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Abstract

Economic and environmental pressures have led to a demand for reduced chemical use in crop 

production. In response to precision agriculture techniques have been developed that aim 

to increase the efficiency of farming operations by more targeted application of chemical treat­

ment. The concept of plant scale husbandry (PSH) has emerged as the logical extreme of preci­

sion techniques, where crop and weed plants are treated on an individual basis. To investigate 

the feasibility of PSH, an autonomous horticultural vehicle has been developed at the Silsoe Re­

search Institute.

This thesis describes the development of computer vision algorithms for the experimental 

vehicle which aim to aid navigation in the field and also allow differential treatment of crop 

and weed. The algorithm, based upon an extended Kalman filter, exploits the semi-structured 

nature of the field environment in which the vehicle operates, namely the grid pattern formed by 

the crop planting. By tracking this grid pattern in the images captured by the vehicle’s camera 

as it traverses the field, it is possible to extract information to aid vehicle navigation, such as 

bearing and offset from the grid of plants. The grid structure can also act as a cue for crop/weed 

discrimination on the basis of plant position on the ground plane. In addition to tracking the grid 

pattern, the Kalman filter also estimates the mean distances between the rows of lines and plants 

in the grid, to cater for variations in the planting procedure.

Experiments are described which test the localisation accuracy of the algorithms in off­

line trials with data captured from the vehicle’s camera, and on-line in both a simplified test­

bed environment and the field. It is found that the algorithms allow safe navigation along the 

rows of crop. Further experiments demonstrate the crop/weed discrimination performance of 

the algorithm, both off-line and on-line in a crop treatment experiment performed in the field 

where all of the crop plants are correctly targeted and no weeds are mistakenly treated.
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Chapter 1

Introduction

In 1731, Jethro Tull published his book The New Horse Hoeing Husbandry that contained, 

amongst other innovations, the designs for a device that would lead to the mechanisation of agri­

culture. This device was the seed drill, that allowed more orderly and reliable planting of crop 

than the traditional broadcasting technique. In broadcasting, the seeds are scattered randomly 

across the surface of the soil. Seed drilling deposits the seed on the earth in a regular row and 

presses it into the soil where it is more likely to be nourished and is protected from wind, rain 

and wildlife. The regular spacing of the rows ensures that the crop plants have approximately 

equal volumes of soil from which they can extract nutrients and sufficient access to sunlight, so 

each plant grows at a similar pace to its neighbours, and all will be ready for harvest at the same 

time.

In addition to its agronomic benefits, the orderly arrangement of crop ensured by the seed 

drill paved the way for large scale use of agricultural machines. When seeds were sown by 

broadcasting, the resulting irregular positioning of the crop plants meant that weed control had 

to be performed by manual hoeing of the field around the plants. Crops planted using the seed 

drill grew in rows, which meant that a hoe could be drawn by a horse in straight lines between the 

crop rows. Horses were gradually replaced by tractors, and for many crops, mechanical weeding 

using a hoe has been replaced by chemical treatment for weed and disease control. Currently, 

approximately ^460 million are spent annually on 23,000 tonnes of agro-chemicals in the UK 

alone. A rise in consumer interest in organic farming, together with recent controversy over food 

crops that have been genetically modified to resist herbicides used in weed control, has led to 

pressure to reduce the amount of agro-chemical used in our farms.

Precision agriculture is a concept developed in response to these pressures, where new tech­

nology is exploited to achieve the most efficient use of agro-chemicals as possible. Instead of 

taking an approach where all of a field is treated with a fertiliser, fungicide or herbicide, the pre­

cision agriculture approach would be to apply differing amounts of chemical to different parts of
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the field, according to local requirements. For instance, if a particular region of field was known 

to be vulnerable to weed infestation, then more herbicide would be directed toward that region 

than to other parts of the same field. The logical extreme of the precision agriculture approach is 

the treatment of individual plants. This approach is known as plant scale husbandry (henceforth 

PSH), and its aim is to direct treatment precisely, with no waste of fertiliser on weeds or soil, or 

herbicide on crop [THM96, HMT97b]. The technique may even pave the way to larger scale 

organic farming, with precisely guided mechanical weed control.

For PSH to be economically feasible, the treatment systems will almost certainly require 

autonomy from direct human supervision. Hague et al [HMT97a] estimate that for precise spray 

treatment of individual plants, a vehicle carrying the treatment system would be limited to a max­

imum speed of approximately lms~^. This limit is imposed by both real-time computational 

constraints and physical constraints relating to the time taken to activate a spray treatment sys­

tem, and for the spray to reach the plant. Employing a farm worker to drive a vehicle at such 

a low speed would be prohibitively expensive, which has prompted scientists at the Silsoe Re­

search Institute^ to develop an autonomous horticultural vehicle as a test-bed for experiments in 

PSH.

This thesis reports the development and testing of computer vision algorithms designed to 

aid both navigation and treatment scheduling for the Silsoe vehicle. The remainder of this intro­

duction reviews related work in mobile robotics and provides more detail on the Silsoe vehicle 

application, before we outline the contributions presented in this thesis and preview the contents 

of the next eight chapters.

1.1 Autonomous vehicles

One of the earliest applications in computer vision was that of autonomous vehicle navigation 

in the SHAKEY project which ran at the Stanford Research Institute from 1966 -  1972 [Nil69]. 

SHAKEY was a mobile robot equipped with bump sensors, a laser triangulation range-finder 

and a camera, and was used as a platform for artificial intelligence research into topics such as 

object recognition, navigation and path planning in a well-structured indoor environment. Since 

this early work, a great deal of research has been performed with autonomous robot vehicles, 

and we review some of it below. The work has been partitioned into three categories: indoor 

robots, outdoor vehicles and agricultural vehicles. In each case, we concentrate on solutions 

which require little or no modification to the system’s working environment.

^Silsoe is the UK’s national centre for agricultural engineering research.
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1.1.1 Indoor robots

Much of the research conducted into mobile robot navigation has concentrated on indoor ap­

plications. The typical scenario is a well-structured indoor space such as an office [SGH"^97], 

museum [DFBT99], or factory [BDWH+90]. In these situations, the challenges are localisa­

tion, obstacle avoidance and path planning. In our horticultural application, only localisation 

is of interest at the moment. Path planning is straightforward as the vehicle must simply fol­

low the rows of crop and execute turns at the end of each row to progress to the next. Obstacle 

avoidance is not of concern because any evasive action taken in the field is likely to cause dam­

age to the valuable crop, but obstacle detection will be important in any commercial system to 

bring the vehicle to a safe halt and prevent accidental damage to the horticultural vehicle (or the 

obstruction), and then to alert the farmer that there is something unexpected in the field.

Localisation, the ability to determine one’s position relative to a co-ordinate frame, is vital 

for the success of PSH, where the horticultural vehicle must navigate safely in the field and tar­

get plant matter for treatment. Many successful mobile robot localisation systems combine both 

proprioceptive, or dead-reckoning, information with external views of the world. The combina­

tion of the internal and external sensing modalities helps compensate for the weaknesses in each. 

The readings from dead-reckoning sensors such as wheel odometry, accelerometers and gyro­

scopes are prone to drift, and position estimates from such measurements alone tend to become 

increasingly biased away from the true value as the sensor drift increases with time. External 

sensors such as sonar, infra-red laser ranging devices and computer vision are prone to outliers 

and missing readings, so estimates based upon these alone may be unstable. The combination 

of the two sensing modalities corrects for drift in the dead reckoning and allows inappropriate 

external sensor readings to be filtered out of the position estimate.

Many successful robots have been constructed using this mixture of sensors. Brady 

et al [BDWH+90] describe an incarnation of the Oxford AGV project, designed for moving 

pallets around factory floors. In their test system odometry is married with a ring of sonar rang­

ing devices. The sonar sensors are used to detect range to walls and comers of a room, and these 

are matched, where appropriate, to an a priori map of the factory environment [LDW91a]. Sub­

sequently the methods were transferred to another vehicle [HGB97], where a scanning infra-red 

laser was incorporated into the estimation system to provide bearing information to a number 

of bar-code targets placed in the robot’s environment from which the robot’s position can be 

triangulated^. An overview of the AGV project is given in the book edited by Cameron and

În the original GEC/Caterpillar “turtle” robots, localisation was attained by using the laser scanner to obtain 

bearing information to bar-code targets. Much o f the Oxford work concentrated on fusion o f this information with
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Probert [CP94].

Crowley [Cro89] describes a sonar-based robot localisation algorithm that bears some sim­

ilarity to that of Leonard and Durrant-Whyte [LDW91a], although the features they extract from 

the sonar scans differ. Crowley fits line segments to the range readings, whilst Leonard and 

Durrant-Whyte search for regions of constant depth (RCDs). RCDs occur “naturally” in sonar 

scans, and are typically caused by concave comers in the environment.

The projects mentioned above use pre-determined maps of the environment and the robots 

localise themselves with respect to these maps. A more difficult problem is simultaneous map- 

building and localisation in unknown environments, which has been attacked using sonar by 

Leonard and Durrant-Whyte [LDW91b] and Rencken [Ren93], and with computer vision by 

Faugeras and co-workers [AF89, AF88, DF90], Harris [Har92a] and, lately, Davison [Dav98].

All of these approaches [HGB97, LDW91a, Har92a, AF89, Dav98], be they with a priori 

maps or not, have two common traits. The first is the use of what Leonard and Durrant-Whyte 

call geometric beacons as reference points in the world. These beacons may be artificial targets 

such as the bar-codes read by the laser scanner [HGB97], or distinctive features in the sensed 

data, such as RCDs in the sonar scans [LDW91a], comer features in images [Har92a], 3D points, 

lines or planes [AF89] or image regions detected by an interest operator [Dav98]. In our horti­

cultural application, the regular pattem formed by the crop in the ground is a natural and reliable 

beacon that may be used as an aid for localisation.

The second common feature of the work presented above is the use of the Kalman filter al­

gorithm to estimate vehicle position and, in the map building applications, beacon position. The 

Kalman filter is a recursive estimation algorithm based upon a predict-correct cycle. A model of 

the vehicle’s kinematics is used to predict the vehicle’s position after motion has occurred, and 

a combination of dead-reckoning and extemal measurements are used to correct the predicted 

position estimate. The Kalman filter algorithm is used in the Silsoe vehicle as outlined below, 

and will be treated in greater depth in chapter 3.

1.1.2 Outdoor vehicles

As we have seen, there are valuable lessons to be leamt from indoor navigation schemes, but 

there are several additional challenges for autonomous vehicles that operate outdoors. Inside 

buildings, the floor is smooth enough that smooth planar motion with no pitch or roll and little 

vibration may be assumed, artificial lighting is reasonably constant, and man-made objects typi­

cally provide strong features that may be extracted relatively easily from images or sonar scans. 

Outside, especially off-road, the ground plane is less reliably flat, there are fewer man-made fea- 

local sensing modalities such as odometry and sonar [CP94].
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tures, so features extracted from images may be less persistent throughout an image sequence, 

and there is no control over natural lighting.

Outdoor vehicles may be separated from those that operate in man-made surroundings, such 

as Durrant-Whyte’s automated port container vehicle [DW96] and the many autonomous road 

vehicles developed in Germany [Dic98], the USA [TJP97] and Japan [Tsu94], and those vehicles 

that operate off-road, such as the AutoNav system [BLD+98], or Camegie-Mellon University’s 

various off-road vehicles [LRH94] and the NASA Mars microrover [MS97]. Agricultural vehi­

cles are discussed separately in a section below.

The automated highways system (AHS) project has been the focus of much research in 

the United States [TJP97, BPT98, MM97]. The AHS project aims to reduce road accidents 

and increase traffic flows by placing vehicles under partial or total computer control. The 

work at Camegie-Mellon has largely concentrated on problems such as road following and 

lane-changing for both automatic vehicle control and driver assistance [TJP97, BPT98]. Such 

an emphasis on lateral position estimation and control is typical of much research conducted 

into autonomous road vehicles [THKS88, TMGM88, DM96], although McLauchlan and Malik 

[MM97] describe a stereo vision system for longitudinal control. In their application, the vehi­

cle is part of a “platoon”, a line of cars travelling in close proximity at high speed, and computer 

control is required to prevent collision in a situation where human reaction times are too long. 

The lateral position sensing in the platoon application is performed by electro magnetic “pick­

ups” that sense the position of magnetic nails driven into the road surface at regular intervals. A 

full, recent review of road transport automation world-wide is provided by Masaki [Mas98].

Off-road vehicles have a less straightforward sensing task. Road vehicles may take advan­

tage of lane markings and road surface modifications (such as magnetic nails) to aid steering 

and navigation, whereas off-road autonomous vehicles must determine safe routes for travel in 

a much less constrained environment. Dead-reckoning is much more difficult off-road, where 

odometry is particularly prone to inaccuracies caused by wheel-slip, and vibration of the vehicle 

as it traverses rough terrain adds noise to inertial sensor readings.

Once again, Camegie-Mellon University are leaders in this field, and have developed a 

number of off-road vehicles, amongst them the Navlab II vehicle [LRH94] equipped with odom­

etry and inertial sensors for position estimation, and a laser range finger for obstacle detection. 

Stentz and Hebert describe goal-driven navigation [SH95] where the vehicle is provided with a 

map showing its start position and a goal to reach. The vehicle autonomously identifies steerable 

routes, marking cells in the map as untraversable, high-cost or traversable depending on whether 

a cell contains an obstacle, is near an obstacle or free of obstacles, and finds its way to the goal.
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It has been demonstrated at speeds of approximately 2ms~^ over distances of l .ikm .

A  second off-road vehicle developed at CMU is the Nomad planetary rover, also equipped 

with odometry, inertial sensing and a laser range-finder [MSAW99]. In addition to these sensors 

it has a differential global positioning system (D-GPS) capability which enabled it to success­

fully explore large regions of the Antarctic on an autonomously derived route passing through a 

number of human demanded way-points. Carrier-phase D-GPS uses a base station in conjunc­

tion with the GLONASS satellite array to derive position estimates, and can be accurate within 

a few millimetres, but is very expensive and can suffer from problems with satellite occlusion in 

built-up areas, and if communication with the base station is lost, then the system fails, Nebot 

and Durrant-Whyte also demonstrate an outdoor autonomous vehicle equipped with a D-GPS 

system [NDW99],

Perhaps surprisingly, for our horticultural application we can learn more from the road ve­

hicles than those designed for off-road use. The problem of following the rows of crop is closer 

to road lane-following than less constrained off-road navigation. For treatment purposes, how­

ever, we require precise forward distance estimates, so will be more concerned with longitudinal 

direction estimation and control than the autonomous road vehicles research community have 

tended to be.

1.1.3 Agricultural Vehicles

The demands of precision agriculture have lead to a number of prototype autonomous agricul­

tural vehicles. Yoshida et al [Y0188] describe a vision system for a wheat harvesting vehicle 

that can follow the border between the stubble left by crop that has been harvested and the un­

cut crop. They also detail a system for guidance of a robot in a paddy field, where the vehicle 

is guided along the rows of plants by laser and detects the end of each row by locating a target 

with an ultrasonic sensor. No details of the accuracy of location estimates or control are given 

for either of the two systems.

Another automated harvesting machine, the Demeter automated forage harvester [OS97] 

has been developed in the US. Again, they use the line between cut and uncut crop for vehicle 

guidance, and are able to use vision to detect the end of the crop rows. No quantitative results 

for localisation precision are given, but the harvester has been demonstrated by cutting over 60 

acres of alfalfa hay at speeds of 4.5 kilometres per hour (human operators typically drive har­

vesters between 3 and 6 kph). The authors intend to integrate a D-GPS receiver into the system 

to increase the reliability of the system for cases where the vision algorithms may fail.

Billingsley and Schoenfisch [BS97] demonstrate an automatic guidance system that uses 

the crop rows as a cue for navigation (this will be seen below to be the approach taken for the
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Silsoe vehicle). They detect plant matter in colour perspective images of the field collected from 

a camera mounted on their tractor, and use regression techniques to fit lines to the crop rows, and 

determine the vanishing point of the parallel rows in the image. This information is then used to 

provide steering information for the vehicle. They claim that their system is able to steer with 

an accuracy of ±2cm with respect to the crop rows, although these figures are obtained from a 

test where the vehicle followed a line of white tape along a dark floor.

The agricultural systems outlined above concentrate on guidance for steering control, esti­

mating offset and bearing angle to a line, be that line the crop rows [BS97] or the edge of har­

vested crop [OS97]. This is a vital component of an autonomous plant scale husbandry system if 

it is to navigate along the field without damaging the crop, but we also require accurate longitu­

dinal position estimation to allow precise direction of treatment to individual plants. Differential 

global positing system receivers are becoming popular in precision agriculture systems [Sta96] 

for directing spatially variable field operations^, and they can sense position with an accuracy 

of a few millimetres [MF96]. McLellan and Friesen [MF96] claim that accuracy within the re­

gion of 2cm will be required for some agricultural operations. However, D-GPS with such high 

accuracy is still very expensive and has additional problems such as the relatively infrequent 

availability of readings (1 Hz), and can be prone to problems such as satellite dropout, or loss 

of communication with the local base station. It was decided not to use D-GPS for navigation 

of the Silsoe vehicle, and that longitudinal position would be estimated by dead-reckoning.

1.2 The Silsoe autonomous vehicle project

The Silsoe autonomous horticultural vehicle, pictured in a field of cauliflowers in figure 1.1, has 

been under development since late 1993 as a platform for the investigation of precise crop and 

weed treatment[TMH96]. The vehicle platform started life as a commercially produced manu­

ally controlled lightweight agricultural tool carrier, and has been fitted with computer hardware 

and sensors (a camera, wheel odometers and accelerometers) to allow autonomous operation in 

the field, and a rudimentary treatment system, the spray bar labelled in figure 1.1, for PSH exper­

iments. Computing power has been provided by two systems. From 1993 until 1998, processing 

was performed by a network of transputers hosted by a laptop PC. In the Winter of 1998/1999, 

this rather out-moded hardware was replaced with a single processor Intel Pentium-II system 

mnning the Linux operating system, although some transputer hardware has been retained to 

perform data collection from the dead-reckoning sensors.

 ̂An example of this is patch spraying. Regions of field (typically 5 x 5  metres square) are mapped by satellite 

for features such as weed density, and this information is used to control variable rates of herbicide application to the 

large patches of field.
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Figure 1.1: The Silsoe autonomous horticultural vehicle.

The new work presented in this thesis, started in 1996, extends the capability of the vehi­

cle’s computer vision system, and has built on a considerable volume of previous effort invested 

in development of the vehicle [HT96, MB95, Mar96, PSM97, BM96, SPMB96, RWBM96, 

HMT97aJ. The remainder of this section gives details of the autonomous vehicle and identifies 

the problems that the work presented later in this thesis aim to solve.

For autonomous operation, the Silsoe vehicle requires two basic capabilities. The first is 

localisation, and the second is the ability to discriminate between the crop, weed and soil. Lo­

calisation with respect to some co-ordinate system is required if the vehicle is to navigate itself 

in a field of crop, and discrimination is necessary for the differential treatment of crop, weed and 

soil demanded by PSH. We shall treat the two capabilities separately below.

1.2.1 Localisation

Hague and Tillett [HT96] presented the vehicle control and navigation architecture, an amended 

and simplified version of which is illustrated in figure 1.2. Many authors are concerned with esti­

mating vehicle position relative to an absolute cartesian frame of reference [LDW91a, SSDW95, 

BDWH+90], but Hague and Tillet [HT96] argue that a more natural co-ordinate system for op­

eration of the Silsoe autonomous vehicle is one that defines position relative to the rows of crop 

whose treatment is the focus of the PSH. The position estimator in figure 1.2, which is a Kalman 

filter algorithm, calculates the distance that the vehicle has travelled along the row, the lateral
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position of the vehicle with respect to the central row of crop plants and the bearing angle of the 

vehicle with respect to the central row.

Motor drive signals 

-Positional feedback
demanded drive
velocities

estimated 
position error

odometers 
accelerometers 
vision data

wheel velocity 
control

Path tracking 
control

Position
estimation

Figure 1.2; Vehicle control and navigation architecture.

Odometers and accelerometers are used to generate dead-reckoning estimates of the ve­

hicle’s position, velocity and acceleration, with periodic drift correction to the lateral offset 

and bearing estimates provided by the computer vision system. The vision system designed by 

Marchant and Brivot [MB95], described in detail in appendix A, uses the Hough transform tech­

nique [Pra91] to fit a template of the crop row structure to the image, which yields the vehicle’s 

lateral offset and bearing relative to the rows. An input image and the fitted row model are pic­

tured in figure 1.3. A small number of navigation trials performed by Hague et al [HMT97a] and 

Hague and Tillett [HT96], both in a test-bed environment and in a field of real crop, show that 

error in the estimate of lateral offset is of the order of 8 -  20 mm. Forward position estimates 

have not been assessed.

The localisation system described above is used only when the vehicle is navigating along 

the crop row. At the end of a bed of crop, where a bed is three parallel rows as pictured in fig­

ure 1.3, the vehicle must turn and start following the neighbouring bed. The end of each bed 

is detected semi-automatically ; the vehicle is given the approximate length of the bed and uses 

its estimate of forward motion, and the number of plant matter features detected by image pro­

cessing to judge when the vehicle has reached the end of the bed. The vehicle then executes a 

pre-programmed turn under dead-reckoning control so that it is in approximately the correct po­

sition to travel along the next bed, the vision system starts up again and visually aided tracking 

re commences [HMT97a].

1.2.2 Plant recognition

In addition to localisation, a vehicle that performs PSH requires the capability to differentiate be­

tween crop plants and weed, so that treatment may be directed appropriately. To this end, Brivot
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Figure 1.3: The crop row structure. Left: a view of the field from the vehicle’s camera. Right: 

the crop rows as located by the Hough transform algorithm due to Marchant and Brivot [MB95 ].

and Marchant [BM96] propose candidate algorithms to separate crop, weed and soil pixels in 

monochrome images such as that seen in figure 1.3. The algorithms use a mixture of hystere­

sis thresholding of the pixel grey-levels, techniques from mathematical morphology and grey- 

level gradient information. Although they showed promise in off-line trials performed on a desk­

top workstation with image sequences captured from the vehicle’s camera, the algorithms have 

proved unstable in on-line operation, and are sensitive to changes in illumination and also to the 

size of the crop plants and weeds [ Mar99].

Sanchiz et al [SPMB96] and Reynard et at [RWBM96] present algorithms for tracking in­

dividual crop plants as the vehicle traverses the field. Both algorithms have been demonstrated 

off-line on sequences captured from the vehicle, but have not been implemented for on-line use.

Sanchiz et al model each crop plant as a cluster of “blobs” extracted from the grey-level 

image by thresholding, and track the clusters to determine both the motion of the vehicle and 

the position of the plants with respect to the vehicle. The algorithm assumes that only image 

features that correspond to crop are given to the clustering algorithm, and relied on the method 

of Brivot and Marchant [BM96] to correctly provide these features.

Reynard et al ( RWBM96] model the crop plants using contour models [CB92] and demon­

strate the robustness of their tracking algorithm to temporary occlusion, as may be caused by 

shadows. No method of initialising contours to track particular plants was given, so again, the 

crop/weed discrimination problem was not solved.
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1.2.3 The aims and contributions of this thesis

The work presented in this thesis aims to extend the capability of the autonomous horticultural 

vehicle by introducing a vision algorithm that models the crop pattem as a grid of crop plants 

rather than a set of rows of plants. We aim to show that this seemingly small change leads to 

two principal advances:

1. Forward distance estimates may be obtained by a vision algorithm that tracks the crop grid 

model. In the original autonomous vehicle navigation system, estimates of forward dis­

tance are generated by dead-reckoning alone, and the row model used in the Hough trans­

form vision algorithm does not permit estimation of forward motion. Dead-reckoning sys­

tems are prone to accumulating errors that lead to biased position estimates, and problems 

with wheel-slip can lead to unreliable odometer measurements in the field. It is hoped that 

the addition of vision estimates of forward distance will correct for dead-reckoning bias.

2. The crop grid model may be used as an aid for discriminating between crop and weed 

plants. For reasons we shall outline in chapter 2, discriminating between crop and weed 

plants with image processing techniques is a much harder problem than extracting both 

weed and crop features from the images. However, if we are successfully tracking the 

crop grid, then image features that support the estimate of grid position may be assumed 

to be crop plants, and the remainder weeds.

The contributions made toward the autonomous vehicle project by this thesis are centred 

upon the development of an algorithm that tracks the crop grid model through image sequences 

using an extended Kalman filter. In addition to the advantages offered by a grid model over the 

row model, the use of the extended Kalman filter algorithm, described in detail in chapter 3, 

allows a more natural integration of the vision system with the vehicle’s position estimator than 

was achieved with Marchant and Brivot’s Hough transform algorithm. Furthermore, the Hough 

transform algorithm produces quantised estimates of vehicle position, whereas the Kalman filter 

tracker provides continuously valued output.

In addition to the full development of two alternative grid tracking algorithms, a method 

for crop/weed discrimination is developed that clusters image features under the constraint that 

they support the crop grid model. The use of this algorithm leads to the segmentation of im­

ages into regions of crop, weed and soil. The classified image features may be used to guide the 

application of treatment.

Each algorithm is implemented for off-line testing on a desk-top workstation, and perfor­

mance judged on image data captured from the autonomous vehicle prior to implementation as
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part of the closed loop control of the autonomous vehicle. The off-line and on-line implementa­

tions differ for practical reasons, and these differences are discussed fully before both tracking 

and segmentation algorithms are demonstrated in the field with real crop.

On a more theoretical note, we discuss the implications of the control theoretic concepts of 

observability and controllability for systems whose state is estimated by Kalman filters. A novel 

test for the observability of an extended Kalman filter is derived and the concept of “corruptibil­

ity” introduced, which is analogous to controllability for systems with stochastic inputs.

1.3 Thesis outline

The development and testing of the tracking and segmentation algorithms is broken down into 

seven chapters. The first of these, chapter 2, introduces the crop grid model and discusses the 

perspective imaging of the crop through the vehicle’s camera. Two thresholding algorithms are 

proposed for extracting plant matter features fi’om the image data, and their performance com­

pared across a set of test images using receiver operating characteristic analysis, which also aids 

the selection of an operating point for the preferred thresholding algorithm.

The recursive Kalman filter estimation algorithm, and the related extended Kalman filter, 

are discussed in chapter 3. We define and discuss the issues of controllability and observability 

and their implications for Kalman filtering. Corruptibility is defined, and a novel test for the 

observability of extended Kalman filters derived.

The details of the extended Kalman filters implemented in this thesis are given in chapter 4. 

The process and observation models for the off-line implementations are given, and the transfer 

to the on-line system discussed. The filters are analysed in terms of their corruptibility and ob­

servability. The off-line tracking algorithms are demonstrated in chapter 5, together with initial 

navigation trials of the on-line system in a simplified indoor test-bed environment.

In chapter 6, we address two practicalities that are important when using extended Kalman 

filters: initialisation and data association. The extended Kalman filter is a recursive algorithm 

where the latest estimate of the state of a process is a combination of the previous estimate and 

some measurements of the process of interest. The purpose of filter initialisation is to ‘boot­

strap’ the recursion with an initial estimate of the vehicle’s location relative to the crop grid that 

will subsequently allow successful tracking. Data association techniques are required to extract 

appropriate features from the image data to use in estimating the crop grid position. Feature 

validation is also discussed.

Whilst chapters 4 and 5 concentrated on the use of the crop grid model as a cue for naviga­

tion, chapter 7 shows how it can be used to classify image features as crop or weed. The algo­
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rithm is tested on image sequences captured from the vehicle at different stages of crop growth 

and in differing weather conditions.

Two final experiments are presented in chapter 8, where the navigation and crop/weed dis­

crimination algorithms are tested on a bed of real crop. Quantitative analysis of the on-line sys­

tem’s navigation performance and spray treatment precision is given, and a qualitative analysis 

of crop/weed discrimination.

We close with chapter 9, which reviews the results of our experiments and discusses their 

implications for plant scale husbandry. Directions for future work are identified.



Chapter 2

Image processing in the field environment

In chapter 1, we introduced the Silsoe autonomous vehicle project as a test-bed for experiments 

in plant scale husbandry. The vehicle is equipped with a computer vision algorithm that uses 

a model of the rows of crop plants [MB95], in conjunction with a dead-reckoning estimator, to 

provide localisation information that allows the vehicle to navigate along the rows of crop plants 

in the field. In this thesis, we propose that using a crop grid model allows additional localisation 

information to be derived from the images (in the form of forward distance estimates) and also 

aids crop/weed discrimination.

In this chapter, we review modelling techniques in computer vision to help us specify a 

model of the crop grid structure. The crop is viewed through a camera mounted on the front of 

the vehicle, and the perspective imaging of the scene is discussed, and formulae are presented 

which relate the ground plane position of the crop grid to the locations of crop plants in the image.

We also discuss the processing of the images captured by the camera. To locate the crop grid 

model, it is necessary to extract the crop plant features from the image. In plant scale husbandry, 

we aim to treat weeds as well as (but in a different manner to) crop, so it is necessary to extract 

all plant matter from the image. Two grey-level thresholding algorithms are proposed for this 

purpose, and their performance on images collected from the vehicle is analysed using receiver 

operating characteristic curves. This method allows both overall performance comparison and 

a solution to the problem of operating point selection.

2.1 The semi-structured field environment

As noted in chapter 1, the field environment in which the autonomous vehicle operates contains 

a natural “beacon” to navigate by in the form of the crop grid planting pattern. For agronomic 

reasons the crop, which in the examples given throughout this thesis is cauliflower, is planted in 

a grid structure which allows each individual plant space to grow and access to a region of soil 

from which it draws nutrients. The standard practice is to grow seedlings in a greenhouse, and to
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transplant them into the soil at a later date. This planting process is performed mechanically by 

a transplanter, which places the seedlings on an approximately regular grid, a perspective view 

of which can be seen in figure 2.1. This approximate structure, imposed on the world by the crop 

planting can serve as a cue for the two aims of vehicle control:

Navigation: the structure provided by the crop grid pattern may be used as a beacon to 

localise the vehicle relative to the crop. This localisation serves as an aid to the dead- 

reckoning system for vehicle navigation.

Treatment: the knowledge that crop plants are arranged in this grid structure may be used 

to discriminate between crop and weeds. Crop plants should lie within the grid structure 

where they were planted, whilst weeds will usually grow elsewhere, both because they 

tend to grow at random and because they will not thrive if germinating close to a well 

established seedling.

Figure 2.1: The grid planting pattern as captured from the vehicle camera.

The image in figure 2.1 has been taken from a sequence captured from the camera mounted on the 

vehicle. By using models of the grid structure and the motion of the vehicle, this grid structure 

will be tracked as the vehicle traverses the field. The following sections discuss object modelling 

in machine vision, whilst the problem of tracking receives attention in chapter 3.

2.1.1 Model based tracking in machine vision

Model based tracking is a powerful method of reducing the computational load on an image- 

processing system. Rather than analysing all of a static image and categorising each object in it 

separately, a model-based tracker aims to ‘lock on’ to a specific object or objects in an image se­

quence and use a priori  knowledge of the appearance, and sometimes also the dynamics, of the
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object(s) to track it (them) throughout the sequence. Several different types of model have been 

proposed [Har92b, CTCG92, YCH89, Low90, BCZ93] with varying degrees of flexibility and 

rigidity, and it is important that an appropriate one is chosen, in order to capture the variability 

within the class of shapes modelled without introducing extraneous degrees of freedom. Sub­

sequent sections review different modelling schemes that are popular in machine vision whilst 

bearing in mind that the task at hand is to model the grid structure of the crop planting pattern.

2.1.2 Active contour models

A popular technique used in many tracking applications in machine vision is based upon the ac­

tive contour model (ACM). Originally proposed by Kass et al [KWT87], the ACM, or “snake”, 

is a string of control points, coupled by an elastic material having tension and stiffness properties, 

which performs a local search in an image for features such as edges. In its original formulation, 

the snake is said to have converged when the “forces” caused by the internal stiffness and tension 

balance those derived from the edge features in the image. A drawback of the snake algorithm 

is that it requires a good initial configuration close to the required edge, otherwise it will simply 

relax to a straight line. The original tracking mechanism for the snake relied on small inter-frame 

motion. The predicted position of the snake in the next image of a sequence was simply the posi­

tion at which the snake had converged in the current image. Later, more sophisticated predictive 

motion models were incorporated into the tracking mechanism [TS92, Bau96].

The idea of joining the ends of the contour to form a closed loop, or “balloon” with an added 

pressure force was then proposed [SWHB90, Coh91]. The pressure force makes the balloon 

expand until it meets a strong edge, so the initial position is no longer so critical. Also, owing to 

the internal smoothing forces, the balloon will ignore weak edges that may be caused by image 

noise. A further development of the balloon model is the statistical snake. This is an active 

region model (ARM) [IP94], which allows adaptive control of the pressure force to encourage 

the snake expand or contract in order to surround regions of an image conforming to a statistical 

model. This particular technique has been successfully applied to segmentation and tracking 

of road and track regions using statistical colour models [Ale98] and also to colour and texture 

segmentation [ZLY95].

The ACM incorporates a very simple shape model where the object of interest is a smoothly 

bounded region of the image enclosed by a perimeter of edge features. Such a model is sensi­

tive to clutter in the image. A more robust tracker that is less sensitive to clutter could be re- 

ahsed if the shape of the contour were further constrained to be specific to a particular class of 

objects. Curwen and Blake [CB92] describe such a method, where a B-spline ACM^ (or “dy- 

^This is essentially a B-spline where the control point positions are influenced by the image. Owing to the implicit
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namic contour”) is coupled to a template such that, in the absence of image forces, the contour’s 

shape is that of the template. This biases the contour to lock on to shapes in the image that are 

similar to the template. The models are permitted to deform under affine transformations, and a 

Kalman filter (see chapter 3) is used to track the contour position over time (similar motion mod­

els and tracking schemes have been proposed by Baumberg for more regular ACMs [Bau96]). 

This method was demonstrated to run in real-time on a small network of transputers. Since 

publication of the original work [BCZ93], the method has been developed extensively to in­

corporate features such as learning the dynamics of the object from training sequences [BIR94], 

and also differentiating between changes in object shape in the image that are caused by actual 

change of the object shape and apparent changes owing to object motion and change of view­

point [RWBM96]. A further development is the CONDENSATION algorithm [IB96] used as the 

estimation mechanism in place of the Kalman filter. The strength of the c o n d e n s a t i o n  algo­

rithm is that, unlike the Kalman filter which is restricted to the uni-modal Gaussian, it has the 

ability to handle multi-modal probability densities, thus enabling multiple hypotheses to be prop­

agated through the tracking process. In particular, the capacity to maintain multiple hypotheses 

increases the robustness of the tracking process. For example, if the tracker becomes distracted 

by clutter in an image, a uni-modal tracker can fatally lose track because its single hypothesis al­

lows only one object position to be represented. A multi-modal model, however, allows both the 

clutter positions and true object position to be represented, and when the clutter is found not to 

satisfy the dynamics of the model, then the true object mode will re-assert itself via propagation 

of the distribution through the state evolution model.

Although active contour models have been used for tracking individual plants [RWBM96], 

and despite their success in many practical vision systems, active contour models and active re­

gion models are not natural candidates for the application at hand, which is tracking the position 

of the structure formed by a group of plants. When used to track the outline of an object, the 

ACM fits its control points to features (typically edge segments) and presents an interpolated 

outline of the object. The ACM method is not well suited to the crop grid tracking application 

of interest to this thesis, because the structure to be tracked is not a region or object enclosed by 

a boundary, but rather a set of individual crop plant positions.

2.1.3 Point distribution models

The point distribution model (PDM) [CTCG92] represents an object by the position of a set of, 

say n, landmark points derived from distinguishing features on its boundary or interior. The 

model is trained on several images, where landmarks have been specified by hand, which aim 

smoothness of the B-spIine, the stiffness and tension forces of the Kass type snake are not required [BCZ93].



2.1. The semi-structured ûeld environment 31

to represent typical variations in the object’s appearance. This is usually performed by aligning 

the training images using a Procrustes procedure [CTCG92] and carrying out a principal com­

ponents analysis on the distribution of the aligned landmark points obtained from the training 

images. This determines the mean shape of the object together with vectors describing its statis­

tically independent principal models of variation. Only the most significant modes are retained 

in the model and those accounting for little variation are ignored in order to limit the number of 

model parameters, thereby increasing efficiency and avoiding over-fitting problems.

