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Abstract
Neural networks provide solutions to a class of pattern recognition and optimisation problems 
that are hard to solve with conventional techniques. Currently, most neural network applications 
are computationally intensive simulations on conventional sequential computers. As a solution 
general-purpose parallel architectures are increasingly used to speed up simulations. Hence, there 
is a growing need for generic strategies for simulating neural networks on parallel computers. 
This thesis investigates generic representation and mapping strategies for neural networks on 
general-purpose parallel architectures. The research comprises three main parts: an analysis of 
neural network models, an analysis of neural network representations, and by utilising these 
analyses, the representation and mapping of neural networks on parallel hardware.

To understand the computational and structural properties of neural network models, and to 
establish a generic representation, an in-depth analysis is carried out in the form of three case 
studies. The Hopfield, the Self-Organising Map and the Backpropagation models are used 
respectively in three appropriate real-world applications; pattern recognition, data clustering and 
financial forecasting.

Neural network representations determine parallel mapping options and the subsequent efficiency 
of mappings. Function-oriented, object-oriented and matrix-based representations are examined 
with examples, stressing their advantages and disadvantages. A matrix-based C library MATLIB 
and a neural network library NETUB are put forward as generic, modular and flexible means to 
represent neural networks and exploit parallel, general-purpose execution environments.

The mapping of neural networks onto parallel hardware is a computational optimisation problem 
with two main constraints: processing costs and communications costs. The Mapper’s task is to 
optimise for a fast and efficient execution, by partitioning and distributing neural network 
representations across a number of parallel processors, and scheduling the parallel execution. A 
Computational Analysis Tool (CAT) is developed to calculate processing and communications 
costs, and to detect parallelism in a given MATLIB definition. An Automatic Parallel Mapper 
(APM), using this analysis, can partition the representation and generate parallel or pipelined 
code with appropriate data exchange instructions between the parallel processing modules.

The Esprit II Galatea General Purpose Neural Computer (GPNC) is used as a test and 
implementation domain for this research work. The GPNC is a multi-processor architecture 
consisting of a host and a number of parallel Virtual Machines (VM), each containing a local 
CPU and a co-processor board, communicating and interpreting a matrix-based intermediate- 
level language called VML. The Galatea Mapper is designed and developed for semi-automatic 
mapping of VML rules to a number of parallel VMs.

To assess the performance of the mapping strategies, MATLIB definitions of the three neural 
network models are partitioned and simulated in parallel on a network of SUN workstations. 
CAT projections are used to authorise data or task parallel mappings automatically. Multiple 
neural network applications are also simulated with two or more neural networks cooperating or 
competing in the solution of a problem.

This thesis shows that the matrix-based abstraction captures neural network properties, and the 
computational cost analysis based mapping strategy is generic, flexible and can be automated. In 
addition, the simulation results show that: (i) the three neural network models studied in this 
thesis are tightly coupled algorithms, and are not suitable for pipeline or task parallelism, (ii) data 
parallelism for these models can increase performance only if fast communications interfaces are 
provided, and (Hi) current distributed computer networks can be used for multiple neural network 
simulations, producing clear gains in performance.
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Chapter 1

Introduction

This chapter presents a brief introduction to Neural Networks, outlines the 
motivations and research goals o f this work, and gives an overview of the 
research contributions and thesis organisation.

1.1. Neural Networks
The Neural Networks field is an information processing paradigm that has been 

inspired by the organisation of the brain. This field has surged over the last 5 years, 
becoming one of the fastest growing computing technologies. As a multidisciplinary field 
[24,37,148], it covers areas such as neuroscience, psychology and computing. Neural 
Computing specifically deals with neural network algorithms, applications, programming 
and execution environments.

