
Analysis, Representation and Mapping

of Neural Networks

onto Parallel Hardware

Ugur Bilge

a thesis submitted for the degree o f

Doctor of Philosophy in Computer Science

University o f London

D epartm ent o f Computer Science
University College London

Gower Street, London W CIE 6BT

September 1993

ProQuest Number: 10017352

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10017352

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract
Neural networks provide solutions to a class of pattern recognition and optimisation problems
that are hard to solve with conventional techniques. Currently, most neural network applications
are computationally intensive simulations on conventional sequential computers. As a solution
general-purpose parallel architectures are increasingly used to speed up simulations. Hence, there
is a growing need for generic strategies for simulating neural networks on parallel computers.
This thesis investigates generic representation and mapping strategies for neural networks on
general-purpose parallel architectures. The research comprises three main parts: an analysis of
neural network models, an analysis of neural network representations, and by utilising these
analyses, the representation and mapping of neural networks on parallel hardware.

To understand the computational and structural properties of neural network models, and to
establish a generic representation, an in-depth analysis is carried out in the form of three case
studies. The Hopfield, the Self-Organising Map and the Backpropagation models are used
respectively in three appropriate real-world applications; pattern recognition, data clustering and
financial forecasting.

Neural network representations determine parallel mapping options and the subsequent efficiency
of mappings. Function-oriented, object-oriented and matrix-based representations are examined
with examples, stressing their advantages and disadvantages. A matrix-based C library MATLIB
and a neural network library NETUB are put forward as generic, modular and flexible means to
represent neural networks and exploit parallel, general-purpose execution environments.

The mapping of neural networks onto parallel hardware is a computational optimisation problem
with two main constraints: processing costs and communications costs. The Mapper’s task is to
optimise for a fast and efficient execution, by partitioning and distributing neural network
representations across a number of parallel processors, and scheduling the parallel execution. A
Computational Analysis Tool (CAT) is developed to calculate processing and communications
costs, and to detect parallelism in a given MATLIB definition. An Automatic Parallel Mapper
(APM), using this analysis, can partition the representation and generate parallel or pipelined
code with appropriate data exchange instructions between the parallel processing modules.

The Esprit II Galatea General Purpose Neural Computer (GPNC) is used as a test and
implementation domain for this research work. The GPNC is a multi-processor architecture
consisting of a host and a number of parallel Virtual Machines (VM), each containing a local
CPU and a co-processor board, communicating and interpreting a matrix-based intermediate-
level language called VML. The Galatea Mapper is designed and developed for semi-automatic
mapping of VML rules to a number of parallel VMs.

To assess the performance of the mapping strategies, MATLIB definitions of the three neural
network models are partitioned and simulated in parallel on a network of SUN workstations.
CAT projections are used to authorise data or task parallel mappings automatically. Multiple
neural network applications are also simulated with two or more neural networks cooperating or
competing in the solution of a problem.

This thesis shows that the matrix-based abstraction captures neural network properties, and the
computational cost analysis based mapping strategy is generic, flexible and can be automated. In
addition, the simulation results show that: (i) the three neural network models studied in this
thesis are tightly coupled algorithms, and are not suitable for pipeline or task parallelism, (ii) data
parallelism for these models can increase performance only if fast communications interfaces are
provided, and (Hi) current distributed computer networks can be used for multiple neural network
simulations, producing clear gains in performance.

To the memory o f my mother

Acknowledgements

I would like to thank my supervisor Professor Philip Treleaven for his guidance and
support throughout my research, and for always making time, whenever I needed to
consult him.

I wish to thank my friend Dr. Paulo Rocha for his encouragement and support. I am
grateful for his meticulous reading of this thesis and his detailed comments on it.

I also wish to thank Dr. Peter Rounce for his valued contribution in finding time to read
and comment on this thesis.

I acknowledge my friends and colleagues Ing. Cesare Alippi, Jason Kingdon, Mike
Hewetson, Anoop Mangat, Dr. Meyer Nigri, Michael Recce, John Taylor, Dr. Marley
Vellasco and many others in the Department of Computer Science at UCL, for their
various kinds of support during my research.

Last but not least, I am grateful to my wife Pippa for her patience and encouragement
during the writing up of this thesis, without which the thesis would not have been
completed.

Table of Contents

CHAPTER 1 - In tro d u c tio n .. 12
1.1. Neural Networks.. 12
1.2. Research G oals... 18
1.3. Research Plan ... 19
1.4. Research Contributions .. 20
1.5. Thesis Organisation.. 21

CHAPTER 2 - N eural C om puting ... 23
2.1. Introduction .. 23
2.2. Applications and Algorithms.. 24
2.3. Programming Environments... 27
2.4. Execution Environments .. 30

2.4.1. Special Purpose Neurocomputers ... 32
2.4.2. General Purpose Neurocomputers... 34

2.5. Summary... 42

CHAPTER 3 - Pygmalion and Galatea P ro je c ts .. 43
3.1. Introduction .. 43
3.2. Pygmalion Programming Environment.. 43
3.3. Galatea Neurocomputing Project ... 46

3.3.1. Galatea General Purpose Neural Computer.................................... 46
3.3.2. Galatea Programming System... 50

3.4. Summary... 52

CHAPTER 4 - Analysis of Neural N e tw o rk s .. 54
4.1. Introduction .. 54
4.2. The Hopfield Networks .. 54

4.2.1. The M odel... 55
4.2.2. Case Study: Pattern Recognition... 56
4.2.3. Computational Analysis.. 57
4.2.4. Parallel Hardware Mapping .. 59

4.3. Self-Organising M aps.. 60
4.3.1. The Model .. 61
4.3.2. Case Study: Clustering Neural Spikes .. 62
4.3.3. Computational Analysis... 67
4.3.4. Parallel Hardware Mapping.. 68

4.4. The Backpropagation M odel... 69
4.4.1. The Model .. 69
4.4.2. Case Study: Financial Forecasting.. 71
4.4.3. Computational Analysis.. 76
4.4.4. Parallel Hardware Mapping .. 78

4.5. Comparison of the three Models .. 80
4.6. Multiple Neural Networks.. 81
4.7. Conclusion... 83

CHAPTER 5 - Neural Network R epresen tation .. 85
5.1. Introduction ... 85
5.2. Neural Network Representation Techniques.. 87

5.2.1. Function-Oriented Representations... 88
5.2.2. Object-Oriented Representations.. 90
5.2.3. Vector-Oriented Representations... 91

5.3. MATLIB Matrix Library ... 92
5.3.1. MA7L/B Functions.. 93
5.3.2. Parallelising M ATUB .. 96

5.4. NETLIB Neural Network Library... 97
5.5. Summary... 99

CHAPTER 6 - M apping S tra te g y .. 101
6.1. Design Considerations.. 101
6.2. Mapping Techniques .. 104
6.3. The Strategy.. 106
6.4. Cost of Parallelism ... 109
6.5. Computational Analysis Tool... 112
6.6. Automatic Parallel Mapper .. 115
6.7. Summary... 117

CHAPTER 7 - Galatea M apper and S ch ed u le r... 118
7.1. Introduction .. 118
7.2. Galatea Mapper .. 119
7.3. Galatea Scheduler... 121
7.4. Mapping and Scheduling.. 125
7.5. Galatea Mapper Implementation.. 126
7.6. Mapping VML to Galatea GPNC.. 130

7.6.1. Co-operating Hopfield/Backpropagation Networks........................ 130
7.6.2. Semi-Automatic Mapping of Backpropagation.............................. 133
7.6.3. Automatic Mapping .. 134

7.7. Summary... 135

CHAPTER 8 - M apping MATLIB R epresen tations..................................... 136
8.1. Simulations Overview .. 136
8.2. Computational Analysis Tool Results.. 137
8.3. Mapping the Three Models .. 142

8.3.1. Hopfield Nets... 142
8.3.2. The Self-Organising Maps .. 149
8.3.3. The Backpropagation Model... 153

8.4. Mapping Multiple Neural Networks .. 155
8.4.1. Cooperating SOM/Backpropagation Networks 155
8.4.2. Competing Backpropagation Networks.. 157

8.5. Summary... 158

CHAPTER 9 - A ssessm ent.. 159
9.1. Target Review .. 159
9.2. Neural Network Analysis ... 160
9.3. Neural Network Representations.. 162
9.4. The Strategy.. 165
9.5. The Implementation ... 167
9.6. Mapping Results and Performance... 169

CHAPTER 10 - Conclusion and Fu tu re W o rk ... 172
10.1. Conclusions .. 172
10.2. Future W ork.. 174

REFERENCES... 177

APPENDIX A - Neural Network Representations .. 188
A.I. The nC Data Structure.. 188
A.2. The Hopfield Recall Rule in C ... 190
A. 3. The Decrement Distance Function in « C .. 191
A.4. The Recall Rule for the Backpropagation in VM L 192

APPENDIX B - MATLIB F unctions... 193
APPENDIX C - M ATLIB Listings of the three M o d e ls............................... 198

C.l. The Hopfield MATLIB Listing... 198
C.2. The SOM MATLIB Listing .. 199
C.3. The Backpropagation MATLIB Listing ... 200

APPENDIX D - C A T and APM R esu lts ... 202
D.l. The Hopfield Net ... 202
D.2. The Self-Organising M ap .. 205
D.3. The Backpropagation Model ... 207
D.4. The SOM/Backpropagation Model ... 210

APPENDIX E - Competing Backpropagation N etw orks............................. 219

List of Figures

Figure 1.1. Models of Neurons .. 13

Figure 1.2. Applications and Simulators .. 14
Figure 1.3. General Purpose Neural Computer and Mapper .. 19
Figure 2.1. The Spectrum of Execution Environments ... 31

Figure 2.2. The UCL Generic Neuron .. 34
Figure 2.3. HNC General Purpose Neural Computer .. 37
Figure 3.1. The Pygmalion General Purpose Programming Environment........................... 44

Figure 3.2. The Virtual Machine ... 47
Figure 3.3. The Siemens Architecture .. 48
Figure 3.4. The Philips Architecture... 49
Figure 3.5. Galatea Programming System... 51

Figure 4.1. The Hopfield Net .. 55
Figure 4.2. The Patterns for the Hopfield N et... 57
Figure 4.3. Structural Mapping of the Hopfield M odel... 60

Figure 4.4. The Self-Organising Map.. 61
Figure 4.5. Gain and Neighbourhood.. 63
Figure 4.6. Error Histogram in Clustering ... 64
Figure 4.7. Neural Spike Clusters ... 65
Figure 4.8. Cluster Envelope Widths .. 66
Figure 4.9. Structural Mapping of the SOM M odel... 68
Figure 4.10. A three layered Backpropagation .. 70
Figure 4.11. Lagged Patterns for the Backpropagation ... 72
Figure 4.12. Autocorrelating Input Values... 72

Figure 4.13. The Dataset: FTSE 100 index .. 74

Figure 4.14. Euclidean Error in Training.. 75

Figure 4.15. Test on Learning FTSE Index .. 75

Figure 4.16. Long Term Forecasting FTSE Index.. 76

Figure 4.17. Structural Mapping of the Backpropagation ... 80

Figure 6.1. Communications Costs in Data Parallelism ... 110
Figure 6.2. Communications Costs in Task Parallelism... I l l

Figure 6.3. Automatic Parallel Mapper... 116

Figure 7.1. The Galatea Mapper.. 120

Figure 7.2. The Galatea Scheduler ... 122
Figure 7.3. Demonstrator I .. 132
Figure 7.4. Demonstrator II ... 133

Figure 8.1. Socket Communications Costs... 139
Figure 8.2. Actual and CAT results for Hopfield N e t ... 140

Figure 8.3. Actual and CAT results for SO M .. 141
Figure 8.4. Actual and CAT results for Backpropagation .. 141
Figure 8.5. Line by Line Computations in Hopfield Net .. 143

Figure 8.6. Projections on Data Parallel Hopfield... 145

Figure 8.7. Scalability of Data Parallel Hopfield Executions .. 146
Figure 8.8. Scheduler-Chent Interaction ... 147

Figure 8.9. Sequential and Data Parallel Hopfield .. 148

Figure 8.10. Hopfield on multiple processors.. 149

Figure 8.11. Line by Line Computations in SOM ... 150
Figure 8.12. Projections on Data Parallel SOM .. 151
Figure 8.13. Sequential versus Pipelined SOM ... 152
Figure 8.14. RMS Error in Sequential and Parallel SOM .. 153
Figure 8.15. Line by Line Computations in Backprogapation ... 153
Figure 8.16. Projections on Data Parallel Backpropagation... 154
Figure 8.17. Cooperating SOM/Backpropagation Networks.. 156
Figure 8.18. Competing Baclq)ropagation Networks ... 157
Figure 9.1. Data Parallelism and Communication Speed.. 170
Figure 9.2. Data Parallelism and number of Processors ... 171

Figure 10.1. General Purpose Heterogeneous Computer .. 175

10

List of Tables

Table 1.1. The Brain and Neural Networks ... 13

Table 2.1. Neural Networks Applications and Properties .. 27

Table 4.1. Neural Networks Structure and Properties.. 81

Table 5.1. The use of MATLIB data operators ... 94

Table 5.2. The use of MATLIB arithmetic operators ... 95

Table 5.3. The use of MATLIB neural operators.. 95

Table 8.1. Computational costs fox MATLIB on sun4................................. ♦......................... 138
Table 8.2. CAT results for the Hopfield n e t .. 142

Table 8.3. Variable Analysis for Temp ... 143
Table 8.4. Data Partitioning on Hopfield .. 144

11

Chapter 1

Introduction

This chapter presents a brief introduction to Neural Networks, outlines the
motivations and research goals o f this work, and gives an overview of the
research contributions and thesis organisation.

1.1. Neural Networks
The Neural Networks field is an information processing paradigm that has been

inspired by the organisation of the brain. This field has surged over the last 5 years,
becoming one of the fastest growing computing technologies. As a multidisciplinary field
[24,37,148], it covers areas such as neuroscience, psychology and computing. Neural
Computing specifically deals with neural network algorithms, applications, programming
and execution environments.

The essence of neural computing is to use networks of neuron-like simple
Processing Elements (PE), or Artificial Neurons (AN) as computational devices [110].
Artificial Neural Networks are highly interconnected structures of artificial neurons
which are modeled on an idealised view of biological neurons. A biological neuron, as is
well known, is the basic building block of the nervous system, consisting of a cell body,
branching extensions called dendrites which receive signals, and an axon which passes
the neuron’s output to the other neurons (Figure 1.1). The junctions between axons and
dendrites are called synapses. To oversimplify somewhat, a neuron collects the signals
from its synapses, and sums them. If the combined strength of the signals exceeds a
certain limit - a threshold, the neuron sends out a signal through its axon. These steps are
electrochemical operations carried out by over fifty different neurotransmitters, involving
many different neuron structures. Neurons typically take a millisecond to respond to their
inputs; in the same amount of time, conventional computers can carry out millions of
calculations. Yet the biological network of neurons is much faster in pattern recognition
tasks than conventional computers. There are approximately 100 billion neurons in the
human brain, and one neuron may be connected up to 10,000 others; thus the main
strength of the neural model comes from this massive interconnectivity and parallelism.

12

Dendrites
Soma

Summer]—>[rhresholc|
Axon

Synapse

(a) Biological Neuron (b) Artificial Neuron

Figure 1.1. Models of Neurons

An artificial neuron imitates a biological neuron in three aspects: it has weighted
input connections, a summation function and a threshold function that generates the
output. To further the similarity in an attempt to build a replica of the brain [101] is not
yet feasible, for two reasons. Firstly, our understanding of the brain is limited, and
secondly, today’s technology cannot match the same level of processor interconnectivity
on silicon circuits. Despite the high level of interconnectivity, the brain is not
homogeneous. Computations in the brain seem to be localised for specific tasks. PET
(Positron Emission Tomography) scans and MRI (Magnetic Resonance Imaging) results
confirm that the brain has a modular structure. These results encourage the design of
modular networks and distributed parallel hardware platforms, to overcome the
interconnectivity bottleneck.

The Brain Artificial Neural Networks
Organisation network of neurons network of Processing Elements
Components dendrites & axon

synapses
inputs & output
weights

Processing analog digital or analog
Architecture 10-100 billion neurons 1-1,000,000 PEs
Interconnectivity 1 neuron to 10,000 others limited and slow
Hardware neuron switching device
Switching Speed 1 millisec 1 nanosec -1 millisec
Technology biochemical silicon, optical

Table 1.1. The Brain and Neural Networks

Today, most neural network applications are software simulations, running on
conventional, sequential computers. Some simulations run on parallel hardware, and
some hardware implementations already exist [143]. Neural network simulations are

13

computationally demanding, requiring high performance hardware platforms with large
memories. Figure 1.2 shows the computational requirements for a range of neural
network applications and the performance of neural network simulators (CPS stands for
Connections Per Second; a performance criterion which is widely used.) As can be seen,
using parallelism, both the speed and the storage capacity can be improved. One major
problem is to program or map software onto parallel hardware, and exploit parallel
execution environments efficiently. This thesis specifically deals with the mapping of
neural networks onto parallel hardware for efficient execution. Four main research areas
of neural computing are considered in the course of this research. These are neural
network models and applications, programming and execution environments.

Speed (CPS)

Multiprocessing

(Parallelism)

Fast Processors

10

► RAM TechnologyNeural Network
Sim ulators

10 10 10 10 Storage (Bytes)

Figure 1.2. Applications and Simulators [6]

Neural Network Models and Applications

A large number of models have been developed and tested on a number of real-
world applications. Models differ from one another by the interconnection topology and
the varying properties of artificial neurons. Today, there are over 100 established
network models [99,144]. The best known models are the Hopfield nets [72], the Self-
Organising Map (SOM) [88], and the Backpropagation model [130]. These three models
are analysed in detail in three case studies in chapter 4.

Most neural network algorithms are mathematical and statistical models of learning.
They achieve learning through an iterative process called the training phase. In training,
a network adaptively modifies the interconnection weights between the Processing
Elements, following a learning rule. Recall, on the other hand, involves using the weight
space after training, to produce output values for given input patterns.

14

Neural networks are suitable for a diversity of real-world applications covering
brain modelling, speech and image processing, robotics and control, planning and
optimisation, and human-machine interfacing systems [129]. The main applications are
pattern recognition problems which are difficult to solve by conventional techniques.
Other popular applications are optimisation problems which take an impractical amount
of computer time to reach a solution using conventional techniques. In the last 3 years,
financial applications have gained momentum. As part of wider data processing
applications, neural networks are used in predicting trends in prices, stock market and
exchange rate forecasting [86], credit and insurance assessments [34]. An interesting
image processing application is the recognition of hand-written characters. This has
become particularly important in the wake of pen driven computers [22,57], an important
step in the human-machine interfacing systems.

Neural networks present different computational requirements during the training
and recall phases, depending on applications. A neural network study [6] outlines these
requirements as memory (connections) and execution speed (connections per second).
For a robotic arm manipulator, real-time speed requirements are estimated as 350,000
CPS, and the computational demand in vision applications can go up to 2 GCPS. In most
cases training can be done off-line, but recalls often require a real-time performance.
These requirements are still far from satisfactory, presenting a stumbling block in the
neural network development.

Neural network research is recently focusing on modular, hybrid systems. These
systems require coarse-grained parallel distributed architectures consisting of general-
purpose high performance modules. Mapping and execution strategies must consider
these modular trends in models and applications.

Neural Network Programming and Execution

Most neural network applications are developed as computer simulations, and some
models are realised as hardware implementations. A neural network simulation is
developed in the following way: first, a suitable model is selected and adapted for the
application, a suitable hardware platform is chosen, a computer program of the model is
written, and finally the simulation is executed on the hardware. This process involves
two separate domains, the software domain and the hardware domain. Research in
Programming Environments deals with issues relating to software, such as the user
interface, network representations and mapping. Research in Execution Environments on
the other hand deals with hardware matters for the efficient execution of applications.

15

Neural Network Programming Environments (NNPE) are sophisticated
programs which ease the cycle of program development and execution of an application.
They facilitate the transformation of real-world problems onto computer programs with
user-friendly interfaces and testing, debugging and monitoring functions. Most NNPEs
contain the following modules: a graphics monitor and a high-level language for user-
friendly definition of networks, an intermediate-level neural network specification
language for low level representation of the applications, and an algorithm library
consisting of parameterised models. A number of research systems and commercial
products have been developed in this field, and they are reviewed in chapter 2.

Neural Network Execution Environments are high performance hardware
platforms where neural network execution takes place. Today, most execution
environments are sequential computers. For small applications where training can be
done off-line, PCs are often sufficient. Early PCs delivered 25,000 CPS execution speeds
[6], and this figure has been increased tenfold in the last 5 years. Neural network
applications such as signal processing and vision tasks require vast amounts of
processing power. Neurocomputers are developed to provide this high performance,
communications facilities. Neurocomputer research is progressing in two directions to
overcome these difficulties.

Special-purpose Neurocomputers are usually fine-grained compact VLSI
implementations of certain neural network models. The Hopfield nets and the Self-
Organising Map [12,90,101,102] are the two most popular models implemented in
hardware because of their simplicity. Special-purpose neurocomputers provide fast
execution (currently 10̂ CPS), and can be implemented as compact analog circuits, but
they lack flexibility and programmability.

General-purpose Neurocomputers on the other hand are general, flexible and
progranunable platforms, but they provide poorer performance rates (typically in the
range of 10 ̂- 10 ̂ CPS) [107,120]. They are often coarse-grained architectures aiming
at high performance and generality. Most neural network models and some non-neural
network applications can be executed on these machines. The general-purpose
neurocomputers are mainly digital circuits with some analog hybrid implementations. A
detailed review of the current hardware platforms is presented in chapter 2.

Considering neural networks’ inherent parallel nature, their potential can be fully
exploited on massively parallel architectures. Yet, there are practical difficulties in
implementing highly interconnected massively parallel architectures with efficient These

16

difficulties can be overcome by parallel, distributed and modular designs. Future
architectures can make use of special and general purpose neurocomputers by combining
them in a parallel distributed framework. These systems will be able to incorporate
multi-domain applications and hybrid solutions, and run on heterogeneous architectures,
consisting of general-purpose and dedicated processors.

Mapping Neural Networks onto Parallel Hardware

The rapid development of computer hardware in speed, memory and data storage
facilities has not been sufficient to meet the demand for high performance computing in
some applications. Neural network applications are among these applications which are
computationally intensive on conventional computer simulations. Given the choice of
having a high performance system now or waiting five years, parallelism can deliver the
required performance by exploiting current hardware platforms [121]. In fact,
parallelism increasingly is used in the design of single-chip microprocessors. Yet
parallelism introduces one important issue; the programming or mapping of applications
onto hardware. Mapping involves decomposing and partitioning representations and
distributing them onto parallel processors for a fast and efficient execution. Neural
networks are intrinsically parallel algorithms, and it is natural to think they can be
executed most efficiently on parallel architectures. In reality, inefficient use of parallel
resources can result in slower execution rates over sequential executions.

A parallel neural network simulation is closely linked to the application and model
which are mapped, and to the programming and execution environments where
simulation and finally execution takes place. Overall, the efficiency of execution on a
parallel system depends on the following factors:

• Efficient representation - The neural network specification language must be
general, flexible and allow easy manipulation by the mapping process.

• Efficient mapping - The mapper must efficiently partition and distribute the neural
network representation across a number of parallel processors.

• Processor speed - The speed of the processors in the system directly affects the
speed of the execution.

Processor memory - The size of memory and the access time are important, as
neural network concepts, such as weights, patterns, and look-up tables are stored in
Random Access Memory.

17

Interprocessor communications - Interprocessor communications facilities must be
sufficient both in speed and latency to cope with the data transfer and update
throughout the network.

1.2. Research Goals

The main goal of this research is to investigate generic strategies for mapping neural
networks onto parallel hardware. Part of this goal is to achieve a generic representation
that captures neural network properties and facilitates parallel mapping. The following
are the main criteria to be met in the research for representation and mapping strategies
in this thesis:

High Performance: Execution speed must be improved over sequential speed as a
result of the mapping.

Generality: The system must provide high performance for a wide range of neural
network models and applications, and support a variety of neurocomputers.

• Flexibility: The system must be easily modified, and it must allow for expansion
for new applications, models, and hardware platforms.

• Modularity: The system must be modular to allow for expandability and
upgradability.

• Efficiency: The system must supply efficient use of resources.

• Scalability: The system must scale up to increasing number of processors.

• Automation: Parallel code should be generated and distributed automatically.

This thesis attempts to achieve these research goals within the framework of a
General Purpose Neural Computer (GPNC). A GPNC is a high performance system,
consisting of a coarse number of parallel general-purpose modules, all connected to a
host computer with a user-friendly, flexible programming environment, capable of
executing a wide range of neural network models and applications (Figure 1.3).

The ESPRIT II Galatea GPNC is a typical example of such a system which is
potentially capable of delivering a high performance for a wide range of neural network
models and applications. The Galatea GPNC is currently under development, and it has
been used as the test and implementation dommn for mapping and scheduling strategies
developed in this thesis. The design and development of the Galatea Mapper and the

18

Real World Applications
Financial Pattern

Forecasting_______ Recognition_________ Processing
i i I

Neural Network Models

Neural Network Programming Environment

MAPPER

General General Conventional
Purpose

Neurocomputef
Purpose

Neurocomputer Computer

I n

Figure 1.3. General Purpose Neural Computer and Mapper

specification of the Scheduler are parts of the research work undertaken during this thesis
research.

1.3. Research Plan

To achieve the research goals;

• An in-depth analysis of neural networks has been carried out in the form of three
case studies. The Hopfield nets, the Self-Organising Maps and the Backpropagation
model with three appropriate applications have been used in the case studies. These
three models are selected because they represent a good cross-section of most neural
network models in terms of their applications, structures, training and recall procedures.
This analysis aims to : (i) understand neural network models and their computational
properties, (ii) highlight suitable application domains, (Hi) explore potential structural
parallelism, and (iv) search for a generic representation.

• A comparative analysis of neural network representations has been carried out,
using fimction-oriented, object-oriented and vector-oriented representations in a number
of simulations. The analysis aims to establish a representation strategy which is capable
of (i) capturing most neural network properties, and (ii) exploiting general-purpose
parallel hardware. As a result a matrix-based library MATUB and a neural network
library NETUB have been put forward.

19

• The mapping strategy has been outlined as a computational optimisation process
which is generic, flexible and upgradable. A Computational Analysis Tool (CAT) and an
Automatic Parallel Mapper (APM) have been developed for automatically partitioning
and mapping MATLIB representations onto parallel processors.

• The Galatea Mapper has been implemented as part of the programming system for
the Galatea GPNC simulator, and is used for demonstrating mapping and scheduling
strategies. VML, the intermediate-level language of the Galatea GPNC, has been semi-
automatically partitioned and parallel executions are simulated on a network of SUN
workstations.

• MATLIB representations have been partitioned and parallelised on a network of
SUN workstations to assess data and task parallel mapping strategies. CAT parallel
projections are used to detect parallelism in MATUB definitions of neural network
models. Both single domain and multiple neural network models have been used in these
parallel simulations.

1.4. Research Contributions
The main contributions of this work to Neural Computing are:

• The analysis of neural networks. An analysis of three neural network models
with appropriate real-world applications, in the form of three case studies.

• The analysis of neural network representations. A comparative analysis of
function-oriented, object-oriented and vector-oriented neural network representations.

• The design and implementation of MATLIB. A matrix-based C library with
parallel features. MATLIB is a generic representation domain for neural networks and is
suitable for mapping onto general-purpose parallel hardwares.

• The design and implementation of NETLIB. NETLIB is a parallel neural
network library with parameterised routines for the training and the recall functions of
the three models, exploiting MATUB functions.

• The design and implementation of the CAT. CAT provides a computational
profile for MATLIB programs and detects parallelism in these representations.

• The design and implementation of the APM. APM exploits the computational
profile provided by CAT, and automatically partitions and generates parallel or pipelined

20

MATLIB code.

• The design and implementation of the Galatea Mapper. It provides semi­
automatic mapping of intermediate-level language VML onto a number of parallel Virtual
Machines.

• Parallel to this research, original research contributions have been made by
proposing novel solutions to problems such as data clustering [26], dataset pre­
processing [126], financial forecasting [27] and navigation [28]. These efforts are
documented as published papers and as departmental research notes. The Galatea GPNC
development is also documented in chapter 3 and chapter 7, and in the form of technical
reports.

1.5. Thesis Organisation

This thesis is organised as follows:

Chapter 2 presents a survey of neural computing. An overview of neural network
models and applications is given, and neural network programming and execution
environments are investigated.

Chapter 3 presents the Pygmalion and Galatea programming environments as major
development works in European Neurocomputing. The Galatea General Purpose Neural
Computer is presented as it forms the main test and implementation domain for this
thesis work.

Chapter 4 comprises an in-depth analysis of neural network models in three case
studies with real-world applications. The Hopfield nets, the Backpropagation model and
the Self-Organising Map are chosen as they provide a good cross-section of neural
network models and applications.

Chapter 5 discusses neural network representation and programming issues.
Function-oriented, object-oriented and vector-oriented approaches are compared with
simulation examples. A matrix-based C library, MATLIB is put forward as a generic and
flexible environment to represent neural networks and exploit general-purpose parallel
hardware. A neural network library NETLIB is also presented in this chapter.

Chapter 6 outlines the mapping strategy as computational optimisation. Different
mapping techniques are discussed, data and task parallelism costs are parameterised. The
Computational Analysis Tool and the Automatic Parallel Mapper are presented for the

21

automatic generation of parallel code.

Chapter 7 describes the Galatea Mapper implementation, as part of the Galatea
GPNC development. The Galatea Mapper and the Scheduler are defined, and the
implementation steps are presented. Results of parallel mappings of VML are presented
on the GPNC simulator running on a network of SUN workstations.

Chapter 8 presents the simulation results of mapping MATLIB representations.
Parallel simulations involving single-domain, and multi-neural-network applications are
used to assess the performance of the mapping strategy.

Chapter 9 provides an assessment of the work in terms of strategy, design,
implementation and results. A target review is made, and neural network model,
representation and execution issues are raised.

Chapter 10 contains major conclusions of this research and discusses future
directions.

22

Chapter 2

Neural Computing

This chapter provides a brief survey o f the Neural Computing field, aiming
to place the thesis work in this context. With this purpose, popular neural
network models and applications, programming and execution
environments are reviewed and assessed.

2.1. Introduction
Conventional Artificial Intelligence (AI) techniques, manifested as the 5th

generation computers, have been successfully applied to problems where a well defined
number of rules determine a system’s behaviour. In the late 1970’s, a number of AJ-
based medical diagnosis packages and chess playing programs were developed. They
were so successful that the chess playing programs manage to beat over 99 % of all
players. But the same AI techniques are found inadequate for problems such as speech
and image recognition. There are two main reasons for this. Firstly, the rules and
parameters involved in these problems are unknown or not well defined. Secondly, most
pattern recognition and optimisation problems are so called NP-complete, and the
computational requirements for these problems become unsurmountable as the number of
parameters increases. As a result, the computational requirements increase rapidly,
pushing sequential, conventional computers to the limits of their performance. Many
believe the answer is in parallel processing and in new forms of computation based on
parallel computing.

Neural networks, seen as part of the 6th generation computers paradigm [137] offer
a radically different type of computation from conventional computers; neural computing
is not rule based, and it is intrinsically parallel. But, neural computing is not a candidate
to replace conventional computing, which is quite successful for symbolic and numeric
applications. Instead, it complements the conventional computing systems, by providing
solutions to a variety of real-world problems that involve extracting useful information
from complex, noisy or uncertain data [129]. Neural networks have already been applied
to a range of pattern recognition problems as sequential simulations, performing better
than the conventional techniques.

23

The proliferating applications and models are pushing the demand for high
performance simulators. As mentioned above parallelism can be one way of speeding up
computationally intensive simulations. Yet it brings together difficulties of parallel
programming which is the topic of this research. In the pursuit of generic representation
and mapping strategies of neural networks this chapter surveys the state of the art neural
network algorithms, applications, programming and execution environments.

2.2. Applications and Algorithms

Popular Applications

Constructing a taxonomy of neural network applications is not easy because the
same application can be categorised as an optimisation, a pattern classification and a
pattern recognition task, depending on the point of view. Although the boundary is not
so clear-cut, most neural network applications are optimisation or pattern classification
problems.

Optimisation tasks are one of the first set of complex problems neural networks
addressed. Hopfield and Tank [74] showed that a neural network can find a good solution
to the Travelling Salesman Problem within an acceptable time. TSF requires the shortest
tour of several cities with the condition that each city is visited only once. TSF is a
typical NF-complete problem; since the number of cities increases finding a solution
takes an impractically long time, as the computational requirements increase
exponentially. Using the Hopfield net, a representative weight space can be constructed
with the connection weights between the neurons, and this space can be used to solve
optimisation problems.

Pattern classification is a major application domain for neural networks, as most
highly dimensional, complex real-world problems can be reduced to pattern classification
problems. Traditionally, statistical classifiers are used to solve these problems [99].
These classifiers separate given patterns to a number of classes by calculating the
similarity scores for each class, and selecting the closest class as the class identity of the
pattern.

The main difficulty with traditional classifiers is that they are non-adaptive. Neural
networks with a different internal computational mechanism, can be used as pattern
classifiers. In addition to an enhanced performance in classification, they are adaptive,
robust and fault tolerant. The adaptive behaviour is a direct consequence of the feedback

24

mechanisms which most neural networks possess. In training, a neural network
continuously monitors its own performance, and adapts its weights accordingly. In recall,
the weights are used to establish the class identity of a novel pattern.

The Perceptron, a supervised neural network classifier, strongly resembles the
traditional Gaussian classifier. In fact, the Perceptron architecture can be used as a
traditional classifier with the added advantage of a potential parallel execution.

Neural networks can also be trained by using unsupervised techniques.
Unsupervised neural network classifiers such as Kohonen’s Self-Organising Maps are
also known as clustering algorithms. These models do not require labelled data; they
classify input patterns into a pre-defined number of unlabelled classes. The SOM is
similar to the traditional K-means algorithm [36,39], yet it is adaptive, and can be
executed in a massively parallel fashion.

A number of real-world applications are important as part of the broad class of
pattern recognition problems. These are; speech and image processing, handwritten
character recognition, and sonar/radar signal processing applications. Financial
forecasting is one of the areas that has boomed in the last couple of years. The high
dimensional and fuzzy nature of this area make it a suitable application for neural
networks.

Adaptive control is another area in which neural networks are used successfully. By
classifying world data adaptively and taking an appropriate set of actions, multi­
dimensional control problems can be solved. Neural network based adaptive control
systems find applications in industrial robotics, manufacturing, process control and
autonomous robot navigation.

Popular Models

A number of neural network models have been put forward, with various
topologies, learning and recall rules. Learning rules for neural networks are so important
that, sometimes the networks are named after the learning rule they use. This is the case
for "Backpropagation" which is a learning rule for multi-layered architectures. Most
learning rules are derived from the well known Hebbian rule. Examples of these are the
outer product rule, the Delta rule, the generalised Delta rule (Backpropagation model)
[84,130]. A number of learning rules also based on the Hebbian rule, are called
competitive learning rules. Typical examples are Grossberg’s instar and outstar\
similarly, Fukushima’s Neocognitron and Kohonen’s SOM use the competitive learning

25

rules in training. The three most popular models the Hopfield nets, the Backpropagation
model and the Self-Organising Maps are analysed in detail, in chapter 4. The
Neocognitron, Counter-Propagation, Adaptive Resonance Theory [33], and the
Boltzmann machine [65] are amongst other well known models. The Neocognitron and
the Counter-Propagation are briefly described here.

The Cognitron and Neocognitron were put forward by Fukushima as close
imitations of the human visual cortex [47-49]. Biological plausibility is the first
objective in the design of these models. The structure of the Neocognitron is a multi­
layered architecture containing excitatory and inhibitory neurons and synapses with a
competitive learning mechanism. The system is a powerful image recognition system,
working under the conditions of translation, rotation and distortion of the objects, even
able to recreate the original image from reverse propagation of the network. The
Neocognitron is fault tolerant and self-recovering when faults occur on processors. One
problem with the early models was the amount of computational power required.

The Counter-Propagation Network (CPN) [60,61] is a combination of two neural
network models complementing each other with different properties. It is a three layered
network; the first layer is the input layer where the external inputs are clamped, the
second is a Kohonen layer which associates certain neurons with certain input patterns,
and the third layer is a Grossberg layer following Grossberg’s outstar learning rule. The
resulting network can be rapidly trained and used as an approximate vector mapping
system. An average training session is 100 times shorter than that required for the
Backpropagation network, but CPN is not as accurate as the Backpropagation. The most
interesting application for CPN is data compression. This involves splitting the CPN into
two, and using the Kohonen layer as a vector quantiser. Then the labels of the quantised
vectors, which are much more compact than the original vectors are transmitted and new
vectors are reconstructed on an identically trained CPN system. CPN is also an
interesting example of using networks as components. Similar modular neural network
architectures are put forward and simulated on parallel processors in the following
sections of this thesis, as powerful problem solving domains.

Conclusion

Computational requirements for neural networks are application and model
dependent. Neural network representation and execution environments must meet these
requirements. Current models and applications display a wide variety, and continue to
expand into new domains. Table 2.1 compares popular neural network models, with

26

their popular applications, strengths and weaknesses.

Models Popular Applications Strengths Weaknesses Remarks

Perceptrons Pattern classification Simple, adaptive cannot classify
con^)lex patterns

first neural
networks

Hopfield Nets Optimisation, Planning
Content-Addressable
Memory

Large scale analog
inq>lementation

No learning rule
Limited storage

Covergence
in recall

Self-Organising Maps Feature extraction Statistical Analysis
tool

Noise
sensitive

Unsupervised
learning

Backpropagation
learning on MU*

Wide applications
Speech, image processing

Robust
Fault-tolerant

Computationally
demanding

Most popular
model

Counter-
Propagation

Data Compression Quick and
approximate

less accurate
than Backpropagatirm

Inverse pattern
generation

Neocognitron Hand-written
character recognition

Can handle
conq)lex patterns

Computationally
demanding

modeled on
visual cortex

Table 2.1. Neural Networks Applications and Properties

In chapter 4, three case studies are used to assess computational requirements for
three neural network models. In the remainder of this chapter Neural Network
Programming Environments and Execution Environments are reviewed.

2.3. Programming Environments

Neural Network Programming Environments are software tools for developing
computer simulations of real-world applications and monitoring the execution of these
applications. The effectiveness of the representation and efficiency of the execution
greatly depend on the programming environment. Neural network representations are
crucial for mapping purposes, as they are the very domain where partitioning takes place.

NNPEs address a wide variety of users ranging from novices to experts whose
purpose are research, experimentation, education or a solution to an industrial or business
oriented problem. NNPEs can be classified into three categories [144]:

• application-oriented,
• algorithm-oriented, and
• general programming environments.

Application-oriented systems are designed to provide solutions in a certain domain
of expertise. These systems are customised, user-friendly, menu-driven, and are often
supported by dedicated hardware, offering little flexibility. Nestor provides one of these

27

systems, NLS (Nestor Learning System), for applications covering mortgage
underwriting, and risk assessment in automobile insurance [4].

Algorithm-oriented systems either provide one algorithm or they provide a number
of parameterised algorithms as an algorithm library. Many programming systems provide
the Backpropagation model and its variations, as it is the most widely used neural
network model. Examples are the Brainmaker system, supplied by California Scientific
Software and the Owl system which provides an algorithm library for computer
professionals. It is based on a generic, C data structure encompassing 19 parameterised
neural network models. Users can specify network parameters and call the library
functions in their routines. The system also offers an optional graphics interface. Esprit
n Pygmalion project [14,15,18,146] also provides a C library of the most popular
models. Applications can be developed by calling appropriate library routines with
correct parameters.

General programming environments aim to address a wide variety of applications,
algorithms and users. These are often research or educational systems aiming at
generality and flexibility as opposed to high performance. Most generic programming
environments contain the following functional modules;

• User Interface - This module provides flexible, modular and user-fnendly access to
neural network models. A number of parameterised models and a High-Level
Language are provided to ease the programming process. Usually, menu-driven
graphical systems support the user interface. The execution of applications can be
monitored, interrupted, saved or loaded. Debugging facilities aid the monitoring in
the run-time and post-mortem. Results of the execution are displayed both
numerically and graphically.

• Neural Network Representation - This constitutes a generic, machine-
independent, intermediate-level, sophisticated network specification language which
is capable of covering all possible models and configurations. A number of
parameterised models can also be stored as an Intermediate-Level Language
Library. Advanced users can program in ILL if they want to exploit the facilities of
the low level representation for a high performance execution.

• Mapper/Translator/Compiler - A sophisticated program or a set of programs that
generate code for a variety of target hardware architectures. This can be done either
by direct translation or compilation, from the intermediate-level neural network
specification language to the target languages. If the target machines are parallel.

28

the intermediate-level representation is first partitioned, then distributed over the
parallel processors. A fast, efficient and optimised execution is the purpose of this
module.

Popular Systems

An early example for generic programming environments came from SAIC:
GINNI, Generic Interactive Neural Network Interpreter [2] system provided an
interactive developmental system for experimentation with neural network modeling.
This system contains all functional modules mentioned above: networks are defined as
hierarchical data structures, a high level neural network description language is used to
define new algorithms, and the networks can be executed on remote machines over the
Local Area Network (LAN) using an integrated message passing system.

AXON, launched by HNC, is a machine-independent neural network specification
language [53]. It combines common features of C and Pascal, and a set of neural
network specific features. AXON encompasses a generic model of neural networks
regardless of the topology or functionality of the artificial neurons. An object-oriented
programming approach has been adopted in the network description. A generalised
Processing Element concept has been adopted to allow future models to be coded in the
language. The AXON Processing Element is the basic building block of all neural
models. The PE contains the following attributes: Output State, Transfer Function,
Connection Classes, Connection Weights, and Local Data Memory. Processing elements
with different attributes can also be defined and used in the same network description.

PDF simulation package is offered to accompany the book ‘Explorations in Parallel
Distributing Processing" [1]. It contains a set of programs written in C, and runs on both
MSDOS and Unix operating systems. Seven algorithms are provided which included the
Backpropagation, Adaptive Resonance Theory and Competitive Learning models. The
system is portable, easy to use with the support of the examples in the book, but it lacks a
graphics user interface.

The Rochester Simulator, developed by the Department of Computer Science at the
University of Rochester [52], is also written in C and provides a data structure which
defines the lowest level processing unit. The data structure is flexible, allowing the user
to define various levels of networks and connections. As, only the Backpropagation
model is provided with the package, users have to develop their applications in C using
the provided template.

29

The Genesis system was developed by the Division of Computational and Neural
Systems of the California Institute of Technology [151]. It promotes biologically
plausible neural network modelling. The package is a Unix/C based environment
representing the networks as hierarchical objects. The graphic interface Xodus uses the
X Windows environment.

Conclusion

Popular neural network programming environments presented above, are mainly for
research, development and experimentation. Most systems are written in C and provide
data structures for representing neural network concepts. Systems which provide a set of
simple library functions with their source code are favoured as open systems where users
can modify and tailor the system to their specific needs. In chapter 3, the Pygmalion
programming environment is presented in detail as an early system which provided a
general programming environment with an objective of a parallel execution. In chapter
5, a number of representation techniques are assessed with simulation examples, and a
matrix-based library is put forward as modular, clear means for neural network
programming.

2.4. Execution Environments

Neural network simulations are computationally intensive, involving repetitive
multiply and add operations. Real-world applications may require the processing of huge
amounts of data in a short time. Depending on the application size and domain, large
amounts of memory and high speed processors may be necessary.

The general trend in computing is to use parallel architectures to overcome the
computational limitations of single processor systems. Indeed, recently, parallelism has
been used in the implementation of single chip microprocessors [121]. Architectures such
as Intel 80860 and recent RISC architectures exploit microparallelism to execute
multiple processes simultaneously by pipelining sequential operations.

Flynn’s classification envisions four types of parallelism [145]. Two of these;
Single Instruction Multiple Data stream (SIMD) and Multiple Instruction Multiple Data
stream (MIMD) architectures are relevant for neural network execution. SIMD
Machines are synchronous, compact, usually fine-grained machines offering high
performance with simple processors. MIMD Machines are asynchronous,
programmable, medium or coarse-grained machines with distributed or shared memory

30

schemes. Distributed memory (multicomputer) architectures are scalable systems, but
they suffer from interprocessor data dependency and consistency problems and parallel
programming difficulties. Shared memory systems are easier to program but the number
of processors must be kept to a minimum because of interprocessor competition for
memory access and cache coherency problems [121]. The most advanced form of
MIMD machines do not have a central controller, and are fully distributed, asynchronous
systems [77].

Parallel implementation is the natural method for neural networks, which are
inherently parallel. There have been some special-purpose implementations of neural
models. These are usually SIMD architectures with simple analog processors connected
in a matrix topology [101]. For general-purpose neural computing, computational arrays
provide a good execution platform [125].

Parallel or sequential, execution environments for neural networks are called
neurocomputers. Neurocomputers appear in great varieties. On one extreme, there are
dedicated parallel SIMD machines, while on the other, there are simple RAM chips such
as in the WISARD system [10,11]. Figure 2.1 shows the trade-off between performance
and flexibility for a number of hardware platforms which are used as execution
environments for neural network applications.

Performance
RAMs

 ̂ Special-purpose neurocomputers

Computational arrays

General-purpose neurocomputers

r V Systolic arrays

Conventional parallel computers

' V Sequential computers

Flexibility

Figure 2.1. The Spectrum of Execution Environments [144]

A broad classification is possible depending on the generality and programmability
of the neurocomputers. Special-purpose neurocomputers provide high performance
emulating a neural net model, usually with an application in mind. They are hard-wired;

31

they lack flexibility and programmability. General-purpose neurocomputers can be
programmed to emulate a wide range of neural net models. Some architectures can also
be used for other computationally intensive tasks. Although general-purpose
neurocomputers can offer a higher performance than conventional computers, they are
usually a magnitude of order slower than special-purpose neurocomputers [143,144].

2.4.1. Special Purpose Neurocomputers

Special-purpose neurocomputers are physical implementations of neural networks
for high performance. The implementations are usually algorithm and application-
oriented. The Hopfield nets and Kohonen’s Self-Organising Maps are the two most
popular models which were implemented as VLSI chips [90]. Most special-purpose
neurocomputers are research systems, used in the investigation of hardware
implementations for a number of neural network models and applications. The
implementations of special-purpose architectures are analog, digital or optical.