When coupled with an image feature search strategy, the FDM is known as an Active Shape 

Model (ASM). The feature search strategy is a method for fitting the model to a new instance of 

the object in an image. In fact, the original ASM paper [CT92] was subtitled “Smart Snakes”, 

highlighting the similarities between the ASM and ACMs discussed above, as both can be re­

garded as a collection of landmark or control points on an object whose positions are influenced 

by various “forces”. In an ACM, the control points are connected by elastic forces and there is 

no shape specificity. In the ASM formulation, the landmark point positions are coupled by the 

statistics underlying the FDM, which permits only certain modes of shape deformation. Since 

it allows the object shape to vary and since the variability may be learnt from example training 

data, active shape models have been used in the tracking of many types of biological objects, 

such as hands [Hea95], pigs [TOM97], fish [MT97] and flocks of ducks [SBT97]. With its abil­

ity to cope with deformations, the FDM/ASM is especially well suited to modelling the changes 

of shape caused by object flexibility, but it has also found application in fitting a generic model 

of an object to particular types. For example. Ferryman et al [FWSB95] construct a generic car 

model with basic features such as bonnet and boot of variable size and shape, and then train it 

on several different models of car, and use the resulting FDM in a system to lock on to and track 

any type of car present in the scene.

Another option would be to use the FDM for the crop grid tracking problem with land­

mark points taken as the plant positions, but some care must be taken with the model construc­

tion. The Frocrustes alignment procedure described by Cootes et al [CTCG92] uses a similarity 

ransform (planar translation and rotation) to align the training shapes before the principal com­

ponents analysis is performed. In our application, where we image the crop in perspective, a 

different transformation is required. Chatteijee and Buxton [CB98] use an affine transformation 

in the Frocrustes alignment of examples of the outlines of drivable regions that have been ex­

tracted from images of unsurfaced country lanes. Although such an approach has not been taken 

in this thesis, it might be possible to use the perspective projection in an alignment scheme prior 

to computation of the mean of the aligned crop grid examples and computing their modes of
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variation in the usual manner. Chatteijee and Buxton also make the observation that the affine 

transformations between road surface and camera are not entirely random, because they are de­

termined, by driver action, to keep the vehicle on the road. To capture this systematic variation 

they also performed PCA on the transformations [CB98].

2.1.4 Rigid models

The planting pattern is an example of man-made structure imposed on the world. The tracking 

of man-made objects has been the focus of much attention [Ste89, Low90, Har92b]. Such ob­

jects are often rigid or have simple mechanical internal degrees of freedom and may usually be 

represented by CAD-like models. Stephens [Ste89] used a Hough transform method to track an 

object grasped by a robot arm. A full 3D model of the object was constructed, together with 

a look-up table to indicate which features (points on the object’s edges) should be seen from 

particular viewpoints. Although the pose estimates generated by the algorithm were noisy, the 

system was quite successful in dealing with occlusions and cluttered backgrounds. It should be 

noted that by its nature the resolution of any Hough transform pose estimator is limited by the 

quantisation of the Hough accumulator, and also that Stephens’ system had no means of cap­

turing the dynamics of the model. The assumption was that there was little inter-frame motion 

and that the edge positions could be found in successive frames by local search from their previ­

ous locations. Lowe [Low90] extracted edge segments from the whole image and a non-linear 

minimisation procedure was used to fit a 3D model onto the image. In this case, both rigid ob­

jects and articulated objects with rigid subcomponents were modelled, although no quantitative 

analysis of the results was given.

The RAPiD algorithm [Har92b] uses similar models to those of Stephens [Ste89] (points on 

object edges, with view graphs to predict occlusions for certain poses) to track aircraft and other 

objects. The tracking method employed here is the Kalman filter, and the algorithm produces 

high quality pose estimates in image sequences of both real and model objects. The Kalman 

filter yields continuous (i.e. unquantised) pose estimates, and also a measure of uncertainty on 

the estimate.

Both the RAPiD algorithm and Stephens’ Hough transform method are designed for rigid 

objects of ideal shape. The crop grid pattern may be regarded as a rigid structure, because once 

the crop is planted it is fixed in position. However, the feature points (i.e. the crop plants) should 

be allowed to occupy non-ideal positions owing to the variability in the planting process. Any 

model of the grid structure should allow for this uncertainty on individual plant positions, which 

leads us toward the flexible template model.
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2.1.5 Flexible templates

The flexible template [YCH89] is a relatively simple idea. A parameterised model of the object 

of interest is constructed, and the parameters are varied so as to fit the model to the image. Yuille 

et al [YCH89] introduced the deformable template and applied it to extracting features such as 

the eyes and mouth from images of human faces. Figure 2.2 illustrates their template for the 

eye. All of the labelled parameters are allowed to vary in a scheme which minimises a poten­

tial energy defined from the goodness of fit of the model to the image. The model of the crop

Xe

Xc

-P2

Figure 2.2: A flexible template model of the human eye (adapted from Yuille et al [YCH89]).

grid structure presented below bears similarities to both a rigid model and a flexible template, 

depending on whether or not its parameters are allowed to vary.

2.2 Modelling and viewing the grid structure

The model of the crop grid pattern is depicted in figure 2.3, where the black circles represent 

the ground plane positions of the set of cauliflowers currently in the field of view of the camera. 

The figure also shows two sets of axes; Vw) is the world co-ordinate frame with the world z 

axis, z^, projecting into the page, and {xc,yc, Zc) are axes which belong to a co-ordinate system 

attached to the camera mounted on the vehicle, with describing the camera’s optic axis. Figure 

2.4 shows an alternative view that clarifies the relationship between the two co-ordinate frames. 

The crop is assumed to lie on the ground plane = 0, and the y ĵ axis runs through the central 

row of crop in the field of view. Errors arising from the assumption that the crop lies in the 

ground plane are discussed in section 2.3.8 below.

It should be noted that the world co-ordinate frames are local to the vehicle co-ordinate sys­

tem, rather than being fixed to a particular origin in the world. Operations such as weed control
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and crop treatment are carried out by the vehicle, so it is sensible to describe the locations of the 

crop and weed in a co-ordinate system relative to the treatment system. As the vehicle moves 

across the field, the world axis Xyj axis moves in direct proportion to the distance travelled along 

the crop rows. A set of co-ordinates is marked on the diagram which specifies the position of

Row No. n 

- 1 0  1 
r

Line No. _i

Figure 2.3: The grid model.

the vehicle relative to the crop. These co-ordinates are the offset of the optic axis from the 

central row of crop, the vehicle’s bearing relative to the central row of crop, and V, which 

is the offset between the world axis and the bottom-most crop plant in the current image. Y  

is the co-ordinate which anchors the grid to the vehicle’s co-ordinate system. Two grid param­

eters, the mean inter-row spacing f  and inter-line spacing I  (figure 2.3) are used in conjunction 

with indices m  and n to generate the world co-ordinates of the individual plants, as shown in 

equations 2.1 and 2.2.

Xyj = n x f ,  (2.1)

yyj = m X I -\-Y- (2.2)

Marchant and Brivot [MB95] (appendix A) presented equation 2.1 in their work on using a 

Hough transform to track the row structure. As noted in chapter 1, their algorithm modelled 

the planting pattern as a set of rows only. In this thesis, the use of a grid model facilitates the
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identification of individual plants within the rows, as well as enabling the vision system to be 

used to estimate the forward position of the vehicle via Y . Estimates of the vehicle’s forward 

motion were not possible in the Hough transform approach.

In chapter 4, two tracking algorithms are developed. The first estimates only the relative 

position of the crop to the vehicle, i.e. (tx, Y  and ^ ) . In this case, the grid model is closely re­

lated to the rigid models of Harris [Har92b]. In the second tracker, the grid parameters r  and Ï are 

also estimated. In this case, the model is closer to the deformable template [YCH89], although 

the fitting of f  and I  is performed by an extended Kalman filter instead of via the minimisation 

of a potential energy function.

2.2.1 Perspective imaging of the grid structure

The crop grid structure is imaged by a monochrome CCD camera mounted on the front of the 

vehicle, with its optic axis pointing in the direction of motion at an angle (f) to the normal to the 

ground plane, as illustrated in figure 2.4. The images of the crop formed in this manner clearly 

show perspective effects as seen in figure 2.1 above.

Ground Plane

Crop plant

Figure 2.4: The camera and world co-ordinate systems.

To model the imaging geometry, we begin with the perspective imaging equations of Tsai 

[Tsa86] and, following Marchant and Brivot [MB95] (appendix A), arrive at the following ex­

pressions for the 2D image plane co-ordinates {xu.yu)  of ground plane features 0):

(xy; cos Y  Vw sin 4/ +  t^)
—  /

Uu — f

Xuj sin 4; sin (f> -  Vw cos 4/ sin (f) + tz''

[-Xuj  sin 'k cos <f) + Vw cos 4/ cos (j) +  t y )  

Xix sin Y sin (f) — yyj cos 4̂  sin ^  +  tz

(2.3)

(2.4)
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Equations 2.3 and 2.4 were derived by Marchant and Brivot [MB95] from those given by Tsai, 

with the added assumption that the camera does not pitch or roll (i.e that the camera axes 

(zc, yc, ^c) of figure 2.3 do not rotate about the world axes or y^j). This assumption is made 

because the vehicle is running on well tended tilled fields, and it is confirmed from observation 

of several long image sequences. In equations 2.3 and 2.4, (f) is the angle between the camera’s 

optic axis (zg) and the world Zyj axis, whilst ^  is that shown in figures 2.3 and 2.4. /  is the focal 

length of the camera’s lens. The quantity is distance along the optic axis between the cam­

era’s optical centre and the point at which the optic axis intersects the ground plane, ty gives the 

offset, in camera co-ordinates, of the point where the optical axis intersects the world x^  axis 

and, as illustrated for our system in figure 2.4, may be set to zero. One further assumption is that 

the angle ^  is small enough for the approximations cos % 1 and sin ^  to hold. This is 

typically the case when the vehicle is moving along the rows of crop.

From the above, it is possible to generate image pixel co-ordinates (x/, y/) for each plant 

centre (m, n) by combining equations 2.1 and 2.2 with 2.3 and 2.4, and inserting a suitable es­

timate of the vehicle position (t^, V, and crop grid parameters r and I:

i  sin (m i +  y U n  ^

, , , y . 4 . ^

The values of dx and dy in equations 2.5 and 2.6 give, respectively, the horizontal and vertical 

dimensions of the camera pixels, whilst {Cx-, Cy) is the co-ordinate (in pixels) of the centre of the 

imaging surface. It should be noted that equations 2.5 and 2.6 do not correct for lens distortion. 

Tsai’s original model and camera calibration algorithm do allow for radial lens distortions, but 

previous work from the autonomous vehicle project has suggested it is not necessary to include 

such factors here [Mar96].

2.3 Image processing

Given the crop grid structure and imaging geometry, the expected image position of crop plants 

can be generated using equations 2.5 and 2,6 as described in the previous section. Image pro­

cessing is then used to provide plant features to which the crop grid model may be fitted.

Ideally, we would be able to extract the crop plants and weeds separately, and fit the crop 

grid model to the crop plant features alone. However, even plants of the same species and age 

may have different numbers of leaves or different sized leaves which can overlap in different 

ways, so there is a great deal of variability within a species. It would be difficult to build a
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model that could capture such variability without over-generalising to other species. An op­

tion might be to model an individual crop plant leaf and locate all of the leaves in the image, 

Nielsen et al [Nie94] and Abbasi et al [AMK97] both present schemes for recognising leaf out­

lines, either using point distribution models [Nie94] or a curvature scale-space representation 

[AMK97]. However, both of these systems rely on the leaves being imaged one at a time when 

they are laid flat. In the field, the leaves are three-dimensional objects that will most likely be 

partially occluded, and neither system addresses these issues.

An active region model [IP94] (section 2.1.2 above) driven by a colour or texture model 

would be a useful solution for extracting one species of plant, provided that a suitable colour or 

texture model could be found. Zwiggelaar [Zwi98] conducted a survey of research using spectral 

techniques for plant species recognition with a view to their potential use in crop/weed discrim­

ination. The conclusions of this review were that red and near infra-red wavelengths were most 

effective for species identification, but that a classifier based on spectral information alone was 

unlikely to prove robust. As we shall see below, spectral information is useful for differentiat­

ing between plant matter and soil, but it would appear that it is not the solution for crop/weed 

discrimination.

Unfortunately texture modelling is not viable either. As visual inspection of figure 2.7 will 

confirm, our current imaging system does not have sufficient resolution to allow textural differ­

ences between crop and weed plants to be discerned. However, Soille [Soi99] has used mor­

phological operators on higher resolution non-perspective colour images to extract cauliflowers 

with some success. The algorithm uses the distinctive vein structure found in the cauliflower 

leaves as a cue for segmentation, but this is not visible in the near infra-red perspective images 

captured from the vehicle.

One cue that we can use, however, is scale. The weeds are typically smaller than the crop 

plants, and we will exploit this property in the crop/weed discrimination algorithm described in 

detail in chapter 7. Until we are able to model the plants more effectively, we aim to extract 

features describing both crop and weed from the images and use the data association techniques 

discussed in chapter 6 to select the features used for fitting the crop grid model.

Our image processing algorithm for plant feature extraction comprises two stages. The first 

stage aims to extract crop and weed plant matter pixels from the image -  this is performed by a 

grey-level threshold algorithm described below. The second stage is feature extraction. Pixels 

classified as plant matter are grouped into “blobs” in the image (a blob being a set of connected 

neighbouring pixels), and the centroid and size of these blobs are used to characterise them as 

crop plant or weed. The crop/weed classification process is detailed in chapter 7.
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Sections 2.3,1 -  2,3.6 present the thresholding algorithm and methods for performance 

evaluation and parameter setting of this algorithm. Feature extraction, and potential problems 

with the feature extraction process are then discussed (sections 2,3,7 and 2,3,8),

2.3.1 Thresholding IR images

Biller [Bil98] has noted that contrast between soil and plant matter in monochrome images cap­

tured in the near infra red spectrum is greater than contrast in monochrome images taken in the 

visible spectrum. The reason for this is illustrated in figure 2,5, which shows the reflectance 

spectmm for a plant of the brassica family (of which cauliflower is a member) together with the 

reflectance of soil. The brassica data comes from the LOPEX data set [HJA+95], whilst the soil 

spectrum is modelled as a straight line using data from Biller [Bil98], No reflectance data is 

available for the weed population, but the brassica data has characteristics typical of most plant 

species. In the visible spectrum (c, 400 -  700 nm), the reflectance of plant matter and soil are 

quite similar, soil being more reflective on the whole than the crop. However, in the near infra­

red section of the spectrum (particularly in the 760 -  850 nm  region), the reflectance of the plant 

matter is much higher than that of the soil^. This will lead to strong contrast between plant mat­

ter and soil in well illuminated images captured at these wavelengths (a typical monochrome 

CCD camera is sensitive to wavelengths of up to 1100 nm). For this reason, a filter is placed 

over the vehicle’s camera which blocks visible light and passes infra-red alone. The enhanced 

contrast makes the use of a grey-level threshold a viable plant matter/soil discrimination tech­

nique on the near infra red images thus formed. We now aim to demonstrate the effectiveness 

of thresholding on example images captured in the field at different stages of plant growth and 

under different weather conditions by using receiver operating characteristic curves to analyse 

the results of thresholding,

2.3.2 Evaluation of the segmentation algorithm

To assess the utility of grey-level thresholding for classification of these images into plant matter 

and soil regions, and also to aid the choice of a suitable threshold level, receiver operator char­

acteristic (ROC) curves [GS66, vT68] are used. The discriminatory power of a classification 

algorithm controlled by a single parameter is reflected by the area under the ROC curve, and 

the operating point for the controlling parameter may be selected using the slope of the ROC 

curve. The use of the area under an ROC curve is described below, whilst parameter selection 

is discussed further in section 2,3,6,

The reflectance characteristics shown in figure 2,5 would indicate that plant matter should

^Unfortunately, consistent separation of crop and weed plant species using spectral reflectance is not achievable 

[Zwi98].
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Figure 2.5: Reflectance of plant matter and soil. Solid line -  reflectance of brassica plant mate­

rial. Dashed line -  soil reflectance.

be considerably brighter than the soil under the infra-red illumination present in natural sun­

light. In the image, the grey-levels of the plant matter pixels should thus be higher than those 

of the soil pixels. If this is so, then grey-level should be a useful discriminant between the two 

populations. A rank order statistic, known as the Wilcoxon statistic (sometimes known as the 

Mann-Whitney statistic) [vdW69] tests the null hypothesis that a variable is not useful for dis­

criminating between samples from two populations. If this hypothesis is not proven, then the 

variable is a useful discriminant. The Wilcoxon statistic is described here because it has been 

shown to be equivalent to the area underneath an ROC curve [HM82]. The equivalence arises 

from the fact that both quantities measure the probability that in randomly paired soil and plant 

matter pixels, the grey-levels will allow the two pixels to be correctly identified.

In subsequent sections, image pixels are separated into two classes; plant matter composed 

of both crop and weed, and soil. In the language of two class discrimination problems, the plant 

matter pixels are considered to be “positives” and the soil pixels to be “negatives”. Both classes 

may be characterised by a parameter g (in our case the pixel grey-level). If we denote the pa­

rameter value of a negative case by and the parameter value of a positive case by f̂p, over 

the population of positives and negatives it is traditionally stated that

gp > 9N, (2.7)

i.e. that gp is “stochastically larger” than q n . This is assumed in the following discussion. In
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the Mann-Whitney test, the null hypothesis is that the values gp are not statistically higher than 

the values g^, i.e. that

Pr{gp > 5fAr) =  0.5, (2.8)

where f  r(-) denotes probability. This is the probability that is estimated by the Wilcoxon statis­

tic. If ̂  is a suitable discriminant, then this probability will be much closer to one than to 0.5^.

In the case of discrete data (such as pixel grey-levels), Hanley and McNeil [HM82] showed 

that the Wilcoxon statistic may be computed from a set of comparison scores. Compare each pair 

of pixels gp and gN, and score the comparison as follows

1 if gp > gN

S { g p , g N) ={  I  if gp = gN • (29)

0 if gp < gN

To compute the Wilcoxon statistic for a set of np positive examples and un negatives, the fol­

lowing formula is used:

 ' ^ ' ^ S { g p , g N ) -  (2.10)
n p  • n A T  “  ^

For two populations that are completely separable by parameter g, this statistic will have the 

value 1; if they are completely overlapping, then the null hypothesis that g is not a useful dis­

criminant is true, and the value of W  is 0.5. The closer W  lies to 1, the better the two data sets 

may be separated using the parameter ^ as a discriminant.

Hanley and McNeil [HM82] demonstrate the equivalence between the Wilcoxon statistic 

and the area under the ROC curve. Thus, the area under the ROC curve will indicate whether the 

parameter g is suitable for distinguishing between two data sets. Given the area under an ROC 

curve 9, it is stated that

9 = W  = Pr{gp > gN)- (2.11)

The formation of the ROC curve for the binary classification of images is now discussed.

If a pixel classification algorithm uses a single threshold r  to control its performance, then 

an ROC curve is produced by varying this threshold or decision parameter and analysing the 

performance of the algorithm at each operating point. To analyse the performance, a set of test 

images is required for which there is a ground truth classification, with every pixel labelled either 

positive or negative" .̂ These test images are used for comparison with automatic classification 

results. A number of settings of the threshold r  are chosen and the algorithm applied to a test 

image. At each setting, it is possible to place every pixel into one of four groups:

^If the probability is close to zero, then the two data sets are distinct, but g p  <  q n -

"̂ In practice, it may be wise to exclude certain pixels from the ground truth classification; this is discussed further 

in section 2.3.4. •
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1, True Positives (TP): plant matter pixels correctly classified as plant matter.

2. False Positives (FP): soil pixels incorrectly classified as plant matter,

3. True Negatives (TN): soil pixels correctly classified as soil,

4, False Negatives (FN): plant matter pixels incorrectly classified as soil.

From these four classes, two figures can be derived; the true positive ratio

TPR  =  ______ number of TP_______
number of TP + number of FN ’

and the false positive ratio

F P R = ______ number of FP_______
number of FP + number of TN

The TPR gives the probability that a positive (plant pixel) will be correctly classified at a thresh­

old setting, whilst the FPR is the probability that a negative (soil pixel) will be incorrectly clas­

sified at the same setting. Because they are probabilities, TPR and FPR both lie in the range 

(0 , 1),

For each setting of the threshold r, a (TPR,FPR) pair is generated which are plotted against 

each other to form the receiver operator characteristic (ROC) curve. We can similarly produce 

an ROC curve for an entire image test set by calculating TPR and FPR on the basis of classified 

pixels from each image in the set. Owing to the range of TPR and FPR, the curve is bounded 

by the unit square (the ROC space), and it is also always possible to find parameter settings that 

generate the extreme points (0,0) and (1,1), where every pixel is classified as negative or posi­

tive respectively. The area under the ROC curve is denoted 9 and, as stated in equation 2.11, is 

equivalent to the Wilcoxon statistic [HM82],

Whilst the Wilcoxon statistic W  tests the separability of two data sets using a parameter g, 

the area 9 underneath an ROC curve generated over a range of algorithm parameter settings r  

reflects the ability of the algorithm to separate the data. An algorithm with the worst possible 

classification performance produces an ROC curve with area 9 = 0.5, Such an algorithm ran­

domly classifies each pixel as positive or negative with equal probability regardless of the true 

class of the pixel. When  ̂= 1,0, the algorithm is perfect, and the two sets are classified with­

out error, ROC curves for these two extreme cases are illustrated in figure 2,6, The ROC curve 

for the perfect classifier runs along the TPR axis from (0,0) to (0,1) and then between the points 

(0,1) to (1,1), whilst the line running along the (0,0) -  (1,1) diagonal is the ROC curve for the 

classifier which does no better than random chance. For this reason, the (0,0) -  (1,1) line is often 

known as the “chance diagonal”.
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Figure 2.6: The ideal and random chance ROC curves.

If we have two (or more) rival algorithms designed to perform the same segmentation task, 

then the area  ̂is a suitable metric to aid the selection of one of these algorithms. The algorithm 

which produces the ROC curve that encloses the greatest area will provide the best overall clas­

sification performance for a range of threshold or decision parameter settings.

2.3.3 Image sequences and ground truth

Throughout this thesis, four sequences of images captured from the vehicle are used for off-line 

testing of classification algorithms. An example image from each sequence is given in figure

2.7 (a)-(d). The sequences have been chosen to represent a range of crop growth stages and 

imaging conditions, although this range should by no means be considered exhaustive. Sequence 

A consists of 960 images of crop that is approximately 8 weeks old, with few weeds, recorded on 

an overcast day, sequence B has 960 images of 3 week old plants in overcast conditions with very 

few weeds present, sequence C contains 1380 images of 6 week old crop with a moderate weed 

density, and sequence D (1280 images) is again of 3 week old crop with few weeds, but this time 

in bright sunlight. The resulting shadows can be seen clearly in D. To test the effectiveness of 

thresholding these images, a subset of each image sequence was chosen such that no two images 

are of overlapping areas, which ensures that no two pixels in the test set represent the same patch 

of soil or plant. For each image in these test sets, a ground truth labelling was produced by hand 

segmenting the image pixels into three classes: crop, weed and soil. The ground truth images 

can then be used for comparison with the output of the automatic classification algorithms. The 

crop and weed ground truth images are combined to provide a plant matter labelling or “mask” 

image, used in the evaluation of the thresholding algorithms presented below. An example image
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Figure 2.7: Examples from the four image sequences A -  D.

from sequence C and its plant matter mask can be seen in figure 2.8, where the soil is black and 

plant matter is white. As can be seen from the mask image in figure 2.8, only the plants in a 

trapezoidal area of the image have been segmented by hand. This is because the segmentation 

algorithm described in chapter 7 operates only on those features that lie within the area between 

the wheels of the vehicle. This is the region that undergoes treatment from the vehicle’s spray 

bar, and it is determined by using knowledge of the vehicle’s dimensions and position relative 

to the crop.

2.3.4 Segmentation experiments -  algorithms and measurements

Two algorithms have been tested for the segmentation of plant matter from soil on the basis of 

infra-red image grey-level value. The first algorithm is a straightforward threshold on the grey-
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Figure 2.8: An image and its plant matter mask.

level, where the value of the output pixel 0 ( x f ,  yj} is given by

255 if / (zy ,^y)>T 

0 if / (zy ,^y)<T
(2.14)

where 1[xj ,  y j )  is the corresponding pixel from the input image and r  is the threshold setting 

that is varied to produce points on the ROC curve. According to equation 2.14, bright pixels 

above or equal to the threshold r  are labelled white, as plant matter, whilst the duller pixels are 

labelled black, as soil.

The second algorithm, proposed by Hague [Hag98], is based on the observation that there 

appears to be a brightness gradient across the ground plane in many of the example image se­

quences. The cause of such a gradient is most likely the position of the Sun relative to the ground 

plane and the vehicle’s camera, and the interaction of the illuminant with the rough surface of 

the soil. Accurate modelling of illumination and reflectance effects is a complex issue and not 

of concern in this thesis. More complex models are known for surface reflectance, such as those 

due to van Branniken et al [vBSK98] or Oren and Nayar [ON95].

The thresholding algorithm proposed by Hague uses a linear approximation of this gradient 

as a function of the y j  (i.e. vertical pixel co-ordinate) position of each pixel in the image. The 

algorithm is also adaptive to the average brightness of the image, which will offer some robust­

ness to changes in illumination as, for example, when the Sun is temporarily masked by a cloud. 

A mean grey-level is computed for both the top (pi )  and bottom (p2 ) halves of the image and 

these two means are used as fixed points to linearly interpolate a mean p{y j )  across the height 

of the image. The value of the output pixel 0 (.x / ,  y /) is now given by the adaptive interpolating
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thresholding algorithm:

(2.15)
[ 0 if I ( x f , y j )  < ap{yf)

where a  is a gain that is used to set the threshold level, a  is varied to produce points on the ROC 

curve. As will be demonstrated by the results below, this simple algorithm offers an improve­

ment on the straightforward fixed threshold of equation 2.14.

Before we present the results and comparison of the two thresholding algorithms, a com­

ment on the ground truth images used is required. The ground truth images are produced by hand 

using standard image-editing software, and are subject to error, especially at border pixels where 

plant matter is adjacent to soil. Some of these pixels will be soil misclassified by hand as plant 

matter, some plant matter pixels will be misclassified as soil, and some pixels will genuinely be 

of mixed class. Alexander [Ale98] noted such problems with border pixels and proposed that 

at the border between foreground (in our case plant matter) and background (soil), regions of 

doubt should be inserted, and the pixels within these doubt regions should be ignored for the 

purpose of assessing classifiers. This strategy is followed here. All pixels that are on the border 

of plant matter and soil in the ground truth images are assigned to the doubt class and ignored 

in the classification assessments.

To demonstrate the effect of including and excluding the doubt regions on classification 

performance, figure 2.9 shows three ROC curves for the performance of the threshold described 

by equation 2.14 when applied to image sequence C. The solid line plots the ROC curve that 

results when the border pixels are excluded from the classification, the dashed line shows the 

ROC curve obtained when the border pixels are included as soil, and the dotted line plots the 

ROC curve when border pixels are included as plant matter. The area under the curve is greatest 

when the doubt pixels are excluded from classification: 0.9846, compared with 0.9790 when 

border pixels are classified as soil, or 0.9842 when they are classified as crop matter. Since this 

effect is caused by uncertainty in the ground truth classification, such border pixels should be 

ignored when assessing algorithm performance.

2.3.5 Segmentation experiments -  results

Figure 2.10 shows the ROC curves generated for the fixed threshold algorithm (dashed), and the 

adaptive interpolating threshold algorithm (solid) on each of the four data sets. Each curve was 

generated using 27 parameter settings; 27 settings of the threshold r  (equation 2.14) for the fixed 

threshold algorithm, 27 settings of the gain a  for the adaptive interpolating threshold algorithm 

(equation 2.15).
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Figure 2.9: The effect of border pixels on classifier performance.

The area under each ROC curve calculated using the trapezium rule is given in table 2.1. 

Alexander [Ale98] has demonstrated empirically that the area underneath an ROC curve cal­

culated by this method is insensitive to the set of thresholds (or gains) chosen to generate the 

curve. Different choices of thresholds were found to lead to variation in area only in the 6̂  ̂dec­

imal place. A more principled analysis of the standard error of the area under the ROC curve 

is presented by Hanley and McNeil [HM82]. However, for this calculation to be computation­

ally tractable on data sets of the size under consideration here (millions of pixels), knowledge of 

the underlying probability distributions of the positive and negative classes is required. For this 

reason, the areas are presented to the 4̂  ̂decimal place, reflecting the level of confidence used 

by Alexander [Ale98].

Data Set Fixed Adaptive

A 0.9958 0.9957

B 0.9749 0.9779

C 0.9816 0.9846

D 0.8835 0.9241

Table 2.1: Area underneath ROC curves for the fixed threshold and adaptive interpolating 

threshold algorithms for data sets A-D.

Inspection of the figures in table 2.1 and of the curves in figure 2.10 shows that for se­

quences A-C the performances of the fixed threshold algorithm and the adaptive interpolating 

threshold algorithm are very similar. The adaptive threshold algorithm performs marginally bet-
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Figure 2.10: Experimental results, data sets A-D. Solid line -  adaptive interpolating threshold. 

Dashed line -  fixed threshold. Note the changes of scale between plots.
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ter than the fixed threshold algorithm for sequences B and C, whilst the fixed threshold is very 

slightly superior for sequence A. The adaptive interpolating threshold is noticeably better with 

an area of 0.9241 vs. 0.8835 for the fixed threshold for sequence D. Interpolation across the 

height of the image would appear to compensate for the shadows present in sequence D (figure

2.7 D shows an example), even though the shadow only extends across the bottom quarter of 

the image. For this reason, the adaptive interpolating threshold algorithm is selected for image 

processing in preference to the fixed threshold.

2.3.6 Threshold gain selection

The area under an ROC curve offers a measure of the effectiveness of an algorithm over a range 

of operating points. The slope of the ROC curve may be used to select the operating point of 

the algorithm (in our case, the threshold gain a). The “best” operating point is the one which 

minimises the Bayes risk attached to a decision. Bayes risk combines the probabilities of correct 

and incorrect decisions together with the costs incurred by making an error and the values as­

sociated with proper classification, van Trees [vT68] gives the following formula for the Bayes 

risk associated with a decision strategy,

7̂  =  CFpPNPr(FP) -  VTNPNPr(TN) +  CFNPpPr(FN) -  VTpPpPr(TP), (2.16)

where Cresuit is the cost of a particular incorrect decision, Vresuit the value of particular cor­

rect decision. Pciass is the prior probability of a positive (P) or negative (N) case occurring 

(Pp -1- Pn =  1), and Pr(result) is the probability that the outcome of the thresholding decision 

will be FN, FP, TN or TP. In fact, these probabilities are provided by

Pr(TN) =  1 -  FPR, (2.17)

Pr(FP) =  FPR, (2.18)

Pr(TP) =  TPR, (2.19)

and

Pr(FN) =  1 -  TPR, (2.20)

where TPR and FPR are given by equations 2.12 and 2.13. If we now substitute the four ex­

pressions above into equation 2.16, and differentiate it with respect to the threshold gain a, the 

following expression is obtained

^  = Pn (Cpp +  Vtn) ^ ^  -  Pp(CpN +  Vt p ) ^ ^ .  (2.21)
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Equation 2.21 describes how the Bayes risk TZ changes with variation of the threshold gain a. 

The risk is at a minimum when this expression is set to zero, which occurs when the slope of the 

ROC curve, dT P R /d F P R ,  is given by

d T P R  ^  P n ( C f p  +  V t n )  

dP P R  P p ( C f n  +  V t p )

Thus, the best operating point of a classifier is the threshold gain at the point on the ROC curve 

where the slope is given by equation 2.22. This result requires that the prior probabilities Pp 

and Pn of the occurrence of the positive and negative classes respectively are known, and also 

that the values and costs of correct and incorrect decisions are available. These values and costs 

are application specific and will ideally be set by a domain expert.

The adaptive interpolating threshold algorithm has a gain parameter, a, that was varied to 

create the points on the ROC curves plotted in figure 2.10. For each sequence a value of this 

gain may be chosen using the gradient methods outlined in section 2.3.2, provided that prior 

probabilities for the occurrence of soil and plant pixels are known together with the costs and 

values of incorrect and correct decisions.

The prior probabilities of the different types of pixel occurring may be obtained from anal­

ysis of the ground truth images (once again, the doubt category pixels are excluded), but no such 

simple prescription exists for assessment of the costs and values, which must be set according 

to the requirements of the task. In fact, if we look back at equation 2.22, which sets the slope 

for optimal performance, it can be seen that the individual costs and values are not necessarily 

required to set the operating point, provided that the “costs ratio”

_  C f p  +  V t n  _  ^ T P R  P p

“  C f n  +  V t p  “  ^ F P R P n ’  ̂ ^

is known. If the costs ratio is greater than 1, then the emphasis is on the correct classification 

of negatives; if the costs ratio is less than one the emphasis is on the correct classification on 

positives.

In our case, navigation requires that the image processing provides features that support 

the crop grid model of figure 2.3. It should extract image features that accurately represent the 

crop plants with few false positive (i.e. misclassified soil pixels), especially at the edges of the 

plants. Equation 2.23 can be used to set the value of 0 . The parameter a  was tuned by hand on 

images from sequence C^, and the slope of the ROC curve for the adaptive interpolating thresh­

old algorithm on sequence C was found (several values of a around the tuned point were used

^The parameter a was set such that the plant matter in the image was well represented in the resulting binary 

image, whilst keeping down the number of incorrectly classified soil pixels.
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to generate a dense sampling of the ROC curve, and the slope was calculated by central differ­

ences). The value of a  derived as described above by hand is 1.64, corresponding to a costs ratio 

4> of 3.644. The values of a  set with 0  =  3.644 for each sequence are given in table 2.2 below, 

together with the TPR and FPR associated with the given threshold gain.

Sequence a TPR FPR

A 1.32 0.95623 0.00311

B 1.73 Œ8&04 0.00073

C 1.64 0.83421 0.00409

D 2.91 0.28627 0.00135

Table 2.2: Threshold gains a  for each image sequence.

In table 2.2, where the costs ratio is set at 3.644, it can be seen that for sequences A -C , 

over 80% of plant matter pixels are correctly identified (TPR), with less than 0.5% soil pixels 

misclassified (FPR). Although a correct classification rate for plant pixels of 80% may seem low, 

perusal of figures 2.11 -  2.13, where an example segmented image from each image sequence 

is presented along side its ground truth plant matter image, shows that most of the plants are 

well represented in the automatically segmented image. For sequence D, only 28.6% of plant

Figure 2.11: Example segmentation for sequence A. Left: ground truth. Right: automatic seg­

mentation.

pixels are correctly classified, although the misclassification rate of joil pixels is only 0.135%. 

The example segmented image and its ground truth plant matter image can be seen in figure 2.14 

where, as might be expected from the TPR and FPR figures in table 2.2, many of the plant matter 

pixels are missed, and there are also very few misclassified soil pixels.

The costs ratio was set for sequence C such that the crop plant pixels were well represented 

in the segmented images; in the absence of strong shadows, this costs ratio would seem suitable, 

as the results for sequences A and B bear out. If the performance of the segmentation algorithm
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Figure 2.12: Example segmentation for sequence B. Left: ground truth. Right: automatic seg­

mentation.

Figure 2.13: Example segmentation for sequence C. Left: ground truth. Right: automatic seg­

mentation.

Figure 2.14: Example segmentation for sequence D. Left: ground truth. Right: automatic seg­

mentation.
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were invariant to the effects of shadows, the costs ratio would ensure similar performance on 

sequence D. However, the figures in table 2.2 and the example image of figure 2.14 illustrate 

that the algorithm performance is not invariant to shadows, and the costs ratio set on sequence 

C leads to many plant pixels being misclassified. By setting a  = 2.15,  more plant matter pixels 

are correctly classified whilst keeping the number of misclassified soil pixels under 2%.  The 

costs ratio corresponding to this operating point is 0.322; the TPR and FPR figures are given in 

table 2.3, and an example segmentation in figure 2.15.

Sequence

D

a

2.15

TPR

0.599396

FPR

0.017743

Table 2.3: Threshold gain, TPR and FPR for sequence D with new costs ratio.

> f  .t,
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Figure 2.15: Example segmentation for sequence D with revised cost ratio. Left: manual ground 

truth image. Right: automatically segmented image.

Before moving on to how we extract features from the plant matter images, a comment on 

the cost ratios for sequences A - C  and D should be made. In sequences A - C ,  the costs ratio is 

3.644, so the emphasis is on the correct classification of soil pixels; in these evenly illuminated 

images the plant matter pixels are easily distinguished, so the challenge for the classifier is to 

reduce the number of soil pixels classified as plant matter. For sequence D, the ratio drops to 

0.322, which places an emphasis on the correct classification on plant pixels. The bright sunlight 

present throughout sequence D results in deep shadows cast by the vehicle, and also specular 

highlights on the soil; the result of these effects is that it is harder to extract plant matter from 

the images, so the classifier is required to weight correct classification of plant matter more.