The essence of neural computing is to use networks of neuron-like simple 
Processing Elements (PE), or Artificial Neurons (AN) as computational devices [110]. 
Artificial Neural Networks are highly interconnected structures of artificial neurons 
which are modeled on an idealised view of biological neurons. A biological neuron, as is 
well known, is the basic building block of the nervous system, consisting of a cell body, 
branching extensions called dendrites which receive signals, and an axon which passes 
the neuron’s output to the other neurons (Figure 1.1). The junctions between axons and 
dendrites are called synapses. To oversimplify somewhat, a neuron collects the signals 
from its synapses, and sums them. If the combined strength of the signals exceeds a 
certain limit - a threshold, the neuron sends out a signal through its axon. These steps are 
electrochemical operations carried out by over fifty different neurotransmitters, involving 
many different neuron structures. Neurons typically take a millisecond to respond to their 
inputs; in the same amount of time, conventional computers can carry out millions of 
calculations. Yet the biological network of neurons is much faster in pattern recognition 
tasks than conventional computers. There are approximately 100 billion neurons in the 
human brain, and one neuron may be connected up to 10,000 others; thus the main 
strength of the neural model comes from this massive interconnectivity and parallelism.
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Figure 1.1. Models of Neurons

An artificial neuron imitates a biological neuron in three aspects: it has weighted 
input connections, a summation function and a threshold function that generates the 
output. To further the similarity in an attempt to build a replica of the brain [101] is not 
yet feasible, for two reasons. Firstly, our understanding of the brain is limited, and 
secondly, today’s technology cannot match the same level of processor interconnectivity 
on silicon circuits. Despite the high level of interconnectivity, the brain is not 
homogeneous. Computations in the brain seem to be localised for specific tasks. PET 
(Positron Emission Tomography) scans and MRI (Magnetic Resonance Imaging) results 
confirm that the brain has a modular structure. These results encourage the design of 
modular networks and distributed parallel hardware platforms, to overcome the 
interconnectivity bottleneck.

The Brain Artificial Neural Networks
Organisation network of neurons network of Processing Elements
Components dendrites & axon 

synapses
inputs & output 
weights

Processing analog digital or analog
Architecture 10-100 billion neurons 1-1,000,000 PEs
Interconnectivity 1 neuron to 10,000 others limited and slow
Hardware neuron switching device
Switching Speed 1 millisec 1 nanosec -1 millisec
Technology biochemical silicon, optical

Table 1.1. The Brain and Neural Networks

Today, most neural network applications are software simulations, running on 
conventional, sequential computers. Some simulations run on parallel hardware, and 
some hardware implementations already exist [143]. Neural network simulations are

13



computationally demanding, requiring high performance hardware platforms with large 
memories. Figure 1.2 shows the computational requirements for a range of neural 
network applications and the performance of neural network simulators (CPS stands for 
Connections Per Second; a performance criterion which is widely used.) As can be seen, 
using parallelism, both the speed and the storage capacity can be improved. One major 
problem is to program or map software onto parallel hardware, and exploit parallel 
execution environments efficiently. This thesis specifically deals with the mapping of 
neural networks onto parallel hardware for efficient execution. Four main research areas 
of neural computing are considered in the course of this research. These are neural 
network models and applications, programming and execution environments.

Speed (CPS)

Multiprocessing

(Parallelism)

Fast Processors

10

►  RAM TechnologyNeural Network 
Sim ulators

10 10 10 10 Storage (Bytes)

Figure 1.2. Applications and Simulators [6]

Neural Network Models and Applications

A large number of models have been developed and tested on a number of real- 
world applications. Models differ from one another by the interconnection topology and 
the varying properties of artificial neurons. Today, there are over 100 established 
network models [99,144]. The best known models are the Hopfield nets [72], the Self- 
Organising Map (SOM) [88], and the Backpropagation model [130]. These three models 
are analysed in detail in three case studies in chapter 4.

Most neural network algorithms are mathematical and statistical models of learning. 
They achieve learning through an iterative process called the training phase. In training, 
a network adaptively modifies the interconnection weights between the Processing 
Elements, following a learning rule. Recall, on the other hand, involves using the weight 
space after training, to produce output values for given input patterns.
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Neural networks are suitable for a diversity of real-world applications covering 
brain modelling, speech and image processing, robotics and control, planning and 
optimisation, and human-machine interfacing systems [129]. The main applications are 
pattern recognition problems which are difficult to solve by conventional techniques. 
Other popular applications are optimisation problems which take an impractical amount 
of computer time to reach a solution using conventional techniques. In the last 3 years, 
financial applications have gained momentum. As part of wider data processing 
applications, neural networks are used in predicting trends in prices, stock market and 
exchange rate forecasting [86], credit and insurance assessments [34]. An interesting 
image processing application is the recognition of hand-written characters. This has 
become particularly important in the wake of pen driven computers [22,57], an important 
step in the human-machine interfacing systems.