Analog implementations imitate artificial neurons by using basic circuits such as
transistors, operational amplifiers and resistors. The resistors are used as neural
connection weights, and the amplifiers emulate the processing elements which carry out
summations and apply the thresholds. Capacitors are also used to allow weight updating
for on-chip learning. Special-purpose neurochips have been developed by Mitsubishi,
AT&T Bell Laboratories, and California institute of Technology. These chips provide a
very high performance, but they lack flexibility and programmability.

Optical implementations of special-purpose neurocomputers aim to overcome the
difficulties of realising high level interconnectivity on VLSI architectures. These
architectures use holograms to communicate incoming signals to a great number of
processing elements. With a single hologram it could be possible to connect 10,000 light
sources to 10,000 light sensors without interference even though the light beams cross
each other. Optical technology could meet the interconnectivity requirements set by the
biological systems. However, the technology is still young and optical neural computers
are still in the early stages of development [59].

Digital systems offer the greatest flexibility, programmability and expandability.
The majority of the neurocomputer implementations are digital. Some of these machines
are radically different from each other, but most of them are arrays of simple parallel
processors that operate concurrently. Node complexity, cost, communications facilities,
granularity, parallelism and performance are important considerations in implementation.

32

Two examples can be given for digital general-purpose systems:

WISARD has been developed by I. Alexander’s group at Imperial College, London.
This system uses Random Access Memories (RAM) as neuron-like devices. The
hardware implementation of the system is used in image recognition, it has shown some
success in real-time face recognition.

PNNP, Probabilistic Neural Network Processor by Lockheed, is another digital
special-purpose neurocomputer implementation. This system implements real-time
learning for the Probabilistic Neural Network (PNN) model. The system is connected to
the backplane of an IBM-PC compatible computer through a dual port memory.

Digital!Analog hybrid implementations and wafer scale integration techniques have
recently gained momentum. In Japan a series of hybrid neurochips have been developed
[66], and an example is Hitachi’s 576 neurons Wafer Scale Integration neurochip [153].

Institut National Polytechnique de Grenoble (INPG) is also developing a neurochip
which can be potentially generated in wafer scale [118]. INPG’s design is a neuron-
based architecture for executing a variety of neural network models. One goal of this
project is to develop a framework for the automatic generation of application-specific
VLSI chips, namely silicon compilation. The architecture is based on a processing
element which is capable of performing all operations required, during the training or
recall phase of a neural model. Processing elements are linked in a two-dimensional
array, with each PE is connected to two external buses.

Another attempt to emulate the functionality of a neuron in hardware took place at
UCL, in the UCL Generic Neuron project {147]. This project developed a framework
to generate special-purpose chips for most neural network models The project aimed to
achieve a high performance with some flexibility. A simple processing element (Figure
2.2) has been designed which can be replicated cheaply, and the functionality of this
processor can be defined by users. In fact, a generic neuron is the physical
implementation of the Pygmalion nC data structure neuron the Pygmalion Project is
presented in chapter 3. nC is used to specify the connectivity and functionality of the
generic neurons. The architecture uses the bus interconnection strategy for data
communications, providing the system with flexibility, expandability and scalability.
Any desired topology can be accomplished using the bus communications, and the access
to the bus by the PEs is organised by a central controller. To reduce the communications
between the PEs, both PEs sharing a connection hold copy of weight, but this would
increase the memory requirements on the chip.

33

s
(state
inputs) (state

output)
(weights)

(error
inputs)(error

output)

Figure 2.2. The UCL Generic Neuron [147]

Silicon Compilation is a logical extension to the evolution of special-purpose
neuro-chip implementation techniques. Silicon Compilers are sophisticated programs,
which process the neural network representation, and generate the VLSI definition of
microchips using VLSI development packages. UCL’s Silicon Compiler Project is an
example of this kind of work. This project aims to develop a framework to generate the
UCL Generic Neuron based architectures as target products, using Silicon Compilation
[117].

2.4.2. General Purpose Neurocomputers

General Purpose Neurocomputers are programmable machines for emulating a wide
spectrum of neural networks [144]. The following hardware architectures are used as
general-purpose neurocomputers:

• co-processor based architectures,
• parallel processor arrays, and
• massively parallel architectures.

Co-processor Based Architectures

Conventional high performance VLSI processors are the first hardware architectures
used as general-purpose neurocomputers. These processors are usually floating point,
single processor accelerator co-processor boards with a local memory. These boards
plug into the backplane of an IBM PC or a SUN Workstation or a Digital VAX. These
co-processors speed up the execution of computationally intensive floating point
multiplications in neural simulations as well as in general computing applications. They
are similar to maths co-processor boards available for PCs. The performance of these
products is measured by their capacity to execute the maximum size of network, and
their speed of processing a network. Speed is expressed as cormection updates per

34

second (CPS). Two simple examples can be given; firstly, Intel’s 80x87 series maths
processor boards, developed for IBM PC compatible machines with a 80x86 central
processors and secondly. Motorola MC68881 co-processor board developed for
MC68020 based CPUs [142]. A number of commercial neurocomputers have been put
forward using the co-processor boards accompanied by a neural network programming
environment They are usually general-purpose environments with a number of neural net
models and general-purpose neurocomputer hardware. Some of the examples are
presented below.

The ANZA neurocomputer is developed and marketed by HNC [62,63]. It is
designed to support any neural network model. The system comprises a co-processor
boards for PC-AT, User Interface Routine Library and Basic Netware Package to support
most neural network models. The ANZA boards exploit cunent hardware domains as
execution environments. ANZA and ANZA-plus co-processor boards are based on a
Motorola MC68020 plus a MC68881 floating point co-processor with 4Mbytes of
dynamic RAM to store networks. ANZA is capable of implementing 30,000 PEs with
480,000 interconnections. The more recent ANZA-plus supports IM PEs, with 1.5M
interconnections and is capable of 1.5M connection updates per second during training
and 6M updates during recall. The Basic Netware Package supports parameterised
algorithms; the Backpropagation, the Hopfield and the Counter-Propagation.

The TRW Mark Neurocomputer family includes the Mark II software simulator,
the Mark m parallel processor system and the Mark IV pipelined processor based system
[143]. All systems share the Artificial Neural System Environment (ANSE)
programming environment. Mark IQ comprises 15 parallel physical processors, each
built from a Motorola MC68020 microprocessor and MC68881 floating point co­
processor, all connected to a VME bus. Networks are distributed across the local
memories of the 15 physical processors minimising the communications requirements on
the common bus. Mark IQ supports 65,000 virtual processing elements with over 1 M
trainable connections and processing 450,000 interconnections per second. Mark IV, on
the other hand, supports up to 236,000 virtual PEs and 5.5 M interconnections, and is
capable of processing 5 M interconnections per second.

The SAIC SIGMA-1 neurocomputer uses DELTA [5,116,152] floating point
processor board in it execution environment DELTA FPP is a high speed floating point
engine optimised to calculate an activation value for each PE. This operation involves a
multiplication of two 32 bit numbers followed by an addition to another 32 bit number.
DELTA is able to execute these multiplication/addition instructions at clock speeds of 11

35

MHz, approximating to 22 million floating point operations per seconds peak rate. The
processor is based on a pipelined Harvard floating point architecture with one program
memory and two data memories. The 12 Mbyte memory supports up to 3.1 M PEs, with
a rate of 11 M CPS. SIGMA-1 comes together with an object-oriented programming
language ANSpec and a neural net library ANSim. ANSim library is menu-driven, and
contains 13 neural network models, providing an interface to dBase m and Lotus 1-2-3
software packages. The models covered by the systems include variations of
Backpropagation, Adaptive Resonance Theory, Kohonen Feature Maps and the
Boltzmann machine.

Most large neural network applications are executed on conventional parallel
architectures [59,144] such as Transputers [108]. Transputer based co-processor boards
are popular as they offer a good performance for a wide range of applications, and
Transputer-based systems are cheap and efficient. Similar to Transputers, other general-
purpose, multi-processing RISC architectures Sparc and Mips processors also provide
programmability and flexibility. Transputers are much faster than the co-processor
boards for the PCs. A 20MHz T800 chip provides 10 MIPS and 1.5 MFLOPS and is 3
times faster than a 20MHz 80386 with a maths co-processor [98]. Transputers are
medium-grained parallel architectures providing concurrent parallel processing with a
parallel language called OCCAM [71]. T800 has 4 KBytes internal RAM and supports
32 bit external memory interface. A transputer can be attached to a maximum of four
others at a time. Communications are synchronised using a simple protocol with start
stop bits and message acknowledgement. The maximum data transfer between the T800s
is 1.7 MBytes/sec. There are two links, and when both are used 2.4 MBytes/sec is
obtained. The new Transputer INMOS T9000 has a 16 KByte cache and a 64-bit address
bus [150].

Parallel Processor Arrays

General-purpose neurocomputers based on processor arrays are a result of the
evolution of co-processor boards on a larger scale. Parallel processor arrays are [135]
composed of a large number of primitive processing units, connected in a regular and
restricted topology. An early general-purpose neurocomputer architecture based on
parallel processor arrays (Figure 2.3) was proposed by Hecht-Nielsen [59]. The structure
brings together N identical processors connected through an interconnection network.
Each processor executes a section of the virtual network. To program the neurocomputer,
the virtual PEs are partitioned across the local memories of the physical processors.

36

Execution of a neural network involves a continuous update of the states of the virtual
PEs. Updating a virtual PE implies broadcasting the update through the network.
Processors that need access to that information accept and store the update in their local
system state memory. Computation, therefore is carried out through a sequence of
iteration cycles. The subsequent iteration occurs in lock step, when all the other
processors have completed the previous cycle. This approach is a way of time-
multiplexing [21] several PEs on each available physical processor. Performance can be
increased by increasing the number of processors, or adding co-processor accelerator
boards for fast execution, or high-speed memories for fast memory access.

Parallel Broadcast Bus

Bus
Interface

Bus
Interface

Bus
Interface

Physical
Processing

Unit

Physical
Processing

Unit

System
State
Copy

System
State
Copy

Physical
Processing

Unit

HOST Computer

System
State
Copy

SYSTEM CONTROL UNIT

Virtual PEs
Interconnect

and
Weight
Memory

Virtual PEs
Interconnect

and
Weight
Memory

Virtual PEs
Interconnect

and
Weight
Memory

Figure 23, HNC General Purpose Neural Computer

Some processor arrays are built from replicable boards based on industry standard
microprocessor chips such as DSPs and Transputers. Others develop custom designed
neuro-microprocessors. Research groups in the USA, Japan and Europe have developed
processor array based neurocomputers [143]. Here are some examples:

The NETSEM system is developed by Garth [50] of Texas Instruments (UK) with
Cambridge University. The system consists of a collection of neural network emulation
cards arranged in a 3-dimensional array structure. A PC acts as a host system controller.

37

Each NBTSIM card is an autonomous single-board processing unit based on an industry-
standard microprocessor and designed to solve NN problems. A large number of
NBTSIM cards can be connected via a message passing network. Bach NBTSIM card
contains the following modules; an Intel 80188 local microprocessor, an associated
program memory, a Solution engine, and a microprocessor for communications. The
Solution engine is the heart of the system; operating as a back-end vector co-processor
for the local microprocessor, and performing mathematical functions on the contents of
the synapse/input memory. It computes the sum of products between the input vector and
the synapse vector. The result is returned to the microprocessor, which in turn computes
the threshold function to produce the output of the neuron, and determines the destination
for subsequent transmission. The communications processor interconnects NBTSIM
cards to their nearest neighbours. The host, a SUN, a VAX or a PC acts as a system
controller for the neurocomputer by initialising and mapping applications to the system.
The system is programmable, and supports a wide range of NN models. The synapse
memory size (1 to 2 MBytes) determines the number of input neurons or networks per
NBTSIM card. The execution time depends on the network configuration of the chosen
model. A typical implementation using 125 network cards has shown a rate of 450
million CPS on the recall phase.

The Network Emulator Processor (NBP) by IBM is part of a complete network
programming environment called Computation Network Environment (CONE) [35,55]
developed by IBM at Palo Alto. NBP is a cascadable unit designed as a co-processor for
IBM PC. Up to 256 NBPs can be cascaded in a unidirectional interprocessor
communications network, to support a total of 1 M virtual PBs and 4 M interconnections.
A global interface to the host PC is 100 MBytes/sec inter-NBP NBPBUS service. NBP
can simulate about 4 K virtual PBs and 16 K interconnections, with 30-50 total network
updates per second. The length of the network update cycle can be reduced by
partitioning the network across a number of NBPs [35]

Meiko In-Sun Computing Surface is a multi-processor scalable environment
based on T800 transputer [7]. 96 Transputers can be embedded in a single workstation
with 512 MBytes system memory and a performance of 20-400 VAX-Mips stations. An
Electronic Message Link Switch enables configuration of the topology at run-time (these
could be trees, grids, rings, toroids). Message paths through the switch operate on a 20
MBits/sec data transfer speed. The computing surface includes a SUN host, and up to
four additional processors with dual ported shared memory in the SUN address space.
There is also another proprietary VLSI chip to supervise the execution and diagnostics.

38

Intel Scientific Computers offers iPSC, a multiprocessor system which can operate
concurrently with up to 128 processors as a hypercube. Each node is a board level
microcomputer with 80286/80287 chip sets. Local memory is 512 K expandable to 4.5
MB. Each node contains 8 bidirectional communications channels managed by dedicated
communications co-processors. The first 7 of these channels are direct links, the 8th is
the global communications link to the Ethernet for program load I/O and diagnosis. The
system provides a 10 Mbit/second bandwidth for intemode communications. iPSC-VX is
a vector concurrent system which couples vector processors to the nodes. The system can
yield up to 1280 MFLOPS on 32-bit data.

The ANNE (Another Neural Network Emulator) [20] system has the following
modules: a user interface with monitoring facilities, a high level language. Network
Description Language (NDL) which is based on Scheme (a lexical scoped version of
Lisp) which is used to describe NN structures; a low level generic neural network
specification language called Beaverton Intermediate Form (BIF). BIF is generated by a
compiler from NDL definition, then the Mapper partitions the BIF definition onto Intel’s
iPSC processors. During the runtime, a message passing scheme supports the
communications between the different iPSCs nodes. A tuning mechanism is also
included to synchronise execution.

The Giga CoNection (GNC) [67] system contains a two dimensional array of
general purpose 64-bit RISC Intel 80860 processors. Each processor has 4 MBytes of
local memory and 2 FIFOs (first in first out 64-bit memory) for mesh cormection. The
80860 contains a floating point pipeline providing high performance for multiply/add
operations. Hiraiwa et al. report 1 Giga CPS on a 128 processor system in the simulation
of the Backpropagation model. GCN-128 system provides two pipelined
communications paths. The Sony group is incorporating the system as a super chip.

Ariel [46] is a multiprocessor architecture based on coarse-grained processing
modules. The modules make use of fast digital signal processors and large
semiconductor memories to provide the necessary throughput and storage capacity. Each
Ariel module consists of a 32-bit fixed/floating point DSP (TMS320C320), a 32-bit
general-purpose processor (GPP), 128 MBytes memory and several high speed
conununications ports, and a dedicated disk memory unit. The Ariel architecture uses
bus communications to achieve generality over a wide range of neural network models.

Sandy/8 is another digital neurocomputer architecture [85]. Sandy/8, a research
system has been developed at Fujitsu Laboratories in Japan. It consists of 256

39

TMS320C320 floating point Digital Signal Processors, each with 2K internal and 64K
high speed external RAMs. A ring communications topology with 67 MBytes/sec band
width serves parallel processors. The 256 processor system can reach 587 MCPS during
a Backpropagation training, involving networks with more than 256 neurons. Sandy
system is also suitable for conventional image processing and vector processing as well
as neural network applications.

W arp is a MIMD one-dimensional systolic array computer designed at Carnegie
Mellon University [103,120]. It consists of 10 identical cells in a linear array with a
peak performance of 100 MFLOPS. Each cell contains one ALU and a multiplier, with a
4KByte of 152-bit word micro-store and a 4KByte of 32-bit RAM, and can deliver 5
MFLOPS. Cells can be programmed separately for different operations, and data can be
pipelined through the cells using the two data channels per cell. The Warp machine is
designed to interface with VAX 11/780 with a 1 MByte of memory and 24 Mbyte/sec
bandwidth. High level routines are carried out on the host computer.

CNAPS (Connected Network of Adaptive Processors) [8] is a general purpose
neurocomputer chip with 64 processors, each containing 4 KBytes of local memory. It is
a SIMD machine based on a linear array of digital signal processor-like nodes (PNs).
CNAPS Server has 256 PN processors and provides an Ethernet LAN interface to
connect to a SUN workstation [54]. The PN processors are designed for traditional
neural network applications. Each PN has an associated 4KBytes internal memory,
making altogether 1 MByte per system. Also an external data storage facility provides 8,
16, 32, 64 MBytes global memory for the array of PNs. The processor array is connected
by three buses; OUT bus, PNCMD (PN CoMmanD bus) and an IN bus. A single
controller sequences the linear array of PNs. The sequencer places data onto the IN bus
and forwards sequencing commands to the PN array. The PNs execute the same
instruction at each clock cycle. More than one PE can be mapped onto a single PN. Also
time multiplexing can be used to assign multiple PEs to a PN or divide a complex PE
onto a number of PNs. The CodeNet [8], provided by Adaptive Systems, is a high
performance commercial programming environment to support its CNAPS
neurocomputer. The complete system consists of a server, a programming environment
(CodeNet) and the CNAPS array processor. CodeNet consists of CNAPS Programming
Language (CPL); Applications Programming Interface (API) and a library enabling users
to include CPL programs in C code. CPL is a modular programming language also
providing low level access to CNAPS hardware. The environment also contains a set of
tools to debug, modify, and execute CPL programs. Novel applications can be developed

40

by using the library calls. An 8 chip configuration can update 2.3 billion CPS in learning
and 9.6 billion CPS in recall.

Massively Parallel Arrays

The Connection Machine is a fine-grained massively parallel machine. Its recent
version CM-2 is a data parallel computing system made of 65535 processors. It is an
SIMD architecture, which requires a sequencer to break down the high level
representation into low level processing and memory operations [3,64,155]. 64K
processors can take orthogonal topologies and grids with arbitrary dimensions are
supported. It can be configured as a 2-Dimensional array of virtual processors. Each
processor is a bit-serial processor with 4K memory (32 MByte for the computer).
Interprocessor communications are handled by a message passing system. The CM has
two communications: each processor is linked to the nearest neighbour and 16 others in a
n-cube geometry whose binary addresses are 1 bit different. The system supports parallel
versions of C and LISP. It is an expensive machine, and complex to program with many
I/O controllers, sequencers, and interfaces. Neural network simulations on CM-2 can
reach up to 40 MCPS in Backpropagation training, and 180 MCPS in recall [155].

AAP-2 is another massively parallel SIMD processor array which was used for
neural network execution [149]. It consists of 65,536 one-bit processors with 8 Kbits of
local memory. The processors are configured as a 2D (256x256) array with high-speed
data transfer mechanisms. The language for AAP-2 is a parallel programming language;
AAPL which is an array-oriented language consisting scalar and array operations. The
performance of the system can reach up to 18 MCPS in Backpropagation training.

Conclusion

Special-purpose neurocomputers are often neuron-based architectures aiming at a
massively parallel execution of certain models and applications. General-purpose
neurocomputers, on the other hand, are general, flexible, cost-effective and scalable.
Early general-purpose neurocomputers are co-processor based architectures aiming to
speed-up demanding floating point operations involved in neural network simulations.
Later, processor array based architectures focused on the efficient execution
vector/matrix operations as vector-based machines. Massively parallel general-purpose
architectures can potentially be used for mapping neurons or vector/matrix operations.
On these architectures the complexity is pushed onto software for the efficient
exploitation of hardware.

41

2.5. Summary

This chapter provided a review of neural computing with its rapidly increasing
number of models, applications, programming and execution environments.

Programming environments are a medium for mapping or transforming real-world
problems onto computer programs and also for mapping computer representations onto
hardware. It is felt that, within the programming environments, algorithm libraries are
particularly useful as they provide the most flexible, user-friendly means for neural
network programming. In chapter 5, an analysis of neural network representations is
used to argue for a matrix-based library which is capable of capturing common neural
network operations, also facilitating the mapping and execution processes on parallel
hardware.

Neural network execution environments were studied in two categories; special-
purpose and general-purpose neurocomputers. The main difference is in the performance
and flexibility of these systems. Special-purpose neurocomputers are favoured for
processor simplicity, and thus cheaper production rates and high performance. But in
some cases, the architecture of special-purpose neurocomputers reaches a level of
complexity comparable to the conventional systems. General-purpose neurocomputers
aim to serve as fast execution platforms for a wide range of neural network models. Most
general-purpose architectures can also be used as accelerators for other computationally
demanding problems.

In terms of mapping strategies, two approaches have been noticed: (i) structural
mapping - particularly, special-purpose neurocomputers emulate neurons on parallel
physical processors, and (ii) computational mapping - conventional computers and
general-purpose neurocomputers optimise the computations which are the core of the
neural network simulations on co-processor and accelerator boards. A generic
representation and mapping strategy is required to exploit current general-purpose
parallel architectures in a cost-effective framework.

42

Chapter 3

Pygmalion and Galatea Projects

This chapter presents and assesses two major European neural computing
projects; Pygmalion and its successor Galatea. Although the two projects
share many common features, they differ in their intermediate-level
representations and target hardware architectures. The Galatea General
Purpose Neural Computer is presented in detail, as it is the test and
implementation domain for mapping strategies developed in this thesis.

3.1. Introduction

Pygmalion and Galatea are two major European neurocomputing projects. The
author of this thesis has been involved in both projects, and has contributed to the
representation techniques developed in both projects. This thesis aims to establish a
generic representation technique for neural networks. An assessment is made on the two
representation techniques adopted by the Pygmalion and Galatea in chapter 5.
Furthermore, the Galatea GPNC is used as the implementation domain for the mapping
strategies developed as part of this thesis work. Chapter 7 presents the mapping efforts
on the Galatea GPNC simulator. For these reasons, it was felt that these two projects
should be presented separately from the rest of the Neural Computing survey.

3.2. Pygmalion Programming Environment

The Esprit II Pygmalion project [14,15,18,146] aimed to promote the application
of neural networks by European industry, and to develop standard computational tools
for the programming and simulation of neural networks. Pygmalion programming
environment is based on a generic hierarchical data structure, covering the most popular
neural network models. The Pygmalion data structure, system contains a tree of
networks, layers, clusters, neurons and finally synapses. The Pygmalion environment
comprises the following modules: (Figure 3.1)

• The Graphics Monitor allows users to execute and monitor neural network
simulations. It uses the X Windows graphical interface protocol on SUN
workstations. A menu-driven system permits the user to choose an application,
initialise the execution, open and close graphical windows and monitor the

43

Software Compiler

HL Library

IL Library

SUN TransputerDigital
ASICs

Analog

ASICs

Intermediate
Level

Language
nC

High Level
Language

USER

GRAPHICS

MONITOR

Silicon Compiler

Figure 3.1. The Pygmalion General Purpose Programming Environment

execution. Trained or partially trained networks can be saved or loaded. Two types
of windows are available; Top Windows, providing facilities for controlling the
simulation, and Level Windows allowing the display of the network status for each
level in the system data structure.

The High-Level Language N provides a user-friendly definition of neural network
algorithm and applications. AT is an Object Oriented language, based on C++.

The Algorithm Library module contains a collection of the most widely used
neural models written in the high-level language N. A number of rules guide users
who want to develop new applications. Users can interrupt and store applications
and continue to execute these later.

The Intermediate-Level Language nC is a machine-independent low-level neural
network specification language. nC is a subset of C, consisting of a massive
hierarchical data structure which allows the representation of all possible objects in

44

most neural models. The nC data structure tree contains rules, parameters and
substructures repeating the same pattern until the synapse level. The
Backpropagation, the Self-Organising Map, the Hopfield and Competitive Learning
models are provided in this language as parameterised routines. A translator
automatically generates nC representation from the high-level language N. All run­
time user requests and debugging operations are carried out on this intermediate-
level representation.

• The CompUer/Translator allows the porting of the neural network representations
for execution onto different machines. Pygmalion software is developed in C on
Unix SUN3 and SUN4 workstations. To improve execution speed a series of
compilers has been planned to enable the porting of the final nC representation to
different target architectures, and their execution on these machines. A compiler
has been developed which translates nC to parallel C, and this representation is
executed on Transputer based machines.

The Pygmalion programming system is a fully integrated software environment.
The code generation cycle involves the High Level Language (HLL) definition of neural
network applications, the translation to Intermediate Level Language (ILL), and the
porting onto a number of different hardware platforms. The graphical interface provides
a fast user-friendly manipulation on SUN workstations.

Neural Network Representation and Parallelism in Pygmalion

The Pygmalion programming environment adopted a two-level representation
strategy. An object-oriented, high-level, neural network definition language N is used as
user interface [104], and a machine-independent, intermediate-level language nC is used
for low level representation [18,147]. nC is a subset of C, based on a hierarchical data
structure called system (Appendix A.I.). The nC system data structure is a chain of
pointers, and pointers to pointers, finalised by data or functions at the lowest level of the
data structure; a neuron or a synapse. A number of algorithms are provided in nC in a
parameterised format These can be used executed using menu-driven facilities of the
Graphics Monitor.

Explicit parallelism is accommodated in nC with the control statement PAR. Any
rule or loop statement preceded by the PAR statement can be potentially executed in
parallel. Attempts have been made to map nC onto Transputers [19] and two projects
focused on the automatic generation of the UCL Generic Neuron on silicon VLSI chips

45

from nC definitions [117,147]. The nC representation is further assessed in chapter 5, in
the context of different representation techniques.

3.3. Galatea Neurocomputing Project

The Esprit II Galatea project is developing an integrated software and hardware
system for the development and execution of neural network applications. The Galatea
Project comprises the following modules;

1 - A General Purpose Neural Computer (GPNC) hardware, with efficient support for
a wide range of neural networks,

2 - A Neural Network Programming System (NNPS), a sophisticated neural
programming environment, allowing the efficient use of the GPNC, domain-specific
processors, conventional parallel computers and workstations.

3 - A Silicon Compiler for rapid and low cost Application Specific Integrated Circuits
(ASIC)

A number of applications exploit this high performance and general neural
computing platform. A neural network based industrial vision workpackage investigates
the potential use of neural technologies in industrial applications to improve Surface
Mounted Device assembly technology. Similarly, the industrial vision workpackage has
been applied to video-grading of damaged oranges. Both applications form a testbed for
the Galatea GPNC. Optical Character Recognition (OCR) is seen as an ideal application
for the Neural ASICs, which will be automatically generated by the Galatea Silicon
Compiler. The aim of this package is to scan a text bitmap and convert it to ASCII form
involving implementation of neural models suitable for character recognition and
mapping onto silicon. A commercial prototype PC board is to be produced which will
provide high performance and speed in optical character recognition tasks.

3.3.1. Galatea General Purpose Neural Computer

Galatea GPNC is a heterogeneous distributed architecture which brings together
generic modules, called Virtual Machines (VM) (Figure 3.2). The building block of the
Galatea GPNC, a VM, contains a Communications Unit and an Execution Unit. The
Communications Unit is responsible for coordination of communications with the host
and other VMs. An intermediate-level matrix-based language called VML [140] is the
common language between VMs and the host. All VMs communicate, interpret and

46

execute VML concepts. An interpreter for VML has been developed at UCL to allow the
simulation of the GPNC.

Message Passing Comms Environment

COMMS UNIT (VML)

— >
CPU RAM

< —

EXECUTION UNIT (LLVML)

Array of Processors

VIRTUAL MACHINE

Figure 3.2. The Virtual Machine

The Communications Unit links VM to a bus which is connected to a SUN
workstation host. The CU contains a Central Processor and local memory, and is able to
store and interpret VML code, carry out scalar arithmetic operations and fire low-level
instructions to the Execution Unit. These low-level instructions are based on vector and
matrix arithmetic, and a low-level machine specific representation called Low-Level
VML {LLVML).

The Execution Unit of VMs is composed of fast matrix multiplier general-purpose
neurocomputer boards. Two boards are being developed in parallel in Siemens (Munich)
and Philips (Paris). Although both boards follow the same general-purpose philosophy,
they differ in local memory management, execution speed and data representation. For
efficient execution on these boards, LLVML has to meet the requirements of correct data
placement and typing. Hardware-specific features, such as the ability to multiply four
vectors simultaneously - as is the case for the Siemens board - must also be exploited at
this level.

A number of VMs could be plugged to a SUN workstation enhancing the power of
the GPNC. The common language between these VMs is VML, and the communications

47

medium which carries VML instructions is a message passing scheme. Code generation
for this multi-VM coarse-grained parallel architecture is the task for the Galatea Mapper.
The run-time operations are monitored by another process, the Scheduler which takes
over after the initial mapping is completed.

WEIGHTS

INPUTS

mulUpWem ultip ll» m uM plle m ultlpllei

Tiultipller nultlp llef m ultipllei

n u ltlp lle r m iltipllaf m ultlpllei n u ltlp lle i

Adder/
accumulator

Adder/
accumulator

Adder/
accumulator

Adder/
accumulator

OUTPUTS

Figure 33. The Siemens Architecture

The Siemens Architecture

A series of architectures is being developed by U. Ramacher and his group at
Siemens to emulate neural network models on hardware [122-124]. The design of their
architecture focuses around cascadable modules of matrix multipliers. Each multiplier
represents a synapse, where the multiplication of the weight value by the neuron’s state
takes place. Each column corresponds to one neuron unit. Figure 3.3 shows the
conceptual structure of a 4-neuron module with 16 synapses. This module is composed
of 4 columns, each comprising 4 multipliers. Every multiplier receives in parallel, a
weight and an input value. At the bottom of each colunm there is an adder that sums the
4 weighted inputs calculated by the multipliers, and an accumulator, which stores the

48

partial weighted sum.

The Siemens architecture offers good performance by using the matrix of
multipliers and fast memories. The parallelism is achieved as a result of the
simultaneous processing of multiple patterns. The system architecture is flexible and
general enough to implement a wide range of models. But the full performance can only
be achieved in cases where the networks are fully connected and multiple pattern
processing is allowed.

The Philips Architecture

The Philips architecture which is developed in Phihps Labs in Paris, is a neuro-chip
efficient in matrix multiplication and addition operations. It is a fully digital CMOS
VLSI chip that allows various kinds of network models to be executed
[40,107,141,141]. Figure 3.4 shows the conceptual model of this architecture. The
model contains a synapse memory implemented in RAM. This matrix memory allows the
storage of NxN weight values coded in binary 8 or 16 bits. The neural state register
contains N state values which are obtained from the multiplication of the N inputs by the
synapse matrix. Both multiplication and addition processes are executed in parallel, but
each neuron is treated serially in the state update. The threshold function is evaluated
off-chip, either by a dedicated hardware, or by a standard processor. After this
evaluation, the states are stored back in the Neural State Register.

CHIP

Synapse
Memory

NxN

tree

addei
Adder/
Shifter;

AccumulatorNeural State Register

Figure 3.4. The Philips Architecture

49

The first version of this architecture was implemented using 1.6 micron CMOS
technology, containing an 8-bit 64x64 synaptic memory. This version did not include the
learning routine. The Philips architecture overcomes the necessity to have fast memories
by integrating the synaptic memory on-chip. This localised RAM approach is favoured as
it reduces the number of parallel feeds to the weight multipliers.

3.3.2. Galatea Programming System

The Galatea Neural Network Programming System is based on the same principles
as those outlined in the Pygmalion system. However, it is more sophisticated, and as a
design philosophy, a parallel distributed processing approach has been adopted. It
encompasses the following modules:

• The User Interface is a sophisticated tool consisting of a set of independent
programs. It has been built using the Motif graphics application builder. Motif uses
the X Windows graphics protocol with a set of customised library functions. The
user interface has three modules; a Graphic Monitor, an Execution Monitor, and a
Debugging Monitor. The Graphic Monitor is responsible for opening various
display windows for the input and output patterns, system error graphs, bar charts
etc. The Execution Monitor is used to initialise, interrupt, save or load the
execution. The Debugging Monitor allows line by line tracing of the intermediate
level code during execution. The three programs are independent, and they
communicate with the system through the central Scheduler.

• The High-Level Language ^ is an Object Oriented language. It is a further
development on N, from the Pygmalion programming environment. Again, it is
supported by a High-Level Language Library containing the code for the most
popular neural models. Users can use the HLL library, or write their applications in
N which is similar to C++, or use the Systems Application Builder (SAB), which
allows the development of applications using graphic tools.

The Intermediate-Level Language VML is a vector-matrix based language.
Vectors are considered as one-dimensional matrices. The instruction set for VML
contains matrix and scalar arithmetic operations, data transfer and control
commands, and file I/O statements.

The Mapper is responsible for the efficient partitioning and distribution of the VML
neural network representation. It schedules the operation, and downloads the code
to VMs generating appropriate data exchange instructions.

50

The Scheduler is a run-time process handling user requests and communications
between the VMs and the host. It runs like a Unix deamon, passively waiting for
requests from users or the modules of the system.

HL Library

Virtual
Machine

Virtual
Machine

Virtual
Machine

Compiler

Systems
Architecture
Builder

Mapper

USER

High Level
Language

Figure 3.5. Galatea Programming System

The code generation process (Figure 3.5) for the Galatea NNFS is a complex
process. Users defining applications in the high-level language V, prompt the N to VML
compiler to generate vectorised VML code. The compilation process also generates a
Symbol Table that contains a correspondence between N and VML concepts. Then, the
Mapper processes the VML representation, and partitions it to exploit the parallel
execution environment. The Mapper generates parallel VML code with appropriate data
transfer instructions. This code is downloaded to the VMs, the GPNC is prepared for
execution and awaits the start signal from the user. Users can initialise execution using
the Execution Monitor, and the Scheduler issues the start signal to the VMs so that the
parallel execution starts.

51

Neural Network Representation and Parallelism in Galatea

The Galatea project has adopted a two-stage representation scheme, involving an
object-oriented, high-level language and a matrix-based, intermediate-level language.
The high-level language N meets the user requirements of design simplicity, flexibility
and modularity. The intermediate-level language VML aims to exploit vector-based
general-purpose hardware boards efficiently.

VML consists of a set of scalar and matrix operations with a C-like syntax. It is an
interpreted language containing; control statements, I/O operations and arithmetic
instructions. Tlie VML interpreter which has been developed at UCL, is used to execute
VML programs on SUN workstations. The interpreter creates an executable image of the
code, which can be either executed or used to generate Low-Level VML instructions.
LLVML will be executed on high-performance matrix operator VMs, currently being
manufactured at Siemens and Philips.

Two levels of parallelism are possible on the Galatea GPNC. On the higher level,
neural network applications can be distributed across a number of VMs. Further
parallelism can be exploited within each VM by mapping matrix based operations onto
processor array based Execution Units. This thesis work involves the high level
partitioning and mapping of matrix based neural network representations onto a number
of VMs.

3.4. Summary

This chapter provided a review of the Pygmalion programming environment and the
Galatea Neurocomputing project with a special emphasis on the Galatea GPNC and its
programming system.

The Pygmalion programming environment has all the features common to general
programming environments; an object-oriented, high-level language, an intermediate-
level representation, an algorithm library and a set of compilers for a number of target
hardwares. Pygmalion principally targeted neuron-based hardware architectures suitable
for silicon compilation and similar to the UCL Generic Neuron presented in chapter 2.
Pygmalion partly achieved its aims of increasing interest in neural computing in Europe,
providing the end-user with a set of algorithms and an experimental tool. However, it
has not become a standard for neural network software environments nor has it provided
a high performance execution.

52

The Galatea GPNC marks a change in direction from a neuron-based to a vector-
based philosophy. It comprises high performance Virtual Machines that exploit vector
operator Execution Units. The vector-based trend is also reflected in the intermediate-
level language, VML. Although Pygmalion and Galatea share the same high-level
language V, their intermediate-level languages are remarkably different. This is further
investigated in chapter 5, in the analysis of neural network representations. The
development of the GPNC is still in progress, and the Galatea GPNC is the test domain
for the mapping strategies developed in this thesis. The mapping efforts for the Galatea
GPNC are presented in chapter 7.

53

Chapter 4

Analysis of Neural Networks

In this chapter, three neural network models, the Hopfield, the Self-
Organising Map and the Backpropagation are analysed in three case
studies with appropriate real-world applications. The analysis focuses on
the computational requirements and possible structural mappings for
these models. A comparison o f the three models is presented, and the
potential benefits o f modular, multiple-neural-network architectures are
discussed.

4.1. Introduction

Neural networks models appear in a variety of topologies with a number of training
and recall procedures. Chapter 2 presented a survey, which covered a number of models
in terms of their main characteristics and popular applications. In this chapter, using
three case studies, three neural network models are analysed. In these case studies, the
Hopfield nets, the Self-Organising Map and the Backpropagation model are chosen as
they together contain properties common to most neural network models. Each case
study presents the model, the application and the results, and a computational analysis is
followed by structural partitioning and mapping examples. Finally a comparison of the
three models is presented, and the strengths of the multiple-network models are
discussed.

4.2. The Hopfield Networks

The Hopfield networks are prime examples of recurrent nets. They are called
recurrent because outputs of the neurons typically affect the inputs of the same neurons.
Because of this positive feedback, the main problem with recurrent nets is to achieve
stability, as the outputs of the neurons may never converge to stable states, but change
their states continuously in a chaotic fashion. In 1982, J. Hopfield proposed a network of
binary processing elements (on-off devices) [72] and proved that it converges when a
number of conditions are satisfied. Since then, a huge amount of research has been
carried out on applications, hardware implementations, the pattern storage capacity of the
net and the possible learning algorithms.

54

4.2.1. The Model

A Hopfield net consists of a number of fully-connected processing elements (Figure
4.1), with all neurons connected to the others with symmetrical weight values. To
achieve convergence, the connection weights matrix (W) must obey the following rules:
Wii=0 and Wij = Wji. Binary Hopfield neurons are simple processing elements
performing the following tasks: each neuron independently sums its inputs, thresholds
the sum and outputs one of the two states, either 1 or -1. Initially, the states of some
neurons are externally clamped values, later the neurons take values using the outputs
generated by the other neurons. At the beginning, neurons change their states frequently,
later the rate of change decreases, and finally the network stays totally stable. The states
of the neurons at this stage represent the response of the network to the initially clamped
stimuli. The overall state of the network is described as an energy function which
continuously decreases until the network reaches a stable low energy state.

INPUTS OUTPUTS

Figure 4.1. The Hopfield Net

Hopfield claimed that the net could be used as a Content Addressable Memory
(CAM), storing approximately up to 0.15N number of separate memories with N number
of neurons. These memories must be distinct enough not to create spurious states in
recall or merge two or more patterns as a result. An approximate condition for accurate
recall is that each pattern must be 0.5N Hamming distance units apart from the other
patterns in the dataset - Hanuning distance being the count of mismatches between the
elements of two binary vectors. If accurate results are required in recall, an optimum set
of weights must be found. Hopfield suggested the use of the sum of the outer products of
all the input vectors in the calculation of the W weight matrix. This is a primitive learning
procedure which is used to form an orthogonal weight connection matrix. A Hebbian-
like incremental learning procedure was also suggested which results in pseudo-
orthogonal weight matrices. Research continues to develop algorithms that store the
highest number of patterns on a net with a given number of neurons [13,87].

55

Hopfield claimed that his net is biologically plausible because neurons can update
their states asyncbronously, independently of each other. Subsequent research has shown
that both synchronous and asynchronous state update routines result in convergence.
Hopfield also showed the net can be used with continuous valued inputs by changing the
hard limiting threshold function to a nonlinear sigmoidal function [73].

The most powerful applications for the Hopfield net are optimisation problems.
Hopfield and Tank made two demonstrations; the Travelling Salesman Problem [74] and
an Analog/Digital converter. Both cases involve considerable effort to set up the
connection weight matrix. Once this matrix is set up, the net is capable of producing an
adequate solution to the optimisation problem. In optimisation problems the constructed
weight space resembles an energy surface with many hills and valleys, with the deepest
valley being the global optimum solution. Unfortunately, Hopfield nets tend to find local
minima, rather than reaching the global minimum. To overcome this difficulty a
procedure based on the process of metal annealing is added to the algorithm. This is a
stochastic state update procedure that suggests a start with a high temperature to make
sure the network explores the global search space, the temperature is gradually reduced,
and the network settles to the global minimum. But this routine is computationally too
demanding to assure a global solution within a practical period.

4.2.2. Case Study: Pattern Recognition

The auto-associative nature of the Hopfield nets can be exploited in pattern
recognition tasks as the network tolerates a high degree of noise and can operate with
partial or incomplete information. This is extremely desirable in pattern recognition
problems, and a real-world example is presented below:

A teleconununications system involves the transmission of binary patterns between
two satellite stations in the atmosphere, which is prone to random noise. The patterns
transmitted from one station reach the other, in a partly corrupted state depending on the
noise level. The Hopfield net can be used to reconstruct the noisy or incomplete input
patterns as a Content Addressable Memory. In this case, a dataset containing 12
orthogonal patterns each with 8x8 grids of elements (Figure 4.2) has been used. The
two-dimensional nature of the patterns eases the selection of orthogonal patterns, as
patterns can be designed visually. The weight matrix is set up by taking the outer
product of all the pattern vectors and adding them up. Random noise is added to the
patterns by randomly switching on/off the elements of pattern grids.

56

Pattern 1

Output 1

Pattern 2 Pattern 3 Pattern 4

Output 2 Outputs Output 4

Figure 4.2. The Patterns for the Hopfield Net

In the recall phase, a series of synchronous state update operations takes place, until
the network settles. This is done by updating states of all neurons simultaneously (in a
lockstep mode), using the outputs of other neurons from the previous step.

A Hopfield net simulator has been coded in C to solve this pattern recognition
problem, and to carry out a computational analysis. The simulation of the net reaches
convergence rapidly, finding one of the original pattern vectors as an output. Increased
noise level, or too little information about the input patterns, causes spurious states to
emerge in the outputs. Even patterns with 50 % of the original data points result in
complete patterns with a fast convergence of approximately 4, 5 iterations.

4.2.3. Computational Analysis

This size of Hopfield net simulation (64 neurons) on a SUN Sparc workstation
converges in a short time. Profiling the execution by using the standard Unix facility
‘gproff’ produced the following results: for all 12 patterns the net converged to correct
patterns in under 4.7 seconds. Other computational operations in the simulation, such as
printing out the outputs and reporting the states of the neurons also consume a
remarkable amount of computational time. Although the net provides an answer in a
short time, a real-time usage would necessitate a much faster execution rate. This can
only be achieved on high performance parallel hardware, or VLSI hardware
implementations of the network.

57

The learning procedure for the Hopfield net involves setting up the weight matrix
using a set of patterns which are orthogonal one against another. This is done once, and
it does not pose a big computational load. The recall procedure is the computationally
intensive part of the Hopfield net simulation, and it involves an iterative procedure of
state update. This procedure consists of a series of multiplications of inputs by weight
values, followed by a summation. The sum is then applied to the threshold function
which can be a simple decision mechanism associated to a value (such as 0) or it may be
a nonlinear squashing function with bounds -1 to 1. The first is the case for a binary
Hopfield net, and the second one is used on the continuous valued version. In the case of
using a hard-shoulder activation function, computational requirements are minimal, in
fact, in C, this function is an if control statement. But the continuous valued Hopfield
requires a sigmoidal or tangent hyperbolical activation function. The tangent
hyperbolical function can be called by using the C library routine tanh(), or alternatively,
a look-up table can be set up, and this table can be used. The use of the system built-in
functions is computationally more demanding, as their implementation involves a
number of multiplications carried out in double precision arithmetic. The option of using
look-up tables requires an understanding of the activation function’s characteristics. The
resolution of the table must be organised properly, where the rate of change is high, more
data points on the table are necessary.

A typical state update operation for a single neuron involves the following
operations:

S i = I i + J P j . W i j

The most expensive single operation here is the exponential function, although it is
carried out only once for each state update. Most of the computation is focused on the
dot-product operation which involves the element by element multiplication of the
pattern vector by the weight matrix. For N neurons this operation can be executed
simultaneously. A total of multiplications for each state update step can be done in
parallel. Each multiplication is followed by N additions, N thresholding operations and
finally, the generation of the outputs for the net. A higher level process checks the
convergence by comparing the current state of the net with the previous state, and
decides whether the convergence has been achieved.

58

4.2.4. Parallel Hardware Mapping

Two cases can be considered for the structural mapping of the Hopfield net onto
parallel hardware.

1 - Fine-grained parallel mapping - In this case each neuron is mapped onto a single
physical processor, which can be extremely simple. The processors carry out the
following tasks: they sum their inputs, threshold the sum and transmit the result to the
other neurons. An higher level central process checks all neurons’ outputs and reports
when all neurons stop changing states.

To test the feasibility and viability of such a system the Hopfield net has also been
simulated on a number of parallel processors. Unix TCP/IP Sockets are used as the
communications medium between the independent processors. Later, this feasibility
study involving TCP/IP Sockets is used in the implementation of parallel MATLIB library
and Galatea GPNC simulations. A 4 neuron Hopfield net simulation, involving 5 Unix
processes, has been implemented. The first process is a server which expects 4 slave
processes to plug in. When these 4 identical processes are initiated the execution starts.
The processes communicate by explicit blocking data exchange statements. Every write
request to the server is matched by a read request at the client end and vice versa. This
type of scheduling is an example of intertwined parallel processing, and it is
synchronised from the beginning of the execution.

Synchronised or independent, the communicating processes can potentially create a
massive message traffic as the number of neurons are increased in the system. Assuming
a bus-based architecture, the bandwidth requirements increase polynomially in
proportion with when the number of neurons increase linearly. Moreover, to
implement number of connections as separate communications channels on hardware
is not practical because of the massively increasing wiring requirements. The following
procedure has been suggested and implemented to reduce the interprocessor
communications [138]:

"Only neurons which change their states transmit their outputs to the others." This
method assumes a local storage facility which enables the storing of the previous state to
compare with the current state. Increasing the local memory use, for the reduction of the
interprocessor communications is a typical trade-off, frequently used in the
manufacturing of computer hardware. But this method increases the cost of unit
production of the processors.

59

2 - Coarse-grained structural mapping - this method involves using fewer, but more
powerful processors with larger local memory (Figure 4.3). In this case, a group of
neurons is mapped onto each processor, reducing the communications requirements.
Each processor emulates a group of neurons by time-multiplexing the operation.