2.3.7 Feature extraction

The thresholding algorithm described above takes images as input, and produces images (albeit 

simple ones) as output. Figures 2.11 -  2.15 show typical thresholded images, where, ideally.
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every white pixel is plant matter, and every black pixel soil. The pixels are clustered into “blobs” 

in the image, and each of these blobs will be interpreted as either a crop plant or a weed by the 

algorithms presented later in chapter 7. These algorithms classify the blobs on the basis of their 

position on the ground plane relative to the crop grid, and their size. The position of each blob 

is found by locating its centroid in the image and projecting this on to the ground plane via the 

camera calibration. The size of a blob is calculated by counting the number of pixels in that blob.

The feature extraction process takes the binary images, clusters the pixels into blobs and 

produces a list of centroids and areas describing those blobs. We have chosen to use the chain- 

coding algorithm due to Freeman [FreôlJ to perform these actions. Alternatives such as region 

growing or split and merge algorithms [Pra91 ] would give the same results on such simple binary 

images.

Figure 2.16: An image, its automatically extracted plant matter and the contours extracted by 

chain-coding the image.

The operation of the chain-coder is sketched in figure 2.16. The original image is seen on 

the left, with the thresholded binary image in the centre. The image on the right of figure 2.16 

shows the blob contours extracted by the chain-coding algorithm. The centroid and size of each 

blob is easily computed from the outline.

2.3.8 Problems with feature extraction

The feature extraction techniques described above are simple and fast, and therein lies their ap­

peal for a real-time application such as vehicle navigation. The simple nature of the algorithms 

mean that some types of error are likely to occur. Pixels of different classes (representing crop, 

weed or soil) may become clustered into a single blob -  each blob is interpreted, and classified, 

as a single type of plant, so some of these pixels will be misclassified. Furthermore, the centroid 

of a blob containing a mixture of pixels will not necessarily correspond to the centre of a plant, 

nor will the blob’s size in pixels reflect the size of a plant. The centre of the plant is taken to 

be the root of the plant for navigation purposes, as the root gives the grid position in which the
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cauliflower was originally planted. Other errors caused by the use of a simple threshold are il­

lustrated below, together with a note on the interpretation of the blob centroids as points in 3D 

space. The experimental results of chapters 5 ,7  and 8 demonstrate that the algorithms developed 

later in this thesis for vehicle navigation and image segmentation show considerable robustness 

to these errors in many circumstances.

The centroid of the blob features is interpreted by the tracking algorithm as the position of 

the plant’s centre on the ground plane. Obviously, when a blob consists of a mixture of pixels 

from different classes, the centroid is not the centre of an individual plant. Notably, when the 

crop plants grow above a certain size, they start to touch in the image, which will lead to them 

being merged during feature extraction. An example of this from sequence A is illustrated in fig­

ure 2.17, where four plants merge into a single outline, and are therefore represented by a single 

centroid and area. This aspect of the feature extraction obviously limits the operating range of 

the autonomous vehicle. If a sizeable proportion of plants start to touch in the image, the fea­

tures extracted from the image no longer relate to the crop plant centres required by the crop grid 

tracker. At this stage, the vehicle will be unable to track the grid, so navigation and segmentation 

will not be possible. This situation is one of the more compelling reasons for finding a more so­

phisticated image processing technique that will allow the extraction of plant centroids directly 

from the grey-level image data.

Figure 2.17: Large plants merge into a single feature. Left: image detail. Middle: thresholded 

detail. Right: feature outline.

The opposite of the merging of several plants can also occur. A single plant may become 

fractured into several disparate features. If there is a dark region (such as a shadow) between the 

main part of a plant and one of its leaves, then this leaf will be fractured from the plant body by 

the thresholding algorithm, and will generate a separate feature. An image detail from sequence 

C where this occurs is presented in figure 2.18. Chapter 7 contains an algorithm for clustering
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split features into single plants.

Figure 2.18: A plant fractures upon thresholding. Left: image detail. Middle: thresholded de­

tail. Right: feature outlines.

One further problem pertains to the interpretation of the blob centroids in terms of their 

3D position. The centroids are translated from screen to world co-ordinates using the camera 

calibration, together with the assumption that they lie on the ground plane, i.e. have Zyj =  0. 

In fact, the plants are complex three-dimensional objects, and the centroid of each image blob 

represents a point in 3D space above the ground plane. When these true 3D positions are inter­

preted as ground plane positions, a projection error will occur. Unless the shape of the plants 

is known, it is impossible to exactly quantify the magnitude of these projection errors. An es­

timate of the errors may be obtained, however, by modelling the crop as a simple shape, such 

as an inverted hemisphere (to mimic the spreading of the cauliflower’s leaves), then rendering a 

scene of these hemispheres as if viewed through the vehicle’s camera. Results from such a test 

with hemisphere radius 150mm yielded a maximum error on the co-ordinate of 178.0mm  

(minimum 44.3mm ), and on x^j co-ordinate of 53.2m m  (minimum 0m m , along the camera’s 

optic axis). To reduce the magnitude of these errors, we construct a “virtual ground plane” above 

the soil and project the feature centroids onto this, as illustrated with inverted hemispheres in 

figure 2.19. By setting the height of the virtual ground plane equal to that of the hemispheres, 

the projection errors drop to a maximum magnitude of 90.8m m  in the y-uj direction (minimum 

50.0m m ) and 23.0m m  maximum error in the x^j direction (minimum 0.0m m , again along the 

optic axis). For smaller plants such as the weeds which lie closer to the ground plane than the 

crop, projection onto the virtual ground plane will increase the feature localisation error. How­

ever, this is acceptable for navigation because it is the crop plants whose position directly affects 

the estimate of crop grid location. For precise treatment of weeds, however, the use of the virtual 

ground plane may be undesirable, because of the enlarged projection errors for plants closer to 

the true ground plane.
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Figure 2.19: Projection errors and the virtual ground plane. Rays intersecting the extremes of 

the hemispherical feature show the extent of the feature’s projection (marked by o symbols) on 

the real and virtual ground planes. The centres of the projected features are also marked, and 

the projection onto the virtual ground plane is closer to the true object centre than the projection 

onto the true ground plane.
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2.3.9 Image processing -  summary

This section has covered the image processing algorithms used to extract features describing 

plant matter from the images captured by the autonomous vehicle. Two alternative thresholding 

algorithms have been tested, a fixed threshold algorithm and an adaptive interpolating thresh­

old algorithm, and their performance compared using the area under ROC curves. Operating 

points have been set using the slope of the ROC curves for the adaptive interpolating threshold 

algorithm.

Clusters of plant matter pixels (‘T>lobs”) are extracted from the images, and the centroid and 

size of each blob computed. The crop grid model should be fitted to the crop feature centroids, 

ignoring the weed features. The problem of selecting the correct features to use in fitting the 

crop grid is a problem of data association, and will be discussed in chapter 6. The blob sizes and 

centroids are also used in the classification algorithm described in chapter 7 which categorises 

the blobs as weed or crop for treatment purposes.

We have seen that the image thresholding and pixel clustering processes are subject to cer­

tain types of error, although the experimental results presented in chapters 5, 7 and 8 show that 

these errors do not prevent respectable system performance. Improving the algorithms used for 

image processing would be a rich source of further research, principally because of the challeng­

ing levels of variation in shape, size and texture of the plants and weeds of interest.

2.4 Summary

The autonomous horticultural vehicle operates in a semi-structured field environment, where the 

available structure arises from the grid formation of the crop plants in the soil. This chapter has 

introduced the crop grid model which is used as a landmark for navigation that is superior to the 

row model used previously by Marchant and Brivot [MB95] (appendix A) because it allows the 

estimation of forward distance in addition to offset and bearing of the crop rows. The method 

used to estimate the crop grid position is the extended Kalman filter, which is described in chapter

3.

The crop grid model can also be used for crop/weed discrimination. If a set of features 

that represent plant matter can be extracted from an image, then those features that support the 

crop grid model may be classified as crop and the remainder as weed. This forms part of a seg­

mentation algorithm described in chapter 7. Plant matter features are extracted using a grey- 

level thresholding algorithm and a clustering algorithm. Receiver operating characteristic curves 

were used in the selection of the thresholding algorithm, and also to set the algorithm’s operating 

point. Finally, the limitations of the image processing system were discussed, including feature
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localisation errors caused by perspective projection from the image to the ground plane, and the 

use of a “virtual ground plane” was proposed to reduce the projection errors for crop features.

The crop grid model has been developed, and a method for extracting plant matter features 

from the image has been demonstrated. The following two chapters detail the Kalman filter es­

timation mechanism used to track the crop grid model as the vehicle traverses the field.



Chapter 3

Tracking and estimation with Kalman filters

The theme of this thesis is the exploitation of the semi-structured nature of the field environment 

for the control of a horticultural vehicle. The previous chapter described a model of the structure 

present in the field, namely the grid pattern formed by the crop plants, together with formulae 

relating the position of the vehicle to the imaged position of the crop plants. This chapter presents 

the Kalman filter and the extended Kalman filter, which is used to track the position of the crop 

pattern through the image sequence captured as the vehicle traverses the field. The Kalman filter 

is a recursive least-squares estimation algorithm, consisting of a prediction stage followed by a 

correction stage. Its recursive nature makes it appealing for tracking tasks as information from 

each image may be utilised as it is collected and the filter does not require a “history” of past 

inputs to form its latest estimate of the crop grid position. The crop grid structure is used in 

the correction stage where new image measurements are incorporated, whilst knowledge of the 

vehicle’s motion is exploited in the prediction stage, which gives the expected position of the 

grid structure prior to measurement in each image.

The Kalman filter equations are derived below from the conditional density viewpoint, il­

lustrating how the filter forms an optimal estimate of a system’s state based upon a set of un­

certain measurements and predictions. In addition to the derivation of the Kalman filter, the ex­

tended Kalman filter (EKF) is also presented. The EKF is a sub-optimal variant of the Kalman 

filter adapted for estimation in non-linear systems, such as the perspective imaging process de­

scribed in the previous chapter. The equations presented here are independent of the crop grid 

tracking problem. Specific models relating to state evolution and observation for crop grid track­

ing are given in chapter 4.

Finally, the control theoretic issues of controllability and observability are discussed. The 

standard tests for the controllability and observability of linear time invariant systems are pre­

sented, together with a discussion of their implications for the analysis and design of Kalman 

filters. A novel test is derived for the observability of the linearised system at the heart of the
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extended Kalman filter [SBM98].

The Kalman filter equations and derivation are widely available in the control theory and 

estimation literature, and we follow Brown and Hwang [BH97], with some reference to Bar- 

Shalom and Fortmann [BSF88]. Controllability and observability are covered in many standard 

textbooks, such as Gopal [Gop84] or Jazwinski [Jaz70].

3.1 The Kalman filter

First presented in 1960 by R.E, Kalman [Kal60], the Kalman filter provides a recursive 

least-squares estimation mechanism for discrete-time systems (an equivalent mechanism for 

continuous-time systems was published by Kalman and Bucy the following year [KB61]). 

Given a process whose state at discrete time-step k is denoted by the vector x(/?), a stochastic 

model for evolution of the process and a method for measuring the process (also stochastic), 

the Kalman filter forms estimates x(/j) of the process state variables by combining predictions 

from the evolution model with measurements.

For linear systems with Gaussian (normally) distributed stochastic inputs, or noise sources, 

the Kalman filter is optimal in two senses. First of all it is an unbiased estimator, so the estimate 

is equal to the mean value of the corrupted state. Secondly, the Kalman filter is an efficient esti­

mator which produces estimates which minimise the square error between the estimate and the 

true value. The recursive nature of the filtering algorithm also makes it very convenient to use 

in real-time systems where data can be integrated into the filter’s state estimate as it arrives and 

there is no need to store a “history” of predictions or measurements. Finally, the filter not only 

produces state estimates but also a covariance matrix that reflects the confidence in those esti­

mates which may be used in higher-level decision making tasks. For non-linear systems, such 

as ours, where observations are via a perspective camera, there exists a sub-optimal variant of 

the Kalman filter known as the extended Kalman filter (EKF) [BSF88], The EKF uses first or­

der linear approximations of the state evolution and measurement processes to update the state 

estimate. The noise terms are corrupted by the non-linearity and do not retain their Gaussian 

form, so the Kalman filter update equations, which are derived using the Gaussian assumption, 

are no longer optimal. Despite this sub-optimality, the EKF is a popular choice for non-linear 

estimation problems [LDW91a, SSDW95, MAD99],

The Kalman filter has proved to be immensely popular in the fields of computer vision and 

robotics for tracking, estimation and data fusion. The short review presented below is far from 

exhaustive, but aims to provide a broad overview of the uses to which the filter has been put by 

the computer vision and robotics communities.
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Many schemes have used the Kalman filter as an estimation mechanism, for example the 

tracking of image tokens such as “comers”^ Harris [Har92a] and Shapiro et al [SWB92] both 

use comer features tracked by means of Kalman filters to infer 3D descriptions of the moving 

scene, whilst Deriche and Faugeras [DF90] track line segments extracted from images for the 

same task. Smith [Smi95b] uses a Kalman filter to track comers in order to extract objects from 

image sequences.

The line and comer tracking schemes mentioned above all aim to infer stmcture from im­

age sequences by grouping the tracked tokens into objects. Higher-level descriptions of objects, 

such as rigid models [Har92b] or contours [CB92] may also be tracked using Kalman filters. In 

this thesis, the Kalman filter is used to track a model of the crop grid as the vehicle traverses 

the field. The approach we have adopted is similar to that of Harris’ RAPiD tracker [Har92b]. 

As explained in chapter 2, Harris tracks a rigid wire frame model of the object of interest, es­

timating its pose relative to the camera in free space, whilst we are interested in estimating the 

position of the vehicle relative to the crop grid stmcture on the ground plane. In the review of 

model based tracking methods in section 2.1.1 we noted that for tracking more flexible objects, 

active contour models are often used [KWT87]. The Kalman filter has been used to drive many 

contour tracking schemes [CB92, TS92, Bau96]. Kalman filters have also found use in parame­

ter estimation problems, such as ellipse fitting [Zha97] and as part of a scheme for homography 

estimation for an augmented reality application [JZF98] (although its use there is primarily as a 

tracker), and in stereo matching [PPP+89].

The contour tracking work of Blake et al [BCZ93] has been extensively developed to in­

corporate factors such as teaming the dynamics of an object from training sequences [BIR94, 

NB97], and decoupling changes in contour shape that are caused by change of viewpoint from 

those caused by an actual change in object shape [RWBM96]. In addition to these improvements 

to the contour models, a new recursive estimation mechanism has been developed to track the 

leamed contour models through image sequences. This new mechanism is known as the c o n ­

d e n s a t i o n  algorithm [IB96] which, unlike the Kalman filter which assumes Gaussian distribu­

tions for its stochastic components, allows the probability distribution for contour position and 

shape to take an arbitrary form. The strength of the CONDENSATION algorithm is its robustness 

to noise and distractors in the image. In particular, because it can maintain multi-modal proba­

bility distributions, multiple hypotheses of object position may propagated through the tracking

^These are not comers in the usual sense of the conjunction of two or more lines, but points in an image that 

differ from their immediate neighbourhood. The most popular method for comer feature extraction is probably that 

of Harris and Stephens [HS88]. •
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process. If a uni-modal tracker (such as the Kalman filter) were to be used in such situations, 

it can lose track fatally because it can only maintain a single hypothesis of object position. The 

multi-modal tracker allows both distractor and target positions to be represented simultaneously 

and, once the distractor is found not to satisfy the target dynamics, the true object will re-assert 

itself as the distribution is propagated through the contour’s dynamical model. In our applica­

tion, the crop grid model is distinctive, and it is unlikely that a group of weeds would mimic the 

grid formation, so we have opted to use the uni-modal Kalman filter approach which is compu­

tationally simpler than the CONDENSATION algorithm.

The Kalman filter (and extended Kalman filter) has also been used in of the robotics applica­

tions mentioned in chapter 1, for tasks such as localisation relative to known landmarks or maps 

[LDW91a, SSDW95], simultaneous map building and localisation [Dav98, Smi95a, Har92a, 

WNDDWOO, LDW91b], and for sensor fusion with dead-reckoning sensors such as odometers, 

accelerometers and gyroscopes and estimates from global positioning systems [CDW94, Cro95, 

MAD99].

3.1.1 Filter equations and derivation

As we noted above, the Kalman filter estimates the true value of a process state x(fc) through

combination of predicted values of the state and measurement of the state. The equations for

performing this combination, and the criteria for optimality are given below, together with a 

derivation of the equations from the conditional density viewpoint, where the filter’s estimate 

and covariance are presented as a probability density function conditioned on the stream of mea­

surements to date. The derivation presented below closely follows that presented by Brown and 

Hwang in their excellent introductory text to filtering theory [BH97].

The filter is couched in state-space terms and assumes that the process of interest may be 

modelled like so:

x(A: +  1) =  A{k):x.{k) +  B(k)u{k)  -f v(&), (3.1)

and it may be measured (or observed) by a system such as

z{k) = H(k):x.{k) w(A:), (3.2)

where:
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x(fc) = ( n x l )  state vector at time step k,

A{k)  = [n X n) state evolution matrix at time step k, that specifies the transformation of state x(&)

into x(& +  1),

u{k) = (p X 1) control input vector; external input which influences the state evolution,

B (fc) = (n X p) control gain matrix that couples the control inputs to the states,

v(&) = (n X 1) noise vector; assumed to be drawn from a white sequence with known covariance,

z{k) = (m X 1) observation vector at time step k,

H(A;) = (m X n) observation matrix; transforms the state vector into the observation space.

Describes the ideal (i.e. noise-free) sensing process, 

w{k) = (m X 1) measurement noise vector, once more assumed to be drawn from a white

sequence with known covariance.

The covariance matrices Q{k) and R(fc) of the noise sources are specified by

i^ [v W v ^ (0 ]= l (3.3)
0 , i ^  k

rr. I Ti(k), i = k
E[w(k)w (z)] =  < , (3.4)

0 , i ^  k

£'[v(fc)w^(z)] =  0, for all k and i. (3.5)

Equations 3.3 and 3.4 state that the system and observation noise inputs have zero autocorrela­

tion, whilst equation 3.5 defines zero cross-correlation between the two. Deriche and Faugeras 

[DF90] provide equations for a system with correlated state and observation noise (i.e. where 

£'[v(A;) w^(z)] 7̂  0), although they admit that these correlations are often difficult to model and 

usually set them to zero.

Equations 3.1 and 3.2 describe the evolution and measurement of the system state respec­

tively. However, the true state x(A;) is unknown. The purpose of the Kalman filter is to recur­

sively estimate the value of this state, starting with an initial estimate^ and using the state evolu­

tion model to predict successive values of the state, and measurements to correct the predictions.

At time step k 1, the prediction is denoted x~{k  1) and is the estimate of the state at time 

A: -|- 1 given k previous predict/correct cycles. After incorporation of measurements, the cor­

rected state estimate is written x(& 4- 1) (the “ superscript has been dropped). As noted above,

^Initialisation is treated in section 3.3 and chapter 6.
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the Kalman filter acts to minimise the error between the estimated state and the true state. The 

errors at the prediction and correction stages are simply

e “ [k + l) = x(fc +  1) -  x “ (fc +  1) (3.6)

e(k +  1) =  x(fc +  1) — x(fc +  1) (3.7)

and have associated covariances^

P -  (fc + 1) =  E[e~ {k +  l)e-^(fc +1)] =  £ [(x(fc+ 1) -  x '  (fc +1)) (x(fc +1) -  x “ (i: +1))^]

(3.8)

P(A +  1) =  £ [e ( i:+ l)e ’’(fc +  l}] =  £'[(x(fc+1)- x ( *  +l))(x(A; + 1) -  x(fc + 1))^]. (3.9)

These covariance matrices reflect the certainty in the state estimate, and are also estimated in the 

Kalman filtering process.

At time step k, the prediction (or prior) for the state estimate is given (from equation 3.1)

by

x “ (A) +  1) =  A{k)^{k)  +  B(fc)u(A;), (3.10)

and the prediction covariance

p-(fc +  1) =  A{k)P{k)A^{k)  +  Q(fc). (3.11)

After an observation z{k +  1) has been obtained, the corrected (or posterior) state estimate is

calculated as

x(A: +  1) =  x “ (A: + 1) +  K{k  +  l)(z(k +  1) -  U{k +  l)5t~(k +  1)), (3.12)

with updated error covariance

F{k  +  1) =  [I -  K{k  +  l)H(A) +  1)]P-(A) +  1), (3.13)

where I is the n x n identity matrix and K(fc + 1) the Kalman gain matrix, given by

K(fc +  1) =  p - ( i t  +  l)H(fc +  1)[H(A: +  l)P"(fc +  l)H'^(fc +  1) +  R(* +  1)]“ ‘. (3.14)

The form of equation 3.12 and the gain matrix K will now be derived.

The mean-square error between the corrected estimate x(A)) and the true state x(A)} (given

as the covariance matrix I*{k) in equation 3.9) is effectively conditioned on the set of all the

^Strictly, these matrices are second moment matrices; however, the errors G~{k)  and e(A:) are implicitly assumed 

to have zero mean, in which case the matrices are second central moment matrices. However, we shall follow com­

mon practice [BSF88] and refer to them as covariance matrices.
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measurements Z{k) = {z(0), z ( l ) , . . . ,  z(A;)} taken up to time step k, i.e. the state estimate 

x(/j) must be considered as the estimate of true state x(fc) given the sequence of measurements 

Z{k). If we omit the time index k for brevity, this can be written:

E'[(x — x)^(x  — x)|Z] =  E[(x^x — x^x — x^x +  x^x)|Z]

— £^[x^x|Z] -  E[x^|Z]x -  x^£'[x|Z] +  x^x

=  E[x^x|Z] +  (x -  E[x|Z])^(x -  E[x|Z]) -  E[x:^|Z]E[x|Z],
(3.15)

where x is taken out of the expectation operator owing to its functional dependency on Z (equa­

tion 3.12). Equation 3.15 holds the key to the formulation of the Kalman filter. In the last line, 

only the middle term has a dependency on the filter’s estimate x, so the best estimate is obtained 

when this middle term, which is positive semi-definite, is zero, i.e. when

x{k) = E[yi(k)\Z(k)l  (3.16)

where the time step k has been reinstated. This equation provides a general criteria for a filter that 

minimises mean-square error. In the Gaussian case, it leads to the formulation of the recursive 

Kalman filter. Not only does this serve to minimise the mean-square error, but also it guarantees 

an unbiased state estimate. In fact equation 3.16 states that the estimate is equal to the mean 

value of the state which is the definition of an unbiased estimator [SpiSO].

If the state x(fc) is now considered to be conditioned on the measurement history Z(k),  and 

a prior optimal estimate (prediction) x “ (fc) and its covariance P~{k)  are available, then, pro­

vided the state evolution and observation noise sources are Gaussian, the form of the probability 

density function for the state x(fc) is

f {x(k)) = N{y. - (k) ,p-{k)) ,  (3.17)

where N{a, B)  denotes a normal or Gaussian distribution with mean a and covariance matrix 

B. The state and observation are related by equation 3.2, repeated here

z(k) = Jl(k):x.{k) -f w{k).  (3.18)

Thus, given that w(A:) is a zero mean Gaussian process with covariance R  (equation 3.4), the 

probability density function of the random variable z{k) may be written

f{z{k)) = N{H(k)y: -{k) , 'H(k)p-(k) ï l ‘̂ (k) + R{k)),  (3.19)

together with the distribution for z (A;) given full knowledge of x(A:), equation 3.18 also implies 

that:

/(z W Ix M ) =  iV(H(A:)x(fc),R(fc)). (3.20)
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Bayes theorem may now be used to combine the knowledge of the state and observation densities 

(equations 3.19 and 3.20) to provide an estimate of the state given the measurements Z{k):

(3.21)

which, if we substitute for the appropriate distributions, becomes

/( (  ( )l ( )) ^(H(fc)S-(/i),H(fc)p-(A;)H^(fc) +  R(A;))'  ̂ ’

After some rather involved manipulation (presented in appendix C), it can be seen that this ex­

pression is itself a normal distribution with mean

x(fc) =  x - ( t )  +  p-(fc)H^(/fc)[H(fc)p-(fc)H^(fc) +  R(fc)]-I(z(yt) -  H(fc)x-(fc)), (3.23) 

and covariance

P(k) =  [(p -(k ))-^  +  H ^(k)R -^(Jc)H (k)]-\ (3.24)

Equation 3.23 is the same as the Kalman filter’s state correction equation 3.12, with the full ex­

pression for the Kalman gain (equation 3.14) inserted. If we apply the matrix inversion lemma 

(appendix B) to equation 3.24, it yields the Kalman filter state covariance update equation pre­

sented earlier (equation 3.13).

Thus, by considering the estimate error to be conditioned on the measurement history, it is 

possible to derive an estimator for linear systems with Gaussian noise sources which produces 

estimates with a mean that is both unbiased and also minimises the mean square estimation er­

ror (equations 3,15 and 3,16), Inspection of the mean and variance of the estimate conditioned 

on the measurement history, from combination of prediction and observation using Bayes theo­

rem, yields the Kalman filter state estimate x(k) update and covariance P(k) update equations 

respectively.

3.2 The extended Kalman filter

The Kalman filter equations presented so far apply to linear systems with Gaussian noise inputs. 

However, many systems of practical interest are non-linear, for example the perspective imaging 

process discussed in chapter 2, In the non-linear case, a technique called the extended Kalman 

filter (EKF) has been devised [BSF88], In the EKF, the non-linear state evolution and measure­

ment equations are linearised (typically to the first order) around the predicted state estimate, and 

then this linearised system is used to compute the Kalman gain for estimate and covariance up­

date. Unlike the linear Kalman filter with Gaussian noise sources, optimality is not guaranteed in 

the EKF; the Gaussian nature of the noise sources is not preserved by the non-linear transforma­

tions in the state evolution and observation equations. With the loss of the Gaussian assumption,



3.2. The extended Kalman filter 67

the distributions assumed in equations 3.19,3.20 and 3.22 are no longer valid, so the gains com­

puted using this assumption will no longer be optimal. Furthermore, in some circumstances, the 

EKF can diverge from the true state; a poor initial estimate of the state will lead to linearisation 

of the filter equations about the incorrect point in state space, and inappropriate calculation of 

the Kalman gain. Estimate updates computed with this erroneous gain may diverge even further 

from the true state, and the next update will make the situation even worse. However, despite 

this danger, the EKF has been applied successfully in many practical situations and remains a 

popular choice of estimator for non-linear systems [LDW91a, SSDW95, MAD99]. This popu­

larity owes much to the BKF’s computationally straightforward recursive implementation.

A system with non-linear state and measurement equations may be written

x(k  +  1) =  a(x(A:), u(Ar), k) v(fc), (3.25)

z{k) = h(x(A:), k) 4- w(fc}, (3.26)

where a( ) is the non-linear state evolution equation and h(-) the non-linear observation equa­

tion. Equation 3.25 is analogous to the linear state evolution equation 3.1, and equation 3.26 to 

the linear observation equation 3.2. The control input is u (A;), and w ( A;) and v(A:) are zero-mean 

noise sources (with zero autocorrelation and cross-correlation) as earlier (equations 3.3 -  3.5).

Now assume that an estimate x(fc) of the true state x{k) is available. If we use the identity

Ax(fc) =  x(fc) -  x “ (A;), (3.27)

equation 3.25 may be rewritten

x “ (fc +  1) +  Ax(fc +  1) =  a(x"(&) -1- Ax(fc), u(A;), k) -f v(A:), (3.28)

and then linearised to first order:

da'
A x -|- v(/j). (3.29)dxx~{k  +  1) +  Ax(Â: -f 1) % a (x “ (Â:), u{k),k)  +

The measurement equation may also be couched in terms of x 4- Ax:

z{k) = h{x~{k) 4- Ax{k) , k )  4- w(A:), 

which linearises (to first order) as

z(k) % h(x (k),k) 4-
dh
dx

A x +  w(k).

(3.30)

(3.31)

Equations 3.29 and 3.31 both contain matrices of partial derivatives.

av =

d a i d a \

^a
d x i d x 2  •••
d a2 da2

dx d x \ d x 2
(3.32)
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and
dhi dhi
dx i dx2
dh2 dh.2
dxi dX2

(3.33)

respectively. The subscripted an and hn refer to row n of the state evolution function and ob­

servation function respectively, and Xn the element of the state vector.

Given these linearised equations, update rules for the state estimate and its covariance may 

be written

x(Ar) =  x “ (fc) +  K{k){z{k) -  h{x~[k) , k))^ (3.34)

and

P{k) =  (I -  K(*;)hii-„,)p-(fc), (3.35)

with Kalman gain K(fc) now given by

K (t) =  +  n { k ) ] - \

The state prediction step is handled as follows

x~{k  +  1) =  a(x(fc), u(k),k),  

and state covariance prediction by

P (fc +  1) =  -I-Q(A;),

(3.36)

(3.37)

(3.38)

which is analogous to equation 3.11 in the linear Kalman filter. Note that the state prediction 

equation 3.37 retains the non-linear form of the state evolution equation 3.25, whilst equation 

3.38 uses the approximate linearised system to propagate the state covariance matrix forward in 

time.

3.3 Practicalities -  initialisation and data association
Two issues that are important for practical Kalman filtering applications are initialisation, which 

was mentioned above, and data association. These are covered in depth in chapter 6 but merit 

coverage here as a pre-cursor to the experiments presented in chapter 5. As noted above, esti­

mates produced by the extended Kalman filter are not guaranteed to converge to the true value 

of the state, and poor initialisation can lead to divergence from the onset of tracking.

Data association is the task of selecting observed features for incorporation into the filter’s 

estimate. The measurement equation 3.2 states that the observation of z{k) is a transformed 

version of the state corrupted by additive Gaussian noise. This implies a single observation is
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available which corresponds to the true state. We know from chapter 2 that our image process­

ing algorithms do not extract crop plants alone, but both crop and weed features, together with 

some soil pixels. Because we have both “target” crop plant features and “clutter” weed features, 

there is no longer a simple one-to-one correspondence between observed features and the state 

estimate, so some method to pair observations with predicted feature positions is required^. This 

is the task of data association and is vital to successful estimation.

In chapters 4 and 5 we give details of the process and measurement models used in the 

crop grid tracker, and results from initial experiments with the tracker. These results could not 

have been obtained without a good estimate of the initial state and a data association policy, and 

algorithms fulfilling both of these roles are presented in chapter 6.

3.4 Controllability and observability
As we have noted, the Kalman filter has proved to be a popular tool in computer vision [DF90, 

Hai92a, SWB92, Har92b, BCZ93]. In contrast to the widespread use of the Kalman filter, two 

issues raised by Kalman, controllability and observability, are seldom seen in the machine vision 

literature, although Wildenberg [W1197] has shown their value as a design aid for linear time- 

invariant Kalman filters. The two concepts will first be defined for linear time-invariant (LTI) 

systems and their implications for Kalman filtering discussed. In this discussion, a new term 

corruptibility is introduced as a parallel concept for controllability relating to noise inputs.

Finally, a novel test for the observability of an extended Kalman filter which has linear state 

evolution equations with a non-linear measurement model is derived. Extended Kalman filters 

with this mixed linear/non-linear form are of particular interest in this thesis, as will become clear 

in the next chapter. The new formulation of the observability test is required for the analysis of 

such mixed filters.

3.4.1 Controllability and observability in LTI systems

The definitions and results given here for controllability and observability of linear systems may 

be found in many standard textbooks [Gop84, Jaz70]. In the discussion below, the linear, discrete 

time invariant, systems are given by

x(A; 4-1) =  Ax(fc)-|-Bu(Â;), (3.39)

z(k) = Hx(fc), (3.40)

which are deterministic systems analogous to the stochastic systems in equations 3.1 and 3.2.

'^Even if weed features were not observed, data association would be needed to match observed crop features with 

their corresponding positions in the crop grid.
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3.4.2 Controllability

A system is said to be controllable if every state vector x(fc) can be transformed to a desired 

state in finite time by the application of unconstrained control inputs u{k) [Gop84]. Evidently 

then, an wncontrollable system is one where some elements of the state vector x(fc) cannot be 

affected by the control input.

The test for controllability of a linear time-invariant system is given by:

A system  with state vector x of dimension n, is controllable if the controllability ma­

trix

C = [B, A B , A B ,  . . . ,A " - 'B ] ,  

has column rank n (i.e. n linearly independent columns).

(3.41)

The proof of this statement is based on successive substitution of the state evolution equation 

(equation 3.39) into itself to find a solution for x(A) in terms of an original state x(0) and a 

series of control inputs u (0 ).. .u{N  — 1).

3.4.3 Observability

A system is said to be observable at a time step ko if, for a state x(A:o) at that time, there is a finite 

k i>  ko such that knowledge of the outputs z from ko to ki are sufficient to fully determine the 

state x(fco). Thus it is evident that an ««observable system is one where the values of some 

elements in the state vector at time ko may not be determined from examination of the system 

output regardless of the number of observations taken. That observability is specified over an 

interval highlights the fact that whilst a single observation of the system at time k may not be 

enough to obtain the complete state, additional observations may allow the full state information 

to be accumulated. Evidently, for time invariant systems, the time ko is unimportant.

For linear time invariant systems, the test for observability is given by:

A system  with state vector x  of dimension n is observable if the observability matrix

H

HA

o  =
HA*

(3.42)

HA n —1
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has row rank n (i.e. n linearly independent rows).

The proof of this test [Gop84] uses the state evolution and observation equations (3.39 and 3.40) 

to determine the value of z(fc) for 0 < k < n — 1 in terms of x (0) and the known control inputs 

u(k) during that time period. It is then straightforward to show that x(0) can be completely 

determined (and is therefore observable) if the matrix O has full row rank.

3.4.4 Implications for Kalman filtering

The above tests for controllability and observability may also be applied to stochastic systems, 

whose evolution and observation models are written:

x(A: +  1) =  Ax(A;) +  Bu(A:) +  V v ( /j) ,  (3.43)

z{k) = Hx(/?) +  w{k).  (3.44)

These equations are repeated from equations 3.1 and 3.2, with a slight change of notation. The 

system Gaussian noise input v(A:), which was described as having zero mean and covariance 

Q{k) in section 3.1.1 is now considered to have zero mean and unit variance. The matrix V 

describes the gains applied to the unit noise source v{k),  and stipulates how the noise affects 

the state evolution; the covariance of the noise influencing the state evolution is Q = V ^V . The 

noise terms may simply be treated as another control input, and the controllability test described 

above (equation 3.41) may be applied, using matrix V  in place of B; the result indicates the 

ability of the noise to affect the state. The additive zero-mean Gaussian noise term w in (3.44) 

clearly does not affect the measure of observability, which is solely dependent on H and A. The 

noise source does, however affect the meaning of observability. If the deterministic system of 

equations 3.39 and 3.40 is observable, exact information about the state x may be derived from

the measurements z. If the stochastic system of equations 3.43 and 3.44 is observable, it means

that the uncertain estimate x(&) of the exact state x( A:) can be determined from the measurements 

z(k).

The Kalman filter prediction equations are written here again; these will be used to illustrate 

the implications of controllability and observability in Kalman filter performance.

x “ (A; 4-1) =  Ax(A;)-f Bu(A:), (3.45)

p - ( i :  +  l) =  AP(fc)A'^ +  Q. (3.46)

Q  is the covariance matrix of the system noise, i.e. V ^V . This is also independent of time.
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3.4.5 Controllability

If the pair A and B form an uncontrollable system, this has no implications for the Kalman filter 

other than that the control inputs u will not affect every element of the state estimate x during 

the prediction step. This will not affect tracking performance unless, of course, it reveals a 

flaw in the modelling of the system dynamics. However, if the system formed by A and V is 

uncontrollable, this means that the Gaussian noise sources in v do not affect all of elements of 

the state, i.e. some state elements are uncorrupted by the system noise. The diagonal elements 

of P  corresponding to these “incorruptible” states will be driven to zero by the Kalman filter 

(which minimises the trace of P), and once this has happened, the estimates of these states are 

fixed; no further observations will alter their values. To test whether this collapse of variance 

will occur (i.e. whether noise can affect all states), the following test of corruptibility may be 

used:

A system  with state vector x of dimension n, will be fully corruptible if the corrupt­

ibility matrix

C„ = [V, A V ,. . . ,  A ’V , A " - i V ] ,  (3.47)

has column rank n (i.e. n linearly independent columns).

This test is analogous to the controllability test for the A, B pair (equation 3.41), and is derived in 

a similar manner, by successively substituting equation 3.43 into itself to produce an expression 

for x(n — 1) in terms of a series control inputs u(A;) and noise inputs v (A;). The term corruptibil­

ity has been introduced here simply to distinguish between the ability of noise and control inputs 

to influence the state variables; the controllability test may be applied independently to the A, B 

pair of equation 3.43, and the corruptibility test to the A, V  pair. Wildenberg [Wil97] also tests 

whether a noise source can affect all state variables using the controllability test; in Wildenberg's 

filters, the only inputs modelled are noise, so the controllability/corruptibility distinction is not 

required.