Neural networks present different computational requirements during the training 
and recall phases, depending on applications. A neural network study [6] outlines these 
requirements as memory (connections) and execution speed (connections per second). 
For a robotic arm manipulator, real-time speed requirements are estimated as 350,000 
CPS, and the computational demand in vision applications can go up to 2 GCPS. In most 
cases training can be done off-line, but recalls often require a real-time performance. 
These requirements are still far from satisfactory, presenting a stumbling block in the 
neural network development.

Neural network research is recently focusing on modular, hybrid systems. These 
systems require coarse-grained parallel distributed architectures consisting of general- 
purpose high performance modules. Mapping and execution strategies must consider 
these modular trends in models and applications.

Neural Network Programming and Execution

Most neural network applications are developed as computer simulations, and some 
models are realised as hardware implementations. A neural network simulation is 
developed in the following way: first, a suitable model is selected and adapted for the 
application, a suitable hardware platform is chosen, a computer program of the model is 
written, and finally the simulation is executed on the hardware. This process involves 
two separate domains, the software domain and the hardware domain. Research in 
Programming Environments deals with issues relating to software, such as the user 
interface, network representations and mapping. Research in Execution Environments on 
the other hand deals with hardware matters for the efficient execution of applications.

15



Neural Network Programming Environments (NNPE) are sophisticated 
programs which ease the cycle of program development and execution of an application. 
They facilitate the transformation of real-world problems onto computer programs with 
user-friendly interfaces and testing, debugging and monitoring functions. Most NNPEs 
contain the following modules: a graphics monitor and a high-level language for user- 
friendly definition of networks, an intermediate-level neural network specification 
language for low level representation of the applications, and an algorithm library 
consisting of parameterised models. A number of research systems and commercial 
products have been developed in this field, and they are reviewed in chapter 2.

Neural Network Execution Environments are high performance hardware 
platforms where neural network execution takes place. Today, most execution 
environments are sequential computers. For small applications where training can be 
done off-line, PCs are often sufficient. Early PCs delivered 25,000 CPS execution speeds 
[6], and this figure has been increased tenfold in the last 5 years. Neural network 
applications such as signal processing and vision tasks require vast amounts of 
processing power. Neurocomputers are developed to provide this high performance, 
communications facilities. Neurocomputer research is progressing in two directions to 
overcome these difficulties.

Special-purpose Neurocomputers are usually fine-grained compact VLSI 
implementations of certain neural network models. The Hopfield nets and the Self- 
Organising Map [12,90,101,102] are the two most popular models implemented in 
hardware because of their simplicity. Special-purpose neurocomputers provide fast 
execution (currently 10̂  CPS), and can be implemented as compact analog circuits, but 
they lack flexibility and programmability.

General-purpose Neurocomputers on the other hand are general, flexible and 
progranunable platforms, but they provide poorer performance rates (typically in the 
range of 10  ̂-  10  ̂ CPS) [107,120]. They are often coarse-grained architectures aiming 
at high performance and generality. Most neural network models and some non-neural 
network applications can be executed on these machines. The general-purpose 
neurocomputers are mainly digital circuits with some analog hybrid implementations. A 
detailed review of the current hardware platforms is presented in chapter 2.

Considering neural networks’ inherent parallel nature, their potential can be fully 
exploited on massively parallel architectures. Yet, there are practical difficulties in 
implementing highly interconnected massively parallel architectures with efficient These
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difficulties can be overcome by parallel, distributed and modular designs. Future 
architectures can make use of special and general purpose neurocomputers by combining 
them in a parallel distributed framework. These systems will be able to incorporate 
multi-domain applications and hybrid solutions, and run on heterogeneous architectures, 
consisting of general-purpose and dedicated processors.