INPUTS OUTPUTS

INPUTS

OUTPUTS

A h
INPUTS

OUTPUTS

Figure 43. Structural Mapping of the Hopfield Model

Both types of mapping presented are based on the neuron-based assumption for the
algorithm. As an alternative view, the Hopfield model can be seen as a vector mapping
process involving a series of vector by matrix multiplications. This interpretation of the
Hopfield net is advocated in chapter 5, using a clear and compact matrix-based
representations of the algorithm.

4.3. Self-Organising Maps

The SOM has been originally inspired by the discovery of various topological
feature maps in the brain [91]. These maps include retinotopic maps and orientation
sensitive maps in the visual cortex, and tonotopic maps in the auditory cortex. Neurons in
these parts of the brain react to a specific type of stimuli, ignoring the other types, and
cluster the input vector set in a self-organised manner. The neurons themselves are
grouped together with increasing degrees of sensitivity to specific type of stimuli; the
sensitivity is maximised in the centre of each neural cluster. To mimic this kind of
neural behaviour, Kohonen originally put forward the self-organising feature maps [88].
He demonstrated that an optimal mapping of a multi dimensional vector space can be
constructed and used in pattern recognition tasks with a high degree of accuracy [126].

60

4.3.1. The Model

The SOM is a two layered network (Figure 4.4). The first layer, or input layer,
contains n neurons, where n is the dimensionality of the input vector set. The input
patterns are clamped onto this layer, so the neurons in this layer capture the activation
levels on the respective dimension. The second layer which is the output layer, is usually
organised as a two dimensional grid. The nodes in the output layer can be considered as
fully interconnected, and the physical neighbourhood relationship and distance form the
basis for the interconnection strength in this layer. All output nodes are also connected to
all the input neurons with weight values which together constitute vectors of the same
number of dimensions with the input vectors. Output nodes together form a vector field,
and each node is a single vector in the vector space.

Inputs

O

Input nodes Output grid

Figure 4.4. The Self-Organising Map

The SOM training [99] algorithm is as follows;

1 - Select a suitable output grid, initialise weights with small random values, define
a large neighbourhood area with a neighbourhood distance, set a small gain
coefficient (or the learning rate) for the weight update (typically 0.1 - 0.5), and
normalise the input vectors (it can be done in two ways [37] and both methods work
successfully).

2 - Clamp an input vector to the input neurons, calculate the Euclidean distance of
the input vector to the output vectors, establish the closest output vector, and assign
that node as the winner. Various measures can be used in the distance calculation,
and the Euclidean is the most popular one.

3 - Within the current physical neighbourhood distance of the winner, update the
weights, so that all output vectors get closer to the input vector.

61

4 - Repeat steps 2 and 3 for all input vectors.

5 - Narrow the neighbourhood distance and decrease the gain, and repeat 2, 3 and 4
until the neighbourhood is decreased to one node.

As a result of these steps, each output node specialises in a subset of the input set,
and the neighbouring output nodes represent close vectors in terms of the Euclidean
distance. The distribution density of the input vectors is reflected in the distribution
density of the output vectors.

Once the weights are trained, a novel vector can be presented to the network and by
finding the best matching output node, the class identity of this vector can be established.
This forms the recall operation for the SOM.

A number of parameters influence the performance and the accuracy of the results
of the SOM. These are the neighbourhood and the gain settings, and the number of
nodes in the output layer. Optimum settings for these parameters is matter for research,
and currently most applications involve a series of trial and error runs.

4.3.2. Case Study: Clustering Neural Spikes

In this case study, the SOM is used in clustering the neural spikes from the rat’s
hippocampus as a novel technique in the Anatomy field. Datasets consist of electrical
activity readings of neural spikes recorded from outside hippocampal neuron cells. This
method of extracellular recording, encounters the difficulty of confidently isolating the
activity of the single neuron from surrounding neurons [82]. Several techniques have
been developed to examine the neural electrical activity, or a spike, to identify the
origins. These examinations involve the classification of the neural spike amplitude and
shape [132], and most of these classification techniques require representative samples of
the classes within the dataset. An unsupervised classifier, or a clustering algorithm is
more advantageous in this case, since no information about the cluster centres is
available in advance.

Traditional clustering methods can be traced back to the K-means nearest neighbour
classifier [39]. Variations on this algorithm [36] and performance of other classifiers are
discussed in the literature [89,99]. Results suggest the that the SOM clustering approach
provides the best overall performance [76]. In this case study, the SOM is used in
clustering neural activity into a small number of classes.

62

A SOM simulator has been coded in C, to run on SUN Sparc workstations. The
simulator is tuned to the application and tested with various neighbourhood decrease
routines, graded gain functions (Figure 4.5) and different distance measures to improve
the speed and accuracy of the algorithm. Euclidean distance measure proved to be the
best distance criterion. Multidimensional (hypercube) output grid geometries have also
been used, but these architectures did not improve the performance, as the number of
output classes in this problem is too small to exploit the extra dimensionality and
complex neighbourhood relationship introduced.

O O O O O O O O O
O O O O O O O O O
O O O O O O O O O
O O O Q ^ ^ ^ Oooom oo^ao

G ain

Output Grid

Winner
Neighbourhood

Winner Distance

Figure 4.5. Gain and Neighbourhood

The data for the clustering program were recorded in the laboratories of University
College London. The datasets consisted of recordings of the ‘place cells’ and the ‘theta
cells’ from the rat’s hippocampus [119]. The spike recordings are 200 voltage values
read by a number of electrodes. These 200 dimensional input vectors, are clamped into
200 input nodes. As outputs, the spikes are clustered into a given number of classes.
However, the definite number of cells recorded is unknown, up to 10 or 12 cells can be
recorded in each experiment. It is necessary to establish the number of output nodes in
the network, prior to training the network. As a strategy, it is better to overclassify the
spikes, and then after an examination merge these sub-classes, rather than under-classify
and face the difficulty of classifying them again. So, usually, a slightly bigger than
expected number of output nodes is set as the number of output nodes.

Once the training is completes, the weights are saved, so another set of spikes can
be clustered into the currently established classes. This approach can also be used to

63

bootstrap the network, that is, to start training with a set of weights obtained by other
methods (such as manual clustering). The training can be supervised, usually to save
time, by selecting a typical subset of the input set rather than using all the samples
recorded in an experiment. These selected samples are so called ‘ideal samples’ which
would form the basis for the cluster centres.

No of Patterns

Cutting Point

200 Distance

Figure 4.6. Error Histogram in Clustering

During the data acquisition stage, noise occurs in two forms; Systematic Noise and
White Noise. Systematic noise often originates from electrical devices close to the
laboratories, such as power supplies etc. The network clusters these vectors as a separate
class, because of the distinct waveform they possess. White noise is random, and may be
generated by various sources such as the disconnection of one of the electrodes, etc. The
SOM clusters these noisy input vectors to the closest class available. White noise is
undesirable especially during the training stage, as noisy vectors influence the weight
update procedure by corrupting the cluster centres with noisy data. To eliminate this
problem, a histogram based routine was added to the simulator. This routine calculates
the distance of all vectors to the respective cluster centres, and an error histogram is set
up for all vectors with the number of bins typically a tenth of the total number of vectors.
On this histogram any spike which is further from a certain distance is labelled as noise.
This distance is determined by examining the histogram bins and identifying the first bin
with zero spikes, after the mean, as the "cutting point" (Figure 4.6). This method is a
short-cut measure; the alternative is to calculate the 3-4 standard deviations distance
from the mean as a threshold point. All spikes beyond the cutting point distance are
labelled as noise and these spikes are prevented from taking part in the training
procedure. This process is repeated over each cycle, and result in all outliers being
accumulated in a separate noise class.

64

A feature of the SOM is that it imitates the input vector distribution in the output
vector distribution. This poses a problem in the representation of the members of a vector
set with a low density (a small number of samples). Uneven distributions pull most of
the output nodes into the densely sampled part of the signal space. This problem has been
tackled before [38], and a similar procedure is added to the simulator. A limit has been
introduced to the weight update procedure; when reached, it stops the weight update for
that node, preventing the over-representation of a class of patterns, and allowing less
densely distributed patterns to form as a new class.

Another problem related to the input vector distribution occurred in some sets of
recordings. In these datasets, the spike distribution showed a tendency to form an
elipsoidal shape of distribution, densely packed around a slope, rather than a spherical
type of distribution. The Euclidean distance measure assumes a spherically partitioned
space and it misclassifies the spike vectors. As a solution to this problem, 6 new nodes
are added to the current 200 input nodes. These nodes are clamped with the 6 slope
values which relate to each spike’s delta values, delta being the difference between the
maximum voltage and the minimum voltage read in each electrode. The slope is the
ratio of these deltas recorded on different electrodes. By adding this information to the
input vectors, 6 new variables are evaluated in the similarity test. The Euclidean distance
test that compares the waveforms, also compares these slope values, and spikes are
grouped together with respect to their distance in slope angles. It is possible to scale the
importance of the slopes by simply exaggerating the Euclidean error derived from these
variables. This is done by adding a coefficient to the error calculation that gives a certain
weight to the error originating from the slopes.

Delta 1

Delta 2

Figure 4.7. Neural Spike Clusters

The results of the automatic clustering with the SOM were compared with the
results of manual clustering. In manual clustering, an expert can display the spikes on

65

the computer monitor, and by selecting the best combination of the four electrodes, can
visually isolate a group of spikes from the rest. Clusters can then be purified by using
histograms. The spikes can be viewed in different combinations of the electrodes (1
versus 2, 1 versus 3, etc,.). But this is a laborious process and it is partly subjective. A
numerical comparison between the two methods showed that on a dataset with 2202
spikes, 142 discrepancies were found between the manual and the automatic methods.
Of the 142 spikes, 31 spikes were clustered as noise by the SOM, and 47 spikes were
clustered as noise by manual clustering, only 64 spikes were placed into different clusters
by the two methods. This is a small difference considering the gains made by automating
the process.

One measure of success in clustering is the circumference of the clusters. It is
assumed that the more compact clusters are, the better the classification is. A statistical
analysis on the two clustering methods shows that clustering with the SOM produced
more compact clusters. The analysis was done by examining each cluster and measuring
the variance from the mean (centre of the clusters) for each of 200 dimensions. Then the
standard deviations were calculated for all these dimensions. The mean of these standard
deviations for each cluster for both methods are shown in Figure 4.8. Most of the
clusters (except cluster 1) obtained by the SOM are more compact, with smaller radiuses
to hold most of the spikes.

Envelope Width

Manual
160 SOM

140

Clusters
1 2 3 4 5 6 7 8

Figure 4.8. Cluster Envelope Widths

Automatic clustering using the SOM gives close results to the results obtained by
human experts. The system SOM allows us to specify the thickness of the elipsoid
clusters. Problems posed by uneven input vector distributions can be solved. By adding
a histogram based noise filtering technique most white noise and systematic noise can be
eliminated. These results enable us to do a series of automatic clustering runs and
decrease the time spent in the data processing.

66

4.3.3. Computational Analysis

Currently, the SOM automatic clustering simulator runs on a SUN Sparc station.
On this machine, an average training session for the simulator takes about 3 to 4 minutes
for 2000 spikes. This is still far from real-time execution where clustering can be done
automatically within a few seconds or milliseconds. Once the cluster centres are
estabhshed, a series of recalls can be done on other datasets to detect any similar spikes.
The recall operations are much faster, and on SUN Sparc station they last less than 30
seconds for the same data size. The following operations which involve the calculation
and the selection of a winner, are the basis of a recall;

Score j =

j = imniscorcj)

Once the winner is established the weight update is carried out for all the neurons within
the current neighbourhood, as follows:

As can be seen above, computationally, the most expensive part of the SOM
simulation, is the calculation of the scores. In this case, a series of subtractions is
followed by multiplications, and finally a square root is taken to establish the Euclidean
distance of the given input pattern to the nodes in the output grid. The winner node is
established by finding the node with the minimum distance to the given pattern. An
alternative to this is to calculate the dot product of the normalised input vector and the
weight vector and to select the output node with the maximum scalar product.

The normalisation, the scaling, and the calculation of the score, the sorting to
establish the minimum score, take up a sizeable amount of CPU time. In addition to
these, in this application, a conventional statistical technique, a histogram routine is also
used which consist of multiplication and sorting. Parallel techniques, such as a parallel
dot product operation and a parallel sort can be used to speed up the simulations.

67

4.3.4. Parallel Hardware Mapping

Two cases are considered for the structural parallel mapping of the SOM;

1 - Fine-grained mapping - Each neuron in the output grid is mapped onto a single
processor. This enables the system to calculate the score in parallel for all output
neurons. Then, all neurons report the result to a central processor which finds the winner.
To establish the overall winner, local search and sort techniques can be used and
implemented in parallel. In the weight update stage, the supervisor processor sends
weight update signals to the neurons within the neighbourhood of the winner node.

Input nodes Output grid

Figure 4.9. Structural Mapping of the SOM Model

2 - Coarse-grained mapping - This approach involves dividing the output grid into
sections with an equal number of neurons, and distributing the sections onto a number of
processors (Figure 4.9). Some inter-node communication traffic is localised and reduced.
However two difficulties remain. The first one is finding the overall winner. This can be
achieved by finding local winners, reporting them to the central processor which
identifies the global winner and reports it back to the processors. The second difficulty is
in expressing the neighbourhood relationship between the output neurons. In weight
updates, the standard algorithm has a conditional statement that checks each node to
establish whether it is within the neighbourhood of the winner node. On a parallel
platform, this would involve the transmission of the neighbourhood definition every time
a winner is established. Kohonen later suggested that the neighbourhood can be

68

interpreted as a form of connection weight [92], and this approach is more suitable for
eliminating the transmission between parallel distributed processors. The neighbourhood
relationship can be treated as a lateral connection weight between output neurons. All
lateral weights have symmetrical values between output nodes, which is based on the
physical distances of these nodes from each other. Lateral weights could be set at the
beginning of the simulation and updated after every epoch to result in a shrinking
neighbourhood. Each epoch typically involves a complete dataset presentation and the
lateral weight update involves reduction of lateral weights as the training progresses.
The lateral weight technique can be useful for mapping the SOM onto parallel hardware
in simulations, and for the hardware implementations of the model.

The SOM has a flavour of neural processing, with biological correlates, but it can
also be represented using a number of vector, matrix operations. By optimising these
operations on fast vector/matrix operator hardware architectures, the SOM can be
simulated much faster. In chapter 5, neural network representation issues are considered,
and the SOM is programmed using matrix-based representations.

4.4. The Backpropagation Model

The Backpropagation learning algorithm is historically important. It prompted the
resurgence in the neural networks field, in the 1980s, following the early disappointments
of the late 1960s, prompted by the Minsky and Papert report [114]. They suggested that
Perceptions cannot learn certain associations due to the lack of an efficient learning
algorithm to train the weights in the hidden layers. The Backpropagation algorithm was
put forward and popularised by Rumelhart [130] and others, answering specifically the
question of training the weights to the hidden layers in a systematic manner. The model
is based on the Delta rule (also called Widrow-Hoff learning rule), in which the error is
back-propagated from the output layer towards the input layer (Figure 4.10).

4.4.1. The Model

The Backpropagation model demands: the choice of a suitable network
configuration with a sufficient number of hidden layers and neurons in the hidden layers;
the choice of an activation (squashing) function for neurons; the choice of an appropriate
learning rate, and a tolerance level, allowing a certain amount of error in the accuracy of
the network; and finally, the initialisation of network weights with small random values.

69

hidden
la^er

output

Inputs

Figure 4.10. A three layered Backpropagation

The training session has the following steps:

1 - A pattern vector is clamped to the input nodes.

2 - Forward Pass - This process involves each neuron multiplying all the input
values with the incoming weight values, summing them and passing the resulting
value through a nonlinear activation function to produce outputs. This process is
carried out for all layers, and finalised at the output layer. There, the outputs of the
neurons are the network’s response to the applied input pattern.

3 - Error Calculation - The outputs of the network are compared with the targets.
Resulting error values are passed through the derivative of the squashing function.

4 - Error Feedback - The error values for the output neurons are propagated
backwards by multiplying with the related connection weights.

5 - Weight Update - The calculated and stored error values for each neuron are used
to reduce the error of the system.

6 - The processes of forward pass, error calculation and feedback, and weight
update are repeated until the error is below the allowed tolerance level.

A number of parameters have a strong effect in the training process, and the
resulting internal representation heavily depends on them. These are:

• Learning Rate - The learning rate is a coefficient used in updating the weights.
Usually a small value between 0.1 to 0.3 is used, but there are various strategies for
optimising the learning rate throughout the execution. If the learning rate is set too
high the network might saturate and get trapped in a local minimum. Keeping the

70

learning rate too low results in a long training time.

• Tolerance - the tolerance value determines the amount of error allowed between the
outputs of the network and the targets. If the tolerance is too small, the network
may never pass this value, and if it passes the network is often overtrained, and it
cannot generalise.

• Hidden Units - The number of hidden units in a multi-layer network is important.
Having too many hidden units results in an accurate recall with no generalisation.
On the other extreme, a network with too few hidden units cannot leam the task.

4.4.2. Case Study: Financial Forecasting

The Backpropagation model is a hetero-associative vector mapping algorithm. The
Backpropagation network can leam trends, and provides a good degree of generalisation,
which is desirable in financial data processing applications. In this field, the
Backpropagation model has been successfully applied to problems such as stock market
prediction, risk assessment on mortgages and bond rating [43,86]. Stock market and
currency exchange rate prediction are historically difficult problems for conventional
models. Therefore, financial forecasting was used as case study for the Backpropagation
model.

A simulator based on Backpropagation algorithm has been developed using C, and
supported by pattern processing routines to allow time-series handling. The network
consists of three layers. The input layer is a string of nodes where the elements of the
time series are clamped. The number of input neurons represents the number of past
steps scanned in the time series. As a rule of thumb, the same number of neurons are
selected for the hidden layer. Finally, the output layer contains a single unit. In training,
the next step in the time series; the target is clamped to this node. In recall, this value is
generated by the network providing the network’s prediction, based on the training. The
model is supported by pre-processing and post-processing modules to transform data into
formats which produce observable results.

71

Value

Time
Pattern Qxl
Pattern 1
Pattern 2

^ x3 x4 x5 , I
x l x2 x3 x4 x5 '

x l x2 x3 x4 x5

Figure 4.11. Lagged Patterns for the Backpropagation

Pattern Handling - The pre-processing of input patterns takes up an important part
of the simulation. The inputs for the simulator are time-lagged values taken from the
related time series (Figure 4.11). First, a suitable width for the time window is selected.
As an alternative, in some cases, important lags in the time series are identified, and these
may be scattered in the time series. When choosing the time lags, an auto-correlation
routine can be used to identify the most significant lags in the time series This can be
done by correlating elements of the time series with all the other elements of varying
time distances. (Figure 4.12).

Correlation Factor

-20

li.

0 50 100 Lags

Figure 4.12. Autocorrelating Input Values

The network is provided with normalised or scaled input patterns as the nonlinear
activation functions have certain bounds. The patterns can be organised in such a way

72

that the elements of the time series represent differences between the current value and
the previous value (this is called differencing). In the post-processing stage, the output
vectors are ‘undifferenced’ or ‘unsealed’, depending on the pre-processing type applied.

Once a satisfactory level of training is achieved, the network can be used to
generate a forecast. Then, the network is provided with a novel input vector, and it
generalises from its training. Depending on the pre-processing already done, the output
values are post-processed and displayed in the required format. There are two modes of
forecasting:

a) Short term forecasting (Recall Mode) - An input pattern is clamped to a trained
network, and an output is obtained. By shifting the time window, and repeating this
process, a series of short-term forecasts can be made. The simulator can be trained to
generate values relating to one, two or more steps ahead.

b) Long term forecasting (Forecast Mode) - Exactly the same steps as for the short
term forecast are followed, to generate an output value for a given input pattern. This
time the recalled output value is used to form the next input pattern. Another prediction
is made and the process is repeated to generate further predictions by using the
predictions as inputs.

The learning rate and the number of hidden nodes are important as together they
balance generalisation versus overtraining. The correct identification of the most
significant lags and the width of the time window are also important in the forecast. The
network can be overtrained, or saturated, by choosing a high learning rate and a small
number of hidden nodes. This often results in highly accurate recalls, but poor
generalisations, and thus poor forecasts. On the other hand a loosely trained network,
although not very accurate, generalises much better and produces better forecasts.

Having a greater number of input nodes allows the system to scan larger amounts of
data at each step. In this case, computational constraints must be considered, as the
increased number of neurons causes the network training to take longer. An optimum
network topology must be engineered considering the hardware environment and the
problem domain. Other parameters, such as initial random weights, affect the training
procedure, and the initial point for a long term forecast also affects the results.

The most versatile use of the simulator is that other data can be presented together
with the time series information. These additional data are clamped onto new input nodes

73

in the same way as new input dimensions. As long as these elements are scaled in the
same way as the time series data, the simulator treats them in the same way. In financial
forecasting, these additional dimensions can be parameters relating to the current
political climate, risk factors relating to the economy or even the public opinion polls.

A series of test runs was made on the simulator using real data. The objective was
to test the feasibility of the technique and to evaluate the computational requirements for
such an application. One dataset consisted of 97 days values of the FTSE 100 index
(Figure 4.13). The dataset is divided into two sections; the first 50 days comprise the
training set, and the rest of the data are used as the test set.

FT 100 Index
Index X 10^

2.4

2.3

2.2

2.1

Days
0 20 40 60 80 100

Figure 4.13. The Dataset FTSE 100 index

An 8 days wide time window is selected; so, the input patterns are 8 dimensional vectors,
stretching 7 days into the history of the time series. In this test, two hidden neurons were
used, and a single output neuron clamped to the target value, which is the next value
(tomorrow) on the time series. The patterns have been differenced and scaled and
clamped into the input layer. After about 4000 cycles consisting of all 40 pattern
presentations, the error dropped down to an acceptable level (Figure 4.14).

74

RMS Error
Error x 10“̂

error
10

9
8
7
6
5
4
3
2

Iteration x 10'
0 1 3 42

Figure 4.14. Euclidean Error in Training

When tested on the training dataset, the simulator generates very close results to the
targeted values (Figure 4.15). It must be noted that, these experiments only show the
applicability of the Backpropagation model to forecasting problems. Otherwise this size
of dataset is not sufficient for a good generalisation.

Recall
Index X 10'

2.4

2.35

2.3

2.25

2.2

2.15

2.1

2.05
0 10 20 30 40

target
output

Days

Figure 4.15. Test on Learning FTSE Index

75

Following this, a long term forecast was made in the second half of the dataset (Figure
4.16). The long term forecast results are particularly interesting as they shows that the
network seems to have captured a sinusoidal trend from the first half of the dataset. It is
forecasting the same trend for the second half.

Forecast
Index X 10^

target
output

2.5

2.4

2.3

2.2

2.1

1.8
Days

0 20 60 80 10040

Figure 4.16. Long Term Forecasting FTSE Index

As a result, the experiments show that, the simulator is able to generalise where it
has no prior experience. As the training times get longer, the simulator gains higher
accuracy. There is a trade off between the number of datasets learned and accuracy in
recalling previously learnt datasets. The forecasts depend on the network architecture and
the choice of parameters and initial conditions. The simulator behaves very much like a
human expert. In the training stage, it builds an internal representation and in forecasting,
uses this representation to generate an expert guess. Again like most human experts, the
simulator is not able to explain why it has predicted a certain sequence, and it would not
be able to predict a stock market crash unless it had experienced one.

4.4.3. Computational Analysis

Real financial neural network applications are computationally demanding. They
require the scanning and processing of large amounts of data quickly. Real-time training
systems are particularly demanding on computational resources. Because of this, most
systems carry out training off-line in batch mode, and execute only real-time recalls.

76

The Backpropagation training process involves the simulation of the following
operations:

Recall:

Error Calculation:

Weight Update:

Sh=fiAh)

K =

O =Ao =f(A„)

Eo =f'(SMT„)

Eh =f\Sh).Y^oWo

AW=^.S.E

Each operation can be carried out simultaneously for all the neurons in the same
layer, but there is a strict sequence of data flow between the layers, which must be
followed. Unix ‘gproff’ results show that, during these simulations, most of the CPU time
is spent on multiplications. The nonliner threshold function simulations are also
computationally demanding, but they are not repeated as many times as the
multiplications. Look-up tables can be set up to approximate the functionality of the
activation functions, but special care is necessary in the implementation of these tables.
A close look at the sigmoid function shows the rate of change is not uniform throughout
this function, with a near-linear transition in the middle, and a strong nonlinear character
at either ends of the function. This characteristic must be preserved on the look-up table
representing the function.

In financial forecasting the Backpropagation model is computationally intensive on
the training stage depending on the data and network size. On the SUN Sparc
workstations, most practical financial forecasting networks can be trained within a couple
of hours. In extreme cases, overnight executions might be necessary due to increased
dataset size, such as the last 10 years daily index of a financial indicator. Although data
can be processed by the network without human intervention, it makes sense and saves
time to carry out a cluster analysis on data to purify and obtain a smaller representative
dataset. A simple data scan can eliminate unusual or corrupted patterns to save time.

77

preventing the network from spending hours on a difficult sample which is impossible for
it to leam.

Usually, neural networks in financial forecasting are not large, the shifting window
technique is sufficient to process data from the last few days or a month, to make a short
term prediction (for the following day). The FTSE prediction system needed a network
with 30 input, 30 hidden and 1 output neurons. The pre-processing and post-processing
operations and graphics display functions are also computationally significant. These
non-neural computations coven finding a maximum or a minimum for an array,
normalising, scaling, transforming, and the graphics displaying of the patterns. The
experience in many simulations is that the graphical tools cannot keep up with the neural
network part of the simulator.

4.4.4. Parallel Hardware Mapping

Two cases are considered for mapping the Backpropagation model onto parallel
hardware.

1 - Fine-grained structural mapping - Assuming there are the same number of
processors as the number of neurons in a network, and as many conununications
channels are available as the number of connections in the network, each neuron can then
be mapped onto a single processor. A central processor can supervise the parallel
execution, and check whether the tolerance test is passed. The outcome of this approach
is massive interprocessor traffic particularly between the processors for the hidden layers
and the output layer. An alternative to this is to accumulate small weight changes and
carry out a batch of weight updates after all the patterns are presented. In fact, the batch
weight update techniques are frequently used to reduce the communications traffic, and
achieve efficient mapping on parallel hardware.

2 - Coarse-grained structural mapping - Considering that there are less processors than
neurons in the system, two types of structural partitionings and subsequent mappings can
be carried out; layer partitioning and network splitting.

Layers of a Backpropagation network represent concentrations of similar
computations on data. All operations taking place within a layer can be executed
simultaneously, as data for each layer are presented at the same time. For example, a
three layered Backpropagation network can be mapped onto a two processor parallel
system with a host. The host would undertake the VO operations and send patterns to the
first processor which is the hidden layer. The hidden layer calculates the states of the

78

neurons and passes them onto the output layer. When the output layer is calculating its
states, the hidden layer can continue with the next input pattern. The overall process
would be a data pipelining process with performance heavily dependent on the
interprocessor communications speed and bandwidth. The pipelining approach could be
effective where batches of recalls or forward passes are carried out, keeping all
processors busy. However, this method cannot provide any speed up in a real-time recall
operation where an output pattern is desired following a single pattern presentation.

The second approach involves splitting the network in a horizontal line (Figure
4.17). This type of mapping creates a data parallel execution and parallel processing
takes place on all processors. There are two problems with this approach. Firstly the
Backpropagation algorithms is a so-called non-local learning rule, where the weight
values depend on parameters other than the immediately connected neuron states. This
necessitates the transmission of the state or error values to all other neurons. In the case
of network splitting these values must be transmitted to other processors to measure
success globally. This introduces inter-processor communications. The second problem
with this mapping technique is that a 100 % load balance between the parallel processes
must be achieved for an efficient parallel executions where no processor stays idle. This
may not be possible all the time, considering networks with odd number of neurons.

Another parallel mapping approach which is useful for training but impractical for
single pattern real-time recall, is called pattern parallelism or training parallelism. This
approach prescribes the mapping of complete nets onto each one of the many parallel
processors. All networks train on different subsets of patterns, occasionally updating the
common weights through a communications mechanism.

The Backpropagation model can be seen as a multi-dimensional feedback control
process with the following functions. Firstly, the input vectors are multiplied by weight
matrices, and the resulting vectors are transformed by a nonlinear function. On the
consecutive layers the same operations are repeated, and finally an output vector is
generated as the response of the system. The output vector is subtracted from a target
vector, an error vector is generated and then multiplied by the connection weights vector
and the result is transformed by the derivative of the nonlinear function. Error vectors
calculated by this process are used to modify the weights matrices.

The biological plausibility of the Backpropagation model is extremely unlikely. It is
more plausible to think of it as an adaptive feedback control mechanism, modifying
internal system parameters to achieve desired outputs. This kind of thinking is more

79

input
laÿer hidden

output

Inputs

hidden
layer

output

O -

Inputs

laVer

output

■ C ^
hidden
layer

Inputs

Figure 4.17. Structural Mapping of the Backpropagation

liberating as it puts the emphasis onto the actual computations rather than the neural
philosophy. The computations involved in the simulations of the Backpropagation model
are a set of vector/matrix operations. By optimising the execution of these operations the
Backpropagation model can be executed efficiently. This thesis strongly supports the
view that the Backpropagation model is a vector-matrix based algorithm with a large
fanin/fanout. In chapter 5, the model is programmed in matrix/vector based
representations, and in the following chapters, these representations are mapped onto
parallel hardware.

4.5. Comparison of the three Models

The three models differ in their training and recall procedures, in their applications
and computational requirements. They show structural differences which are important
for parallel hardware mapping. Table 4.1 shows a comparison between these models in
terms of their structure, learning and recall procedures. In this table, most calculations
are vector arithmetic operations with the exception of activation functions (/) and their
derivatives (f).

The main strength of the Hopfield model is that the Hopfield neurons can operate
synchronously or asynchronously, independently of each other, on binary or continuous
values. The network can be used in optimisation tasks, producing a good solution in a
short time. The main weakness of the Hopfield net is the setting up of the weight matrix.

80

Model Structure Learning rule Recall procedure Error calculation

Hopfield Nets Each node connected
to all others

w =Yj '.i Si=Aio+USjW) E = Y /-S

Self-Organising Map Input nodes fiilly
connected to Output grid

n e t - j y w
j^^=m axinetj)
AWÿ - T\.{Iij-Wff)

net= '^.W
j„^=vaax{netj)

E=I-W

Backpropagation Multi-layer Perceptron AWfi^.S,Æj net=Yj-W
S=f(net)

Ejo=f\net).(Tj-Sj)
E j,= finet).J^.W

Table 4.1. Neural Networks Structure and Properties

Even in the case of successful setting, the number of patterns that can be stored is
limited. In addition to this, Hopfield nets tend to fall into local minima.

The main strength of the SOM is that it is an unsupervised learning algorithm driven
by input data. Real world data can be presented as training data, with the network
adapting itself to changes in the inputs. The parameter selection process for the SOM is
the main obstacle in the design of the applications.

The strengths of the Backpropagation algorithm are proven by its popularity and its
wide use on a range of real world applications. The major weakness of the
Backpropagation model is the initial design of its architecture, which is a problem-
dependent operation involving a series of tests and experiments. In fact, the design of the
network and the selection of the parameters is more of an art than a science.

Research is continuing in optimum neural network topology and parameters, fast
learning algorithms and automatic network design. One way of computationally tackling
this problem is to use multiple neural network architectures.

4.6. Multiple Neural Networks

A large number of real-world applications require the use of hybrid neural network
architectures due to the heterogeneous nature of the problem data. Robotics applications
demand the extraction and processing of multiple sensory information, and the use of this
in simultaneous control tasks [93]. In financial forecasting, many different financial
indicators affect a particular time series. The indicators can be analysed separately and
the results can be incorporated in the final prediction system. In other applications it
makes sense to divide tasks into smaller ones and to use a number of simple networks
[31,100,105,106].

81

The theoretical limitations of understanding a massively large number of interacting
elements is hindering neural network development. Also, it is widely known that large
neural networks computationally do not scale-up. In addition to that, some models are
suitable for solving certain problems. Modular architectures can enhance the
performance of models by integrating these models so they complement each other
[69,75,139]. The Nestor Learning system [4,127] was an early example of using
multiple neural networks in pattern recognition problems.

Network level competition can be used to achieve automatic task decomposition
[80,81]. Jacobs and others [80] demonstrate the use of modular architecture and
automatic task decomposition. They focus on a major problem with the Backpropagation
model, the so-called ‘temporal crosstalk* problem. This problem is manifested as the
inability of the Backpropagation network to leam patterns which produce conflicting
information in the hidden units. A fast learning has been demonstrated through
automatic task decomposition on a modular architecture. Similar approaches have been
used in classification problems [29,30].

Optimum neural network design is another time-consuming problem. Choosing the
correct topology and initial parameters for a network is itself a NP-complete problem.
The complexity is increased especially if general solutions are required for a wide range
of problems. Again, network competition can be used to achieve optimum networks for
a specific problem. A large number of networks can be initialised with different
parameters and the ones which reach a convergence with a good generalisation and
robust performance are chosen. This approach is close to a new computational paradigm;
Genetic Algorithms which itself is a candidate for solving pattern recognition and
optimisation problems.

The brain, which is the most advanced computational device known to humans, is
not homogeneous. In fact, it portrays a modular architecture with task partitioning which
is noticeable at the highest level with its two hemispheres. Different tasks seem to take
place in different parts of the brain. PET (Positron Emission Tomography) scans and
MRI (Magnetic Resonance Imaging) results confirm this claim. Biological evidence
from the brain encourages task decomposition and modularism at network level with
inter-module cooperation and competition. There is neither the technology currently
available to build machines which have millions of interacting processes, nor is there the
expertise to program machines with such complexity. Technological limitations force
the design of modular software and hardware.

82

Modular designs and task decomposition can be used to argue for the design and
development of Hybrid Systems. These systems will be programmable and evolvable,
and will exploit intelligent knowledge-based systems, neural networks and genetic
algorithms combining the best features of all three models [9]. For example, neural
networks are particularly good at knowledge extraction which is the main problem for
building knowledge-based systems. An interesting combination would then be to use
neural networks as the front-end, in knowledge extraction and elicitation for expert
systems [96]. Genetic algorithms can be used to design optimum neural network
architectures through evolution [58,133]. General-purpose parallel hardware platforms
can be used to achieve a parallel evolution in the automatic generation of neural
networks.

An efficient mapping strategy must consider these trends in algorithm research, and
support modularism and parallelism in the four levels of neural network execution: the
application, model, representation and execution environment domains.

4.7. Conclusion

In this chapter, in the form of three case studies, three neural network models and
their overall computational requirements have been analysed. This approach has proved
to be more informative compared with exclusive algorithm analyses. The three neural
network models examined here, show differences in their applications, training and recall
procedures, their structural properties, and in terms of parallel mapping and hardware
implementations.

The Hopfield nets are suitable for auto-associative recall problems. Research is
necessary on this model to find learning or data storage algorithms to fiilly exploit its
potential. The Backpropagation model has proved itself in many commercial
applications. In training, it requires great computational power for realistic applications.
The SOM is a good statistical tool to detect salient features in datasets, automatically
clustering patterns with no prior knowledge about them.

Structural parallel mapping examples shown in this chapter reveal that there is not a
single method applicable for all neural network models. The Hopfield and SOM neurons
are homogeneous, and they can be grouped arbitrarily and mapped onto parallel
processors with varying granularity. The complexity is increased in the case of the
Backpropagation model as different partitioning techniques result in varying load and
communications requirements. The difficulty of designing a generic mapper for a wide

83

range of neural network models is stressed in the variation of structure and properties
during the evolution of these models.

In terms of hardware mapping and implementation, the Backpropagation model is
the most complex of the three models. Its multi-layer structure makes it difficult to
implement on silicon. Neuron by neuron implementation on silicon would be relatively
more expensive due to the complexity of the Backpropagation neurons. Both Hopfield
nets and the SOM have already been implemented onto silicon, and this trend will
continue as the relative cost of hardware implementations is reduced.

The most common aspects in all three models, is that all computations involved are
vector-matrix based operations. The Hopfield net is an association matrix acting upon
noisy, corrupted or incomplete input vectors, settling to a state which represents the
original vector. The Backpropagation model provides hetero-associative mapping
between input and output vector sets, achieving this by a series of weight matrices
between consecutive layers. Finally the Self-Organising Map topologically orders sets of
input vectors on an output grid.

Real world applications involving the three models require conventional computing
routines such as, normalisation, scaling, histogram and graphics display and input/output
procedures. These routines sometimes require greater computational power than the
neural network simulations they support. Again these routines are also vector-based
operations involving parallel arithmetic, search, and graphics display operations. A
General Purpose Neural Computer architecture, optimising the execution of a set of
matrix operations would be valuable in neural network simulations. Chapter 5 presents
MATIJB, a matrix-based library, as a step in this direction.

84

Chapter 5

Neural Network Representation

In this chapter, neural network representation and programming issues
are discussed. Function-oriented, object-oriented and vector-oriented
representation techniques are analysed in terms o f their ability to capture
neural network properties and mapping onto general-purpose parallel
hardware. Based on the analysis, matrix-based C libraries MATLIB and
NETUB are designed and developed to meet these requirements.

5.1. Introduction

Most neural networks today, are simulations on sequential conventional computers,
and some simulations run on parallel hardware. Neural network simulations involve a
two-stage mapping process; firstly the representation of an application as a computer
program, and secondly mapping this representation onto hardware. Neural network
programming languages serve as a medium for these two tasks. The efficiency of
mappings and the performance of executions strongly depend on the choice of the neural
network simulation language. A good simulation language facilitates the programming
task, provides easy access to data and methods, and can be easily mapped onto parallel
hardware leading to an efficient execution.

Application-oriented and algorithm-oriented programming environments often
employ a single programming language for the two mapping tasks. Because of the
difficulty of obtaining generalised features in one programming language, some
environments adopt multiple representations. General programming environments which
aim for generality and flexibility, with high performance-, often use two-level
representations, employing a high-level language and an intermediate-level language.

An HLL serves as a user-friendly programming domain easing the process of neural
network application representation. HLLs are usually supported by graphics application
builders and graphics monitors. An algorithm library containing parameterised models
often helps in the development of applications. Graphics-based and menu-driven
systems appeal to users. They provide a bidirectional medium for neural network
programming, as all actions are answered by graphics-based reactions, easing the task of
mapping a world problem onto a computer. One disadvantage of graphics-based routines

85

is that they are computationally demanding, and they can slow down the execution on
most hardware. What is required from an HLL is that it captures neural-network-
oriented features and provide user-friendly access to models and applications.

The ILL representations on the other hand, determine the efficiency of the potential
execution. They are used in debugging, monitoring and control tasks during the
execution, and also provide an interface between programming and execution
environments. The two-level representation strategy introduces a complication, in that
the ILL representation often has to be automatically generated from the HLL
representation by a compiler, optimiser or translator. ILL representations are either
directly compiled to executable code, or a cross-compiler can be used for execution on
different target architectures. Hardware mappers exploit the ILL representation, so the
efficiency of the mapping and execution directly depends on this low-level
representation. Ideally, an ILL, or a low-level neural network representation supports a
range of hardwares without losing efficiency. The following considerations are
important in the choice of a low-level neural network specification language:

• Machine independence - The specification language should be easily ported and
executed on a number of different target machines.

• Flexibility - The representation should be easily modified and it should meet the
requests from the HLL.

• Clarity and Modularity - Neural network features coded in the representation must
be easily accessed by the user for debugging, monitoring and control purposes.

• Parallelism - The representation must support implicit and explicit control for
parallel execution.

• Efficient execution - The representation must facilitate a fast execution on different
hardwares.

High-level or low-level, there are two alternatives in the design of a neural network
programming language. Either a new programming language is developed and
promoted, or a popular programming language is extended with neural-oriented features.
The design and promotion of a new language is not desirable as it suffers from the "yet
another language syndrome". Users are reluctant to leam a new language for a new form
of computation. This is the reason that most general programming environments use
subsets or supersets of current languages such as Pascal, C or C++. Using C is the most

86

popular approach, widely adopted for its flexibility, availability, and its low-level
features which makes it suitable for exploiting hardware efficiently.

In this chapter, three representation techniques used in neural network
programming, are analysed with simulation examples. The analysis focuses on the
ability to capture neural network properties, generality, flexibility and the ease of
mapping of these representations onto general purpose parallel hardware. As result, a
matrix-based C library MATLIB is proposed, designed and implemented, and the three
models are programmed using the library functions. Using MATLIB functions as
building blocks, NETLIB library is developed which consists of the learning and recall
functions of the three algorithms. As part of MATLIB, a number of data communication
routines are provided to enable parallel simulations and test mapping strategies in the
course of this thesis work.

5.2. Neural Network Representation Techniques

Three different representation techniques can be used in neural network
programming. These are:

• function-oriented,
• object-oriented, and
• vector-oriented representations.

Function-oriented representations primarily focus on the functionality of algorithms.
They are the extensions of the classic algorithmic way of thinking to computer
programming. Function-oriented philosophy has been popularised by a number of
procedural languages such as C and Pascal. Task break-down and parallelism are
feasible within these representations, considering that programs are a list of functions or
procedures scheduled by a flow chart. Function-oriented representations are useful in the
algorithm development stage, but they deny access to the low-level and fine-grained
features of the algorithms which are necessary when mapping onto parallel hardware.

Object-Oriented Programming (OOP) philosophy is one of the recent and most
powerful trends in general computing. It is based on the idea that the world is made of
self-contained objects, with their own methods, and computer languages should preserve
this structure. Currently, C++ is the most popular object-oriented programming
language. It provides a set of classes, as a basis for objects comprising data and methods.
If a design follows the object-oriented philosophy, the resulting C++ programs are
modular, easy to modify and upgradable. The programming task for neural network

87

models is easier using an OOP language as a high-level language, and the resulting
representation also reflects the neural network structure. C data structures can also be
used in an object-oriented manner. An example of this is presented in the section with
simulations using Pygmalion’s nC system data structure. In terms of parallelism, OO
representations have one major drawback; current hardware architectures are not object-
oriented parallel architectures; they cannot match the fine level of neural network
granularity with a large number of communications channels between parallel
processors. The lack of communications facilities hampers the mapping efforts onto
hardware.

Vector-Oriented representations emerged in computing to exploit vector processors
and general purpose parallel hardware. Recently, some general purpose, high
performance commercial programming systems have used these representations in their
low-level languages. An example is the SKY system provided by Sun Microsystems
[114]. This system provides a set of low-level vector/matrix-based instructions in a
library, which are executed on fast vector-matrix multiplier parallel hardware.
Applications are written in a high-level language such as C or FORTRAN, and they are
processed by a compiler/optimiser which identifies loops, and generates the vector-based
intermediate level representation. Executions of these vector arithmetic operations are
optimised on the target architecture. The SKY system is also an example of a two-level
representation which is used in general computing.

In the following sections, programming examples of function-oriented, object-
oriented and vector-oriented neural network representations are demonstrated. The
advantages and disadvantages of each approach are highlighted in terms of their
flexibility, ease of mapping onto parallel hardware and feasibility of automatic code
generation.

5.2.1. Function-Oriented Representations

This philosophy views algorithms as a list of functions or procedures which can be
further subdivided into simpler tasks, until they are directly represented by the
instructions of the simulation language. This approach is not concerned with the way data
are represented, as its main focus is on the methods of processing data.

Typically, neural network data, such as states of artificial neurons, connection
weights between the neurons, input and output patterns, are represented as one or two
dimensional arrays. These arrays can be global or local variables, depending on the

88

language and programming technique used. Local variables and modular designs result in
programs which can be easily modified, expanded and debugged. Most application-
oriented and algorithm-oriented neural network programming environments use C or
Pascal based languages with added neural-oriented features. C algorithm libraries with a
number of customised applications and a set of parameterised functions, provide a sound
basis for neural network programming. C is widely available, well known, provides
low-level features, and is close to the Unix operating system which most high
performance workstations run. C is used in all the simulations carried out in the
structural analysis of the neural networks in chapter 4. As an example of programming a
neural network model in C, the recall phase for the Hopfield model is presented below:

Function-Oriented Programming with C

Although there are many ways of achieving the same result, to program a neural
network in C, typically a pseudocode of the algorithm is written. The pseudocode for the
recall stage for a Hopfield net is as follows:

1 - Allocate memory for input and output patterns, and weights.
2 - Read the fixed weight matrix.
3 - Read an input pattern.
4 - Update the states of all neurons until they are stable.
5 - Output the states.

The fourth step is the core of the Hopfield algorithm. It involves the following
operations; an input vector is clamped to neurons, and all states are updated by
multiplying the current outputs of all other neurons with the connection weights,
summing the results and applying a threshold function to the sum. Then convergence
test comprises the comparison of the current states with the previous states of aU neurons.
When convergence is reached the states are reported as outputs.

A pattern recall function written in C is shown in Appendix A.2. In the listing in
Appendix A.2., the dot_product() function can be executed in parallel for all NEURONS,
in addition to this, the for loop in the function can also be paralleUsed. Finally, the
thresholdO function can be executed simultaneously for aU NEURONS. Task
parallelism is the natural form of parallelism in function-oriented representations. Large
problems can be divided into smaller tasks, and tasks which can be executed in parallel
are identified. By mapping these tasks onto separate processors, a parallel execution can
be achieved. If C procedures are highly interconnected units with little communication

89

with other procedures, a small interprocessor communication requirement can be
expected. But, as the writing of the C procedures are subjective and user-dependent,
there is no guarantee that any task partitioning operation will result in low interprocess
communications.

5.2.2. Object-Oriented Representations

It is widely held that neural networks are hierarchical structures, and this structure
can be reflected in computer programs by using similar data structures. Data structure
based representations are object-oriented representations in terms of their emphasis on
data, rather than functions. One major difference is that object-oriented representations
do not necessarily have a hierarchy, unless specifically enforced. The initial design of
the data structure is important, and a range of neural network models must be examined
to build a generic structure. This structure must cover all models in terms of their
connection topology, data and functionality. The main advantage of this approach is
that, independent of the neural network model, the data structure remains the same. This
makes the monitoring, debugging and control tasks much easier. An independent
graphics program can monitor the data structure during execution and display its data.
Functions at any level of the hierarchy can be fired by using a graphics based execution
monitor. The low-level access to data and functions is advantageous if neurons or
synapses need to be mapped onto fine-grained parallel architectures. Neuron structures
can be accessed and isolated as independent objects with their particular data and
methods.