Although such an approach may at first seem a little curious, there is sometimes good rea­

son to allow the variance of an estimate to collapse to zero. Reynard et al [RWBM96] estimate 

the mean of a process; clearly a mean is a single, fixed quantity which does not vary with time 

(it is statistically stationary). If the estimation process allows accurate evaluation of the mean 

it is quite correct to use the process covariance to constrain the value of the estimated mean by 

allowing the estimate variance to reduce to zero (the issue of controllability of this system is dis­

cussed in depth in the later work by Wildenberg [Wil97]). The state describing the process mean
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is incorruptible whilst the other, dynamic, states are corruptible, as is usual for all states in most 

Kalman filters. In the work of Waite et al [WOFH93], where the covariance matrix is used to 

provide partial constraints on aligning patches of range data, it is noted that in certain degenerate 

cases there are problems with their algorithm, although this is not named as a controllability or 

corruptibility problem.

Inspection of equation 3.46, which governs the evolution of the state covariance P, will 

confirm that certain diagonal elements cannot increase (and hence the mean-square error on the 

corresponding state estimate cannot increase) if the A,V pair are uncontrollable. The first term 

in the equation, AP(A:) describes the process of noise transfer between states during state 

evolution -  by definition, in an uncontrollable system noise cannot transfer into any uncontrol­

lable state via this mechanism, therefore it cannot be responsible for any increase in the variance 

of uncontrollable states. The second term in (3.46) is the covariance Q (= V ^V ) which rep­

resents the direct noise input; evidently in an incorruptible system this contribution to P must 

be zero for any incorruptible states (this follows from the form of V, which must have zero ele­

ments in the row corresponding to the incorruptible state, otherwise noise is being directly input 

to that state at each iteration). If the diagonal elements of P corresponding to incorruptible states 

cannot increase, the Kalman filter will drive these elements toward zero, and new observations 

will have negligible influence on the estimate of the incorruptible states.

3.4.6 Observability

Whilst incorruptible systems are sometimes desirable for Kalman Altering, a Kalman filter built 

around a system with unobservable states will simply not work. By definition, an unobservable 

state is one about which no information may be obtained through the observation equations. In 

the absence of information, the filter’s estimate for that state will not converge on a meaningful 

solution.

3.5 Corruptibility, observability and the EKF

The controllability and observability conditions for linear systems are well known in control the­

ory, but in general no similar tests are available for discrete-time non-linear systems (although 

concepts such as local controllability are known for some continuous-time non-linear systems 

[OB97]). The extended Kalman filter, however, approximates the underlying non-linear sys­

tem with a series of linear approximations. It is the controllability and observability of this lin­

earised system that is important. Of course, if the linearisation does not reflect the underlying 

non-linear system accurately enough, then these tests will be meaningless. However, if the ap­

proximated linearised system is a poor reflection of the underlying non-linear system then the
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extended Kalman filter will in any case be unlikely to converge on a respectable estimate regard­

less of controllability, corruptibility and observability issues.

As will be seen in the next chapter, the filter of interest in this thesis has a linear state evo­

lution model, together with non-linear observation equations:

x(A;-t-1) =  Ax(fc)-1- Bu(A;)-1- Vv(fc), (3.48)

z{k) = h{x(k)^k) +  w(k).  (3.49)

The corruptibility of this system may be determined using the rank of the matrix Cy (equation 

3.47), whilst a new method must be devised to determine the observability of the linearised ob­

servation system.

Recall from above that by putting

h(x(A:)) =  h(x(A:) -f Ax(A:)), (3.50)

where

Ax(A;) =  x(&) -  x(&), (3.51)

the non-linear function h(x(&)) may be linearised about the estimated x(A;) using a first-order 

Taylor series expansion:

h(x(A:)) % h(x(fc)) +  hj^(^)Ax(A;), (3.52)

where is the matrix of partial derivatives of h(x(A:)) with respect to the elements of x(A:) 

evaluated at the estimated x(fc). If we use this linear approximation, equation 3.49 may be 

rewritten as:

z(k) = h(x(fc)) +  hx(fc)Ax(A:) =  h(x(fc)) hĵ (A:)(x(A;) -  x(A:)). (3.53)

Given that the form of h and together with the value of x(fc) are known, equation 3.53

may be rewritten as a sum of known estimated and unknown parts

z{k) =  (h(x(A:)) -  h^k)yi{k)) -f hj^(t)x(A;) =  F(x(fc)) -f hjt(t)x(A:). (3.54)

If we use equations 3.48 and 3.54, we can now derive an expression for the observability matrix 

Oiin for this linearised system. Thus, if we start arbitrarily at time A: =  0, a series of expressions 

for z(As) may be derived:

z(0) =  F(x(0)) +  h*(o)x(0) (3.55)

z(l) =  F (x(l)) +  h i(i)x (l)
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=  F (x(l)) +  hi(i)[Ax(0) +  Bu(0)]

z(2) =  F(x(2)) +  hii(2)x(2)

=  F(x(2)) +  hü(2)[A2x(0) +  ABu(O) +  Bu(l)]
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(3.56)

(3.57)

z(ra -  1) =  F(x(n -  1)) +  hüjn.ijA " 'x(O)

~t“ ^Bu(O) +  ■ ■ • +  ABu(w — 2) +  B u ( t i  — 1)], (3.58)

where n is the dimension of the state vector x(A;). Equations 3.55 -  3.58 may be re-arranged 

into a matrix-vector form as follows

l_ ■ z(0) -  F(x(0))
hx(o)

z(l) -  F (x(l)) -  h^(i)Bu(0)
hx(i)A

x(0) =

_ ^x(n-l)A
z(n -  1) -  F{k{n -  1)) -  hj^(^_i)[A"'-^Bu(0) H-----

-|-ABu(?% — 2) T B u(ti — 1)]
(3.59)

For x(0) to be determined from equation 3.59, it can be seen that the matrix on the left hand 

side of the equation must have row rank n, where n is the dimension of x. This matrix is the 

equivalent of the observability matrix O given in equation 3.42. The similarities in structure 

stand out; in place of the linear observation matrices H are the matrices of partial derivatives 

of the observation function at a series of time steps k. This allows us to state an observability 

condition for the linearised system as follows:

A system  with state vector x of dimension n and a non-linear observation model 

linearised at su ccessive  states x(/?) is observable if the linearised observability matrix

hx(o)

Olin =
hx(oA*

hx(n-l)A ’̂  ^

(3.60)

has row rank n (i.e. n linearly independent rows) regardless of the values of Sc(k).

If the rank of Oun is dependent on the value of the state vector x(k), then it may be possible to 

detect conditions where the system becomes unobservable, at which point observations should 

not be used to update the filter estimates. If it is possible to show that, regardless of the value of
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x(k),  the matrix has rank greater than or equal to the dimension of the state vector, then 

evidently the matrix Oun will also satisfy the rank condition and the linearised system will be 

observable.

3.6 Summary
The linear estimator known as the Kalman filter has been described, and its variant for non-linear 

systems, the extended Kalman filter, presented. The Kalman filter enables estimation of the state 

variable and its covariance to be calculated recursively and guarantees unbiased minimum mean- 

square error estimates in linear systems with Gaussian noise sources. Although the extended 

Kalman filter cannot offer the same guarantees, it is a useful tool for non-linear estimation and 

retains the recursive computational structure of the Kalman filter that makes it convenient for 

real-time tasks such as tracking the crop grid structure from an autonomous horticultural vehicle.

In addition to developing the Kalman filter, R.E. Kalman also introduced the concepts of 

controllability and observability to aid the analysis of linear state-space systems. Although these 

contributions are less widely mentioned in the vision literature, they can be useful in predicting 

certain aspects of a Kalman filter’s behaviour. Controllability implies that every element of the 

filter’s state vector will be affected by system control inputs. An analogous concept of corrupt­

ibility has been proposed which determines whether each element of the filter’s state vector may 

be affected by system noise. If a state is incorruptible, the estimate variance will be driven to 

zero by the filter, and further measurements of this state will not affect the filter’s estimate. It 

has been noted that in some cases, incorruptibility is a desirable feature. However, if a state is 

unobservable, then the filter will simply not be able to estimate the whole of that state. At least 

one component of any estimate it produces will be completely unreliable. The system of interest 

to this thesis has a linear state evolution model, with non-linear observation model (the perspec­

tive camera). To test the observability of this system a novel condition has been derived using 

the linearised observation equations from the extended Kalman filter.

The next chapter describes the state evolution and observation equations for the filters de­

signed to track the crop grid structure, both off-line on a desktop workstation during system de­

velopment and on-line on the autonomous vehicle itself during systems testing and final evalu­

ation. The tests for corruptibility and observability are put into practice to check the viability of 

these filters prior to their implementation, which is detailed in chapter 5.



Chapter 4

Process and observation models for crop grid 

tracking

Now that the extended Kalman filter has been introduced, together with tests for its controllabil­

ity, corruptibility and observability, it is appropriate to specify the state evolution and observa­

tion models for the crop grid tracking problem that is of central concern to this thesis. This chap­

ter outlines evolution and observation models for filters that run off-line on digitised sequences 

captured from the vehicle, and also the vision system filter that runs on-line on the autonomous 

vehicle. Experimental trials carried out with these filters are detailed in chapter 5.

Sections 4.1 -  4.5 focus on the analysis and explanation of the off-line filters. These have 

been designed to test the principle of crop grid tracking off-line before full implementation on 

the autonomous vehicle. Two off-line filters are discussed; in the first, the crop grid spacing 

parameters f  and are held at fixed values, and in the second they are estimated by the filter. 

The state evolution and observation models are described for each filter separately. In both cases 

there is a linear state evolution model and non-linear observation model, the non-linearity arising 

fî om the perspective projection between the ground plane of the plants and the image plane of 

the vehicle’s camera.

The corruptibility and observability of these two filters is examined using the tests devel­

oped in the previous chapter [SBM98]. To aid the observability analysis, two alternative (but 

equivalent) formulations of the Kalman filter algorithm are presented. The first is the informa­

tion, or inverse covariance filter. Its equivalence with the Kalman filter equations of chapter 3 

is demonstrated and then it is used to develop a parallel update filter (section 4.3.2). This paral­

lel update filter incorporates several observations simultaneously, in contrast with the sequential 

update of the standard Kalman filter equations, and as such it seems a more “natural” candidate 

for use on a set of observations that are extracted from a single image. The two formulations

’These dictate the space between crop rows (f) and within each row (T). See chapter 2 and figure 4.1 for details.
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of Kalman filter are mathematically identical, but in the parallel update filter, the conditions for 

observability are more easily explained (and they hold for any equivalent serial implementation 

of the Kalman filtering algorithm).

Finally, section 4.6 describes the on-line system architecture designed by Hague for the 

autonomous vehicle [SHMB99]. This architecture makes use of a third alternative Kalman filter 

formulation, the data compression filter^, to integrate the crop grid tracker with the vehicle’s 

dead-reckoning system. In the on-line architecture, the vision system is essentially treated as an 

intelligent sensor. The dead-reckoning system (chapter 1) sends a state prediction to the vision 

system which compresses the individual crop feature observations from the image into a single 

“pseudo-observation” with accompanying covariance matrix. These are passed back to the dead- 

reckoning system which treats them as a normal measurement (with covariance) to be used in 

the state estimate update.

4.1 State evolution model

-1
Row No. n 

0

-2

Line No. 
m

-1 o •

Figure 4.1: The grid model.

Figure 4.1 (repeated from chapter 2) shows the schematic view of a patch of crop. The 

model of the crop comprises the two grid spacing parameters f  and I, and the position of the ve- 

^Again, the data compression filter is mathematically equivalent to the Kalman filter of chapter 3.
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hide relative to the crop is specified by the lateral offset t^, forward distance Y  and bearing angle 

Two different filters are described here; in the first, the parameters f  and J are assumed to be 

constant, and are not estimated by the filter. In the second f  and I are variable and estimated by 

the filter as it traverses the field. Variation of r and Ï allows compensation for local disturbances 

in the planting pattern. The state evolution models for each case are given separately below.

4.1.1 The model with fixed grid parameters

In this filter, the state vector x(fc) comprises the three vehicle position variables x(A;) = 

[tx (k) , y  (A;), ^  {k)]' -̂ The equations describing their evolution between time k and A; +  1 are

x(A; +  1) =  l 3 x(A;) +  I 3

Ut.
Uy +  Vv(A:), (4.1)

where I 3  is the 3 x 3 identity matrix and the subscripted U values are control inputs relating to 

the vehicle’s motion between image frames. The noise gain matrix V is diagonal, such that

Y'^(k)Y{k) = Q(k) =

0

0

0 0 al(k)

(4.2)

The (7  ̂ terms relate to the mean-square error introduced at each prediction step.

It should be noted that the simple model of equation 4.1 does not reflect the non-linear kine­

matics of the vehicle, which are modelled more precisely by Hague and Tillett [HT96] as fol­

lows:
tx{k -f 1)

+  V(A:)v(A:). (4.3)

(c(t) +  sin

y(fc +  i) =  y(fc) +  ’‘‘ W  +  “2 W cos^(fc)

$(& +  1) _

Where ui and U2 are the incremental motions of the left and right driven wheels respectively 

and W  is the width of the vehicle between the driven wheels. Equation 4.3 holds if the vehicle 

is on a trajectory of low curvature. A different model holds for higher curvature travel such as 

the headland turn executed at the end of each row of crop, which may also be found in Hague 

and Tillett [HT96]. This thesis concentrates on low curvature travel along the crop rows, so the 

other motion models are of only incidental interest.

Unfortunately, owing to hardware limitations, it has not been possible to collect image data 

from the vehicle that can be temporally aligned with logged wheel velocities, so the model of 

equation 4.3 cannot be used off-line. However, given small values of ^(A:), such that cos Ÿ % 

1 and sin % 0, and equal wheel velocities u, it can be seen that equations 4.1 and 4.3 are
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approximately equal, with Ut^ = 0,U y  = u and =  0. Furthermore, the differences may be 

compensated for to some extent by the noise terms V (k)v{k) in equation 4.1, especially when 

the vehicle is travelling along a row of crop and Ut^ and tend to be small corrections not 

dissimilar to random inputs.

4.1.2 The model with estimated grid parameters

When the grid parameters r and J are variables to be estimated, the filter state vector becomes 

x(A;) =  [tx(k) , y  (A;), ^  {k) , f{k) , l{k)]'^, and the equation describing the evolution between 

time k and A; +  1 is

x(A: +  1 ) -  l 5 x(fc) +  I 5

Ut.

Uy

0

0

+  Vv(A;), (4.4)

where I5 is the 5 x 5 identity matrix and the subscripted U values are control inputs relating to the 

vehicle’s motion between image frames. It should be noted that, except for random variations 

due to noise, the mean plant spacings r and Ï are assumed to be constant. The noise gain matrix 

is diagonal, such that

V^(A;)V(A;) =  Q(A;) =

4  (A:) 

0 

0 

0 

0

0

al (k )

0

0

0

0

0

0

0

0

0

0

0

(4.5)

The terms relate to the mean-square error introduced at each prediction step. For t^, Y  and ^  

these are fixed, but for f  and Ï the <7  ̂terms are non-zero only when a new line of plants come into 

view or when a line of plants go out of view as the vehicle travels along the field. The reason for 

this is that process noise Q should be added only when the parameters being estimated change, 

and for the estimated mean values of the plant spacing parameters, this only happens when new 

plants appear in the image, or previously seen plants move out of the field of view.

4.1.3 Forward distance estimation

The forward distance measurement Y  illustrated in figure 4.1 describes the distance on the 

ground plane between the centre of the image and the crop plant nearest the bottom of the im­

age. As the vehicle progresses along the field, this plant will eventually pass out of the image 

and will no longer be observed; the next plant along the row will now be nearest to the bottom 

of the image.
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To keep the Y  estimate consistent with the position of the bottom-most line of crop plants in 

the image^, each time a line of plants passes out of the bottom of the image, the point of reference 

for Y  is moved to the plant which is now bottom-most in the image. If this event occurs at time 

step k' the change of reference is effected as follows:

Y(k'  +  1) =  Y{k') -f ï[k') +  Uy(k'). (4.6)

Note that in the case of the filter where r and J are kept fixed, I ( k )  is obviously constant. Uy {k' )  
is the control input change in Y  caused by vehicle motion between time k '  and k '  -f 1. In terms 

of the state evolution models, equation 4.6 implies subtle changes, depending on whether the 

grid parameters r and I  are estimated or not. These changes are detailed below.

4.1.4 Forward distance estimation with fixed grid parameters

In this case, the state evolution model of equation 4,1 remains unchanged, except that, if a line 

of plants passes out of the bottom of the image at time step k ' ,

x(A:' +  1) =  h ^ ik ')  + + Vv(fc'), (4.7)U y Y l

Uiÿ

i.e. the change of reference point for Y  is treated as a control input.

4.1.5 Forward distance estimation with estimated grid parameters

When the grid parameters are estimated, the quantity I { k )  is part of the state vector, so equation 

4.6 implies a change in the matrix A. If a line of plants passes out of the bottom of the image at 

time step A:', the state evolution model becomes

x(A:' -b 1) =

1 0 0 0 0 '  Ut  ̂ ■

0 1 0 0 1 Uy

0 0 1 0 0 x(Ar') -f

0 0 0 1 0 0

0 0 0 0 1 0

Y V v { k ) . (4.8)

By comparing equation 4.8 with equation 4.4 it can be seen that when the grid parameters are 

estimated, the increment of Y requires an alteration of the state evolution matrix A (A:). The new 

matrix A (A:') will not only affect the predicted value x “ (A:' -f 1) as desired, but also change the 

prediction covariance matrix P~ (A;-|-1), via equation 3.11. As might be expected, by adding the

^This event can be detected by projecting the predicted ground plane position of the bottom-most crop plant into 

image co-ordinates (using the observation equations) and checking whether this prediction lies within the bounds of 

the image. •
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uncertain value of I{k'), the variance on the Y  prediction will increase, and also the covariances 

between Y  and the other state variables. This is illustrated by taking the variance prediction 

equation

p -{ k ' +  1) =  A{k)P{k)A^{k)  + Q{k),  (4.9)

from which, if we drop the time indices for brevity and substitute appropriate values for A and 

P  we see:

P -  =

1 0 0 0 0 

0 1 0  0 1 

0 0 1 0  0 

0 0 0 1 0 

0 0 0 0 1

P l u P I y P U P U

P I y P h Py <s P h

P U Py <s p2 PU

P l f P h p 2 Pl-

P l i P h p l I P h

P l l

P h

P h

PrJ

Pn

1 0 0 0 0 

0 1 0  0 0 

0 0 1 0  0 

0 0 0 1 0 

0 1 0  0 1

+  Q

(4.10)

denotes the prior covariance between state variables a and 6. If we resolve the matrix prod­

uct, it yields the following expression for the state prediction covariance:

P U P U  +  PU P U P U PU
P U  + PU P U  + ‘̂ P h + P n P U  +  P li P U  + Ph P h + P n

P U P h  + P li p2 PU P li

P U PU + Ph p 2 Pl- Ph

P U P h + P fi P li Ph Pn

P “  =  P ?  _  p 2 ... +  P ? .  p 2 _  p 2 _  p 2 ^  +  Q

(4.11)

Thus, the elements in the row and column corresponding to the Y  estimate have all increased, 

and it can be seen that using the latest estimate for J to change the point of reference for the 

estimate of Y  increases the uncertainty on the Y  estimate and increases its covariance with the 

other state variables.

After time step k' and until the time at which the new bottom-most line of plants moves out 

of view, the A matrix reverts to the 5 X 5 identity matrix as in equation 4.4. During this period 

the estimate uncertainty evolves in a straightforward manner with the covariances unaffected by 

the state evolution matrix.

4.2 Observation model

In chapter 2, equations were given for the image positions of plant (m, n) in the crop grid, as a 

function of (t ;̂, F, r, /, m, n). These may be re-written as a vector function h, given by:

h(f^, W,y, r,/, m,n) =

^  nr +  ^{ml  -\-Y)
+  Cxdx n f ^  sin  ̂  — {ml  - \ -Y )  sincp -\-1

f  {ml  -f y  — ^ n f )  cos 4> Q
. ^  n f ^  sin 4> — {ml  -f Y )  sin (p +  tz

(4.12)
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The first row of this vector can be recognised as the equation for x /  (equation 2.5), the image x 

co-ordinate of the position of the plant at grid position (m, n), and the second line i sy/  (equation 

2.6), the corresponding image y co-ordinate. Cx and Cy give the image position of the camera’s 

optic axis, whilst dx and dy define the pixel dimensions and /  the focal length of the lens. With 

the introduction of h as in equation 4.12, the observed position z{k, m, n) of plant (m, n) at 

time step (A:) is given by the observation model

z{k, m, n) = h{tx, Y, r, m, n) -f w{k) (4.13)

where w(A:) is zero mean Gaussian noise with covariance matrix R  representing the uncertainty 

in measured feature position. As discussed in section 2.3.8, the noise on the measured feature 

position is not Gaussian, as it will be constituted of non-linear projection errors and the quanti­

sation of the pixel sampling of the image. However, the noise is likely to be uni-modal, and the 

normal distribution is suited to the extended Kalman filter framework, so such an approximation 

is practically expedient. A method for determining R  is given in section 4.2.5 below.

Equation 4.13 may be written as a function of the state vector x(A;) simply by substituting 

the appropriate set of variables [tx̂  Y, or [tx, Y, r, I]^ for x(/j) as appropriate. For the 

fixed parameter case, this gives

y f ( t x , Y , ^ , f J , m , n )
h(x(Ai), r, /, m, n) =

and when f  and Ï  are estimated

h(x(A:), m, n) =

(4.14)

(4.15)
Xf ( t x ,Y , ^ , r ,  l ,m,n)  

y f ( t x , Y , ' ^ , f J , m , n )

X f  and yj  are given in equations 2.5 and 2.6, and are also seen in equation 4.12.

4.2.1 The matrix of partial derivatives hx(t)

For the extended Kalman filter computations, the matrix of partial derivatives of the observa­

tion function with respect to the state variables is required. The matrices for the two filters are 

given for the cases of fixed and estimated crop grid parameters, followed by the functions for 

the derivatives.

4.2.2 Partial derivatives matrix with fixed grid parameters

In this case, the matrix of partial derivatives is defined by:

dxf dxj dx f
~dC ~dV W

x(A:),m,n j c { k ) , m , n x { k ) , m , n

^yy
~3Y W

L x(A:),m,n x { k ) , m , n K ( k ) , m , n  -

(4.16)
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4.2.3 Partial derivatives matrix with estimated grid parameters

When the grid parameters are also estimated, the derivatives of h with respect to f  and J are also 

required, leading to the matrix:

h x ( f c ) ( x ( A : ) , m , n )  =

d x f d x  j d x  j d x j d x f
~dT d r dl

x{k) ,m, n x{k) ,m, n x{k) , m, n x{k) , m, n x{k) ,m, n

d y j d y j d y j d y j d y j
W d r dl

x{k) ,m, n x{k) , m, n x( k) ,m, n x{k) ,m, n x {k ) , m, n -

4.2.4 The partial derivatives

The partial derivatives appearing in equations 4.16 and 4.17 may be obtained from equations 2.5 

and 2.6 by differentiation, resulting in:

d x f  _  f  1

dtj: dx ( ( ^ n r  — m l  — Y )  sin (f)-\-tz)''

dxj  f  n r  -  m l  — Y )  sin ( f ) t z ) ^ { n f { m l - \ - Y ) t x )  sin 4>

d Y  d x  { { " ^ n r  — m l  — Y )  s m c f ) tz)'^

d x f  f  {{ '9nf  — m l - Y )  sin 4 > - \ - t z )  { m l - \ - Y )  — { n r { m l - \ - Y ) - \ - tx)nr  sin (j)

(4.18)

(4.19)

dx — m l  — Y )  sin 0  +

d x f  _  f  ( ( ^ n r  — m l  — Y )  sin 0  +  t z )n  — {nr  +  ^ { m l  +  F )  +  t x ) n ^  sin (j>

d r  dx  { { ^ n r  — m l  — Y )  sin 4 > t z ) ' ^  ’

d x f  _  f  { { ^ n f  — m l  - Y ) s i n ( p Y t z ) m ' ^  Y  {nr - \ - ^ { m Ï 4 - Y )  - \ -tx)msin(f )
dJ dx — m l  — Y )  sin 4> +

and

d y f  f tz cos (j)
dY  dy {{^nr — m l  — Y) sin (f) Y  tz)"̂ ^

dyj _  —f  tznr cos (j)
d ^  dy {{^nf  — m l —Y) sin (!) Y  t z Y ^

dyj  _  —f  t z n^  cos (j)
dr dy {{^nr — m l  — Y) sin (j) Y  tz)'^^

dyj  _  /  tzm cos 4>
dl dy {{^nr — m l —Y)s\n(f) Y t z Y ’

All the symbols used are defined as above and in chapter 2.

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)
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4.2.5 Observation noise

The zero-mean Gaussian observation noise is quantified by a covariance matrix R. As we noted 

above, the noise is unlikely to be truly Gaussian, but the assumption is practically expedient. Ob­

servation noise reflects the uncertainty in the measurement process, and in the crop grid tracking 

application the measurement process is image processing. The measurements taken from the im­

age are the centroids of blob features extracted from the image, and the assumption is that a blob 

centroid represents the position of a plant (more specifically, its root) in the crop grid.

From the discussion of section 2.3.8, we know that the blob centroid is unlikely to be an 

accurate reflection of the plant position, but that the true centre is likely to lie within or near the 

feature. The observation noise covariance R  must reflect this proximity, which is most easily 

expressed on the ground plane. We can project the feature centroid, at pixel co-ordinate x jp, yjp, 

onto the ground plane point Xy,p, y- p̂ by using the camera calibration. The uncertainty of feature 

position on the ground plane may be expressed by the covariance matrix R^  ̂ =  diag[(7^^, cTŷ ], 

centred on x^jp, ywp- The terms and describe the variance of the observation noise on 

the ground plane and are set empirically. The observation covariance matrix R  should express 

the noise variance in terms of pixels, so we need to project the matrix R^; into the image, at pixel 

X/p, yjp. This is done using standard first order error propagation techniques like so.

(4.28)

Where the matrix of partial derivatives F^{x^p^ ywp), that performs the projection, is defined 

by

Fly --

dxf dxf
dxw

XwpiVwp ^WpiVwp
dyj

dx^ dXfjj
_ ^wpiVwp ŵpyVwp

(4.29)

In equation 4.29, partial derivatives of the function describing the image pixel co-ordinate x /  

and y/ are required in terms of the world ground plant co-ordinate Xuj and yiy. The functions x /  

and yj, derived from equations 2.3 and 2.4 in chapter 2 are given below:

/  (Z iy  COS ^  - \ - y y j S m ^
X f  =

Vf =

dx Xyj sin — ŷ j cos Ç sin 0  -f t

f  (—Xyj sin ^  COS 4>-\- yw cos ^  cos 4> ty)

+  Cxi

+ C y i

(4.30)

(4.31)dy Xyj sin ^  sin ^  — yyj cos sin ^ 

where ^  and tx come from the vehicle’s state estimate, (f> is the angle of the camera’s optic axis 

to the vertical, /  is the focal length of the camera’s lens, dx and dy the dimensions of the pixels 

on the image plane and Cxi Cy the pixel co-ordinate of the camera’s optic axis.
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4.3 Alternative filter formulations
There are many alternative implementations of the Kalman filter and extended Kalman filter al­

gorithms presented in the previous chapter, which have differing computational and explanatory 

benefits. Three such implementations are detailed in this thesis, starting with the information fil­

ter, also known as the inverse covariance filter. This formulation is not of direct concern to the 

filter systems implemented, but is given to aid explanation of the parallel update and data com­

pression filters detailed subsequently, and to show equivalence between the alternative filters 

and the standard Kalman filter algorithms as given in chapter 3.

The second alternative formulation given is the parallel update filter, where a batch of ob­

servations are integrated into the state estimate simultaneously. This implementation will prove 

useful in demonstrating the observability properties of the two off-line filters detailed above. At 

the end of this chapter, the on-line vision system is described; to aid this description the third 

Kalman filter variant, the data compression filter, is developed in section 4.6.

4.3.1 The information filter

The information filter, or inverse covariance filter [May79], is a formulation of the Kalman filter 

which has update rules for the inverse of the state covariance matrix, (&), and the product of

this inverse matrix and the state estimate, (fc)x(A:). In practice, the information filter may 

offer increased numerical stability over the standard filter equations, in particular when the state 

covariance matrix has small condition number. In such situations the inverse covariance matrix 

will be better conditioned. However, such poor conditioning is not a problem in our filters^, and 

the information filter form is used in this thesis solely to aid explanation of the parallel update 

and data compression (section 4.6) filters.

The update equations of the linear information filter are

p - i( / t  +  l) =  (p -)-i(fc  +  l) +  H^(fc +  l ) R - ‘ (fc +  l)H (fc+ l) , (4.32)

and

p - ‘ (/c +  l)x(fc +  l) =  ( p - ) - '( *  +  l)x-(fc +  l) +  H ^(fc+ l)R -'(fc  +  l)z(A: +  l). (4.33)

Equation 4.32 is clearly the inverse of the Kalman filter covariance derived in equation 3.24, 

whilst the state update equation (equation 4.33) may be derived from the standard Kalman filter 

update equation

x(fc) =  x-(fc) +  p-(fc)H^(A)[H(fc)p-(fc)H^(fc) +  R(ife)]-i(z(A) -  H(fc)x-(*)), (4.34)

'̂ We maintain estimates of t x ,Y, r  and Ï  in metres and ^  in radians to ensure that the elements o f the covariance 

matrices are of similar magnitude. •
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as follows. First, multiply both sides of equation 4,34 by (the time indices have been 

dropped for brevity):

P-^X = P - I [x -  +  P -H ^ [H P  H ^ +  R j-^ z  -  H x")], (4.35)

and substitute equation 4.32 into the right hand side:

P-^X = [(P -)-^  +  H^R-^H ][x~ +  P -H ^ [H P -H ^  +  R]"^(z -  H x ')] . (4.36)

If we then re-arrange

p - 'x  =  [ ( P - ) - ‘ +  H ^ R -‘H ]x -+

[H ^ [H (p -)-‘H ^ + R ]-‘] +  H ^ R -‘H P - H ^ [ H ( p - ) - ‘H ^ +  R ]- '[z  -  H x ],
(4.37)

factorise,

P-^X =  [ (P -) - i  -f H ^ R -iH ]x -+
 ̂  ̂ (4.38)

H ^ R -i[R  -k H (P -)- iH ^ ][R -f  H (P - )- iH ^ ]- i[z  -  H x '] ,

and finally simplify (and reinstate the time step), we produce equation 4.33 above

p - ‘ (*:+l)x(fc +  l) =  (p -)- i( fc + l)x -(fc  +  l) +  H^(* +  l)R -i(fc +  l)z(fc +  l). (4.39)

In filters with non-linear observation function (z{k) = h(x(A:) )) in which the matrix of par­

tial derivatives of h(x(/?)) evaluated at the prediction point is denoted the information

filter equations 4.32 and 4.33 become

p - ‘ (*; +  1) =  ( p - ) - ‘(fc +  1) +  hT _(,+^,R -'(t +  l)h j,_ (w ), (4.40)

and

P~^(fc-|-l)x(A:-1-1) =  [(P~) -f-1) - | - -1- 1)R (A:-1-1)4-

+  l)[z(A: 4-1) -  h (x -(*  +  1))],
(4.41)

respectively. With the equivalence between the information filter and standard Kalman filter of 

chapter 3 demonstrated, the parallel update filter can be introduced and its equivalence with the 

Kalman filter proved in a straightforward manner.

4.3.2 The parallel update filter

The Kalman filter mechanism described in chapter 3 is essentially a serial update filter. At 

each time-step k, a single observation is incorporated into the filter. When several measure­

ments become available simultaneously^, an equivalent method may be used which incorpo­

rates all of the simultaneous observations in a single step, i.e. a parallel update Kalman filter 

^For example, when many features are extracted from a single image.
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[WCD76, LDW91a]. The basic method is to construct batch quantities containing information 

about the observations, which are then used in the standard Kalman filter equations as explained 

below. The equivalence between the serial and parallel update methods is also shown.

If z(/j +  1, s) is the measurement of S  collected at time A; +  1 (one measurement s 

for each m, n grid index pair), with observation matrix H(A; +  1, s), then the batch quantities 

describing the set of observations and their observation matrices may be formed by stacking the 

S  measurements and matrices as follows:

z(k +  1) =

H(A:+1) =

z{k +  1, 1) 

z(k 4- 1, 2)

z{k H- 1, S)

H (fc + l,l )

H (fc+1,2)

( 4 . 4 2 )

( 4 . 4 3 )

H(A :+1,5)

An associated measurement covariance matrix R(A:4-1) is composed of the S  covariances R(A;+ 

l , s )

’’ r(A; + 1, 1) 0 . . .  0

0 R(A: +  1,2) . . .  0
R(A; +  1) = (4.44)

0 0 . . .  R ( A : + 1 , 5 )

These three block quantities may now be substituted directly into the filter update equations 

(equations 3.12, 3.13 and 3.14). Again, for the non-linear case, the matrix H  is simply replaced 

by the matrix of partial derivatives of the observation function with respect to the state variables.

4.3.3 Equivalence of update schemes

The information filter was introduced above in order to demonstrate simply the equivalence be­

tween the parallel update filter and the standard recursive formulation. To show the equivalence, 

we begin with the update equations for the information filter:

P-1(*+1) =  ( P - ) - '( W )  +  H^(fc+l)R“ ‘ (W )H (fc+l), (4.45)

p - ‘ ( f c f l ) x ( f c + l )  =  ( P “ ) “ ‘ ( / i ; + l ) x - ( f c + l )  +  ( 4 . 4 6 )

Given a set of S  measurements z(A; -|-1, s) and corresponding matrices H(A: -1- 1, s) and K{k -f 

1, s), the inverse covariance and projected state estimate after the incorporation of the S  mea-



4.3, Alternative filter formulations 89

surements will be
s

p -i( fc f l)s  =  ( p - ) - ‘ ( f c + l ) o  +  5 ^ H ^ ( W , s ) R - H * + l . s ) H ( f c + l , s ) ,  ( 4 . 4 7 )

S = 1

P-I(fc+I)x(fcfl)s =  (P -)-'(fcfl)x -(fcfl)o  +  ^ H ^ ( W , s ) R “ *(W ,s)z(fc+l,s), ( 4 . 4 8 )

5 = 1

where the subscripts denote the number of incorporated observations. The summation terms in 

equations 4.47 and 4.48 are a consequence of the form of the information filter update equations 

4.45 and 4.46, where new information is incorporated by simple addition of terms relating to the 

observation and its covariance^. To show the equivalence of this serial update method with the 

parallel update method, all that is required is to notice that the summation terms in equations 

4.47 and 4.48 may be more concisely written as matrix multiplications

p - > ( f c + l ) 5  =  ( P - ) - ‘(W)o +  H L , t ( H l ) R r , L , ( H l ) H „ „ , i ( f c + l ) ,  ( 4 . 4 9 )

p-»(fcfl)x(fcfl)s =  ( P - ) - '(W )& - (W )o  +  H l c t ( W ) R ;L ( W ) z . , . e t ( W ) .  ( 4 . 5 0 )  

The matrices llstack{k +  1), +  1) and Zstack{k +  1) are composed in the following

way

fistack{k +  1) =
H(A: +  1,2) 

H(A: +  1,5)

(4.51)

R-i(A: +  l , l )  0

0 R-i(A; +  l,2 )

0 . . .  R -i(A ;+ l,5 )

( 4 . 5 2 )

^stack{k 4" 1) —

z{k +  1, 1) 

z(Ar +  1, 2)
( 4 . 5 3 )

z{k +  1,5)

Equations 4.53 and 4.51 are familiar from the parallel Kalman filter equations 4.42 and 4.43,

and 4.52 is simply the inverse of the matrix given by equation 4.44. Hence, the parallel update

*̂ This highlights another contrast with the Kalman filter equations of chapter 3. In the information filter, state 

update has complexity 0{n^ ) (where n is the dimension of the state vector), and prediction O(n^). When the Kalman 

filter is implemented with the equations of chapter 3, prediction is simpler at 0{n^ ) and the update step more complex 

at 0{n^).
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and serial update Kalman filters are equivalent. Again, in non-linear systems, a matrix of partial 

derivatives replaces Usiack’-

^x(A:+l,l)

lx(fc+ l,2)

lx(fc+l,5) J

(4.54)

An implementation of the non-linear parallel update filter is used in the off-line experiments 

detailed in section 5.1 of the next chapter.

