasising the balance between protective immune 

mechanisms and immunopathology.

1.3 Reactivation of persistent infection: latent tuberculosis

Mtb is able to survive for long periods within macrophages or infected hosts; even if 

infected individuals control the infection they may not eliminate all viable 

mycobacteria, and in this case the tubercle bacillus is said to be in a state of dormancy. 

The ability to survive in the host in a latent state, only to revive years later is an 

important component of pathogenicity and has been the subject of investigation for 

many years, using model systems.

One such system involves the hypothesis that dormant bacilli shift from a O2 -rich 

environment to an environment where O2 is limited.; it is thought that this involves a 

first step from rapid to slow replication of the mycobacteria and a second step with 

complete shutdown of replication, but not death (Wayne, 1994). An explanation for 

this phenomenon is that nitrate reduction actually supports the hypoxic shiftdown of 

Mtb\ this response may help the bacilli to survive in oxygen-depleted regions of
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inflammatory or necrotic tissues, where nitrate can occur as a degradation product of 

nitric oxide (Wayne and Hayes, 1998). The genome sequencing project has revealed 

that Mtb has the genetic potential to survive in anaerobic conditions (Cole et a l,

1998).

It has also recently been shown that the pattern of cytokines produced by T cells from 

mice with latent TB and reactivated TB is different: reactivation of latent TB was 

associated with a shift in cytokines from a type 1 (Thl) to a type 2 (Th2) cytokine 

response; control of mycobacterial growth resulted in a return to the type 1 cytokine 

pattern found during latent disease (Howard and Zwilling, 1999).

Reactivation of clinically latent infection is responsible for a large proportion of active 

tuberculosis cases: one cause of reactivation is the development of immunossupression 

resulting from HIV infection (Murray, 1991) suggesting a role of the CD4+ T cells in 

dormancy maintenance (Di Perri et al,  1993). In mice, antibody-mediated depletion 

of CD4+ T cells results in rapid reactivation of a persistent infection (Scanga et a l , 

2000). It has also been found that corticosteroid therapy can reactivate latent Mtb 

infection (Sperber and Gomish, 1992).

1.4 BCG vaccination

The BCG vaccine, an attenuated form of the bovine tubercle bacillus, is widely used 

but has extremely variable efficacy in protecting against disease, in different parts of 

the world (reviewed by (Fine, 1995)). The reason for this variation ( from 78% 

efficacy in the UK, to 0% in Malawi, for example (Fine, 1995) is unknown, but 

probably involves multiple factors. It has been suggested for example that exposure to 

environmental mycobacteria provides a level of background protection against Mtb 

which masks any protective effect conferred by BCG (Fine et a l,  1994). Alternatively
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exposure to some particular environmental mycobacteria might subvert the protective 

immune response conferred by Mtb (Stanford and Rook, 1983). In most trials BCG 

has been found to be effective in childhood, extrapulmonary forms of the disease, but 

in many cases it is ineffective over the long periods required for a disease which can 

remain dormant for many years. Thus, although BCG is inexpensive, safe and widely 

used, there is an urgent need for the development of new vaccines that eradicate 

already established infection and protect against primary infection (Hess and 

Kaufmann, 1999).

1.4.1 New approaches for the development of alternative vaccines

-Improvement of BCG efficacy by manipulating the host response at the time of 

vaccination and promoting optimal protective responses.

BCG has been genetically engineered to secrete cytokines that can influence the 

generation of a Thl response. Such cytokines include IFNy, GM-CSF, TNF-a, IL-12 

and IL-2 ( Marshall et al, 1997; Murray et a l,  1996; Kong and Kunimoto, 1995). 

More recently BCG vaccination of mice has been enhanced by the simultaneous 

administration of IL-12, and immunostimulatory DNA CpG motifs (Freidag et al, 

2000).

-Development of new attenuated forms of Mtb

Recent advances in mycobacterial molecular genetics have allowed a more targeted 

approach to the development of attenuated Mtb. Thus, for example several groups 

have produced auxotrophic mutants of Mtb which are unable to infect mice; some 

show protective responses if used to vaccinated mice which are then challenged with 

Mtb (Jackson et a l,  1999; Hondalus et al,  2000). Alternative strategies involve the
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use of random mutagenesis and signature target transposon mutagenesis (Camacho et 

al,  1999) which allows the avirulent mutant to be selected for in the mouse. 

-Development of subunit vaccines

The use of purified proteins, either recombinant or native proteins, was investigated as 

a potential approach to developing new vaccines (Table 1.1). Proteins which appear 

early in the filtrate of Mtb cultured in broth medium have been shown to elicit strong 

immune responses in BCG-vaccinated mice (Boesen et a l,  1995), and to protect 

guinea pigs (Pal and Horwitz, 1992) and mice (Andersen, 1994). Some of the specific 

proteins found in these culture filtrates have been identified as having protective 

effects, most notably the 85 antigen (Horwitz et a l,  1995). The success of the subunit 

proteins as vaccines is dependent on the use of appropriate adjuvants, some of which 

can particularly promote Thl responses. It is not yet clear whether a subunit vaccine of 

this type is capable of generating the long-lasting immunity required for protection 

against Mtb.

-Development of DNA vaccines

Following the initial observations that inoculation of a DNA plasmid into a host, with 

subsequent expression of the encoded protein in vitro results in immune responses to 

that protein (Tang et a l,  1992); many studies have demonstrated this to be a promising 

approach to vaccination against viral (Ulmer et a l,  1993; Xiang and Ertl, 1994; Boyer 

et a l,  1997; Webster et a l,  1994), parasitic (Xu et a l,  1995) and bacterial, including 

mycobacterial, infections (Huygen et al, 1996; Tascon et a l,  1996). Intramuscular 

injection of DNA plasmids results in expression of the encoded protein in myocytes 

(Wolff et a l,  1990) and kératinocytes (Akbari et a l,  1999) from where it is picked up 

and transported to lymphoid tissue by antigen presenting cells (Akbari et a l,  1999). 

DNA vaccination has been shown to be an excellent method for generating both helper



24

■ SESStHè/.. TV *
'• \  : •- • 1

DnaK 70
Somatic/

extra
cellular

hsp (Garsia et ai, 
1989)

GroEl 65 Somatic hsp (Shinmck, 1987)

Urease 62 Somatic
Nitrogen

metabolism
(Clemens et al., 

1995)

G lutam ine
Synthetase

58 Somatic/extra
cellular

Cell wall 
synthesis

(Harth et ai,  
1994)

Proline Rich 
Complex 

(APA)
45-47 Extracellular

Target for DTH 
and antibody 

responses after 
immunization

(Laqueyrerie et 
ai,  1995)

Phosphate 
Binding protein 38 Outer cell wall

Phosphate 
Metabolism 

Target for T-cell 
responses

(Andersen et ai, 
1990)

Antigen 85 
complex

30-32 Extracellular Fibronectin 
binding/T cell 

target

(Abou-Zeid et ai, 
1988)

HBHA 
( Heparin 
Binding 

Hemaglutinin)

28 Outer cell wall Adherence to cell 
surfaces

(Abou-Zeid et ai, 
1988; Menozzi et 
a/., 1996)

MPT 64 26 Extracellular

Deleted in some 
strains of 

BCG/potent 
inducer of DTH

(Wilcke et ai,  
1996; 

Johnson et ai,  
1999)

Superoxide
dismutase

28 Somatic/extracell
ular

Cleaves toxic 
superoxide 

radicals

(Thangaraj et ai, 
1990)

19 kDa 
Lipoprotein 19 Outer cell wall

Phosphate
uptake?????

(Bothamley et ai, 
1992a)

a- crystallin 16 Somatic/Extracell
ular

hsp
(Wilkinson et ai, 

1998)

GroES 12 Somatic/Extracell
ular

hsp
(Baird et ai, 

1988)

ESAT-6 6 Extracellular
Deleted in all 

strains of BCG/ 
target for memory 

cells

(Sorensen et ai, 
1995)

Table 1.1 - Major protein antigens of M.tuberculosis
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and cytotoxic immune responses, which probably accounts for its success in 

experimental studies against a wide range of infectious agents. Whether this success in 

experimental studies can be converted into clinical use, and issues involving the long­

term safety of DNA vaccination can be overcome, remain to be seen.

1.5 Antigen presentation and dendritic cells (DC)

Antigen presenting cells express both MHC Class I and II molecules and are hence 
capable of presenting antigen to both CD8+ and CD4+ T cells. The APC convert, or 
process antigens into short peptides. These short peptides are bound to proteins of the 
MHC class I and II complex and presented at the cell surface of the APC where, 
together with costimulatory molecules, they initiate the immune response through 
interactions with T cells. The APC vary in the mechanisms of antigen uptake, 
expression of MHC class II molecules, costimulatory molecules and localisation in 
the body. The major types of APC are dendritic cells (DC), macrophages and B cells.

DC are the most potent APC, with the ability to induce primary immune responses

(Steinman, 1991; Hart, 1997). In addition to processing and presenting antigen to T

cells, DC play important roles in the sensing and capture of antigen in peripheral

tissue, in the transport of captured antigen to T cell-rich lymphoid tissue and in

providing a cytokine milieu which influences the differentiation of activated T cells. In

the following section these roles of DC will be considered in more detail.

1.5.1 DC subsets

DC can be derived from lymphoid (Vremec and Shortman, 1997 ; Leenen et a l ,  1998 ; 

Hart, 1997; Saunders et a l,  1996) or myeloid tissue (Inaba et a l,  1992). These two 

lineages of DC can be differentiated by the expression of a number of cell surface 

markers. Murine DC of lymphoid origin express CD8a, DEC-205, with low level 

expression of CDl lb. Murine myeloid DC do not express CD8a or DEC-205, but 

express high levels of CDl lb (reviewed by (Reid et al, 2000)) Human DC can also be
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generated from lymphoid or myeloid tissue (Grouard et al, 1997; Rissoan et al,  

1999b; Caux et a l,  1996; Romani et al,  1994).

DC can also be distinguished on the basis of their tissue localisation. These include 

skin epidermal DC (Langerhans cells), thymic, liver and peripheral blood DC, 

germinal centre DC, T-zone interdigiting DC and splenic marginal DC. Although DC 

from different tissues can, to some extent, be differentiated phenotypically, differences 

in ontogeny, function and maturation are not clear (Table 1.2).

DC type Function

Peripheral blood DC 

Spleen DC

Langerhan DC

Interdigiting DC 

Thymic DC

Dermal dendrocytes 

Follicular DC

Migration 

Antigen presentation to primed 

T cells

Antigen uptake and transport to 

Lymph nodes 

Antigen presentation 

Induction of in vivo proliferation 

of mature thymocytes 

????????

Antigen presentation in B 

cells and memory maintenance

Table 1.2- Main categories of DC and functions

In addition to lineage and tissue localisation DC subsets can also be differentiated on 

the basis of function. DC provide the environment in which T cells differentiate into 

for example Thl and Th2 cells. These different environments are largely dependent on
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IL-12 secretion (Macatonia et a l,  1995). CDl lc+ DC can produce IL-12 (Rissoan et 

a l,  1999b) and drive both CD4+ (Rissoan et a l,  1999b) and CD8+ and NK T cells 

towards a Thl phenotype (Rissoan et al, 1999a). In mice, the response towards Thl or 

Th2 may be differentiated by expression of CD8a, with CD8a+ DC reflecting 

lymphoid origin, production of IL-12 and promotion of Thl differentiation 

(Maldonado-Lopez et a l,  1999; Pulendran et a l,  1999; Pulendran et a l ,  1998), and 

CD8a- DC, reflecting myeloid origin and promotion of Th2 differentiation 

(Maldonado-Lopez et a l,  1999; Pulendran et a l,  1999), possibly by selectively 

expressing IL-13 (McKenzie et a l,  1998) and IL-6 (Rincon et a l,  1997). Although 

distinct DC subsets may be responsible for promoting Thl or Th2 responses, it is also 

clear that the cytokine milieu of DC can also influence their ability to promote 

polarisation of the T cell response (Buelens et a l,  1995; Caux et a l,  1994; Liu et al,

1998). The tissue localisation of DC can also influence their ability to promote Thl or 

Th2 responses, with splenic DC tending to induce Thl differentiation and DC from 

Payers Patches inducing Th2 differentiation (Iwasaki and Kelsall, 1999).

1.5.2 Differentiation of DC in vitro

The ability to grow DC in vitro, and to control the differentiation of different lineages 

has greatly assisted the analysis of DC function in recent years. Human DC can be 

grown from peripheral blood or bone marrow by culturing with IL-4 and GM-CSF 

(Sallusto and Lanzavecchia, 1994; Romani et a l,  1994). Such in vitro grown DC 

exhibit characteristic morphological features and different immunophenotypes (Egner 

and Hart, 1995; reviewed by Gluckman et a l,  1997). DC generated from adherent 

peripheral blood-derived monocytes in the presence of cytokines such as IL-4, display 

a similar morphology, phenotype and immunostimulatory activity to bone-marrow
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derived DC (Schreurs et al, 1999). DC differentiated from monocytes, in this way, 

and further maturing them with superantigens can give rise to two functionally 

diametrically opposite types of DC, one stimulatory and the other inhibitory 

(Chakraborty et al, 2000). The shift from monocyte to DC during culture is associated 

with changes in expression of surface markers; the first 24 hours is marked by the 

rapid upregulation of markers of monocyte activation (CD 13, CD 14, CD98 and HLA- 

DR), followed by CD 14 down-regulation and CDl and CD86 up-regulation between 

days 2 and 3. Ultimately there is a gradual increase of DC markers such as CD 18 and 

CD43 (Woodhead et a l,  1998).

1.5.3 DC migration and maturation

In vivo, DC exist at different functional and morphological stages of maturation; as 

immature cells distributed throughout the tissues in non-lymphoid organs, where they 

exert a sentinel function, and as mature cells when they acquire and process antigen, 

migrating to the T cell-dependent areas of secondary lymphoid organs and interacting 

physically with T lymphocytes (Cumberbatch et a l,  1991). Immature DC in the 

peripheral tissue arise by migration from the bone marrow to become resident cells. 