The Pygmalion programming environment developed a machine-independent
intermediate-level language, nC, for the low-level neural network representation
[18,147]. nC is based on a hierarchical data structure called system which is presented in
chapter 3. Object parallelism is possible with nC and, as part of the mapping
investigations, an automatic low-level object generator codejgen has been developed.
This program scanned the already initialised nC structure and generated all initialised
data structures in an ASCII program listing called nC_code. This list of C data structures
can be compiled and executed using a C compiler, or the data structures can be
potentially mapped onto a fine-grained parallel hardware. The nC data structure
representation is a low-level representation and was designed to be generated by
translating from a high-level language.

90

Object-Oriented Programming with nC

Programming an application with the help of the Pygmalion Graphics Monitor is a
simple task. It involves the calling of the parameterised algorithms from the ILL library
and initialising the data structures. Programmming or modifying an algorithm, and
manipulating the nC data structure, on the other hand, is not a trivial task. The main
difficulty lies in the setting up of the pointers in the hierarchical tree and allocating
memory for corresponding neural network connections. Programming with the nC data
structure is a low-level programming task. It first involves the identification of the
lowest level objects with common functionality. These tasks could be a state-update task
for a layer, or a weight-update operation for all the synapses in the network. Then, a C
function is written following the nC parameter passing convention. Finally, the function
is placed on the hierarchical tree, by setting up the relevant function pointers to it. When
the system is prompted for execution in the highest level, the pointers activate each other
hierarchically, and the C code is executed.

Appendix A.3. shows a function which is written to decrement the distance and the gain
in the SOM. This rule is a simple function that has been made complex by the use of the
nC data structure. It can be argued that nC was not meant to be for code writing, and it
was designed to be automatically generated from the high-level language N. But it was
unavoidable to code in nC in the algorithm development stage for the Pygmalion project.
In practice, the translation requirement from N language, also meant that N had to adopt
the same hierarchical structure, thus making it similar to nC. In terms of parallel
mapping, the nC representation targeted fine-grained, neuron-based parallel hardware
architectures, and it was not suitable for matrix-based general-purpose parallel hardware.
It would require additional modules such as optimiser/vectoriser to extract vectors and
matrices from the data-structure representation. Only explicit parallelism was
accommodated within nC which was applied only to repetitive operations such as for and
while loops.

5.2.3. Vector-Oriented Representations

The development of vector-based neural network programming languages is a
natural step, given the fact that most neural network simulations involve arrays of
patterns, states and weights, and vector operator hardwares are fast, high performance
devices. Vectorisation would ease the conceptual mapping of algorithms to code, and
vector/matrix-based representations would be efficiently executed on parallel hardware.
Defenders of the matrix representation philosophy, hold the view that neural networks

91

are matrix-based computational paradigms because of the large fanin/fanout and the fine
granularity they possess. This is particularly true in the case of the most popular neural
network algorithm; the Backpropagation model, which was analysed in chapter 4. Other
neural network algorithms also involve vector arithmetic operations which can be
represented in a vector/matrix-based language.

As mentioned in chapter 3, the Galatea Neurocomputing project has adopted this
philosophy, and developed a matrix-based intermediate-level language, VML, with the
main objective of exploiting matrix-based general-purpose hardware boards efficiently.

Vector-Oriented Programming with VML

The same steps are followed in the programming of neural network models in C. A
pseudocode is written, which is based on the functionality of the algorithm, and VML
rules are written using VML I/O, control and execution statements. The resulting code is
a compact, C-like program which is easy to code. The coding of the Hopfield, the SOM
and the Backpropagation models took a short time. These VML based simulations ran
successfully, demonstrating the viability of the technique. An example of VML listing is
shown in Appendix A.4.

The main weakness of VML is that it has to accommodate all user requirements in
the language. Therefore, it is in continuous competition with a language like C. The
parser and the interpreter have to be modified every time a new statement is introduced.
As the VML is intended to be generated automatically from V, access to data is not
straightforward from the high-level object-oriented language in which applications are
originally coded. To extract the real-world data, a strategy and a symbol correlation table
must be used every time data is monitored. In all aspects, the VML representation is a
procedural representation with data grouped together in a tightly coupled vector form for
the convenience of fast execution. The neural concept about the algorithm is totally lost
in this representation. As there are no concepts such as a neuron or synapse, this
representation is not suitable for mapping neural networks onto special-purpose, neuron-
oriented, massively parallel architectures.

5.3. MArUB Matrix Library

The analysis of neural networks in chapter 4 indicated that the most common
operations between the three models can be captured in vector-matrix operations. These
operations were mainly vector arithmetic operations with some neural network specific

92

functions applied to vectors. One of the goals of this thesis has been to achieve a generic
representation which is: (i) capable of capturing neural network properties, and (ii)
suitable for general-purpose parallel hardware mapping. Here a matrix-based C library,
MATLIB is proposed to meet these requirements.

An efficient way of developing neural network simulations is to use parameterised
libraries. Source libraries are particularly valuable as they are open, modular, flexible
and expandable. Using C as the source language makes libraries accessible to other
programmers, preventing the repeat of the similar programming efforts. Users can build
their applications easily by calling these routines in their applications. As mentioned in
chapter 2, C Algorithm Libraries provided as part of the major neural network
programming environments are the most popular programming tools. Another strength
of using the library functions is that it is fundamentally an object-oriented approach.
Library functions are multi-purpose modular units communicating with the external
world through a list of parameters.

Simulations in VML (Version 1.0) show that the language is simple, clear and
compact representation of neural network models. The experience with VML showed
that programming neural networks, using matrix arithmetic operators, is easy and
conceptually acceptable. The language can be used for other programming domains with
fine granularity. Furthermore, the VML functions can be optimised for general-purpose
parallel architectures, and executed with a high performance. The main problem with
VML is that it is a new language with a syntax, parser and a set of operators. A set of
matrix-based C functions would have been a better choice for neural network and
general-purpose programming.

MATLIB library functions have been designed exactly for this reason. C is chosen
as the library language for its wide availability and accessibility. MATLIB functions are
C routines, and can be modified and upgraded by anyone with the knowledge of C. The
functions are vector, matrix operators, neural network specific functions and data
communication statements. A complete list of the MATLIB functions and their
arguments are presented in Appendix B.

5.3.1. Functions

An incremental approach has been used in the development of MATLIB. First, the
common routines have been developed which are sufficient to represent the three models;
the Hopfield, SOM and Backpropagation. MATLIB programs for the three algorithms are

93

compact, clear representations which are easy to modify and update. The listings of
these algorithms are provided in Appendix C. The MATLIB functions are divided into
four categories;

• data operators
• arithmetic operators
• neural operators
• communications operators

The data operators are memory management, input/output, data assignment and
copy related functions. Examples are, matrix definition (jnatdej), matrix copy (mcpy),
vector (or row) copy (vcpy), column copy (ccpy) operators. These operators are handled
in a different way on different hardwares. For example, on conventional systems a
matrix assignment operation can be carried out by passing the pointer to that matrix; the
same operation would involve transmitting the matrix data on a distributed memory
multi-processor system. The use of data operators in the three models is shown in Table
5.1.

Mneumonic Description Hop SOM BP
matdef matrix definition / X X
matld matrix load / X X
matsv matrix save / X X
matsh matrix show X X X
vcpy matrix rows copy X X
mset matrix element set X X
sval get matrix element X
mtra matrix transpose X
mran matrix randomise X X

Table 5.1. The use of MATLIB data operators

The arithmetic operators used by the three algorithms are; matrix addition (madd),
matrix subtraction {msub\ matrix multiplication (mmul) and a number of submatrix
versions of these operators, which can operate on submatrices within given row or
column references. The use of arithmetic operators are presented in Table 5.2.

94

Mneumonic Description Hop SOM BP
mmul matrix multiplication / X
vadd matrix row addition X X
msub matrix subtraction X X
vsub matrix row subtraction X X
memu matrix element multiplication X
mmax matrix maximum X
mmin matrix minimum X
mobs matrix absolute X
mavg matrix average X X
mscm matrix scalar multiplication X X

Table 5.2. The use of MATLIB arithmetic operators

In addition to the above, a number of functions are developed to match the so-called
‘neural’ functions of the three algorithms. These are: application of tangent hyperbolic
or sigmoid type of logistic functions, or their derivatives to elements of a matrix,
calculation of RMS of a matrix {mrms\ and the SOM specific lateral matrix update mlat
function. Table 5.3 shows that the number of neural operators required to program the
three algorithms is relatively low, and this is an advantage in the realisation of these
functions on the potential hardwares.

Mneumonic Description Hop SOM BP
mtan apply tanh to matrix X X
dtan apply derivative tanh to matrix X
mrms matrix root mean square X X
mlat lateral weight update for SOM X

Table 53, The use of MATLIB neural operators

The aim of this separation of data, arithmetic and neural operators, is that these
different categories of operators can be executed in different parts of a potential Virtual
Machine. The Communications Units of a VM is the place for the data operators
execution. The arithmetic operators can be optimised on the specific Execution Unit or
the accelerator board of a VM. In fact, current general-purpose hardware developers
provide most of matrix arithmetic functions as library routines. Intel 80860 and
TMS320C40 Digital Signal Processors are such examples. The main difficulty is in the
execution of neural operators. Currently hardware developers are working on the
efficient implementation of these functions of parallel hardwares. As part of the Galatea

95

Project, Siemens and Philips are currently developing Virtual Machines for the efficient
execution of these library functions. For the time being the neural operators can be
executed sequentially on the local CPUs of VMs. This separation of neural operators, is
the justification for the Virtual Machine philosophy of local CPU and parallel accelerator
board combination.

In this thesis simulations of MATLIB programs are used for assessing mapping and
execution strategies. Developing MATLIB simulations involve the following steps;
programs are edited, using available library functions, then they are compiled by using
standard C compilers, and finally run like any C program. As MATLIB is an open-
system, new routines can be added easily, using the same parameter passing mechanism.
When programming a new algorithm, if a specific matrix operation is not in the library,
either the library is extended, or normal C functions can be used in conjunction with the
MATLIB operators. MATLIB programs can also be ported onto different target machines
by using cross-compilers generating hardware-specific code. In addition to eliminating
parsing and interpreting, the use of C libraries also meant that debugging is a known
process for the standard C programmer.

5.3.2. Parallelising M ATLIB

A number of data communications operators have been included in MATLIB to
enable parallel simulations on the Local Area Network at UCL. Standard TCP/IP sockets
have been used to develop a number of simple functions that can be called in C programs
with MATLIB functions. These functions are used to open a server, to connect to an open
server, send integer or double precision values or matrices through the open server.
Workstations connected to the Ethernet network can then be used, as parallel processors
or as simulations of Virtual Machines.

The following two functions are developed to open a socket by the server, and to
connect to an open socket by the clients;

• opensocket (socket_array_addr, total_VMs); This function opens a TCP/IP
communications channel, waits for the number of clients defined in the total_VM
and returns the socket addresses in the integer array socket_array. It is used by the
server or the scheduler program. Each client can be then addressed using array
reference, such as vm[I], or vm[2] etc.

96

• consocket (socket_id, client_no); This function is used by the clients to connect to
the already open socket. The socket_id is used to address the scheduler throughout
the program. Parallel programming with MATLIB is simple.

A list of the communications operators are provided in Appendix B. These
functions are blocking get_ and put_ statements as they block program flow until data are
read or written respectively. put_ statements don’t block the execution until the buffer is
full, but all get_ statements are blocking they halt operation until the request is satisfied.
In the use of the get_ statements, these statements must be matched by put_ statements at
the other end.

In addition to the blocking and matching data exchange commands a passive server
has also been developed which uses the following routine.

• servis (socket_id); This routine in a loop scans all open socket links and checks
whether there are any data transfer requests, servis function needs a non-blocking
read statement. A blocking read would result in the halting of all conununications
between the message passing modules.

Clients use the passive server with the help of a new data transmission command:

• post (socket_id, destination, matrix_name); This command uses the open socket to
send data to a third party using the passive server. The passive server parses the
post request and forwards data to the desired destination.

5.4. A®ÏX/iB Neural Network Library

The MATLIB library functions are extended to a parallel neural network library,
NETLIB. This incremental approach of building high-level libraries from simple
building blocks is a modular and plausible method. The library allows neural network
functions to be called from C programs by setting up a number of parameters, without a
detailed knowledge of neural network progranuning. Currently, NETLIB consists of the
recall and training functions of the Hopfield, the SOM and the Backpropagation models.

hrecall (Inputs, Weights, Outputs, Iterations);

The Hopfield recall function requires Inputs and Weights matrix data structure pointers,
and the maximum number of iterations allowed for convergence of a single pattern. The
Outputs matrix contains the system’s response.

97

slearn (Inputs, Weights, Outputs, GridDimension,
Iterations, DisStart, DisStep, DisEnd,

GainStart, GainStep, GainEnd);

srecall (Inputs, Weights, Outputs);

These two functions are designed for the learning and recall phases of the SOM. The
slearn function requires the Inputs, the initial Weights matrices and a number of
parameters for network training. These parameters are the dimensionality of the output
grid, the maximum number of training iterations, the start, decreasing step and the end of
the neighbourhood distance, the start, decreasing step and the end of the gain (or the
learning rate). The trained weights are obtained in Weights matrix and the system
response for given Inputs are returned in Outputs. The srecall^ on the other hand requires
only Inputs and Weights matrices, and return the Outputs. The topology of the network
is hidden in the dimensions of the matrices involved in the recall procedure.

bplearn (Inputs, Targets, Weights 1, Weights!,
Iterations, Gain, Momentum, Tolerance);

bprecall (Inputs, Outputs, Weights 1, Weights!);

Tuned for a three layered Backpropagation topology, bpleam requires. Inputs, Targets
matrices, initialised weight matrices (Weights 1, Weights!), the maximum number of
Iterations, the Gain (or the learning rate), the Momentum term, and the Tolerance level
for error in learning. The weight matrices could be either randomised values for training
or partially trained weights for retraining. After the training the network’s response can
be obtained by calling the bprecall function, which returns Outputs matrix.

As the algorithm library functions are built by using the MATLIB functions in the
first place, the MATLIB functions can also exploit general-purpose parallel architectures.
Complete networks can be mapped onto independent processors or VMs which are tuned
to execute matrix-based arithmetic operations. Three levels of parallelism can be
realised by using the NETLIB functions together with parallel MATLIB functions. Firstly,
on the highest level, NETLIB functions can be executed in parallel by mapping complete
networks onto parallel processors. Secondly, on the intermediate level, MATLIB
functions within each NETLIB function can be parallelised. Finally, at the operation
level each MATLIB function can be executed on a parallel systolic array of processors.

98

Exploiting the highest level parallelism, complete networks can be executed in
parallel or data can be pipelined through a series of neural network algorithms. NETLIB
allows various combinations of networks to be built and experimented on as hybrid
neural networks. One major gain can be made by using network level parallelism: the
problem of neural network design can be computationally solved. This is done by
simulating a number of parallel networks initialised with different parameters, competing
to solve the same problem. As a result of this evolutionary competition, optimum
network design could be achieved. Similarly, parallel networks can be trained to
specialise in different parts of a complex training dataset, thus reducing the training time.

5.5. Summary

In this chapter, a number of neural network representation techniques have been
analysed with programming examples, and the strengths and weaknesses of each
approach were discussed. Matrix-based C hbraries have been put forward as clear,
modular representations for neural networks, facilitating mapping and efficient execution
on high performance, general-purpose, parallel platforms. C libraries MATLIB and
NETLIB have been designed and developed and the three major models have been
simulated using the functions of these libraries. The analysis and discussions in this
chapter conclude that:

Function-oriented programming techniques represent algorithms as a sequential set of
tasks or procedures. Their use is widespread in the test and design stage of algorithms.
In this class, C is the most popular neural network programming language amongst
programmers. The power of C stems from its availability and the popularity of its low-
level features. Using these low-level features, it is possible to program in a function-
oriented or object-oriented manner.

Object-oriented representations provide a conceptually plausible framework for neural
network programming. Object-oriented programming languages are suitable as high-
level languages providing a user-friendly environment for programming. Most high-
level languages are based on the best known OOP language C++. A less pure approach
is to use hierarchical data structures and to build a generic neural network tree structure,
consisting of layers, clusters, neurons and synapses. In fact, C++ provides a pre­
processor which translates objects and classes of the language into C data structures. The
C representation is then compiled and executed on a sequential execution environment.
A new trend in this area is towards parallel object-oriented languages that allow users to
control parallelism explicitly or implicitly. Object-oriented and data structure-based

99

representations facilitate mapping neural networks onto neuron-based massively parallel
architectures and special-purpose neurocomputers.

Vector-oriented representations capture properties common to most neural network
algorithms and provide a suitable environment for executions on general-purpose
neurocomputers and fast vector based parallel architectures. Galatea’s VML is a good
example, but it suffers from "yet another language" syndrome. MATLIB on the other
hand is similar to VML, with the added advantage that it provides flexibility and openness
as it consists of a set of C functions. MATLIB functions are studied in four categories
(Appendix B). Data and communications operators can be implemented on current
hardwares. Most matrix arithmetic operators are provided by parallel hardware
suppliers, and the high performance execution of neural operators can be possible on
programmable parallel processor arrays. The three neural network models which are the
focus of this research, have been simulated using the MATLIB functions (Appendix C).
The MATLIB functions are grouped together forming a high-level library, NETLIB,
which facilitates neural network programming. Parallel features of MATLIB enable the
testing of parallel mappings and simulations on a SUN LAN. Parallel simulation results
from this environment, are presented in chapter 8.

The design and development of MATLIB meets some of the objectives set for this
research work. MATLIB captures properties common to the three models, it is flexible
and modular, and it promises a high performance execution, through automatic mapping
on general-purpose parallel hardwares which is the main focus of research.

100

Chapter 6

Mapping Strategy

This chapter presents motivations and design considerations for a generic
Mapper. Mapping techniques are reviewed, and computational
optimisation is chosen as a general and flexible strategy for mapping
neural networks onto parallel hardware. A Computational Analysis Tool
is designed to detect parallelism in MATLIB representations, an
Automatic Parallel Mapper is put forward to automate mapping.

6.1. Design Considerations
In the wake of proliferating neural network models and applications, current

sequential hardware platforms are not able to match the increasing requirements for
faster processors and larger storage capacities. Using parallelism, general-purpose and
cost-effective execution of neural networks can be achieved. A major difficulty in this is
the parallel programming or mapping onto parallel hardware. Ultimately, what is desired
is a mapper with a generic mapping strategy which is capable of automatic generation of
parallel code from sequential representations. The following considerations are
important in the design and implementation of such a mapper.

High Performance - Achieving high performance is the first objective in the design of a
mapper. The high performance requirements vary in the training and recall phases of
neural network simulations, depending on the data size, the model and the problem
domain.

In training, fast convergence is required, especially in the research and development
area, where a series of tests is carried out to establish, verify or benchmark a model or an
application. Financial forecasting applications involving real-time training are such
applications, as networks are expected to adapt and respond appropriately. For example,
financial forecasting simulations with the Backpropagation model, reported in chapter 4,
require the testing of many network configurations and parameters until acceptable
results are obtained. This is partly because of the difficulties in setting up the correct
parameters for the Backpropagation model, and partly because the Backpropagation
model is notoriously slow in training. Indeed, most neural network simulations are
computationally demanding during training due to the differential equations involved in

101

their weight update routines. These equations are often expressed as difference equations
in computer simulations which require repetitive operations. Fast processors are needed
to satisfy this computational demand. The high level connectivity of neural network
architectures are often simulated on conventional computers by using Random Access
Memories. Large and high speed RAMs are necessary to improve the performance of
simulations on these machines [6]. In addition to these requirements, simulations on
distributed parallel systems require high-speed, wide-band interprocessor
communications links.

In recall, real-world problems often require a real-time response. This is a level of
performance which is acceptable to humans. A pattern is presented to a trained network,
a single pass execution of the network takes place and a quick response is expected.
When there are many patterns, the accumulative performance is also needs to be quick.
Vision and speech applications are particularly demanding in recall, as networks must
respond in very short periods. A neural network speech recognition system has to
correctly recognise speech within milliseconds, otherwise the solution would be
worthless. Vision problems involve the processing of large grids of data matrices as
patterns for neural networks. Another demanding example is the real-world
implementation of the Hopfield pattern recognition application, reported in chapter 4.
The telecommunications system implementation of this application requires convergence
rates in recall, in the level of milliseconds or microseconds.

Generality - The second consideration is the generality of the mapping approach. A
proposed mapping strategy must be applicable for a range of neural network models,
applications and parallel hardware platforms. The strategy should also be easily
extended to other neural network models and applications, and onto heterogeneous
hardware platforms. If the strategy is general enough, it could be applied to fine-grained
non-neural network applications such as gr^hics-based problems.

Parallelism - High performance must be achieved through the efficient exploitation of
parallel resources. Three types of parallelism which are applicable to neural networks
are considered; pattern parallelism^ data parallelism and task parallelism.

Pattern parallelism, also called training parallelism, is a way of speeding up the
training process when large datasets are involved. Large datasets are divided and
distributed over a number of parallel processors, which run identical neural network
simulations. This method is applicable to a number of models which can carry out batch
weight updates, during training. With the batch updates method, the weight changes are

102

accumulated until all patterns are presented, then the changes are averaged and the
update takes place. In a parallel system, each network can be trained on a subset of data,
on an independent processor which communicates only the weight changes with a central
processor, at regular intervals. As a result, a 100% parallel load balance can be achieved
with little communications requirements. But this method cannot be applied to all
models as it relies on batch weight updates, and this form of parallelism cannot be used
in real-time recall operations.

Data parallelism involves the partitioning and distribution of the neural network
structure. Structural partitioning examples shown in chapter 4 are examples of this type
of parallelism. Object-oriented representations and fine-grained parallel hardware
platforms are more suitable for data parallelism, where objects or groups of objects from
the representation domain can be mapped onto message-passing, parallel distributed
processors.

Task parallelism, on the other hand, is the natural consequence of using function-
oriented representations. These representations can be parallelised by detecting
concurrent, independent task paths and generating task parallel or pipelined code. Due to
the data dependencies between tasks, this type of parallelism is more suitable for coarse­
grained parallel architectures, where groups of tasks can be pipelined through the parallel
processors. Although, it can be useful in training, its application to the recall phases is
limited. Data parallelism and task parallelism are examined further in this chapter and
communications costs for these types of parallelisms are parameterised.

Scalability - Increasing the number of parallel processors in the system should result in a
faster execution.

Flexibility - Mapping and execution strategies must be flexible for update, modification,
future expansion and manipulation by the user.

Modularity - Another consideration is the modularity of the mapping/execution strategy.
Applications which require multiple neural or hybrid solutions are recently on the
increase. A modular design would allow the interfacing of multiple networks, genetic
algorithms and expert systems in a framework as independent and integrated modules.
Modularity is necessary both in software and hardware environments, and the mapping
strategy must adopt and exploit this.

Automation - The final consideration is to achieve the parallel mapping automatically.
This is particularly challenging considering the number of models, software

103

representations and hardware platforms. Various degrees of automation can be
considered, such as manual, semi-automatic or user directed mappings which may be
necessary in some cases, but a fully automatic mapping, resulting in high performance
parallel execution is the ultimate target.

6.2. Mapping Techniques

A number of research groups have mapped popular neural network models onto
general-purpose parallel processors. These hardware platforms include massively
parallel processor arrays, one and two dimensional systolic arrays. Digital Signal
Processors (DSP), Transputer arrays, and hypercube processor architectures. Most of this
previous work involves mapping specific models onto specific hardwares aiming for high
performance. The Backpropagation model is the most popular model and has been
simulated on a number of parallel hardware platforms.

The Backpropagation model has been simulated on an SIMD architecture, the
Connection Machine, and later, on its improved version CM-2 [155]. Simulations on
CM-2 make use of the 2 dimensional, nearest neighbour communication link facility
provided by the system. Similarly Watanabe et al. reported an implementation of
Backpropagation on the massively parallel cellular array processor AAP-2 [149], which
is also a 2 dimensional, 256x256, mesh-connected array of processors. The performance
of AAP-2 on the Backpropagation model reaches 18 MCPS (Million Connections Per
Second). Both techniques distribute the Backpropagation neurons onto SIMD processors
are examples of structural or data parallel mappings. Other SIMD examples are the
implementation of the Backpropagation model on the CNAPS Neurocomputer chip [109]
and HNC’s work on linear floating point array SNAP machine [111].

One of the early reports of successful mapping of the Backpropagation model onto a
MIMD processor array, came from Carnegie Mellon University [120]. This work
reported the mapping of a Backpropagation network onto a linear, 10-processor array
Warp machine. The results show the simulator is able to perform at 17 Million CPS.
Two different mapping techniques have been used on the Warp machine; the first one
involves the partitioning or spatially mapping of the Baclq)ropagation network structure,
and the second technique involves pattern parallelism, which reduces the training time
considerably. In this case, the dataset is divided into 9 subsets and distributed over 9
Warp processors. Each one of the 9 processors runs identical Backpropagation networks,
while the 10th processor updated the global weights and pumped the new weights
through the network.

104

An interesting example of the parallel mapping of the Backpropagation model is the
distribution of the network over the Intel iPSC/860 hypercube [79]. The network
partitioning (data parallelism) technique is applied onto the MIMD architecture of the
Intel machine. An increase in the number of processors results in a higher performance
reaching 11 MCPS with 32 processor. This work also reports complications in data
parallel mapping of Backpropagation networks with odd number of neurons, because of
the difficulties in achieving a load balance. Another example of mapping on the Intel
iPSC/2 machine focuses on the decomposition of networks based on a computational
load analysis [56].

A number of research groups have mapped Backpropagation networks onto
general-purpose, high performance, digital signal processor (DSP) arrays. Iwata et al.
report an implementation of the Backpropagation on a 4 DSP ring coupled architecture,
Neuro Turbo [78], which is an neural network accelerator board for the NEC personal
computer series PC98. The mapping technique focuses on the mathematical equations
involved in a Backpropagation simulation. The equations are distributed over the 4
processors and executed in parallel. The 4 processor system produces 2 MCPS, but the
system is scalable and produces 1.8n MCPS for each one of the n processors in the
system.

The self-organising feature maps have also been mapped onto parallel hardware.
One of these mappings is an example of pattern parallelism [103] where a training
dataset is divided into 10 processors of the Warp Systolic computer. This work adopts
the batch-weight update method for the SOM to reduce the interprocessor
communications load. It is also reported that this approach sometimes produces
unexpected results, such as maps folding, instead of an orderly distribution of input
vectors in the output grid. Another example of mapping the SOM is an attempt to
parameterise the mapping process [68]. It involves structural partitionings similar to the
mappings suggested in chapter 4. One-dimensional and two-dimensional processor
arrays are explored, and the work shows that the system scales for large networks.

Transputers have been used in a number of topologies as parallel hardware
platforms for neural networks [44,112,113,154]. The SOM has been mapped onto
Transputer arrays [136]. This work makes use of 16 Transputers in a ring topology; the
system is said to be scalable, as the number of Transputers increases, the system
performance increases.

105

Hopfield nets also have been mapped onto Transputer-based neurocomputers
[83,138]. These simulations use structural network partitioning techniques and distribute
nodes of the output grid across a number of processor arrays.

Conclusion

These techniques are model-, hardware- and sometimes application-specific. Some
generic approaches have been suggested [94,95], but they do not address generic
representation issues. Most of the techniques achieve a high-performance by partitioning
neural network structures, or dividing training patterns to identical neural networks
running on a number of parallel processors. Sometimes these mapping techniques
modify algorithms, so interprocessor communications are reduced. These techniques are
not general, flexible, nor can they be automated. Following the neural network analysis
in chapter 4, and the assessment of representation techniques in chapter 5, this thesis has
established a matrix-based generic representation for a range of neural network models
and applications. This generic representation is now supported by a generic mapping
strategy.

6.3. The strategy
The mapping strategy cannot be seen in isolation, as it is closely linked to the

execution and the representation strategies.

Execution Strategy - In chapter 2, two possible paths for neural network execution
were presented; special-purpose and general-purpose neurocomputers. Special-purpose
neurocomputers often emulate the neural features on hardware, aiming for high
performance for specific models and applications. General-purpose neurocomputers, on
the other hand, provide a high performance execution for the computations involved for a
wide range of neural network models and applications. The general-purpose execution
philosophy is more general, flexible and cost-effective.

The execution strategy adopted in this research is based on exploiting general-
purpose parallel processors in the execution of neural network computations. The overall
system is a GPNC, with a comprehensive programming environment and a number of
independent, high performance parallel processors. These general-purpose modules
contain local memory and accelerator board-based processors, which communicate
through a message passing protocol. A bus communications architecture is presumed as
it would provide the most flexible interprocessor communications scheme. The system

106

scales well; ie when the number of processors are increased, the system performance also
increases.

Representation Strategy - The neural network analysis in chapter 4 shows that the
most common operations in neural network simulations are computationally intensive,
repetitive multiplication and addition operations, with some neural-specific functions.
Most of these operations could be abstracted in a vector-oriented representation. In
chapter 5, a matrix-based library was designed to show that most neural networks can be
represented using simple vector/matrix arithmetic operations. General-purpose
neurocomputers provide high performance execution platforms for these vector/matrix
operations. Using a number of parallel general-purpose devices to increase performance
is a cost-effective and scalable approach. This solution requires efficient mapping
strategies to partition and distribute neural network representations across a number of
parallel modules. The main duty of a mapper is to exploit these increasingly parallel
environments. Matrix-based representations have been chosen as they are able to capture
computationally intensive neural and non-neural characteristics, and they are suitable for
general-purpose parallel hardware platforms.

Mapping Strategy - The mapping strategy is to design a mapper as a computational
optimiser process aiming for a high performance, general, flexible and efficient
execution. Although the strategy is global, the mapping efforts in this thesis focuses on
the optimisation of the use of a small number of powerful parallel computers, as modules
of a general purpose neural computer. This mapping strategy has a number of
advantages. The main advantage is that it is the most general approach, ie the strategy
can be applied to other problems with little change. Secondly, once the problem is
defined as an optimisation problem, a number of optimising approaches can be applied.
These solutions range from the straightforward computational cost analysis to the use of
neural networks or genetic algorithms. Parallelism introduces a new computational cost;
communications costs. The optimiser mapper aims for a high performance execution by
minimising:

1 - Processing costs through achieving a load balance.
2 - Communications costs.

The mapper achieves its task by projecting many possible partitionings of the neural
network representation, deciding on an optimum partitioning and distributing the
representation onto parallel hardware. The projection operation involves the calculation
of potential processing and communications costs for the possible parallel mappings and

107

execution.

This chain of execution, representation and mapping strategies can be viewed in the
context of a General Purpose Neural Computer. This framework contains a coarse
number of Virtual Machines, and each VM contains a local CPU and a fine-grain parallel
processor array. Parallel mapping is necessary in both levels: (i) at the high level, neural
network representations are mapped onto a number of VMs, and (ii) at the low level,
within the VMs, matrix-based instructions are mapped onto a parallel processor array.

The mapping strategy developed in this thesis aims to partition neural network
representations to a coarse number of parallel VMs. Although similar requirements are
valid within the VMs, this level of mapping is a hardware design issue, as it involves the
optimisation of the matrix-based operations on parallel processor arrays with specific
memory and communications characteristics.

Parameters of the Mapper

A number of parameters play an important role in the mapping decision for
parallelism. These parameters are application, model, representation and hardware-
related.

• Application-related parameters are directly linked to the problem domain. Some
problems require single domain neural networks, and others can be solved on multi­
domain, modular or hybrid systems. As a result, parallelism may be required at the
highest level; the application or the network level. Cooperating or competing networks
are examples where parallelism is required at this level.

• Model-related parameters are hidden in the connectivity, functionality and
sequentiality of neural network algorithms.

Connectivity - of a neural network can be treated separately from the functionality
of the network. It is the definition of rules relating to operations such as copying or
modifying data, between the different parts of the network. For most algorithms, the role
of connections is a simple copy operation, if the multiplication by weight operation is
included as part of the processing element’s functions. In pruning and growing
networks, the connectivity is treated as an active object with a capacity for expansion and
self-modification. This approach also allows connectivity to be more complex than a
copy operation. In the case of matrix-based representations, the connectivity information
is expressed in the dimensionality of the matrices that describe the network topology, and

108

these matrices are treated like any other data matrix.

Functionality - describes the operations involved within the processing elements or
the nodes of a neural network. These operations may be simple scalar arithmetic
operations or complex functions depending on the complexity of the algorithm. In
hierarchical or object-oriented representations, functionality can be described in various
levels of granularity. Matrix-based representations focus on the overall functionality of
the algorithms, rather than the fine-grained description of the processing elements.

Sequentiality - defines the temporal relationship between different functional
modules. This relationship is often implicitly expressed in the order of the instructions in
computer simulations. In C, VML and MATLIB representations the program flow
indicates the sequence of instructions. In contrast to sequentiality, parallelism can be
instructed either explicitly, or sequential programs can be analysed, concurrent paths are
detected and parallel sections of code can be generated. "

• Hardware related parameters comprise; granularity, communications scheme, and
processor speed and memory.

Granularity - describes the hardware platforms with the number of processor they
contain. On the one extreme, there are massively parallel architectures comprising
hundreds of simple processors, on the other, there are coarse-grained or single processor
architectures.

Communications Scheme - is possibly the most important parameter in the parallel
mapping. The interconnection topology of the parallel processors, communications
bandwidth and speed must be evaluated in parallel mapping. These characteristics can be
obtained from the manufacturers.

Processor Speed and Memory - directly determine the efficiency of the execution. On a
parallel architecture, the processors’ performance, local memory capacity, and memory
access times must be considered. These features are also provided by the manufacturers.

6.4. Cost of Parallelism

Data and task parallelisms, are discussed below in terms of the communications
costs they introduce, in an attempt to parameterise these costs and automate mapping
decisions.

109

Data Parallelism

A data partitioning example, to describe the communications costs, is as follows.
Let us consider a matrix operation involving the element by element multiplication of
two matrices, executed on sequential hardware. This operation has fine-grained
components such as elements of the first matrix, and the elements of the second matrix
that are multiplied. The matrix operation can be separated into subcomponents involving
a number of multiplications of the submatrices down to the element level, which would
involve the multiplication of two scalars. The submatrix element multiplication
operations can be distributed and executed simultaneously on a number of parallel
processors, as they don’t have data dependency. The results can be reassembled
producing a single result matrix, which would be identical to the result obtained by the
sequential execution. If the operation can be evenly chopped and distributed, a balanced
load on similar parallel processors would take an equal amount of time. The distribution
of the subcomponents and the reassembling of the results would be the communications
costs on the parallel execution (Figure 6.1).

tIO t03 t30toi t02 t20

Server

Figure 6.1. Communications Costs in Data Parallelism

To parameterise the problem, consider that a matrix operation takes T seconds on a
sequential computer, and the distribution of the submatrices onto 3 identical parallel
processors takes ^oi, 0̂ 2 , hs seconds, respectively (Figure 6.1). Assuming
divisibility by 3, a parallel execution on similar processors would take T/3. Finally,
reassembly costs for the results are fio, t 20, and 3̂ 0 * The total computational cost for the
parallel execution can be estimated as;

^ = ^ 0 1 + ^ 0 2 + 0̂3 + (T/3 - to2 -^03) 4-̂ 10 4- 2̂0 + ^ 3 0

Depending on the total cost, a decision can be made to partition or not to partition the
instruction into parallel components. Although a sequential server is assumed in this
example, a concurrent server would present a similar problem. In that case, the

110

simultaneous transmission of the submatrix data from the host to/from the parallel
processors must be considered, and these would be constrained by the bandwidth limits.

Task Parallelism - Pipelining

Instruction pipelining is a way of speeding up repetitive operations. It is used
extensively on recent high performance hardware platforms such as RISC architectures.
A sequential program can be pipelined through a linear array of processors. A pipeline
can be organised on systolic array processors with one instruction per processor, or data-
independent sections of code can be identified and mapped onto each processor of the
array. There are two considerations for setting up a pipeline:

1 - The section of code must have a repetitive set of operations.

2 - The section must have one-directional data-flow.

Suppose that a section of code containing 3 instructions, is repeated N times, and it
has only a forward data-flow. Assume that each instruction on the sequential host takes
TI, T2 , and T 3 seconds. Repeating the executionN times takes:

iV* (7 1 + 7 2 + ^ 3) seconds

Let the communications costs for the transmission of data and arguments between the 3
processors and the host, be 0̂ 1 , ^1 2 , ^ 2 3 and ^ 3 0 (Figure 6.2). Assuming all processors
and the host are identical and processing costs are bigger than communication costs, the
pipelined execution would last:

= ^ 0 1 + ^ 1 + ^ 1 2 + ^ 2 + 2̂3 + ^ 3 + 3̂0 + (^ - 1) * max (T2 , T3)

The partitioning/mapping decision can be based on this calculation. An even load
balance, coupled by minimised communications requirements can result in reduced
execution times, especially when a high repetition rate {N) is involved. Loops with
reverse flow data paths cannot be pipelined, as the beginning of the loop requires data
from the end, and this would block the data flow in the pipeline.

Both types of parallelism can be guided by explicit instructions from the
programmer who knows a near optimum partitioning. An example of this is, the nC PAR
statement which instructs the compiler that the following operation can be executed in
parallel. Alternatively, in task mapping, vectorisers, compilers or optimisers can be used
for the automatic generation of parallel code from sequential representations. Fully

111

t30t23t12toi

Server

Figure 6.2. Communications Costs in Task Parallelism

automatic mapping is one of the objectives of this thesis. Based on the cost analysis
calculations outlined above, a Computational Analysis Tool and an Automatic Parallel
Mapper are put forward to achieve automatic mapping.

6.5. Computational Analysis Tool

As the basis for parallel mapping is the computational execution cost, a
computational analysis tool (CAT) has been developed to calculate all aspects of
processing and communications costs. Using this tool, a line by line, and overall cost
profile is generated without executing the code. The profile can be used as the basis for
data or code partitioning for data parallelism or instruction pipelining.

To profile MATLIB programs, first, a computational costs lookup table is set up by
executing MATLIB functions on the potential hardware, and the processing cost for each
call is modelled. After this, CAT can estimate the computational cost for any algorithm
as long as the algorithms are written, using MATLIB in a restricted syntax format. These
restrictions are applied to ease the parsing, and to be able to calculate computational
costs during compilation time. Below are the list of these constraints on the MATUB
definitions which must be followed for processing by CAT:

1 - Programs must be written by using MATLIB functions. If new matrix operators are
added to the library, their estimated unit computational costs on the potential hardware
must be added to the computational look-up table.

2 - Programs must be written in single C main function listings, with no rule hierarchy.
Data definitions and execution statements must be kept on top of the the same file.

3 - Each MATLIB (or C) statement must be typed on a separate line. This is a requirement
to ease the parsing operation, to be able to generate a line-by-line computational profile

112

and to allow a line-by-line code partitioning for task parallelism.

4 - Only ‘for’ loops with constant loop indices are allowed. These constants can either be
defined at the top of the file as ‘int’, or scalar values can be used directly. This enables
the calculation of the number of repetitions involved in each loop. In fact, this is not too
restricting, as in practice, most of the loop indices relate to the network^topology which is
defined at the beginning of the execution. Often, the only unknown loop parameter is the
number of iterations to reach the convergence. This is not a big problem, as a large
enough number of iterations can be assigned at the beginning and the loop can be broken
if the convergence is reached, earlier than estimated.

5 - Only ‘if’ control statements are allowed. This is often sufficient for checking
convergence and quitting the execution when convergence is reached.

6 - ‘for’ loops and ‘if’ control statements must be opened with ‘{’, and ended with
operators which must be typed on a separate line.

CAT is a simple simulation tool which calculates computational costs based on
given criteria. It estimates sequential, data parallel or task parallel costs, following the
cost calculations outlined in section 6.3. CAT has the following functional modules.

• MATUB Parser
The parser is a C program module, which scans a MATUB program, identifies
constants, matrices, loops and MATUB functions. Only matrix operations are
examined, as these are the main bulk of neural network computations and
communications. The parser equipped with the MATLIB calling protocol, identifies
which variables are read and which are written at each program line. As a
convention, the first arguments are always the destination and these variables are
registered as written by the calling function. The records are used in the variable
analysis to generate data dependency paths which are necessary for partitioning.
The ‘for’ loops are parsed and registered into loop data structures with the starting
line, the ending line and the number of iterations involved. The parsing of the ‘for’
loops require the parsing of the ‘if’ statements as they share the common closing
operator

• Loop Analysis
Loops are essential for neural network programs as all neural network programs
contain repetitive operations. The number of repetitions in any line of the program
can be calculated by parsing the loops, and this repetition value can be used as a

113

coefficient to calculate the computational cost for the line and the total cost for the
program. The same repetition value is also used to calculate communications costs
in the case of splitting the data or the program in a specific line. But the loops have
a much more important task than this; they provide reverse data flow within the
program by carrying data values from later stages to the previous lines. This is the
case when a variable is first read within a loop, then written somewhere else within
the same loop. This will be further explained in the variable analysis.

• Variable Analysis
As MATLIB programs are listings of C statements, any partitioning technique must
identify the concurrent and independent data flow paths. Normally, a program with
no loop statements would be a series of data write operations followed by a read,
further read and write operations. Loops operations complicate this straightforward
data flow. The variable analysis routine is responsible for the generation of data
paths which are dumped for analysis by the programmer. These paths are labelled as
forward paths which show variables which emerge at certain lines of the code as a
result of a write operation; they are read, or read and written in the following lines.
Reverse or backward data paths involve variables read and written at the early
stages of a loop, then rewritten in the same loop. So the loop structure carries the
new data to the beginning of the loop. Forward or backward, the data dependency
is very important if program or data partitioning and parallelism are considered.

The Computational Analysis Tool provides the following information about the
potential execution, without running the code.

1 - Total matrix memory usage in Bytes.

2 - Total sequential processing costs in seconds.

3 - Line by line listing of the computational cost and possible computational cost in
the case of data partitioning and parallelism for a given parallel configuration.

4 - Line by line listing of the communications cost in the case of code partitioning
in that line for a pipeline on a given configuration.

5 - Forward and backward data flow charts, which is list of symbols, for all
matrices, indicating whether the matrix is read or written, is in a forward or reverse
flowing data stream or if it flows in both directions, for each line of the program.

114

To use CAT, a MATLIB listing of the program is presented to the program ‘map’.
The computational analysis results can be used either as a guide for manual network
partitioning and mapping, or in automating the parallel mapping process.

6.6. Automatic Parallel Mapper

The Computational Analysis Tool is extended to generate parallel or pipelined
MATLIB definitions automatically. The result is the Automatic Parallel Mapper, which is
a C function that exploits the variable and loop analyses carried out by CAT, and
automatically generates parallel MATLIB definitions with complete data and function
definitions, and matching data transfer instructions. APM mapping decisions are based
on the same parameters provided to CAT. These are the number of parallel processors,
their computational characteristics (in the computational lookup table), and the main
parameter of the communications architecture; the transmission rate in Bits/sec. CAT
analyses MATLIB programs and explores data and task parallelisms, depending on its
projections and decision APM generates parallel code (Figure 6.3).

Data parallelism can be performed by exploiting the line by line computational
analysis carried out by CAT. The pseudocode for the automatic generation of data
parallel programs is as follows:

1 - Read the number of parallel processors, the communications speed, and the look-up
table relating to the unit execution costs of the MATLIB functions on the hardwares
involved.

2 - Calculate the sequential computational cost of the MATLIB operation for the host.

3 - Calculate the potential parallel computational cost for the current MATLIB
operation on the available parallel hardware. This parallel cost includes the
distribution costs, parallel processing costs and re-assembly costs.

4 - Compare the sequential computational cost with the parallel cost, and if the parallel
cost is smaller, then generate parallel code.

The automatic generation of the parallel code involves the following:

• On the host side: the division of matrix data into the number of processors, the
generation of put_ instructions to transmit partitioned data, and get_ instructions to
reassemble the resultant matrix.

115

Outputs

no

VMs

comp.
lookup
table

comme.
speed

Parallel
MATUB

Parallel
MATLIB

MATLIB
listing

Lœp Analysis
Variable Analysis
Sequential Costs
Parallel Costs

Computational
Analysis
Tool

Automatic
Parallel
Mapper

Figure 6.3. Automatic Parallel Mapper

• On the parallel clients side: the data definition statements, the matching get_
instructions to obtained partitioned matrices, the matrix operation, and the
transmission of results by put_ which is matched at the host end.

Task parallelism is also possible using the CAT results. Repetitive sequential
operations such as the stages of a network training can be pipelined through an array of
processors. Certain heuristic rules can be followed to prevent partitionings which would
result in a high interprocess communications. For example, loops represent a high
interconnectivity, and they should not be broken unless there are subloops which can be
mapped onto separate processors. The pseudocode for instruction pipelining is as
follows:

1 - Read the number of parallel processors, the communications speed and the lookup
table.

2 - Calculate the line by line, and total computational cost for the sequential execution
on the host.

3 - Divide the total cost by the number of processors (assuming they are identical
processors). This gives the ideal cutting lines with a perfect load balance for a
pipeline.

116

4 - Cut only the forward data flow streams, and avoid to cut any backward flow data
paths.

5 - Generate the host and slave sections of the code, with correct data definition and
data exchange statements.

Once parallel code listings are generated, they are compiled using a C compiler and
they are ready for execution the parallel system.

6.7. Summary

In this chapter, firstly, the motivations and design considerations have been
outlined, other mapping techniques have been reviewed. A number of model-specific
and hardware-specific techniques have been assessed. It was concluded that they cannot
be generalised to all models and hardwares. The execution, representation and mapping
strategies have been estabhshed. The execution strategy is based on the exploitation of
general-purpose parallel processors. The Virtual Machine philosophy promotes the use
of vector-based hardwares in a general-purpose neural computing framework. Matrix-
based representations seem to capture neural network properties, and are suitable for
general-purpose parallel hardwares. The mapping strategy has been outlined as the
computational optimisation of execution costs, as a general, flexible and potentially
upgradable approach.

The main challenge in the computational optimisation is the parameterisation and
costing of the executions. For this purpose, the computational costs for data and task
parallelism are parameterised. A Computational Analysis Tool has been designed and
developed for analysing and profiling matrix-based MATLIB representations. Once the
computational costing is achieved, the automatic generation of the parallel code is a
relatively simple task. An Automatic Parallel Mapper has been designed for this purpose
which exploits CAT results in the automatic code generation. Chapter 8, presents the
CAT/APM projections and mappings of MATUB neural network representations.