4.4 Corruptibility of the crop grid tracker

We now return to study the off-line filters whose process and observation models were defined 

in sections 4.1 and 4.2. Given the state evolution models described in section 4.1, the corrupt­

ibility of the A, V pair of the two systems may be assessed using the method defined previously 

in section 3.4.5. It will be shown that, on the one hand, the filter with fixed grid parameters 

has a completely corruptible A, V pair, whilst on the other hand, the filter with estimated grid 

parameters is only partially corruptible.

4.4.1 Corruptibility with fixed grid parameters

The state evolution model for the filter with fixed grid parameters is, repeated here from equation 

4.1,

'  U,,

Uy  +V v(A ), (4.55)

U\ÿ

x(A; 4- 1) =  l3x(fc) +  I 3

where I 3  is the 3 x 3 identity matrix, and the subscripted U values describe vehicle motion be­

tween image acquisitions. The noise gain matrix is given by

v'^(k)v{k) = q{k) =
0 0

0 CTy(̂ ) 0

0 0 (rl{k)

(4.56)

It is immediately clear, from the fact that in equation 4.55 the matrix A is the identity matrix, 

that, provided none of the diagonal terms of V  collapse to zero, the A, V pair form a corruptible 

system as discussed in section 3.4.4. The noise inputs v (A;) will thus always filter through to the 

state estimate.
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4.4.2 Corruptibility with estimated grid parameters

The second filter described in section 4.1 estimates the values of the grid parameters f  and J in 

addition to estimating the vehicle position. Equations 4.4 and 4.5, which specify the filter’s state 

evolution model and noise gain matrix respectively, are repeated below for clarity.

Ui.

Uy

U\  ̂ +Vv(fc). (4.57)

0 

0

x(fc +  1) =  A(A;)x(fc) +  I5

In this equation, depending on whether the line of plants used as a reference for the Y  parameter 

is undergoing change or not, A (A:) is either I 5 , the 5 x 5  identity matrix when no change occurs, 

or is the matrix given in equation 4.8 when the reference point does switch. The subscripted U 

values are control inputs relating the vehicle’s motion between image acquisitions. It should be 

noted that, except for noise, the mean plant spacings f  and J are assumed constant. The noise 

gain matrix is diagonal, such that

V' ^{k ) V{k)  =  Q{k)  =

0

0

0

0

0

a^ik)

al (k)

0

0

0

a^{k)

0

0

0

0

0

(4.58)

The terms relate to the mean-square error introduced at each prediction step. For t^, Y  and 

^  they are relate to the uncertainty on the control inputs, but for f  and / the cr̂  terms are non­

zero only when the set of plants in the image changes, i.e. when a new set of plants appear in 

the image, or when previously seen plants move out of the field of view. The reason for this is 

that the system noise Q represents the uncertainty in the evolution of the state variables, and, 

because they describe the mean grid parameters for the set of plants in the image, f  and I  evolve 

only when new plants come into the field of view or previously seen plants are passed by and no 

longer seen. By inspection of Q{k) with and cr̂  zero (i.e. when no new plants have come 

into or moved out of view) it can be seen that the AV pair is incorruptible regardless of the value 

of A{k),  owing to the zeroes in V (V = Y'Q(k) = diag{at^, 0,0)). When this is the

case, the estimated covariance on the estimates of both f  and Ï  will start to decrease. This is quite 

acceptable, however, because during the period where the set of plants in view does not change, 

the filter is refining its estimate of the plant spacing using several views of the same patch of
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crop. However, when new plants are seen or plants go out of view, process noise is added which 

reflects the fact that the mean grid spacing parameters may well be different for the crop in the 

new scene. In short, when the mean plant spacing parameters are estimated, the filter should be 

fully corruptible only some of the time, and we shall call this partial incorruptibility.

To illustrate corruptibility and partial incorruptibility, a fictitious system was devised whose 

process is identical to that described by equation 4.57 in every way except that noise is added 

to the f  and Ï  with each new image, so it is fully corruptible. Figure 4.2 shows the estimate 

of r over a set of 20 images for the partially incorruptible system described above (figure 4.2, 

right) and the illustrative system, where noise is added to f  with each new image (figure 4.2, 

left). The partially incorruptible system shows an increase in variance at frames 4 and 12 which 

corresponds to noise added as the set of crop plants in the scene changes. Between these noise 

injections, the filter estimate starts to converge. The estimate from the corruptible system is not 

as smooth as that from the incorruptible one, and the variance of the estimate does not shrink 

over the sequence. Both of these behaviours are to be expected when new plant noise is injected 

for each image. Similar behaviour has been observed for the estimate of I.

image number

Figure 4.2; A comparison of state estimates and variances from a corruptible and partially in­

corruptible filter. The middle trace shows the state estimate, the upper and lower traces showing 

the estimate ±2 standard deviations. Left: corruptible estimates. Right: partially incorruptible 

system estimates. See text for details.
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4.5 Observability of the crop grid tracker

In section 3.5, a criterion for the observability of a system with linear evolution model and non­

linear measurement model was derived, namely that the row rank of the matrix

hx(o)

hx(i)A

O lin  =
hx(i)A*

(4.59)

should be n, where n is the dimension of the state vector x. It was also pointed out that this 

condition will be met if the matrix of partial derivatives has rank n regardless of the value 

of the state estimate x(&). If this is not the case, then the observability may well depend on the 

state estimate and is not guaranteed. This will, of course, depend on the exact form of

In the case of the parallel update crop grid tracker, the matrix of interest is the stacked

matrix (equation 4.54), which must have a minimum of three linearly independent

rows (one for each component t x , Y  and ^  of the grid tracker’s state vector) for the filter that 

estimates the crop grid position alone, or five linearly independent rows in the case of the filter 

which also estimates the crop grid parameters r and J. We shall look at each case below.

4.5.1 Observability with fixed parameters

The matrix hx(A;)gtack composed of the individual partial derivative matrices (equation 4.16) 

that correspond to each observed crop plant position. It can be seen from equation 4.54 that for 

the filter with fixed grid parameters, each crop plant position (m, n) contributes an associated 

matrix of the form
1 ^  D m l -f y  — Dnf  

0 1
bx(A:) — F

—nr
(4.60)

where

(4.61)
A(x, m, n) 0

0 5(x , m ,7i)

is a matrix containing common factors (A(-), 5(-)) from each row of and

_  {nr +  Ÿ (ml  +  Y) L) sin </>
— m l  — Y)  sin (f) + tz

It should be noted that the variables , Y  and ^  take their values from the elements of the state 

estimate x(A;), whilst f  and I  are fixed.

(4.62)
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If there are S  predicted crop grid positions ms, Us (see figure 4.1), with corresponding ob­

servations^, the resulting stacked matrix (equation 4.54) is given by

1 ^ D  miJ- \ -y  — D n i f

0 1 —riif

— F s t a c k
1 ^  -f D iTisl -f y  — Dugr

0 1 - n . r

1 ^  -f D msl  +  y  — Dnsr

0

(4.63)

1 - n s f

where the common factors from each row of the matrix are to be found in the stacked matrix 

F s t a c k -  The observability of the parallel update filter, and hence the equivalent serial filter of 

chapter 3, may now be assessed by performing a rank analysis of the stacked matrix 

To aid our rank analysis, we recall that each observed crop grid position ms, Us contributes a 

matrix of the form of hx (equation 4.60) to the stacked matrix. Inspection of first row of the 

partial derivative matrix h* shows that, regardless of the values of the state variables (tx, y, T̂ ),

i.e. whatever the point of linearisation of equation 4.12, the stacked matrix will have

one independent row for each different ms for which an observation is available (provided that 

the fixed value of J is not zero). Similarly, the second row of the partial derivative matrix will 

contribute an independent row to th stacked matrix for each different U s  for which an observa­

tion is available (provided that the fixed value of f  is not zero). Additionally, there is no linear 

dependence between the two rows of hx (equation 4.60).

To ensure observability of the parallel update filter with fixed grid parameters, we require a 

minimum of three linearly independent rows in the matrix hx,t^^^. A minimum of two different 

observations will thus suffice as is gives an hx̂ ^̂ ^̂  with four rows. This result confirms that 

given by common sense; one feature can partially locate the grid structure (giving tx and y ) 

and a second will determine the orientation (^).

4.5.2 Observability with estimated parameters

The observability of the filter which estimates the grid parameters may be assessed using similar 

reasoning to that above. In this case the matrix of partial derivatives is (from equation 4.17)

1 ^ D  mI- \ -y  — Dn f  n (l — m ($ +  D)

0 1 —nf  — m

^Finding observations which correspond to predictions is the process of data association, which will be addressed 

in chapter 6.

hx(fc) =  F (4.64)
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where F and D are given in equation 4,61 and 4.62 respectively. The variables (a;, Y, r and J 
in equation 4.64 take their values from the elements of the state estimate x.

The stacked observation matrix for S  observations is given by

1 W + D m i l Y  — D n i f  n i( l  — D ^) m i(^  +  D)

0 1 —r i i f  —T ii ^  m i

x̂(fc)gtocfc = F s t a c k
1 ^  +  D m s l Y Y  — Dusr ns{l — D'^) m s { ' ^ D )

—n.r m.

$  +  D msl - \ -Y —Dnsr  715(1 — D )^  7775(^  +  D)

- n s r —n s ^ ms
(4.65)

where the common factors from each row of the matrix are to be found in the stacked ma­

trix F stack- Again, we determine the observability of the system by inspection of the matrices 

l x̂(k) t̂ack which are now given by equations 4.65 and 4.64. Inspection of the second

row of the partial derivative matrices of equation 4.64 shows that, regardless of the values of 

the state variables (tx, Y, r, I), i.e. whatever the point of linearisation of equation 4.12, the 

stacked matrix will have one independent row for each different ms for which an obser­

vation is available. For the first row of equation 4.64 to be unique for different values of m  and 

n places some constraints on the state variables. However, a little thought shows that sufficient 

conditions are that r ^  0 and 1 ^ 0 ,  which stipulates that the crop must lie on a two dimensional 

grid (i.e. that the model of figure 4.1 is valid).

When we estimate f  and Ï, five independent rows are required for observability, so a min­

imum of three observations are required, which give six linearly independent rows in 

provided that all three observations do not lie within a single row (and share a common n) or 

line (a common m) of the grid structure. As above, two observations will locate and orient the 

grid pattern and also allow estimation of the grid parameter r (or I), and the third observation, 

provided that it does not lie on the same row (or line) of crop plants will yield the second grid 

parameter J (or f).

4.6 The on-line vision system

The previous sections have been concerned with the development of two filters designed to run 

on a desktop workstation. This off-line system was used for algorithm development and testing 

on pre-recorded image sequences as described in chapter 5, but a little re-designing is required
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to transfer the system onto the autonomous vehicle, where it operates on-line. The vehicle’s on­

line navigation system is comprised of two estimators. The first is an extended Kalman filter 

performing “dead-reckoning” by merging odometry and accelerometer data to form estimates 

of position, speed and acceleration at a rate of 50 Hz (section 1.2). The second estimate is the 

vision system filter (again, an EKF), which provides updates of position at 12.5 frames per sec­

ond, to correct for any drift in the dead-reckoning system. To date, only the filter with fixed grid 

parameters f  and Ï (section 4.1.1) has been implemented on-line, although, as the off-line ex­

periments in chapter 5 will demonstrate, estimation of f  and I  is desirable when the crop grid 

spacing differs from that expected.

The different data rates of the two filters encourages a modular approach to the on-line sys­

tem architecture (this was also influenced by the use of Transputers in the original hardware ar­

chitecture of the vehicle), so a Kalman filter formulation that allows separation of computation 

whilst keeping state estimates in synchrony is required. Two alternatives for such “distributed” 

Kalman filtering have been proposed by Hashemipour et al [HRL88] and Rao et al [RDWS93]. 

These are shown schematically in figure 4.3. On the left of the figure is the architecture due to 

Hashemipour et al [HRL88] in which a single “parent” node communicates via two-way links 

with a set of “child” nodes. The nodes represent either sensors which return raw observation 

data, or sensors with some computational ability, used to process the observation data “local” to 

the node’s sensor. The parent performs the bulk of the filter computations, with the child nodes 

either returning sensor data alone, or perhaps performing some local processing before returning 

a measurement. In the architecture of Rao et al [RDWS93] (figure 4.3, right) each node consists

Node 1

Node 1 Node 2 Node 3
Node 2Node 3

Parent Node

Figure 4.3: Network topologies. Left: That described by Hashemipour et al [HRL88]. Right: 

The topology due to Rao et al [RDWS93]. The double headed arrows represent two-way com­

munication connections.

of a sensor with local computation. Each node computes the filter’s state evolution model and 

uses its sensor data to correct the local state predictions in the Kalman filter cycle. Periodically, 

each node transmits information relating to state (and estimate covariance) updates around the
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network to further correct and synchronise estimates between nodes. This topology is known as 

a “fully decentralised” architecture, as there is no single node upon which the network relies to 

function. An advantage of the decentralised filter is that the network is robust to node failure; if a 

single node malfunctions, the other nodes will be unaffected and will continue to estimate as be­

fore. However, the overall computational load is greater for this architecture as each individual 

node must compute predictions and make individual state updates.

Node failure is not the main issue in our application, where computational complexity and 

system simplicity are more important, so an architecture similar to that of Hashemipour has been 

chosen for the on-line system. The dead-reckoning filter takes the role of the parent node, re­

ceiving sensor data from the odometers and accelerometers in addition to processed data from 

the vision system which, like the other sensors, is a child node. Each time the vision system 

acquires an image, it requests a state estimate from the dead-reckoning node in order to predict 

the position of crop features in the image, and, upon completion of an estimate update using the 

observed image data, returns information to the dead-reckoning node in the form of a new esti­

mate of fæ y  and The overall computational burden is lower than the decentralised system, 

and also both dead-reckoning and vision are vital to successful operation of the vehicle, so the 

robustness to node failure offered by the decentralised architecture offers no practical advan­

tage. If the vision system were to fail, crop treatment would become impossible, and without 

the dead-reckoning system, there would be no estimation of velocity or acceleration, which are 

required to provide predictions for the vision system.

The architecture of the vehicle’s estimation system is outlined in figure 4.4, which shows 

the vision system and the dead-reckoning filters with their sensor “inputs” in brackets, together 

with the flow of information between them. The dead-reckoning filter runs at 50 Hz, incorpo­

rating information from wheel odometers and inertial sensors (accelerometers) into a state esti­

mate prediction {k -f 1) (position, velocity, acceleration) with covariance matrix +  

Each time the vision system grabs an image from the vehicle’s camera, it requests a state pre­

diction from the dead-reckoning filter. The prediction is transformed from the dead-reckoning 

co-ordinate frame into the vision system co-ordinates by a function g(X(fr(A; -f 1)). The pre­

diction covariance is also projected into the vision system’s co-ordinate frame using the matrix 

of partial derivatives of g () . The transformed state prediction is used to generate the expected 

position of the crop grid in the image, and the transformed covariance is used in a matching and 

validation strategy which associates features extracted by image processing with the plant posi­

tions predicted by the state vector. The matching and validation mechanisms are detailed later 

in chapter 6. The vision system then takes these matched features and their predictions to pro­
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duce a single “pseudo-observation” (denoted z(fc +  1) in the diagram, and seen in section 4.6.1 

below) and its covariance matrix (R(A: -f 1)) which is then passed back to the dead-reckoning 

filter to provide a vision-based update of the dead-reckoning estimate.

z(k+l)
R(k+1)

(Image features)

Vision System

(Odometers and 
inertial sensors)

Dead Reckoning

To vehicle controller 

Figure 4.4: Estimation system schematic.

To summarise, in both the on-line and off-line systems, the vision system provides estimates 

of tx, Y  and In the off-line system, predictions for tx, Y  and ^  are obtained from the state 

evolution model described in equation 4,1, whilst in the on-line system, they are provided by the 

dead-reckoning filter. Additionally, in the on-line system, the vision system filter's estimate is 

passed back to the dead-reckoning estimator which incorporates the new data into its own state 

estimate. The mechanism which allows this separation of the vision and dead-reckoning filters 

is the data compression filter [WCD76, SHMB99], the third (and final) alternative formulation 

of the Kalman filter of interest in this thesis.

4.6.1 The data compression filter

The data compression filter forms a least-squares combination of a set of measurements to pro­

duce a composite “pseudo-observation” which is then used in the filter update equations. This 

pseudo-observation is denoted z(k), and is simply defined by

z{k) = x(A:), (4.66)

where x(&) is the vision system state vector [tx, Y, The z(fc) notation is used to emphasise 

the way in which the vision data is treated as a sensor, and also to prevent confusion between 

the vision system state vector x(A;) of the off-line system and the dead-reckoning system state 

vector :x.dr{k), which contains position, velocity and acceleration information.

The following non-linear relationship describes the transformation between the dead- 

reckoning state vector and pseudo-observation:

(4.67)
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whilst the relationship between the pseudo-observation and image features is

z(fc, m, n) = h(z(A;), r, I, m, n), (4.68)

Note that equation 4.68 is equivalent to equation 4.13, with z {k) substituted for the vision system 

state co-ordinates and In the on-line implementation f  and / are fixed.

From equations 4.67 and 4.68, it follows that the observation function hdr (x^r (k) ) may be 

written that relates the dead-reckoning state vector {k) to the image features z(fc, r, /, m, n) :

z{k,m,n)  = hdr(y^dr{k)) =  h(g(xdr(A;)), r , /, m, n). (4.69)

For the Kalman filter equations, the matrix of partial derivatives of hdr (k) with respect to x^r (k) 

is required. This matrix, (k), may be obtained by using the chain rule when differentiating 

equation 4.69. Using the identities

d h ( z ( k ) ) , r j , m , n
=  â # --------

and
(M _  d s M k ) )

(4.70)

(4.71)
Xdr{k)=-x.^̂ {k)

hdr̂ ^̂ (̂ k) (k) may be written

(^) ~  ^ z(A:)( )̂SxJ (̂A;)( )̂' (4-72)

The matrix h^^) is that given by equation 4.16 (recall that the pseudo-observation z(fc) is iden­

tical to the vision system state vector x(fc)).

The following equations (due to Hague [SHMB99]) substitute the expression of equation 

4.72 into the information filter (equations 4.40 and 4.41) for the dead-reckoning state estimate 

S(.dr{k 1) and covariance Pdr{k +  1):

+  1) =  (Prfr) +  1) +S*dr-(*+l)^

+  ^)^dr(k +  1) =

[(Pdr)~H^+ 1) 1)R "X ^ +  l)Sx-(A:+l)]^cir(^ +  )̂ +

(jt+i)(^ +  l )R “ (̂fc 4- l)[z(k -I- 1) -  h(g((Xjr(^ +  1))))]
(4.74)

In the two equations above, the quantity R(A;) is the covariance of the pseudo observation z( A;) :

R - 'W  = h,(,)(A:)^R-i(A:)h,(,)(A;), (4.75)



4,6. The on-line vision system 100

and our update equation is

K~^{k)z(k) = +  h^f,)(k)'^'^~^(k)[zik,m,n) -  f(g(x^^(fc)))]. (4.76)

Equations 4.75 and 4.76 effectively separate computations involving the image features 

z(&, m, n) from the update of the dead-reckoning state estimate Xjr(^)- Thus, if a set of S  

observed features are extracted from the image, where each feature s  is matched to a different 

grid position (m, n), they may be combined into a single pseudo-observation z{k) as follows 

where the argument s attached to various quantities denotes that the quantity relates to feature 

s, as in section 4.3.2:

s = S

= ' ^ ^z{k){k , s )K-^(k , s )h^k^(k , s )  (4.77)
S = 1

s —S

R - ^ { k ) ^ k )  = R~^(fc)g(x“ (fc)) -  h(g(x~ (fc), s))].
S = 1

(4 78)

Equations 4.77 and 4.78 compress all of the image data into a single pseudo-observation with an 

accompanying covariance matrix, hence the name “data compression filter”. Furthermore, this 

function is performed by the vision sub-system on the left of the schematic diagram of figure 

4.4. These quantities are then passed back to the dead-reckoning system which updates the dead- 

reckoning estimate using equations 4.73 and 4.74.

4.6.2 Observability of the on-line system

Despite the differences between the on-line and off-line systems, the observation function at the 

heart of both of the vision filters system is the same, i.e. h(x(A;)) =h(z(fc)). To produce a valid 

pseudo-observation z{k), the same conditions on the number of matched image features must 

be met as for the off-line filter. With fixed grid parameters, as in the on-line case, the number of 

features required is two (see section 4.5).

4.6.3 Estimating r and I  on-line

The estimation of r  and I  has yet to be implemented in the on-line system, but there is no theo­

retical bar to doing so, and the changes required are merely adjustments to the system described 

above. First, we add the prediction and update of r and J into the dead-reckoning system, so 

the state vector ^ d r { k )  is augmented to include r  and I. We then include f  and I  in the pseudo­

observation vector z(fc) thus

z(fc) =  x (t) =  k ,  Y, » , f, /7 ,  (4.79)
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echoing equation 4.66. Finally, the function g(zjr(^)) given in equation 4.67 must be adapted 

to reflect the changes in Xdr(k) and z(k). These adapted quantities are then used in the data 

compression filter as usual.

4.7 Summary

Models for both the off-line and on-line filters have been introduced. In the off-line case, two 

filters have been examined; one where the crop grid parameters are fixed, and a second where 

they are estimated. It has been shown that for the second filter, the grid parameters are partially 

incormptible, and that noise should only affect these states when either new plants enter the im­

age, or when previously seen plants leave. Both filters satisfy the linearised observability condi­

tion devised in chapter 3, provided that a sufficient number of features that match the predicted 

crop grid positions are extracted from each image. In the case of the fixed parameter filter, two 

matched features are required from an image, and when the grid parameters are estimated, this 

figure rises to three. This knowledge may be used to improve the robustness of the system; if 

the image processing fails to produce a sufficient number of matched features, then observability 

is not guaranteed and no state update should be attempted with features from that image. The 

process of feature matching will be discussed in chapter 6.

In the case of the on-line filter, the system architecture has been described, together with 

the data compression filter which allows separation of vision and dead-reckoning computation. 

The dead-reckoning system mns at 50 Hz, and passes a prediction to the crop grid tracker each 

time an image is processed. This prediction is used in the least-squares compression of all the 

observations extracted by image processing to produce a pseudo-observation with an associated 

covariance matrix which are passed back to the dead-reckoning filter to further correct the ve­

hicle’s position estimate.

The next chapter will show the crop grid tracking filter in action in two cases. The first is an 

off-line trial on two short image sequences captured in the field, where the results are compared 

with alternative automatic methods and human assessment. The second case demonstrates the 

filter mnning live on the vehicle in a simplified indoor test-bed environment. Chapter 8 contains 

experimental data from the algorithm running outdoors in the field.



Chapter 5

Off-line and test-bed navigation trials

To investigate the viability of the crop grid tracker prior to testing in the field, two sets of ex­

periments were performed. The first experiments ran off-line on a desktop workstation and, in 

the absence of veridical trajectory information, compared the position estimates from the grid 

tracker algorithm with human assessment of the crop grid position and output from the previ­

ous algorithm used on the vehicle for visual feedback (based on the Hough transform, appendix 

A)[MB95]. For these experiments, two short image sequences captured from the vehicle were 

used. The results indicate that the crop grid position estimates generated by the tracking algo­

rithms outlined in the previous two chapters compare more favourably with human assessment 

of crop grid position than the Hough transform output [SMHB98]. This suggests that the ex­

tended Kalman filter algorithms will perform well on-line, with the further advantage over the 

Hough transform algorithm [MB95] (appendix A) that forward distance is estimated and a mea­

sure of certainty in the position estimate is provided which allows natural integration with the 

vehicle’s dead-reckoning system (as described previously in section 4.6). In addition, as will be 

seen in chapter 7, the use of the crop grid model facilitates segmentation of the image into re­

gions of crop, weed and soil. The experimental results also show some quantitative advantage 

in estimating the crop grid parameters f  and I.

The second set of experiments were run with the autonomous vehicle system in a simplified 

test-bed environment. This environment, a large black mat with a grid of white circles painted 

on it to represent the crop, provides a much simplified image processing problem for the vision 

system, and it also allows straightforward measurement of system performance. Experiments 

on this test-bed provide a useful indication of whether the on-line system is likely to function 

with real crop in the field because the basic grid structure used for navigation is emulated. The 

test-bed offers a number of advantages over the field environment for testing prototype systems. 

Firstly, the image processing is less error prone, because of the strong contrast between plant 

matter (the white circles) and soil (the black mat), and also, because the ciK:les are 2D objects ly­
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ing on the ground plane, the projection errors discussed in chapter 2 do not occur^. Performance 

measurements are straightforward because the grid of circles has been painted in a known posi­

tion, and the grid pattern is more regular than that typically found in real crop. The experiment 

consists of the vehicle leaving a marker trail along the mat, and then measuring the position of 

this trail being relative to the central row of circles. The measured trajectory is then compared 

with the estimated trajectory from the vehicle’s navigation system. Because the position of the 

central row is precisely known (unlike real crop, where the rows are not straight), such mea­

surement may be made with reasonable accuracy indoors. A final advantage of course, is that 

the test-bed may be used at any time without the expense of growing and maintaining a field of 

real plants.

The measurements resulting from the test-bed experiments show that the vehicle can nav­

igate with sufficient accuracy to allow crop-row following with little risk of damaging the crop. 

Experiments measuring performance on-line in the field are described in chapter 8.

5.1 Off-line experiments

Two short sequences of 20 near infra-red images were digitised from video stock collected fi*om 

the experimental vehicle during the Summer of 1997. In both sequences, the vehicle was in­

structed to follow the crop rows at a constant velocity of lms~^.  The image sequences were 

analysed using the following methods:

1. The crop grid tracker with fixed grid parameters (AUTO).

2. The crop grid tracker using the human selected crop plant centres as input features (fixed 

grid parameters) (SEMI).

3. The crop grid tracker with grid parameter estimation (AUT02)

4. The crop grid tracker using the human selected input features (estimated grid parameters) 

(SEMI2).

5. Human assessment of the model position; a mouse-driven program was designed to allow 

the user to place the crop pattern on each image in the sequence. Data from three different 

people was collected (HUMAN 1-3).

6. The Hough transform algorithm developed by Marchant and Brivot [MB95], which pro­

duces estimates of and $  alone (HOUGH).

’The “virtual ground plane” discussed in section 2.3.8, figure 2.19 is not required
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In order to emphasise the effects of estimating the grid parameters, The AUTO and AUT02 al­

gorithms are analysed separately. In both AUTO and AUT02, image features are selected auto­

matically using data association techniques, and these can be compared with SEMI and SEM12, 

where the crop plant features were selected by hand. Data association will be covered in the next 

chapter, together with an algorithm for initialising the trackers.

5.1.1 Tracking with fixed grid parameters (AUTO)

The Kalman filter with fixed grid parameters was tested first, with row spacing f =  475mm and 

line spacing Î = 450mm. These two figures were calculated as the mean spacings in the bed 

of plants filmed in the test footage; they were given as parameters for the AUTO and SEMI al­

gorithms and also used to set up the grid template for generation of the HUMAN data sets. The 

r parameter value was used to construct the row template for the HOUGH algorithm (appendix 

A). Figures 5.1 and 5.2 show the state trajectories from the first and second image sequences 

respectively. The left-hand column plots the three human responses, whilst the right hand col­

umn shows the equivalent automatic results. Note that there is no Y  estimate available from the 

HOUGH algorithm, and that the resolution of the Hough transform is limited to 16mm for 

and 0.5° for

When ground truth trajectories are unavailable, as in this case, quantitative analysis of the ac­

curacy of a tracking system is difficult to perform because it is not known how the errors are 

distributed between the automatic methods and the human assessment that is used as a substi­

tute for strict veridical measurements. To provide some measure of performance, an approach 

has been taken which assumes errors are equally distributed between the automatic and human 

approach. By taking each set of results for tx,Y and ^  from the experiments conducted and 

pairing the corresponding data sets, scatter plots (like figure 5.3) can be constructed. If a pair of 

algorithms agree exactly, then the points in the scatter diagram will lie on the line x = y . Taking 

this as the ideal response, a measure of how far a pair of algorithms depart from the ideal may be 

found by taking the root mean-square differences between feature points in the scatter plot and 

the nearest (in Euclidean terms) point on the line x = y. These values are tabulated for each of 

the state variables and algorithm pairs in tables 5.1 -  5.6. It should be stressed that the x = y 

“ideal” does not mean that a pairing is correct, but that the two sets are consistent, so the larger 

this measure, the greater the inconsistency between them.

The use of consistency measures to assess algorithm performance in the absence of ground 

truth data is not unprecedented in the machine vision literature. Torr and Zisserman [TZ97] de­

grade the quality of image pairs (using lossy JPEG compression) and characterise the effects of 

the degradation on the estimation of the fundamental matrix for the image pairs. In the exper-
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Figure 5.1: Trajectories of the state variables for sequence 1. In the left-hand column are human 

assessments, and in the right the algorithm output (note that HOUGH does not produce a Y  out­

put). The negative values of indicate that the vehicle was to the left of the planting pattern, 

but moving toward it.
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Figure 5.2: Trajectories of the state variables for sequence 2. In the left-hand column are hu­

man assessments, and in the right the algorithm output (note that HOUGH does not produce a 

Y  output).
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iments they conduct, the ground truth 3D structure of the imaged scene is known in only one 

of their four examples. In the other three cases, they use the fundamental matrix and supporting 

matches extracted from the original image pair as ground truth for comparison with the estimates 

and matches extracted from the degraded pairs.

Leclerc et al [LLF99] propose a self-consistency scheme for evaluating a point correspon­

dence algorithm in the absence of ground truth. By taking a number of image pairs of the same 

scene, a set of image feature matches may be generated for a particular 3D scene feature (one 

match per image pair that the scene feature is visible in). Each matched pair is then used to 

reconstruct the scene point (or back-project it into an image plane), and the consistency of the 

reconstructed point position produced by each match pair is studied. The authors propose dis­

tributions that may be calculated from the match consistencies and relate these to the absolute 

accuracy of the algorithm.

Although the self-consistency approaches of the above pieces of work [TZ97, LLF99] pro­

vide insight into the performance of the algorithms under analysis, we must remember that con­

sistency is not the same as correctness. An algorithm may perform in a highly consistent manner 

across many data sets, but if its output does not reflect the ground truth, then the algorithm is not 

suitable for the task at hand. In our experiments, we compare the output of the crop grid tracking 

algorithms with the HOUGH algorithm which is known to perform in the field in a satisfactory 

(if limited) manner, and with the assessment of three independent human observers.

By generating self-consistency measures, Leclerc et al [LLF99] and Torr and Zisserman 

[TZ97] have benefited from being able to compare like with like. Unfortunately, the various 

methods used for assessment of the crop grid position produce different forms of output. The 

HUMAN data sets contain estimates of tx.,Y and whilst the HOUGH algorithm only pro­

duces tx and Tf. The AUTO and SEMI algorithms produce all three position parameters, and 

also covariance matrices describing the uncertainty in those parameters. AUT02 and SEMI2 

also deliver estimates of the grid parameters r and I. These differences in dimensionality for the 

various assessments have lead to the simple parameter by parameter comparisons used here.

From the figures in tables 5.1 -  5.6 and perusal of the trajectory plots, figures 5.1 and 5.2, 

three main conclusions may be drawn:

1. Human assessments are not wholly consistent. The table elements referring to the simi­

larity between HUMAN data set pairs contain figures that are not zero. Unsurprisingly, 

different people make differing assessments of the model position.

2. The various algorithm estimates are as consistent with the human results as the human re-
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Figure 5.3: A scatter plot: the points show the scatter data (two independent measures of the 

same parameter, in this particular case while the solid line plots the line of perfect consis­

tency between the data sets. A measure of consistency is the root mean square distance of the 

scattered data points from the line.

suits are with each other. In some cases, notably the estimate of HUMAN 2, the human 

observation is more consistent with the automatic and semi-automatic methods than with 

the other humans. Importantly, the new method (AUTO) has similar r.m.s. measures of 

consistency to the HOUGH method, which has operated successfully on the vehicle. For 

the measurement of 'F, the AUTO method is more consistent with human assessment than 

HOUGH. This is reflected in the plots of figures 5.1 and 5.2.

3. The fully automatic algorithm performs comparably with the semi-automatic algorithm. 

The similarity measures between the two are given in the tables. In the case of and 

the similarity figures are a fraction of the resolution of the HOUGH algorithm, so it 

may be assumed that errors in the automatic method would not lead to any operational 

degradation. The mean difference of 14.1 mm,  on a measurement of T  ranging from 600 

-  1700 m m  is also very small.

As has been noted, the Kalman filter algorithms not only produce estimates of state value, but 

also confidence measures reflecting the uncertainty on the current estimates, the covariance ma­

trix P(A:) in the filter equations. For each sequence, the updated state covariance matrix P(&) at 

every image was logged. The diagonal terms of P(A;) give the variance on each state estimate 

(the symmetric off-diagonal terms reflecting covariance between state variables), and hence the 

standard deviation for the estimates may be obtained by taking the square root of the variances.
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HUMAN 1 HUMAN 2 HUMAN 3 AUTO SEMI HOUGH

HUMAN 1 0 - - - - -

HUMAN 2 9.24 0 - - - -

HUMAN 3 9.41 10.08 0 - - -

AUTO 6.81 7.84 11.47 0 - -

SEMI 7.25 7.51 11.61 3.40 0 -

HOUGH 8.08 8.47 8.95 5.38 6.51 0

Table 5.1: Root-mean square differences on the estimate in mm  for sequence 1. indicates 

that the value can be found in the lower half of table.

HUMAN 1 HUMAN 2 HUMAN 3 AUTO SEMI HOUGH

HUMAN 1 0 - - - - n/a

HUMAN 2 11.7 0 - - - n/a

HUMAN 3 13.5 10.6 0 - - n/a

AUTO 14.8 11.3 7.9 0 - n/a

SEMI 11.9 9.5 12.5 15.2 0 n/a

HOUGH n/a n/a n/a n/a n/a n/a

Table 5.2: Root-mean square differences on the F  estimate in mm for sequence 1. ‘n/a’ indicates 

Y  is not estimated by algorithm HOUGH.

HUMAN 1 HUMAN 2 HUMAN 3 AUTO SEMI HOUGH

HUMAN 1 0 - - - - -

HUMAN 2 0.339 0 - - - -

HUMAN 3 0.508 0.592 0 - - -

AUTO 0.305 0.373 0.613 0 - -

SEMI 0.332 0.382 0.629 0.245 0 -

HOUGH 0.603 0.677 0.714 0.677 0.735 0

Table 5.3: Root-mean square differences on the $  estimate in degrees for sequence 1. The fig­

ures indicate that the set least consistent with the other data is from algorithm HOUGH, and this 

is reflected in the plots of figure 5.1.
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HUMAN 1 HUMAN 2 HUMAN 3 AUTO SEMI HOUGH

HUMAN 1 0 - - - - -

HUMAN 2 6.73 0 - - - -

HUMAN 3 5.42 5.34 0 - - -

AUTO 5.73 4.55 4.91 0 - -

SEMI 5.83 4.59 4.77 2.08 0 -

HOUGH 8.12 7.05 6.50 4.72 5.14 0

Table 5.4: Root-mean square differences on the estimate in m m  for sequence 2. indicates 

that the value can be found in the lower half of table.

HUMAN 1 HUMAN 2 HUMAN 3 AUTO SEMI HOUGH

HUMAN 1 0 - - - - n/a

HUMAN 2 16.3 0 - - - n/a

HUMAN 3 14.2 16.6 0 - - n/a

AUTO 11.8 21.6 12.1 0 - n/a

SEMI 12.9 12.1 12.4 13.0 0 n/a

HOUGH n/a n/a n/a n/a n/a n/a

Table 5.5: Root-mean square differences on the Y  estimate in mm  for sequence 2. ‘n/a’ indicates 

Y  is not estimated by algorithm HOUGH,

HUMAN 1 HUMAN 2 HUMAN 3 AUTO SEMI HOUGH

HUMAN 1 0 - - - - -

HUMAN 2 0.469 0 - - - -

HUMAN 3 0.509 0.460 0 - - -

AUTO 0.400 0.362 0.318 0 - -

SEMI 0.494 0.260 0.359 0.261 0 -

HOUGH 0.827 0.862 0.650 0.655 0.749 0

Table 5.6: Root-mean square differences on the $  estimate in degrees for sequence 2. The fig­

ures indicate that the set least consistent with the other data is from algorithm HOUGH, and this 

is reflected in the plots of figure 5.2.
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Tables 5.7 and 5.8 show the average standard deviation of the state variables for each sequence. 