These immature DC are specialised as “ antigen capture” cells. They can acquire 

antigen by a variety of pathways, including macropinocytosis (Sallusto et a l,  1995; 

Steinman and Swanson, 1995), receptor-mediated endocytosis via for example the 

mannose receptor DEC-205 (Engering et al,  1997; Jiang et a l,  1995; Sallusto et a l, 

1995; Tan et a l,  1997) and phagocytosis. Phagocytosis by immature peripheral DC is 

clearly important for immunity to pathogens. Latex beads (Matsuno et a l,  1996), 

bacteria (Inaba et a l,  1993; Rescigno et al, 1999) and higher parasites such as 

Leishmania (Moll, 1993; Moll et a l,  1995), have all been shown to be internalised by
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immature DC. Immature DC can also phagocytose apoptosing and necrosing cells, and 

this is thought to be important in “cross-priming” of T cells (Albert et a l,  1998a; 

Albert et a l,  1998b; Rubartelli et a l,  1997; Inaba et a l,  1993); the cross-priming of T 

cells is discussed in more detail below. In addition to exposure to antigens, maturation 

of immature peripheral DC can also be triggered by a wide range of molecules, 

including molecular products of pathogens such as LPS (Roake et a l,  1995; Rescigno 

et al,  1999), CpG DNA motifs (Hacker et a l,  1998; Hartmann et a l ,  1999) and 

double stranded RNA (Celia et a l,  1999) (Figure 1.2).
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Figure 1.2 Model of Mtb / DC interactions and T cell immune response
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The cytokine milieu of the immediate environment can also stimulate maturation of 

peripheral DC. Maturation is associated with marked phenotypic changes in the DC. 

Morphologically, DC undergo cytoskeleton remodelling to become larger, with an 

increase in the number of dendritic projections (Ross et al,  1998). Maturing DC 

down-regulate receptors involved in antigen capture and upregulate costimulatory 

molecules such as CD86, CD80, CD58 and CD40 (Watts, 1997). The high levels of 

intracellular MHC Class II molecules which are present in immature DC are now 

expressed at the surface. Immature DC contain Class Il-rich organelles caled MIICs 

(Nijman et <2 /., 1995; Kleijmeer et a l,  1997). Antigen is directed to MIICs (Lutz et al,

1997) for binding to MHC Class II molecules and translocation to the cell surface. 

Thus antigen or cytokine mediated maturation results in further differentiation of DC 

from an immature, antigen-capturing cell towards a mature, antigen-presenting cell 

(Figure 1.3).

This maturation procedure is also associated with a change in chemokine receptor 

expression (Sallusto et a l,  1998; Dieu et al, 1998), with down- regulation of the MIP 

3a receptor and upregulation of the MIP 3(3 receptor CCR7, thereby promoting the 

migration of mature DC into the draining lymph nodes via the afferent lymph. The 

expression of MIP 3p and 6Ckine results in the amplified attraction of both mature DC 

and naïve T cells, thereby assuring that the conditions for antigen presentation are 

optimal. Mice deficient for 6C kine or CCR7 exhibit aberrant migration of T cell and 

DC homing into lymph nodes (Gunn et al,  1999; Nakano et a l,  1997; Nakano, 1998).
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1.5.4 Interactions with T cells

DC present antigen to naïve CD4+ T cells in association with MHC Class II 

molecules, and to naïve CD8+ T cells in association with MHC Class I molecules. 

This unique ability to prime naïve T cells is probably associated with the very high 

concentration of MHC-peptide complexes expressed on the cell-surface (Inaba et al,

1997), and with the increased expression of adhesion molecules (see above). Recently 

a novel protein, referred to as DC-SIGN, has been shown to interact with ICAM-3, 

thereby establishing the contact between DC and naïve T cells (Geijtenbeek et al,

2000). DC-SIGN is specific to DC (DC-Specific ICAM-3 Grabbing Nonintegrin) and 

hence may be the key molecule in defining the unique ability of DC to stimulate naïve 

T cells. CD86 expressed on DC is crucial for amplification of T cell responses (Caux 

et a l,  199; Inaba et a l,  1994), and cytokine production following T cell activation 

both amplifies and directs the nature of the T cell response (discussed previously in 

sections 1.2.7 and 1.5.1). The key event in activating DC to regulate the CD86 and 

cytokine production following interaction with T cells, is mutual signalling through 

CD40 (on DC) and CD40-ligand on T cells (Bennett et a l,  1998; Schoenberger et al,

1998).

1.5.5 Cross-priming of CD8+ T cells

DC can prime naïve CD8+ T cells by two pathways: the endogenous pathway and the 

exogenous pathway. The endogenous pathway is the classical pathway by which 

cytosolic proteins are degraded and the resultant peptides loaded onto MHC Class I 

molecules within the endoplasmic reticulum. The exogenous pathway is thought to 

occur, at least in part, by the capture of antigens by DC and their

presentation to T cells (Nouri-Shirazi et al,  2000; Albert et al,  1998a). Processing
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via th%5 pathway can be TAP-independent (Schoenberger et a l,  1998) or

TAP-dependent (Kovacsovics-Bankowski and Rock, 1995).
This process by which peptides derived from extracellular antigens (e.g. apoptotic

bodies) are transferred to host cells for presentation by host MHC Class I molecules 

is termed “cross-priming” and is associated with inflammation or autoimmunity, and

with normal cell death, tissue damage or cell deletion (Rovere et a l,  1999) (Figure

1.4). It is also thought to have an important role in self-tolerance, tumour immunity

and vaccine development (Nelson et al,  2000).
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1.5.6 Intracellular signalling

Toll-like receptors (TLR; see section 5.1) have been demonstrated to be important in 

the recognition of pathogens by DC, and in the subsequent activation of the innate 

immune response (Muzio et a l,  2000). Stimulation of DC by lipoproteins or LPS 

results in the increased expression of TLR2 (Tboma-Uszynski et al,  2000). Similar 

results have been obtained when BCG is used to stimulate DC (Tsuji et a l,  2000). 

The kinase cascade leading to full activation of the DC is poorly understood but 

involves mitogen-activated protein kinases (MAPK), ERK kinases and 

phosphorylation cascades (Saklatvala et a l,  1999). Downstream of the signalling 

cascade, NFkB is the main mediator of the cellular response to pathogens (Figure 1.5).
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NFkB is a major inducible transcription factor; in the inactivated state NFkB is 

complexed with an inhibitory subunit, IkB. Activation of the cell results in 

phosphorylation and degradation of IkB, resulting in the dissociation of the IkB-NFkB 

complex and translocation of NFkB from the cytoplasm to the nucleus where it binds 

DNA and activates transcription (Alkalay et a l,  1995).

The NFkB family of transcription factors includes the proteins p50, p52, p65, c-Rel 

and Rel B that can form homo or heterodimers giving rise to different protein 

complexes (Jensen and Whitehead, 1998). The Rel/NFxB transcription factors are not 

only key regulators of the immune, inflammatory and acute phase responses, they are 

also implicated in the control of cell proliferation and apoptosis (Rayet and Gelinas,

1999). The deletion of Rel genes in mice disrupts DC development and maturation 

(Wu et a l,  1998; Gerondakis et a l,  1999). Other studies have demonstrate that the 

Rel/NFxB family directly activates expression of the apoptosis inhibitor Bcl-xL, and 

that the Bcl-X promoter is directly controlled by c-Rel (Chen et a l,  2000). Thus, 

activation of DC is also accompanied by increased expression of the anti-apoptotic 

protein Bcl-xL in DC, suggesting a possible mechanism in protecting DC from 

apoptotic death (Pirtskhalaishvili et al, 2000).

Thus, while little is known about the recognition of Mtb by DC, and the resultant 

kinase cascade, it seems likely that NFkB would be the main down-stream mediator of 

the cellular response, and could also play an important role in regulating DC 

maturation and death.

1.5.7 DC as clinical immunotherapeutic or prophylactic agents

Because of their pivotal role as APC in inducing T cell responses, DC are being 

widely studied for their possible use as immunotherapeutic or immunoprophylactic
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agents. Several logistic issues have to be considered when developing DC for clinical 

use: they have to be generated in sufficient numbers, they should display 

morphological, phenotypic and functional properties of DC and they should be able to 

present antigens (Citterio et a l, 1999). Although the numbers of DC in circulation are 

low, recent advances have made it possible to generate DC in culture, from various 

sources including bone marrow, and peripheral blood; however, for clinical 

applications, DC must be generated in serum-free medium and cryopreserved for 

future use (Hajek and Butch, 2000). Although the requirement for the DC to present 

antigen is obvious, the fact that pathogenic organisms might have evolved mechanisms 

for inhibiting DC function (Urban et a l, 1999), has to be considered.

DC efficiently present antigens to cytotoxic T lymphocytes (CTL); tumour peptide 

antigens which can be presented in the context of MHC Class I, have been pulsed to 

DC and can induce protective immunity against lethal challenge by a tumour 

transfected with the gene encoding the antigen (Celluzzi et a l, 1996; Young and 

Inaba, 1996). In the same model, DC pulsed with RNA was also an effective way of 

inducing CTL responses and tumour immunity (Boczkowski et a l, 1996). Therapeutic 

immunity could also be conferred by transfer of DC that are presenting tumour 

antigens into tumour-bearing mice (Schuler and Steinman, 1997).

Experimental DC-based vaccines have also been studied against a range of infectious 

diseases, including Chlamydial and Toxoplasma infections (Ojcius et a l, 1998; 

Bourguin et a l, 1998). BCG-pulsed DC transferred into the lungs of mice, which are 

then challenged with Mtb have also been shown to confer protection (Demangel et a l,

1999).

In addition to using DC themselves as vaccines, other approaches to stimulating DC 

activity in vivo are being studied. In particular the activation of DC by ligation of the
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CD40 signalling molecule has been shown to enhance immunity against experimental 

lymphomas (French et a l, 1999) or colon carcinomas (Kikuchi et a l, 2000; Sun et a l,

2000) or infectious agents such as Leishmania major (Campbell et a l, 1996; Ferlin et 

a l, 1998).

Yet another approach has followed from the identification of antigen presenting 

vesicles, or exos omes, which are secreted by DC, and that expressed MHC Class I 

and II and T cell-costimulatory molecules (Zitvogel et a l, 1998). Exos omes prepared 

from DC pulsed with tumour peptides can substitute for intact DC in priming CTL in 

vivo, and suppressing the growth of established murine tumours (Zitvogel et a l,  1998). 

Currently the use of DC-based vaccines is being actively persued, particularly for the 

treatment of tumours in man (Dhodapkar and Bhardwaj, 2000).

1.5.8 Immortalised DC lines

The development of immortalised DC lines provides a useful model for studying the 

process of maturation, migration and T cell activation. The murine DC line CB1 was 

generated using a retroviral vector for a fusion gene. This cell line displayed most of 

the morphologic, phenotypic and functional attributes of mature DC, with constitutive 

expression of MHC Class II molecules, costimulatory molecules, heat-stable antigen 

and intracellular adhesion molecule IC AM-1 .The CBl line is capable of efficient 

antigen presentation to T cells (Paglia et a l, 1993).

DC lines exhibiting an immature phenotype have also been produced (Granucci et a l,

1999). Murine splenic DC and Langerhans cells which could phagocytose bacteria, 

and respond by producing TNF-a and IL-6 (Riva et a l, 1996), and which displayed 

DC morphology and specific DC surface markers (Ohnishi et a l, 1995) have been 

reported.



41

The DC line used in many of the experiments reported in this study was derived from 

bone marrow cells of mice transgenic for the thermolabile mutant of the SV40 large T 

antigen. The resulting cell line, referred to as tsDC matures following contact with T 

cells, T cell-derived cytokines or with a shift in temperature to 39°C (Volkmann et a l,

1996) The tsDC cell line exhibits the following characteristics:

Grows indefinitely as immature DC in the absence of GM-CSF 

High endocytic activity

Constitutive expression of MHC Class II molecules

Maturation at 39°C involves cessation of growth and upregulation of 

surface markers such as B7-1, CD40 and ICAM-1
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1.6 Aims of this study

The aim of this study was to investigate the interactions between DC and Mtb at the

cellular and molecular levels. Most of the experiments were performed with the tsDC

immortalised cell line, although many of the findings were also confirmed in primary

DC. The study is divided into four parts:

(i) A morphological study of the fate of Mtb following phagocytosis by DC.

(ii) An investigation of maturation of DC following exposure to Mtb. The

expression of cytokines, accessory molecules and MHC Class II molecules 

was investigated.

(iii) A study of activation of Mr6-infected DC at the molecular level, looking 

specifically at the role of the nuclear transcription factor NFkB.

(iv) An investigation of the ability of Mr6-infected DC to prime protective

immune responses and to cross-prime immune responses in vivo.
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Chapter 2
Materials and methods
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chaj>ter 2

MATKRTAT.S AND M KTHODS

2.1 Bacterial Strains and cultures

Mycobacterium tuberculosis H37Rv was grown in Middlebrook medium and stock 

cultures of mid-log phase bacilli were stored in aliquots containing 20% of heat-

inactivated fetal calf serum (FCS-GlobePharm) in liquid nitrogen. BCG was obtained

from Glaxo (Glaxo,UK).

2.2 Cell culture and conditions

2.2.1 Immortalised DC line (tsDC)

The thermosensitive immortalised dendritic cell line kindly provided by Dr. B. 

Stockinger (Volkmann et a l, 1996) was used as a continuous source of DC (tsDC). 

The cells were cultured in Iscove s Modified Dulbeccos Medium (IMDM;Gibco-Life 

Technologies) supplemented with FCS 5% and L-Glutamine (2mM-Sigma).The 

medium was filtered through a 0.22 pm filter (Millipore) and the cells were grown at 

34-35°C in a humidified incubator in an atmosphere of 5% CO2 .