117

Chapter 7

Galatea Mapper and Scheduler

In this chapter, the Galatea Mapper and Scheduler are presented. As part
o f this thesis work, the Galatea Mapper is implemented, the Scheduler is
specified, and using the GPNC simulator a number o f parallel simulations
have been carried out to test mapping strategies.

7.1. Introduction

This chapter presents the Galatea Mapper development as part of the Galatea GPNC
simulator. Research presented in this chapter is the work of the author, carried out as
part of the Galatea Project. The Galatea Mapper shares the same design considerations
set out for the Mapper in chapter 6, and the mapping and scheduling strategies developed
in this chapter are directly related to the research goals outlined for this thesis. Both the
Mapper and the Galatea Mapper are designed to map matrix-based representations
{MATUB and VML) onto coarse-grain parallel architectures. This chapter presents the
Galatea Mapper in the context of the Galatea GPNC to highlight the real-world
constraints and the outcome.

The Galatea General Purpose Neural Computer is an advanced architecture,
designed for the execution of a range of neural network models and applications. In
chapter 3, a detailed description of the Galatea system is provided, including its general
programming environment and multi-processor parallel architecture. In this chapter, the
Galatea Mapper is presented in the context of the Galatea GPNC automatic code
generation chain. As the mapper is responsible for the initial scheduling of the parallel
execution, the scheduler development is also described.

As seen in chapter 3, the Galatea GPNC is a coarse-grained parallel architecture,
which brings together generic hardware devices called Virtual Machines. Each VM
consists of a Communications Unit, responsible for the control of the accelerator board,
and an Execution Unit containing an accelerator board. The communications unit
typically consists of a CPU and a large local RAM. Execution units are based on fast
matrix operator generic boards, currently being developed by Siemens and Philips
[41,42]. VMs communicate and interpret VML, a matrix-based, intermediate-level

118

language, consisting of scalar and matrix arithmetic operations. Consistent with the VM
philosophy, the user-interface is designed in a parallel distributed fashion with a number
of independent processes called Graphical Virtual Machines (GVM). All the
independent modules of the GPNC; VMs, GVMs and the Scheduler, are interfaced with a
message passing conununications protocol.

The Galatea Mapper’s duty in this environment is to partition and distribute the
VML representation across a number of parallel VMs. The Mapper is responsible for the
initial scheduling of the execution, and for generating necessary data transfer instructions
accordingly. The Galatea Mapper processes raw VML and generates parallel VML. This
is essentially VML with a number of data exchange commands, which are interpreted by
the Scheduler and the Communications Units of the VMs. After the initial mapping, the
execution is controlled by the Scheduler, which serves as the conununications interface.

In this chapter, first, the Mapper is defined in the context of the Galatea GPNC
automatic code generation process. Secondly, the Scheduler, the communications
protocol and the run-time operations are explained. Then, the implementation steps, the
practical issues relating to the implementation and problems encountered during the
implementation, are discussed. Finally, Galatea mapping examples and parallel
simulations on the Galatea GPNC are presented.

7.2. Galatea Mapper

The Galatea Mapper is a building block of the Galatea General Purpose Neural
Computer. It plays an important role in the correct partitioning, placement of the code,
and scheduling of the parallel execution on the GPNC. The Galatea Neurocomputing
group at UCL has developed a complete simulation of the GPNC, which runs on SUN
workstations. As part of the GPNC simulator, an interpreter [140] is used to execute
VML programs with a number of applications, including pattern recognition, image
processing and financial forecasting. The GPNC simulator provides an adequate
environment for testing various mapping and scheduling strategies. The mapper is an
independent module in the GPNC simulator’s automatic code generation chain.

The code generation process (Figure 7.1) for the GPNC involves the following
stages. First, a user writes high-level language N code for the application. An algorithm
library can be used to code applications in N (an object-oriented language based on
C++). The Systems Architecture Builder (SAB) can be used during this process. Later,
the N to VML compiler automatically generates the raw VML code. The compilation

119

process involves vectorising and optimising the object-oriented representation to
generate the VML code. During the compilation process a symbol table is also generated.
The symbol table contains a data/rule correspondence table for cross reference purposes.
The table maps names and entities between N and VML. The mapper processes the raw
VML code following any existing user directives, and generates parallel VML code for
specific VMs. The code also includes appropriate data movement instructions.

Mapping Data

Library
VML

Library

Library

Config.
Table

Placement
Table

Raw
VML

Intermediate
Level Language

COMPILER

parallel
vml

VM2

parallel
vml

VM3

parallel
vml

VM1

USER

MAPPER

N - High Level Language

SAB

Figure 7.1. The Galatea Mapper

Once the VML representation is generated, the hierarchical object structures created
in the N environment are lost. Only matrix and scalar names are relevant at the VML
level. A user enquiry relating to a user-defined object name, has to go through a symbol
table or a name generation scheme to find a correspondence in the intermediate-level
matrix representation.

It is planned that a C library should be used to support operations which are not
available in VML. These are sophisticated functions such as Fourier Transformations.

120

These routines can be called in a similar way as VMs using the GPNC’s message passing
communications scheme. A Placement Data file is also generated by the mapper. This
tells the scheduler which VML rules, variables and data reside in which VM.

In the VM level, the Communications Unit CPU stores the VML code in its local
memory. It parses and interprets the VML definition to fire low level VML commands.
These instructions are similar to VML commands, but they are without control and loop
statements. The communications unit generates scalar and matrix arithmetic operations.
The scalar arithmetic operations are executed on the local CPU efficiently. The low level
matrix operations are sent to the accelerator board, which in turn converts them to the
microcode, for execution on the processor array.

The Galatea GPNC with its SUN workstation host and a number of Virtual
Machines presents a coarse-grained parallel mapping problem. The mapping operation
involves parallelising the raw VML representation and generating parallel VML for
specific VMs with appropriate data movement instructions. VML listings contain a
number of rule bodies and a main rule. In this form, task mapping is the primary
mapping option and data partitioning is not favoured. Galatea believes that the VMs are
powerful modules, and that they can meet both the memory and the CPU requirements
for large applications. Typical applications for the GPNC would be multi-network
applications with whole networks mapped on single VMs. The Mapper’s task is then to
partition the multi-network VML specification, and to achieve a parallel efficient
execution. When single networks are involved, the mapper can map VML rules or tasks
onto a number of parallel VMs.

Galatea considered two types of mappings depending on the time of the mapping.
Static Mapping is the initial process that occurs during the compilation time, before the
execution starts. Dynamic Mapping, on the other hand, is done during the execution,
after re-assessing the results of the previous mapping. For example, if the load balance is
not satisfactory, the execution can be frozen and the application is saved and remapped.
Dynamic mapping can also be performed as a result of user instructions for modifying
the configuration during execution.

7.3. Galatea Scheduler

Once the initial mapping is completed the execution can start. The Scheduler
provides the run-time communications interface between the various modules of the
GPNC. The Scheduler is a passive process, waiting for requests from users through the

121

Graphical Virtual Machines (GVM), and the VMs, carrying out instructions and
supporting routine monitoring tasks. The scheduler is planned to be a single process
running on the host machine, but it can also run on a Transputer based computer or
distributed over a number of parallel processors. The duties of the scheduler are:

1 - Setting up and initialising VMs
2 - Transmitting data and rules to the VMs
3 - Analysing user requests and taking necessary measures
4 - Updating data values on the VMs
5 - Carrying out user monitoring requests
6 - Data exchange between VMs

A communication diagram based on the scheduler is shown in Figure 7.2 All
physical blocks have message queues, and these queues are processed by routines which
sort the messages with respect to their priority and arrival time.

USER

Input
Queue

Input
Queue

Input
Queue

GRAPHIC
MONITOR

EXECUTION
MONITOR

APPLICATION
MONITOR

Symbol
Table

DEVICE
DRIVE

SCHEDULER
Placement

Table

Input
Queue

Input
Queue

Input
Queue

VM1 VM2 VM3

Figure 7.2. The Galatea Scheduler

122

The scheduler receives requests from users through the graphics, execution and
debugging monitors which are independent processors as parts of the user interface. The
requests go into a message queue and are prioritised before being processed. The
Placement Table which was prepared by the mapper, is used to determine which VML
concept (data) resides in which VM, and which VML rule is executed on which VM. The
Symbol Table keeps N and VML concept-correspondence which are lost during the
compilation from the high level language.

The GPNC is fundamentally a MIMD architecture with a message passing
communications protocol. All modules of the GPNC and the scheduler use a generic
message structure to send and receive messages, data and code. Messages contain source
and destination fields, message type information as explained above, priority of the
message, time of origination, size of the data and the data themselves. The generic
message structure is as follows:

typedef struct message {
int source;
int destination
int typel;
int type2;
int priority;
struct timevaltime;
int size;
char ♦data;

The conununication protocol consists of 19 different message types. The Table 7.1
explains these message types with respect to the data they contain. Two type fields
identify each message. The first field, Fieldl, groups the messages into 5 main types of
messages. These are responses, rules, data, control and graphics related messages. The
second type field Fieldl specifies the character of each message within these 5 groups.
Response messages are issued as acknowledgements or progress reports etc. Rule
messages addresses control issues at the rule level, for example to execute, continue or
interrupt a rule. Data messages handle data transfer issues such as sending or requesting
data. Control messages are used to set the debug level in execution or to stop (kill)
execution of a certain VM or the whole application. It entails the level of ’kill’ required.
The last message type covers graphic commands, which are used in setting up the
graphics canvasses and plotting graphs, bar charts or displaying data.

123

Fieldl Field2 Description Data

0 Responses
0 Acknowledgement none
1 End of rule rule name, return code
2 Exception condition type, value
3 Progress message string
4 Statement statement type

1 Rule
0 Definition code
1 Execute rule name, option
2 Pause rule name
3 Continue none
4 Trace on rule name
5 Trace off rule name
6 Interrupt rule name, option

2 Data
0 Definition code
1 Request sync, block, freq, type, variable, rang
2 Send variable, range, value(s)

3 Control
0 Kill VM
1 Set debug level

4 Graphics
0 Graphics ; canvas incanvas, title, x_axis, xl, x2, y_axis.
1 Graphics : line initcanvas, index/ typel, type2 [, string]
2 Graphics : plot canvas, index, x, y [, string]

Table 7.1. Message Types

The message types and the message structure are used by all the VMs, GVMs and
the Scheduler. Currently the data exchange and graphics plot statements in VML
implicitly use the message protocol outlined above. The scheduler is based on a Message
Passing Communications Scheme. All modules of the GPNC and the scheduler contain
input request queues which are processed continuously depending on the message
priority and type. All messages, which are put into the socket are placed into an input
queue. The input queues are basically temporary memory storage for messages. A queue
handler checks the message priority and executes the one with the highest priority. If
there is more than one message with the same priority it fetches the oldest message.
After a message has been found, copied and executed that message is removed from the
input queue. This is especially important when carrying out user requests, but similar
processes can be used to handle VM-Scheduler communications.

This section is presented to demonstrate the run-time operations on the GPNC
simulator. The specification of the scheduler is the work of the author. The definition of
the message types has been achieved in collaboration with a colleague at UCL, and the
simulator of the Scheduler has been implemented later, by the same colleague. Graphical
Virtual Machines have also been developed at UCL, by another colleague, to complete
the GPNC simulator.

124

7.4. Mapping and Scheduling
A number of options are available for mapping and scheduling an execution on the

distributed memory, message passing GPNC architecture. First of all, the following
data-transfer protocols are considered between different modules of the system.

1 - Nonblocking write - The transmitting VM simply sends the data to the scheduler
which in turn transmits the message to its destination. The transmitting VM continues
the execution without confirmation from the receiving end.

2 - Blocking write - The same as above, but the transmitting VM continues execution
after it receives confirmation that its message has been received.

3 - Nonblocking read - If the data request is not matched by immediate delivery, the VM
continues with execution using its current copy of the same data. This mode can be used
to simulate asynchronous models.

4 - Blocking read - When a data request is made by the VM the execution is paused until
the required data is received.

The most practical combination is a nonblocking write matched by a blocking read.
To implement this, VML is extended to incorporate the following data exchange
commands on the TCP/IP server.

put_data (destination, data_name)
get_data (source, data_name)

The source and destination above relate to GVMs and VM, any data sent to a GVM is
displayed by default. To plot any graph the graphical command is:

plot (destination, x, y, index, canvas)

Here, the destination is a GVM, x and y are the axes, the index is a number between 0
and 9, referring to the dataset which will be displayed on a canvas. Up to 20 canvasses
can be opened by a GVM.

Two radically different scheduling options are available. An active scheduler view
supports the scheduler as the master process, controlling aU execution, and data transfer
instructions to the slave VMs. A passive scheduler view is more suitable for the
distributed memory, multicomputer architecture of the GPNC. In this case, the
Scheduler runs as a passive server process, unpacking messages originated by VMs and

125

GVMs, interpreting them and taking the necessary action.

7.5. Galatea Mapper Implementation

To implement the GPNC simulator on SUN workstations, the first step is to enable
parallel simulations on a SUN local area networks (LAN). For this purpose Unix TCP/IP
sockets have been used as the communications medium. TCP/IP is widely available on
SUN and DEC workstation LANs, providing reliable, flow-controlled two-way
transmission of data and messages. Initially, a prototype was developed to test the
reliability of the communications medium. This prototype was used in chapter 4, in the
simulation of parallel Hopfield nets. Later, this prototype was incorporated into the
GPNC simulator, and has become the core of a comprehensive server, which undertakes
scheduling tasks.

An evolutionary approach was followed in the implementation of the Mapper. It
has involved, the manual mapping of parallel VML code onto a multi-VM environment,
and its execution. Later, a semi-automatic mapper was developed, and an automatic
mapper has been planned.

The first step in the implementation of the mapper is manual mapping or
programming. After assessing the execution and the communications requirements for a
given application and hardware characteristics, parallel VML code is written for all the
parallel modules involved in the execution. The inter-VM data dependency and the load
balance must be estimated, and data transfer instructions must be explicitly written by the
programmer. The data movement commands are written in such a way that they display
a handshake pattern between different modules. That is, a get_data statement in one VM
is matched by a putjdata in the other. If inter-VM data dependencies are not followed
properly, the execution might come to a halt as a result of an unmatched data request
statement. The time-sequence of the events must be planned in advance for a successful
multi-processor parallel execution.

The second step in the mapper implementation is semi-automatic mapping. This
involves the mapper parsing the sequential (raw) VML definition and generating parallel
VML code, following the user directives stored in the placement table file. This file
provides the total number of parallel VMs in the GPNC configuration, and the
instructions for where to map each VML rule in the raw VML listing. The task mapping
is straightforward and user-driven. It relies on the users’ mapping instructions, based on
their analysis and judgement of the application. The semi-automatic mapper is a C

126

program which carries out the following tasks:

• Parses raw VML definition,
• Reads user mapping directives,
• Identifies and forms VML rule objects,
• Generates parallel VML listings.

The final step in the mapper implementation involves the full automation of the
parallel code generation process. The Automatic Mapper generates parallel VML code
for all VMs in the GPNC configuration, based on the minimisation of the computational
costs. Automatic mapping is done by calculating parallel processing and
communications costs on all possible combinations of rule mappings on a coarse number
of VMs. The partitioning that results in the minimum computational cost is selected, the
rules are grouped, and ASCII listings of the parallel VML code are generated with correct
data transfer instructions. The Galatea project chose the VML rules to be the lowest level
objects to be mapped. To achieve that, the Galatea Mapper breaks the raw VML code
into self sufficient rule objects, all with a data definition part and a rule body. The
automatic mapper consists of the following modules:

• VML Parser
• Variable and Rule Analysis
• Calculation of the Computational Costs
• Parallel VML code generation

Now, let us examine the modules of the automatic mapper, and the parameters
involved in the automatic generation of parallel code for the Galatea GPNC.

VML Parser - The Mapper uses the same parser routines as the VML interpreter [25].
This approach reduced the workload, as it ensures that the mapper automatically follows
the modifications in the VML syntax. As a result of the parsing, the mapper generates its
internal model of the VML rule and data structures upon which it carries out the variable
and rule analysis.

VML Variable and Rule Analysis - MIMD machines suffer from a data dependency
problem. A classification of variable types is necessary to identify which variables have
to be transmitted to other VMs, in a parallel execution. The Mapper carries out a
variable analysis in which all variables are classified into 4 different variable types:

127

• Constant
• Local
• Read
• Write

The Constant type needs to be transmitted only once, at the beginning. This type of
variables stay unchanged throughout the execution. The Local type refers to temporary
variables. The Read type needs to be received from the Scheduler (or other VMs).
Finally, the Write type implies that a variable has been modified within that VM, and
should be transmitted to the Scheduler or other VMs. Similarly, a rule analysis is carried
out to reveal the rule dependency, and to buüd the rule hierarchy for all the subrules and
the caller rules for each rule.

Computational Costs - Performance of the parallel execution, which is defined as the
computational cost of the execution depends on two different parameters:
Communications Costs and Processing Costs. The communications costs directly depend
on the amount of data exchanged between various processors (VMs). Using the variable
and rule analysis for a given mapping, data sizes are calculated for all the Read and Write
type variables. The VML LOOP statement is decoded to obtain an approximate measure
for the number of repetitions occurring for each command line. This measure is
necessary to determine the volume of data which is transferred between the VMs and to
establish the processing costs within loops. Real processing costs are hardware
dependent. For a given architecture, the processing costs depend on the following
parameters:

• Operation Type
• Data Type
• Data Size
• Placement Type
• Hardware Characteristics (speed and memory)

After identifying these parameters, estimates of the processing costs for each
operation type were requested from Siemens and Phihps hardware groups, with the
intention to use the parameters as inputs for automatic mapping strategies. As a result,
the following issues are highlighted;

1 - The optimal data type must be decided in VML code before or during the mapping.
This is a very important issue for the hardware, and it is hardware-specific. For example

128

the Philips accelerator board achieves the highest performance on fixed point arithmetic
operations.

2 - The optimal placement type must be defined for different data types in VML. The
Siemens group [17] stressed the importance of the correct placement of data on the local
memories of their VM, at the initial mapping stage. Four types of memory were reported
on the Siemens hardware, namely: wmem, ymem, zmem and cniem. Siemens also listed
the best memory placement for a number of data types as follows:

Placement Type Memory Type

PLACEMENT_COMMS
PLACEMENT_FREE wmem
PLACEMENT_STATE ymem
PLACEMENT_WEIGHT wmem
PLACEMENT_PATTERN ymem
PLACEMENT_LUT cmem
PLACEMENT-INPUT ymem
PLACEMENT_OUTPUT ymem
PLACEMENT_TEMPORARY ymem

3 - The calculation times for matrices of various sizes can be made available after the
manufacturing and tests. Only approximate information was given about the clock
cycles for certain matrix operations which will be executed on the VM hardware.

Following these developments the new version of VML (version 2.0), incorporated
PLACEMENT_TYPE field in the matrix declaration. As VML has no concept of pattern or
weights this field can be ideally decided by the N level and passed down to VML through
the compiler. Mimetics notified that they could generate PLAŒMENT_STATE,

PLACEMENT_WEIGHT, PLACEMENT_TEMPORARY placement types using the N to VML
compiler. Mimetics also suggested that INPUT, OUTPUT placement types can be
determined in V, and hinted that new placement types could be necessary for optimal
mapping. In addition to this, VML 2.0 also includes the data type information prefixed to
all VML instructions. In this way, VML becomes similar to low level VML (LLVML)
[42] and the generation of the low level commands on the VMs, is made easier.

Mimetics automatically generated VML 2.0 code for a number of neural network
models including the Gradient Descent Backpropagation model. N to VML compiler is
used in the automatic optimisation and generation of the raw VML code, completing the
full cycle of GPNC automatic code generation. The cycle involves the N to VML

129

compiler and the Mapper running together and generating parallel VML code for the
VMs. The compiler generates the raw VML code, the symbol table, and the
configuration table. The Mapper generates parallel VML and the Placement table to
indicate the rule placement on the VMs. This data can also be used if a re-configuration
is required like in the case of Dynamic Mapping.

7.6. Mapping VML to Galatea GPNC

This section presents the Galatea Mapper results and simulations on the GPNC.
The results of the manual, semi-automatic and automatic mappings are presented.

7.6.1. Co-operating Hopfield/Backpropagation Networks

Two simulations are designed to demonstrate the co-operation of two neural
network models on configurations consisting of two or three parallel VMs. These
simulations are examples of manual mapping or parallel programming on the GPNC
simulator, with the aim of demonstrating the feasibility and the strength of the parallel
techniques.

The simulations involve using a Hopfield and a Backpropagation networks in co­
operation. The Hopfield net is used as an auto-associative memory unit reconstructing
noisy or partially corrupted patterns. The Backpropagation network is trained to imitate
the associations made by the Hopfield net In this two-network architecture, the Hopfield
net trains the Backpropagation network. The following advantages can be gained using
this multi-network configuration. Firstly, the Backpropagation network is fast in recall
and extremely slow during the training. The Hopfield net, on the other hand, which
operates with fixed weights, is relatively slow during the recall, as the convergence takes
place at this stage. Secondly, the Backpropagation model is more robust than the
Hopfield net in recall. If the Backpropagation network can be trained to respond like the
Hopfield net, later, the Hopfield net can be bypassed, and the Backpropagation network
can be used in auto-associative recall tasks much more efficiently. Once the
Backpropagation network is trained on a training set, it can be used more reliably in
pattern classification tasks.

The multi-network configuration can be efficiently executed on two VMs with each
network running in parallel on separate VMs. Both networks receive noisy inputs from
the external world, and the Hopfield net provides the target patterns for the
Backpropagation network. In this case the data exchange between the VMs is uni­

130

directional. As an application, the same pattern recognition problem is outlined as the
one used in the analysis of the Hopfield net in the chapter 4. The Hopfield net has fixed
weights prior to the execution, and the Backpropagation network starts with small
random weights.

From the scheduling point of view, this is an intertwined application requiring
explicit data transfer instructions. This can be achieved by writing the apphcation in
VML, or semi-automatically partitioning the raw VML code. It is hard to achieve the
same configuration through automatic partitioning and mapping. The difficulty lies in
the automatic generation of data transfer instructions as they are intrinsic to the
algorithms. Users either write the VML code with relevant data transfer instructions, or
alternatively, they can supervise parallel VML generation by putting mapping instructions
in the placement_data file.

The simulation shows data exchange and cooperation between a number of VMs in
solving a problem together. Two Graphical Virtual Machines accompany the two VMs,
to coordinate the graphical display operations required by the VMs. Together with the
Server, 3 VMs and 3 GVMs, a total of 7 processes run concurrently as independent Unix
processes, communicating with each other through TCP/IP sockets. The server opens a
socket communications channel, and all other processes plug into this medium. In the
run-time, the server decodes messages sent by VMs and GVMs, routes them to their
appropriate destinations. Two different scheduling methods have been tested on the
Hopfield/Backpropagation cooperating networks simulations involving an active and a
passive scheduler.

Demonstrator I

VMl acts as an active Scheduler organising data movements between the other
VMs (Figure 7.3). The VML code organises the handshake for data transfer operations in
the following way. AU put_data statements are nonblocking and the matching get_data
statements are blocking.

VM2 VMl/Scheduler VM3
put_data (1, matrixl) > get_data (2, matrixl)

put_data (3, matrixl) -> get_data (1, matrixl)

The duties of the three VMs in the Hopfield/Backpropagation co-operating neural
networks example are:

131

1 - VMl is the Scheduler. It has access to the system file storage devices. All the file I/O
operations are performed using this VM. It coordinates data exchange between the other
two VMs. The execution in the three VMs is started simultaneously. VMl loads the
trained weights for the Hopfield net from the file store, sends them to VM2. And VM3
initialises its weights with small random values. VM2 waits for an input pattern to recall
and reconstruct, and VM3 waits for the training pair to arrive. VMl reads the incomplete
or noisy input patterns and routes them to VM2 and VM3. After this, it receives
reconstructed patterns from VM2 and reroutes them to VM3 which starts the
Backpropagation network training. After a training run, it receives the resulting
Backpropagation network weight sets from the VM3, and saves them onto the file store.

TCP/IP Unix Socket

Server

Hopfield Net

VM2

SCHEDULER

VM1

FILE I/O

VM3

Backpropagation

Net

Figure 73. Demonstrator I

2 - VM2 is a Hopfield network. It receives the trained weights and the incomplete input
patterns and starts a Recall operation. As a result it reconstructs the patterns and sends
them to the VM2.

3 - VM3 is a Backpropagation network. It receives the same inputs as the Hopfield
network, and then as it receives targets, reconstructed by the Hopfield network, it trains
with the pairs it received, as it receives. When it receives all the targets it trains for all
the patterns, in the end transmitting the results back to the Scheduler.

Demonstrator II

In this version, the Scheduler is a passive process that allows VMs to communicate
with each other directly by addressing one another (Figure 7.4). This way of scheduling
creates intertwined VML listings. There is no need for a separate program as the

132

scheduler passively enables the inter-VM data communications. Messages are received
by the Scheduler and the data are routed to their correct destinations on the socket
communications. It is hard to generate this kind of parallel mapping automatically.
Manual mapping enables us to design such an application with the correct handshake
between the getjdata and put data statements, and it is hard to see how such an
application could be generated automatically. The VML code in the two VMs is as
follows:

VMl
put_data (3, matrixl) -->

VMS
get_data (1, matrixl)

This time VMl is not the Scheduler, but it is like the other VMs; an ordinary VM only
with an access to the file storage. To start the demonstration, first the server is run, then
all the VMs connect to it. Again, 7 processes run on the Unix network. All requests
generated by the VMs are put into the Scheduler input queue which are processed
according to their priorities defined in the message structure.

TCP/IP Unix Socket

Server

Hopfield Net

VM2

FILE I/O

VMl VM3

Backpropagation

Net

SCHEDULER

Figure 7.4. Demonstrator II

Each VM is accompanied by a Graphical Virtual Machine providing interactions
with the Scheduler and the external world. In interactions with the external world (Unix
environment) X Windows Event Handler is used to detect user requests from the graphics
and windows environments.

7.6.2. Semi-Automatic Mapping of Backpropagation

This simulation involves mapping the Backpropagation Recall rule onto a high
performance VML. The rest of the execution is contained on the host. The manually

133

generated Backpropagation VML listing consists 4 rule bodies:

Rule 0: Randomise
Rule 1: Recall
Rule 2: Leam
Rule 3: Main

On a 2 VMs configuration the Placement table instructs the mapper to place the
Recall rule and data definition to the VM2. This table, in a file contains the following
data;

2 #Number of VMs
0 1 #Rule 0 to VMl
1 2 #Rule 1 to VM2
2 1 #Rule 2 to VMl
3 1 #Rule 3 to VMl

The semi-automatically mapped parallel Backpropagation simulation on two
SUN4s ran 90 times slower than running sequentially on a single SUN4. That is a 1
minute-long sequential simulation took approximately 90 minutes. These results not
encouraging, and they are due to the low communications throughput provided by the
scheduler on the SUN LAN.

7.6.3, Automatic Mapping

Galatea Project viewed the automatic mapping of secondary importance, as an
optimisation issue, and it focused on the efficient execution of VML on the generic
boards of Siemens and Philips VMs. Only approximate hardware characteristics could
be used at the time, as VM boards have not been built. The experiments with manually
mapped Cooperating Networks and the semi-automatic mapping of the Backpropagation
model examples show inter-VM communications present the highest share of the total
computational cost. Considering this is only a software simulation, and the Galatea
GPNC will have a much faster communications medium, the resulting system might be
much more rewarding. When the real performance figures on the hardware are available,
the mapper can use these parameters for an accurate mapping.

134

7.7. Summary
This chapter presented the Galatea Mapper and Scheduler as part of the Galatea

GPNC simulator. The Galatea Mapper has been designed, developed and tested as part
of the Galatea automatic code generation process. The Galatea Mapper focused on the
manual and semi-automatic generation of parallel VML from a sequential definition.

The manual mapping of the Hopfield/Backpropagation model, and and the parallel
simulations developed as part of this research, were displayed as the demonstration for
the Galatea GPNC, in Brussels during the Esprit week, in October 1991.

Semi-automatic mapping of the the Backpropagation model onto two SUN
workstations, and the consequent parallel simulation resulted in a 90 times slower
execution than the sequential simulation of the same application. This was due to the
overheads on the Scheduler, and the slow communications medium'provided by the
Ethernet.

The semi-automatic Galatea Mapper does not meet the requirements of high
performance, flexibility and generality. It requires optimum rule definitions and explicit
mapping instructions from the user. Automatic mapping was left out of the Galatea
GPNC development as an optimisation issue. As one of the objectives of this thesis is to
achieve an automatic mapping strategy, it is further investigated in the mapping of
MATJJB representations in chapter 8.

135

Chapter 8

Mapping MATLIB Representations

This chapter presents the computational analysis tool projections and
parallel MATUB simulations on a SUN network. First, the CAT results
are verified, then the three neural network models are parallelised, finally,
parallel multiple neural network simulations are presented.

8.1. Simulations Overview
The main objective of parallel mappings is to enhance neural network performance

and provide a scalable, efficient execution on parallel hardware platforms. To achieve
this objective, a general-purpose execution strategy has been adopted, which exploits
general-purpose parallel neurocomputing modules called Virtual Machines. A matrix-
based C hbrary, MATLIB has been designed and developed as a suitable representation
for parallel mapping onto VMs. The mapping strategy has been outlined as the
optimisation of computational costs on a number of parallel processors. To apply the
mapping strategy on MATUB representations the CAT and APM have been designed and
developed. The efficiency of mappings depends exclusively on the proper computational
analysis of neural network representations and assessment of parallel hardware
characteristics.

It is then necessary to verify the CAT results, as the mapping decisions depend on
its performance. The first part of this chapter is dedicated to the validation of CAT
simulation results. For this purpose, CAT was used to analyse the MATUB listings of the
three models, the Hopfield, the SOM and the Backpropagation. A number of neural
network and hardware configurations were used in the simulations on a number of SUN
workstations assumed as a number of parallel VMs. CAT results were then compared
with results from standard Unix timing facilities.

The Computational Analysis Tool has been implemented as an integral part of the
parallel mapping process with an intention to automate the mapping. However, the
primary use of CAT is in the identification of computational bottlenecks and potential
data and task parallel executions.

136

For data parallelism, the computational cost of a potential data parallel execution is
estimated for each instruction. The estimate is then compared with the potential
sequential cost on the host. Based on this comparison, a mapping decision is made and
finally, the overall parallel cost is estimated.

Task parallelism, or a potential pipelined execution on parallel hardware is also
explored by CAT through a variable/loop analysis. The communications costs are
estimated in the case of splitting MATLIB representations for an instruction-pipeline type
parallel execution.

The CAT results are used both as a guideline for parallel programming and in the
automation of the mapping process. Using CAT, the three models were partitioned, and
simulated on a number of SUN workstations Local Area Network. Parallel simulation
results were timed and compared with sequential execution results.

Finally, as the main objective is to enhance neural network performance on parallel
hardware, MATLIB and NETLIB parallel libraries were used in mapping and simulating
multiple neural network models on parallel platforms. A number of complete neural
networks were mapped onto separate parallel processors as cooperating and competing
modules. These simulations are also examples of efficient algorithms that can exploit
coarse-grained general-purpose parallel computers.

8.2. Computational Analysis Tool Results

This section presents the results of the CAT simulations on MATLIB representations
of the three neural network models. The main objective in these simulations is to
validate the CAT computational modelling approach on a SUN LAN, and to demonstrate
that the technique can be used reliably in automating the parallel mapping process. In
addition to this, a secondary objective is to assess computational characteristics of the
three models. To achieve an approximate computational model of the hardware, the
processing and the communications costs must be parameterised. A number of
simulations was used to parameterise the processing and communications costs of the
SUN LAN.

Firstly, a computational look-up table is set up, which consists of the computational
unit costs of all MATLIB functions. Each MATLIB function is executed using various
data size and repetitions on a SUN4 workstation to establish the unit cost for each
operation. Table 8.1 shows the estimated unit costs for each matrix operation. These
costs are multiplied by the data size to calculate the operation cost for an instruction, and

137

the operation cost is multiplied by the repetition of that line to estimate the cost for that
code line. The repetition is a result of the ‘for’ loops encircling that specific line, and is
obtained by the loop analysis. By adding all the line costs, the overall execution cost for
the potential execution of the MATUB listing is estimated. A linear model is assumed
for simplicity, so the computational cost is a linear function of the data size. The data
size is always the actual processed data size, rather than the destination matrix size. For
example, in the case of mmul, the multiplication of A(2,10) by B(10,1) matrices results in
a column matrix of R (2,1), To use the destination matrix size, 2 as the data size would
be a massive underestimation of the computations involved. Instead, the data size is
calculated for each type of operation separately. For the above example, the data size
would be the multiplication of the output matrix size by the column size of the first A
matrix, which is 10. Similar considerations are made for other operations. In the case of
mmin and mmax the computational time varies depending on the execution of the
conditional ‘if’ statements in these operations. For this reason, the computational look­
up table is not 100% accurate, but it provides a good approximation for computational
evaluation purposes.

MATLIB Functions Description Unit Cost
\isec

mmul matrix multiplication 8.0
madd, vadd matrix/vector addition 6.0
msub, vsub matrix/vector subtraction 6.0
memu, vemu matrix element multiplication 6.2
mscm matrix scalar multiplication 6.2
mtan apply tanh to matrix 36.0
dtan apply derivative tanh to matrix 12.0
msig apply sigmoid to matrix 21.4
dsig apply derivative sigmoid to matrix 6.5
mrms matrix root mean square 8.0
mmax, mmin matrix maximum/minimum 5.0
mobs matrix absolute 5.0
mavg matrix average 6.0
mlat lateral weight update for SOM 9.0
mcpy, vcpy, ccpy, mtra matrix copy, transpose 4.5
mset, sval, msal matrix element set/get 4.5
mran matrix randomise 7.7

Table 8.1. Computational costs for MATUB on sun4

Secondly, unit communications costs are established for the network of SUN
workstations. A number of simulations have been carried out to model the average

138

communications cost. The results in Figure 8.1 show a quasi-linear model for the
communications costs. As the data size increases, transmission time increases. Various
sizes of matrices have been transmitted through the sockets. The transmission times have
been measured using MATLIB communications statements, put mat and get mat. An
overhead of 0.5 seconds is found for opening up a socket and connecting to an open
socket. In addition to this, as the sockets are packetised communications media, there is
a minimum cost of 0.1 seconds regardless of the transmitted matrix size. Considering
that the purpose of the parallel simulations is to assess the mapping strategy, rather than
achieving a high performance on the Ethernet, these extra costs are negligible, and a
linear model is sufficient in this case. The communication speed for the MATLIB data
transmission on the SUN network was found to be 180,000 bits/second. In other words
the cost of transmission is 1/180,000 sec/bit. This approximate figure includes time
delays during the packing of messages before transmission, and the unpacking that takes
place after the reception.

Comm. Speed on l_AN
sec

1.4

1.2

0.8

0.6

0.4

0.2

Bits X 10'
0 100 200

Figure 8.1. Socket Communications Costs

A number of simulations are carried out to verify the results of the Computational
Analysis Tool simulations on the Hopfield, the SOM and the Backpropagation MATLIB
representations with different topologies and parameters. These simulations also show
the computational sensitivity of the models to the parameters of the networks. CAT
results shown in Figures (8.2, 8.3, 8.4) are very close to the actual results obtained by
timing the executions. In fact, the method of timing the executions using Unix
commands is not as reliable as CAT results, as the timing method depends on the

139

processing load of the workstation, the ethemet traffic, and the fileserver load, at the time
of the execution. The Computational Analysis Tool, on the other hand, produces
estimates of execution times regardless of these parameters, based purely on the
computational unit costs and data size.

The first set of results for the Hopfield model show a polynomial increase in the
computational cost (and the requirements), as the number of neurons increases linearly
(Figure 8.2). This is a result of the mmul operation whose computational cost also shows
a polynomial increase as the number of neurons increase. As the number of neurons N
increases, computational time t increases rapidly, following the polynomial relationship
t=N^ . This is in line with expectations, as the Hopfield weight matrix size follows the
same relationship when the number of neurons are increased.

Execution Time
sec

actual
CAT

40

neurons
0 100 200

Figure 8.2. Actual and CAT results in Hopfield Net

The results for the SOM model show a linear increase in the execution time, when
the number of neurons in the input layer is increased (Figure 8.3.a). The SOM is most
sensitive to the increase in the number of neurons in the output layer (Figure 8.3.b). In
this case the computational requirements increase polynomially as a result of the
enlarged output grid. Again, as expected, computational requirements polynomially
increase with the increasing number of output nodes.

140

input layer output grid

sec sec

sun4
CAT

sun4
CAT' 1008

6

4

2

0 neuronsneurons
200 40004000 200

Figure 8.3. Actual and CAT results for the SOM

The results for the Backpropagation model show a linear incre^^ in the execution
time, when an increase is made in the number of training patterns or the number of
neurons in the input layer, hidden layer or output layer (Figure 8.4).

input layer output layer
sec sec

1 1 1 ; sun4 12 4- 1 - n

10 — CAT*
10

8 —
-

8
- -

6 — X -

6

1*^ 1 1 neurons
4

| / 1 1

0 50 100 0 50 100

sun4
CAT*

neurons

Figure 8.4. Actual and CAT results for the Backpropagation

An accurate computational analysis is important for the mapping decision which is
based on the computational optimisation of the use of parallel resources. CAT provides
very close results to the actual results obtained by standard Unix time function, and CAT
results can be reliably used for the computational analysis of any algorithm coded in
MATLIB. Other CAT functions, such as variable and loop analyses, parallel and
pipelined communications cost calculations are shown in the parallel mappings of the
three neural network models.

141

8.3. Mapping the Three Models

In this section, the three neural network models which have been the centre of focus
throughout this thesis work, are used in data parallel and task parallel mappings and
simulations. The MATLIB representations of these models are processed by CAT, and
simulated onto a number of parallel SUN4 workstations. The same pattern recognition
problem is used in all these simulations to assess the performance of the three models
and their relative computational requirements for the same problem.

In addition to dumping total memory use and sequential computational costs on the
host, the CAT results point to computational bottlenecks and possible parallelism in
sequential MATLIB programs.

8.3.1. Hopfield Nets

This set of simulations aims to parallelise the Hopfield net and reduce execution
time through parallel execution. The same dataset and the 64-neuron topology with the
Hopfield net case study in chapter 4, are also used here. The net is initialised with fixed
weights and is used in recalling the original patterns from the noisy or incomplete inputs.
A line by line computational analysis of the Hopfield net results are shown in Table 8.2.

line function repetition data size unit cost
\isec

op. cost
\isec

line cost
sec

total cost
sec

24 vcpy 12 64 4.5 289 0.003 0.003
26 mmul 48 4096 8.0 32768 1.573 1.576
27 mtan 48 64 36.0 2307 0.111 1.687
28 msub 48 64 6.0 384 0.018 1.705
29 mrms 48 64 8,0 512 0.025 1.730
33 mcpy 48 64 4.5 289 0.014 1.744
37 vcpy 12 64 4.5 289 0.003 1.743

Table 8.2. CAT results for the Hopfield net

Using these results, a computational bar chart is drawn in Figure 8.5, which shows
the line by line computational cost on the Hopfield MATLIB listing. According to these
results, most of the computational time is spent in the matrix multiplication mmul
operation, amounting to almost 90% of all computations for a 64-neuron, 12-pattem
Hopfield net simulation on a SUN4 workstation. This is not surprising considering the
data size mmul has to process (Table 8.2).

142

Execution time
sec

line no
30 35

Figure 8.5. Line by Line Computations in Hopfield Net

Task Parallelism in Hopfield Net

CAT variable/loop analyses reveal that, in the main loop, where the network
convergence takes place, there is a backward data flow on matrix variable Temp. Table
8.3 shows the line by line variable analysis for Temp. In this table, crosses indicate read
and write operations on this matrix, and the resulting forward and backward data paths.
The backward data stream prevents the instruction pipeline type of parallelism, as the
beginning of the loop cannot progress without reading data written at the end of the same
loop, for example in the case of dividing the representation into two. Another reason for
not favouring task parallelism is that the load balance is impossible on a prospect
pipeline, as the matrix multiplication takes most of the computations for the Hopfield net.
This leaves data parallelism as the only viable alternative.

line instruction Backward
Flow

Forward
Flow

Read Write

25 for X X
25 for X
26 mmul / X X
27 mtan X X
28 msub X X X
29 mrms X
30 if X
31 break X
32 endif X
33 mcpy X
34 endfor

Table 83 . Variable Analysis for Temp

143

Data Parallelism in Hopfield Net

CAT can estimate both sequential and data parallel computational costs on a line by
line basis, and these estimates can be used in a parallel mapping decision. The
calculation of the parallel processing and communications costs is based on the
parameterised data parallel cost model presented in chapter 6. For each MATLIB line or
instruction, the estimated parallel computational cost is compared with the sequential
cost on the host, which is again calculated by CAT. If the potential parallel execution
cost is less than the sequential cost on the host, the operation is parallelised. Otherwise a
sequential execution on the host is preferred. Table 8.3 shows sequential versus parallel
computational costs for all MATLIB instructions on the 64 neuron-Hopfield net, with 12
patterns, on 2 parallel SUN4 stations linked with a 10 Mbit/sec speed bus. The mapping
decision which is made on a line by line basis, depends on tiie unit cost, data size, the
number of parallel modules and the communications speed. For example, in line 24, the
vcpy vector copy operation is less costly on the host, so this operation is not partitioned.
The most expensive operation mmul in line 26 will be executed quicker in parallel, so the
mapping decision is made favourably. Considering that each operation is repeated many
times, the overall gains are greater than the gains made in single operations. For the
example shown in Table 8.4, CAT calculated the sequential execution cost as 1.74
seconds, and projected the parallel execution as 1.56 seconds, for the same Hopfield
configuration mentioned above on 2 parallel processors connected to a host by a 10
Mbit/sec bus. The computational characteristics of the parallel processors are assumed to
be similar to the host, a SUN4 workstation. This performance is assumed to be gained by
parallel mapping of the three MATLIB functions shown in the table.

line function seq op cost
lisec

par op cost
\isec

mapping
decision

24 vcpy 289 2705 -

26 mmul 32768 29798 ✓
27 mtan 2307 1460 ✓
28 msub 384 704 -

29 mrms 512 461 ✓
33 mcpy 289 452 -

37 vcpy 289 2705 -

Table 8.4. Data Partitioning on Hopfield

Using the projected parallel execution costs, comparisons can be made with the
sequential cost on a number of bus architectures with varying communications speeds

144

and a number of parallel processors. Figure 8.6 shows parallel execution costs for the
same Hopfield net on varying communication speeds and the number of VMs. As all
mapping decisions are negative for slow speed buses, the maximum execution time does

not exceed the sequential execution time. In these cases, operations are not partitioned,

instead, they are executed on the host. Assuming the SUN4 computational

characteristics, parallel mappings of the Hopfield net onto architectures with

communications speeds below 4 Mbit/sec result in no speed-up in parallel executions.

These results show that, on parallel architectures, the communication speed is one of the

most important parameters.

Execution Time
sec

2 -4 1 1 f-

1.5

1

0.5 —

0 4 1 1 4
1 2 3 4

4 Mbit/sec
ë Mbït/sëc "
8"M5it/sëc '
îd ’Mblt/iec

no of Vms

Figure 8.6. Projections on Data Parallel Hopfield

Further parallel projections are carried out involving Hopfield nets with varying

number of neurons and VMs. These projections assume a 10 Mbit/sec communications

speed, and the nets are iterated a fixed number of cycles with no convergence

requirements. Results in Figure 8.7 indicate that, as the number of parallel processors

increases, the parallel executions get progressively shorter. Although the performance is

improved by increasing the number of parallel processors, the efficiency is another

matter, which is discussed in chapter 9.

145

Execution Time
sec

800200 400 1000 neurons600

Figure 8.7. Scalability of Data Parallel Hopfield Executions

Data Parallel Simulation of Hopfield on the LAN

Based on the computational analysis on the Hopfield net (Appendix D .l), it is

shown that the net is computationally most sensitive to an increase in the number of

neurons. If networks with a large number of neurons are simulated on sequential
machines, computational bottlenecks are unavoidable. The backward data path

mentioned earlier, does not allow instruction pipelining, leaving data parallelism as the

only effective parallel mapping option for the Hopfield net. In fact only parallelising the

matrix multiplication would be a big gain for the execution. Parallel MATUB features

can be used to partition the matrix multiplication operation, and the partitioned operation

can be executed in parallel on a number of SUNs. A number of simulations have been

carried out to test this approach.

First, the mmul operation has been parallelised on two parallel SUN4s. To do this,

parallel code for the main Hopfield rule body, and a number of identical matrix multiplier

MATLIB modules are written with explicit data transfer statements (Figure 8.8).

Matching and blocking data transfer instructions are used to transfer data between the

main body (the scheduler) and a number of parallel multipliers (clients). The scheduler

program divides the weight matrix into n equal parts and transmits the submatrices to the

clients (in this case 2 parallel clients are used). The equal parts of the weight matrix HW

needs to be sent to the clients only once, at the beginning of the execution. As it is

constant, it can be stored in local memories of the clients. Then, the scheduler sends

146

parts of the row matrix STO to the clients, which wait for data to arrive. STO is an
argument of the matrix multiplication, and must be transmitted prior to the operation. As
soon as the clients receive partial STO data, they all carry out matrix multiplications, and
on completion, transmit the resultant row matrix. The scheduler reassembles submatrix
multiplication results by adding the partial results to form the overall result matrix. This
addition operation is an overhead, an extra computational load on the scheduling
processor, which does not occur during sequential execution. This is due to the high-
level nature of the matrix multiplication operation which involves a series of
multiplications followed by additions. The overhead introduced by n parallel multipliers
is n-1 matrix additions.