Mapping Neural Networks onto Parallel Hardware

The rapid development of computer hardware in speed, memory and data storage 
facilities has not been sufficient to meet the demand for high performance computing in 
some applications. Neural network applications are among these applications which are 
computationally intensive on conventional computer simulations. Given the choice of 
having a high performance system now or waiting five years, parallelism can deliver the 
required performance by exploiting current hardware platforms [121]. In fact, 
parallelism increasingly is used in the design of single-chip microprocessors. Yet 
parallelism introduces one important issue; the programming or mapping of applications 
onto hardware. Mapping involves decomposing and partitioning representations and 
distributing them onto parallel processors for a fast and efficient execution. Neural 
networks are intrinsically parallel algorithms, and it is natural to think they can be 
executed most efficiently on parallel architectures. In reality, inefficient use of parallel 
resources can result in slower execution rates over sequential executions.

A parallel neural network simulation is closely linked to the application and model 
which are mapped, and to the programming and execution environments where 
simulation and finally execution takes place. Overall, the efficiency of execution on a 
parallel system depends on the following factors:

• Efficient representation - The neural network specification language must be 
general, flexible and allow easy manipulation by the mapping process.

• Efficient mapping - The mapper must efficiently partition and distribute the neural 
network representation across a number of parallel processors.

• Processor speed - The speed of the processors in the system directly affects the 
speed of the execution.

Processor memory - The size of memory and the access time are important, as 
neural network concepts, such as weights, patterns, and look-up tables are stored in 
Random Access Memory.
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# Interprocessor communications - Interprocessor communications facilities must be 
sufficient both in speed and latency to cope with the data transfer and update 
throughout the network.

1.2. Research Goals

The main goal of this research is to investigate generic strategies for mapping neural 
networks onto parallel hardware. Part of this goal is to achieve a generic representation 
that captures neural network properties and facilitates parallel mapping. The following 
are the main criteria to be met in the research for representation and mapping strategies 
in this thesis:

High Performance: Execution speed must be improved over sequential speed as a 
result of the mapping.

Generality: The system must provide high performance for a wide range of neural 
network models and applications, and support a variety of neurocomputers.

•  Flexibility: The system must be easily modified, and it must allow for expansion 
for new applications, models, and hardware platforms.

•  Modularity: The system must be modular to allow for expandability and
upgradability.

• Efficiency: The system must supply efficient use of resources.

• Scalability: The system must scale up to increasing number of processors.

• Automation: Parallel code should be generated and distributed automatically.

This thesis attempts to achieve these research goals within the framework of a 
General Purpose Neural Computer (GPNC). A GPNC is a high performance system, 
consisting of a coarse number of parallel general-purpose modules, all connected to a 
host computer with a user-friendly, flexible programming environment, capable of 
executing a wide range of neural network models and applications (Figure 1.3).

The ESPRIT II Galatea GPNC is a typical example of such a system which is 
potentially capable of delivering a high performance for a wide range of neural network 
models and applications. The Galatea GPNC is currently under development, and it has 
been used as the test and implementation dommn for mapping and scheduling strategies 
developed in this thesis. The design and development of the Galatea Mapper and the
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Figure 1.3. General Purpose Neural Computer and Mapper

specification of the Scheduler are parts of the research work undertaken during this thesis 
research.

1.3. Research Plan

To achieve the research goals;

•  An in-depth analysis of neural networks has been carried out in the form of three 
case studies. The Hopfield nets, the Self-Organising Maps and the Backpropagation 
model with three appropriate applications have been used in the case studies. These 
three models are selected because they represent a good cross-section of most neural 
network models in terms of their applications, structures, training and recall procedures. 
This analysis aims to : (i) understand neural network models and their computational 
properties, (ii) highlight suitable application domains, (Hi) explore potential structural 
parallelism, and (iv) search for a generic representation.

•  A comparative analysis of neural network representations has been carried out, 
using fimction-oriented, object-oriented and vector-oriented representations in a number 
of simulations. The analysis aims to establish a representation strategy which is capable 
of (i) capturing most neural network properties, and (ii) exploiting general-purpose 
parallel hardware. As a result a matrix-based library MATUB and a neural network 
library NETUB have been put forward.
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•  The mapping strategy has been outlined as a computational optimisation process 
which is generic, flexible and upgradable. A Computational Analysis Tool (CAT) and an 
Automatic Parallel Mapper (APM) have been developed for automatically partitioning 
and mapping MATLIB representations onto parallel processors.