2.2.2 Primary bone-marrow DC

Bone marrow cells were collected from 6-8 week old female BALB/c or C57BL/6 

mice, and washed in IMDM (Gibco-Life Technologies). The mice were killed by 

cervical dislocation, and the femurs surgically removed using sterile forceps and 

scissors. The cells were extracted from the femurs by flushing out the bone marrow 

cells using a 5ml syringe (Sherwood) and a 0.5x16mm needle (Kendall) with IMDM.
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The cells were washed and ressuspended in 10ml of IMDM medium containing 5% 

filtered FCS, L-glutamine (2mM) and O.IM mercaptoethanol (ME; Sigma) in 9cm 

petri dishes (Nunc). After adding 1ml [25U] of granulocyte-monocyte colony 

stimulating factor (GM-CSF), the cells were kept at 37°C and 5% CO2 . On the third 

day the medium was changed to fresh IMDM and 1ml of GM-CSF was again added. 

Four days later, the plates were washed with IMDM and the semi-adherent DC 

transferred to new plates. Purity of the DC was assayed by C D llc  FACS staining. The 

DC were used after a total of 12 days in culture (Figure 2.1).

2.2.3 Peritoneal macrophages

Peritoneal macrophages were flushed from the peritoneal cavities of Balb/c mice using 

Dulbeccos Modified Eagles Medium (DMEM). The cells were washed twice in 

DMEM and cultured at 1x10^ per well in 6x25mm tissue culture wells (Nunc) using 

DMEM supplemented with 20% FCS and 2-ME (0.1ml stock).

2.3 Infection of cells with Mth

Cells (DC or macrophages) were aliquotted to 25mm culture wells (Nunc) at a 

concentration of 10  ̂ cells per well. After one day the cells were infected with live 

Mtb (strain H37Rv) at a ratio of 5:1 (bacteria: DC) by adding the appropriate 

volume from the stock bacterial suspension. One well of cells was fixed with a 

solution of 2% paraformaldehyde (BDH) adjusted to pH 7.2 with hydrochloric acid 

(HCl) and 24 hours later Ziehl-Neelsen staining was carried out to confirm that the 

Mtb had been phagocytosed.
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2.3.1 Determination of the number of tsDC which had phagocytosed 

Mtb

To determine the percentage of tsDC, which had phagocytosed Mtb, the cells were 

fixed 12 hours after infection, as described above, and Ziehl-Neelsen staining was 

performed. In each well one hundred randomly selected cells were observed by 

microscopy, the number of cells that had phagocytosed Mtb was counted and the 

percentage of infected cells determined.

2.3.2 Treatment of infected tsDC with colchicine

Phagocytosis was inhibited using the tubulin polymerisation inhibitor colchicine 

(Sigma; (Bermudez and Goodman, 1996)). For the determination of the percentage of 

phagocytosis of Mtb by tsDC treated with colchicine, lOpM of colchicine (Sigma) was 

added to the medium 30 minutes prior to infection; to another group of cells, saline 

was added (controls) and a third group was maintained with no additions to the 

medium (control). After 12 hours, the cells were washed. The number of cells that had 

phagocytosed Mtb was counted and the percentage of infected cells determined, as 

described above.

2.3.3 Ziehl-Neelsen staining

The slide or plate was flooddwith Carbol Fuchsin KF (Difco) and left for four minutes 

and then washed gently with tap water to remove excess stain. The TB decolorizer was 

added (TB decolorizer;Difco) for one minute, until the colour no longer came out. The 

slide or plate was washed with tap water and air-drfed.
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2.4 Growth of Mtb in DC and macrophages

Cells (DC or macrophages) were cultured and after two days in culture infected with 

Mtb as described above. The infected cells were incubated at 37°C in 5% CO2 for 

various time intervals. The cells were washed and lysed using 2% saponin for one 

hour. Viable counts of Mtb released following lysis of the cells were determined by 

performing 10-fold serial dilutions in saline and plating onto 7H11 Middlebrook 

(Difco Laboratories). Plates were incubated at 37°C for three weeks. The number of 

colonies was counted and colony-forming units (CPU) in the original cell culture 

calculated.

2.5 Electron microscopy

A minimum of 10  ̂ tsDC (uninfected or Mtb infected) in 25ml of IMDM in a 80 cm^ 

tissue culture flask (Nunc) was used. The cells were washed with PBS and fixed for 1 

hour, with a mixture of 2.5% gluteraldebyde/2% paraformaldehyde (made up freshly) 

and O.IM sodium cacodylate (Na (CH3) 2 As O2 .3 H2O) buffer, pH 7.2 adjusted with 

HCl. The cells were then centrifuged at 6500 rpm for 10-15 minutes and the pellet 

fixed again for another hour. The cell pellet was post-fixed with 1% osmium 

tetroxide/1% aqueous uranyl acetate, dehydrated with ethyl alcohol and embedded in 

Epon (Agar Scientific) allowing polymerisation at 70 °C. Sections of 55nm were cut 

and mounted on 200 mesh carbon coated grids and stained with ethanolic uranyl 

acetate/Reynolds lead citrate. Observations were made with a JEOL Cx 100 

Transmission Electron Microscope and analysis of the micrographs was performed 

(NB. the sections were cut and mounted by Ms Liz Hurst, NIMR).
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2.6 Nitric oxide production

To measure the release of nitric oxide (NO), supernatants from 6x10^ tsDC were 

collected at different time points and filtered (0.22pm - Millipore). The levels of total 

NO released were determined using the Total Nitric Oxide Assay (R&D Systems), in 

which a coloured dye product of the Griess Reaction, which absorbs visible light at 

540nm, is measured. In this experiment LPS (Sigma) was used at a concentration of 

lOpg/ml and recombinant IFNy (Sigma) at a concentration of 500U/ml, as a positive 

control. Both reagents were added 12 hours prior to infection. The iNOS inhibitor 

aminoguanidine hydrochloride (Calbiochem; (Griffiths et a l, 1993)) at a concentration 

of 0.5M was added 18 hours prior to infection, and again after the cells had been 

washed.

2.7 Treatment of cells with RNI and ROI inhibitors

The growth of Mtb in cells exposed to different RNI and ROI inhibitors was 

compared. iNOS was inhibited using the competitive inhibitor L-nitro-L-arginine 

methyl ester ( L-NAME;Calbiochem) at a concentration of ImM (McDonald et a l,

1997). Arginase activity was inhibited using L-Norvaline (Calbiochem) at a 

concentration of lOmM (Chang et a l, 1998). The H2O2 inhibitor TMB-8 (Calbiochem) 

was used at a concentration of O.lmM (Schmidt et a l, 1995).

To test the effect of RNI and ROI inhibitors on the intracellular growth of Mtb, in each 

case inhibitor was added at the time of Mtb infection; the cells were incubated 

overnight, washed three times to remove extracellular Mtb, and fresh medium 

containing the inhibitor was added.
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2.8 Detection of cytokine gene expression by reverse 

transcriptase PCR (RT-PCR)

2.8.1 RNA extraction

Total RNA was extracted from DC (3x10^ cells/well) by lysing them with RNAzol 

(Biotechnology). Cells were homogenised by adding 0.2ml of RNAzol per 10  ̂ cells. 

The cell lysate was passed several times through a pipette and incubated for 5 minutes 

at room temperature to dissociate nucleoprotein complexes. 2ml of chloroform was 

added per 1ml of RNAzol, the tubes were shaken vigorously for 15 seconds and 

incubated on dry ice for 5 minutes. The suspension was centrifuged at 12000g for 15 

minutes at 4°C and the aqueous phase, containing the RNA, was collected. The RNA 

was precipitated by adding 0.5ml of isopropanol per 1ml of RNAzol used in the initial 

homogenisation. The samples were then incubated for 15 minutes, in dry ice, and 

centrifuged for another 15 minutes at 12000g (4°C). The RNA pellet was washed once 

with 75% ethanol, adding 1ml of ethanol per 1ml of RNAzol. The pellet was vortexed, 

centrifuged for 8 minutes at 7500g at 4°C, air-dried, and redissolved in RNase-ffee 

water.

2.8.2 DNase treatment

To minimise the risk of genomic DNA contamination a DNase digestion step was 

included. The dissolved RNA was digested with lOU of DNase I (Boehringer 

Mannheim) for 15 minutes at 37°C, along with Ipg of RNase inhibitor (Promega), IM 

NaAC and 0.1 MgS04. This mixture was kept for 15 minutes at 37°C. A 

phenol/chloroform saturated solution was added to the tubes and after shaking well 

they were centrifuged for 5 minutes at 13000g at 4°C. The supernatant was then
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removed and reprecipitated in 2 volumes of 100% ethanol and 0.5 volumes of 3M 

NaAC, washing the final pellet, twice, with 70% ethanol. The RNA concentration was 

assessed by absorbance: OD260 = 1 equivalent to approximately 40pg RNA/ml.

2.8.3 Reverse transcription

The reverse transcription reaction was carried out using a solution consisting of 

reverse transcriptase buffer (Gibco), lOmM DTT (Life Technologies), O.SmM dNTP 

(Pharmacia Biotech), 28U of RNase inhibitor and 200U of the Reverse Transcriptase 

Enzyme (Gibco). The reaction had 2 steps: 60 minutes at 37° C and 5 minutes at 95° 

C.

2.8.4 PCR amplification and product visualisation

PCR amplification was carried out using specific primers for murine TNF-a (giving a 

750 bp product), IL-6 (giving a 638 bp product), IL-lp (giving a 587 bp product), IL- 

12p40 (giving a 394 bp product), IFN-y (giving a 365 bp product) and IL-10 (giving a 

455bp product) (Clontech, Palo Alto). The PCR mixture contained 5 pi of lOx PCR 

buffer, 5 pi of 25 mM MgCb, 1 pi of 10 mM dNTP, 0.5 pi of 20 pM primers, 0.5 pi of 

Taq polymerase (5U/pl) and 5 pi of cDNA. The p-actin primers used as controls for 

the PCR reactions were; sense: 5'- ATG GAT GAC GAT ATC GCT-3'; antisense: 5'- 

ATG AGG TAG TCT GTC AGG T-3' giving a 540 bp product. The PCR was carried 

out in a thermocycler Gene Amp 9700 (PE Applied Biosystems), using the following 

cycle programme: 5minutes at 95°C, then 25 cycles of 20 seconds at 98°C, 20 seconds 

at 56°C, 30seconds at 72°C, followed by 7 minutes at 72°C.
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The molecular weights of the PCR products were determined using broad range PAGE 

standards (Biorad). PCR products were visualised by electrophoresis through a 1.2% 

agarose gel containing ethidium bromide.

2.9 Cytokine protein assays

A quantitative “sandwich” enzyme-immunoassay technique was used. Supernatants 

from uninfected and Mf6-infected cultures were collected at 12, 24 and 48 hours, filter 

sterilised (0.22 pm; Millipore) and the following cytokines measured using standard 

commercially available Elisa kits: IL-6, TNF-a, IL-1 p, IFN-y (Amersham Life 

Science), IL-12 (Genzyme Diagnostics, USA) and IL-10 (R&D Systems), according to 

the manufacturers instructions. The assays were carried out in triplicate and the results 

analysed by the Students t-test; p values of <0.01 were considered significant.

2.10 Flow cytometry

Uninfected and Mtb infected cells were washed twice with PBS and, after blocking Fc 

receptors using anti-mouse CD16/CD32 (Pharmigen) for 15 minutes, the cells were 

stained for 20 minutes on ice with directly conjugated antibodies: Phycoerythrin (PE)- 

conjugated anti-B7-l clone IGIO, PE-conjugated anti-B7-2 clone GL-1, PE- 

conjugated anti-ICAMl clone YNI/1.7.4, PE-conjugated anti- Heat Stable Antigen 

clone MI/69, FITC-conjugated streptavidin (all from Pharmigen) and biotin- 

conjugated anti-MHC class II I-Eak,d clone 14.4.4 ATCC HB32 (kindly supplied by 

Dr. B. Stockinger, NIMR).

After staining, the cells were fixed using 4% paraformaldehyde for 40 minutes at room 

temperature and then washed three times with PBS. The cells were ressuspended in 1 

ml of FACS reading buffer ( PBS + 1% BSA+ 0.1% Azide) and acquisition was
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performed on a FACScan (Benton Dickinson, Mountain View, CA) using forward and 

side-scatter characteristics to exclude dead cells. Data were analysed using WinMDI 

(The Scripps Research Institute, CA).

2.11 NFkB protein assays

2.11.1 Protein extraction

Cells pellets were centrifuged and ressuspended in 1 ml of RIPA lysis buffer, plus 

protease inhibitors:

RIPA buffer 

IxPBS

1% Igepal CA630 (Sigma)

0.5% Sodium Deoxycholate (BDH)

0.1% SDS 

Protease inhibitors 

AEBSF-lOgl/ml (Sigma)

Aprotinin-30pl/ml (Sigma)

Sodium ortho vanadate-1 Opl/ml 

Leupeptin- 5pg/ml (Sigma)

The mixture was incubated on ice for 30 minutes and then centrifuged for 15 minutes 

at 4°C. The supernatant was collected (lysate) and the protein levels were quantified 

using the BCA protein assay Kit (Pierce) according to the manufacturers instructions.
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2.11.2 SDS polyacrylamide protein gel electrophoresis

A 10% resolving gel was prepared as below and polymerisation initiated by addition 

of fresh 10% APS and TEMED (Biorad). The gel was allowed to set for 1 hour, then 

the 4% stacking gel, containing APS and TEMED was poured. Equal amounts of 

protein were loaded per lane, per gel. 10 pg to 40pg of protein was loaded depending 

on the size of the combs and protein gel apparatus used. The gels were run at 20- 

25mA and a maximum of 150V for between land 2 hours, until the dye reached the 

bottom of the gel. The running buffer used is described below.