The Scheduler The Clients

/* Transmit half the HW */ / * Receive half the HW */
put_rows(vm[l], HW, 0, SIZE/2); get_mat(HW, fd);
put_rows(vm[2], HW, SIZE/2, SIZE);

/* Transmit half the ST */ / * Receive half the ST */
put_cols(vm(l], STO, 0, SIZE/2); get_mat(PPl, fd) ;
put_cols(vm[2], STO, SIZE/2, SIZE);

/* Carry out Multiplications */
mmul(STl, PPl, HW);

/ * Receive partial results */ /* Transmit result */
get_mat(STl, vm[l]) ; put_jnat(fd, STl) ;
get_mat(ST2, vm[2]);

/* Sum partial results */
madd(ST, STl, ST2);

Figure 8.8. Scheduler-Client Interaction

As CAT reveals, the parallel simulations on a network exploit the fact that the
weight matrix is a constant, and needs not be transmitted for every matrix multiplication.
Currently, CAT’s line by line parallel projections cannot exploit this, as parallel mapping
decisions are localised for each instruction and a temporal, global variable analysis
scheme is necessary. In fact, the distribution and the local storage of the weight matrix,
makes parallel executions on the SUN LAN faster than the sequential execution. The
results in Figure 8.9, show that parallel simulations of the Hopfield nets with various
number of neurons, is faster on two parallel SUN4s than the sequential execution on a
single SUN4.

147

Execution Time
sec

150

100

0 200 400

seq sun4
2 sün4s

neurons

Figure 8.9. Sequential and Data Parallel Hopfield

These results are remarkable considering that the communications speed for the
parallel simulations environment is as low as 180,000 bits/sec due to the high-level data
transfer routines. In all these Hopfield simulations, varying number of neurons with
randomly generated weight and pattern matrices are used with no convergence
requirements, focusing only on the execution time. Following these simulations on two
SUN4s, a 300 neurons Hopfield net is simulated on 2, 3 and 4 SUN4 workstations with
the same data parallel method. These simulations show the execution time is reduced
considerably for 2, 3 and 4 processors (Figure 8.10), and it tends to increase after 4
processors. This is because of the overheads in the opening up a socket, connecting to
the socket, and the standard costs relating to communications. These increased
communications costs prevents a linear curve of reduction in the execution time, when
the number of VMs increase. These results also highlight the importance of initial
communications costs such as latency which is constant and independent of the data size.

148

Execution time
sec

40

20

no of VMS
62 4

figure 8.10. Hopfield on multiple processors

These results confirm that data parallelism is feasible for the Hopfield net, with
potential gains in performance on parallel hardware. The results also indicate that the
execution time can be reduced only by dividing the computationally intensive matrix
multiplication operation into a number of parallel submatrix multiplications. CAT can
detect this in MATLIB listings, and a data parallel execution is possible using MATLIB
representations with no modifications. Based on these results, the mapping operation can
be automated by adding a data parallel code generation module to APM, and this module
can be triggered by the computational analysis and the subsequent mapping decision
which is made by CAT.

8.3.2. The Self-Organising Maps

Similar to the Hopfield net, the possibility of data and task parallelisms for the SOM
has been explored. CAT provided a line by line computational profile (Figure 8.11). In
this case, the distribution of the computations is more even, with some operations such as
matrix root mean squared {mrms) and lateral matrix update {mlat) relatively more
demanding than the other calculations.

149

sec X 10"̂
Execution Time

line no
40 60

Figure 8.11. Line by Line Computations in SOM

The same pattern recognition problem, used in the Hopfield net simulations is
solved using the SOM. A 64 input neurons by 12 output neurons SOM topology is used
to cluster 64 dimensional input vectors into 12 classes. The network is trained in an
unsupervised fashion, on 12 perfect patterns. After training, noisy input patterns are
presented to the network, which are recognised by identifying the nearest output vector.

Data Parallelism in the SOM

CAT projections for the SOM show that little speed-up can be achieved through
data parallelism comparing with the Hopfield net with the same problem size and
communications speed. This is due to the relatively even distribution of computations on
the SOM, and the parallel communications costs which offset the gains of parallel
executions. Figure 8.12 shows data parallel CAT projections on the SOM with 64 input
12 output neurons, on a number of parallel VMs with communications speeds between
10 to 40 Mbits/sec. Any significant gain in performance occurs for communication
speeds higher than 20 Mbits/sec.

150

Execution Time
sec

10 Mbit/sec

20 Mbit/sëc

3ÔMbit/sic

4(T Mbït/sec

no of Vms
1 2 3 4

Figure 8.12. Projections on Data Parallel SOM

Task Parallelism on the SOM

CAT results in Appendix D.2 point to the existence of a backward data stream on
the weight matrix (SW). This prevents a straightforward instruction pipelining type of
parallelism. The reason for the backward data flow is that the weight matrix is read and
written at every pattern presentation step. If the changes are accumulated and batches of
weight updates are carried out after each epoch, the network can be pipelined through a
number of systolic processors, reducing the execution time considerably. The SOM was
modified for this purpose, so the weight update changes could be accumulated in a matrix
of the same size as the weight matrix, and the batch weight updates can be carried out.
This new definition of the SOM was also processed by the CAT (Appendix D.2), and a
cutting point on the MATLIB listing for an instruction pipeline was found. This
partitioning resulted in approximately 30% to 70% load balance, on two parallel
processors.

Task Parallel SOM on the SUN LAN

The batch-update version of the SOM was partitioned into two self-contained but
interlinked MATLIB programs, with their own data definition and data transfer
instructions. Two clients and one scheduler programs were compiled and executed on
the LAN. This time the scheduler does not take part in neural network related tasks. It
only loads data from the file server, distributes the data and waits for data routing
instructions. The scheduler, as a passive server is in an infinite loop, and it runs the
MATLIB servis function. The clients, in turn, use the post function which allows them to

151

send data to other VMs, through the server. The server parses these data transmission
requests and carries out the orders by rerouting the data.

Figure 8.13 shows the simulation results for a number of SOM configurations
executing sequentially, and in parallel on 2 SUN4s. The results confirm that even on
general-purpose computing platforms it is possible to improve execution speed by task
parallel techniques.

Execution Time
sec

One sun4
200 Two sun4s

150

100

Output nodes
0 100 200

Figure 8.13. Sequential versus Pipelined SOM

To achieve the task parallelism for the SOM a modification had to be made in the
weight update procedure of the algorithm. It has been reported that this change can delay
or prevent the learning on this model. For this reason, the RMS error change is
monitored both in the parallel SOM with batch weight updates and the sequential SOM
with single step weight updates on the same pattern recognition problem. Figure 8.14
shows that, although the single step SOM convergence needs less number of iterations
for the error to drop to an acceptable level, in the batch update case, the error profile
follows the single step SOM error very closely. For this dataset, both methods produce
similar results, and the batch weight updates can be used.

152

RMS error x 10"^
Error Profile

single update
batch update140

120

100

20

Iterations
200100

Figure 8.14. RMS Error in Sequential and Parallel SOM

The results show that data parallelism on the SOM can be useful on high speed
communications links. Task parallelism is also feasible if the algorithm is modified to
carry out batches of weight updates instead of standard single step weight updates.

8.3.3. The Backpropagation Model

The same steps are applied to the Backpropagation model. The MATLIB
representation of the Backpropagation-with-momentum model is written and processed
by CAT to detect possible parallelism and identify computational bottlenecks (Appendix
D.3). An even computational profile has emerged, as a result, indicating all operations
are computationally demanding (Figure 8.15).

Execution Time
sec X 10"^

800

600

400

200

III
line no

60 80

Figure 8.15. Line by Line Computations in Backpropagation

153

The same pattern recognition problem was used with a three layered

Backpropagation network with 64 input, 12 hidden and 64 output neurons. The

simulation involved training the network for an auto-associative recall with the 12 base

patterns. Once trained, the network was required to generate the same patterns from

noisy or incomplete inputs.

CAT projections for a data parallel Backpropagation execution shows that the

network can be executed faster, on fast communications links between the parallel VMs

(Figure 8.16). Actual parallel simulations on SUN LAN are not implemented as this

medium would not meet the communications requirements outlined by the parallel

projections. The variable/loop analysis for the Backpropagation-with-momentum model
shows a tightly coupled network architecture. Global matrix variables such as the input
weights, which are between the input neurons and the hidden layer, and the hidden
weights, which are between the hidden layer and the output layer, are all on backward

flow data streams. Again, similar to the SOM case, the single step weight update

procedure does not allow a profitable task parallelism for the Backpropagation MATLIB

listing. The only possibility is to modify the algorithm to allow batch updates, and carry

out instructions pipelines on a coarse number of processors. Task pipeline simulations

was not carried out for the Backpropagation model, as it involves similar steps to the

SOM simulation which was previously described.

Execution Time
sec

10 Mbit/sec
2dM'bit/se‘c
30 Mbit/sic
40 Mbit/sec

no of Vms
1 2 3 4

Figure 8.16. Projections on Data Parallel Backpropagation

154

8.4. Mapping Multiple Neural Networks
In chapter 4, multiple neural network solutions are put forward as powerful ways of

enhancing neural network performance in complex pattern recognition problems.
Multiple network architectures consist of a number of neural networks as components,
with little inter-processor communication requirements, and cooperating or competing to
solve a problem. In chapter 7, a Hopfield/Backpropagation architecture is presented, as
an example of such systems. In this chapter, two new architectures are put forward,
simulated, and mapped onto parallel processors, using MATLIB and NEJUB functions.
The objective of these simulations is to enhance neural network performance through
parallelism in terms of achieving efficient parallel executions and designing powerful
hybrid systems.

8.4.1. Cooperating SOM/Backpropagation Networks

This simulation demonstrates the cooperation of the SOM and the Backpropagation
models, and their parallel execution on parallel processors. The SOM is an unsupervised
algorithm, which is used in clustering patterns into a number of classes. The SOM can
detect salient features in input patterns, and group them in topologically close nodes on
the output grid. The Backpropagation model, on the other hand, operates on pairs of
input and target patterns, and builds an internal representation which enables the network
to produce nonlinear mappings between inputs and targets. The two networks can be
used in cooperation, complementing each other in pattern classification tasks (Figure
8.17). The hybrid architecture involves the SOM acting as a front-end feature detector,
filtering inputs to the Backpropagation network which is trained to take appropriate
action for the patterns filtered by the SOM. In this case, Backpropagation auto-associates
noisy input patterns with the original target patterns. The SOM network receives and
clusters noisy input patterns into a number of classes, then, the vectors representing the
class centres are used to train the Backpropagation network for an auto-associative recall
of the targets. This modular, multi-network configuration has a number of advantages.
Firstly, this architecture enhances the strengths of both models; the SOM as a pattern
pre-processor, and the Backpropagation as a nonlinear pattern mapping device.
Secondly, the noise filtering carried out by the SOM facilitates and speeds up the training
of the Backpropagation network.

155

BP

SOM

Sun4

SOM

Sun4

BP

Sun4

SCHEDULER

Sim4

Ethernet

Sequential Execution Pipelined Execution

Figure 8.17. Cooperating SOM/Backpropagation Networks

As the application, the same pattern recognition problem has been used. For this
application, the SOM has 64 input and 12 output nodes, and the three layered
Backpropagation network architecture has 64 input, 12 hidden and 64 output units. A
total of 12 patterns is presented to the combined architecture. The following steps have
been taken in the simulation: firstly, a flat listing of MATLIB definition of the SOM/BP
algorithm has been written. This listing is processed by the computational analysis tool,
which identifies data-flow paths, variable dependency and computational costs. The
analysis reveals a cutting point between the SOM and BP algorithms, suitable for a two-
processor pipeline. By dividing the representation into two sections, a pipeline is
organised. The partitioned MATLIB representation is then parallelised on a 3 processor
configuration involving 3 SUN4s. The first SUN workstation is used as the scheduler,
which opens a socket, and waits for data transfer requests. The SOM is mapped onto the
second SUN which trains on the noisy inputs, transmitting the weight matrix and the
winners table to the third SUN station which runs the Backpropagation model, training
on the inputs it receives from the SOM and the targets which are local.

The simulation results for the pipelined execution on 3 SUN4s shows an
improvement in performance on the sequential execution. The parallel pipelined
execution takes only 43 seconds as opposed to the sequential execution resulting in 1:06
min (66 sec). Considering that the first processor is only the server, the results
correspond to a speed-up of 1.5 on the two-processor parallel architecture.

Using the CAT results in the identification of the cutting point, the Automatic
Parallel Mapper is able to generate automatic parallel pipelined code for this
configuration with a near optimum cutting point on the MATLIB representation. See
Appendix D.4 for CAT and APM results.

156

8.4.2. Competing Backpropagation Networks

Another method of enhancing neural network performance through parallelism is to
implement network level competition. Simulations in this section aim to achieve optimal
neural network designs, exploiting computational methods on parallel hardware. In this
section, a number of parallel Backpropagation networks are simulated on a number of
SUN workstations, competing with each other for a better network topology.

One of the major difficulties in using the Backpropagation model is optimising the
network topology and parameters for the network training. These parameters are: the
initial set of weights, the learning rate, and the number of nodes in the hidden layer. One
way of establishing these parameters is to carry out a number of simulations, and to
choose the network configuration with the best results. But this method is too time
consuming. A parallel architecture can be used to reduce the time spent in finding an
optimised network architecture (Figure 8.18).

BPl BP 2 BPN

SCHEDULER

Ethernet

Figure 8.18. Competing Backpropagation Networks

Another difficulty associated with the Backpropagation model is the inherent lack of
ability to explain any input-output mapping which the network produces. Input
perturbation techniques can be used to identify the most significant input parameter. This
method is somehow similar to Monte Carlo simulations. Certain input values are
modified, and the outputs are observed, by examining the distribution of inputs and
outputs, dependency to the inputs can be established. The same method can be applied to
optimise the most significant parameters of the network. Implementation of this method
is again too time consuming on sequential architectures, as it involves a number of serial
simulations and the comparison of their results. Again, a parallel hardware configuration
can be used to obtain results in a shorter time.

In these simulations, the same pattern recognition example as in the previous
sections is used. A five processor configuration is designed, involving four

157

Backpropagation networks, each with a different number of hidden neurons learning the
same training dataset. Using the simple NETJJB library function bpleam()y 4
Backpropagation programs are written, compiled and mapped onto 4 SUN workstations.
The scheduler is used as file I/O and a passive server, which monitors error and decides
which is the best configuration for the given problem. There is no data dependency and
little communication between independent neural network modules. Each
Backpropagation network occasionally reports the recall error to the scheduler program
which evaluates their performance. NEIUB listings of server and client programs are
presented Appendix E.

These simulations bring benefits even on general computing platforms such as the
SUN LAN used for the simulations. The method of competition is important, as is a
practical solution to a complex theoretical problem which interests many neural network
researchers in the pursuit of the optimum network design.

8.5. Summary

This chapter presented the simulation results for analysing, partitioning and
mapping MATLIB representations. A number of simulations are used to confirm CAT
results as an approximate computational model of the execution on SUN workstations.
CAT is then used to analyse and map MATLIB representations of the three neural
network models that have been the focus throughout this thesis. Feasibility of data and
task parallel executions are investigated for the Hopfield, the SOM and the
Backpropagation models, using CAT. Exploiting the results, the three models are
partitioned, parallelised and pipelined. Parallel simulations are carried out on a SUN
LAN, and simulation results are presented. Finally, multiple neural networks are
simulated on a number of parallel processors using MATLIB and NETLIB functions.

158

Chapter 9

Assessment

This chapter assesses the thesis work; an investigation o f representation
and mapping strategies for efficient execution o f neural networks on
parallel hardware. The thesis consists o f a series o f analyses, design and
implementation work, towards building a general purpose neural
computer. Within the context o f the research objectives, the analyses,
design, implementations and results are assessed, and alternatives are
explored.

9.1. Target Review
The goal of this research was to establish a generic mapping strategy for a general

purpose neural computing system, which provides a high performance and is flexible,
modular, scalable, efficient, and can be automated. Achieving a generic representation
was part of this main goal. For this purpose three neural network models and neural
network representations have been analysed and compared, a matrix-based library has
been put forward; to map matrix-based representations, a computational analysis tool and
an automatic parallel mapper have been designed and implemented. Matrix-based
representations have been partitioned and parallelised, manually, semi-automatically and
automatically. Parallel simulations have been used to assess the performance of the
mappings.

The analysis of neural network models aimed to: (i) understand neural network
models and their computational properties, (ii) highlight suitable application domains,
(Hi) explore potential structural parallelism, and (iv) search for a generic representation.
Three case studies have been used to achieve these aims, involving the Hopfield, the
SOM and the Backpropagation models with their appropriate applications.

The analysis of neural network representations aimed to establish a representation
which is capable of: (i) capturing neural network properties common to most models, (ii)
exploiting general-purpose parallel computers, and (Hi) providing generality, flexibility
and modularity. For this purpose, function-oriented, object-oriented and vector-oriented
representations have been compared, and a matrix-based C library, MATLIB has been put
forward. NETLIB also has been developed, which is a neural network library, containing

159

the recall and training functions of the three algorithms.

The main requirements in the design of a generic mapper were high performance,
generality, flexibility, modularity, efficiency, scalability and automation. To match these
criteria a computational cost based mapping strategy was put forward, and CAT and
APM have been designed and implemented to map matrix-based MATLIB
representations. The same requirements have been applied to the Galatea Mapper which
has been designed and developed as part of the Galatea GPNC simulator. Simulations of
parallel mappings on the Galatea GPNC involved manual and semi-automatic mappings
of VML rules, on a number of parallel VMs.

To assess the performance, efficiency and scalability, CAT and APM have been
used to partition MATLIB definitions of single-domain and multiple neural networks.
Parallel simulations have been carried out on a SUN LAN to verify computational
analysis projections and demonstrate the use of distributed parallel computer networks
for achieving high performance.

In the following sections, the work of this thesis on: the analysis of neural network
models, the neural network representations, the execution and mapping strategies, the
Computational Analysis Tool, the Galatea Mapper and the Automatic Parallel Mapper,
and the performance of the parallel simulations, is assessed.

9.2. Neural Network Analysis

In chapter 4, an analysis of neural networks have been provided. Three most
popular models were chosen, and throughout this research, these three models have been
used in the analysis of the models and applications, discussions of neural network
representations and simulations involving parallel mappings. In the analysis, three
appropriate applications have been chosen to highlight computational properties of these
models, and to obtain a representative sample of the neural computing field and its
applications. The three models have their strengths and weaknesses and they are good at
solving different problems.

The Hopfield nets can successfully be used in pattern recognition and data
compression tasks. The Hopfield net requires the initial setting of the weight matrix, and
it is restrictive in the choice of patterns, as they have to be orthogonal with one another.
As the net could not be used with arbitrary patterns for convergence purposes, for
realistic applications, real-world patterns must be coded into a set of orthogonal patterns.

160

The SOM can be used in clustering arbitrary input patterns, according to a distance
criterion. The main strengths of this model are; it does not require targets as the input
patterns are the targets, it requires very little information about data or problem domain,
and the network can continue to leam new datasets as the weights can adapt themselves
to the combined dataset. In addition to the parameters relating to the neighbourhood
distance and the gain, the most important parameter is the number of nodes in the output
grid which determines the number of clusters the network tries to form. Two difficulties
are associated with the SOM; dependency to initial conditions, and finding the optimum
set of network parameters. Initial random weights influence the resulting distribution of
winner nodes for the same dataset, in consecutive runs. This is not desirable as it
complicates the interpretation of the results. The second problem involves the setting up
of the network parameters. This problem can be eliminated by using network level
competition, similar to the competing Backpropagation networks in chapter 8, in order to
find the optimum network configuration and parameters.

The Backpropagation model can be used for a wide variety of real-world problems.
During the training stage, the network requires input-target pattern pairs. Once the
network is trained on a dataset, it can provide nonlinear mappings between inputs and
outputs. Because of this, the simulation results are simple to interpret, and this is one of
the main reasons for the popularity of this algorithm. A trained network cannot be used
for further training on a new dataset, as in that case the weights may be saturated. The
correct setting of the learning rate, the momentum term, the choice of the activation
function and the selection of the number of hidden units are all important for obtaining
correct and robust results.

One outcome of the analysis was that multiple neural networks are expected to be
more powerful problem solving domains than single domain systems. These
architectures require a generic, modular representation strategy and can be mapped onto
general-purpose architectures with relative ease. Chapter 8 provided simulations,
exploiting a parallel distributed computer network for neural network level co-operation
and competition resulting in clear gains in performance.

Structural analysis of the three models shows that the Hopfield neurons and the
SOM output grid can be distributed onto massively parallel neuron-based architectures.
In these cases, the interprocessor communications requirements increase polynomially
parallel to the number of connections. The Backpropagation model can be partitioned
horizontally or vertically, or one-to-one neuron mapping can be considered with a high
data traffic on the hidden units. It seems that the massively parallel implementations of

161

these models require fast communications facilities between the processors of the system.
This may be seen as shifting the emphasis from high processing speed to high
communications speed. The computational optimisation mapping strategy can be also
applied to hardware implementations to justify manufacturing.

The analysis showed that the computational requirements for the three models are
different in training and recall. In the case of the Hopfield nets, when large matrices are
involved, real-time recall requirements can only be met by special-purpose hardware
implementations. Both the SOM and Backpropagation models require long training
cycles depending on the problem domain, dataset size, dimensionality of the problem,
and the hardware platform. The Backpropagation is the most computationally
demanding of the three models. Simulations of the three models show that the most
demanding computations are multiplications and additions, and the most common aspect
of the three models is that they can all be represented by matrix-vector operations. Most
of these operations are matrix arithmetic with some exceptions of nonlinear activation
functions. This argument was used to abstract neural networks in a computationally
more understandable matrix-based representations domain.

9.3. Neural Network Representations
In simulations, neural network data are often processed in the form of arrays and

matrices of patterns, weights and outputs. The choice of matrix-based representations is
justified as these representations can capture most neural network models at the highest
common level. In addition to this, matrix-based representations are suitable for the
general-purpose execution strategy which employs vector-matrix based parallel
hardware. The main strengths of matrix-based representations are:

• Simplicity and compact representation
• Model independence
• Generality and flexibility

These strengths were demonstrated in the sequential and parallel simulations of the
three most popular neural network models.

The main disadvantage of matrix-based neural network representations is that as
data are grouped in the form of matrices, the neural network concepts such as layers,
clusters, neurons or synapses are not supported. For this reason, mapping these concepts
onto neuron-based fine-grained architectures is hampered. An object- or data-oriented
approach is more suitable for mapping onto special-purpose neurocomputers.

162

The two matrix-based representations VML and MATLIB are suitable for the
general-purpose, parallel, accelerator-board-based systems. Matrix-based operations
present data to general-purpose SIMD architectures, in a format which is relatively free
from data dependencies. These operations can be easily divided and parallelised on
SIMD architectures with a good load balance. Considering an element by element
multiplication of two matrices (memu) on a fine-grained SIMD architecture, the operand
matrices’ data could be distributed onto the multipher processors, and a single multiply
instruction to all the processors would complete the operation, in a single step. One
consideration in the distribution of matrix operations is that some matrix operations are
composite. If the operation is divided, the results must be reassembled. An example is
the matrix by matrix multiplication (mmul) which was parallelised in chapter 8. This
operation requires the addition (madd) of the parallel submatrix multiplication results. In
automatic mapping and parallel code generation, these exceptions can be included in the
final system. Alternatively, such composite operations are identified and decomposed
into simple, divisible matrix operations.

Another difficulty with the matrix-based representations is the execution of neural
operators. As pointed out in chapter 5, some commercial software/hardware provide
matrix-based arithmetic operations, but most neural-specific operations still are executed
on the sequential host computer. Fine-grained parallel architectures are developed with
programmable processors for executing neural activation functions, derivatives etc.
Research is in progress in the development of parallel algorithms for matrix operations
[115], and the hardware implementations of matrix-based operators.

In this research, two matrix-based representations VML and MATLIB are used to
simulate and map the three neural network models. Both representations proved to be
excellent tools which allowed the experimentation and the testing of the models and
applications. VML suffers from a number of weaknesses:

• Yet another language - The main problem with VML is that, it attempts to compete
with C. As a competitor language it contains similar features to C which is
unnecessary, as those features are readily available in C. As an interpreted
language, VML has its own parser and interpreter which are planned to be ported
onto VMs’ local memory space. This is also unnecessary, as nowadays most
systems provide their own C compilers. When they do not, a cross compiler can be
developed which compiles C to relevant executable languages. Similar concerns
had been raised during the course of the Galatea project [16].

163

• High-level features - For most neural network simulations a subset of C would be
sufficient, and VML should have consisted of only these features. This would also
have facilitated the mapping process, as the calculation of the computational costs
would have been simplified. Instead, VML includes a large number of statements,
with an arbitrary rule hierarchy and a number of loop and control statements.
Automatically generated raw VML code contains too many VML rules, most of
which consist of a single line, a call for another rule, reflecting the object-oriented
rule hierarchy in the high level language N. The rule hierarchy, and the arbitrary
control loops complicate the cost analysis for the Galatea Mapper. In fact it is
impossible to cost loop statements such as while which are resolved only during
run-time.

• Low-level features - In addition to accommodating high-level language features, the
later version of VML (VML 2.0) includes the data type in its syntax. As a result, for
example, the number of mmul statements proliferated to 8, with the introduction of
statements like intSjnmuly double32_mmuh etc. A large number of new statements
emerged, each dedicated for an operation with a specific data type. These
development make it hard to code in VML, as the programmer has to consider the
data type at every stage.

MATLIB was originally designed to overcome these weaknesses. As a library, it is
basically C, containing only the necessary matrix operations sufficient for programming a
range of neural network algorithms. It can be extended, using the same conventions and
the data structures. Added parallel features make MATLIB a matrix-based, parallel, C,
source library. MATLIB has provided a flexible, open, modular environment for neural
network programming, ready to be executed on matrix operator parallel hardware.

The use of NETLIB functions is even simpler, these functions make neural network
programming a matter of calling a C function from a program. As future systems are
likely to be multiple networks and Hybrid Systems, NETLIB functions are a valuable tool
for the novice or non-expert Although it is hidden from the user, the NETLIB functions
consist of MATLIB matrix-based library functions, and these can be executed efficiently
on parallel hardware. Both libraries provide a clear, modular and object-oriented means
to program neural networks and other similar fine-grained algorithms.

164

9.4. The Strategy

In this thesis, the neural network execution strategy has been to achieve a high-
performance execution for a wide range of models, by exploiting general-purpose
parallel hardware platforms. Generality, flexibility and scalability have been other
considerations. The main disadvantage of the general-purpose execution strategy is that
the general-purpose devices cannot match the level of performance provided by the
special-purpose devices [51,70,85,131]. Special-purpose neurocomputers are often
application- and algorithm-specific devices and are usually too expensive. The level of
performance provided by general-purpose devices can be acceptable for most
applications, and can be enhanced through parallelism and cascading. The general-
purpose execution strategy shifts the complexity to the software, as it requires flexible
representations and efficient mapping strategies which are capable of exploiting general-
purpose hardware.

The Virtual Machine concept lies at the centre of the general-purpose execution
strategy. This idea is not new - similar ideas have been put forward in the past [23,97].
TRW Mark III, presented in chapter 2, was an early example of a general-purpose,
parallel, scalable neurocomputer which pioneered this philosophy in neural computing.
The Galatea VM typically consists of a communications unit and an execution unit, each
specialised for separate tasks. The communications unit consists of a local memory unit
and a CPU, and it is responsible for interfacing with the external environment,
controlling the co-processor board and carrying out other calculations which would be
too expensive to execute on the board. Execution units are compact, general-purpose
neurocomputer, accelerator or co-processor boards. A number of VMs can be connected
to a host machine producing a general purpose neural computer. The VMs or general-
purpose neurocomputer units are currently under development at Siemens and Philips.
After their completion, an assessment of the Galatea GPNC is necessary. The criteria for
this assessment would be based on the following requirements, which are also the
research objectives for this thesis. They are: high performance, generality, parallelism,
flexibility, scalability and modularity.

Siemens and Philips VMs are general-purpose neurocomputers which are expected
to yield a high performance, targeting large-size real-world applications. Typical
applications include computationally demanding vision tasks, and image recognition and
processing. Siemens based VM, SYNAPSE-1, which will be a commercial product, can
provide up to 800-1000 MCPS. This is well above the computational requirements for
most current neural network applications [6]. Its local storage capacity is also sufficient

165

at 4MBytes, and can be increased by upgrading the local RAM for the communications
unit.

Two levels of parallelisms are possible with the VM approach. The execution unit
of each VM is a medium- to fine-grained parallel processor array. In addition to this,
many VMs can be connected in parallel, providing coarse-grained parallelism. This
second level of parallelism is the mapping domain that this thesis work has focused on as
part of the development of a general purpose neural computer.

Two radically different mapping/execution philosophies are practised for the
execution and mapping of neural networks. The first one exploits the parallel distributed
structure of networks; the neural-oriented features such as layers, clusters, neurons and
synapses are mapped and executed on parallel distributed hardware. The three neural
network case studies in chapter 4 show that these networks favour different types of
structural mappings due to the differences in their topological and computational
properties. The structural mapping approach is not general or flexible, yet it is simple to
understand and can deliver a high performance on massively parallel hardware platforms.
Strictly speaking the structural parallelism is data parallelism.

The second mapping approach is based on the high performance execution of the
computations involved in neural network simulations. The second approach has been
chosen in this thesis, as it is more general, flexible and cost-effective. The mapping
strategy based on this computational mapping approach is to develop a mapper as an
optimiser. The mapper’s main task is then to optimise the use of hardware resources for
an efficient execution. The mapper as an optimiser strategy is upgradable. Any
optimiser, including genetic algorithms and neural networks can be used to optimise the
mapping process. In fact, there have already been attempts to use neural networks as an
optimiser in the mapping problem [134].

Central to the optimisation, is the costing of computational load, with two aspects;
the processing costs and the communications costs. Most of the parallel mapping efforts
have been focused on the computational costing of the sequential and the potentially
parallel executions. Naturally, to demonstrate the approach, a linear computational
model, and a homogeneous processor architecture have been assumed for simulations on
the SUN LAN. The heterogeneous hardwares with nonlinear computational models
would be more challenging, although the same principles apply.

166

The mapping strategy of computational optimisation is generic, and it can also be
applied to structural mapping of networks. In that case, it would involve the evaluation
of the processing and communications costs for all the objects of the system. Developing
a computational optimiser object mapper would be facilitated by object-oriented
languages. In fact, the computational look-up tables could be set up as parts of the object
classes which are distributed by the mapper. The challenging task for the mapper would
be to decide on the level of granularity for partitioning neural network object
representations. To achieve this, the potential computational costs of a number of
partitionings can be simulated and the execution with the minimum computational cost is
chosen. An additional degree of complexity to mapping can be foreseen on the
heterogeneous architectures. Then the computational optimisation can last increasingly
long in proportion to the granularity of the systems. Neural network or genetic algorithm
based optimisers can then replace straightforward computational cost calculations.

9.5. The Implementation

The main challenge, in the implementation of the mapping strategy as a
computational optimiser, is to parameterise and estimate the computational costs for
potential sequential and parallel executions. The Computational Analysis Tool has been
developed for this purpose. Any neural network or other algorithm written by using
MATLIB functions in the restricted format, can be processed by CAT. The total memory
usage is estimated, a line by line analysis of the computations is made, and the possibility
of the two types of parallelism - data and task parallelisms - is explored. Then,
depending on the number and type of parallel processors available, the data parallel and
task parallel communications costs are estimated. Based on the estimates, the Automatic
Parallel Mapper then decides whether parallel execution is profitable, and automatically
generates data or task parallel MATUB programs.

Automatic code generation schemes, particularly an automatic parallel code
generation is very much desired to minimise and altogether eliminate the human effort in
programming [32]. The loss of performance during compilations and translations from
high-level to low-level representations is one of the major disadvantages of automatic
code generation schemes. Writing code in an intermediate-level language is often more
efficient than the automatic generation [45]. Where high performance matters, parallel
programs can be written manually, or alternatively libraries can be used in parallel
programming. MATLIB and NETLIB libraries were easy to use in manual parallel
programming, and throughout this thesis, varying degrees of automation are used in code

167

generation aiming at a fiilly automatic parallel mapping.

The Galatea Mapper compromises on the automatic generation of VML code, by
adopting a semi-automatic mapper. At this stage of the project, the computational
characteristics of the Virtual Machines are not available. The Galatea project is currently
focusing on the optimisation of the execution of the VML functions on Siemens and
Philips generic boards. Once the generic boards are produced, and all the parameters of
the VMs are available, these parameters can be integrated into the semi-automatic
mapper, and fully automatic mapping can be realised.

The Automatic Parallel Mapper and the Computational Analysis Tool are strongly
linked. CAT does most of the work by costing, analysing, and projecting parallel
executions. APM choses one of the options provided by CAT, and based on that, it can
generate parallel MATUB definitions automatically from sequential MATUB program
listings. CAT simulations in chapter showed the feasibility of the approach by
automatically generating C code which is compiled and executed. There are two
problems with the APM generated code.

Firstly, CAT’s data parallel projections search for parallelism on an instruction by
instruction basis, ignoring the temporal relationship between the operations. As a result,
even constant data matrices are transmitted to the parallel clients for each instance. In
fact, constant matrices could be transmitted only once, and stored in the local memories
of the VMs throughout the execution. In the parallel simulations of the Hopfield net on
the LAN, this approach of transmitting the constant weight matrix only once, is used.
The approach resulted in some parallel simulations, on a number of SUNs, running faster
than sequential simulations on a single SUN. This behaviour of transmitting constant
matrices only once, can be introduced to CAT/APM. In addition to this, a further module
could identify temporarily constant variables. These variables stay constant during an
inner loop operation until they are written during an outer loop. Again, communication
costs can be reduced by transmitting these variables when necessary. There is already a
template for these potential developments in the current loop/variable analysis routines in
CAT.

Secondly, in task parallel mapping, CAT’s variable analysis routine focuses
exclusively on the matrix variables, establishing variable dependency links in the form of
forward and backward data paths. This is because the transmission costs of these
variables are significant in the calculation of the communications costs. In fact, the
scalar variables are as important; they can also halt a parallel simulation if they are not

168

received when requested. As a result, the current automatic pipeline mappings may
result in incorrect parallel code generation. This problem will be resolved by adding a
scalar variable loop analysis routine.

Finally, dynamic or run-time mapping alternatives to compilation-time and static
mapping have also been considered but not implemented. This is because dynamic
mappings place a heavy demand on communications resources due to the continuous
freeze and download operations on the parallel system. For the time being, the initial,
static mapping is found sufficient for mapping medium size neural networks.

9.6. Mapping Results and Performance
The mapping results can be assessed in two categories; the Galatea Mapper

simulations using VML, and parallel mappings of MATLIB definitions. .

The Galatea Mapper simulations focused on mapping and executing complete
networks on general-purpose neurocomputer modules (VMs) of the system. The semi­
automatic task mappings showed that the GPNC simulator on the SUN workstations is
too slow to gain any speed-up. Mappings of MATLIB on the other hand show clear gains
for some parallel simulations on the Local Area Network. This discrepancy is due to the
slow scheduler on the GPNC, which packs and unpacks messages and transmits data in
ASCn. As the purpose of the Galatea GPNC simulator was not to yield high
performance, but to provide a developmental, experimental system to the project
partners, the performance of the system was acceptable.

The Computational Analysis Tool results on the three models, show that the
Hopfield and the SOM models do not scale up, as they contain polynomial relationships
in the computational complexity of the algorithms with respect to the network size. This
is the case for increasing neuron size for the Hopfield net and increasing output grid size
for the SOM. In both cases, computational requirements increase polynomially in
proportion to the square of the number of neurons. In these cases, as the network size
gets bigger, the computational requirements become unsurmountable. The
Backpropagation model shows a linear increase in the computational requirements when
the number of neurons is increased linearly. The steepest increase occurs in the increase
of the neurons in the hidden layers.

The three neural network models are tightly coupled algorithms with little room for
task parallelism. Only by changing the algorithms is it possible to pipeline tasks and
achieve a task parallel execution. The same technique of conversion to the batch weight

169

updates, is also used for structural mappings of neural network models. This
correspondence confirms that the matrix-based representation adopted in this research
captures the same characteristics on a different plane.

The performance of data parallel executions depend on the communications speed
and bandwidth of the interconnection architectures. The data parallel execution
projections carried out by CAT show above 10 Mbits/sec speeds, data partitioning can be
useful on average size networks. The communications bandwidth limits the
communications speed when there is a high traffic and large data sizes are transmitted on
a bus. The feasibility of the Future Bus architecture as the communications medium for
a general purpose neural computer has been investigated elsewhere [128] with
encouraging simulations results.

Global measures for success on parallel architectures are speed-up and efficiency.
Considering a sequential execution lasts 7 ,̂ and a parallel execution for the same
application on n parallel processors lasts Tp, the speed-up factor is: S = Tg/Tp, and the
efficiency is: E = S/n.

CAT projections in Figure 9.1 show the performance and efficiency for data parallel
mapping of a 64-neuron Hopfield net on 2 processors with varying communication
speeds. These results show that, the higher the communications speed, the better the
speed-up factor and the efficiency.

Factor

1.5

0.5

0 200 400

Performance
Efficiency....

Mbit/sec

Figure 9.1. Data Parallelism and Communication Speed

A similar relationship is observed between the number of parallel processors and the
speed-up factor. However, as seen in Figure 9.2, there is a reverse relationship between

170

the efficiency and the number of parallel processors. These results are also obtained by
CAT projections on a 64 neuron Hopfield net, with a constant 10 Mbit/sec
communications speed. This indicates that although a faster execution can be achieved,
the resources are used inefficiently.

Factor

2.5

2

1.5

1

0.5

0
0 100 200

Performance
Efficiency

No of Vms

Figure 9.2. Data Parallelism and number of Processors

Another issue in parallel mapping is scalability which is linked to the performance
improvement on a parallel system, with respect to the increasing number of processors.
The data parallel mapping projections promise a scalable execution particularly for high
communications speeds. Task parallel, instruction pipelines, on the other hand, are not
scalable as a result of the difficulties in load balancing. Also, CAT pipeline projections
showed that finding a cutting point which would result in a pipeline with a good load
balance, is not always possible. In any case, scalability is limited by physical
interconnection architectures such as buses which can serve only a certain number of
parallel processors.

In any case, as shown in chapter 8, current general-purpose, coarse-grained parallel
architectures can provide a suitable framework for the integration of different problem
solving modules. As the communications requirements are minimal between the
independent modules of the system, these architectures can be efficiently used in neural
network cooperation and competition for better hybrid algorithm designs, and the genetic
optimisation and automatic generation of neural networks.

171

Chapter 10

Conclusion and Future Work

This final chapter presents the conclusions o f this thesis work. The
possibility o f extending the coarse-grained mapping strategy to fine­
grained or heterogeneous architectures is explored.

10.1. Conclusions
The main objective of this thesis was to achieve generic representation and mapping

strategies for executing neural networks on parallel hardware. The matrix-based
Clibrary, MATLIB achieves generality, flexibility and modularity. It captures neural
network properties at the most common level, and is suitable for general-purpose parallel
computers. The computational cost analysis based mapping strategy is also general,
flexible and, modular. It can provide high performance and efficient execution on
parallel machines with high speed communications interfaces. It has been shown that the
mapping operation can be automated. The main conclusions of this thesis work are
presented on a chapter by chapter basis.

In chapter 4, a comprehensive analysis has been carried out using the three most
popular neural network models; the Hopfield, the SOM and the Backpropagation. The
following conclusions were reached as a result of the analysis:

• In computer simulations the most common operations are vector-matrix arithmetic
operations. A number of neural-network-specific operations exists that can also be
represented in a vector-matrix based format. Neural network simulations involve
general computing routines such as the file I/O, pattern pre-processing, sorting and
graphics interface. These routines can also be abstracted in vector-matrix based
representations.

• The three models have their strengths and weaknesses, and popular applications.
Combinations of these models in multiple neural network architectures could
enhance their performance.

• Structural partitioning techniques applied to a model cannot be generalised to all
models.

172

In chapter 5, function-oriented, object-oriented, and vector-oriented neural network
representation techniques have been compared, using a number of simulation examples.
The following conclusions have been reached:

• Function-oriented representations focus on the functionality of the algorithms and
are suitable for task parallelism, but not suitable for data parallelism.

• Object-oriented representations can capture neural network concepts down to the
finest granularity and are are suitable for mapping neural networks onto massively
parallel architectures that can match the same level of granularity.

• Vector-oriented representations capture neural network properties at the most
common level, and are suitable for exploiting general-purpose parallel computers.

This thesis achieved a generic neural network representation by the design and
development of MATLIB and NETLIB libraries. MATLIB functions are general-purpose
and encourage programmer to think in a matrix-oriented fashion. They would be suitable
for many scientific problems with high dimensionality, and other conventional tasks such
as graphics and pattern processing.

In chapter 6, the computational cost analysis based mapping strategy was outlined.
It was concluded that the structural mapping techniques are not general or flexible. A
computational analysis based mapping strategy is general, flexible and can be upgraded
by using modem optimising techniques in future. Combine with the matrix-based
representation technique, the mapping strategy can incorporate parallelism in two levels;
the matrix-based operations can be pipelined in a MIMD fashion, and each operation can
be parallelised in a SIMD or MIMD fashion.

In chapter 7, the design and development of the Galatea Mapper has been presented.
The Galatea Mapper distributes a matrix-based common language VML onto general-
purpose, high performance VMs. The following lessons have been learned:

• Increased complexity in the common language (VML), introduce the following
difficulties in mapping: (i) high-level features such as loop controls that are
resolved during the run-time, make compilation-time mapping impossible, (ii) low-
level features such as hardware-specific instructions should not be in the common
representation, and (Hi) hierarchical structures such as rules in the common
representation place unnecessary constraints on the mapping process.

173

• Increased complexity on the Scheduler slows down simulations to the point that
parallelism is useless. Simple, passive scheduling techniques should be adopted for
higher performance.

In chapter 8, the results of the CAT projections and parallel simulations have been
presented. Parallel, pipelined, single-domain and multiple neural network architectures
are used in these simulations. The following conclusions have been reached:

• The three neural network models are tightly coupled algorithms for task parallelism
purposes. All three models involve forward and backward data streams in their
MATUB representations. Only after modifying their weight update procedures, the
SOM and the Backpropagation models can be pipelined through 2 or 3 parallel
processors, resulting in a faster parallel execution.

• Data parallehsm on an instruction-by-instruction base can produce a speed-up. The
amount of speed-up strongly depends on the communications speed. The
simulations on the Hopfield model showed that only by parallelising the matrix
multiplication a considerable time can be saved. The initial communication costs
such as latency must be taken into consideration for fine-grain parallehsm.

• Automatic mapping is possible on a smaU number of parallel processors. CAT and
APM can resolve data dependencies and generate parallel and pipelined code,
scheduling data transfer operations.

• Current distributed computer networks can be used for speeding up multiple neural
network simulations where a number of independent modules compete or co­
operate in the solution of a problem.

10.2. Future Work

A comprehensive computer architecture which is capable of serving a hybrid of
neural, genetic and rule-based systems is very much desired. Such an architecture would
be able to handle a mixture of apphcations, in a programming environment with multiple
representations, and exploit special-purpose, general-purpose and conventional hardware
modules, all sharing a message passing communications protocol. Such a system is
called a General Purpose Heterogeneous Computer (GPHC) (Figure 10.1). Primary
applications for GPHCs would be aU fine-grained algorithms such as; Neural Networks,
Genetic Algorithms, Virtual Reality systems. Fractal systems. Fluid Dynamics and Finite
Element systems.

174

The programming environment for the GPHC can be realised by linking a number
of algorithm libraries, in an open, modular system environment, where users could build
their applications by using the library functions as building blocks. The mapping task in
this environment, would involve the optimisation of the partitioning and distribution of
various representations onto the heterogeneous environment for execution. The
computational optimisation mapping strategy can be extended to the heterogeneous
system. First, a considerable effort must be put in the computational evaluation of
processing and communications costs of the library functions within the multiple
representation environment. Special-purpose, fine-grained and general-purpose, coarse­
grained, all the modules of the execution environment must be parameterised in the
computational cost analysis. Conversion mechanisms between the different libraries
must be set up to achieve a load balance in various software and hardware combinations.

Financial
Forecasting

Real World Applications
Pattern

Recognition
Data

Processing

f \ '

Neural
Genetic

Algorithms

Graphics
Interface

Programming Environment

Conventional
Models

Matrix
Library

Procedure
Library

MAPPER

Special General Conventional
Purpose Purpose Computer

Neurocomputer Neurocomputer

Figure 10.1. General Purpose Heterogeneous Computer

175

The computational optimisation strategy can also be applied to Silicon Compilers
which are becoming increasingly important in the wake of low cost automatic generation
of neural ASICs. In this case, the main cost is not only the potential execution time, but
also the actual silicon area. Folding algorithms based on optimisers can be used to
reduce the final silicon area, through projections and simulations which partition neural
network representations and measure the cost in terms of the silicon area.

176

References

1. Parallel Distributed Processing: Explorations in the Microstructure o f Cognition,
MIT Press, 1986.

2. GINNI (Generic Interactive Neural Network Interpreter), SAJC - Science
Applications International Corporation, 1987.

3. Thinking Machines, “ Connection Machine Model CM-2,” Technical Summary
HA87-4, Thinking Machines Corp., April 1987.

4. Nestor, “ Nestor Development System User’s Guide,” Product Information, Nestor
Inc., 1988.

5. SAIC, “ DELTA/SIGMA/ANSim, editorial,” Neurocomputers, vol. 2, no. 1,1988.

6. DARPA Neural Network Study, AFCEA International Press, 1988.

7. Meiko Scientific, “ In Sun Computing Surface,” Product Information, Meiko
Scientific Ltd, Bristol, UK„ 1989.

8. Adaptive Solutions, “ CNAPS Neurocomputing,” Product Information, Adaptive
Solutions Inc., Beaverton, Oregon, 1991.

9. K. Akingbehin and M. Conrad, “ A Hybrid Architecture for Programmable
Computing and Evolutionary Learning,” Journal o f Parallel and Distributed
Computing , vol. 6, pp. 245-263,1989.

10. I. Aleksander, W. V. Thomas, and P. A. Bowden, “ WISARD - A radical step
forward in image recognition,” Sensor Review, pp. 120-124, July 1984.

11. I. Aleksander, “ Ideal Neurons for Neural Computers,” in Parallel Processing in
Neural Systems and Computers, ed. R. Eckmiller, G. Hartmann and G. Hauske, pp.
225-228, Elsevier Science Publishers, 1990.

12. N. M. AUinson, M. J. Johnson, and K. J. Moon, “ Digital Realisation of Self
Organising Maps,” in Advances in Neural Information Processing Systems 1, ed. D.
S. Touretzky, pp. 728-738, Morgan Kaufmann Publishers, Inc., 1989.

13. J. A. Andersen, “ Cognitive and Psychological Computation with Neural Network
Models,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-13, no.
5, pp. 799-814,1983.