It can be seen from comparison of tables 5.7 and 5.8 with tables 5.1 -  5.6 that, typically, the 

standard deviations produced by the filters are lower than the r.m.s. differences between the fil­

ter estimates (either AUTO or SEMI) and the HUMAN data sets, which serve as the ground truth 

estimates. This would indicate that the extended Kalman filter algorithms are over-optimistic in 

their assessment of estimate accuracy. This property of extended Kalman filters is well known 

[May90] and can sometimes lead to loss of track. However this has not occurred in the two test 

sequences, nor, as will be seen below, in the on-line trials (section 5.2.1).

AUTO SEMI

(Tt, (mm)  

ay (mm)  

(7̂  (degrees)

5.65

10.3

0.443

5.52

10.42

0.433

Table 5.7: Filter estimate standard deviations from the AUTO and SEMI algorithms, sequence 

1 data.

AUTO SEMI

at^ (mm)  

ay (mm)  

dtp (degrees)

5.39

9.85

0.413

5.29

10.1

0.451

Table 5.8: Filter estimate standard deviations from the AUTO and SEMI algorithms, sequence 

2 data.

5.1.2 Tracking whilst estimating grid parameters (AUT02)

The second Kalman filter algorithm not only tracks the grid position, but also estimates the crop 

grid spacing parameters f  and / as it traverses the field, allowing local variations in plant spacing 

to be accounted for. The algorithm was run fully automatically (AUT02) and with hand-picked 

iriage features (SEMI2) on the two short test image sequences, and the results compared with 

the HUMLANl -  HUMANS and HOUGH estimates as above. The root mean square differences 

on the tx and ^  estimates were found to be similar to those for the Kalman filter algorithm with 

fixed grid parameters; however the Y  estimation appeared to be considerably worse, especially 

for the first of the two sequences. This is illustrated in figure 5.4, where the AUT02 and SEMI2 

tracks for sequence 1 are plotted on the same axes as the three human assessments.

As can be seen in the diagram, the automatically and semi-automatically generated esti-
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Figure 5,4: The Y  estimates from AUT02 and SEMI2, together with the human assessments, 

for sequence 1.

mates of Y  position (the two lower curves) are somewhat different from the human assessments 

(the three upper curves), and are also diverging slightly. A similar plot for the original algo­

rithms with fixed r and /, AUTO and SEMI, shows all the curves in good agreement (figure 

5.5). It would thus appear at first sight that estimating the grid parameters as the vehicle tra­

verses the crop has resulted in a system with poorer performance. In fact, further investigation 

reveals that this is not the case, but that the human “ground truth” assessments have been made 

on an unsuitable basis.

The forward distance estimate is the sum of the distance of the bottom plant in the current 

image from the vehicle (Y as marked in figure 4.1) and an increment of I{k) each time a plant 

is passed, as seen in equation 4.6. Evidently, if I ( k )  is fixed, the increment to the total forward 

distance will be constant. If the value of J{k)  estimated by the filter is lower (or higher) than 

the value given to the fixed parameter algorithm, then the forward distance estimates will differ 

systematically. Also, if two grids with different spacing parameters are fitted to the same image 

data, the position and orientation of best fit may be different for each grid (this is illustrated later 

in figure 5.8).

From figures 5.4 and 5.5 it is clear that the estimated values of / must be lower than the 

450mm (the mean spacing within the crop row for the whole crop bed) given to the fixed grid 

tracker. Because the camera is calibrated, it is possible to obtain an approximate measure of 

the mean grid parameters for each of the short sequences (which may differ from the overall 

mean values for the entire bed as used in the AUTO and SEMI algorithms) by selecting the crop 

plant positions by hand from the images and calculating, via the camera calibration, the dis-
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Figure 5.5: The Y  estimates from AUTO and SEMI, together with the human assessments, for 

sequence 1.

tance on the ground plane between plants. Figures 5.6 and 5.7 show the f  and Ï estimates for 

the first and second sequences, together with the hand-measured means for each image. As

Figure 5.6: Estimated and measured r (left) and I (right) for the first sequence. The solid line 

marks the estimated values, and the dashed line those measured by hand.

can be seen in the plots, the estimates and hand-measurements are not entirely in agreement. 

The consistency figures are given below in tables 5.13, 5.14, 5.18 and 5.19, and they show that 

the similarity measures between the HUMAN and AUT02 assessments of the grid parameters 

reflect these differences, although the figures are small when compared to the parameter val­

ues. The hand-measured sequence means also deviate from the crop bed means of f  =  475mm 

and I  = 450mm; the mean hand-measured parameters from each sequence are given in table 

5.9. Upon comparing the figures in table 5.9 with the fixed parameters in the algorithm AUTO
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Figure 5.7: Estimated and measured r (left) and / (right) for the second sequence. The solid line 

marks the estimated values, and the dashed line those measured by hand.

Sequence mean r(mm) mean / (mm)

1 460 425

2 473 454

Table 5.9: The hand-measured sequence means of r and /.

(r = 475mm, I  = 450mm), the reason for the difference in Y  estimate on sequence 1 (figure 

5.4) becomes clear; the mean Ï figure for this sequence is 25mm lower than that of the fixed 

grid used in the generation of the data sets HUMAN1 -  HUMAN3. As noted above, a change 

in / will lead to a different position of best fit, hence the initial offset between the two sets of 

traces in figure 5.4, and also a different rate of growth in the total Y  estimate, hence the slight 

divergence of the traces. By the end of the sequence, the two AUTO and AUT02 estimates of Y  

differ by 82mm, which has accumulated over little more than one metre of travel. The estimated 

crop grid positions for the first image of sequence 1 are illustrated in figure 5.8, where they are 

superimposed on the image, and the different positions of best fit can be seen clearly.

To re-assess the performance of the AUT02 and SEMI2 algorithms, a human assessed data 

set, named HUMAN, was produced for each run v/ith the grid parameters set to those measured 

from the sequences (table 5.9). The resulting traces are plotted alongside the AUT02 and SEMI2 

algorithm output in figures 5.9 and 5.10. Tables 5.10 -  5.19 give the consistency figures between 

the various algorithms, including a comparison with the fixed parameter tracker AUTO (in which 

r and I  are fixed at the values f  = 475mm, I  = 450mm as before).

Tables 5.10-5.12 show the consistency measures between the HUMAN assessment, the 

AUT02 and SEMI2 grid parameter estimators, and the fixed parameter AUTO algorithm, all for
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Figure 5.8: Estimates from AUTO and AUT02. AUTO grid points plotted in white, A U T02 

in black. Owing to the perspective projection, it is easiest to see the difference in the estimated 

grid positions at the bottom of the image.

HUMAN AUT02 SEM12 AUTO

HUMAN 0 - - -

A UT02 7.82 0 - -

SEM12 9.04 3.26 0 -

AUTO 10.06 4.51 3.44 0

Table 5.10: Root-mean square differences on the tj; estimate in m m  for sequence 1. indicates 

that the value can be found in the lower half of table. The HUMAN data set is manual assessment 

of crop grid position using a template whose f  and / parameters are equal to the sequence means 

from table 5.9.

HUMAN AUT02 SEMI2 AUTO

HUMAN 0 - -

AUT02 9.7 0 - -

SEMI2 14.5 12.34 0 -

AUTO 46.9 49.06 58.67 0

Table 5.11: Root-mean square differences on the Y  estimate in m m  for sequence 1. As can be 

seen, the least consistent data set the the original Kalman filter algorithm AUTO, where the grid 

parameters are inappropriately set.
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HUMAN AUT02 SEMI2 AUTO

HUMAN 0 - - -

AUT02 0.338 0 - -

SEMI2 0.478 0.277 0 -

AUTO 0.340 0.268 0.276 0

Table 5.12: Root-mean square differences on the estimate in degrees for sequence 1.

HUMAN AUT02 SEMI2 AUTO

HUMAN 0 - - n/a

AUT02 5.49 0 - n/a

SEMI2 4.06 3.10 0 n/a

AUTO n/a n/a n/a n/a

Table 5.13: Consistency measures on estimates Df r in mm for sequence 1.

HUMAN AUT02 SEMI2 AUTO

HUMAN 0 - - n/a

AUT02 5.10 0 - n/a

SEMI2 6.13 7.64 0 n/a

AUTO n/a n/a n/a n/a

Table 5.14: Consistency measures on estimates of I in mm for sequence 1.

HUMAN AUT02 SEMI2 AUTO

HUMAN 0 - - -

AUT02 5.56 0 - -

SEMI2 5.27 2.40 0 -

AUTO 6.20 2.46 2.60 0

Table 5.15: Root-mean square differences on the estimate in mm for sequence 2.
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HUMAN AUT02 SEMI2 AUTO

HUMAN 0 - - -

AUT02 17.6 0 - -

SEMI2 17.5 8.0 0 -

AUTO 14.1 13.7 11.9 0

Table 5.16: Root-mean square differences on the Y  estimate in mm  for sequence 2. In this case, 

the AUTO algorithm is marginally more similar with HUMAN assessment that the AUT02 and 

SEMI2 algorithms.

HUMAN AUT02 SEMI2 AUTO

HUMAN 0 - - -

AUT02 0.518 0 - -

SEMI2 0.333 0.362 0 -

AUTO 0.495 0.107 0.371 0

Table 5.17: Root-mean square differences on the ^  estimate in degrees for sequence 2.

HUMAN AUT02 SEMI2 AUTO

HUMAN 0 - - n/a

AUT02 5.97 0 - n/a

SEMI2 4.35 3.90 0 n/a

AUTO n/a n/a n/a n/a

Table 5.18: Consistency measures on estimates of r in mm  for sequence 2. ‘n/a’ indicates that 

the algorithm AUTO does not estimate this parameter.

HUMAN AUT02 SEMI2 AUTO

HUMAN 0 - - n/a

AUT02 5.79 0 - n/a

SEMI2 8.03 6.30 0 n/a

AUTO n/a n/a n/a n/a

Table 5.19: Consistency measures on estimates of I in mm  for sequence 2.
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Figure 5.9: State trajectories whilst estimating the grid parameters, sequence 1.
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Figure 5.10: State trajectories whilst estimating the grid parameters, sequence 2.
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sequence 1. In the case of AUTO, the parameters were set to the crop bed means of f  = 475mm, 

/ =  450mm -  this is to illustrate any advantage there may be in allowing the parameters to 

vary. Comparison of AUT02, SEMI2 and AUTO shows that they perform comparably with each 

other and HUMAN for both and ^  (tables 5.10 and 5.12), and in each case AUT02 shows 

most agreement with the HUMAN data. The advantage of allowing the grid parameters to vary 

is clearly illustrated in the estimation of forward distance Y  (table 5.11); with an appropriately 

sized grid, the HUMAN assessment of forward position is considerably more consistent with the 

AUT02 and SEMI2 algorithms than the AUTO algorithm. The measure of 14.5mm between 

HUMAN and AUT02 denotes a much greater consistency than the 46.9mm between HUMAN 

and AUTO. At the end of the sequence, the Y  estimates produced by HUMAN and AUTO differ 

by 76mm, whilst the difference between the HUMAN and AUT02 estimates is only —9mm, 

which further reflects the improved tracking performance of AUT02.

For sequence 2, the true grid parameters are very similar to those given to the AUTO al­

gorithm. The consistency measures are given in tables 5.15-5.19 and show a great similarity 

between all three algorithms and the HUMAN assessment. In fact on the Y  estimate the AUTO 

algorithm is slightly more consistent with HUMAN assessment than AUT02 and SEMI2, al­

though only marginally so (3mm), The same is true for the estimate, but again the difference 

is small.

In short, by comparing the AUT02 algorithm, which estimates local variation in the grid 

parameters, with human assessments and the original fixed parameter algorithm AUTO, it has 

been shown that allowing the grid parameters to vary has advantages. When the true grid pa­

rameters are very different from those given to AUTO, as is the case for image sequence 1, 

the AUT02 algorithm is much better at estimating forward distance than the AUTO algorithm. 

However, when the actual grid parameters are close to those given to the AUTO algorithm (im­

age sequence 2), the tracking results are very similar for all algorithms. As is the case with the 

AUTO algorithm, using hand selected features has little bearing on the trajectories, as the simi­

larities between the results for AUT02 and SEMI2 bear out.

Finally, it is worth noting at this point that both sequence 1 and sequence 2 were captured 

from different parts of the same bed of crop, yet the variation in grid parameters between the two 

sequences is great enough to make a significant difference to the tracking performance when the 

grid parameters are fixed. By estimating the grid parameters, performance is more consistent 

with the underlying ground truth (as given by human assessment).

As with the AUTO and SEMI algorithms, it is possible to analyse the filter’s assessment of 

its own accuracy in terms of the average standard deviations over each sequence (tables 5.20 and
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5.21). Once more, the algorithms are generally more optimistic than comparison with HUMAN 

assessment might justify, but this has not caused loss of track.

AUT02 SEMI2

(mm) 5.61 5.67

(7y  (mm) 13.48 12.95

(Txÿ (degrees) 0.425 0.448

af (mm) 3.52 3.08

(Tj (mm) 4.07 3.49

Table 5.20: Estimated standard deviations obtained from the filters in the AUT02 and SEMI2 

algorithms for data from sequence sequence 1.

AUT02 SEMI2

(mm) 5.45 5.31

ay (mm) 13.86 14.57

<7^ (degrees) 0.415 0.455

(7f (mm) 4.15 4.72

(jj (mm) 4.89 6.02

Table 5.21: Estimated standard deviations obtained from the filters in the AUT02 and SEMI2 

algorithms for data from sequence sequence 2.

5.2 Test-bed experiments

After showing the viability of the crop grid tracking algorithms on short, off-line data sequences, 

experiments were conducted to test the performance of the vision system in tandem with the 

vehicle’s dead-reckoning system on-line. Currently only the algorithm AUTO which does not 

estimate the row spacing parameters has been implemented in the on-line system. In order to 

avoid difficulties with the image processing and also mechanical problems such as wheel slip, 

an indoor test-bed has been designed to simplify testing. Figure 5.11 shows the autonomous ve­

hicle on the test-bed, which is simply a large black mat with a set of white circles painted on 

it in a near regular grid pattern^. These circles represent the crop plants. The strong contrast 

between the white circles and the black mat ensures success of the thresholding process in ex­

tracting the “crop plants” from the images, and the fact that the image features do lie accurately

^There are some irregularities in the pattern owing to inaccuracies in painting
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on the ground plane removes the errors caused by the perspective projection effects that were 

discussed in section 2.3.8, and the “virtual ground plane” is set to coincide with the real ground 

plane.

Figure 5.11: The vehicle in the test-bed environment.

The experimental procedure was to programme the vehicle to travel a distance of 12 metres 

(the length of the mat) along a trajectory composed of 1 m of acceleration, 10 m at a constant 

velocity (0.6 ms~^) and 1 m deceleration to rest. The acceleration and constant velocity stages 

were performed with the vision subsystem switched on and being used to aid vehicle localisation 

as described in section 4.6, whilst the deceleration stage used dead-reckoning alone. During 

transit, the vehicle left a trail of sand along the mat whilst logging its estimated position into a 

file. At the end of the run, the position of the sand trail was measured with respect to the central 

row of circles at 0.25 m intervals. From an experimental measurement standpoint, the test-bed 

has a considerable advantage over real crop in that the position of the central row is well defined. 

In the field it is much more difficult to judge this central position.

Evaluation of the system’s performance over a run is provided by studying the root mean 

square error (r.m.s.e.) between the measured points from the sand trail and the corresponding es-
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timate logged by the vehicle controller. Such a metric was used by Hague and Tillett [HMT97a] 

to measure the system’s performance with the Hough transform algorithm of Marchant and 

Brivot [MB95] in the field. A similar test-bed experiment was also carried out by Hague and 

Tillett [HT96] to assess the performance of the system with the Hough transform. An r,m,s,e fig­

ure was not given for this test, but it was stated that the error was typically in the range ±15mm, 

A further metric is used in this thesis to analyse the bias of the estimator. This metric is the 

mean difference between each measurement taken from the trail and its corresponding estimate 

fi-om the navigation system. If the estimator is unbiased, this mean difference should be zero.

It should be noted that the vehicle’s position estimator does not directly gauge perpendic­

ular offset of the vehicle from the central row. This distance h (as seen in figure 5,12) can be 

calculated using the estimated bearing angle and offset in camera co-ordinates by the fol­

lowing formula

/i =  i^cos^ , (5,1)

and it is this calculated value for h which is plotted in the results section below.

é •
#  #

Sand Trail

Figure 5,12: The perpendicular offset h.

5.2.1 Results

Six experimental runs were performed, and the estimated and measured positions are plotted in 

figure 5,13, In each figure the solid trace denotes the estimated position, and the dashed line 

the measured position. In addition to logging the estimated position, the filter also logs the un­

certainty of the position estimate by recording a term from the filter covariance matrix. These
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uncertainty measures are plotted in figure 5.14, and are discussed further below.

Before discussing the r.m.s. error figures, it is interesting to look at the shape of these stan­

dard deviation curves. When the vehicle starts up, the uncertainty is high; the automatic initiali­

sation algorithm (presented in the next chapter) has yet to be implemented in the on-line system, 

and the filter is started with an approximate position estimate with high uncertainty, both cho­

sen by hand. With the onset of motion, extra information is provided by the inclusion of the 

kinematic model which links together the estimates of parameters and ^  (equation 4.3). The 

uncertainty is thus driven down to an approximately steady level. During deceleration in the 

last metre of travel, the vision system is turned off and the uncertainty begins to rise again. This 

demonstrates the importance of the vision data to position estimation.

To counter the effects of the approximate initialisation, which would otherwise dominate 

the results, the r.m.s.e performance measure has been calculated only for the part of each track 

where the measured and logged tracks appear to have converged (from c. 2.5m onwards in each 

case). These error figures are presented in table 5.22 below, together with the the mean of the 

filter’s standard deviation over the same distance. Comparison of the two figures shows that the

Track r.m.s.e. (mm) error estimate (mm)

(a) 6.18 3.13

(b) 7.12 3.27

(c) 5.84 3.12

(d) 6.29 3.19

(e) 7.01 3.25

(f) 7.28 3.15

Table 5.22: The root mean square error between the measured and estimated offsets, and filter 

error estimate for the six tracks of figure 5.13.

measured error is much greater than the estimated errors. Such over confidence is a well known 

trait of the extended Kalman filter [May90], and in some cases can cause the estimate to diverge 

from the true state, so that tracking fails or estimates become biased. Perusal of the tracks in 

figure 5.13 shows that divergence has not occurred, and a mean error of only 0.65mm between 

each measurement-estimate pair indicates that the system bias is very small.

The forward distance estimate is also of interest. The vehicle was commanded to run a to­

tal length of 12 metres (Im  acceleration, 10m constant velocity, Im  deceleration to rest); table 

5.23 shows the measured and estimated path lengths for each run. As can be seen in the table.
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the best estimates are within one centimetre of the measured length (tracks (a) and (c)) and the 

largest error is 9cm (track (e)). Such errors, although larger than the typical disagreements be­

tween the human assessments and automatic results seen in the off-line experiments (tables 5.2 

and 5.5), are quite acceptable for the task of navigating along the crop rows. Differences be­

tween the off-line and on-line figures may be attributable to many sources including systematic 

errors in human assessment of the off-line data, wheel slip on the mat (although this is expected 

to be small), measurement noise of the trail on the mat, or simply the fact that the on-line exper­

iment operates over a 12m run, whereas the off-line sequences represent approximately 1.2m, 

and error accumulates over distance.

Track Measured Length (m) Estimated Length (m)

(a) 12.04 12.05

(b) 11.98 12.06

(c) 12.07 12.06

(d) 12.03 12.07

(e) 11.97 12.06

(f) 11.97 12.05

Table 5.23: Estimated and measured track lengths.

5.3 Summary

Experiments have been designed to test the viability of the proposed crop grid tracking algo­

rithms. The first test measures the consistency of the off-line algorithm’s performance on image 

sequences. In the absence of ground truth information as to the vehicle’s position, the tracked 

state trajectories are compared with estimates from the Hough transform algorithm of Marchant 

and Brivot, an algorithm known to provide satisfactory performance in the field [HMT97a], 

and with measurements by three human observers over the same sequences. The algorithm is 

tested with both hand-picked and automatically selected image features, and found to compare 

favourably with the Hough transform method in both cases. The method of feature selection is 

the subject of the following chapter. The advantages of estimating the grid parameters on-line 

is also shown, with improved agreement with human measurements when the grid model better 

reflects the underlying crop spacings.

Once we had gained confidence in the algorithms from the off-line tests, the next step was 

to perform an on-line experiment with the vehicle in a simplified test-bed environment by us­

ing a black mat painted with a regular grid of white circles to represent an idealised crop. This
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second experiment allows comparison of the vehicle’s navigation system estimator, which com­

bines vision data and dead-reckoning information, with ground truth measurement of the vehi­

cle’s position in the test-bed environment. The system performance was found to be sufficiently 

accurate for navigation along the grid formed by the circles, and shows promise for navigation 

in a field of real plants. Experimental results assessing the navigation performance outdoors in 

the field environment are presented in chapter 8. So far, only the algorithm with fixed grid pa­

rameters (AUTO) has been tested on-line. Future work must involve an on-line implementation 

of the more sophisticated algorithm which also estimates the crop spacing parameters (AUT02).

Thus far, we have presented the crop grid tracking algorithms and demonstrated their per­

formance off-line on image sequences captured from the vehicle, and on-line in a simplified test­

bed environment. The next chapter covers issues that are vital to successful tracking with ex­

tended Kalman filters. The first of these is the provision of an estimate of state and covariance to 

initialise the extended Kalman filter. The second is data association, which is required to select 

appropriate observations from the set of features generated by the image processing system.
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Figure 5.13: Navigation trials. Each figure (a)-(jf) shows the estimated (solid) and measured 

(dashed) offset of the vehicle from the central row of crop.
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Figure 5.14: Estimate uncertainties. Each figure (a)-(f) shows the standard deviation (as given 

by the square root of the filter’s estimate covariance matrix) of the position estimate in mm.



Chapter 6

Initialisation and data association

The development and testing of the crop grid tracking algorithm has been documented in the 

previous two chapters, and it shows great promise as a localisation tool for the autonomous hor­

ticultural vehicle. There are two issues that have received mention, but as of yet no explanation. 

These are the initialisation of the extended Kalman filter, and data association.

As is well known [BH97, BSF88], the extended Kalman filter algorithm is recursive, and 

refines its estimate of the state (and its covariance) by predicting the state’s value in the next 

instant and then correcting this prediction using new measurements. This predict-correct cycle 

needs to be initialised with a starting estimate of the state and its covariance. In particular, ini­

tialisation can be especially important for the stable performance of extended Kalman filters, as 

was noted in chapter 3, in order to ensure an appropriate linearisation point for computation of 

the Kalman gain. To initialise the crop grid tracker, a two stage algorithm has been devised. The 

first stage uses the Hough transform method due to Marchant and Brivot [MB95] to locate the 

crop rows in the first image of the sequence, yielding an estimate of and $  (see appendix A 

for details). This is followed by a second stage which obtains an initial estimate of Y  via a novel 

use of the discrete Fourier transform to locate the offset of the bottom-most plant in the image. 

In the case of the crop grid tracker with grid parameter estimation, the initial values of r  and I  are 

given by hand. The covariance of the initial estimates onta;,Y and ^  is derived from an evalua­

tion of the two-stage algorithm’s performance. The variances of f  and I  are given by knowledge 

of the crop planting process, obtained from measurements taken in the field. Currently, this au­

tomatic initialisation has only been implemented in the off-line system. The on-line system is 

initialised by hand, with a “large” variance and is allowed to converge over a series of frames 

before the vehicle is started. This technique is surprisingly reliable, although the algorithm does 

fail to converge approximately 5% of the time, suggesting that the automatic method should be 

used.

The second issue tackled in this chapter is data association, the process of matching sensed
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data (plant matter features extracted by image processing) with predictions (the predicted posi­

tion of the crop plants in the crop grid) and is vital to the success of tracking. The Kalman filter 

state estimate update equation (equation 3.12 in chapter 3) assumes that there is a single obser­

vation z{k) which corresponds to the state prediction x~ (k). In most real systems, this is not 

the case, and there are many possible matches to a single prediction. In the crop grid tracker, we 

require a single crop plant to be matched to a predicted crop grid position, but the image pro­

cessing step produces both crop and weed features, so some method of pairing the predicted crop 

grid positions with suitable image features is required. A nearest neighbour approach is used to 

match a single image feature with each predicted crop position. A so-called “validation gate” is 

used as a pre-cursor to data association to reduce the number of potential matches and also to 

cater for instances where the plant corresponding to a grid position has failed to grow.

6.1 The initialisation algorithm

We are fortunate in our horticultural application, because the crop field environment is quite sim­

ple and only a single instance of the object of interest (the crop planting grid) is present in the 

field of view, and it is unlikely that any distractors will be present (i.e. a set of weeds lying in a 

formation that mimics the crop grid). The general problem of initialising object trackers in the 

presence of multiple instances and/or distractors is more difficult [Wil97], although recently a 

technique dubbed “Bayesian Correlation” [SBIM99] has been developed. Bayesian correlation 

uses learned models of the response of both object foreground and image background to a set of 

filters to construct an estimate of object position likelihood over an entire image. Moments of the 

distribution, such as mean and variance (required for Kalman filter initialisation) can be calcu­

lated directly from the likelihood function. For our purposes however, the more straightforward 

two-stage algorithm described below has been found adequate.

To start the crop grid tracking process, an initial estimate of the crop pattern position x is 

acquired in two stages. Firstly, the initial estimates of and are obtained using the Hough 

transform method developed by Marchant and Brivot [MB95] (see appendix A). Secondly, the 

grid position Y  is then obtained from Fourier analysis of ID image samples taken along the 

extracted rows.

If we sample the image along the crop rows located by the Hough transform, a grey-level 

profile is obtained. Figure 6.1 shows an idealised binary image with a row marked and its cor­

responding sample, with figure 6.2 showing a real image and the sample taken from that image. 

The sampling is performed in world frame co-ordinates, which accounts for the regular spacing 

of the sample peaks in the figure, despite the perspective foreshortening in the image. To allow
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Figure 6.1: Sampling along a row: the phase 0 of the sample provides the offset of the planting 

pattern.
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Figure 6.2: Left: a row sample from a typical image -  the grey-level peaks corresponding to 

plant matter are hand-labelled crop or weed. Right: the image sampled the white line indicates 

the row sampled.

for non-ideal positioning of plants along the row, and the fact that the plants are two dimensional 

objects in the image rather than one dimensional, the sample to be analysed is constructed by tak­

ing the mean (at each sample point) of a set of 5 samples taken 5 mm apart on the ground plane 

around each row identified by the Hough transform method.

The procedure for obtaining the required offset values from these samples commences with 

the calculation of the discrete Fourier transform F{juj) of the (ID ) grey-level profile (w is the
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angular spatial frequency in radians per metre) and proceeds via calculation of the phase 6 of the 

coefficients corresponding to the frequency 27t//, the expected frequency of plant spacing I  from 

the crop model. 0 may then be converted into spatial offset along the row using the following 

formula

Offset -
27T (61 )

By using this method, model position Y  can be calculated from the mean value of the offset 

measurement from each row.

Once initial values for Y  and ^  have been obtained, the state estimate x~ (0) may be 

formed, leaving only the initial state covariance P “ (0) undetermined. Marchant and Brivot 

[MB95], estimate the root mean square error of the estimates obtained from their Hough trans­

form algorithm. They give resultant r.m.s errors of 12.5 mm on and 1° on As noted by 

Bar-Shalom and Fortmann [BSF88], in the extended Kalman filter the matrix P  is not strictly a 

covariance, but a measure of mean square error on the estimate x, so these values of offset and 

angular error may be used directly.

0 ^
- -

■ -
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* o

o

700 800
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Figure 6.3: Comparison of human and automatic assessment of row offset. Note that the points 

lie approximately on a straight line at 45

Finally, to obtain a measure of mean square error for the estimate of the row offset, and 

hence Y , the mean-square difference metric used as a similarity measure in chapter 5 has been 

employed. The Hough transform was used to provide the initial position of the row structure, and 

then a template was aligned by hand to determine the offset Y  from each of 40 images (each im­

age in sequence 1 and sequence 2 from chapter 5). Figure 6.3 plots the automatic measurements 

of Y  against those derived from human measurements, and a mean-square difference measure 

of 24.5mm was calculated. As explained in chapter 5, this difference metric assumes equal dis­

tribution of errors between the algorithm and the human assessment. The difference measure
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produced is not necessarily a mean-square error, unless the errors are in fact equally distributed 

between algorithm and human, but when veridical ground-truth measurements are unavailable, 

this kind of comparison with subjective human judgement provides a pragmatic solution to the 

problem of estimating the initial state covariance.

Experiments on image sequence 1 of the previous chapter in which the initial covariance 

was increased by up to a factor of 10, or decreased to zero, showed that only the initial response 

of the filter was affected , with convergence to the same track after two or three images into the 

trial sequence.

6.2 Data association and validation
The second issue of concern in this chapter is data association. When tracking an object in the 

presence of clutter (observed features which do not represent the object of interest), a data asso­

ciation policy is essential to link the observation process to the estimation mechanism [Rao92]. 

We are using the extended Kalman filter as the estimation mechanism for the crop grid tracker 

(chapters 3 and 4), and the observation process takes the form of the image thresholding and 

chain coding algorithms of chapter 2. We know from the Kalman fitter update equation (equa­

tion 3.12 in chapter 3) that a single observationz{k) is required to match each predictionx“ {k). 

Unfortunately, in many applications, including ours, the observation process produces a number 

of candidate features, one or many of which may correspond to the target of interest, and some of 

which may be clutter. Data association is the process of sifting through these candidate features 

and selecting those that represent the target being tracked. In our crop grid tracking application, 

the image processing algorithms extracts both crop plant and weed features from each image, so 

a data association strategy is required to match crop features with the corresponding predicted 

positions of plants in the crop grid.

The image processing described in chapter 2 produces a list of features characterised by 

their centroid position (in pixel co-ordinates) and size (measured as a number of pixels). For 

convenience of exposition, we shall assume that each image feature contains pixels that exclu­

sively represent either a crop plant or a weed^. The centroid of each feature is a candidate ob­

servation Zd{k, m, n) to match the predicted position of the plant at crop grid position m, n at 

time k. This predicted plant position is denoted z~ (k, m, n), and is defined by the expression

z~(/i:, m, n) =  h (x“ (fc), m, n), (6.2)

which is familiar from equation 4.13, with the state vector prediction x “ (k) substituted for

’ In reality, the image processing is not perfect, so each feature may contain a mixture o f pixels that belong to crop, 

weed or soil, which will affect the final image segmentation. This point will be revisited in chapter 7.
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r and Ï.

The data association policy produces a feature z{k ,m,n)  from the set of candidates 

Zd{k^ m, n) that “best” matches the predicted feature position z(A;, m, n). We have used a 

nearest neighbour data association algorithm [BSF88]. The nearest neighbour approach selects 

a single feature from the set of candidate matches that produces the smallest “normalised in­

novation”. What we mean by the “normalised innovation” is defined below. Obviously, if a 

crop plant has fractured into individual leaves, only one leaf will be selected using this method. 

Many alternative data association strategies have been proposed in the literature, but the nearest 

neighbour approach is adequate for our purpose. Rao [Rao92] presents a review of alterna­

tive association techniques which encompasses “all neighbour” methods (where a number of 

features are combined to provide a single estimate) and multiple-prediction, multiple-feature 

approaches.

To explain the nearest neighbour data association algorithm, we define the innovation

m, n) as

Ud{k, m, n) = Zd{k^ m, n) -  z “ (fc, m, n), (6.3)

which, being the difference of two random variables, has covariance matrix

Sd{k,m,n)  = Kd{k , m, n)  4- h 5t-(A:)(x“ (A;), m, n)P"(A;)hT(^)(x"(fc), m, n), (6.4)

where h 5j.-(A;)(x“ (A;), m, n) is the matrix of partial derivatives of the observation function 

h(x(A;), m, n) with respect to the state variables, and P “ (/?) is the state prediction covariance 

matrix. S{k, m, n) is the sum of two terms which represent the uncertainty on the observed po­

sition of feature Zd{k.,m,n) and the predicted position of feature m, n at time k respectively.

The normalised innovation is the Mahalanobis distance 7  ̂ between and

z“ (fc, m, n):

7j =  yd(k,m,n)^S'^^{k,m,n)vd(k,rn,n),  (6.5)

and the nearest neighbour policy chooses the feature Zj(A;, m, n) which minimises 7J, i.e.

z(A;, m, n) = argmjn {[zj(A;, m, n) -  z“ (fc, m, n)]^S^^(/j, m, n)[zj(&, m, n) -  z“ (A:, m, n)]}

(6.6)

Thus, to find the nearest neighbouring feature, the quadratic sum of equation 6.5 is evaluated 

for each candidate feature, and the feature which produces the smallest normalised innovation 

is chosen as the best match. 7  ̂reflects the likelihood that the chosen Zd {k, m, n) represents the 

same point in observation space as that predicted to be at z~ {k, m, n). The assumption is that 

true target features (crop plants) are more likely to satisfy the nearest neighbour test than clutter 

(weeds).
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6.2.1 Feature validation

The nearest-neighbour algorithm described above assumes that each predicted plant position has 

a single corresponding image feature. As noted above, in some cases, the image processing al­

gorithms produce more than one feature per crop plant. The next chapter therefore presents an 

algorithm for clustering multiple features which may represent parts of the same plant. In other 

cases, however, a crop plant might fail to grow, and there will be no image features that correctly 

correspond to the predicted crop grid position. To deal with such instances, we use a validation 

gate [BSF88] to place a constraint on the position that a matched feature may take. Without vali­

dation the prediction would be matched with a weed feature, or even a crop plant which correctly 

corresponds to another point on the grid. Such erroneous matches would lead to inappropriate 

state updates, and possibly loss of track.

The validation gate places a limit on the value of normalised innovation 7  ̂ (equation 6.5) 

for a permitted match, i.e. only those features (fc, m, n) for which

I d  <  XT) (6 7)

where x \  is a threshold limit, are passed to the nearest-neighbour algorithm (equation 6.6). 

The symbol Xt has been chosen deliberately, because the normalised innovation is the sum of 

squared normally distributed random variables (the projection of the state estimate into the ob­

servation space), and as such is drawn from a distribution of degree n, where n is the dimen­

sion of z(fc, m, n) [Spi80]^. A prediction (x) and an observation (-f) are illustrated in figure 

6.4, together with the validation region defined by equation 6.7, which is marked as an elliptic 

contour centred on the prediction.

o

Figure 6.4: A validation gate. The prediction is marked with a ‘ x ’, the matched feature with a 

‘+’, some validated but unmatched features with and some features which fail the validation 

test with ‘o’.

If we recall that y j  is a also level of significance, then it can be seen that the validation 

gate (equation 6.7) will reject potential matches which are unlikely to be correct. Of course, if 

^Strictly, in the extended Kalman filter, the state variables are generally not Gaussian random variables, but are 

approximated as such. This approximation is also made here.
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a true match does not exist (e.g. if a crop plant has died), then enlarging the acceptance region 

increases the likelihood of an incorrect match (e.g. with a weed feature) being made. In practice, 

Xt  is best set experimentally and we have found that Xt =  5.99 allows for the imprecision in the 

position of individual crop plants relative to the grid whilst preventing inappropriate matches. 

This value of Xt  corresponds to a 95% likelihood that the correct match will lie in the validation 

region. If no observations lie within the validation region, then the updated state estimate x(fc) is 

set to its predicted value x “ [k) and the covariance P  (fc) to P “ (fc), and the filter cycle continues 

in the usual manner.

6.2.2 Implications for filter implementation

Validation gating is a common strategy for outlier rejection in practical Kalman filtering applica­

tions [Rao92], and is often essential for stable estimation on real data. The price of this stability 

is that by rejecting all features outside the validation region, the validation gate truncates the 

Gaussian distributions that are assumed throughout the filtering process. This truncation will 

inevitably lead to the rejection of some correct matches, thereby introducing a bias into the fil­

ter’s estimate.

The use of a validation gate also has a further implication for the implementation of the ex­

tended Kalman filter used to track the crop grid model that pertains to the order in which obser­

vations are incorporated into the state estimate. In the standard filter cycle of “predict-validate- 

associate-correct” , the position of a grid point (m, n) is predicted, an observation (from the set 

of validated features) is matched to this prediction using the nearest neighbour strategy, and this 

feature is used to update the state estimate. The next grid point position is then predicted, and so 

on until all grid points in the image have been exhausted. In this sequential cycle, it is possible 

that incorporating a crop feature that is at an extremity of a validation region may lead to subse­

quent crop features being rejected inappropriately (and hence update information will be lost). 

Figure 6.5 illustrates the problem. Two crop plants (labelled 1 and 2, marked with -f signs) are 

shown, together with predicted positions from the filter (x ) and their validation regions (the con­

tours). The solid lines correspond to the case where feature 1 is incorporated before feature 2, 

and the dotted lines the reverse. In both cases, the first feature to be incorporated into the filter’s 

estimate is close to the edge of the validation region. Once this feature has been used to update 

the filter estimate, it leads to a prediction and validation region that excludes the other feature.