10% Resolving Gel (25 mB

8 ml 30% Protogel (30% acrylamyde/0.8% bisacrylamyde)

6.25 ml 0.5M Tris-HCl pH 8.8 

10.75 ml ddHzO 

0.12 ml 10% APS 

0.025 ml TEMED

4% Stacking Gel (10 mil

1.33 ml 30% Protogel (30% acrylamyde/0.8% bisacrylamyde)

2.5 ml 1.5M Tris-HCl pH 6.8 

6.17 ml ddHiO 

0.05 ml 10% APS 

0.1 ml TEMED

5x Page Electrophoresis Buffer (ILl

15.Ig Tris
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94g Glycine 

25ml SDS 20% 

ddHzO- up to IL 

(pH 8.3)

2.11.3 Immunoblotting

The transfer apparatus (Fastblot B33; Biometra) was assembled containing blotting 

buffer in the following order and on the top of each other: three sheets of 3MM paper, 

Immobilon-Transfer membrane (Millipore), pre-treated according to the 

manufacturer’s instructions, protein mini-gel without the stacking part, and another 

three sheets of 3MM paper. Each of the sheets was previously soaked in transfer 

buffer and bubbles were removed by rolling with a Pasteur pipette. The gel sandwich, 

in the transfer apparatus, was transferred for 1 hour at 60mA at room temperature.

The membrane was removed from the sandwich, air-dried at room temperature and 

placed into MeOH for 10 seconds. It was then transferred to ddHzO, immersed, rinsed 

and incubated overnight with gentle rocking at room temperature in 10-20 mis of 

blocking solution, prepared as follows: lOg non-fat/dry milk, 100 mis of TTBS and 

400 pi 0.5 M EDTA. The appropriate dilution of the antibody was prepared in a 

solution containing: 0.6g non-fat/dry milk, 20mls of TTBS and 80 pi 0.5 M EDTA. 

The membrane was vacuum-sealed in plastic with the solution, and incubated for 1 

hour at room temperature with gentle rocking. The membrane was then washed 

vigorously with TTBS for 5 minutes for three times, to achieve low background 

staining. A 1:1000 to 1:2000 dilution of the second layer antibody (horseradish 

peroxidase-conjugated anti-rabbit or anti-mouse; DAKO) was prepared in 20 ml of a 

solution prepared as above. The membrane was again vacuum-sealed in plastic with
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the solution and incubated for 1 hour at room temperature, with gentle rocking. Again 

the membrane was washed in TTBS for 5 minutes three times, washed twice for 

another 5 minutes in TBS and finally washed once with IxPBS for five minutes.

The antibodies used were as follows: IkB-œ (Santa Cruz), Phospho IkB-œ 

(Pharmigen), c-Rel (Santa Cruz), Bcl-x (L) (Pharmigen), Bcl-2 (Pharmigen), p-actin 

(Sigma), Ml and HeLa cell lysates (Pharmigen).

TBS 5x (

Tris - 12.1g lOOmM pH 7.5 

NaCl- 146.2g 2.5M 

ddH20- up to IL 

(pH 7.5 adjusted with HCl)

TTBS ( lU

TBS- IL 

Tween 20 -  1ml

Transfer Buffer HLl

Glycine- 2.9g 

Tris- 5.8g 

SDS 20%- 1.85ml 

MeOH - 200ml 

ddHzO -  800 ml 

(pH 8.3)
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The washed membrane was transferred to Saran plastic wrap with the protein side up. 

ECL (Western Blotting detection system) was performed using the Amersham 

Detection Kit by mixing 3ml of each of the solutions provided, and poured 

immediately onto the membrane. After 1 minute the membrane was dried using paper 

tissues, sealed in a plastic bag and attached to an X-ray cassette. A range of exposure 

times, from 10 seconds to 10 minutes, was used to obtain the ideal exposure to the 

frlm-Hyperfrlm ECL (Amersham).

2.12 NFk B Electrophoretic Mobility Shift Assays (EMSA)

2.12.1 Labelling of oligonucleotide with y 32 PlATPl

Using 5 pmol of the NFkB primer (2.8 pi), T4 polynucleotide Kinase and 10 x T4 

polynucleotide kinase buffer with y 32 P[ATP], a standard labelling procedure was 

carried out (Sambrook and Gething, 1989) with incubation for 10 minutes at 37° C.

The NFkB primer (Promega) was as follows: 5' AGA GGG GAC TTT CCG AGA 

GGC-3 ‘ (consensus sequence)

2.12.2 Binding reaction

Samples were prepared at room temperature and each sample contained:

EMSA 2x binding buffer- 5 pi 

lug poly dldC poly dldC (Roche) -Ipl 

p32 g ATP labelled probe- Ipl 

Protein extract (4pg max.) -  3 pi
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The protein extract, the binding buffer and the polydldC were mixed first and the 

labelled probe added last. The mixture was incubated on ice for 30 minutes.

EMSA 2x Binding buffer (ImD

HEPES - 20pl 20mM, pH 7.9 

KCl- 120^1120 mM 

DTT- O.Spl 0.8mM 

Glycerol 20 % - 400pl 

BSA - 8pi 0.4pg/pl 

ddH zO -451.2 pi

2.12.3 Nuclear extraction

Nuclear extracts were prepared by a variation of the method of Schreiber (Schreiber et 

a l, 1989). 1 x 10  ̂cells were washed twice in cold-PBS (calcium/magnesium free) and 

pelleted by centrifugation at 12000 rpm in a microcentrifiige (Sigma) at 4° C for 5 

minutes. PBS was removed by aspiration and the cell pellet was ressuspended in 500pl 

of cold Cytoplasmic Buffer. The cells were allowed to swell on ice for 15 minutes, 

after which 30 pi of a 0.6% solution of Nonidet NP-40 (BDH) was added and the tube 

was vortexed for 10 seconds. After 5 minutes on ice, the cells were centrifuged for 30 

seconds and the supernatant containing cytoplasm and RNA was transferred to another 

tube. All traces of Cytoplasmic Lysis buffer were removed from the pellet. 50 to 60pl 

of Nuclear Lysis buffer was added to the pellet (if the pellet was too big, 1:1 volume 

“pellet: lysis buffer”was added). The nuclear pellet was freeze-thawed 3 times to
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extract proteins, by transferring from an ethanol/dry ice bath to a 37° C water bath. 

The nuclear extract was then centrifuged for 10 minutes at 4°C and the supernatant 

transferred to a new tube. This supernatant was further microcentrifuged in an ultra- 

free eppendorf tube filter unit-0.22pm (Millipore) for 5 minutes at 4°C.

The protein concentration was measured by the BCA method for EMSA.

Cytoplasmic Lysis Buffer

lOmM HEPES pH 7.6 

ImM EDTA 

O.lmMEGTA 

lOmM KCl 

ImM DTT 

20mM NaF

ImM Na pyrophosphate

1 mg/ml SPI (freshly added)

ImM Sodium orthovanadate (freshly added)

Nuclear Lvsis Buffer

20mM HEPES pH 7.6 

0.2mM EDTA 

O.lmMEGTA 

25% Glycerol 

0.42M NaCl 

ImM DTT
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20mM NaF

ImM Na pyrophosphate

1 mg/ml SPI (freshly added)

ImM Sodium ortho vanadate (freshly added)

Protease inhibitors (SPD

5pg/ml Chymostatin (Sigma)

5pg/ml Antipain (Sigma)

5pg/ml Pepstatin (Sigma)

SOpg/ml Leupeptin (Sigma)

2.12.3.1 NFk B modulation by TNF-a

The anti-TNF-a antibody (Sigma) was added to the cell cultures one hour before Mtb 

infection at a blocking concentration of 1.2pg/ml. Nuclear extracts were prepared as 

described above and stored at -70° until the gel-shifr reaction was carried out.

2.12.4 Polyacrylamide Gel Shift

A 7% polyacrylamide gel was mixed and poured in the gel-shifr apparatus and allowed 

to polymerise at room temperature for 1 to 2 hours. The gel was then pre-run in EMSA 

running buffer (O.SxTBE 1% glycerol) for 1.5 hours at 130 V, at 4 °C. The buffer was 

then changed and the gel left to soak for 2-3 hours. The samples were loaded and the 

gel run for 3-4 hours, at 130V (until the bromophenol marker was 2/3 to 3/4 down the 

gel). The plates were carefully separated leaving the gel on one plate. The gel was 

removed and overlaid with Whatmann 3mm paper covered with Saran wrap and dried.
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After 1 hour, the paper was removed and exposed overnight to X-ray film in a 

Phosphorimager cassette at -70 °C. The exposure time varied according to the 

experiment.

7% Gel for EMSA

30% Acrylam. /Bysacrylam (29:1) 10 ml 

lOxTBE 1.5ml

Glycerol 1% 0.6ml

ddHzO 21 ml

Temed 30|il

APS 10% 300pl

2.13 Super-shift assays for NFkB

For super-shift assays, the antibodies were added to the binding mixture and incubated 

on ice for 30 minutes before the probe was added (Bours et al. 1992). The antibodies 

used were c-Rel and Rel-B (Santa Cruz). A 7% polyacrylamide gel, prepared as 

described previously was used. After the samples were loaded onto the gel, 

electrophoresis was carried out for 4 hours at 100-1 lOV, at 4°C. The gel was dried as 

described before.

2.14 in vivo immunisation procedures

2.14.1 Mice

Six to eight week old mice were obtained from breeding colonies maintained under 

specific pathogen free conditions in the Division of Biological Services, NIMR.
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2.14.2 Infection of DC and immunisation procedures

DC were grown and infected with Mtb as described above (Sections 2.2 and 2.3); 

when irradiated Mtb was used, the bacterial suspensions were irradiated at 2.5 

megaRads. For the immunisations the DC were incubated overnight at 37°C and 

irradiated at 2.5 megaRads. Between 1 xlO^ and 4 x 10  ̂ cells were injected 

intraperitoneally in 0.5ml of IMDM.

2.14.3 Spleen cell and T cell preparations

Spleens were removed and placed in 15 ml of IMDM medium (Gibco-Life 

Technologies) in a 9 cm petri dishes (Nunc). The spleens were then carefully crushed 

through a nylon mesh using the tip of a sterile syringe plunger. The spleen cells 

suspensions were centrifuged at 7500rpm for 5 minutes, ressuspended in fresh medium 

and recentrifuged to wash the cells. After discarding the medium, 4 ml of Red Blood 

Cells Lysis buffer (Sigma) was added to the cells for 4 minutes. The pellet was then 

washed again and ressuspended in fresh medium. Irradiation of spleen cells was 

carried out by exposure to 3000 rads.

T cells were purified using T cell separation columns (R&D Systems) following the 

manufacturer’s instructions. Pooled T cells were then cultured in duplicate in 24 well- 

plates (Nunc) at a concentration of 3x10^ cells/ml per well in AIM V serum free 

medium (Gibco). These cells were cultured with irradiated spleen cells (3x10^ 

cells/ml) from male or female mice at 37° C. After 48 hours, the supernatants were 

collected and assayed for the presence of IFN-y and IL-2 by ELISA, as described in 

section 2.9.
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2.14.4 Mtb challenge assay

Immunised mice were infected intraperitoneally with approximately 10  ̂ viable Mtb. 

Six weeks later, lungs were removed and homogenised in 1ml of saline by shaking in a 

Bead Beater (Cambridge Scientific & Industrial Products) with 2.5mm glass beads for 

20 seconds. Serial ten-fold dilutions of the tissue homogenate were spotted onto 7H11 

Middlebrook (Difco Laboratories). Plates were incubated at 37°C for three weeks. The 

numbers of colonies were counted and colony-forming units (CPU) in the original cell 

tissue calculated.

2.14.5 Intracellular FACS staining

Cells were washed twice with PBS and, after blocking Fc receptors using anti-mouse 

CD16/CD32 (Pharmigen) for 15 minutes, stained for 20 minutes on ice with directly- 

conjugated surface antibodies: Phycoerythrin (PE)-conjugated anti-CD4+(clone GK 

1.5) and FITC-conjugated streptavidin (Pharmigen). The procedure used for sorting 

cells for flow cytometry was as described in section 2.10. Before permeabilization the 

cells were fixed as described before. Permeabilization of the cells to stain for 

intracellular cytokine was carried out by incubating the cells with permeabilization 

buffer for 20 minutes at 4°C, in the dark. After permeabilization the cells were washed 

twice and the Biotin-conjugated anti-IFNy (clone OR 20) antibody was added to the 

samples and incubated for another 30 minutes. The cells were washed again, 

ressuspended in 1ml of FACS reading buffer and acquisition was performed on a 

FACScan (Benton Dickinson, Mountain View, CA) using forward and side-scatter 

characteristics to exclude dead cells. Data were analysed using WinMDI (The Scripps 

Research Institute, CA).
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Permeabilization Buffer

- PBS (Ca and Mg free)

- PCS 1% heat-inactivated

- Sodium Azide 0.1% ( w/v)

- Saponin - 0.1% ( w/v)

(Buffer adjusted to pH 7.4-7.6 and filtered)

The protocol used to test DC activation after Mtb infection is illustrated in Fig. 2.2: 

Primary bone marrow-derived DC were generated from male C57/BL6 mice. The 

bmDC were activated after infection with Mtb in vitro (uninfected DC and LPS 

activated DC were used as controls). 5x10^ DC were transferred intra-peritoneally 

into naïve female MHC Class II knockout mice. The DC immunisation was repeated 

after an interval of 4 weeks and 4 weeks later T cells (3x10^) extracted from the 

spleens of the recipient mice were incubated with 3-5x10^ irradiated spleen cells from 

male or female mice with the same background as the recipients-C57/BL6. 

Supernatants were removed after 48 hours and assayed for LFNy and IL-2.

The protocol used to test the ability of Mtb infected DC to cross-prime T cells ( Fig. 