14. B. Angeniol and P. Treleaven, “ PYGMALION: Neural Network Programming &
Applications,” Proc. ESPRIT 1989 Conference, North Holland, Amsterdam, 1989.

15. B. Angeniol, “ Pygmalion: ESPRIT II project 2059, Neurocomputing,” IEEE
Micro, pp. 28-31 and 99-102, December 1990.

177

16. B. Angeniol, “ Some Remarks on the VML language,” Galatea Internal Report,
Mimetics, Paris, 1991.

17. J. K. Anlauf, “ SYNAPSE-1 and VML,” Galatea Internal Report, Siemens, 1991.

18. M. Azema-Barac, M. Hewetson, M. Recce, J. Taylor, P. Treleaven, and M.
Vellasco, “ PYGMALION Neural Network Programming Environment,”
Proceedings o f International Neural Network Conference, Paris, July 9-13,1990.

19. M. Azema-Barac, “ A Generic Strategy for Mapping Neural Network Models on
Transputer-based Machines,” Proc. o f the Third Int. Conf. on Applications o f
Transputers, pp. 768-773, Glasgow, UK, August 28-30, 1991.

20. C. Bahr and D. Hammerstrom, ANNE (Another Neural Network Emulator), Intel
Scientific Computers, 1987.

21. J. Bailey and D. Hammerstrom, “ Why VLSI implementations of Associative
VLCNs Require Connection Multiplexing,” Proc. Int. Joint Conf. on Neural

vol. II, pp. 173-180, San Diego, 1988.

22. N. Baran, “ The Outlook for Pen Computing,” Byte, pp. 159-164, September, 1992.

23. P. Bessiere, A. Chams, and T. Muntean, “ A Virtual Machine Model for Artificial
Neural Network Programming,” Proceedings o f International Neural Networks
Conference, Paris, 1990.

24. U. Bilge and F. Franca, “ Computing with Neural Networks,” International
Industrial Biotechnology, vol. 9, no. 4, pp. 17-19, 1989.

25. U. Bilge, “ The Mapper Development,” Galatea Internal Report REP-S5-M18,
UCL CS, 1992.

26. U, Bilge and M. Recce, “ The Self-Organising Map in Clustering Neural Spikes
from the rat’s Hippocampus,” UCL CS RN/92/11,1992.

27. U. Bilge, “ Financial Forecasting using the Self-Organising Map,” UCL CS
RN/92/36,1992.

28. U. Bilge, “ A Computational Model of the rat’s Hippocampus: Navigating through
Self-Organising Maps,” UCL CS RN/92/37,1992.

29. M. de Bolhvier, P. Gallinari, and S. Thiria, “ Cooperation of Neural Nets for Robust
Classification,” Proc. Int. Joint Conf. on Neural Networks 90, vol. I, pp. 113-120,
San Diego, 1990.

30. M. de Bollivier, P. Gallinari, and S. Thiria, “ Cooperation of Neural Nets and Task
Decomposition,” Proc. Int. Joint Conf. on Neural Networks 91, Seattle,
Washington US, 1991.

178

31. H. Bouattour, F. F. Soulie, and E. Viennet, “ Solving the Human Face Recognition
Task using Neural Networks,’’ Artificial Neural Networks 2, pp. 1595-1598,
Elseiver Science Publishers, 1992.

32. G. Bricault, “ Juggling Multiple Processors,’’ pp. 315-323, May, 1992.

33. G. A. Carpenter and S. Grossberg, “ The ART of Adaptive Pattern Recognition by a
Self-Organizing Neural Network,’’ IEEE Computer, March 1988.

34. C. Carter and J. Catlett, “ Assessing Credit Card Applications Using Machine
Learning,’’ IEEE Expert, pp. 71-79, Fall 1987.

35. C. A. Cruz, W. A. Hanson, and J. Y. Tam, “ Neural Network Emulation Hardware
Design Considerations,’’ Proc. First Int. Conf. on Neural Networks, vol. IQ, pp.
427-434, June 1987.

36. C. Darken and J. Moody, “ Fast Adaptive K-Means Clustering: Some Empirical
Results,’’ Proc. Int. Joint Conf. on Neural Networks 90, vol. H, pp. 233-238, San
Diego, 1990.

37. J. Dayhoff, Neural Network Architectures - An Introduction, Van Nostrand
Reinhold, New York, 1990.

38. D. DeSieno, “ Adding a Conscience to Competitive Learning,’’ Proc. Int. Joint
Conf. on Neural Networks 88, vol. I, pp. 117-124,1988.

39. R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis, John Wiley
and Sons, New York, 1973.

40. M. Duranton and J. Sirat, “ Learning on VLSI: A General-Purpose Digital
Neurochip,’’ Philips Journal o f Research, vol. 45, no. 1, pp. 1-17,1990.

41. M. Duranton and D. Jorand, “ Hardware Definition of the Generic Board,’’ Galatea
Internal Report, Philips, Paris, 1991.

42. M. Duranton and P. Friedel, “ Intraboard Communication and Control,’’ Galatea
Internal Report, Philips, Paris, 1992.

43. S. Dutta and S. Shekhar, “ Bond Rating: A Non-Conservative Application of Neural
Networks,” Proc. Int. Joint Conf. on Neural Networks 88, vol. U, pp. 443-450,
1988.

44. H. P. Ernst, B. Mokry, and Z. Schreter, “ A Transputer Based General Simulator for
Connectionist Models,” in Parallel Processing in Neural Systems and Computers,
ed. R. Eckmiller, G. Hartmann and G. Hauske, pp. 283-286, Elseiver Science
Publishers, 1990.

45. G. E. Fagg, P. R. Minchinton, and S. A. Williams, “The Implementation of
Artificial Neural Networks on Parallel Heteregenous Architectures,” Artificial
Neural Networks, 2, pp. 1283-1286, Elseiver Science Publishers, 1992.

179

46. G. Frazier, “ Ariel: A Scalable Multiprocessor for the Simulation of Neural
Networks,” ACM SIGARCH Computer Architecture News, vol. 16, no. 1, pp. 107-
114, March 1990.

47. K. Fukushima, “ Neocognitron: A Hierarchical Neural Network Capable of Visual
Pattern Recognition,” Neural Networks, vol. I, pp. 119-130, 1988.

48. K. Fukushima, “ A Neural Network for Visual Pattern Recognition,” IEEE
Computer, vol. 21, no. 3, pp. 65-75, March 1988.

49. K. Fukushima, “ Neural Network Models for Visual Pattern Recognition,” in
Parallel Processing in Neural Systems and Computers, ed. R. Eckmiller, G.
Hartmann and G. Hauske, pp. 351-356, Elseiver Science Publishers, 1990.

50. S. C. J. Garth, ‘ ‘A Chipset for High Speed Simulation of Neural Network Systems,”
Proc, o f the IEEE First International Conference on Neural Networks, vol. HI, pp.
443-452, June 1987.

51. J. Ghosh and K. Hwang, “ Mapping Neural Networks onto Message-Passing
Multicomputers,” Journal of Parallel and Distributed Computing, no. 2, pp. 291-
330, Academic Press, 1989.

52. Nigel Goddard, The Rochester Connectionist Simulator User Manual, Dept, of
Computer Science, University of Rochester, Rochester, 1987.

53. T. Gutschow, AXON: The Researchers Neural Network Language, HNC Inc.,
Hecth-Nielsen Neurocomputers, 1988.

54. D. Hanunerstrom, “ A VLSI Architecture for High Performance, Low-Cost, On-
chip Learning,” Proc. Int. Conf. on Neural Networks 90, vol. H, pp. 537-544,1990.

55. W. A. Hanson, C. A. Cruz, and J. Y. Tam, “ CONE - Computational Network
Environment,” Proc. First Int. Conf. on Neural Networks, vol. HI, pp. 531-538,
1987.

56. R. V. Hanxleden and L. R. Scott, “ Load Balancing on Message Passing
Architectures,” Journal o f Parallel and Distributed Computing , vol. 13, pp. 312-
324,1991.

57. M. Hardaker, “ Back to the Future,” Windows User, pp. 73-86, July, 1992.

58. S. A. Harp and T. Samed, “ Genetic Optimization of Self-Organizing Feature
Maps,” Proc. Int. Joint Conf. on Neural Networks 91, vol. I, pp. 341-346, Seattle,
Washington US, 1991.

59. R. Hecht-Nielsen, “ Performance Limits of Optical, Electro-Optical, and Electronic
Neurocomputers,” Optical and Hybrid Computing SPIE, vol. 634, pp. 277-306,
1986.

180

60. R. Hecht-Nielsen, “ Counterpropagation Networks,” Proc. First Int. Joint Conf. on
Neural Networks, vol. H, pp. 19-32, 1987.

61. R. Hecht-Nielsen, “ Applications of Counterpropagation Networks,” Neural
Networks, vol. 1, pp. 131-139, Pergamon Press, 1988.

62. R. Hecht-Nielsen, “ Neurocomputing: picking the human brain,” IEEE
SPECTRUM, vol. 25, no. 3, pp. 36-41,1988.

63 . R. Hecht-Nielsen, Neurocomputing, Addison Wesley, San Diego, CA, 1990.

64. W. D. Hillis, The Connection Machine, The MIT Press, 1985.

65. G. E. Hinton and T. J. Sejnowski, “ Learning and Relearning in Boltzmann
Machines,” in Parallel Distributed Processing, ed. J. L. McClelland, vol. 1, pp.
282-317, MIT Press, 1986.

66. Y. Hirai, “ Hardware Implementation of Neural Networks in Japan,” Proc. o f the
2nd Int. Conf. on Microelectronics for Neural Networks, pp. 435-446,1991.

67. A. Hiraiwa, S. Kuruso, S. Arisawa, and M. Inoue, “ A two level pipeline RISC
processor array for ANN,” Proc. Int. Joint. Conf. on Neural Networks 90, vol. H,
pp. 137-140, Washington DC, 1990.

68. R. E. Hodges, C.-H. Wu, and C.-J. Wang, “ Parallelizing the Self-Organizing
Feature Map on Multi-Processor Systems,” Proc. Int. Joint. Conf. on Neural
Networks 90, vol. II, pp. 141-144, Washington DC, 1990.

69. R. M. Holdaway, “ Enhancing Supervised Learning Algorithms via Self-
Organization,” Proc. Int. Joint. Conf. on Neural Networks 89, vol. H, pp. 523-530,
1989.

70. M. A. Holler, “ VLSI Implementations of Learning and Memory Systems: A
Review,” in Advances in Neural Information Processing Systems 3, ed. D. S.
Touretzky, pp. 993-1000, Morgan Kaufmann Publishers, Inc., 1991.

71. M. et al. Homewood, “ The IMS T800 Transputer,” IEEE Micro, vol. 7, no. 5, pp.
10-26, October 1987.

72. J. J. Hopfield, “ Neural networks and physical systems with emergent collective
computational abilities,” Proc. Nat. Acad. ScL, vol. 79, pp. 2554-2558,1982.

73. J. J. Hopfield, “ Neurons with graded response have collective computational
properties like those of two-state neurons,” Proc. Nat. Acad. Sci, vol. 81, pp. 3088-
3092,1984.

74. J. J. Hopfield and D. W. Tank, “ Neural" Computation of Decisions in Optimisation
Problems,” Bio/fg/ca/ Cybernetics, vol. 52, pp. 141-152, Springer-Verlag, 1985.

181

75. T. Hrycej, “ A Modular Architecture for Efficient Learning,” Proc. Int. Joint Conf.
on Neural Networks 90, vol. I, pp. 557-562, San Diego, CA, 1990.

76. W. Y. Huang and R. P. Lippmann, ‘‘Neural Net and Traditional Classifiers,”
Neural Information Processing Systems, pp. 387-396, American InsL of Physics,
New York, 1988.

77. B. A. Huberman, ‘‘Asynchrony and Concurrency,” in Neural Computers, ed. R.
Eckmiller and Ch. v. d. Masburg, pp. 456-465,1988.

78. A. Iwata, Y. Yoshida, S. Matsuda, Y. Sato, and N. Suzumura, ‘‘An Artificial Neural
Network Accelerator using General Purpose 24 Bits Floating Point Digital Signal
Processors,” Proc. Int. Joint Conf. on Neural Networks 89, vol. H, pp. 171-175,
1989.

79. D. Jackson and D. Hammerstrom, ‘‘Distributing Back Propagation Networks over
the Intel iPSC/860 Hypercube,” Proc. Int. Joint Conf. on Neural Networks 91,
Seattle, Washington US, 1991.

80. R. A. Jacobs, M. I. Jordan, and A. G. Barto, ‘‘Task Decomposition through
Competition in a modular Connectionist Architecture: The What and Where Vision
Tasks,” COINS TR 90-27, Computer and Information Science, University of
Massachusetts at Amherst, USA, March 1990.

81. R. A. Jacobs, M. J. Jordan, S. J. Nowlan, and G. E. Hinton, ‘‘Adaptive Mixture of
Local Experts,” Neural Computation, vol. 3, pp. 79-87,1991.

82. R. F. Jansen, ‘‘The reconstruction of individual spike trains from extracellular
multineuron recordings using a neural network emulation program,” Journal o f
Neuroscience Methods, no. 25, pp. 203-213, Elseiver, 1990.

83. A. Johannet, G. Loheac, L. Personnaz, I. Guyon, and G. Dreyfus, ‘‘A Transputer-
Based Neurocomputer,” Proc. o f the 7th OCCAM Users Group Meeting, pp. 1-9,
1988.

84. W. P. Jones and J. Hoskins, ‘ ‘Back-Propagation: A Generalized Delta Learning
Rule,” Byte, pp. 155-162, October 1987.

85. H. Kato, H. Yoshizawa, H. Iciki, and K. Askawa, “ A Parallel Neurocomputer
Architecture Towards Billion Connection Updates per Second,” Proc. Int. Joint
Conf. on Neural Networks 90, vol. H, pp. 47-50, 1990.

86. T. Kimoto, K. Asakawa, M. Yodo, and M. Takeoka, ‘‘Stock Market Prediction
System with Modular Neural Networks,” Proc. Int. Joint Conf. on Neural Networks
89, vol. I, pp. 1-6,1989.

87. J. Kingdon, ‘‘Optimum Weights for Content-Addressable Memory in Neural Nets,”
UCL CS Research Note.

182

88. T. Kohonen, Self-Organisation and Associative Memory, Springer-Verlag, Inc.,
Berlin, 1984.

89. T. Kohonen, G. Hama, and R. Chrisley, “ Statistical Pattern Recognition with
Neural Networks: Benchmarking Studies,” Proc. Int. Joint Conf. on Neural
Networks 88, vol. I, pp. 61-68,1988.

90. T. Kohonen, “ The "Neural" Phonetic Typewriter,” IEEE Computer, pp. 11-22,
March 1988.

91. T. Kohonen and K. Makisara, “ The Self-Organizing Feature Maps,” Physica
Scripta, vol. 39, pp. 168-172,1989.

92. T. Kohonen, “ The Self-Organizing Map,” Proceedings o f the IEEE, vol. 78, no. 9,
pp. 1464-1480,1990.

93. C. Kozakiewicz, T. Ogiso, and N. Miyake, “ Partitioned Neural Network
Architecture for Inverse Kinematic calculation of a 6 dof Robot manipulator,”
Proceedings o f International Conference on Neural Networks, pp. 2001-2006, 1991.

94. O. Kramer and H. Muhlenbein, “ Mapping Strategies in Message-Based
Multiprocessor Systems,” Parallel Computing, vol. 9, no. 2, pp. 213-225.

95. S. Y. Kung and J. N. Hwang, “ Parallel Architectures for Artificial Neural Nets,”
Proc. Int. Joint Conf. on Neural Networks 88, vol. H, pp. 165-172, San Diego, CA,
1988.

96. H. Lari-Najafi, “ Neural Network Approaches to Automated Knowledge Extraction
from Raw Data,” PhD Thesis, University o f Minnesota, 1991.

97. J. C. Lawson, A. Chams, and J. Cedex, “ SMART: How to Simulate Huge
Networks,” Proceedings o f International Neural Networks Conference, Paris, 1990.

98. D. Gilbert Jr. Lee, Neural Network PC Tools, Academic Press, 1990.

99. R. P. Lippmann, “ An Introduction to Computing with Neural Nets,” IEEE ASSP
Magazine, pp. 4-22, April 1987.

100. J. Loncelle, N. Derycke, and F. F. Soulie, “ Optical Character Recognition and
Cooperating Neural Networks techniques,” Artificial Neural Networks 2, pp. 1591-
1594, Elseiver Science Publishers, 1992.

101. S. Mackie, H. P. Graf, and D. B. Schwartz, “ Implementations of Neural Network
Models in Silicon,” in Neural Computers, ed. R. Eckmiller and Ch. v. d. Masburg,
pp. 467-476,1988.

102. J. R. Mann and S. Gilbert, “ An Analog Self-Organizing Neural Network Chip,” in
Advances in Neural Information Processing Systems I, ed. D. S. Touretzlq^, pp.
739-747, Morgan Kaufmann Publishers, Inc., 1989.

183

103. R, Mann and S. Haykin, “ A Parallel Implementation of Kohonen Feature Maps on
the Warp Systolic Computer,” Proc. Int. Joint. Conf. on Neural Networks 90, vol.
n, pp. 84-87, Washington DC, 1990.

104. E. Marcade, F. Canut, N. Revault, and C. Moulinoux, “ N: A Language Dedicated
to Neural Algorithms Design,” Thomson-CSF, Esprit II - Pygmalion 2059, Formal
HLL Definition, R, October 1990.

105. S. Margarita, “ Recognition of European Car Plates with Modular Neural
Networks,” Proceedings o f International Neural Networks Conference, vol. 1, pp.
408-411 , Paris, 1990.

106. T. Matsuoka, H. Hamada, and R. Nakatsu, “ Syllable Recognition using Integrated
Neural Networks,” Int. Joint Conf. on Neural Networks 90, vol. I, pp. 251-258, San
Diego, 1990.

107. N. Maudit, M. Duranton, J. Gobert, and J.-A. Sirat, “ Lneuro 1.0: A Piece of
Hardware LEGO for Building Neural Network Systems,” IEEE Transactions on
Neural Networks, vol. 3, no. 3, pp. 414-422, 1992.

108. D. May and R. Shepherd, “ The Transputer,” in Neural Computers, ed. R.
Eckmiller and Ch. v. d. Masburg, pp. 478-486, 1988.

109. H. McCartor, “ Back Propagation Implementation on the Adaptive Solutions
CNAPS Neurocomputer Chip,” in Advances in Neural Information Processing
Systems 3, ed. D. S. Touretzky, pp. 1028-1031, Morgan Kaufinann Publishers, Inc.,
1991.

110. W. S. McCulloch and W. Pitts, “ A Logical Calculus of the Ideas Immanent in
Nervous Activity,” Bulletin o f Mathematical Biophysics, vol. 5, pp. 115-133, 1943.
also in Anderson, Rosenfeld (eds.): Neurocomputing

111. R. W. Means and L. Lisenbee, “ Extensible Linear Floating Point SIMD
Neurocomputer Array Processor,” Int. Joint Conf. on Neural Networks 91, Seattle,
Washington US, 1991.

112. M. Migliore, G. F. Ayala, and S. L. Fomili, “ Modeling of Neuronal Systems on
Transputer Networks,” in Parallel Processing in Neural Systems and Computers,
ed. R. Eckmiller, G. Hartmann and G. Hauske, pp. 291-294, Elseiver Science
Publishers, 1990.

113. M. Miksa, “ A Development Tool for Neural Networks Simulations on
Transputers,” in Parallel Processing in Neural Systems and Computers, ed. G.
Hauske, pp. 295-298, Elsevier Science Publishers B. V. (North-HoUand), 1990.

114. M. Minsky and S. Papert, Perceptrons, MIT Press, Cambridge, Mass., 1969.

115. J. J. Modi, in Parallel Algorithms and Matrix Computation, Clarendon Press,
Oxford, 1988.

184

116. K. Morse, E. Muenchau, and G. Works, “ The SAIC Delta Neurocomputer
Architecture,” Proc. 1st Meeting o f Int. Neural Network Society^ p. 543, Boston,
September 1988.

117. M. E. Nigri, “ High Level Synthesis of Neural Network Chips,” PhD Thesis, Dept,
of Computer Science, University College London, University of London, February
1993.

118. J. Ouali and G. Saucier, “ Fast Generation of Neuro-ASICs,” Proc. o f the Int.
Neural Network Conference 1990, pp. 563-567, Paris, 1990.

119. J. O'Keefe and L. Nadel, The Hippocampus as a Cognitive Map, Oxford University
Press, 1978.

120. D. A. Pomerleau, G. L. Gusciora, D. S. Touretzky, and H. T. Kung, “ Neural
Network Simulation at Warp Speed: How We Got 17 Million Connections Per
Second,” Int. Joint Conf. on Neural Networks 88, vol. II, pp. 143-150, San Diego,
1988.

121. D. Pountain and J. Bryan, “ All Systems Go,” Byte, pp. 112-136, August, 1992.

122. U. Ramacher and J. Beichter, “ Systolic Architectures for Fast Emulation of
Artificial Neural Networks,” Proc. Int. Conf. on Systolic Arrays, Killamey, Ireland,
Prentice Hall, May 1989.

123. U. Ramacher and W. Raab, “ Fine-Grain System Architectures for Systolic
Emulation of Neural Algorithms,” Int. Conf. on Application Specific Array
Processors, Princeton (USA), September 1990.

124. U. Ramacher, J. Beichter, and N. Bruls, “ Architecture of a General-Purpose Neural
Signal Processor,” Int. Joint Conf. on Neural Networks 91, Seattle, Washington US,
1991.

125. M. Recce and P. C. Treleaven, “ Parallel Architectures for Neural Computers,” in
Neural Computers, ed. R. Eckmiller and Ch. v. d. Masburg, pp. 487-495,1988.

126. A. N. Refenes and U. Bilge, “ Self-Organising Maps in Pre-Processing Datasets for
Decision Support in Histopathalogy,” Proceedings o f The North Sea Conference on
Biomedical Engineering, Nov 1990.

127. D. L. Reilly, C. Scofield, C. Elbaum, and L. N. Cooper, “ Learning System
Architectures Composed of Learning Modules,” IEEE First Int. Joint Conf. on
Neural Networks, vol. U, pp. 495-503,1987.

128. P. V. Rocha, “ A Fully Integrated Neural Computing System,” PhD Thesis, Dept,
of Computer Science, University College London, University of London, July 1992.

129. M. W. Roth, “ Neural-Network technology and its applications,” John Hopkins
APL Technical Digest, vol. 9, no. 3,1988.

185

130. D. E. Rumeihart, G. E. Hinton, and R. J. Williams, “ Learning Internal
Representations by Error Propagation,” in Parallel Distributed Processings ed. J. L.
McClelland, vol. 1, pp. 318-362, MET Press, 1986.

131. E. Sackinger, B. E. Boser, J. Bromley, Y LeCun, and L. D. Jackel, “ Application of
the ANNA Neural Network. Chip to High-Speed Character Recognition,” IEEE
Transactions on Neural Networks^ vol. 3, no. 3,1992.

132. M. F. Sama, P. Cochin, J. Kaltenbach, M. Salganicoff, and G. L. Gerstein,,
“ Unsupervised waveform classification for multi-neuron recordings: a real-time,
software-based system. U. Performance comparison to other sorters,” Journal o f
Neuroscience Methods, no. 25, pp. 189-196, Elseiver, 1988.

133. W. Schiffmann and K. Mecklenburg, “ Genetic Generation of Backpropagation
Trained Neural Networks,” in Parallel Processing in Neural Systems and
Computers, ed. R. Eckmiller, G. Hartmann and G. Hauske, pp. 205-208, Elseiver
Science Publishers, 1990. -

134. P. Schmid, “ The Mapping Problem: A Neural Network Approach,” Proceedings of
International Neural Networks Conference, Paris, 1990.

135. C. L. Seitz, “ Concurrent VLSI Architectures,” IEEE Trans, on Computers, vol. C-
33, no. 12, pp. 1247-1264,1984.

136. H. P. Siemon and A. Ultsch, “ Kohonen Networks on Transputers and Animation,”
Proc. Int. Joint Conf on Neural Networks 91, Seattle, Washington US, 1991.

137. B. Soucek and M. Soucek, Neural and Massively Parallel Computers / The Sixth
Generation, John Wiley & Sons, 1988.

138. R. Stotzka, R. Hauser, and R. Manner, “ Multiprocessor Simulation of a Self-
Organizing Neural Network on NERV,” in Parallel Processing in Neural Systems
and Computers, ed. R. Eckmiller, G. Hartmann and G. Hauske, Elsevier Science
Publishers, 1990.

139. T. Tanaka, M. Naka, and K. Yoshida, “ Improved Back-Propagation Combined with
LVQ,” Int. Joint. Conf. on Neural Networks 90, vol. I, pp. 731-734, Washington
DC, 1990.

140. John Taylor, “ VML Specification,” Galatea Internal Report, UCL CS, 1991.

141. J. B. Theeten, M. Duranton, N. Mauduit, and J. A. Sirat, “ The Lneuro-chip: A
Digital VLSI with on-chip Learning Mechanism,” Proceedings o f International
Neural Networks Conference, Paris, 1990.

142. K. Torkkola, NEUROCOMPUTERS: from theory to practice, Lecture Notes,
Helsinki University of Technology, Lab. of Inf. and Comp. Science, September
1989.

186

143. p. Treleaven, M. Pacheco, and M. Vellasco, “ VLSI Architectures for Neural
Networks,“ /EEE Micro, vol. 9, no. 6, pp. 8-27, December 1989.

144. P. C. Treleaven, “ Neurocomputers,” International Journal o f Neurocomputing,
vol. 1, no. 1, pp. 4-31, ecn Neurocomputing GmbH, Ismaning, Germany, 1989.

145. P. C. Treleaven, “ Parallel Computing Framework,” in Parallel Computers Object-
Oriented, Functional, Logic, ed. P. C. Treleaven, pp. 17-45, John Wiley & Sons,
1990.

146. P. C. Treleaven, “ PYGMALION Neural Network Programming Environment,” in
Artificial Neural Networks, ed. T. Kohonen, K. Makisara, O. Simula and J. Kangas,
pp. 569-578, Elseiver Science Publishers, 1991.

147. M. M. B. R. Vellasco, “ A VLSI Architecture for Neural Network Chips,” PhD
Thesis, Dept, of Computer Science, University College London, University of
London, March 1992.

148. P. D. Wasserman, Neural Computing - Theory and Practice, Van Nostrand
Reinhold, New York, 1989.

149. T. Watanabe, Y. Sugiyama, T. Kondo, and Y. Kitamura, “ Neural Network
Simulation on a Massively Parallel Cellular Array Processor AAP-2,” Int. Joint
Conf. on Neural Networks 89, vol. II, pp. 155-161,1989.

150. C. Whitby-Strevens, “ Transputers—Past, Present, and Future,” IEEE Micro, vol.
10, no. 6, pp. 16-18 & 76-82, December 1990.

151. M. A. Wilson, U. S. Bhalla, J. D. Uhley, and J. M. Bower, “ Genesis: A System for
Simulating Neural Networks,” in Advances in Neural Information Processing
Systems i , ed. D. S. Touretzky, pp. 485-492, Morgan Kaufmann Publishers, Inc..

152. G. A. Works, “ The Creation of Delta: A New Concept in ANS Processing,” Int.
Conf. on Neural Networks 88, vol. II, pp. 159-164,1988.

153. M. Yasunaga, N. Masuda, M. Asai, M. Yamada, A. Masaki, and Y. Hirai, “ A
Wafer Scale Integration Neural Network Utilizing Completely Digital Circuits,”
Int. Joint Conf. on Neural Networks, vol. H, pp. 213-217, Washington DC, June
1989.

154. H. Yoon and J. H. Nang, “ Multilayered Neural Networks on Distributed-Memory
Multiprocessors,” Proceedings o f International Neural Networks Conference, Paris,
1990.

155. X. Zhang, M. McKenna, J. P. Mesirov, and D. L. Waltz, “ An Efficient
Implementation of the Back-Propagation Algorithm on the Connection Machine
CM-2,” in Advances in Neural Information Processing Systems 2, ed. D. S.
Touretzky, pp. 801-809, Morgan Kaufmann Publishers, Inc., 1990.

187

Appendix A

APPENDIX A - Neural Network Representations

This appendix presents sections o f code from the three representation
techniques studied in this thesis.

A.I. The nC Data Structure

Below is outline of the nC data structure tree for the Pygmalion project.

/ * - -
struct SYSTEM {

short n_rules;
short n_parameters;
rule_type ♦rules;
para_type ♦parameters ;
int configs;
char ♦♦config;
int ports ;
port_type ♦♦port;
int nets ;
net_type ♦♦net;

};
/ * .
struct NET {

short
short
rule_type
para_type
int
layer_type

n_rules;
n_pareuneters ;
♦rules;
♦parameters ;
layers;
♦♦layer;

};
/ *
struct LAYER {

short
short
rule_type
para_type
int
cluster_type

n_rules;
n__parauneters ;
♦rules ;
♦parameters ;
clusters ;
♦♦cluster;

};

188

/ * —

struct CLUSTER {
short
short
rule_type
para_type
int
int
neuron_type
synapse_type

n_rules;
n_parameters;
♦rules;
♦parameters ;
neurons;
synapses ;
♦♦neuron;
♦♦synapse;

};
/ *
struct NEURON {

short
short
rule_type
para_type
struct NEURON
struct NEURON
int
synapse_type

n_rules;
n_parameters ;
♦rules;
♦parameters ;
♦♦input_neuron;
♦♦output_neuron ;
synapses;
♦♦synapse;

/ * - - - -

struct SYNAPSE {
short
short
rule_type
para_type

};

n_rules;
n_parameters;
♦rules;
♦parameters;

189

A.2. The Hopfield Recall Rule in C
Below is the recall rule for the Hopfield simulation in C.

/ * ...- ...— - — * /

int recall (c__pat)
int c_pat;
{

int i, iter;
double rms;

for (i=0; i<NEURONS; i++) {
old_out[i] = pats[c_pat][i];
out[i] “ pats[c_pat][i];

}
iter = 0;
while (iter < LIMIT) {

for (i-0; i<NEURONS; i++) {
dot_product(i);
threshold(i) ; .. '

)
rms =0.0;
for (i=0; i<NEURONS; i++) {

rms += (out[i] - old_out[i])*(out[i] - old_out[i]);
}
if (rms ==0.0) {

printf("pattern %d Converged Iteration=%dO, c_pat, iter)
break;

1
iter++;
for (i-0; i<NEURONS; i++) {

old_out[i] - out[i];
}

}
return(NOTOK);

}
/* — - ... V
int dot_product(i)
int i;
{

int j;

for (i-0; j<NEDRONS; j++) {
out[i] +- old_out[j] * weight[i][j];

}
)
/ * - ...V
int threshold(i)
int i;
{

out(i] - (double) tanh(out[i]);
}
/ * ... V

190

A 3. The Decrement Distance Function in nC
Below is the Decrement distance rule for the SOM simulation in nC.

/* - -- - ..—- V
int Decrement_distance() /* reduce distance and gain * /

{
if (sys->net[c_net]->parameters[NET_P_distance].parameter.value.f <=

sys->net[c_net]->parameters[NET_P_distance_finish].parameter.value.f) {
return (TERM);

}
sys->net[c_net]->parameters[NET_P_gain].parameter.value.f -=

sys->net[c_net]->parameters[NET_P_gain_step].parameter.value.f;

if (sys->net[c_net]->parameters[NET_P_gain_step].parameter.value.f >0.0) {
if (sys->net[c_net]->parameters[NET_P_gain].pareuneter.value.f <

sys->net[c_net]->parameters[NET_P_gain_finish].parameter.value.f) {
sys->net[c_net]->parameters[NET_P_gain].parameter.value.f -
sys->net[c_net]->parameters[NET_P_gain_finish].pareuneter.value.f;

}
}
else {

if (sys->net[c_net]->parameters[NET_P_gain].parameter.value.f >
sys->net[c_net]->parêuneters[NET_P_gain_finish].parameter.value.f) {

sys->net[c_net]->parameters[NET_P_gain].parameter.value.f =
sys->net[c_net]->parameters[NET_P_gain_finish].pareuneter.value.f;

}
1
sys->net[c_net]->pareuneters[NET_P_distance].parameter.value.f --
sys->net[c_net]->pareuneters[NET_P_distance_step].parameter.value.f;

if (sys->net[c_net]->parauneters[NET_P_distance].parameter.value.f <0.0) {
sys->net[c_net]->pareuneters[NET_P_distance].pareuneter.value.f - 0.0;

}
return (0);

}
/* ... -- .. V

191

A.4. The Recall Rule for the Backpropagation in VML

Below is the data definition and Recall rules for the Backpropagatiom model in
VML,

name type initial value
define_scalar ■X", 0, 4 * input layer
define_scalar "Y", 0, 2 * hidden layer
def ine_scalar "Z", 0, 4 * output layer
define_scalar "P", 0, 4 # no. of training patterns
define_scalar "T", 0, 0.25 # tolerance
define_scalar "N", 0, 0.02 # learning rate

name type m n
def ine_matrix "SO", 0, P, X « Input states - training patterns
define_matrix "SI", 0, 1, Y # Hidden states row vector
define_matrix "S2", 0, 1, Z * Output states row vector
define_matrix "Wl", 0, X, Y # Weights between input and hidden lay.
def ine_raatrix "W2", 0, Y, Z # Weights between hidden and output lay.
def ine_matrix "El", 0, 1, Y * Errors in hidden layer
define_matrix; "E2", 0, 1, Z # Errors in output layer
define_matrix "Al", 0, 1, Y * Accumulator in hidden layer
def ine_matrix "A2", 0, 1, Z # Accumulator in output layer
def ine_matrix "PE" , 0, P, Z # individual errors in all patterns
###*#**#«*#*«*###****##*»«***«*##**#**#*###**««#*#**####*#***####*«»##*#*#»«#*#*«*##
define_rule: Recall(P)

Al “ mu (SO[p,*], Wl) « [p,*] refers to pth row vector
SI = afm(tanh, Al) * activation function for hidden layer
A2 = mu (SI, W2) « multiply hidden states
S2 = afm(tanh, A2) « activation function for output layer
E2 - es (SO[p,*], S2) # subtract outputs from input pattern
PE[p,*] - cp (E2) « copy to PE

192

Appendix B

APPENDIX B - MATLIB Functions

This appendix presents a complete list o f the MATLIB junctions. The
functions are grouped into four categories; data, arithmetic, neural and
communications operators.

Data Operators

Data operators relate to the memory allocation, memory management and file I/O
operations. The syntax and the arguments for the MATLIB data operators are as follows:

matdef (matrix_name, "matrix_name", rows, colunms);
Matrix definition; for setting up matrix data structures and memory allocation.

mcpy (destination, source);
Matrix copy; copy froms source to destination, both arguments are pointers to
matrix structures.

vepy (destination, source, index 1, index2);
Matrix row copy; arguments are; two matrix pointers and two indices, index 1 refers
to the destination matrix and index! refers to the source.

sval (scalar_addr, source, row, column);
Set scalar value from matrix element; the pointer of the double precision scalar
value is passed to the function, the element of the source with the row and column
indices is assigned to the scalar.

mset (destination, scalar, row, column);
Matrix element set; the row, column addressed element of the matrix is set to scalar
value.

msal (destination, scalar);
Matrix all elements set; all matrix elements are set to the scalar value.

mtra (destination, source);
Matrix transpose; source transposed and placed into destination.

193

matsv (filename, source);
Matrix save; save source matrix into filename.

matld (destination, filename);
Matrix load; read matrix from filename.

matsh (filename, source, row, threshold, col);
Output matrix source to filename or the standard output, ‘row’ indexed pattern from
the source matrix, displayed with line breaks at every ‘col’ for a matrix display
format with values above the threshold are shown as ‘X’, below the threshold as ‘.’,
if zero ‘ ’.

mout (source);
Matrix output; source matrix values are dumped to the standard output for
debugging purposes.

mran (destination, min, max)
Matrix randomise; generate random values between min and max, write to
destination.

Arithmetic Operators

Arithmetic operators relate to the matrix arithmetic operations such as addition,
multiplication etc.

mmul (destination, source 1, source!);
Matrix multiplication; source 1 and source! are multiplied and the result is placed
into destination. All arguments are pointers to matrix structures.

mtrm (destination, source 1, source!);
Matrix multiplication; the same as above with the second source matrix transposed.
This saves the execution of transposition as a separate operation.

madd (destination, source 1, source!);
Matrix additions; all arguments are pointers to matrix structures.

msub (destination, source 1, source!);
Matrix subtraction; all arguments are pointers to matrix structures.

memu (destination, source 1, source!);
Matrix element by element multiplication, all arguments are pointers to matrix

194

structures.

vadd (destination, source 1, source!, index 1, index!, index3);
Matrix row addition; three matrices, and three respective row indices.

vsub (destination, source 1, source!, index 1, index!, index3);
Matrix row subtraction; three matrices, and three respective row indices.

vemu (destination, source 1, source!, index 1, index!, index3);
Matrix row element by element multiplication, three matrices, and three respective
row indices.

mscm (destination, source, scalar);
Matrix by scalar multiplication, all elements of the source is multiplied by the scalar
and the result is put into destination.

mnor (destination, source)
Normalise all the rows of the source matrix and put the resulting vectors into the
destination matrix.

mavg (scalar_addr, source)
Matrix average; calculate the mean average of the source matrix.

mmax (scalar_addr, source, row_addr, col_addr)
Matrix maximum; find the maximum element of the source matrix, and return its
value in scalar, and its position in row and colunm.

mmin (scalar_addr, source, row_addr, col_addr)
Matrix minimum; find the minimum element of the source matrix, and return its
value in scalar, and its position in row and column.

mabs (destination, source)
Matrix absolute; take the absolute values of a source matrix put to destination.

Neural Operators

Neural operators are neural network specific functions which are applied to a
matrix. They can also be implemented in parallel, yet they require an enhanced level of
complexity on parallel processors.

195

mtan (destination, source)
Apply tangent hyperbolic function to all elements of the source matrix, and put the
result into the destination.

dtan (destination, source)
Apply derivative of the tangent hyperbolic to the source matrix.

msig (destination, source)
Apply sigmoid function to the source matrix.

dsig (destination, source)
Apply derivative of the sigmoid function to the source matrix.

mrms (scalar_addr, source)
Matrix root mean squared; calculate the rms of the matrix pass it to the scalar,
through its pointer.

mdis (destination, dimensions)
Matrix distance; this function is specific to the SOM, it calculates distance values
between the nodes of the output grid with a given dimensionality. The function is
called once at the beginning of the training to set up the distance values. Once set,
another function mlat handles the neighbourhood decay and lateral weight update.

mlat (destination, source, distance)
Matrix lateral; this function takes the source matrix and a given distance and
reforms the lateral weight matrix for this distance. Again it is specific to the SOM,
and used to carry out the lateral weight update.

Communications Operators

These operators exploit TCP/IP sockets for data transfer between a number of SUN
workstations on a Local Area Network. The functions are generic, and their equivalents
can be easily implemented on multi-computer parallel systems.

put str (socket_id, string)
Transmit string through the open socket with socket_id.

put_int (socket_id, int_scalar)
Transmit integer scalar value through the open socket with socket_id.

196

put dbl (socket_id, double_scalar)
Transmit double scalar value through the open socket with socket_id.

put mat (socket_id, matrix_name)
Transmit matrix with all double precision values through the open socket with
socket_id.

put rows (socket_id, matrix_name, index 1, index2)
Transmit matrix elements between the row indices; index 1 and index2.

put cols (socket_id, matrix_name, index 1, index2)
Transmit matrix elements between the column indices; index 1 and index2.
Together with put_rows this submatrix data transfer function is used in data
partitioning and data parallel executions.

put val (socket_id, double_scalar, every)
Transmit double precision scalars once at ‘every’ iteration. This is for debugging
purposes for graphics or screen display of the network performance.

get str (socketjd, string)
Receive string through the open socket with socket_id.

get int (socketjd, int_scalar)
Receive integer scalar value through the open socket with socketjd.

get dbl (socketjd, double_scalar)
Receive double scalar value through the open socket with socketjd.

get mat (socketjd, matrix_name)
Receive matrix with all double precision values through the open socket with
socketjd.

getval (socketjd, double_scalar, every)
Receive double precision scalars once at ‘every* iteration.

197

Appendix C

APPENDIX C - MATLIB Listings of the three Models

This appendix presents the listings o f the Hopfield, the SOM and the
Backpropagation MATLIB simulations.

C.l. The Hopfield MATLIB Listing

Below is the MATLIB listing of the Hopfield net simulation. The net has 64
neurons, and it processes 12 patterns allowing only 4 iterations per pattern for
convergence.

#include "uv.h"
int NPATS = 12;
int INSIZE - 64
int JL = 4;
char *weigfil="weig";
char *infile="r.dat" ;
double rms ;
int i, j;
mt_type *S0, *51, *ST, *HW, *STO, *SD;
main()

matdef(&S0, "SO", NPATS, INSIZE)
matdef(SSI, "SI", NPATS, INSIZE)
matdef(SHW, "HW", INSIZE,INSIZE)
matdef(SSTO, "STO", 1, INSIZE)
matdef(SST, "ST", 1, INSIZE)
matdef(SSD, "SD", 1, INSIZE)

matld(SO, infile);
matld(HW, weigfil);
for (i-0; i<NPATS; i++) {

printf ("Recalling %dO,i);
vcpy(STO, SO, 0, i);
for (j-0; jcJL; j++){

mmul(ST, STO, HW);
mtan(ST, ST);
msub(SD, ST, STO);
mrms(srms, SD);
if (rms — 0.0) {

break;
}
mcpy(STO, ST);

1
matsh("", SO, i, 0.0, 8);
printf ("rms - %fO,rms);
vcpy(Sl, ST, i, 0, 1);
matsh("", SI, i, 0.0, 8);

}

198

C.2. The SOM MAJL/fi Listing
Below is the MATLIB listing of the SOM simulation. The network topology

comprises 64 input neurons and 12 nodes in the output grid. 12 patterns are presented to
the network, and during the training maximum 30 iterations are allowed.

#include "uv.h"
int NP = 12;
int IN = 64
int OU - 12
int JL = 30;
char *infile="h.dat" ;
char *weigfil="soweig" ;
double dist = 2.0;
double dstp = 0.4;
double dend = 0.1;
double gain = 0.9;
double gstp - 0.1;
double gend = 0.1;
double rms, tmp, avg;
int i, j, k, row, col;
mt_type *S0, *S1, *SW, *LW, *LD, *ST, *SC, *SE;
main()
I

matdef(&S0, "SO", NP, IN)
matdef (StSl, "SI", NP, IN)
matdef(&SE, "SE", 1, NP)
matdef(&SW, "SW", OU, IN)
matdef(&LW, "LW", OU, OU)
matdef(&LD, "LD", OU, OU)
matdef(&ST, ■ST", 1, IN)
matdef(&SC, "SC", 1, OU)

matld(SO, infile);
mran(SW, 0.0, 0.05);
mdis(LD, 2);
mlat(LW, LD, dist);
mscm(LW, LW, gain);
for (i-0; i<JL; i++) {

for (j=0; j<NP; j++) {
for (k-0; k<OU; k++) {

vsub(ST, SO, SW, 0, j, k)
mrms(srms, ST);
mset(SC, rms, 0, k);

1
mmin(&rms, SC, srow, &col);
mset(SE, rms, 0, j);
for (k-0; k<OU; k++) {

sval(&tmp, LW, k, col);
vsub(ST, SO, SW, 0, j, k)
mscm(ST, ST, tmp);
vadd(SW, SW, ST, k, k, 0)

}
}
mavg(&avg, SE);
printf ("%d: avg rms - %fO, i, avg);
mlat(LW, LD, dist);
mscm(LW, LW, gain);
dist - dist - dstp;
if (dist < dend) {

dist = dend;
}

199

gain - gain - gstp;
if (gain < gend) [

gain = gend;
1

1
for (j=0; j<NP; j++) {

. for (k=0; k<OU; k++) {
vsub(ST, SO, SW, 0, j, k);
mrms(Srms, ST);
mset(SC, nns, 0, k);

}
mmin(&rms, SC, srow, &col);
printf ("pat %d min nns - %f winner=%dO, j, rms, col);
matsh(*", SO, j, 0.0, 8);
vcpy(Sl, SW, j, col);
matsh("", SI, j, 0.0, 8);

}
matsv(weigfil, SW);

1
/ * - - ...V

C.3. The Backpropagation MATLIB Listing

Below is the MATLIB listing of the Backpropagation simulation. The network
topology comprises 64 input, 12 hidden and 64 output neurons. A total of 12 patterns are
used as target patterns for a variety of noisy inputs. A maximum of 23 iterations are
allowed during the training.

#include "uv.h"
int NP - 12;
int IN - 64;
int HID “ 12;
int OUT - 64;
int JL - 23;
char *infile-"r.dat";
char *tarfile-"h.dat" ;
char *oweig-"oweig";
char *hweig-"hweig";
double gain = 0.003;
double momt - 0.5;
double toi - 0.4;
doubletmp, avg, max;
int i, j, p, row, col;
mt_type *SI, *Si, *ST, *Sr, *Sh, *PE;
mt_type *W1, *W2, *WT, *Al, *A2, *ER;
mt_type *M1, *M2, *E2, *D1, *D2, *SR;
main()
{

matdef(&SI, "SI", NP, IN);
matdef(&Si, "Si", 1, IN);
matdef(&ST, "ST", NP, OUT)
matdef(&SR, "SR", NP, OUT)
matdef(ssr. "Sr", 1, OUT)
matdef(&Sh, "Sh", 1, HID)
matdef(&PE, "PE", NP, OUT)
matdef(&ER, "ER", 1, OUT)
matdef(&W1, "Wl", IN, HID)
matdef(&M1, "Ml", IN, HID)
matdef(&W2, "W2", HID, OUT)
matdef(&M2, "M2", HID, OUT)

200

matdef(&A1, "Al", 1, HID);
matdef(&D1, "01", 1, HID);
matdef(&E2, "E2", 1, OUT);
matdef(&A2, "A2", 1, OUT);
matdef(&D2, "D2", 1, OUT);
matld(SI, infile);
matld(ST, tarfile);
mran(Wl, -0.05, 0.05);
mran(W2, -0.05, 0.05);
for (j=0; j<JL; j++) {

for (p=0; p<NP; p++) {
vcpy(Si, SI, 0, p);
mmul(Al, Si, Wl);
mtan(Sh, Al);
mmul(A2, Sh, W2);
mtan(Sr, A2);
vsub(E2, ST, Sr, 0, p, 0);
vcpy(PE, E2, p, 0);
dtan(A2, Sr);
memu(D2, E2, A2);
mscm(D2, D2, gain);
mscm(M2, M2, momt);
for (i-0; i<HID; i++) {

sval(&tmp, Sh, 0, i);
mscm(A'2, D2, tmp);
vadd(A2, A2, M2, 0, 0, i);
vadd(W2, W2, A2, i, i, 0);
vcpy(M2, A2, i, 0);

]
mtrm(Dl, D2, W2);
dtan(Al, Sh);
memu(Dl, Dl, Al);
mscm(Ml, Ml, momt);
for (i-0; i<IN; i++) {

sval(&tmp. Si, 0, i);
mscm(Al, Dl, tmp);
vadd(Al, Al, Ml, 0, 0, i);
vadd(Wl, Wl, Al, i, i, 0);
vcpy(Ml, Al, i, 0);

}
mabs(Ml, Ml);

J
mabs(PE, PB);
mmax(&max, PE, &row, &col);
mavg(&avg, PE);
printf("%4d: max-%f avg-%f tol-%f0, j, max, avg, toi)
if (max < toi) {

break;
}

}
for (p-0; p<NP; p++) (

vcpy(Si, SI, 0, p);
mmul(Al, Si, Wl);
mtan(Sh, Al);
mmul(A2, Sh, W2);
mtan(Sr, A2);
matsh("". Si, 0, 0.0, 8);
matsh("", Sr, 0, 0.0, 8);

}
}
/*..........