The solution to this problem is simple. Instead of adopting the usual sequential predict- 

vaHdate-associate-update cycle for each point on the crop grid, we use a “parallel” validation 

and association strategy, where the complete set of grid point positions is predicted using the 

filter prediction at the time that the image is digitised from the camera (the estimate x “ (A;-t-l)o
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Figure 6.5: Order of data incorporation. Crop plants 1 and 2 are marked with +  signs, whilst 

the X signs and contours denote the prediction positions and validation regions. Solid, feature 

1 incorporated first, dashed feature 2 incorporated first,

as seen in section 4.3.3, chapter 4). Such a validation strategy is “natural” in the parallel update 

filter presented in chapter 4. This is illustrated in figure 6.6, where both plants 1 and 2 lie within 

the validation regions derived from the single prediction, so both observations will be matched 

to predictions and the update proceeds using these associations.

Figure 6,6: Parallel validation. A single state prediction is used to predict and validate both plant 

positions. In this case both features are validated.

6.3 Summary

Reliable operation of extended Kalman filters on real-world data often depends on two condi­

tions. The first is that the filter should be provided with a good initial estimate of the state and its 

covariance matrix as tracking starts, and the second is the selection of appropriate measurements 

from the set of observations to update the state estimate.

We have presented a two-step algorithm to initialise the filter. The first step locates the crop 

row structure using the Hough transform developed by Marchant and Brivot [MB95], and then 

determines the grid offset via a novel use of the discrete Fourier transform. The crop grid pa­

rameters f  and I  are given by hand, as their mean values and variance are assumed to be known 

from the planting process. Initialisation requires that not only a state estimate is provided, but 

also the variance of this estimate. Our two-step algorithm does not provide the required vari­

ances directly, but we have been able to estimate them from evaluation of the algorithm’s per­

formance.
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The image processing techniques described in chapter 2 produce a set of features from each 

image that describe plant matter, both crop and weed. The crop grid tracker predicts the position 

of the crop plants, but not the weeds, which appear as “clutter” in the set of observed features. 

Validation gating is used to reject image features that are unlikely to correspond to the predicted 

crop grid points, and a nearest neighbour data association policy selects single image features 

to match the grid points. In the previous chapter, the algorithms AUTO and AUT02 used the 

nearest neighbour data association policy, and produced performance comparable with that of 

the SEMI and SEMI2 algorithms where features were matched with predictions by hand. How­

ever, since it is also possible that each crop plant may itself be represented by several features in 

an image (see chapter 2, section 2.3.8), a feature classification policy is required that takes this 

problem into account. This is discussed in detail in the next chapter.



Chapter 7

Image segmentation

So far, we have concentrated on the use of the crop grid tracking algorithm as an aid for navi­

gation. Alternative crop grid models have been assessed, and an initialisation method proposed 

together with a data association policy to match image features to plants in the crop grid. How­

ever, the crop grid is not just useful as a landmark for navigation. Image features that lie “within” 

the grid may be assumed to represent crop plants, with the remainder representing weeds. Fur­

ther knowledge of the agricultural domain may also be exploited to aid the segmentation process. 

The cauliflower crop used throughout this thesis are routinely grown into seedlings of c. 10 cm 

height in greenhouses prior to transplantation into the freshly tilled field. The crop, therefore, 

are well grown before the weeds can take root, and it can be safe to assume that the crop will 

generally be larger than the weed plants. Their size in the image is a useful cue for differentiating 

between crop and weed, as we noted in section 2.3.

The image processing stage (chapter 2) produces a set of blobs in the image which are char­

acterised by their centroid (pixel co-ordinates) and size (in number of pixels). In this chapter, 

we present an algorithm for classifying these features as either crop or weed. The algorithm 

first filters the features on the basis of size, those smaller than a threshold size being classified 

as weed. The features above the size threshold are passed on to a clustering algorithm somewhat 

similar to the validation gate presented in the previous chapter. The clustering algorithm groups 

together features that lie close to the latest estimate of the crop grid position and classifies them 

as crop. The features that are not grouped by the algorithm are classified as weed.

The performance of the segmentation algorithm is analysed on ground truth plant matter 

data to determine the effectiveness of the algorithm independently of the plant matter/soil dis­

crimination method, before being demonstrated in off-line experiments on the test image se­

quences A-D that were introduced in chapter 2. The size filtering and data association steps 

are controlled by threshold parameters, and methods of determining suitable operating values 

of these parameters, based upon ROC curve analysis, are discussed.
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7.1 The image segmentation algorithm

The purpose of the image segmentation algorithm is to allocate each pixel to a class, be it crop 

plant (denoted C), weed (W) or soil (S). The algorithm performs this task in three stages. The 

first stage is the separation of the image into soil pixels and plant matter blobs. This is done 

by the adaptive interpolating threshold and chain-coding algorithm described in chapter 2, that 

extracts a set of blobs from the image which represent the plant matter. It is known that some 

soil pixels are incorrectly classified as plant matter and vice-versa. Each blob is described by its 

centroid (in pixel co-ordinates) and size (the number of pixels in the blob). These blobs make up 

the set of candidate plant matter features, denoted P, which are passed on to the next two stages 

of the algorithm. The pixels rejected by the threshold are classified as soil (S).

The next stage of the algorithm exploits the fact that the crop plants are grown to seedlings 

before being transplanted into the freshly tilled field. The crop plants are thus already an appre­

ciable size before the weeds start to grow, and it is reasonable to assume that this size advantage 

is sustained if the crop is regularly tended. The plant matter features P are therefore filtered on 

the basis of size with those below the size threshold classified as weed (W), and those above it 

passed on to the final stage of the classification process.

The third stage of the segmentation algorithm utilises the tracker’s estimate of the crop grid 

position and a clustering technique similar to the validation gate presented in chapter 6 to label 

features close to the crop grid structure as crop (C), and the remainder as weed (W).

7.1.1 Size filtering

Section 2.3 described the extraction of plant matter features from the image sequences by ap­

plication of a grey-level threshold and clustering of neighbouring pixels using a chain-coding 

algorithm. Each cluster is described by its centroid and size. If the size of each blob reflects the 

size of the plant being imaged, then imposing a threshold on the blob size should be an efficient 

way of screening out the smaller weeds. It should be stressed that the aim of the size filtering 

steps is to sort the features into two sets; those which are most likely weeds, and others which 

might be weed or crop.

Figure 7.1 shows histograms of the size of weed and crop plant image blobs in the ground 

truth images from sequences A -D  (chapter 2). It can be seen from the histograms that the vast 

majority (in fact 95%) of the weed blobs have a size of less than 50 pixels, whilst most (90%) 

of the crop blobs have a size of 50 or pixels or greater. This supports the claim that the weed 

plants are typically smaller than the crop. The blob sizes plotted in the histograms come directly 

from the perspective images captured from the vehicle’s camera. The perspective projection will
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Figure 7.1: Blob size histograms. Top: weed blobs. Bottom: crop blobs. In both histograms, 

the right-most bin (n arked 50) counts all blobs of size > 50.
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make an object close to the vehicle appear larger in the image than a same-sized object further 

away. However, there is little overlap between the crop and weed size distributions, so we do 

not try to correct for such perspective effects.

Thus, we have a straightforward algorithm that places a threshold on the size s of the image 

features. This may be expressed as follows:

( W  if s(feature) < ç 
Class (feature) =  < , (7.1)

y P  if s(feature) > ç

where s(feature) is the size of an image feature in pixels, and ç is the size threshold.

7.1.2 Feature clustering

The size filtering algorithm has provided a set of candidate crop features, which retain the plant 

matter label P. These features are next sorted into crop (C) and weed (W) features on the basis of 

their position on the ground plane. Crop features should be close to the plant positions given by 

the crop grid model, whilst weeds will be more randomly scattered across the field. In chapter 

2, it was seen that crop plants can fracture into multiple image features. For these features to 

be classified correctly, they must all be clustered together and associated with the crop plant 

positions in the crop grid. We perform the clustering with a heuristic algorithm akin to the feature 

validation process given in the previous chapter.

In chapter 6, we defined the validation gate, a region centred on the predicted crop plant 

position h (x“ (k), m, n) outside of which observations were not associated with the crop grid 

point (m, n). Here, we define an association region around the updated estimate of each crop 

plant position h(x(fc), m, n), inside of which all observations are classified as crop plant, and 

assigned label C.

If we denote the position in the image of estimated crop grid location m, n as z(A:, m, n), 

we have the observation equation (equation 4.12),

z(fc, m, n) =  h(x(A;), m, n). (7.2)

Now, if we have the set of observed candidate crop features P, each at an image position denoted 

Zp(k) (where p G P), we can set up a clustering criterion, where zp{k) is classified as crop if

[zp(k, m, n) -  z(k, m, n)]^S~}^^^{k, m, n)[zp{k, m, n) -  z{k, m, n)] < xLsoc^ (7.3)

where Sassoc > described in detail below, is a covariance matrix that determines the shape of the 

association region, and xLsoc controls the size of the association region. As with the validation 

gate in the previous chapter, we set xLsoc =  5.99 to reflect a 95% chance of finding all of the
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crop features within the association region. Equation 7,3 has the same form as the validation 

gate seen in the previous chapter (equations 6,5 and 6.7), but with the corrected state estimate 

x(A;) in place of the predicted estimate x “ (/?),

The matrix Sas^oc {k^m^n) describes association region centred on crop grid position m, n, 

and is composed thus

S {k,m,n) = h^k^{St(k),m,n)P{k)hl^j^^{k{k),m,n)-\-'Rassoc(k,rn,n). (7,4)

The first term on the right-hand side of equation 7,4, contains (x(A;), m, n), the matrix of 

partial derivatives of the observation function h(-) with respect to the state variables x(/?) eval­

uated at the latest state estimate x(A;), P{k) is the latest state estimate covariance, so this first 

term describes the uncertainty in the estimate of the position of grid position m, n. The second 

term on the right-hand side of equation 7,4, Rassoo is a matrix that describes the association re­

gion constructed about that uncertain position, and we will return to it shortly. The construction 

of Sassoc is illustrated in figure 7,2,

h /h x  + K.ssoc s.assoc

Figure 7,2: The construction of the clustering region Sassoc-

All that is required now to fully determine Sassoc is specification of the matrix Rassoc- In 

section 4,2,5, we set up the observation covariance matrix R^  ̂ on the ground plane, and used 

error propagation techniques to project it into the image to obtain the observation noise covari­

ance matrix R(fc, m, n) (equation 4,28), We follow a similar strategy here, where we construct 

a region in ground plane co-ordinates, described by a matrix R^, and then project the matrix into 

the image using error propagation techniques.

Suppose that we have perfect knowledge of a crop grid plant position on the ground plane, 

i,e, that P{k) in equation 7,4 is the zero matrix, and that this position is denoted x̂ ĉ =  

(xwc, V w c ) , and that we have a feature in the image, Zp, whose pixel co-ordinates {xfp,yfp) map 

onto the ground plane position x ,̂p =  {xyjp, y ĵp). We will classify the feature Zp as crop if x̂ p̂
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is within a radius r of the grid position i.e. if and Xit,p satisfy the relationship

1 0 

0 1
(7.5)

Now suppose that

which allows us to write

^  —  ^X .assoc i (7.6)

or

1 0

0 1

a“ 2 0

0

-zwp =] < 2
a s s o c i (7.7)

\̂ wp ^ w c ]  ^  Xi
2
a sso c ' (7.8)

Equation 7.8 is equivalent to interpreting the position of crop plant matter as a Gaussian dis­

tributed random variable with mean x̂ ĉ and covariance matrix

R r =
a 0 

0
(7.9)

and stating that all matter related to that crop plant lies within a radius r of Xc^ with a statistical 

significance set by the value of xLsoc- For any fixed values of r and Xassoc, « is calculated 

firom equation 7.6. This interpretation may seem curious, especially as the matrix almost 

certainly does not reflect the distribution of plant features around the plant centre^, but it allows 

straightforward calculation of the matrix Rassoc by projection of R^ into the image plane as 

follows:

R-assoc — ^  w i j ^ w c i  y w c ) ^ ' r ^  V w c )   ̂ (7.10)

where the matrix of partial derivatives V w c )  is given in equation 4.29 on page 85.

All that is required to specify Rassoc? and hence the association region Sassoc, is a value 

for the parameter r. If r is too small, then crop features will lie outside of the association region 

and will be misclassified as weed. However, if r is too large, then weed features will lie inside 

the association region and be misclassified as crop. We will return to parameter value selection 

in section 7.2 below.

^Fracturing is caused by shadows falling on the plant, so the true distribution of features has a dependency on 

light intensity and direction, the shape of the plant and environmental features that cast shadows; in short it will be 

difficult to model. .
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7.1.3 Classification summary

The classification process, from thresholding to data association is summarised in figure 7.3 

which illustrates the decisions and possible outcomes for each image pixel. On the left is the 

input pixel which is subjected to a number of binary tests, which either reject the pixel as a “neg­

ative” (R) or accept it as a “positive” (A). The final outcomes of the decision process is on the 

right of the diagram; the pixel is classified as either C (crop), W (weed) or S (soil).

Decision stages

Result classificationFeature clusteringArea thresholdGrey level threshold

Input Pixel

Key: R = reject 
A  = accept

Figure 7.3: Segmentation schematic.

7.2 Operating point selection

In figure 7.3, the three decision stages of the image segmentation algorithm can be seen, and 

each stage is controlled by a threshold parameter. For the grey-level thresholding algorithm, 

this parameter is the threshold gain a and was set in chapter 2. The size threshold algorithm is 

controlled by a parameter ç, and the clustering algorithm by the radius r. Some method of deter­

mining an operating point for the crop/weed discrimination algorithm is required, i.e. suitable 

values for ç and r that will deliver “good” performance on the test image sequences A-D that 

were introduced in chapter 2.

In chapter 2, we used the receiver operating characteristic (ROC) curve to compare the per­

formance of two grey-level thresholding algorithms and to determine a suitable operating point 

for the adaptive interpolating threshold algorithm. In that case, the algorithm had a single pa­

rameter, a, which was varied systematically to produce the points on the ROC curve. In the 

crop/weed discrimination algorithm we have two thresholds to set, ç and r. It is possible to adapt 

ROC analysis for the case where an algorithm has n thresholds (our algorithm has n = 2), as
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we shall see below.

7.2.1 The maximum realisable ROC curve

A point in ROC space represents the performance of a particular classifier in terms of its true 

positive ratio (TPR, equation 2.12) and its false positive ratio (FPR, equation 2.13). A clas­

sifier is defined here as a particular instantiation of a number of algorithms, for example the 

combined size filtering and feature clustering algorithm with parameter settings ç =  40pixels 

and r  =  0.30m. Given any two classifiers, a and b, that are characterised by tpra) and 

(/prj,, tpr^) respectively, and are joined by the straight line Lab in ROC space (figure 7.4), Green 

and Swets [GS66] (and more recently Scott et al [SNP98]) show that a new classifier c, with 

mean performance (fprc, tpr^  that lies on Lab may be realised by randomly switching between 

the output of classifiers a and b. The probability of using the output of classifier a for the 

decision is denoted Pr{ci = a), and is given by

f p r c  -  f p V aPr{ci = a) =
fpn -  fpra ’

and the probability that the output for decision i will be provided by classifier b is simply

(7.11)

Pr{ci = b) = 1 — Pr{ci =  a). (7.12)

TPR

tpr^-

FPR

Figure 7.4; Two classifiers and a line in ROC space. Classifiers a and b are joined by a straight 

line Lat- Any classifier c that lies on Lab may be realised by randomly choosing between the 

output of classifiers a and 6.

Equations 7.11 and 7.12 have been introduced to illustrate that any point on a straight line 

in ROC space that connects two existing classifiers is itself a classifier, and that a rule exists to
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realise this classifier. This idea leads directly to the maximum realisable ROC (MRROC) curve 

[SNP98]. In the case where we have an algorithm controlled by a single parameter, each setting 

of the parameter results in a classifier that lies on a single curve in ROC space, the ROC curve. 

When we have n parameters to set, where n > 2, each different set of parameter values results 

in a different classifier, but these classifiers are no longer guaranteed to lie on a single curve in 

ROC space, but will populate the ROC space above the “chance diagonal” from (0,0) to (1,1).

If we have a set of existing n parameter classifiers plotted as points in ROC space, then their 

convex hull constitutes the maximum realisable ROC curve. The MRROC curve is said to be 

maximum because it encloses the largest area possible for any curve plotted through the points 

in ROC space. The MRROC curve is realisablehecause it is composed of a set of line segments 

that connect existing classifiers, so any point on the curve represents a realisable classifier. A 

portion of ROC space containing a group of classifiers and a section of the MRROC curve is 

plotted in figure 7.5. The area property of the MRROC curve are interpreted in exactly the same 

way as that of the ROC curves presented in chapter 2, however the MRROC is not differentiable 

in the same way as the usual ROC, so the slope does not have the same meaning.
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Figure 7.5: A maximum realisable ROC curve.

7.2.2 Parameter selection

To select suitable values of the algorithm parameters ç and r to segment each of the example 

sequences A-D introduced in chapter 2, we once again make use of the subset of ground tmth 

images from each sequence where every pixel has been labelled, by hand, as either crop, weed.
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soil or as a border pixel which is ignored for classification purposes^. For each ground truth im­

age, the crop grid position is determined by hand, using the mouse-driven program that enabled 

production of the various HUMAN navigation data sets in chapter 5.

Now that we have a ground truth set of crop and weed features for a set of images, and 

the position of the crop grid in each of these images, we can form the MRROC curve for the 

set of classifiers produced by systematic variation of the size threshold ç and the clustering ra­

dius r. We assume that the human assessment of grid position is perfect, so the matrix 

in equation 7.4 is simply given by Hassoc{k, rn, n). Sections of the top left-hand comers of the 

MRROC curves produced for sequences A-D are plotted in figure 7.6, where crop pixels are the 

tme positives and weed pixels tme negatives.

The area under each MRROC curve is given in table 7.1. The area under the MRROC curve 

is close to the ideal figure of 1 for every sequence, so it would appear that the size filtering and 

feature clustering algorithms are effective for crop/weed discrimination. To set the operating

Sequence Area under curve

A 0.9974

B 0.9997

C 0.9996

D 0.9993

Table 7.1: The area under the MRROC curve for the crop/weed discrimination in each ground 

tmth image, sequences A -D ,

values of Ç and r, we choose the point on the MRROC nearest (in the Euclidean sense) to the 

(0 , 1) point, simply to achieve a blend of high tme positive ratio and low false positive ratio. 

The operating points selected in this manner are given for each sequence in table 7.2. The area 

threshold ç levels determined for sequences A and C are larger than those for B and D, which 

could be expected because the crop plants are at a more advanced stage of growth in A and C. 

The radius threshold r of 450mm selected for sequence A is of similar size to the mean grid 

spacing parameters r and I, so the algorithm is effectively segmenting the features on the basis 

of blob size alone. This reflects the fact that sequence A has very large crop plants and only 

a few, smaller, weeds. The tme positive and false positive ratios associated with the operating 

points given in table 7.2 are shown in table 7.3, where positives refer to crop pixels and negatives 

to weed pixels.

'See section 2.3.4 for a discussion of why we exclude border pixels from the segmentation results.
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Figure 7.6: MRROC curves for ground truth plant matter segmentations of sequences A-D.

Sequence Ç (pixels) r (mm)

A 100 450

B 30 100

C 80 100

D 30 100

Table 7.2: Operating points for the size filtering and clustering algorithms.
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Sequence TPR FPR

A 0.9950 0.0

B 0.9940 0.0

C 0.9970 0.0094

D 0.9975 0.0638

Table 7.3: TPR and FPR for the operating points selected for sequences A -  D.

A more principled selection of operating parameters might be possible if the values and 

costs of correct and incorrect decisions were known. For example, if the farmer wishes to re­

move all weeds and is willing to risk some crop in this process, the value of true negatives (cor­

rectly classified weed) would be high, and the cost of a false positive (weed classified as crop) 

would be higher than the cost of a false negative (crop classified as weed). If crop fertilisation 

was a priority, a true positive (correctly identified crop) would be high, and the cost of a false 

negative would be higher than the cost of a false positive.

7.3 Segmentation experiments

The size filtering and feature clustering algorithms have been tested in two off-line experi­

ments on the four image sequences A -  D. In both experiments, the crop grid tracking algorithm 

AUT02 (see chapter 5), was used to estimate the crop grid position and grid parameters f  and 

I  throughout each of the four sequences. For each image where a ground truth crop, weed and 

soil segmentation was available, the estimate x(A:) of the grid position and its parameters, and 

the covariance ~P{k) for the estimate were stored.

The first experiment tests the ability of the size filtering and feature clustering algorithms 

to classify the ground truth plant matter images from each sequence when combined with the 

crop grid tracker. To some extent this experiment isolates the size filter and feature clustering 

from the effects of image processing errors. The second experiment applies the size filtering 

and feature clustering algorithms to the plant matter images produced by the image processing 

system. In this experiment, the full segmentation process described in figure 7.3 is under test.

7.3.1 Segmentation of ground truth plant matter features

The first experiment is designed as a test of the performance of the size filtering and feature 

clustering algorithms on the ground truth plant matter images, that, as indicated above, is as far 

as possible independent of the low-level image thresholding algorithm described in chapter 2. 

The test is not entirely independent of the image processing errors, because they have an effect
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on the tracker’s estimate of the crop grid position that is used in the feature clustering algorithm, 

but it does allow us to compare the true positive and false positive ratios for crop pixels directly 

with those given in table 7.3 in the parameter selection experiments.

For each of our ground truth images, we have corresponding estimates of the crop grid state 

x(&) and its covariance P{k), provided by the crop grid tracker. The crop and weed features are 

extracted from the ground truth plant matter image and then size filtered (equation 7.1), before 

being passed on to the feature clustering algorithm (equation 7.3), which takes into account the 

uncertainty P  (A;) on the grid position x( A;). The size threshold ç and clustering radius r are given 

for each image sequence in table 7.2.

After processing, we have two sets of classified pixels for each image sequence. The first 

set is C, the ground truth plant matter pixels that have been classified as crop. The second set 

is W, the ground truth plant matter pixels that have been classified as weed. Given the two sets 

C and W, we can produce true positive (ground truth crop pixels that are classified C) and false 

positive (ground truth weed pixels classified as C) ratios for the automatic segmentation. These 

ratios are given in table 7.4 in the column marked ‘automatic tracking’. The figures from table 

7.3, which give the TPR and FPR for each sequence from the parameter setting experiment above 

are repeated for ease of reference in table 7.4 under the heading ‘Parameter setting’.

Automatic

tracking

Parameter

setting

Sequence TPR FPR TPR FPR

A 0.9939 0.1564 0.9950 0.0

B 0.9982 0.0 0.9940 0.0

C 0.9981 0.0307 0.9970 0.0094

D 0.9993 0.2017 0.9975 0.0638

Table 7.4: TPR and FPR figures for the true plant matter images segmented whilst tracking, 

compared with those derived from the parameter setting experiment, for sequences A -  D.

Before we compare the ratios from the tracking experiment with those from the parame­

ter setting experiment, we should consider the main differences between the two experiments. 

In the tracking experiment, the association region (equation 7.3), within which all features are 

classified as crop, includes the uncertainty on the grid position, so will be larger than the corre­

sponding region in the parameter setting experiment where the grid position was assumed to be 

known perfectly. We might expect that, as the association region expands, more image features
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will fall within it, so both TPR and FPR are likely to rise. The second difference is that the grid 

position in the tracking experiment is determined automatically by tracking the features derived 

from the image processing of chapter 2, whilst in the parameter setting experiment, the grid was 

placed by hand, and will be unaffected by any image processing errors.

If we now compare the tracking and parameter setting figures in table 7.4, we can see how 

these two experimental differences manifest themselves. For sequence A, the TPR is lower for 

the tracking experiment, and the FPR higher. Sequence A is arguably the most difficult image 

sequence for crop grid tracking, because many of the crop plant features are merged by the chain- 

coding algorithm, so the corresponding feature centroid does not represent a true crop plant posi­

tion (see section 2.3.8). Poor tracking is almost certainly the reason for the drop in true positives 

and the increase in false positives.

In sequence B, the TPR is higher for the automatic tracker, and the FPR is the same as in the 

parameter setting experiment. The larger association region which is caused by the uncertainty 

in crop grid position is almost certainly responsible for the rise in TPR, as larger features from 

larger regions of the field are merged together. The FPR is unaffected in this case because of the 

very low weed density.

In sequences C and D, both TPR and FPR are higher for the automatic tracker than for the 

parameter setting experiment. In sequence C, the rise in both figures is most likely caused by 

the increased size of the association region. However, in sequence D, where strong shadows are 

present that will affect the quality of the tracking, the uncertainty on grid position combined with 

generally poorer position estimates will be the cause of the rise in both TPR and FPR.

The figures in table 7.4 show that the combination of size filtering and feature merging is 

very effective for classifying crop features, with true positive ratios in excess of 0.99 in for every 

sequence. The algorithm is less effective at weed pixel classification when tracking is difficult, 

as in sequences A and D, where the FPR rises to 15% and 20% respectively. This is not surprising 

because the success on the feature clustering algorithm hinges on the crop grid tracker providing 

good estimates of the crop position. However, when the tracking is easier, as in sequences B and 

C, the FPRs are much lower, 0.0% and 3.07% respectively.

7.3.2 Segmentation of real images

The second segmentation experiment relies wholly on the image processing algorithms of chap­

ter 2 and tests the full segmentation algorithm illustrated in figure 7.3. In the experiment de­

scribed in section 7.3.1 above, we knew that all the features presented for size filtering and clus­

tering were true plant matter. In this experiment, some soil pixels will be misclassified as plant 

matter (and labelled C or W), and some plant matter pixels (crop or weed) will be labelled S.
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Each of the tables 7.5 -  7.8 presents the percentage of the ground truth crop, weed and 

soil pixels classified as C, W and S, together with the total number of ground truth pixels in 

each class from the ground truth images of sequences A -  D. The numbers of pixels bordering 

ground truth crop and weed features are also given as an indication of the number of doubt pixels 

that have been ignored in the classification totals. Each image is composed of 384 x 288 pixels, 

although only pixels in the region of the image that will pass underneath the autonomous vehicle 

are classified (see section 2.3.3).

Ground truth

Classified as Total number

C(%) W(%) S(%) of pixels Number of border pixels

Crop 95.11 1.28 3.61 331,222 Crop 52,688

Weed 10.50 51.88 37.62 505 Weed 1,373

Soil 0.33 0.03 99.64 905,200

Table 7.5: Run A segmentation results, percentages of true numbers of crop, weed and soil pixels 

classified as C, W or S, and the number of pixels that border crop and weed features. There are 

16 ground truth images for sequence A.

Ground truth

Classified as Total Number

C(%) W(%) S(%) of pixels Number of border pixels

Crop 78.90 3.72 17.38 53,514 Crop 19,615

Weed 0.0 81.8 18.2 934 Weed 3,455

Soil 0.01 0.04 99.95 1,152,254

Table 7.6: Run B segmentation results, percentages of true numbers of crop, weed and soil pixels 

classified as C, W or S, and the number of pixels that border crop and weed features. There are 

17 ground truth images for sequence B.

Pemsal of the figures in tables 7.5 -  7.8 prompts a number of observations:

1. In every sequence, in excess of 98% of the soil pixels are correctly classified as S.

2. In each sequence, more crop pixels are misclassified as S than misclassified as W.

3. In each sequence, more weed pixels are misclassified as S than misclassified as C.

4. In sequences A and C, a greater percentage of crop pixels are correctly classified C than 

the percentage of weed pixels that are correctly classified as W.
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Ground truth

Classified as Total number

C(%) W(%) S(%) of pixels Number of border pixels

Crop 81.72 4.51 13.76 141,075 Crop 19,615

Weed 3.93 56.90 39.17 17,160 Weed 18,544

Soil 0.06 0.24 99.7 1,195,308

Table 7.7: Run C segmentation results, percentages of true numbers of crop, weed and soil pixels 

classified as C, W or S, and the number of pixels that border crop and weed features. There are 

17 ground truth images for sequence C.

Ground truth

Classified as Total number

C(%) W(%) S(%) of pixels Number of border pixels

Crop 55.00 4.11 40.89 41,411 Crop 13,171

Weed 6.31 73.52 20.17 1,046 Weed 2,202

Soil 0.06 1.13 98.81 1,003,418

Table 7.8: Run D segmentation results, percentages of true numbers of crop, weed and soil pixels 

classified as C, W or S, and the number of pixels that border crop and weed features.There are 

16 ground truth images for sequence D.



7.4. Summary 155

5. In sequences B and D, a greater percentage of weed pixels are correctly classified W than 

the percentage of crop pixels that are classified C.

6. The number of doubt pixels that border ground truth weed features outnumber the total 

number of ground truth weed pixels in every test sequence.

7. The total number of ground truth crop pixels outnumber the doubt pixels that border the 

crop features in every test sequence.

Observations 1, 2 and 3 directly reflect the performance of the adaptive interpolated grey- 

level thresholding algorithm, which misclassifies a large percentage of the plant matter pixels 

as soil. This highlights the fact that the plant matter/soil discrimination problem requires more 

attention if image segmentation is to be improved.

Observations 4 and 5 suggest that the larger plants seen in image sequences A and C are 

more easily identified than the smaller plants in sequences B and D. The reasons for this are 

unclear, but may be related to changes in the infra-red reflectance of the crop plants as they age.

Observations 6 and 7 show that the weed features, which are dominated by border pixels, 

are typically smaller than the crop features. This has already been illustrated in figure 7.1 and 

forms the basis of the size threshold algorithm.

If we ignore the crop and weed ground truth pixels that the segmentation algorithm labels 

S, we can construct true positive and false positive ratios for the crop and weed pixels that have 

been classified as plant matter (either C or W). These figures are given for each sequence in 

table 7.9 and show that those pixels which are identified as plant matter are separated into the 

crop and weed classes with some success. This allows us to conjecture that if plant matter/soil 

discrimination were more reliable then figures similar to those in table 7.4 might be obtained.

Sequence TPR FPR

A 0.9639 0.1683

B 0.9550 0.0

C 0.9477 0.0650

D 0.9305 0.0790

Table 7.9: TPR and FPR for the correctly identified plant matter pixels in sequences A-D.

7.4 Summary
We have presented a three stage algorithm (figure 7.3) for segmenting images captured by the 

autonomous vehicle into three classes, soil (S), weed (W) and crop (C).The first stage of the
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algorithm is the adaptive interpolating grey-level threshold followed by pixel clustering which 

separates the image into soil pixels and plant matter features, and was described in section 2.3. 

The second stage exploits the fact that the crop plants are typically larger than the weeds, and 

filters the plant matter features on the basis of size. Those falling below a size threshold are clas­

sified as weed, those above the threshold are passed on to a clustering algorithm which groups 

together features which lie close to the crop plant positions predicted by the vehicle’s current 

state estimate.

Each stage of the algorithm is controlled by a parameter. The adaptive interpolating thresh­

old algorithm is controlled by a gain parameter, a, and this was set for each test image sequence 

in chapter 2. The feature size threshold is determined by a parameter ç, and the clustering al­

gorithm by proximity radius r. To select values for ç and r, the maximum realisable receiver 

operating characteristic (MRROC) curve may be used. In the absence of information concern­

ing the specific costs and values of the classification system, operating points which maximise 

the true positive ratio and minimise the false positive ratio were chosen for each of the four test 

sequences.

Two experiments have been performed to test the segmentation algorithm. In both exper­

iments, the crop grid tracking algorithm^ was run fully automatically on each sequence. In the 

first experiment, the size filtering and feature clustering algorithms were used to differentiate 

between the ground truth weed and crop features for each sequence. The rates of correct crop 

classification and weed misclassification were compared with those expected from the operat­

ing point of the algorithm that was set manually, assuming (optimistically) perfect knowledge of 

the crop grid position. The segmentation algorithm was found to be more effective at correctly 

identifying crop pixels than rejecting weed pixels, especially on the more challenging image se­

quences with shadows or large crop features that merge together in the image.

The second experiment tested the size filtering and feature clustering algorithms on the fea­

tures derived by the image processing techniques of chapter 2, resulting in images where the 

pixels were labelled as one of three categories S (classified as soil), W (classified as weed) and 

C (classified as crop). These labelled images were compared with the ground truth soil, weed 

and crop segmentations. From this test it was concluded that the majority of the classification 

errors were plant matter pixels being labelled S, Of those plant matter pixels correctly classified 

as plant matter, the discrimination between crop and weed pixels reflected that found in the first 

experiment, that was performed on ground truth features.

The segmentation algorithm presented in this chapter would appear to be effective at cor- 

 ̂AUT02 of chapter 5.
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rectly identifying crop pixels, although the number of misclassified weed pixels is of concern. 

Although the image processing techniques presented in chapter 2 have been able to provide fea­

tures to support crop grid tracking, the experiments performed in this chapter have shown that 

they are not so effective for the image segmentation task, and improved discrimination between 

plant matter and soil would be desirable.

The next chapter demonstrates the on-line system at work in the field. Navigation trials 

similar to those conducted in the test-bed environment in chapter 5 are carried out in a field of 

crop, and a demonstration of crop treatment is given.



Chapter 8

Field trials

The success of the computer vision algorithms has been demonstrated tracking both off-line im­

age sequences and in a simplified indoor test-bed environment (chapter 5), and also in crop/weed 

discrimination on sequences analysed off-line (chapter 7). The next step is to transfer the tech­

nology into the field environment to be tested “live” on a bed of crop. This will provide an op­

portunity to gain further data on the system performance in terms of navigation and treatment 

accuracy. The on-line implementation of the vision system was converted from the off-line sys­

tem that was demonstrated in the first part of chapter 5 by Tony Hague, who also designed and 

built the dead-reckoning estimation system and vehicle controller [HT96].

The following sections describe two experiments. The first experiment is designed to anal­

yse the performance of the on-line navigation system, and is similar to the trials performed on 

the indoor-test bed, but on a field of crop. The second experiment focuses on crop treatment, 

where the vehicle sprays crop plants with a blue marker dye, thereby allowing analysis of the 

accuracy of treatment and also the selectivity of the treatment algorithm, i.e. the number of crop 

plants missed or weeds incorrectly targeted. We should recall from chapter 1 that treatment ap­

plication is the central aim of plant scale husbandry, so the results from these trials will show 

how close we are to achieving this goal.

8.1 Position estimation

Chapter 5 described experiments designed to test the accuracy of the vehicle’s position estimates, 

the results of which demonstrated the effectiveness of the system on both image data captured 

from the vehicle, and in a simplified test-bed environment where the image processing task was 

undemanding. The results showed that the crop grid tracking algorithm of chapter 4 is suitable 

for the vehicle localisation task. It would, however, be inappropriate to simply assume that the 

algorithm will perform equally well as part of a closed-loop vehicle controller in the more de­

manding field environment, so the test experiments must be repeated in the field.
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The experimental method used is similar to that given in chapter 5. A trail is left on the 

ground by the vehicle, and its offset relative to the crop rows is compared to the estimated posi­

tion logged by the navigation system. The tracking algorithm implemented in the on-line system 

does not estimate the crop grid parameters r and I, and we have already seen in chapter 5 that this 

algorithm will produce biased estimates of forward position if the true grid parameters diverge 

from those used by the algorithm. The dead-reckoning system is also subject to increased error 

in the field as wheel-slip is more likely on soil than indoors. Wheel-slip causes inaccuracies in 

the information delivered by the odometers, and these errors will filter through to the position 

estimate.

Moving from the simple indoor test-bed to the outdoor field introduces problems for the im­

age processing and computer vision algorithms as well as for the dead-reckoning system. The 

test-bed environment is comprised of a simple scene containing white circles arranged in a reg­

ular grid on the black ground plane to mimic the crop planted in the field. The field environment 

is more complex for a number of reasons. Firstly, the crop plants are no longer fiat objects lying 

on the ground plane but three-dimensional, so the projection errors generated when calculating 

the position of image features on the ground plane will occur, as noted in section 2.3.8. Sec­

ondly, the presence of weeds adds clutter to the observation data, so the validation technique of 

chapter 6 is required. Thirdly, the contrast between plant matter and the soil is not as strong as 

that between the white circles and black mat of the test-bed. In addition, lighting artefacts such 

as shadows in strong sunlight may be present, causing single plants to fracture into multiple im­

age features. Finally, the grid pattern formed by the crop plants is less regular than that of the 

pattern painted on the mat, so the fixed parameter crop grid tracker is almost certain to produce 

biased estimates.