2.3) can be briefly described: immunologically normal C57/BL6 female mice were 

immunised intraperitoneally with DC from MHC Class II knockout female C57/BL6 

mice which had been infected in vitro with Mtb and subsequently irradiated, and with 

DC from immunologically normal C57/BL6 mice which had been infected and 

irradiated. The recipient mice received cells 3 times at 3-4 weeks intervals. T cells 

from these recipient mice were incubated with M/6-infected or uninfected bmDC 

obtained from C57/BL6 mice; after 48 hours, supernatants were assayed for IFNy. In 

addition CD4+ T cells were analysed for intracellular IFNy by FACS, following 6 

days of in vitro stimulation.
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Figure 2.2 Illustration of the experimental murine model protocol used to test dendritic 
cell activation after Mtb infection.
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Figure 2.3 Illustration of the experimental murine model protocol used 
to test the ability of infected dendritic cells to cross-prime T cells specific for Mtb
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chajiter 3

Uptake of Mtb by DC

3.1 Introduction

The primary target cell for Mtb following entry into the lung is the alveolar 

macrophage. However, the interactions between DC and infectious agents are known 

to be of importance in priming the acquired immune response. In recent years DC 

have been shown to be capable of internalising a wide range of bacteria and parasites, 

including Borrelia burgdorferi (Filgueira et a l, 1996), Bordetella bronchiseptica 

(Guzman et a l, 1994), Chlamydia (Igietseme et a l, 1998; Ojcius et a l, 1998), 

Salmonella (Marriott et a l, 1999) and Leishmania (Moll, 1993; Moll et a l, 1995). 

Both Mtb (Henderson et a l, 1997) and M.bovis BCG (Inaba et a l, 1993) have been 

shown to be taken up by DC. Thus DC, in addition to macrophages are now 

established as having a major role in phagocytosis of intracellular pathogens.

The fate of the infectious agent following phagocytosis by DC could be a key 

determinant in the presentation of antigen by DC to naïve T cells. However, there have 

been few studies describing the fate of bacteria or parasites inside DC.

Murine splenic DC were shown to take up Salmonella gordonii by phagocytosis, with 

the bacteria subsequently being found in a partially degraded form, within phagosomes 

(Rescigno et a l, 1998). Peripheral blood, monocyte-derived DC were found to contain 

phagosome-bound Mtb 48 hours after infection (Henderson et a l, 1997).

Murine DC isolated from bone marrow were shown to be capable of internalization of 

Chlamydia and the bacteria were observed to be present in vacuoles rapidly fusing 

with the cell lysosomes; furthermore the bacteria were killed by the DC by 24 hours
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after infection (Ojcius et a l, 1998). Listeria monocytogenes was found to invade DC 

but then escape from DC phagosomes into the cytoplasm (Guzman et a l, 1995).

In this study we used the immortalised tsDC cell line to investigate the fate of Mtb 

within dendritic cells. Firstly the ultrastructural changes and intracellular localization 

of Mtb were studied using electron microscopy. Secondly the effect on the viability of 

Mtb of phagocytosis by tsDC was investigated.

3.2 Ultrastructural changes in tsDC following uptake of Mtb

Approximately 10  ̂ tsDC were infected with Mtb at a ratio of 5 bacteria per DC. 

Ziehl-Neelsen staining confirmed that, 12 hours after infection, most of the DC had 

taken up Mtb. The fate of the phagocytosed Mtb and the ultrastructural changes 

occurring in the infected DC were monitored by electron microscopy.

By 12 hours the Mtb had been extensively internalised. The tsDC exhibited the typical 

DC morphology, with many cytoplasmic processes extending into the surrounding 

medium (Figure 3.1).
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Figure 3.1 Electron micrograph showing M//?-infected DC
X 12 500 magnification showing cell cylopiasmatic processes, 12 hr after infection.
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Figure 3.2 Electron micrograph showing M//>infected DC
X 16 500 magnification illustrating single Mtb  phagocytosis, 12 hr after infection.
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Figure 3.3 Electron micrograph showing M//?-infected DC
X 13 200 magnification of Mth  phagocytosis in small clumps, 12 hr after infection.
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It was possible to identify bacteria which were being phagocytosed, either singly 

(Figure 3.2) or in small clumps (Figure 3.3). Either individual or small groups of 

bacteria which had already been phagocytosed were evident at this stage. In some 

cases it was possible to see an intact phagosomal membrane, whereas in others this 

membrane was not visible and may have been degraded (Figure 3.4). At higher 

magnification (Figure 3.5) it was possible to see that some of these bacteria-containing 

vesicles contained extensive membrane-like material and were associated with 

abundantly active endoplasmic reticulum.

Similar structures were apparent at 24 hours (Figures 3.6-3.8), with some of the 

bacteria undergoing ultrastructural changes (Figure 3.7). The DC showed large nuclei 

and an abundance of ribosomes and mitochondria, indicating active protein synthesis. 

We also started to see the appearance of a number of pale irregular-shaped bodies with 

small electron-dense granules inside (Figures 3.8 and 3.9). At higher magnification, 

these bodies were surrounded by a layer of more dense granular material within an 

electron-transparent zone (Figure 3.11).

It was still possible to see bacterial phagocytosis occurring, even at 48 hours (Figures 

3.9 and 3.10), with an increasing accumulation of the pale bodies (Figure 3.11), and 

“empty” membrane-bound vesicles associated with the endoplasmic reticulum (Figure 

3.12). By 72 to 96 hours there was no evidence of necrosis of dendritic cells or any 

evidence of apoptosis, eg condensed nucleus, cell shrinking. Uninfected DC did not 

show any of these characteristics (Figure 3.13).
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Figure 3.4 Electron micrograph showing Mr/?-infected DC
X 12 500 magnification showing membrane-damaged bacilli in multi vesicular
phagocytic vacuoles, 12 hr after infection.
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Figure 3.5 Electron micrograph showing A///?-in fee ted DC
X 40 000 magnification showing multivesicular vacuoles associated with 
cndoplasmalic reticulum, 12 hr after infection.
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Figure 3.6 Electron micrograph showing M//>infected DC
X 50 000 magnification of membrane-bound phagosome containing Mth, surrounded
by cndoplasmatic reticulum, 24 hr after infection.
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Figure 3.7 Electron micrograph showing M/6-infected DC
X 40 000 magnification of Mth inside the phagosome illustrating bacterial-membrane
changes, 24 hr after infection.
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Figure 3.8 Electron micrograph showing M//?-infected DC
X 12 500 magnification of DC showing the appearance of pale irregular-shaped bodies
with small granules inside, 24 hr after infection.
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Figure 3.9 Electron micrograph showing M//?-infected DC
X 12 500 magnification of DC illustrating the pale bodies, the large nuclei and the
abundance of ribosomes and mitochondria, 24 hr after infection.
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Figure 3.10 Electron micrograph showing M//;-infected DC
X 40 000 magnification showing Mth phagocytosed, 48 hr after infection.
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Figure 3.11 Electron micrograph showing M/6-infected DC
X 50 000 magnification showing increasing accumulation of pale bodies surrounded 
by a layer of dense granular material within an electron-transparent zone, 48 hr after 
infection.
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Figure 3.12 Electron micrograph showing M//?-infected DC
X 40 000 magnification showing an empty membrane-bound vesicle associated with
the endoplasmatic reticulum, 48 hr after infection.
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Figure 3.13 Electron micrograph showing uninfecicd DC 
X 5 000 magnification of uninfected DC after 96 hours.
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3.3 Changes in Mtb viability following phagocytosis by DC

The electron microscopy studies described above suggested that Mtb might be killed 

or damaged by the DC. In order to investigate this, the viability of Mtb at time 

intervals up to 5 days after infection was investigated. For comparison, peritoneal 

macrophages were simultaneously infected. The infected cells (macrophages and DC) 

were lysed at 24, 48, 72, 96 and 120 hours, and viable counts of Mtb carried out.

The results (Figure 3.14) confirm that the DC, were at least as effective as 

macrophages in phagocytosing Mtb. However, whereas Mtb appeared to multiply in 

the macrophages, there was a small decline in numbers of viable Mtb recovered from 

the DC.

Both radical nitrogen intermediates (RNI) and radical oxygen intermediates (ROI) 

have been implicated in the intracellular control of Mtb infections (Forrest et a l, 

1988), (Hibbs et a l, 1988). Since RNI have been shown to have a particularly 

profound effect on the suppression of growth, or killing, of Mtb in macrophages (Chan 

et a l, 1992), we first investigated the production of nitric oxide (NO) by DC in 

response to Mtb infection. NO production was measured using the Griess reaction in 

Mtb infected and uninfected tsDC. As a positive control tsDC were also stimulated 

with rIFNy plus LPS. Aminoguanidine (AMG) was included as an inhibitor of RNI 

production.

Thus, NO was determined in the following conditions:

(i) tsDC (negative control)

(ii) tsDC, Mtb infected

(iii) tsDC, Mtb infected, AMG-treated

(iv) tsDC, plus LPS/rlFNy

(v) tsDC, plus LPS/rlFNy, AMG-treated.
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The results are shown in Figure 3.15.

By 7 hours, there was a significant increase in NO production in the tsDC treated with 

rlFNy/LPS; this was maintained throughout the 72 hours observation, and was 

completely inhibited by AMG. In the Mr6-infected cells, there was a transient increase 

in NO production at 48 hours; however, by 72 hours, NO levels had returned to 

baseline levels. All the values are the mean of triplicate determinations (± SD).

In order to investigate more directly the role of RNI in controlling Mtb grov^h in tsDC 

the effect of inhibiting RNI production on the viability of Mtb within tsDC was 

investigated. In the first experiment the iNOS inhibitor L-NAME and the arginase 

inhibitor L-Norvaline were included in the medium. The results (Figure 3.16) indicate 

that RNI play at least some role in controlling Mtb infection in tsDC in that the 

presence of the inhibitors resulted in an increase in the numbers of viable Mtb 

recovered five days after infection.

In a second experiment, the effect of the iNOS inhibitor L-NAME was compared with 

that of the ROI inhibitor TMB-8 (Figure 3.17). Again, L-NAME had a significant 

effect on the recovery of viable Mtb. However TMB-8 also had a similar effect, 

suggesting that both ROI and RNI play a role in controlling Mtb infection in tsDC.

(In both experiments, determinations were triplicates ± SD, Students t-test was applied 

to analyse the results, and values of p<0.01 were considered significant- represented in 

the Figures by *)
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counts from three separate well monolayers.
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3.4 Discussion

The main objective of these experiments was to carry out a preliminary investigation 

of the interaction between Mtb and DC, in order to establish the phagocytic capacity of 

the tsDC cell line, and to investigate how the cells handled the Mtb infection.

The tsDC were found to effectively phagocytose Mtb as assessed by electron 

microscopy, by conventional Ziehl-Neelsen staining and by lysing the cells and 

recovering viable Mtb. Although the intracellular localisation of the phagocytosed Mtb 

was not studied in depth, it was possible to draw a number of broad conclusions. 

Following phagocytosis, the Mr6-containing phagosomes appear to fuse to form large 

vesicles which usually contain several mycobacteria; these resemble the previously 

reported MIIC vesicles (Nijman et a l, 1995), which are part of the late endocytic 

pathway and are rich in MHC class II molecules (Nijman et a l, 1995). Time 

constraints meant that it was not possible to use fluorescence microscopy or 

immunoelectron microscopy to investigate the nature of these vesicles further. 

Similarly the nature of the pale bodies which accumulated in the cells during the 

course of the infection was not investigated. It is possible that these contained 

mycobacterial lipids, since Mr6-infected macrophages are known to contain large 

amounts of extrabacillary lipids (Berman et a l, 1996). Alternatively they could be 

similar to the previously reported exosomes (Zitvogel et a l, 1998) which express 

MHC molecules and are effective antigen-presenting vesicles.

Experiments aimed at investigating the ability of Mtb to replicate in tsDC indicated 

that, unlike peritoneal macrophages, tsDC were able to inhibit growth of the bacteria. 

However, the extent of any mycobacterial killing by the tsDC was very small, 

suggesting that, DC which phagocytose Mtb in tissue such as lung are likely to traffic
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to the lymph nodes while carrying live Mtb, hence enabling Mtb to gain access to the 

lymph node.

Activated murine macrophages have been shown to inhibit the growth of Mtb by the 

production of RNI (Chan et a l, 1992; Flesch and Kaufmann, 1991). Our preliminary 

experiments indicate that both RNI and ROI are involved in the inhibition of Mtb 

growth in tsDC. There are few studies investigating the ability of other bacteria and 

parasites to survive and /or grow within DC. However, while Salmonella (Marriott et 

a l, 1999) and Leishmania (Moll, 1993; Moll et a l, 1995) appear to survive within 

DC, Chlamydia are killed by a phagosome-lysosome fusion pathway (Ojcius et a l,

1998).

Time did not permit further investigation of the interaction between DC and Mtb. 

Future work of particular interest would be to investigate the nature of the Mtb- 

containing vesicles, and the pale, membrane bodies using immunoflurescence or 

immuno-electron microscopy, to try and identify the cellular origins of these 

organelles.
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Chapter 4
Results
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chaj/ter 4

Cytokine and surface molecule expression by Mtb infected DC

4.1 Introduction

In the previous chapter it was apparent that DC were capable of phagocytosing Mtb. In 

peripheral tissue DC are present in an immature state, unable to stimulate T cells and 

specialised in antigen-sensing or antigen-uptake. However, after an interaction with 

antigen or inflammatory products, DC develop a more mature phenotype in which 

they express higher surface levels of MHC Class II molecules and costimulatory 

molecules, and secrete increased levels of cytokines (Banchereau and Steinman, 1998; 

Guery et a l, 1996). It is in this mature, differentiated state that DC migrate to 

lymphoid tissue and there are able to prime specific T cells (Larsen et a l, 1990).