201

Appendix D

APPENDIX D - CAT and APM Results

This appendix presents the CAT and APM results on the Hopfield, the
SOM and the Backpropagation MATLIB listings and a multiple network
architecture SOM!Backpropagation model.

D.l. The Hopfield Net
In this simulation a 64 neuron Hopfield net is analysed by CAT/APM for potential

data parallelism and task parallelism. First the mepiory use and sequential execution
costs on a SUN4 station are shown, then the possibility of data parallel execution on 2
VMs is searched and finally the feasibility of task parallelism on 2 VMs is investigated.
Below is the CAT results for the MATLIB listing of the Hopfield net.

0: S0[12][64 > 768
1: Sl[12] [64 > 768
2: HW[64][64 > 4096
3 : STO[1][64 > 64
4: ST[1][64 > 64
5; SD[1][64 > 64

TOTAL MATRIX MEMORY- 5824 Elements > 46592 Bytes

line func repeat size unit Icost comp total
24 : vcpy 12 64 4.5 0.000289 0.003 0.003
26: mmul 48 4096 8.0 0.032768 1.573 1.576
27 : mtan 48 64 36.0 0.002307 0.111 1.687
28 : msub 48 64 6.0 0.000384 0.018 1.705
29 : mrms 48 64 8.0 0.000512 0.025 1.730
3 3 : mcpy 48 64 4.5 0.000289 0.014 1.744
37 : vcpy 12 64 4.5 0.000289 0.003 1.747

TOTAL COMPUTATIONAL COST- 1.747 seconds

In the results above a line by line analysis is presented; for example, in line 24 a
vcpy operation takes place which will be repeated 12 times as a result of the loops, the
data size copied is 64, the operation unit cost is 4.5 micro seconds. As a result the line
cost is 0.000289 seconds, the computational cost for the line is 0.003 seconds and finally
total accumulative cost for the listing is 0.003 seconds.

Below the data parallel projections are shown. Each line is evaluated separately.
CAT/APM, in this case presumes 10 Mbit/sec communications speed and 2 parallel

202

VMs. For example, for the mmul operation, the sequential cost is calculated as 0.032768
seconds, and the data parallel execution, including the data distribution and reassembly
costs would be 0.029798 seconds. This would be profitable, and $$$ sign indicates the
partitioning decision in this case. For other operations the same steps are repeated, and
overall the parallel execution is estimated to last 1.56 seconds. In comparison with 1.747
seconds sequential execution cost this result correspond to a 1.12 times speed-up on 2
processors with 0,56 efficiency factor.

func sequential parallel total
vcpy 0.000289 0.002705 0.003471
mmul 0.032768 0.029798 1.433795 $$$
mtan 0.002307 0.001460 1.503898 $$$
msub 0.000384 0.000704 1.522330
mrms 0.000512 0.000461 1.544448 $$$
mcpy 0.000289 0.000452 1.558333
vcpy 0.000289 0.002705 1.561805

2 VMS, 10000000 Mbit/sec, par cost = 1.561805, speed-up = 1.12, eff = 0.56

For a task parallel execution variable and loop analyses are necessary. CAT results
are presented below. First in the Hopfield listings, 2 Constant matrices are identified, then
for each line all matrix variables are analysed. The matrices are SO, SI, HW, STO, ST
and SD. Each column beneath the matrices have symbols indicating whether the matrix
is written, read, is on forward or backward data stream. Symbol 0 indicates no operation.
In two digit symbols, the first digit 1 means forward flow, 2 backward flow, and 3 flow in
both direction. The second digit 1 means Read, 2 Read and Write, and finally 3 means
Write only. The pipe_cost column gives an estimate of communications cost in the case
of splitting the representation in that line, which would result in a data flow breaking and
a number of data transfers between the broken parts. The final column contains the list
of backward flow data names in those specific lines. For example between the fines 27 to
33, the matrix variable STO is in a backward flow path, and prevents a pipeline type of
task parallelism. Because of this APM efforts to divide the representation into 2 equally
balanced parts cannot succeed, and APM operation results in "NO CUTTING POINT
FOUND".

Constant SO
Constant HW

24 vcpy
SO
0

SI
0

HW
0

STO ST SD pipe_cost backward_flow
13 0 0 0.010

25 for_JL_4 0 0 0 10 0 0 0.125
26 mmul 0 0 0 31 13 0 0.136 STO
27 mtan 0 0 0 30 12 0 0.627 STO
28 msub 0 0 0 31 11 13 0.637 STO

203

29 mrms 0 0 0 20 10 11 1.003 STO
30 if 0 0 0 20 10 0 0.501 STO
31 break 0 0 0 20 10 0 0.501 STO
32]_endif 0 0 0 20 10 0 0.501 STO
33 mcpy 0 0 0 33 11 0 0.627 STO
34 }_endfor 0 0 0 0 10 0 0.501
35 matsh 0 0 0 0 10 0 0.501
36 printf 0 0 0 0 10 0 0.501
37 vcpy 0 13 0 0 11 0 0.627

2 vms: total computation» 1.'747
comp» 0 .874 max» 0.961 min» 0.786
cutting point is searched
comp» 0 .874 max» 1.048 min» 0.699
cutting point is searched
comp» 0,.874 max» 1.136 min» 0.612
cutting point is searched
comp» 0..874 max» 1.223 min» 0.524
cutting point is searched
comp» 0..874 max» 1.311 min» 0.437
cutting point is searched
comp» 0..874 max» 1.398 min» 0.349
cutting point is searched
comp» 0,.874 max» 1.485 min» 0.262
cutting point is searched
comp» 0. 874 max» 1.573 min» 0.175
cutting point is searched
CUTTING POINT NOT FOUND

204

D.2. The Self-Organising Map
Similar to the Hopfield net explained above, here are the CAT/APM results for the

SOM.

0 S0[12][64 > 768
1 Sl[12][64 > 768
2 SE[1][12 > 12
3 SW[12][64 > 768
4 LW[12][12 > 144
5 LD[12][12 > 144
6 ST[1][64 > 64
7 SC[1][12 > 12

TOTAL MATRIX MEMORY- 2680 21440 Bytes

line func repeat size unit Icost comp total
29: mran 1 768 7.8 0.005952 0.006 0.006
30: mdis 1 144 7.8 0.001116 0.001 0.007
31: mlat 1 144 9.0 0.001296 0.001 0.008
32: ms cm 1 144 6.2 0.000900 0.000 0.009
36: vsub 4320 64 6.0 0.000384 1.659 1.668
37 : mrms 4320 64 8.0 0.000512 2.212 3.880
38 : mset 4320 1 4.5 0.000005 0.020 3.900
40: mmin 360 12 5.0 0.000060 0.022 3.921
41: mset 360 1 4.5 0.000005 0.002 3.923
43 ; sval 4320 1 4.5 0.000005 0.020 3.942
44 : vsub 4320 64 6.0 0.000384 1.659 5.601
45: mscm 4320 64 6.2 0.000400 1.728 7.329
46: vadd 4320 64 6.0 0.000384 1.659 8.988
49: mavg 30 12 6.0 0.000072 0.002 8.990
51: mlat 30 144 9.0 0.001296 0.039 9.029
52: mscm 30 144 6.2 0.000900 0.027 9.056
64: vsub 144 64 6.0 0.000384 0.055 9.111
65: mrms 144 64 8.0 0.000512 0.074 9.185
66: mset 144 1 4.5 0.000005 0.000 9.186
68: mmin 12 12 5.0 0.000060 0.000 9.186
71: vcpy 12 768 4.5 0.003471 0.042 9.228

func sequential parallel total
mran 0.005952 0.005434 0.005434
mdis 0.001116 0.001019 0.006452
mlat 0.001296 0.001339 0.007748
mscm 0.000900 0.001141 0.008648
vsub 0.000384 0.005210 1.667528
mrms 0.000512 0.000461 3.658184
mset 0.000005 0.000041 3.677711
mmin 0.000060 0.000068 3.699311
mset 0.000005 0.000041 3.700938
sval 0.000005 0.000463 3.720464
vsub 0.000384 0.005210 5.379344
mscm 0.000400 0.000507 7.107344
vadd 0.000384 0.005120 8.766224
mavg 0.000072 0.000074 8.768384
mlat 0.001296 0.001339 8.807264
mscm 0.000900 0.001141 8.834264
vsub 0.000384 0.005210 8.889560
mrms 0.000512 0.000461 8.955916
mset 0.000005 0.000041 8.956566
mmin 0.000060 0.000068 8.957286
vcpy 0.003471 0.005422 8.998943

2 10000000 8. 998943 * * * 1.03 0.51

205

Constant SO
SO SI SE SW LW LD ST s c pipe_cost backwi

29 mran 0 0 0 13 0 0 0 0 0.125
30 mdis 0 0 0 10 0 13 0 0 0.149
31 mlat 0 0 0 10 13 11 0 0 0.172
32 mscm 0 0 0 10 12 10 0 0 0.172
33 for_JL_30 0 0 0 10 10 10 0 0 0.172
34 for_NP_12 0 0 0 10 10 10 0 0 0.172
35 for_0U_12 0 0 0 10 10 10 0 0 0.172
36 vsub 0 0 0 31 10 10 13 0 0.183 SW
37 mrms 0 0 0 30 10 10 11 0 45.294 SW
38 mset 0 0 0 30 10 10 0 13 0.174 SW
39 }_endfor 0 0 0 30 10 10 0 10 8.633 SW
40 mmin 0 0 0 30 10 10 0 11 8.633 SW
41 mset 0 0 13 30 10 10 0 0 0.174 SW
42 for_0U_12 0 0 10 30 10 10 0 0 0.877 SW
43 sval 0 0 10 30 31 10 0 0 0.877 SW LW
44 vsub 0 0 10 31 20 10 13 0 45.975 SW LW
45 mscm 0 0 10 30 20 10 12 0 45.975 SW LW
46 vadd 0 0 10 32 20 10 11 0 45.975 SW LW
47)_endfor 0 0 10 10 20 10 0 0 0.854 LW
48)_endfor 0 0 10 10 20 10 0 0 0.854 LW
49 mavg 0 0 11 10 20 10 0 0 0.854 LW
50 printf 0 0 0 10 20 10 0 0 0.149 LW
51 mlat 0 0 0 10 33 11 0 0 0.172 LW
52 mscm 0 0 0 10 32 0 0 0 0.830 LW
53 dist 0 0 0 10 0 0 0 0 0.125
54 if 0 0 0 10 0 0 0 0 0.125
55 dist 0 0 0 10 0 0 0 0 0.125
56]_endif 0 0 0 10 0 0 0 0 0.125
57 gain 0 0 0 10 0 0 0 0 0.125
58 if 0 0 0 10 0 0 0 0 0.125
59 gain 0 0 0 10 0 0 0 0 0.125
60)_endif 0 0 0 10 0 0 0 0 0.125
61 }_endfor 0 0 0 10 0 0 0 0 0.125
62 for_NP_12 0 0 0 10 0 0 0 0 0.125
63 for_0U_12 0 0 0 10 0 0 0 0 0.125
64 vsub 0 0 0 11 0 0 13 0 45.247
65 mrms 0 0 0 10 0 0 11 0 1.629
66 mset 0 0 0 10 0 0 0 13 8.586
67 }_endfor 0 0 0 10 0 0 0 10 0.407
68 mmin 0 0 0 10 0 0 0 11 0.407
69 printf 0 0 0 10 0 0 0 0 0.125
70 matsh 0 0 0 10 0 0 0 0 0.125
71 vcpy 0 13 0 11 0 0 0 0 0.251

2 vms: total computation- 9.228
comp- 4.614 max- 5.075 min*
cutting point is searched
comp- 4.614 max- 5.537 min*
cutting point is searched
comp- 4.614 max- 5.998 min-
cutting point is searched
comp- 4.614 max- 6.460 min*
cutting point is searched
comp- 4.614 max- 6.921 min*
cutting point is searched
comp- 4.614 max- 7.382 min*
cutting point is searched
comp- 4.614 max- 7.844 min*
cutting point is searched
comp- 4.614 max- 8.305 min*
cutting point is searched
CUTTING POINT NOT FOUND

4.153

3.691

3.230

2.768

2.307

1.846

1.384

0.923

206

D.3. The Backpropagation Model
Below is the CAT/APM results for the Backpropagation model. A thorough

explanation is given in section D.l.

0 SI[12] [64 > 768
1 Si[1] [64 > 64
2 ST[12] (64 > 768
3 SR[12] [64 > 768
4 Sr[1] [64 > 64
5 Sh[1] [12 > 12
6 PE[12] [64 > 768
7 ER[1] [64 > 64
8 Wl[64] [12 > 768
9 Ml[64] [12 > 768

10 W2[12] [64 > 768
11 M2[12] [64 > 768
12 Al[1][12 > 12
13 Dl[1][12 > 12
14 E2[1][64 > 64
15 A2[1][64 > 64
16 D2[1][64 > 64

TOTAL MATRIX MEMORY 6564 52512 Bytes

line func repeat size unit Icost comp total
41: mran 1 768 7.8 0.005952 0.006 0.006
42: mran 1 768 7.8 0.005952 0.006 0.012
45: vcpy 276 64 4.5 0.000289 0.080 0.092
46: mmul 276 768 8.0 0.006144 1.696 1.787
47: mtan 276 12 36.0 0.000432 0.119 1.907
48: mmul 276 768 8.0 0.006144 1.696 3.603
49: mtan 276 64 36.0 0.002307 0.637 4.239
50: vsub 276 64 6.0 0.000384 0.106 4.345
51: vcpy 276 64 4.5 0.000289 0.080 4.425
52: dtan 276 64 12.1 0.000772 0.213 4.638
53: memu 276 64 6.2 0.000400 0.110 4.749
54: mscm 276 64 6.2 0.000400 0.110 4.859
55: mscm 276 768 6.2 0.004800 1.325 6.184
57 : sval 3312 1 4.5 0.000005 0.015 6.199
58: mscm 3312 64 6.2 0.000400 1.325 7.524
59: vadd 3312 64 6.0 0.000384 1.272 8.795
60: vadd 3312 64 6.0 0.000384 1.272 10.067
61: vcpy 3312 64 4.5 0.000289 0.958 11.025
63: mtrm 276 768 8.0 0.006144 1.696 12.721
64: dtan 276 12 12.1 0.000145 0.040 12.761
65: memu 276 12 6.2 0.000075 0.021 12.782
66: mscm 276 768 6.2 0.004800 1.325 14.107
68: sval 17664 1 4.5 0.000005 0.080 14.186
69: mscm 17664 12 6.2 0.000075 1.325 15.511
70: vadd 17664 12 6.0 ,0.000072 1.272 16.783
71: vadd 17664 12 6.0 0.000072 1.272 18.055
72: vcpy 17664 12 4.5 0.000054 0.958 19.013
74: mabs 276 768 5.0 0.003840 1.060 20.073
76: mabs 23 768 5.0 0.003840 0.088 20.161
77: mmax 23 768 5.0 0.003840 0.088 20.249
78: mavg 23 768 6.0 0.004608 0.106 20.355
85: vcpy 12 64 4.5 0.000289 0.003 20.359
86: mmul 12 768 8.0 0.006144 0.074 20.433
87: mtan 12 12 36.0 0.000432 0.005 20.438
88: mmul 12 768 8.0 0.006144 0.074 20.511
89: mtan 12 64 36.0 0.002307 0.028 20.539

TOTAL COMPUTATIONAL COST- 20.539 seconds

207

func sequential parallel total
mran 0.005952 0.005434 0.005434 $$$
mran 0.005952 0.005434 0.010867 $$$
vcpy 0.000289 0.002705 0.090708
mmul 0.006144 0.005754 1.678702 $$$
mtan 0.000432 0.000274 1.754282 $$$
mmul 0.006144 0.005670 3.319312 $$$
mtan 0.002307 0.001460 3.722405 $$$
vsub 0.000384 0.002957 3.828389
vcpy 0.000289 0.002705 3.908230
dtan 0.000772 0.000693 4.099620 $$$
memu 0.000400 0.000712 4.210020
mscm 0.000400 0.000507 4.320420
mscm 0.004800 0.006086 5.645220
sval 0.000005 0.000041 5.660190
mscm 0.000400 0.000507 6.984990
vadd 0.000384 0.002957 8.256798
vadd 0.000384 0.005120 9.528606
vcpy 0.000289 0.002705 10.486701
mtrm 0.006144 0.005754 12.074695 $$$
dtan 0.000145 0.000130 12.110580 $$$
memu 0.000075 0.000133 12.131280
mscm 0.004800 0.006086 13.456080
sval 0.000005 0.000207 13.535922
mscm 0.000075 0.000095 14.860722
vadd 0.000072 0.002551 16.132530
vadd 0.000072 0.004954 17.404338
vcpy 0.000054 0.002504 18.362433
mabs 0.003840 0.005606 19.422273
mabs 0.003840 0.005606 19.510593
mmax 0.003840 0.004378 19.598913
mavg 0.004608 0.004762 19.704897
vcpy 0.000289 0.002705 19.708368
mmul 0.006144 0.005754 19.777411 $$$
mtan 0.000432 0.000274 19.780698 $$$
mmul 0.006144 0.005670 19.848742 $$$
mtan 0.002307 0.001460 19.866268 $$$

2 10000000 19.866268 * * * 1.03 0.52

Constant SI
Constant ST
Constant SR
Constant ER

SI Si ST SR Sr Sh PE ER Wl Ml W2 M2 Al Dl E2 A2 D2 pipe_cost backward.
41 mran 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0.125
42 mran 0 0 0 0 0 0 0 0 10 0 13 0 0 0 0 0 0 0.251
43 for._JL_23 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.251
44 for._NP_12 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.251
45 vcpy 0 13 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.261
46 mmul 0 11 0 0 0 0 0 0 31 0 10 0 13 0 0 0 0 3.135 Wl
47 mtan 0 10 0 0 0 13 0 0 30 0 10 0 11 0 0 0 0 3.676 Wl
48 mmul 0 10 0 0 0 11 0 0 30 0 31 0 0 0 0 13 0 3.684 Wl W2
49 mtan 0 10 0 0 13 10 0 0 30 0 30 0 0 0 0 11 0 6.567 Wl W2
50 vsub 0 10 0 0 11 10 0 0 30 0 30 0 0 0 13 0 0 6.567 Wl W2
51 vcpy 0 10 0 0 10 10 13 0 30 0 30 0 0 0 11 0 0 9.565 Wl W2
52 dtan 0 10 0 0 11 10 10 0 30 0 30 0 0 0 10 13 0 46.915 Wl W2
53 memu 0 10 0 0 0 10 10 0 30 0 30 0 0 0 11 11 13 44.043 Wl W2
54 mscm 0 10 0 0 0 10 10 0 30 0 30 0 0 0 0 0 12 41.150 Wl W2
55 mscm 0 10 0 0 0 10 10 0 30 0 30 32 0 0 0 0 10 41.275 Wl W2 M2
56 forjHID_12 0 10 0 0 0 10 10 0 30 0 30 30 0 0 0 0 10 41.275 Wl W2 M2
57 sval 0 10 0 0 0 11 10 0 30 0 30 30 0 0 0 0 10 41.275 Wl W2 M2
58 mscm 0 10 0 0 0 10 10 0 30 0 30 30 0 0 0 13 11 44.158 Wl W2 M2
59 vadd 0 10 0 0 0 10 10 0 30 0 30 31 0 0 0 12 10 75.868 Wl W2 M2

208

60 vadd 0 10 0 0 0 10 10 0 30 0 32 20 0 0 0 11 10 75.743 Wl W2
61 vcpy 0 10 0 0 0 10 10 0 30 0 10 33 0 0 0 11 10 75.868 Wl M2
62 }_endfor 0 10 0 0 0 10 10 0 30 0 10 0 0 0 0 0 10 41.150 Wl
63 mtrm 0 10 0 0 0 10 10 0 30 0 11 0 0 13 0 0 11 41.152 Wl
64 dtan 0 10 0 0 0 11 10 0 30 0 10 0 13 10 0 0 0 39.348 Wl
65 memu 0 10 0 0 0 0 10 0 30 0 10 0 11 12 0 0 0 38.808 Wl
66 mscm 0 10 0 0 0 0 10 0 30 32 10 0 0 10 0 0 0 38.392 Wl Ml
67 for_IN_64 0 10 0 0 0 0 10 0 30 30 10 0 0 10 0 0 0 38 .392 Wl Ml
68 sval 0 11 0 0 0 0 10 0 30 30 10 0 0 10 0 0 0 38.392 Wl Ml
69 mscm 0 0 0 0 0 0 10 0 30 30 10 0 13 11 0 0 0 36.050 Wl Ml
70 vadd 0 0 0 0 0 0 10 0 30 31 10 0 12 0 0 0 0 69.562 Wl Ml
71 vadd 0 0 0 0 0 0 10 0 32 20 10 0 11 0 0 0 0 69.437 Wl Ml
72 vcpy 0 0 0 0 0 0 10 0 10 33 10 0 11 0 0 0 0 69.562 Ml
73 }_endfor 0 0 0 0 0 0 10 0 10 30 10 0 0 0 0 0 0 2248.807 Ml
74 mabs 0 0 0 0 0 0 10 0 10 32 10 0 0 0 0 0 0 2248.807 Ml
75 }_endfor 0 0 0 0 0 0 10 0 10 0 10 0 0 0 0 0 0 34.844
76 mabs 0 0 0 0 0 0 12 0 10 0 10 0 0 0 0 0 0 34.844
77 mmax 0 0 0 0 0 0 11 0 10 0 10 0 0 0 0 0 0 34.844
78 mavg 0 0 0 0 0 0 11 0 10 0 10 0 0 0 0 0 0 34.844
79 printf 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.251
80 if 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.251
81 break 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.251
82 }_endif 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.251
83)_endfor 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.251
84 for_NP_12 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.251
85 vcpy 0 13 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 3.133
86 mmul 0 11 0 0 0 0 0 0 11 0 10 0 13 0 0 0 0 34.969
87 mtan 0 0 0 0 0 13 0 0 0 0 10 0 11 0 0 0 0 0.689
88 mmul 0 0 0 0 0 11 0 0 0 0 11 0 0 0 0 13 0 34.742
89 mtan 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 11 0 3.008

2 vms: total computation- 9.228
comp- 4.614 max- 5.075 min- 4.153
cutting point is searched
comp- 4.614 max- 5.537 min- 3 .691
cutting point is searched
comp- 4.614 max- 5.998 min- 3.230
cutting point is searched
comp- 4.614 max- 6.460 min- 2.768
cutting point is searched
comp- 4.614 max- 6.921 min- 2.307
cutting point is searched
comp- 4.614 max- 7.382 min- 1.846
cutting point is searched
comp- 4.614 maix- 7.844 min- 1.384
cutting point is searched
comp- 4.614 max- 8.305 min- 0.923
cutting point is searched
CUTTING POINT NOT FOUND

209

D.4. The SOM/Backpropagation Model
The same technique is applied to the cooperating SOM and Backpropagation

networks.

The SOM/Backpropagation Network

0 S0[12] [64 -> 768
1 SM[1] [64 > 64
2 s i [12] [64 > 768
3 SE[1] 1 12 > 12
4 WI[1] [12 > 12
5 SW[12] [64 > 768
6 DWt 12] [64 > 768
7 LW[12] t 12 > 144
8 LD[12] [12 > 144
9 SC[1] [12 > 12

10 Si[1] [64 > 64
. -11 ST[12] [64 > 768
12 SR[12] [64 > 768
13 Sr[1] [64 > 64
14 Sh[1] c 24 > 24
15 PE[12] [64 > 768
16 ER[1] [64 > 64
17 Wl[64] [24 > 1536
18 Ml[64] [24 > 1536
19 W2[24] [64 > 1536
20 M2[24] [64 > 1536
21 Al[1] [24 > 24
22 Dl[1 1 [24 > 24
23 E2[1] [64 > 64
24 A2[1] [64 > 64
25 D2[1] [64 > 64

TOTAL MATRIX MEMORY- 12364 98912 Bytes

line func repeat size unit Icost comp total
64: mran 1 1536 7.8 0.011904 0.012 0.012
65: mran 1 1536 7.8 0.011904 0.012 0.024
68: mran 1 768 7.8 0.005952 0.006 0.030
69: mdis 1 144 7.8 0.001116 0.001 0.031
70: mlat 1 144 9.0 0.001296 0.001 0.032
71: mscm 1 144 6.2 0.000900 0.000 0.033
75: vsub 4320 64 6.0 0.000384 1.659 1.692
76: mrms 4320 64 8.0 0.000512 2.212 3.904
77: mset 4320 1 4.5 0.000005 0.020 3.923
79: mmin 360 12 5.0 0.000060 0.022 3.945
80: mset 360 1 4.5 0.000005 0.002 3.947
81: mset 360 1 4.5 0.000005 0.002 3.948
83: sval 4320 1 4.5 0.000005 0.020 3.968
84: vsub 4320 64 6.0 .0.000384 1.659 5.627
85: mscm 4320 64 6.2 0.000400 1.728 7.355
86: vadd 4320 64 6.0 0.000384 1.659 9.013
89: mavg 30 12 6.0 0.000072 0.002 9.016
91: mlat 30 144 9.0 0.001296 0.039 9.054
92: mscm 30 144 6.2 0.000900 0.027 9.081

102: sval 360 1 4.5 0.000005 0.002 9.083
104: vcpy 360 64 4.5 0.000289 0.104 9.187
105: mmul 360 1536 8.0 0.012288 4.424 13.611
106: mtan 360 24 36.0 0.000865 0.311 13.922
107: mmul 360 1536 8.0 0.012288 4.424 18.346
108: mtan 360 64 36.0 0.002307 0.830 19.176
109: vsub 360 64 6.0 0.000384 0.138 19.315

210

110: vcpy 360 64 4.5 0.000289 0.104 19.419
111: dtan 360 64 12.1 0.000772 0.278 19.697
112: memu 360 64 6.2 0.000400 0.144 19.841
113: mscm 360 64 6.2 0.000400 0.144 19.985
114: mscm 360 1536 6.2 0.009600 3.456 23.441
116: sval 8640 1 4.5 0.000005 0.039 23.480
117: mscm 8640 64 6.2 0.000400 3.456 26.936
118: vadd 8640 64 6.0 0.000384 3.318 30.254
119: vadd 8640 64 6.0 0.000384 3.318 33,571
120: vcpy 8640 64 4.5 0.000289 2.499 36.071
122: mtrm 360 1536 8.0 0.012288 4.424 40.494
123: dtan 360 24 12.1 0.000290 0.104 40.599
124 : memu 360 24 6.2 0.000150 0.054 40.653
125: mscm 360 1536 6.2 0.009600 3.456 44.109
127: sval 23040 1 4.5 0.000005 0.104 44.213
128: mscm 23040 24 6.2 0.000150 3.456 47.669
129: vadd 23040 24 6.0 0.000144 3.318 50.987
130 : vadd 23040 24 6.0 0.000144 3.318 54.304
131: vcpy 23040 24 4.5 0.000108 2.499 56.804
133: mabs 360 1536 5.0 0.007680 2.765 59.569
135: mabs 30 768 5.0 0.003840 0.115 59.684
136: mmax 30 768 5.0 0.003840 0.115 59.799
137: mavg 30 768 6.0 0.004608 0.138 59.937

func sequential parallel total
mran 0.011904 0.010867 0.010867 $$$
mran 0.011904 0.010867 0.021734 $$$
mran 0.005952 0.005434 0.027168 $$$
mdis 0.001116 0.001019 0.028187 $$$
mlat 0.001296 0.001339 0.029483
mscm 0.000900 0.001141 0.030383
vsub 0.000384 0.005210 1.689263
mrms 0.000512 0.000461 3.679919 $$$
mset 0.000005 0.000041 3.699445
mmin 0.000060 0.000068 3.721045
mset 0.000005 0.000041 3.722672
mset 0.000005 0.000041 3.724300
sval 0.000005 0.000463 3.743826
vsub 0.000384 0.005210 5.402706
mscm 0.000400 0.000507 7.130706
vadd 0.000384 0.005120 8.789586
mavg 0.000072 0.000074 8.791746
mlat 0.001296 0.001339 8.830626
mscm 0.000900 0.001141 8.857626
sval 0.000005 0.000041 8.859253
vcpy 0.000289 0.002705 8.963394
mmul 0.012288 0.011302 13.032258 $$$
mtan 0.000865 0.000548 13.229423 $$$
mmul 0.012288 0.011238 17.275247 $$$
mtan 0.002307 0.001460 17.801020 $$$
vsub 0.000384 0.002957 17.939260
vcpy 0.000289 0.002705 18.043400
dtan 0.000772 0.000693 18.293039 $$$
memu 0.000400 0.000712 18.437039
mscm 0.000400 0.000507 18.581039
mscm 0.009600 0.012173 22.037039
sval 0.000005 0.000079 22.076092
mscm 0.000400 0.000507 25.532092
vadd 0.000384 0.005414 28.849852
vadd 0.000384 0.010035 32.167612
vcpy 0.000289 0.005162 34.666991
mtrm 0.012288 0.011302 38.735855 $$$
dtan 0.000290 0.000260 38.829469 $$$
memu 0.000150 0.000267 38.883469

211

mscm 0.009600 0.012173 42.339469
sval 0.000005 0.000207 42.443610
mscm 0.000150 0.000190 45.899610
vadd 0.000144 0.005102 49.217370
vadd 0.000144 0.009907 52.535130
vcpy 0.000108 0.005008 55.034509
mabs 0.007680 0.011213 57.799309
mabs 0.003840 0.005606 57.914509
mmax 0.003840 0.004378 58.029709
mavg 0.004608 0.004762 58.167949

2 10000000 58.,167949 *** 1.03 0.52

212

Constants: SO SI DW ST SR ER

SO SM SI SE Wl SW DW LW LD s c Si ST SR Sr Sh PE ER Wl Ml W2 M2 A1 Dl E2 A2 D2 pipe_cost backward_]
64 mran 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0.251
65 mran 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 13 0 0 0 0 0 0 0.501
66 ran 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.501
67 matld 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.501
68 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.627
69 mdis 0 0 0 0 0 10 0 0 13 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.650
70 mlat 0 0 0 0 0 10 0 13 11 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.674
71 mscm 0 0 0 0 0 10 0 12 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.674
72 for_JL_30 0 0 0 0 0 10 0 10 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.674
73 for_NP_12 0 0 0 0 0 10 0 10 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.674
74 for_0U_12 0 0 0 0 0 10 0 10 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.674
75 0 13 0 0 0 31 0 10 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.684 SW
76 mrms 0 11 0 0 0 30 0 10 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 45.795 SW
77 mset 0 0 0 0 0 30 0 10 10 13 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.676 SW
78)_endfor 0 0 0 0 0 30 0 10 10 10 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 9.134 SW
79 mmin 0 0 0 0 0 30 0 10 10 11 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 9.134 SW
80 mset 0 0 0 0 13 30 0 10 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.676 SW
81 mset 0 0 0 13 10 30 0 10 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.381 SW
82 for_00_12 0 0 0 10 10 30 0 10 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 2.084 SW
83 sval 0 0 0 10 10 30 0 31 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 2.084 SW LW
84 vsub 0 13 0 10 10 31 0 20 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 47.182 SW LW
85 mscm 0 12 0 10 10 30 0 20 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 47.182 SW LW
86 vadd 0 11 0 10 10 32 0 20 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 47.182 SW LW
87)_endfor 0 0 0 10 10 10 0 20 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 2.060 LW
88 J_endfor 0 0 0 10 10 10 0 20 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 2.060 LW
89 mavg 0 0 0 11 10 10 0 20 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 2.060 LW
90 printf 0 0 0 0 10 10 0 20 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.355 LW
91 mlat 0 0 0 0 10 10 0 33 11 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.379 LW
92 mscm 0 0 0 0 10 10 0 32 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 2.037 LW
93 dist 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332
94 if 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332
95 dist 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332
96)_endif 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332
97 gain 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332
98 if 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332
99 gain 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332

100)_endif 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332
101 fcr_NP_12 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332
102 0 0 0 0 11 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332
103 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.627
104 vcpy 0 0 0 0 0 11 0 0 0 0 13 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.637
105 mmul 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 31 0 10 0 13 0 0 0 0 4.265 Wl
106 mtan 0 0 0 0 0 0 0 0 0 0 10 0 0 0 13 0 0 30 0 10 0 11 0 0 0 0 5.675 Wl
107 mmul 0 0 0 0 0 0 0 0 0 0 10 0 0 0 11 0 0 30 0 31 0 0 0 0 13 0 5.682 Wl W2
108 mtan 0 0 0 0 0 0 0 0 0 0 10 0 0 13 10 0 0 30 0 30 0 0 0 0 11 0 9.442 Wl W2
109 vsub 0 0 0 0 0 0 0 0 0 0 10 0 0 11 10 0 0 30 0 30 0 0 0 13 0 0 9.442 Wl W2
110 vcpy 0 0 0 0 0 0 0 0 0 0 10 0 0 10 10 13 0 30 0 30 0 0 0 11 0 0 13.317 Wl W2
111 dtan 0 0 0 0 0 0 0 0 0 0 10 0 0 11 10 10 0 30 0 30 0 0 0 10 13 0 62.073 Wl W2
112 memu 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 30 0 0 0 11 11 13 58.324 Wl W2
113 mscm 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 30 0 0 0 0 0 12 54.553 Wl W2
114 mscm 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 30 32 0 0 0 0 10 54.804 Wl W2 M2
115 for_HID_24 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 30 30 0 0 0 0 10 54.804 Wl W2 M2
116 sval 0 0 0 0 0 0 0 0 0 0 10 0 0 0 11 10 0 30 0 30 30 0 0 0 0 10 54.804 Wl W2 M2
117 mscm 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 30 30 0 0 0 13 11 58.564 Wl W2 M2
118 vadd 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 30 31 0 0 0 12 10 145.047 Wl W2 M2
119 vadd 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 32 20 0 0 0 11 10 144.796 Wl W2 M2
120 vcpy 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 10 33 0 0 0 11 10 145.047 Wl M2
121)_endfor 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 10 0 0 0 0 0 10 54.553 Wl
122 mtrm 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 11 0 0 13 0 0 11 54.557 Wl
123 dtan 0 0 0 0 0 0 0 0 0 0 10 0 0 0 11 10 0 30 0 0 0 13 10 0 0 0 53.362 Wl
124 memu 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 10 0 30 0 0 0 11 12 0 0 0 51.952 Wl
125 mscm 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 10 0 30 32 0 0 0 10 0 0 0 50.793 Wl Ml
126 for_BIN_64 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 10 0 30 30 0 0 0 10 0 0 0 50.793 Wl Ml
127 sval 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 10 0 30 30 0 0 0 10 0 0 0 50.793 Wl Ml
128 mscm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 30 30 0 0 13 11 0 0 0 48.443 Wl Ml
129 vadd 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 30 31 0 0 12 0 0 0 0 135.866 Wl Ml
130 vadd 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 32 20 0 0 11 0 0 0 0 135.615 Wl Ml
131 vcpy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 33 0 0 11 0 0 0 0 135.615 Ml
132 l_endfor 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 30 0 0 0 0 0 0 0 5820.678 Ml
133 mabs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 32 0 0 0 0 0 0 0 5820.678 Ml
134 l_endfor 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 45.122
135 mabs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 45.122
136 mmax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 45.122
137 mavg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 45.122

213

2 vms: total computation-
comp= 29.969 max=
cutting point is searched
comp= 29,969 max=
cutting point is searched
comp= 29.969 max=
cutting point is searched
comp= 29.969 max=
cutting point is searched
comp= 29.969 max=
cutting point is searched
corap= 29.969 max=
cutting point is searched
comp= 29.969 max-
Cut line:102 comcosts=

59.937
32.965 min= 26.972

35.962 min= 23.975

38.959 min= 20.978

41.956 min= 17.981

44.953 min= 14.984

47.950 min= 11.987

50.947 min= 8.991
0.627 achieved^ 9.083

The composite listing of the SOM/Backpropagation program is split into two parts
at line 102. Cutting for this network configuration results in 9.803 sec. computational
load on the first VM and the rest (59.37 - 9.08) sec. on the second VM. The two
MATLIB listings can be pipelined through two parallel machines. A server program
running on the third processor can be used to carry out File I/O and data transfer between
the two VMs. The programs are as follows;

#include "uv.h"
int NP = 12;

IN = 64;
on - 12;
JL ■= 30;
BPIN - 64;
HID - 12;
OUT - 64;

/* The server program */

int
int
int
int
int
int
main()
{

int i ;
mt_type *SW, *W1, *W2;
int *vm;

matdef(&SW, "SW", OU,
matdef(&W1, "Wl",
matdef(SW2, "W2",

mran(SW, 0.0, 0.05);
mran(Wl, -0.05, 0.05)
mran(W2, -0.05, 0.05)

opensocket(&vm, 2);

put_mat(vm[l], SW)
put_mat(vm[2], Wl)
put_mat(vm[2], W2)

for (i-0; i<JL; i++) {
servis(vm, 1);

)

IN);
BPIN,
HID,

HID)
OUT)

214

The two client listings are as follows;

#include "uv.h"
int NP = 12;

IN = 64;
OU = 12;
JL = 30;

/* Client 1 listing */

int
int
int
main()
t

double
double
double
double
double

dist = 2.0;
dstp = 0.4;
dend = 0.1;
gain = 0.9;
gstp = 0.1;

double gend = 0.1;
char *infile="r.dat";

mt_type *S0, *S1, *WI, *SW, *DW, *LW, *LD, *SM, *SC, *SE;
int i, j, k, n;
int row, col;
double rms, avg;
int fd, cli_no = 1;

matdef(&S0, "SO", NP, IN)
matdef(SSI, "SI", NP, IN)
matdef(SSE, "SE", 1, NP)
matdef(&WI, "Wl", 1, NP)
matdef(sSW, "SW" , OU, IN)
matdef(&DW, "DW" , OU, IN)
matdef(&LW, "LW", OU, OU)
matdef(&LD, "LD", OU, OU)
matdef(&SM, "SM", 1, IN)
matdef(SSC, ■SC", 1, OU)

consocket(sfd. cli_.no) ;

mdis(LD, 2);
mlat(LW, LD, dist);
mscm(LW, LW, gain);
matld(SO, infile);

get_mat(SW, fd);
for (n=0; n<JL; n++) {

for (i-0; j<NP; j++) {
for (k-0; k<OU; k++) {

vsub(SM, SO, SW, 0, j, k)
vcpy(DW, SM, k, 0);
mrms(&rms, SM);
mset(SC, rms, 0, k);

}
mmin(srms, SC, &row, &col);
mset(WI, (double) col, 0, j);
mset(SE, rms, 0, j);
for (k-0; k<OU; k++) {

sval(&rms, LW, k, col);
vcpy(SM,
mscm(SM,
vcpy(DW,

DW, 0, k);
SM, rms);
SM, k, 0);

}
madd(SW, SW, DW);

}
mavg(&avg, SE);
printf ("%d: avg rms
mlat(LW, LD, dist);

%f0, n, avg);

215

mscm(LW, LW, gain);
dist = dist - dstp;
if (dist < dend) {

dist = dend;
}
gain = gain - gstp;
if (gain < gend) {

gain = gend;
}
post (fd, 2, Wl);
post (fd, 2, SW);

]
/* End of Main for the Client 1*/

216

#include "uv.h"
int NP = 12;
int JL = 30;
int IN = 64;
int OU = 12;
int BPIN = 64;
int HID = 12;
int OUT = 64;
main()
{

double bpgain = 0.003;
double momt = 0.5;
double toi = 0.1;
double rms = 0.0;
doubleavg;
double max;
int i, j, n, k, p;
int row, col;
doubletmp;
char *tarfile-"h.dat";

/* Client 2 listing */

mt_type *WI, *SW;
mt_type *SI, *Si, *ST, *Sr, *Sh, *PE;
mt_type *W1, *W2, *WT, *A1, *A2, *ER;
mt_type *M1, *M2, *E2, *D1, *D2, ♦SR;

int fd, cli_no = 2;

consocket(&fd, cli_no);

matdef(SWI, "Wl", 1, NP) ;
matdef(sSW "SW" , OU, IN) ;

matdef(&Si, ■Si", 1, BPIN)
matdef(&ST, "ST", NP, OUT)
matdef(SSR, "SR", NP, OUT)
matdef(SSr, "Sr", 1, OUT)
matdef(SSh, "Sh", 1, HID)
matdef(SPE, "PE", NP, OUT)
matdef(SER, "ER", 1, OUT)
matdef(SWI, "Wl", BPIN, HID)
matdef(SMI, "Ml", BPIN, HID)
matdef(SW2, "W2", HID, OUT)
matdef(SM2, "M2", HID, OUT)
matdef(SWT, "WT", OUT, HID)
matdef(SAl, "Al", 1, HID)
matdef(SDl, "Dl", 1, HID)
matdef(SE2, "E2", 1, OUT)
matdef(SA2, "A2", 1, OUT)
matdef(SD2, "D2", 1, OUT)

matld(ST, tarfile);
get_mat (Wl, fd);
get_mat (W2, fd);
for (n-0; n<JL; n++) {

get_mat(Wl, fd);
get_mat(SW, fd);
for (p-0; p<NP; p++) {

sval(&rms, Wl, 0, p)
col - (int)rms;
vcpy(Si, SW, 0, col);

matsh ("", SO, p, 0.0, 8)
matsh ("", Si, 0, 0.0, 8)
matsh ("", ST, p, 0.0, 8)

217

mmul(Al, Si, Wl);
mtan(Sh, Al);
mmul(A2, Sh, W2);
mtan(Sr, A2);
vsub(E2, ST, Sr, 0, p, 0);
vcpy(PE, E2, p, 0);
dtan(A2, Sr);
memu(D2, E2, A2);
mscm(D2, D2, bpgain);
mscm(M2, M2, momt);
for (i=0; i<HID; i++) {

sval(&tmp, Sh, 0, i);
mscm(A2, D2, tmp);
vadd(A2, A2, M2, 0, 0, i);
vadd(W2, W2, A2, i, i, 0);
vcpy(M2, A2, i, 0);

}
mtra(WT, W2);
mmul(Dl, D2, WT);
dtan(Al, Sh);
memu(Dl, Dl, Al);
mscm(Ml, Ml, momt);
for (i=0; i<BPIN; i++) {

sval(&tmp, Si, 0, i);
mscm(Al, Dl, tmp);
vadd(Al, Al, Ml, 0, 0, i);
vadd(Wl, Wl, Al, i, i, 0);
vcpy(Ml, Al, i, 0);

}
mabs(Ml, Ml);

mabs(PE, PE);
mmax(&max, PE, &row, scol);
raavg(&avg, PE);
printf("%4d: max-%f avg-%f tol-%fO, n, max, avg, toi);
if (max < toi) {

break;
}

218

Appendix E

APPENDIX E - Competing Backpropagation Networks

This appendix presents the NETLIB listings o f the competing
Backpropagation networks. Two listings show the server and the client
programs using parallel features o f the NETLIB.

The first program listing is the server NETUB listing. As can be seen the server
opens a socket for 2 clients. For input (SI) and target (ST) matrices, memory is allocated
and the matrix structures are set up. Both matrices are loaded from the infile and tarfile.
and transmitted to the clients. The model is generic and it is independent of the number
of clients. The server code is as follows;

♦include "uv.h"
int NP “ 12;
int BPIN = 64;
int OUT - 64;
char *infile - "r.dat";
char *tarfile- "h.dat";
main()
{

int i;
mt_type *SI;
mt_type *ST;
int *vm, total - 2;
doubleerrl, err2;

opensocket(&vm, total);

matdef(&SI, "SI", NP, BPIN)
matdef(SST, "ST", NP, OUT);

matld (SI, infile);
matld (ST, tarfile);

for (i-1; i<=total; i++) {
put_mat(vm[i], SI);
put_mat(vm[i], ST.) ;

}
)
/ *

219

The clients are self-contained Backpropagation networks. They connect to the open
socket, receive the input and target patterns, randomise weight matrices and execute their
NETLIB bplearn and recall functions. Each client can call bpleam function with a
different set of parameters and a network topology. The results, or the error can be
monitored if wished. The clients NETLIB definitions are as follows;

*include "uv.h"
int NP = 12;
int IN = 64;
int HID = 12;
int OUT = 64;
rat_type *SI, *ST, *W1, *W2, *SR;
int p, fd, cli_no - 1;
main()
{

consocket(&fd, cli_no);

matdef(&SI, "SI" , NP, IN) ;
matdef(&ST, "ST" , NP, OUT)
matdef(&SR, "SR" , NP, OUT)
matdef(&W1, "Wl" , IN, HID)
matdef(&W2, "W2" , HID, OUT)

get_mat(SI, fd);
get_mat(ST, fd)'
mran(Wl, -0.05, 0.05);
mran(W2, -0.05, 0.05);

bplearn (SI, ST, Wl, W2, 23,
bprecall (SI, SR , Wl, W2);

for (p-0; p<NP; P++) {
printf("Result %dO, p);

matsh("", SI, p, 0.0, 8);
matsh("", SR, p, 0.0, 8);

220