A further difficulty with field operation involves performance assessment. When we at­

tempt to assess the system’s performance, problems arise from the inherent uncertainty of the 

position on the ground plane of the grid of crop plants, and hence the position of the trail left 

by the vehicle relative to this grid. In the indoor test environment, the circles representing the 

crop were positioned in a regular grid, and relative to a known origin. Outdoors, the crop are less 

regularly planted and grow asymmetrically, which leads to the grid structure becoming more ap­

proximate, and measurement of the “centre” of the plants more difficult. The rows in which the 

crop lies are not necessarily straight, although they may be assumed to be so locally. In addi­

tion, there is certainly no clear, fixed origin with respect to which the grid of crop plants may 

be localised, and hence no clear origin relative to which the trail left by the vehicle should be 

measured. To counter the uncertainty in the position of the central row of plants in the crop grid.
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Figure 8.1: Measuring the plant and trail positions.

the position of the trail is measured with respect to the mean position of the crop plants in each 

line of the crop. A laser beam, shone approximately parallel to the central row of plants, as il­

lustrated in figure 8.1, is used to provide an origin which aids consistent measurement of the 

plant and trail positions. At each line of plants (approximately every 0.5m along the crop row), 

a rule (with retro-reflective target attached to increase laser visibility) was aligned with the laser 

beam, and the position of the root of each plant read off. The position of the trail on the rule 

was also noted. The thickness of the plant roots, together with the width of the dye trail left by 

the vehicle, means that these measurements are of limited precision (c. 5 millimetres), which 

will add noise to any performance metric derived from them. The experimental arrangement is 

illustrated in figure 8.1, where the crop are shown as black circles, the trail left by the vehicle as 

a solid black line, and the laser beam a dotted line.

As in chapter 5, the performance is calculated in terms of the root mean square error be­

tween the measured points on the dye trail and the corresponding estimated position held by the 

vehicle controller. This metric was used by Hague et a I [HMT97a] to measure the system perfor­

mance when the Hough transform vision algorithm of Marchant and Brivot [MB95] was used. 

A single run with this system over 25m of crop was found to have a r.m.s.e. figure of 8mm. 

A  similar experiment conducted by Southall et al [SHMB99], also using the Hough Transform 

algorithm, yielded a r.m.s.e. figure of 13.5mm. The reasons for this difference are unclear, al­

though factors such as experimental errors and crop condition will play their part. Whatever
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the reasons, it should be added that a localisation accuracy of 13.5mm is certainly sufficient to 

avoid accidentally driving over the crop. In addition to the r.m.s. error, we will also calculate 

the mean error to check for bias, as we did in the test-bed experiment.

8.1.1 Experimental results

Three beds of crop, each consisting of three rows of six week old cauliflower plants were used 

to test the crop grid tracking algorithm, and the vehicle was programmed to traverse each 40m 

long crop bed twice (once in a North-South direction, once South-North), resulting in six sets 

of measurements. Figure 8.2, parts (a)-(f) plot these, where the solid line marks the estimated 

offset of the vehicle from the central row of crop, and the dashed line shows the measured trail 

offset. It should be noted that because the measurements are taken only at every line of plants 

in the bed, there may be discrepancies between the total length of the measured and estimated 

traces in each plot. Unfortunately, owing to an experimental oversight, the position variances 

for these runs were not logged, although data from similar outdoor trials where the variance was 

logged showed that the filter settles down to a steady-state standard deviation of approximately 

2.25mm. This value is lower than the typical error estimates from the indoor trials (c. 3.1mm), 

a factor that may be attributable to observation noise and the use of the “virtual ground plane” to 

reduce perspective projection errors. In chapter 4, section 4,2.5, we showed how the observation 

noise covariance matrix R  associated with an observed feature location in the image is derived 

by projecting a covariance matrix R^  ̂from the ground plane into the image plane. To reduce the 

effects of projection errors on object centroid location in the field, we use a virtual ground plane 

as discussed in section 2.3.8, set at the height of the crop plants^. In this case, the covariance 

matrix R^̂  is projected from the virtual ground plane into the image which, because the virtual 

ground plane is nearer to the camera than the true ground plane used as a reference in the test­

bed experiments, leads to a smaller observation covariance R  than in the test-bed trials. This in 

turn will lead to a larger Kalman gain (because R  is in the denominator of equation 3.14), and 

hence a reduced covariance estimate.

For the six runs illustrated in figure 8.2, the root mean square errors on the offset estimate 

are given in table 8.1. Over all 6 runs, the r.m.s.e. between each measurement/estimate pair in 

aU the data sets is 15.3mm, a level of accuracy that is easily sufficient for safe navigation along 

the crop rows. Whilst this mean r.m.s.e. is slightly greater than those given for the previous 

Hough transform algorithm (13.5mm, 8mm), it should be noted that the crop grid tracking al­

gorithm provides more information (forward distance estimates and crop/weed discrimination) 

than the Hough transform row tracker. A small degradation in tracking performance is thus a 

' Which we estimate by eye.
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reasonable trade-off for the extra information. As would be expected, given the increased diffi­

culty in navigation and measurement in the field, the r.m.s.e. figures in table 8.1 are higher than 

those obtained from the indoor tests given in chapter 5.

The algorithm not only shows satisfactory mean square performance, but the mean differ­

ence between estimated and measured position over every measurement/estimate pair in all six 

data sets is 0.55mm, so the bias of the lateral offset estimate is negligible. The estimates of

Track r.m.s.e. (mm)

(a) 16.7

(b) 16.5

(c) 13.4

(d) 16.9

(e) 13.2

(f) 14.5

Table 8.1: The root mean square error between the measured and estimated offsets for the six 

experimental runs of figure 8.2.

forward distance are given in table 8.2 and, as we might expect, are much less accurate in the 

outdoor environment than on the indoor test-bed. The largest error on the test-bed, using the 

crop grid tracker, was 9cm on a total distance of 12m (0.75cm error per metre travelled), whilst 

in the field environment the largest error is —1.7m on a total distance of 41.6m (—4.1cm error 

per metre travelled). The degradation in performance can again be attributed to the increased 

difficulty of image processing and dead-reckoning in the field. We should also remember that 

the crop grid tracking algorithm implemented on-line does not estimate the grid spacing param­

eters f  and L This algorithm was seen to produce inaccurate estimates of forward distance trav­

elled in chapter 5, so the bias noted in table 8.2 is not unexpected. The fact that the estimated 

distance travelled is always under estimated suggests that the grid parameter / in the algorithm 

is too small, although this has not been verified by measurement in the field. We believe that 

estimating f  and I will reduce these errors.

8.2 Crop treatment
To demonstrate the utility of the crop grid tracking algorithm for crop treatment, the vehicle 

was programmed to navigate a 12 metre section of 9 week old crop at a speed of 0.6 ms~^, 

spraying a blue dye onto the crop plants, whilst leaving weeds untreated. This experiment tests 

both the segmentation performance of the algorithm and the accuracy of the position estimation.
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Forward Distance (m) Forward Distance {m)

(a) (b)

Forward Distance (m) Forward Distance (m)

(c) (d)

Forward Distance (m)

(e)
Forward Distance (m)

(0
Figure 8.2: Navigation trials. Each figure (a)-(f) shows the estimated (solid) and measured 

(dashed) offset of the vehicle from the central row of crop.
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Track Measured (m) Estimated (m) Error (m)

(a) 41.3 40.02 -1.28

(b) 41.5 40.06 -1.44

(c) 41.3 40.05 -1.25

(d) 41.2 39.93 -1.27

(e) 41.6 39.90 -1.7

(f) 41.05 39.45 -1.6

Table 8,2: Measured and estimated forward distance.

and mimics the operation of a plant scale husbandry system. Segmentation performance can be 

assessed by simply counting the number of crop plants missed and weeds incorrectly treated, 

whilst positional accuracy is reflected by the relative position of the plant centres with respect 

to the regions of earth sprayed.

Before reporting the experimental results, an outline of the on-line segmentation system 

should be given. The feature classification algorithm described in chapter 7 has not been fully 

implemented in the on-line system. There is also a mapping algorithm, designed and imple­

mented by Hague [Hag99], which places classified image features into a map of the ground 

plane. The map activates the treatment system as the crop features pass below the vehicle’s spray 

bar. Furthermore, a map of the field showing crop and weed growth is a useful tool in precision 

agriculture, allowing assessment of both crop and weed growth.

Like the off-line classifier, the on-line feature classification algorithm is a two stage pro­

cess where image blobs are first filtered on the basis of size before being processed by a data 

association step. Unlike the off-line algorithm, however, the data association is performed us­

ing the predicted crop plant positions (c.f. chapter 6), rather than the updated plant positions (c.f. 

chapter 7). The feature merging process described in chapter 7 was also not implemented.

The mapping algorithm constructs a map of weed and crop coverage of the ground plane in 

front of the vehicle over a field of view approximately 2.5 m  ahead. The map is used to control 

the treatment system, which consists of a row of spray nozzles whose location relative to the 

ground plane projection of the image centre^ is known. As the vehicle traverses the field, the 

nozzles pass over the map. When a nozzle is over part of the map scheduled for treatment, it is 

activated. Conceptually, the map is constructed by using the camera calibration and vehicle po­

sition estimate to project features from the image onto the ground plane although in practice, for

This is where the camera’s optic axis intersects the ground plane, as illustrated in figure 2.4 in chapter 2.
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computational speed, the bounding box of each feature is projected from the image to a quadrilat­

eral area of the map (this will not be square, owing to the perspective projection between image 

and map). The map itself consists of a 2D array of counters 256 elements wide, 3000 elements 

deep, and each element in the array representing a patch of ground 13.33mm square, for a total 

map length of 40 metres, and width of 3.4 metres. When a feature’s bounding box is projected on 

to the map, the counters in the map elements lying in the projected area are incremented. If the 

feature has been classified as crop, then the “crop” counter is incremented, otherwise the “weed” 

counter is incremented. At any time, the classification of a map element is given by the largest 

counter total, if that total exceeds a threshold value. If both counters are below the threshold 

level, the element is taken to represent soil, because insufficient plant matter has been detected 

there.

Figure 8.3: Spray measurement. The axes mark the directions of and y-uj, the world co­

ordinate axes. The thicker dashed line shows the bounding box of the sprayed area on the ground, 

whilst the thin dashed line shows the rhomboid formed by projecting the corresponding feature’s 

bounding box from the image onto the ground plane.

To assess the accuracy of crop spraying and the success rate in correctly identifying crop 

plants, the vehicle was programmed to navigate a 12 metre plot of crop, and to only spray regions 

of the map marked as crop plants. The spray system was loaded with a blue dye solution which 

would leave traces on the plants and ground to enable the accuracy of the spray application to 

to be measured.

Figure 8.3 shows a crop plant that has been sprayed with dye, which appears as dark lines 

on the soil and across some of the plant’s leaves. Two dashed outlines and a set of axes have been
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superimposed on the photograph. The lighter dashed rhomboid shows the shape of the bounding 

box projected from the image onto the map of the ground plane. The heavier dashed square is the 

bounding box of the region of earth that has been treated. The axes mark the directions Xyj, y 

where is parallel to the central row of crop. We determine the accuracy of spray localisation 

by measuring the distance, in both the Xyj and y.yj directions, between the centre of the heavier 

dashed box and the plant’s root. These reference points are taken for ease of measurement, but it 

should be borne in mind that the position of the plant root does not necessarily reflect the centre 

of the plant’s “footprint” on the ground plane, nor does the centre of the heavier dashed box 

necessarily represent the vehicle’s estimate of the plant centre. The resulting measurements do, 

however, give us an idea of how well the vehicle localises individual plants on the ground plane, 

which is a different problem to localisation with respect to the group of plants in the crop grid, 

as tested in the navigation experiments above.

8.2.1 Experimental results

Figures 8.4 and 8.5 show the two halves of a photographic montage taken after the experimental 

treatment of a twelve metre patch of crop together with the corresponding map generated by the 

vehicle. The map, which has been resized by eye to match the scale of the photograph^, shows 

soil regions as black, weed as red and crop as green. As would be expected, most of the features 

in the map are rhombic in shape owing to the perspective projection of image feature bounding 

boxes onto the ground plane. The bounding box approximation leads to some excess spray being 

applied to the soil, so for precise treatment of plant matter alone, a more faithful representation of 

the plant outline must be used. However, we can see that much of the bare soil is left untreated.

As we can see from the photographs, all of the crop features have been treated, and none 

of the weeds. Perusal of the map allows us to form an overall impression of weed recognition 

performance, whilst figures 8.6 and 8.7 highlight some typical successes and failures of weed 

identification. In the first example (figure 8.6), we can see a correctly classified weed (top left 

of the image), and also a stone that has been incorrectly classified as weed matter. The stone has 

been misclassified because it is a bright object in the infra-red image. More sophisticated image 

processing using colour in addition to near infra-red information could eliminate such errors. It 

is also worth noting that in the map shown on the right of figure 8.6, the red weed feature that 

represents the stone is touching the crop plant, whilst the two are quite separate in the photo­

graph. This is likely to be an artefact of using the virtual ground plane as proposed in chapter

2. Whilst using the virtual ground plane reduces the projection errors for crop plants that stand

^Unfortunately, the camera used to take the photographs shown on the left of figures 8.4 and 8.5 was not calibrated, 

so accurate matching of photograph and map scales is not straightforward.
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proud of the true ground plane, it will increase projection errors for objects, such as the stone 

or small weeds, that lie close to or on the true ground plane. The second example (figure 8.7) 

shows part of a crop plant that has been incorrectly classified as weed, an error symptomatic of 

the fracturing of plants into multiple leaf objects during the image processing. It may be possi­

ble to reduce such errors by using the feature clustering algorithm of chapter 7, but this has yet 

to be implemented on-line.

Quantitative measures of the accuracy of the treatment system were derived by comparing 

the centres of the sprayed regions on the field with the root positions of the corresponding plants, 

as described above (figure 8.3), to derive the positional error in both the and y ĵ directions. 

The mean error and root mean square error in each direction are given in table 8.3. Perusal of the 

mean error figures shows that the plant position estimates are biased in both Xyj and yyj, although 

it should be noted that the bias in the Xyj direction, 9.7mm is smaller than the resolution of a map 

element (13.33 mm). We can relate the bias on ŷ j measurement to the figures shown in table 

8.2. We have 24 plants in the twelve metre bed, so the total error over 12 metres is — 55.44cm, 

which scales up to an error —1.85m over 40m, which is a just little larger than the worst errors 

seen in table 8.2.

Direction Mean Error (mm) RMS Error (mm)

Xy ĵ 9.7 33.6

V w -23.1 34.4

Table 8.3: Spray accuracy results.

The root mean square errors in both directions are in the region of 34mm, which shows 

that there is a significant (compared to the mean) variation in the error measure. This variation 

arises from a number of sources. The first source is the measurement process. As noted above, 

the plant root is not necessarily the true centre of the plant’s footprint on the soil. A second 

source of variation is related to the fact that the grid parameters are fixed throughout tracking. 

In chapter 5 we saw that when this tracker’s fixed parameters were in agreement with the true 

values, the algorithm performed well with small bias, and when the grid parameters differed 

from those values fixed in the algorithm, that biases were introduced. Thus, as the crop plant 

grid spacings vary across the field, tracker bias errors will be introduced, increasing the r.m.s. 

error.
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Figure 8.4: Spray treatment results, part one. Left: treated field. Right: Map -  black = soil, red 

= weed, green = crop.
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Figure 8.5: Spray treatment results, part two. Left: treated field. Right: Map -  black = soil, red 

= weed, green = crop.
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Figure 8.6: Weed identification, example one. In this image, a correctly classified weed (top 

left) is seen, together with a stone that has been classified as a weed.

Figure 8.7; Weed identification, example two. This image shows a crop plant bounding box 

which contains a region that has been incorrectly classified as weed. This region is, in fact, a 

leaf of the plant that has fractured from the plant body as a result of the image processing.
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8.3 Summary
Trials have been performed in the field to assess both vehicle navigation and crop treatment using 

the fixed parameter crop grid tracker. The navigation trials performed outdoors yield root mean 

square errors in the region of 15mm on the offset from the central row, which is perfectly ac­

ceptable for navigation purposes. Motion in the forward direction is underestimated, typically by 

about 3cm error per metre travelled. In chapter 5, we saw that an error of approximately 8.2cm 

per metre could accumulate. The lower figure of 3cm per metre seen here may be explained by 

the fluctuating crop grid size (the tracker will perform better in regions of crop where the grid 

size is closer to its own model), or perhaps even wheel-slip, which will lead to over-estimation 

of the distance travelled by the dead-reckoning system, and may be compensating for under­

estimates from the vision system. This requires further investigation, including implementation 

of the tracker that estimates the crop grid parameters (algorithm AUT02 from chapter 5).

The bias of the forward distance estimate is also seen in the crop treatment experiment 

where there is a bias on the estimated longitudinal position of the crop plant centres, with a mean 

value of — 23.1mm. The negative value indicates an underestimate. There is also a small bias 

in the lateral position of the crop plants, although at 9.7mm, this is smaller than the resolution 

of the map. For the purposes of crop plant treatment, errors such as these should be acceptable, 

as they represent only a fraction of the size of the crop plant. For the treatment of weeds, which 

are often much smaller than the crop plants, higher precision is likely to be required.

Qualitatively, the treatment system appears to work well. All of the crop plants were cor­

rectly sprayed, and none of the weeds. Perusal of the map produced by the vehicle, and com­

parison with the photographic montage of the treated field, shows in addition that most of the 

weeds were correctly identified, although there are, as expected some examples of crop leaves 

being classified as weed, and some non-plant matter objects (stones, soil highlights) incorrectly 

classified as weed. Future work needs to address the issue of weed treatment and how to im­

prove the resolution of the map and the precision of the description of the plant outlines in the 

map to reduce over-spraying.



Chapter 9

Conclusions

In chapter 1, we introduced the concept of plant scale husbandry (PSH), and motivated its use 

for economic and ecological reasons. The need for autonomous systems to apply this level of 

treatment was underlined, and we presented the Silsoe autonomous horticultural vehicle as a test­

bed for experiments in PSH. It was stated that the aim of this thesis was to extend the capability 

of the autonomous horticultural vehicle by introducing a vision algorithm centred upon the use 

of a crop grid model, which would allow two principal advances. We repeat these here:

1. Forward distance estimates may be obtained by a vision algorithm that tracks the crop grid 

model. In the original autonomous vehicle navigation system, estimates of forward dis­

tance are generated by dead-reckoning alone, and the row model used in the Hough trans­

form vision algorithm does not permit estimation of forward motion. Dead-reckoning sys­

tems are prone to accumulating errors that lead to biased position estimates, and problems 

with wheel-slip can lead to unreliable odometer measurements in the field. It is hoped that 

the addition of vision estimates of forward distance will correct for dead-reckoning bias.

2. The crop grid model may be used as an aid for discriminating between crop and weed 

plants. For reasons we shall outline in chapter 2, discriminating between crop and weed 

plants with image processing techniques is a much harder problem than extracting both 

weed and plant features from the images. However, if we are successfully tracking the 

crop grid, then image features that support the estimate of grid position may be assumed 

to be crop plants, and the remainder weeds.

The following two sections will address these points, and we will state the contributions 

made by this thesis toward localisation and plant treatment, and review the success of the algo­

rithms developed. Open questions and directions for further work are suggested.



9.1. Localisation 173

9.1 Localisation
We have developed a computer vision system that uses an extended Kalman filter to track the 

grid pattern formed by the crop in the field.

• Two alternative crop grid tracking algorithms have been implemented and tested off-line 

(chapters 4 and 5). In chapter 4, two different models of the crop grid were proposed, one 

where the grid parameters f  and I  were fixed, and another where they were estimated by 

the Kalman filter. The algorithms based upon these two models were tested off-line and 

their position estimates compared to human assessments and the output of Marchant and 

Brivot's Hough transform method. It was found useful to estimate the grid parameters on­

line to allow for local variations in the planting pattern and to reduce the bias in forward 

distance estimation. We saw in chapter 5 that the tracker with fixed grid parameters ac­

cumulated an error in the region of 76mm  over a distance of c.lm  when compared with 

ground truth data produced by hand. The algorithm that does estimate the grid parameters 

was within 9mm of the human assessment, a considerable reduction in bias.

• The algorithm with fixed grid parameters was tested as part of the on-line system, first of 

all in a simplified test-bed environment (chapter 5) and secondly in a field of crop (chapter 

8). The test-bed experiment showed that lateral position estimation was accurate to within 

an r.m.s. error of 8mm and forward distance estimation to within 0.75cm per metre trav­

elled (over a 12m run). The field experiments, where accurate measurement is much more 

difficult than in the test-bed, yielded larger errors, with r.m.s. error of 16mm on lateral 

position, and forward distance underestimates of up to -4 .1cm  per metre travelled (over 

a 40m run). The precision of the lateral estimation is easily adequate for safe navigation 

along a row of crop, and satisfies the 20mm accuracy estimated to be required for treat­

ment operations by McLellan and Friesen [MF96]. The reduced bias figures quoted above 

lead us to believe that estimating the grid parameters will reduce forward distance estimate 

error.

• The control theoretic issues of controllability and observability and their implications for 

Kalman filtering have been discussed (chapters 3 and 4). A new test for the observabil­

ity of the linearised system in the extended Kalman filter has been derived and used to 

confirm the observability of the extended Kalman filters used in the crop grid tracking 

system. The concept of “corruptibility” has been introduced to describe the transfer of 

noise inputs into a system’s state variables, and it has been demonstrated that a process 

model that is partially incorruptible is desirable for estimating the^rid parameters f  and
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f. Partial incorruptibility refers to the fact that process noise is added to the estimates of r 

and I  only when new information about these parameters becomes available, and for the 

majority of the time they are incorruptible. The usual Kalman filtering process assumes 

full corruptibility, with process noise added at each iteration (sections 3.4.5 and 4.4).

• An algorithm for initialising the extended Kalman filter has been proposed that includes 

a novel use of the discrete Fourier transform for estimating the position of the crop plants 

within a row (chapter 6). Although the algorithm does not automatically generate an initial 

covariance matrix for the extended Kalman filter, this has been estimated by analysing the 

algorithm’s performance on test sequences.

9.2 Plant treatment

The concept of plant scale husbandry is centred upon the differential treatment of individual 

crop and weed plants, and the use of the crop grid model in this thesis has made significant steps 

toward this aim.

• An algorithm has been proposed to discriminate between crop and weed plants on the basis 

of their size and position in the field (chapter 7). The algorithm has been tested off-line 

on four image sequences captured from the vehicle that contain different stages of crop 

growth and differing imaging conditions. When tested on plant matter features extracted 

from the images by hand, the algorithm is found to provide good separation of crop and 

weed features, although the performance degrades when the plant matter features are pro­

vided by the adaptive interpolating threshold algorithm described in chapter 2. The seg­

mentation results were inferior in the sequences that contained shadows and plants that 

touch each other in the image. The former makes detection of plant matter difficult whilst 

the latter violates the assumption that each image feature corresponds to a single plant.

• A similar algorithm has been implemented in the on-line system and used in a treatment 

experiment in the field that emulates plant scale treatment of real crop (chapter 8). The 

vehicle was programmed to spray a blue dye on regions of the field it had classified as 

crop plant, and to leave weeds untreated. Measurements were taken to compare the cen­

troid positions of the sprayed regions with the root positions of their corresponding plants, 

and an r.m.s. error of under 35mm was found in each direction along and perpendicular 

to the rows of crop. This is sufiicient to lead to significant savings in crop treatment and 

reduction of adverse environmental contamination. However, it is likely that greater ac­

curacy is required for precise treatment of weeds. The field trials demonstrated that no
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weeds were incorrectly treated, and measurements taken from the photographs in figures 

8,4 and 8.5 indicate that only one third of the region between the vehicle’s wheels was 

treated with dye. In more traditional spraying, the entire field would be treated, so there 

is a saving of applicant of 67%. The current system uses a crude approximation of the 

plant boundary to determine the region of field to be treated, and we believe that a more 

accurate description would reduce applicant quantities even further.

9.3 Further work

Whilst we believe that the results presented in this thesis have demonstrated the usefulness of the 

crop grid structure in plant scale husbandry, there are a number of open issues that require further 

investigation, some of which are very specific to the PSH task, others of a more general nature. 

We have restricted the suggestions below to development of the computer vision system, but it 

should be noted that there is scope for much research in dead-reckoning and vehicle control, and 

in the design of spray systems for plant scale treatment.

We have shown on off-line sequences that the tracking algorithm which estimates the grid 

parameters f  and / provides better estimates of longitudinal position. This algorithm has yet 

to be implemented on the autonomous vehicle, but we believe this will be necessary to reduce 

the forward distance estimation errors that were measured in the field trials, and that estimation 

of the grid parameters is necessary to take account of the variation of the planting pattern in 

the field. Even with the improved tracking algorithm, it is unlikely that localisation accuracy 

will be sufficient for precise application of chemical spray to small weeds. An alternative to 

spraying is the use of mechanical weed control, for example an automatically guided hoe, which 

has additional environmental benefits and is likely to require less precise position estimation than 

spray application.

The clustering algorithm described in chapter 7 has also yet to be implemented in the on-line 

system. However, a general point about the crop/weed segmentation algorithm is that its perfor­

mance is controlled by three parameters (a grey-level threshold gain, a size threshold and an as­

sociation radius) which are currently set by hand on the basis of ROC analysis. In a commercial 

system, it would be desirable to control these parameters automatically, so that the farmer need 

not understand the underlying algorithm in order to use the vehicle system. Automatic selection 

of algorithm parameters in complex systems such as ours is an open issue in computer vision 

[PDK96, Mar98], and is likely to become more important as such systems leave the laboratory 

and enter the marketplace.

In the off-line segmentation experiments of chapter 7 it was seen that the grey-level thresh-
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olding technique used to extract plant matter from the images leads to a large number of crop 

and weed pixels being misclassified as soil. Andersen, Marchant and Onyango have recently 

proposed a “dedicated sensor” for reliably detecting plant matter in outdoor scenes [AOM99, 

AM099]. The sensor is similar to a standard RGB colour camera, but the blue channel is re­

placed by near infra-red. Use of such a sensor may lead to more reliable discrimination be­

tween plant matter and soil, provided that algorithms can be devised which cater for the effects 

of changes in daylight illumination on images formed by the sensor. Finlayson et al [FSC98] 

offer an algorithm for colour normalisation to remove effects of illuminant colour and geometry 

in RGB images, where they assume that illumination is constant across the scene. This assump­

tion does not apply in outdoor scenes, where the illuminant is a mixture of two sources, skylight 

and sunlight [AM099], so a different approach will be necessary.

Further effort could be directed toward designing image processing algorithms that could 

discriminate between crop and weed plants, and indeed identify separate crop plants once they 

have grown large enough to touch each other in the image. As we noted briefly in chapter 2, the 

variability between plants of the same species makes modelling the crop and weed plants very 

challenging. Any techniques that would be of use in this problem would almost certainly find 

widespread application in many problem domains.
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Appendix A

The Hough transform row tracker

Prior to the development of the computer vision algorithms presented in this thesis, the au­

tonomous vehicle’s vision system used a Hough transform algorithm [Pra91] devised by 

Marchant and Brivot [MB95] to locate the crop row structure in each image. The Hough 

transform is a robust method for finding structures in images where the object of interest is 

represented by a parameterised model, and image features offer support to certain parameter 

values in a voting scheme. The set of parameters which receive most support are deemed to 

represent the object’s state. We now present the derivation of the Hough transform given by 

Marchant and Brivot [MB95].

)=Crop

Ground Plane

Figure A .l: The camera and world plane co-ordinate systems, with the rows of crop marked as 

grey circles.

Figure A .l shows the co-ordinate systems of the vehicle camera (z, y, z) and the world 

IJvĵ  Zuj), and figure A.2 shows an example image captured from the vehicle, and the blob 

features extracted by grey-level thresholding. Each blob is presented to the algorithm in terms of
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its centroid in pixel co-ordinates x f , y j  and its size calculated by the number of pixels it contains.

Figure A.2: The crop as seen by the camera. Left: original infra-red image. Right: thresholded 

version.

Tsai [Tsa86] gives the following transformation between the co-ordinate systems drawn:

cos ^  sin 4/ 0

— sin ^  cos (f) cos ^  cos 0  sin (j)

sin 'F sin 0  — cos ^  sin (f) cos (j)

If we assume a pinhole camera model with focal length / ,  we obtain the following equations for 

the image plane co-ordinate yu

X

y =

z

tr

Vw + 0 (A.1)

Ztu tz

^ _  J  { x ^ c o s ^  +  y ^ s m ' j f t g , )
z  x^u sin y/ sin 4> -  yw cos 'F sin 0  -f ’

^ _  J.y _  J, { - X u ;  sin ^  cos <̂ +  cos ^  cos </) +  t y )  

^ z X u , su i^  sm 4> -  yuj COS ^  sin (j)

(A.2)

(A.3)

With reference to figure A .l, we can see that the crop form regular rows parallel to the yu; axis. 

The Xu; co-ordinate of each row is given by

X  ID — /?/ r , (A.4)

where n G —1, 0,1 and r is the distance between rows. If we assume that is small such that 

cosvp % 1 and sin 4/ % 4;, then we can obtain the following relationships by manipulating 

equations A.2 and A.3, and substituting for Xu, according to equation A.4:

yw{-XuSin (f) -  /vF) =  - X u { n r  sin +  f { n r  + (A.5)
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yit;(-yuSin0 -  /co s0 ) =  -yu i'^n r  sin 4>t z )  +  / ( - n r  cos 0). (A.6)

If we now eliminate y-w and simplify, we get

+  D ^  +  E{tz: +  nr) +  F  =  0, (A.7)

where A =  nr (y^ sin 0  + /  cos (f)),D =  E  = yu sin <f) A f  cos 4>, and F  =  - X u t z  cos 4>. 

For each feature, whose centre is x /, y/, we can obtain values for Xu and y  ̂thus:

Xu — (^/ Cx)dx^ (A.8)

Vu — ivf ~  E y ) d y ^  (A.9)

where Cx and Cy are the pixel co-ordinates of the camera’s optic axis and dx and dy are scaling 

factors determined by the dimensions of the pixels.

With Xu^yu determined for a feature æy, yy, the only unknowns in equation A.7 are tx and 

The solutions of equation A.7 for the feature æ y, yy give all the values of tx and Ÿ that could 

explain the presence of the feature at that particular position.

If we regard the two-dimensional plane of tx and ^  as a Hough (parameter) space, then 

we can map feature points zy, yy to curves in the Hough Space, using equations A.8,A.9 and

A.7. Each feature produces three curves in the Hough space, corresponding to n =  -1,  n =

0 and n = 1. Each time a curve is plotted into the Hough space accumulator, it increments 

each accumulator cell it passes through by an amount proportional to the area of the feature that 

produced the curve. When the three curves corresponding to every feature in the image have 

been added to the Hough space, the accumulator cell with the highest value gives the tx and 

^  values that best fit the image features. The Hough accumulator space and the resulting row 

fitting for the image on the left of figure A.2 are given in figure A.3.
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Figure A.3: The Hough accumulator and the fitted row structure. Left: the Hough accumulator 

space -  the lighter the pixel, the higher the accumulator count. Right: the row structure position 

corresponding to the accumulator cell with the highest count superimposed on the original image 

from figure A.2.



Appendix B

The matrix inversion lemma

The matrix inversion lemma states that given the matrices A, B, C and D, the sum of A with 

the product BCD  may be inverted as follows:

[A +  BCD]-^ =  A-^ -  A-^B[C"^ +  D A -^B ]-^D A  \  (B.l)



Appendix C

Conditional density formulation of the 

Kalman filter

Given the conditional density formulation for the Kalman filter, with Gaussian noise sources, the 

following expression has been arrived at in equation 3.22 (chapter 3), repeated here for clarity:

=  iV (H W x W ,R W )iV (x -W ,p -W )_
JV(H(fc)x-(fc), H(A:)p-(fc)H^(fc) +  R(A))

If we expand the normal distributions 7V(", equation C.l reduces to a normal distribution

whose mean and variance will be arrived by manipulation of the exponential term of equation

C.l, which is given by

B =  (z -  H x)ï-R -i(z  -  Hx) +  (x -  x - ) r ( p - ) - l ( x  -  x " ) -

(z -  H x -)^ (H P -H ^  +  R )" l(z  -  H x ),

where the time indices have been dropped for brevity. Upon expansion of the quadratic expres­

sions involving x, equation C.2 becomes

E  =  z ^ R - i z  -  z ^ R - i R x  -  x ^ H ^ R - i z  - f  x ^ H ^ R  i H x +

x ^ (P -)"^ x  -  x ( P - ) “ ^x- -  ( x - )^ (P - ) '^ x  +  x - ( P - ) " ^ x - -  (C.3)

(z -  H x -)^ (H P -H ^  +  R ) - l( z  -  H x ).

If we now complete the square in x, we arrive at the following expression for the exponent of 

equation C.l;

B =  (x -  P[H^’R - ‘z +  ( p - ) - ‘x -])I’p -> (x  -  P p ^ R - 'z  +  ( p - ) - 'x - ] ) -

((x-)^(p-)-^  + z^ R -iH )P (H ^ R -‘z +  ( p - ) - ' x - ) +

(x - )^ (p - ) “ *x- +  z ^ R - 'z  -  (z -  H x - )^ (H P -H ^  +  R )“ l(z  -  H x"),
(C.4)

where the matrix P  is given by

P  =  [H ^ R - 'H  +  ( p - ) “ ‘] - \  .  (C.5)



195

which is familiar from equation 3.24 in chapter 3.

Equation C.4 is comprised of two parts, a quadratic in x and a “remainder”. If this remain­

der is zero, then the mean and covariance of the posterior density (and hence the updated state 

estimate and its covariance) can be derived from the quadratic form.

Denoting the remainder R, we aim to demonstrate that 

R  = ( (x - )^ (p - ) -^  +  z ^ R -iH )P (H ^ R - 'z  +  ( p - ) “ ‘x - ) -

(x - )’’( p - ) “ ‘x -  -  z ^ R - 'z  +  (z -  H x -)^ (H P -H ^  +  R )- l( z  -  H x ) =  0,
(C.6)

or equivalently,

( (x - )^ (P - )“ ‘ +  z ^ R - iH )P (H ^ R - 'z  +  ( p - ) - 'x - )  =

(x - )’’( p - ) “ 'x -  -  z ^ R - ‘z +  (z -  H x -)^ (H P -H ^  +  R )- l( z  -  H x ).
(C.7)

If we expand the matrix quadratics on each side of equation C.7, whilst applying the matrix in­

version lemma (appendix B) to the matrix [H PH ^ +  R]"^, we arrive at the following equality 

(terms common to each side have been removed, and some re-arrangement performed):

(x )^[I -  H ^ R -iH P ]H ^ R -iz +  x - ( P - ) - ^ P H ^ R - iz +

z ^ R - i R p  -  P H ^ R - i H ] x  +  =  z ^ R - i H P ( P - ) ~ ^ x - - b

i  [ p - - i  _  +  H ^R  iH P H ^ R -iH ]x -  x - ( p - ) " ^ P ( P  )"^x -,
(C.8)

where I is the identity matrix. Equation C.8 may appear to be curiously arranged; this is in or­

der to group the similar terms on each side. The proof of equality in equation C.7 can now be 

achieved by comparing terms from equation C.8; in fact, owing to the symmetry of the matrices

involved, of the three lines in equation C.8, only two equalities need to be shown:

I -  H ^R -^H P  = (P -)"^ P , (C.9)

and

( p - ) “ ‘ - H ’’R - ‘H +  H ^ R -‘H P H ^ R -‘H =  ( p - ) “ ' P ( p - ) ' \  ( C I O )

The proof of equation C.9 follows directly from the definition of P  in equation C.5, whilst equa­

tion C.IO may be proved using the result of C.9 and the symmetry of (P ~ )“  ̂ and P.

Now that we have proved equation C.6, i.e. that the remainder term in the posterior density 

function is zero, the exponential term E  can be written

E = ( - k -  P [H ^R -^z -f (P ~ )"^x -])^p -^(x  -  P [H ^R -^z  +  (p -)~ ^x"]). (C.ll)

This exponential term leads to a distribution with mean

P [H ^ R -‘z + ( p - ) ' ‘x -] , (C.12)
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where P  is the matrix defined above in equation C.5 -  this is also the covariance of the distri­

bution specified by E. If we apply the matrix inversion lemma to P  (equation C.5), and insert 

this into equation C.12, we get

[P - -  P -H ^ [H P  H ^ +  R ]- iH P -] [H ^ R -‘z +  ( p - ) " 'x - ]  =

X- +  [I -  P -H ^ [H P -H ^  +  R ]- ‘H] P  H ^R -^z  +  P  H ^ p P  H ^ +  R] 'H x - ,
(C.13)

which in turn simplifies to yield (with time index re-inserted) 

x(A) =  x-(&) +  p-(fc)H^(fe)[H(fc)p-(fc)H^(fc) +  R (* )]-‘ (z(fc) -  H(fc)x-(fc)), (C.14) 

which is the Kalman filter state estimate update equation, as given in equation 3.23.