In addition to being efficient antigen presentation cells, DC are also involved in 

modulating the immune response, by controlling the development of THl or TH2-type 

responses following exposure to infectious agents (Sousa et a l, 1999). The production 

of IL-12 by DC as a rapid response to an intracellular parasite is thought to be a major 

determinant in establishing a THI response (Sousa et a l, 1997), and thus providing a 

link between the innate and the acquired immune response (Trinchieri and Gerosa, 

1996; Trinchieri, 1998). This is likely to be particularly important in mycobacterial 

infections where THl-type responses are important in protection against disease, 

although it is important to realise that other factors such as the type and amount of 

antigenic stimulation and the expression of costimulatory molecules are likely to be 

involved.

Previous studies (Henderson et a l, 1997) have shown that human dendritic cells 

phagocytose Mtb and differentiate towards a mature phenotype. This involves the
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secretion of both THl (IL-12, IL-1, TNF-a) and TH2 (XL-10, IL-6) cytokines, and up- 

regulated surface expression of MHC Class I and II, B7-1, CD40 and ICAM-1. Similar 

results have been reported for BCG-infected, primary murine DC (Demangel et a l,

1999). This ability of DC to produce both THl and TH2 cytokines in response to 

mycobacterial infection emphasises that the factors which influence the polarisation of 

the TH response may be complex.

The experiments described in this Chapter are aimed at investigating the maturation of 

the cell line tsDC following infection with Mtb, and comparing this to the responses 

seen in primary murine DC.

4.2 Cytokine production

4.2.1 The production of cytokines by tsDC following phagocytosis of Mth

The expression of TNF-a, IL-lp, IL-6, IL-10, IL-18 and IFN-y was monitored by RT- 

PCR using RNA isolated from tsDC 24 hours after infection with Mtb. The production 

of IFN-y, TNF-a, IL-6, IL-12 and IL-lp, was also monitored by ELISA at 12, 24 and 

48 hours after infection.

As shown in Figure 4.1, expression of IL-6, IL-12, TNF-a and IL-ip mRNA was 

upregulated following infection, whereas IL-18 (Figure 4.1), IL-10 and IFN-y 

(Figure 4.2) mRNA could not be detected either pre or post-infection. To confirm 

these results supernatants from Mtb infected tsDC were compared to supernatants 

from uninfected tsDC for the presence of cytokines. High levels of TNF-a and IL-6, 

and low levels of IL-1 P and IL-12 were detectable in the infected tsDC supernatants, 

significantly higher than levels seen in uninfected controls (Figure 4.3). There was no 

significant production of IFN-y (Figure 4.4).
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Figure 4.1 Infection of tsDC with Mth and cytokine expression.
RT-PCR analysis for the detection of IL-1 P, IL-6, TNF-a, IL-18, IL-12 and P-actin 
specific mRNAs after Mtb infection. RNA obtained from non-infected or from 24 hr 
infected tsDC was reverse transcribed and amplified with specific primers for these 
cytokines or p-actin as positive control.
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Figure 4.2 Infection of tsDC with Mth and cytokine expression.
RT-PCR analysis for the detection of IL-10, IFNy and P-actin specific mRNAs after 
Mth infection. RNA obtained from non-infected or from 24 hr infected tsDC was 
reverse transcribed and amplified with specific primers for these cytokines or p-actin 
as positive control.
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The cytokine concentrations of each group were expressed as geometric means of 

pg/ml ± SD. Student’s t-test was carried out to analyse statistical significance of the 

results; /7-values lower than 0.01 were considered to be significant -  represented in the 

Figures by *)

4.2.2 Production of cytokines by primary, bone marrow-derived DC 

following phagocytosis oïM tb

In order to compare the tsDC response to Mtb infection with that of primary DC, the 

cytokine production by bone marrow-derived DC following infection with Mtb was 

investigated, using protocols identical to those used for tsDC. In general the results 

obtained with the primary DC were similar to those obtained with the tsDC, except 

that the levels of cytokine production tended to be higher (Figure 4.5). Once more 

there was no evidence of IFN-y secretion (Figure 4.6), although there was significant 

production of IL-10 by the Mtb infected DC (Figure 4.7).

The cytokine concentrations of the groups, as previously, were expressed as geometric 

means of pg/ml ± SD. Student’s t-test was carried out to analyse statistical 

significance of the results; /7-values lower than 0.01 were considered to be significant- 

represented in the Figures by *.
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4.3 Changes in cell surface phenotype of tsDC infected with 

Mtb

Maturation of DC following exposure to antigen is accompanied with the increased 

expression of costimulatory molecules on the cell-surface. The surface expression of 

B7-1, B7-2, ICAM-1, heat stable antigen (HSA) and MHC Class II molecules was 

analysed by FACS on tsDC before and 48 hours after infection with Mtb. The results 

(Figure 4.8) show that MHC Class II, B7-1 and B7-2 were significantly up regulated 

following Mtb infection; there was a small upregulation of ICAM-1 but no increased 

expression of HSA.

4.4 Discussion

Immature DC are capable of sensing and taking up antigen. Following this they mature 

into antigen presenting cells, capable of migrating to T cell rich-areas of lymphoid 

tissue, presenting antigen to specific T cells and producing cytokines which can 

influence the differentiation of the T cells. In this Chapter we have investigated some 

of these changes using the tsDC cell line. The results on cytokine production are 

summarised in Table 4.1.
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Effect (protein) Effect (mRNA)

Cytokine tsDC primary DC tsDC primary DC

IL-12 T t t t t ND

IL-10 ND t t - ND

IL-6 t t t t t t t t ND

IL-18 ND ND - ND

TNF-a t t t t t t t t ND

IFN-y - - - ND

IL-ip t t t t t t t ND

Table 4.1 The production of cytokines (protein or mRNA) by tsDC or primary

DC following infection with Mtb. t , t t ,  t t t  indicates low, moderate

and strong upregulation, respectively. -Indicates no effect, ND indicates not done.
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The results confirm that phagocytosis of Mtb rapidly produces an induction of 

proinflammatory cytokines, consistent with a more mature phenotype.The results with 

the cell line tsDC were generally consistent with those of the primary DC, although 

the latter cells generally gave higher levels of cytokines and also produced IL-10. The 

latter could be due to contamination of the bone marrow-derived DC with 

macrophages and/or NK cells. However both human and murine DC have previously 

been shown to produce IL-10 in response to mycobacteria (Henderson et a l, 1997; 

Demangel et a l, 1999), suggesting that the cytokine milieu in which DC priming of T 

cells occurs may not result in a purely polar THl response.

The maturation of tsDC following phagocytosis of Mtb is further illustrated by the 

changes in cell surface phenotype. The upregulation of surface expression of MHC 

Class II molecules, along with the costimulatory molecules B7-1 and B7-2 is 

consistent with an increase in antigen presenting capacity. The very small increase in 

ICAM-1 expression is less than that reported for Mtb- stimulated primary human DC 

(Henderson et a l, 1997). Integrin and adhesion molecules such as ICAM-1 are 

involved in migration of cells and their interaction with vessel walls (Van de Stolpe 

and Van der Saag, 1996); it may be that regulation of such molecules is lost during 

prolonged in vitro culture, as has occurred with the tsDC cell line.

HSA showed no variance in its surface levels after Mtb infection; earlier recognised as 

a DC surface marker, H5A is known to participate in T lymphocyte stimulation 

(Williams et a l, 1996). It belongs to a sequestered pool of proteins that are exposed 

co-ordinately at the cell surface via a protein kinase signalling mechanism that detects 

phagocytic events (De Bruijn et a l, 1996). The invariability of HSA at the surface of 

Mtb infected tsDC, could also be explained by the prolonged in vitro culture of the
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cells, but the mechanisms underlying the action of this molecule are still poorly 

understood.

Overall however, the phenotypic changes seen in these experiments confirm that 

exposure to Mtb results in maturation of DC from an antigen detecting to an antigen 

presenting cell phenotype.



108

Chapter 5
Results
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chapter 5

NFkB activation analyses

5.1 Introduction

NFkB is a family of transcription factors with a pivotal role in inducing genes 

involved in physiological processes as well as in the response to injury and infection. 

NFkB exists in the cytoplasm of the majority of cells as homo or heterodimers of a 

family of structurally related proteins (Kopp and Ghosh, 1995). To date, five proteins 

belonging to the NFkB family have been identified in mammalian cells: p65, c-Rel, 

Rel-B, p50 and p52 (Miyamoto and Verma, 1995; Baldwin, 1996).

The translocation of NFkB to the nucleus requires the breakdown of the ligation with 

its inhibitor, IkB, which is achieved by phosphorylation by the enzyme Phospho-lKB- 

a . However in addition to phosphorylation, degradation of the IkB protein is required, 

otherwise the NFkB activation is blocked (Alkalay et a l, 1995). Nevertheless, during 

persistent NFkB activation, some NFkB remains sequestered in the cytoplasm but 

retains the ability to enter the nucleus and initiate transcription (May and Ghosh,

1998).

Thus the crucial events, which occur during NFkB activation, are:

( 1 ) Stimulation of the cell

(2) Phosphorylation of the IkB-œ

(3) Degradation of the protein IkB-œ

(4) Translocation of NFkB to the nucleus

Since the early ninety’s, activation and modulation of NFkB has been studied using 

different cell types, such as macrophages or DC, and different models of cell
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stimulation. For example using murine macrophage-like cell lines, lipoarabinomannan 

(LAM) derived from Mtb was found to activate NFkB and that this activation was 

partially modulated by TNF-a (Brown and Taffet, 1995). LPS has also been shown to 

activate NFkB in the human monocyte cell line THPl, with translocation of c-Rel, p50 

and p65 into the nucleus (Cordle et a l, 1993). Recently, some of the receptors 

involved in recognition of molecules such as LAM and LPS, and signalling NFkB 

activation have been identified as “pattem-recognition” receptors such as Toll-like 

receptors (TLR) (Yang et a l,  1999). These receptors are able to recognise a wide 

range of molecules associated with prokaryotic pathogens (for example TLR9 

recognises CpG DNA motifs found in bacteria (Sester et a l, 1999; Bowie and O'Neill, 

2000), emphasising the importance of NFkB activation in innate immunity.

Cytokines and chemokines are also involved in both the signalling of NFkB activation 

and in the consequent transcription activation response. Thus IL-12, IL-ip and TNF-a 

are capable of stimulating NFkB activation through their various receptors, and are up- 

regulated by the transcription activity of NFkB (reviewed by Baeuerle and Henkel, 

1994; Gerondakis et a l, 1998). Thus, in addition to their role in innate immunity, 

members of the NFkB family also have important roles in the adaptive immune 

system by, for example, mediating lymphocyte activation and cytokine production, 

immunoglobulin isotype switching and upregulation of cytokine receptor expression. 

Other cellular processes, in addition to stimulation of cells of the immune system, are 

also regulated by NFkB. These include cell cycle regulation, apoptosis and cell 

adhesion processes. For example NFkB mediates expression of Bcl-X, a gene 

involved in apoptosis (Kuhnel et a l, 2000; Chen et a l, 2000), and differential 

expression of NFkB during mononuclear phagocyte differentiation may play an
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important role in determining the fate of immature mononuclear phagocytes (Ammon 

et a l, 2000). Thus the NFkB superfamily of signal transducers and transcription 

factors plays a central role in the rapid innate immune response, the adaptive, acquired 

immune response and in the differentiation and expansion of the cells of the immune 

system.

The results presented in Chapters 3 and 4, indicating that DC were rapidly activated by 

contact with Mtb, suggested that NFkB activation played a key role in the response of 

DC to mycobacteria. In this chapter the kinetics and molecular modulation of NFkB 

activation in this system have been studied.

5.2 Phosphorylation and degradation of IkB

Approximately 3x10^ cells, tsDC were infected with Mtb at a ratio of 5 bacteria per 

cell. One group of cells remained uninfected (controls). Cells were collected at various 

time intervals after infection and cytoplasmic extracts were tested, by immunoblotting, 

for the presence of the enzyme Phospho-lKB-a.

The enzyme (43 Kda) could be detected in uninfected cells. However, as early as 5 

minutes after infection there was a marked upregulation of Phospho IxB-a (Figure 

5.1) suggesting that phosphorylation of IxB-a was occurring.

Concurrently, immunoblotting to detect degradation of IkB-œ was carried out. The 

degradation of the protein iKB-a (37 Kda) was detectable after 10 minutes of infection 

( Figure 5.2). Thus this rapid up-regulation of Phospho-lKB and the degradation of IkB 

indicates that NFkB activation is rapidly induced in DC exposed to mycobacteria.
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5.3 Kinetics and modulation of NFkB activation

5.3.1 NFkB activation

Approximately 3x10^ tsDC were infected with Mtb at a ratio of 5 bacteria per cell. 

One group of cells remained uninfected (controls). Nuclear extracts from these cells 

were collected at various time intervals following infection, and were used in EMSA 

assays to detect nuclear translocation of NFkB.

By 20 minutes after Mtb infection there was a clear increase in the binding activity 

that peaked at 30 minutes post-infection. The binding activity appeared to have 

declined by 1 hour post-infection; there was no increase in the binding activity in the 

nuclear extracts from the uninfected cells (Figure 5.3). Three distinct bands could be 

seen. Two of them (1 and 2) were difficult to detect in uninfected cell extracts. The 

third band (3) was present in all extracts, but increased in the infected cells between 

the 20 and 30 minutes.

This experiment confirmed the translocation of NFkB to the nucleus after Mtb- 

infection, thus indicating cell activation.
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Figure 5.1 Immunoblot to detect expression of the enzyme 
phospho-IkB-a in tsDC uninfected controls (U) and 
in tsDCinfected with Mth (5,10,15 and 20 minutes).
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Figure 5.2 Immunoblot to detect the degradation of the protein 
IkB-a in tsDC uninfected controls (U) and isDC-Mth infected 
(5-30 minutes); *_ represents the starting point of degradation.
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Kinetics of NFkB Activation after 
Mtb infection of the tsDC
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Figure 5.3 EMSA illustrating the binding activity of NFkB from 5 minutes 
to 1 hour post-Mtb infection. U=uninfected control cells

Effect of Anti-TNFa in the NFkB Activation 
of Mtb infected tsDC
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Figure 5.4 EMSA illustrating the binding activity of NFkB 
in the presence of the antibody anti-TNFa.U= Uninfected control cells; 
-anti-TNF-a= medium without the TNF-a blocking antibody.
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5.3.2 TNF-g regulation

Since TNF-a was observed to be rapidly produced following activation of DC by Mtb 

(Chapter 4) it was possible that it was responsible for NFkB activation. To test this an 

anti-TNF-a antibody was used to block TNF-a -mediated activation of NFkB.

Using a protocol similar to the previous experiment tsDC were infected with Mtb in 

the presence or absence of anti-TNF-a antibody at a concentration (1.2p,g/ml) 

previously shown to block TNF-a activity. Control groups consisted of uninfected 

tsDC, and infected tsDC without anti-TNF-a antibody.

The results shovm in Figure 5.4 indicate that the binding activity of the nuclear 

extracts was unaffected by the presence of the blocking antibody (lanes 3,4,5 and 6), 

indicating that production of TNF-a was not contributing significantly to NFkB 

activation.

5.3.3 Phagocytosis of Mtb is not required for NFkB activation

The results presented in Figures 5.1-5.3 indicate that the initial stages of NFkB 

activation were detectable as early as 5 minutes following the addition of Mtb to the 

DC cultures. This suggests that phagocytosis of Mtb is not necessary for initiation of 

activation. In order to address this an inhibitor of phagocytosis, colchicine, was used. 

Colchicine inhibits intracellular polymerisation of tubulin, and prevents phagocytosis 

of Mtb (Bermudez and Goodman, 1996).

In a preliminary experiment 10 pM of colchicine was added to the tsDC cultures 30 

minutes prior to infection. After 12 hours the percentage of cells which had 

phagocytosed Mtb was determined microscopically. The results (Figure 5.5) show that
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in the absence of colchicine, approximately 80% of the cells contained bacteria; the 

presence of colchicine in the medium reduced this to 10%.

The effect of inhibition of phagocytosis by colchicine on NTkB activation was then 

studied. In the absence of Mth, the presence of colchicine in the medium had no effect 

on NFkB activation as assayed by EMSA (Figure 5.6). As previously, Mtb infection 

induced NFkB activation as early as 15 minutes after infection, and this was 

unaffected by the presence of colchicine in the medium. Thus it appears that 

phagocytosis of Mtb is not required for activation of NFkB in DC.
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5.3.4 c-Rel and Bcl-X expression in bone marrow-derived DC 

(bmPC) and macrophages

The electron microscopy experiments described in Chapter 3 failed to reveal any 

evidence of apoptosis in Mtb infected DC. Subsequent experiments revealed that the 

fate of Mtb in DC was different from the fate in macrophages (see section 3.3). Since 

the anti-apoptotic protein Bcl-X is known to be under the control of NFkB /c-Rel 

activity (Chen et a l, 2000), the involvement of c-Rel and Rel B was compared in 

bmDC and bone marrow macrophages following infection with Mtb. Supershift 

experiments on bmDC and macrophages, infected or uninfected by Mtb, were carried 

out using antibodies which recognise c-Rel and Rel-B. The results are shown in 

Figure 5.7.

The expression of c-Rel could be seen in both the Afrô-infected DC and in the 

macrophages using the supershift assay. In order to estimate the relative amounts of c- 

Rel, immunoblotting was carried out, first to compare Afrè-infected and uninfected 

bmDC (Figure 5.8a), and then to compare uninfected DC with macrophages (Figure 

5.8b). The results demonstrated that c-Rel was present in both M/ô-infected and 

uninfected bmDC, at approximately equivalent levels. c-Rel could also be detected in 

uninfected bone marrow macrophages but appeared to be present at significantly lower 

levels than in bmDC (Figure 5.8b). The apparent difference in c-Rel expression in 

macrophages and DC suggested that the expression of proteins which are critical 

checkpoints of apoptosis, Bcl-2 and Bcl-xL, might differ. Bcl-2 expression was readily 

detectable in the mouse myeloblast cell-line M l, but could not be detected in Mtb 

infected DC or macrophages (Figure 5.8c). The anti-apoptotic protein Bcl-xL could be 

seen expressed at very low levels in both DC and macrophages (in this case, Hela cells 

were used as controls; Figure 5.8d). Thus, in spite of the apparent increased expression
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of C-Rel in bmDC, there was no concomitant increased expression of Bcl-xL, and 

hence no evidence for a shift towards an anti-apoptotic phenotype in the Aft6-infected 

DC.
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5.5 Discussion

In this chapter the role of the transcription factor NFkB in the activation of DC by Mtb 

was investigated. The activation of the phosphorylating enzyme Phospho IkE-œ and 

the degradation of IkB in the cytoplasm were detectable as early as 5-10 minutes 

following addition of Mtb to DC. Translocation of NFkB to the nucleus was 

detectable by 20 minutes. Thus activation of the NFkB signalling pathway was 

extremely rapid. This activation did not require TNF-a production and was 

independent of phagocytosis of Mtb. At the start of these experiments these results 

were extremely surprising. However over the last 2 to 3 years the role of pattern 

recognition receptors such as TLRs in detecting the presence of bacterial molecules 

and signalling an inflammatory response through the NFkB pathway (Yang et a l,

1999) has emerged. It would be of interest to block receptors known to be involved in 

Mtb recognition and uptake (TLR, Fc, complement and mannose receptors) and 

investigate the effect on the NFkB activation pathway.

The c-Rel protein was found to be expressed in both macrophages and DC. However, 

there was no difference in the expression of the apoptosis marker proteins Bcl-2 and 

Bcl-xL, nor there was increased expression of Bcl-xL in Mr6-infected DC. These 

results are consistent with a model in which NFkB could act in conjugation with other 

transcription factors to control the expression of Bcl-xL depending on the cell type and 

/or activating stimuli (Kuhnel et a l, 2000).

Overall the immunological modifications observed in chapter 4 were confirmed at the 

molecular level by these results, which also indicated that detection of Mtb and 

signalling for cytokine gene transcription occurs following surface contact between 

Mtb and DC.
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Chapter 6
Results
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chunter 6

Priming of T cell responses in vivo by Mtb infected DC and the 

induction of protective immunity

6.1 Introduction

Over the past decade there has been considerable interest in producing DC-based 

vaccines for immune prophylaxis or immunotherapy against tumours (Dhodapkar and 

Bhardwaj, 2000) or infectious diseases like influenza, malaria or HIV (Guy et al., 

2001; Naik et a l, 2000; Granelli-Pipemo et a l, 2000). The ability of antigen-pulsed 

DC to prime protective immune responses in a weakly immunogenic syngeneic 

tumour model system (Celluzzi et a l, 1996) has emphasised the potential of this 

approach.

Studies using murine models of tuberculosis have demonstrated a role for both MHC 

Class Il-restricted, CD4+ T cell responses and MHC Class I-restricted, CD8+ T cell 

responses. For example mice which lack p2-microglobulin, and hence lack CD8+ T 

cell responses are more susceptible to infection with Mtb than wild-type mice (Flynn 

et a l, 1992). Similarly, MHC Class II knockout mice, which lack CD4+ T cells are 

also more susceptible to Mtb infection (Tascon et a l, 1998).

Reconstitution of athymic mice with either CD4+ or CD8+ T cells, or a combination 

of both, revealed that both subsets are able to confer similar levels of protection; in 

addition, this protection was only conferred by T cells which were capable of 

producing IFNy (Tascon et a l, 1998). This would suggest that, early during the 

experimental infection of mice, at least in this model system, CD8+ T cells contribute 

to protective immunity by producing effector cytokines rather than by cytotoxic 

mechanisms. Other studies have indicated that CD8-mediated cytotoxicity might be
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important in the later stages of infection (Laochumroonvorapong et a l, 1997; Cooper 

et a l, 1997; Sousa et a l, 1999), whereas IFNy production is important in the earlier 

stages (Kaplan, 1994; Feng et a l, 1999; Tascon et a l, 1998). In any event, 

immunisation, which stimulates both specific CD4+ and CD8+ T cell responses, 

would appear to be optimal for effective protection against Mtb and antigen-pulsed 

DC have been shown to be effective in stimulating both CD8+ and CD4+ T cell 

responses (Wong et a l, 1998).

A number of studies have shown that DC, but not macrophages can efficiently 

phagocytose apoptotic antigen presenting cells and cross-present viral, tumor, and self­

antigens to CD8+ T cells (Albert et a l, 1998a; Albert et a l, 1998b; Inaba et a l, 1998). 

This in vitro pathway corresponds to the in vivo phenomena of cross-priming and 

cross-tolerance (Albert et a l, 1998b). Thus, DC can use unique pathways for the 

phagocytosis, processing, and presentation of antigen derived from apoptotic cells and 

this mechanism enables antigen presentation in association with Class I and Class II 

MHC molecules. The trafficking of exogenous antigen by immature DC in this cross­

priming pathway is poorly understood, but presentation to T cells via this pathway is 

remarkably efficient (Kurts et a l, 1998; Kurts et a l, 1997). MHC Class I -  restricted 

cross priming of CD8+ T cells is thought to be dependent on CD4+ helper T cells 

(Bennett et a l, 1997).

Cross-presentation of antigens and CD8+ T cell priming has been demonstrated in 

tumour models (Robinson et a l, 1999; Nouri-Shirazi et a l, 2000) and in immunity to 

the infectious agent Listeria monocytogenes (Tvinnereim and Harty, 2000).

In the experiments described in this chapter the activation and cross-priming of naïve 

T cells by activated DC was studied. The cross-presentation of mycobacterial antigens 

to T cells by DC was also studied. Furthermore, the ability of Mfè-activated DC to
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confer protective immunity against challenge with viable Mtb was evaluated, and 

compared to the protective immunity conferred by the current vaccine, BCG.

6.2 Priming of T cell responses in vivo by Mtb infected DC

6.2.1 Functional activation of DC in response to Mtb infection

In previous experiments (see chapter 4) we have shown that infection of DC with Mtb 

in vitro results in the activation of DC to produce cytokines and up-regulate the cell- 

surface expression of accessory molecules, including MHC Class II. We now wished 

to demonstrate that such activation in vitro results in functional activation of DC and 

priming of T cell responses.

Primary bone marrow-derived DC were generated from male C57/BL6 mice. The 

bmDC were activated after infection with Mtb in vitro (uninfected DC and LPS 

activated DC were used as controls). 5x10^ DC were transferred intra-peritoneally into 

naïve female MHC Class II knockout mice. The DC immunisation was repeated after 

an interval of 4 weeks and 4 weeks later T cells (3x10^) extracted from the spleens of 

the recipient mice were incubated with 3-5x10"  ̂ irradiated spleen cells from male or 

female mice with the same background as the recipients-C57/BL6 (Figure 6.1). 

Supernatants were removed after 48 hours and assayed for IFNy and IL-2.

By using male Mtb activated DC as donor cells and female mice as recipients we were 

able to test the ability of Afr6-activated DC to prime immune responses to an 

unrelated, endogenous antigen, the male antigen (Chen and Silvers, 1991; Desquenne- 

Clark et a l, 1992). By using MHC Class II knockout mice as recipients, it was 

possible to detect if the priming of MHC Class I-restricted CD8+ T cells had occurred 

in the absence of CD4+ T cell help, since the recipient mice lack CD4+ T cells. The 

results are shown in Figure 6.2.
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T cells from MHC Class II knockout, female mice, which had received male Mtb- 

activated DC and which were then stimulated in vitro with male irradiated spleen cells 

produced high levels of IFNy and IL-2 while T cells from mice which received 

uninfected DC did not respond to male or female spleen cells. Mice which received 

LPS-activated DC also produced IFNy and IL-2 in response to male, but not female, 

irradiated spleen cells. However the LPS-activated DC were not as effective as Mtb- 

infected DC at priming T cell responses to male antigen in MHC Class II knockout 

female mice. This experiment demonstrates that Afr6-infected DC are functionally 

activated and capable of priming T cells in vivo. It also suggests that Mr6-infected DC 

could prime MHC Class I restricted T cells.
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6.2.2 Cross priming of T cell responses specific for Mtb

To study the ability of DC to cross-prime T cell responses to mycobacterial antigens, 

immunologically normal C57/BL6 female mice were immunised intraperitoneally with 

DC from MHC Class II knockout female C57/BL6 mice which had been infected in 

vitro with Mtb and subsequently irradiated, and with DC from immunologically 

normal C57/BL6 mice which had been infected and irradiated (see Figure 6.3). The 

recipient mice received cells 3 times at 3-4 weeks intervals. T cells from these 

recipient mice were incubated with bmDC M/è-infected or uninfected obtained from 

C57/BL6 mice; After 48 hours, supernatants were assayed for IFNy. In addition CD4+ 

T cells were analysed for intracellular IFNy by FACS, following 6 days of in vitro 

stimulation. The results for IFNy production in supernatants are shown in Figure 6.4. 

Cells cultured with uninfected DC did not produce IFNy, irrespective of whether the 

mice had received infected or uninfected DC; however cells cultured with Mtb- 

infected DC produced IFNy if mice had received Mf^-activated DC in vivo. This was 

true if the donor DC were derived from normal mice or from MHC Class II knockout 

mice. FACS analysis for intracellular IFNy was consistent with the results for IFNy in 

the supernatants; for mice receiving DC from immunologically normal mice the 

frequency of IFNy-producing CD4+ T cells in mice receiving M^6-infected DC was 

approximately 5.0% compared with 2.3% if uninfected DC were used (Figure 6.5a). 

For mice receiving DC from MHC Class II knockout mice, the frequency of IFNy- 

producing CD4+ T cells in mice receiving Afrô-infected DC was approximately 4.0% 

compared to 0.5% if uninfected DC were used (Figure 6.5b).

This experiment demonstrates that transfer of Mf^-activated DC could prime Mtb- 

specific CD4+ T cell responses in recipient mice. The fact that MHC Class II 

knockout DC were capable of effectively inducing Mtb specific CD4+ T cell responses
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suggests that antigen presenting cells in the recipient mice had acquired antigen from 

the donor DC and that cross-presentation had occurred, since the donor DC would 

have been incapable of stimulating CD4+ T cells.
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6.3 Protective immune responses conferred by MtA-activated 

DC

(NB These experiments were carried out in collaboration with Mr. Evangelos 

Stavropoulos and Dr. M.J. Colston, who carried out the challenge infection).

The previous experiments had demonstrated that the transfer of Mr6-activated DC into 

recipient mice was capable of priming T cell responses in the recipient mice. The 

experiments also indicated that cross-presentation and cross-priming had occurred. We 

now wished to investigate whether we could successfully transfer immunity capable of 

protecting mice against an infectious challenge.

In the first experiment, tsDC were used to confer immunity; in the second experiment 

bmDC were used (see Figure 6.6).

In the first experiment CBA mice received:

i) uninfected tsDC (DC controls),

ii) a single intraperitoneal injection of 1-4x10^ Mtb infected tsDC which had

been irradiated prior to injection,

iii) two intraperitoneal injections of 1-4x10^ Mf6-infected tsDC which had

been irradiated,

iv) irradiated Mtb (TB IRR),

v) a single intradermal injection of BCG given 6 weeks before challenge.

The mice were challenged intravenously with viable Mtb, and lungs were removed six 

weeks later, homogenised and CPU counts performed. The results are shown in Figure 

6.1 A.
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Counts in naïve mice, DC control mice and mice immunised with irradiated Mtb (TB 

IRR) all showed essentially identical results. There was a small but significant 

protective effect seen in the BCG immunised group and in the group immunised with 

two injections of Mf6-infected DC. The latter group showed significantly better 

protection than the BCG vaccinated group.

In the second experiment C57/BL6 mice received:

i) three intraperitoneal injections of uninfected bmDC (BMDC controls),

ii) three intraperitoneal injections of 1-4x10^ Mf6-infected bmDC,

iii) three intraperitoneal injections of irradiated Mtb (TB IRR),

iv) a single intradermal injection of BCG given 12 weeks before challenge

The mice were challenged intravenously with Mtb and the lungs removed six weeks 

later, homogenised and CPU counts performed. The results are shown in Figure 6.7 B. 

Once again, no protection was seen in mice given irradiated Mtb or uninfected bmDC 

(TB IRR and bmDC controls). Mtb infected bmDC and BCG gave significant levels of 

protection.
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Figure 6.6 Illustration of the experimental murine model protocols used to test 
the protective immune response againt Mtb using tsDC (CBA mice) and 
bmDC (C57/BL6 mice).
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6.4 Discussion

The experiments described here demonstrated that the infection of DC with Mtb is 

sufficient to induce activation of DC and as a consequence of this activation the cells 

acquire the ability to prime CD8+ T cell responses in vivo. The model system that was 

used requires some comment: first the male antigen used had no known cross­

reactivity with environmental antigens (Keene and Forman, 1982). Secondly, CD8+ T 

cells that recognize the H-Y male antigen are usually helper-dependent (Guerder and 

Matzinger, 1992) and finally, responses can be easily distinguished because T cells 

from normal naïve female mice respond in vitro, only if they were first primed in vivo 

with APC (Fuchs and Matzinger, 1992).

Mtb activation of DC resulted in efficient priming of T cells specific for Mtb; this 

priming of T cells was demonstrated using DC derived from MHC Class II knockout 

mice, suggesting that cross-presentation and priming had occurred. Further 

experiments analysing the molecular basis for the effective induction of activation of 

DC in response to Mtb infection may help in future vaccine design.

In the experiments addressing the cross-presentation in vivo using bmDC derived from 

Class II KO mice effective priming of CD4+ T cells was demonstrated. However 

effective cross priming of CD8+ T cells needs to be investigated to complement our 

studies; in addition the phenotype of the cross-presenting DC cells, in this model, 

needs to be studied further.

Our results demonstrated that M/^-activated DC could not only prime immune 

responses in vivo, but could also confer protective immune responses against a live 

infectious challenge with Mtb in mice. BCG-activated DC transferred to the lungs of 

mice which are subsequently infected with Mtb by the aerosol route, have also been 

shown to confer protection (Demangel et a l, 1999). In our experiments, two or three
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immunisations with Mif6-activated DC were more effective than a single injection; the 

immunological basis for this is unknown.

Overall, these in vivo experiments confirm the in vitro results presented in Chapters 4- 

6, and support the development of antimycobacterial vaccine strategies which target 

DC in vivo.
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Chapter 7 
General discussion
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chapter  7

General Discussion

Although DC are recognised to be the most important cells involved in antigen 

presentation, their role in priming T cells against mycobacterial antigens, and how this 

influences the subsequent course of infection is not understood in any detail. The 

overall aim of this study was to investigate several aspects of the interaction of DC 

with the human pathogen Mtb, with a view to establishing model systems which would 

assist future studies in this area.

The initial experiments were aimed at establishing the intracellular fate of Mtb which 

had been phagocytosed by DC. Although no attempt was made to carry out a detailed 

ultrastructural analysis of the various molecules involved in uptake and intracellular 

processing of Mtb, the electron microscopy studies described in Chapter 3 illustrate 

that the model would be an ideal experimental system for such analysis. The process 

of phagocytosis was clearly evident, with bacilli being taken up both individually and 

in small clumps. The phagocytic capacity of the tsDC used was at least equivalent to 

that seen with macrophages. Following phagocytosis, the bacteria were seen in large 

cytoplasmic vesicles, possibly representing a retention compartment for antigen 

processing and loading of MHC Class II molecules, as observed previously by DC in 

lymphoid organs (Kleijmeer et a l, 1995). A detailed examination of these vesicles 

using intracellular staining techniques, confocal microscopy, immunoelectron 

microscopy etc would provide an ideal system for investigating antigen processing of 

Mtb in more detail. There was no evidence of apoptotic cell death of Mf6-infected DC, 

at least by ultrastructural criteria, and the DC appeared to be able to inhibit growth of
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Mtb more effectively than peritoneal macrophages. The results presented in Chapter 3 

(section 3.3) suggest that the mechanism involved in this was multifactorial involving 

the production of ROI and RNI. Recent studies (Gonzalez-Juarrero and Orme, 2001; 

Bodnar et a l, 2001), using primary DC showed that Mtb was capable of intracellular 

multiplication; this may indicate that DC, like macrophages, can exhibit different 

levels of antimycobacterial activation.

Following exposure to Mtb, DC rapidly produced cytokines, mostly proinflammatory 

cytokines (Chapter 4), which reflects changes seen in vivo at the site of granuloma 

formation (Robinson et a l, 1994). This rapid cytokine response probably plays a role 

in providing the appropriate local milieu for cell recruitment and differentiation. Thus, 

the production of IL-12 has a key role in Mtb infection as a regulatory cytokine which 

drives the production of IFNy-producing Thl cells and promotes cell-mediated 

immunity (Gazzinelli et a l, 1993), reviewed by (Trinchieri and Gerosa, 1996). In the 

experiments described in Chapter 4, cytokine production tended to be higher in Mtb 

infected bmDC than in tsDC, possibly reflecting regulatory changes and other factors 

such as accumulation of necrotic cells in the long-term cultured cells. The observation 

that M/6-infected bmDC cultures produced small but significant levels of IL-10, 

emphasises that there is a cytokine balance which might shift in vivo; IL-10 decreases 

IL-12 production and promotes a shift towards a Th2 response (Fiorentino et a l,  1991; 

D'Andrea et a l, 1993). It was not clear, from the experiments presented here, whether 

the IL-10 was produced by bmDC or by contaminating cells such as macrophages or 

NK cells. Purification of the DC by cell sorting might help to resolve this.

The differentiation of DC, following exposure to Mtb, towards an APC phenotype is 

underlined by the upregulation of costimulatory molecules and MHC Class II 

expression at the cell surface. This would represent an in vivo DC which had acquired
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antigen in the periphery and migrated to lymphoid tissue for T cell contact. It is 

notable that the upregulation of MHC Class II seen in our experiments was weak, a 

point which has also been reported for primary DC stimulated with Mtb (Gonzalez- 

Juarrero and Orme, 2001; Bodnar et a l, 2001). Whether DC-stimulation by Mtb is 

suboptimal is not clear at the moment, but is currently being investigated as it could 

represent a mechanism by which Mtb limits the induction of an optimal protective 

response.

The ultrastructural and immunological changes in Mf^-infected DC reported in 

Chapters 3 and 4 are further supported by the demonstration of the activation of the 

signalling cascade resulting in NFkB activation reported in Chapter 5. The rapidity 

with which it was possible to detect phosphorylation and degradation of the inhibitory 

protein IxB-a (5 minutes) and the subsequent nuclear translocation of NFkB (20 

minutes), was at first surprising and suggested that it was initiated by cell surface 

contact rather than by an intracellular event following phagocytosis. Some studies 

have suggested that phagocytosis is required for NFkB activation in Shigella and 

Listeria infections (Dyer et a l,  1993; Hauf et a l, 1994). The use of the phagocytosis 

inhibitor colchicine confirmed that NFkB activation was not dependent on 

phagocytosis, supporting earlier studies with Mycobacterium avium (Giri et a l, 1998). 

The signal for activation is probably by receptors such as TLRs; however 

communication between DC, and a role for DC:DC contact may also be involved.

The role of NFkB activation in pro- or anti apoptotic development is poorly 

understood. The expression of c-Rel is thought to play a role in driving an anti- 

apoptotic response in several types of cells (Chen et a l, 2000). We observed increased 

expression of c-Rel in bmDC compared to macrophages, but were unable to establish a 

relationship with Bcl-2 expression.
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The molecular activation of DC following exposure to Mtb was shown to result in 

functional activation, with Mtb activated DC being able to prime T cell responses to an 

unrelated antigen, following transfer into syngeneic mice (Chapter 6). Previous studies 

have shown that antigen-pulsed DC are able to activate T cells (Celluzzi et a l, 1996). 

Our results suggest that such priming could take place in the absence of T cell help, as 

suggested previously (Rock et a l, 1990). Our results also suggested that there was 

cross priming of CD8+ T cells as described previously (Bennett et a l,  1997).

The most important finding with regard to the functional activation of DC by Mtb 

arose from the experiments investigating protective immune responses against 

challenge with live Mtb. A single transfer of Mfè-activated DC resulted in small, but 

significant levels of protection, while two or more transfers resulted in protection 

which was significantly greater than that seen with BCG. Most attempts to achieve 

protection that is greater than that seen with BCG in small rodent models have failed 

to do so. This approach now provides us with an opportunity to dissect the 

immunological requirements for a protective immune response which is greater than 

that seen in BCG. For example, is it simply a quantitative effect, generating more 

effector cells? Or is there a qualitative difference between the response generated by 

M/6-activated DC and that generated with BCG? The use of newly evolving 

techniques such as the analysis of global gene expression, or ELISPOT techniques to 

quantify responses can now be used to address these questions. By understanding the 

immunological consequences of DC-generated protection, it is possible that new 

strategies which target DC activation in vivo, could be developed into new therapeutic 

and prophylactic approaches to TB.
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The results described in this work demonstrated that the infection of DC with Mtb is 

sufficient to functionally switch an immature DC into an antigen presenting DC 

capable of activating naïve T cells. This T cell activation resulted in the generation of 

significant levels of protective immunity against challenge with viable Mtb in mice 

(published work: Tascon, Soares, Ragno, Stavropoulos, Hirst and Colston. 

Immunology, 2000, 99, 473-480).

Other groups have used similar models to investigate interactions between Mtb and 

murine DC in vitro. For the most part, results are similar to those reported here, in that 

similar changes in the expression of cytokines, accessory molecules and MHC Class 

II molecules were reported ( Bodnar et al., 2001). One significant difference between 

our findings and those of Bodnar et al involves the ability of DC to restrict growth of 

Mtb following phagocytosis. In Chapter 3 we report that the number of viable Mtb 

which could be recovered from tsDC declined with time, whereas an identical 

infection of peritoneal macrophages was followed by an increase in recoverable Mtb 

(Fig. 3.14). In contrast, Bodnar et al (2001) found that Mtb grew similarly in bmDC 

and in macrophages. There are a number of possible explanations for this:

- In our experiments we used a DC cell line (tsDC) and peritoneal macrophages, 

whereas Bodnar et al used primary bmDC and bone marrow derived macrophages 

from C57BL/6 mice.

- The cells used by Bodnar et al appeared to have a reduced ability to phagocytose 

Mtb compared to those used in this study.

- The multiplicity o f infection (MOI) and the time scale used to assess the viability 

of Mtb within the cells differed between the two studies.

In repeated experiments we were able to detect a small, transient production of NO 

following infection of DC with Mtb opposite to higher amounts of NO produced by
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Mtb infected macrophages seen in previous works; we were also able to detect a 

rapid, transient up-regulation of iNOS expression using RT-PCR (data not shown). 

This suggests that, at least in the tsDC model system that we used, the control of 

bacterial replication may differ from that seen in macrophages.

The experiments describing the priming of CD8+ T cells responses by M/6-infected 

DC in the absence of classical CD4+ T cell help (Chapter 6), are novel and 

demonstrate for the first time that infected DC are able to directly prime CD 8+ T 

cells. The mechanisms involved in this are the subject of current investigation within 

the laboratory. The levels of protective immunity generated by immunisation with 

Mr6-infected DC were surprisingly high, and could be significantly greater than those 

seen with BCG immunisation. In most experimental systems it has been difficult to 

demonstrate immunity greater than that seen with BCG and hence we feel that further 

exploration of the mechanisms involved should provide important information for the 

development of antimycobacterial vaccines.
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