•  The Galatea Mapper has been implemented as part of the programming system for 
the Galatea GPNC simulator, and is used for demonstrating mapping and scheduling 
strategies. VML, the intermediate-level language of the Galatea GPNC, has been semi- 
automatically partitioned and parallel executions are simulated on a network of SUN 
workstations.

•  MATLIB representations have been partitioned and parallelised on a network of 
SUN workstations to assess data and task parallel mapping strategies. CAT parallel 
projections are used to detect parallelism in MATUB definitions of neural network 
models. Both single domain and multiple neural network models have been used in these 
parallel simulations.

1.4. Research Contributions
The main contributions of this work to Neural Computing are:

• The analysis of neural networks. An analysis of three neural network models 
with appropriate real-world applications, in the form of three case studies.

• The analysis of neural network representations. A comparative analysis of 
function-oriented, object-oriented and vector-oriented neural network representations.

•  The design and implementation of MATLIB. A matrix-based C library with 
parallel features. MATLIB is a generic representation domain for neural networks and is 
suitable for mapping onto general-purpose parallel hardwares.

•  The design and implementation of NETLIB. NETLIB is a parallel neural 
network library with parameterised routines for the training and the recall functions of 
the three models, exploiting MATUB functions.

•  The design and implementation of the CAT. CAT provides a computational 
profile for MATLIB programs and detects parallelism in these representations.

•  The design and implementation of the APM. APM exploits the computational 
profile provided by CAT, and automatically partitions and generates parallel or pipelined
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MATLIB code.

• The design and implementation of the Galatea Mapper. It provides semi­
automatic mapping of intermediate-level language VML onto a number of parallel Virtual 
Machines.

• Parallel to this research, original research contributions have been made by 
proposing novel solutions to problems such as data clustering [26], dataset pre­
processing [126], financial forecasting [27] and navigation [28]. These efforts are 
documented as published papers and as departmental research notes. The Galatea GPNC 
development is also documented in chapter 3 and chapter 7, and in the form of technical 
reports.

1.5. Thesis Organisation

This thesis is organised as follows:

Chapter 2 presents a survey of neural computing. An overview of neural network 
models and applications is given, and neural network programming and execution 
environments are investigated.

Chapter 3 presents the Pygmalion and Galatea programming environments as major 
development works in European Neurocomputing. The Galatea General Purpose Neural 
Computer is presented as it forms the main test and implementation domain for this 
thesis work.

Chapter 4 comprises an in-depth analysis of neural network models in three case 
studies with real-world applications. The Hopfield nets, the Backpropagation model and 
the Self-Organising Map are chosen as they provide a good cross-section of neural 
network models and applications.

Chapter 5 discusses neural network representation and programming issues. 
Function-oriented, object-oriented and vector-oriented approaches are compared with 
simulation examples. A matrix-based C library, MATLIB is put forward as a generic and 
flexible environment to represent neural networks and exploit general-purpose parallel 
hardware. A neural network library NETLIB is also presented in this chapter.

Chapter 6 outlines the mapping strategy as computational optimisation. Different 
mapping techniques are discussed, data and task parallelism costs are parameterised. The 
Computational Analysis Tool and the Automatic Parallel Mapper are presented for the
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automatic generation of parallel code.

Chapter 7 describes the Galatea Mapper implementation, as part of the Galatea 
GPNC development. The Galatea Mapper and the Scheduler are defined, and the 
implementation steps are presented. Results of parallel mappings of VML are presented 
on the GPNC simulator running on a network of SUN workstations.

Chapter 8 presents the simulation results of mapping MATLIB representations. 
Parallel simulations involving single-domain, and multi-neural-network applications are 
used to assess the performance of the mapping strategy.

Chapter 9 provides an assessment of the work in terms of strategy, design, 
implementation and results. A target review is made, and neural network model, 
representation and execution issues are raised.

Chapter 10 contains major conclusions of this research and discusses future 
directions.
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Chapter 2

Neural Computing

This chapter provides a brief survey o f the Neural Computing field, aiming 
to place the thesis work in this context. With this purpose, popular neural 
network models and applications, programming and execution 
environments are reviewed and assessed.

2.1. Introduction
Conventional Artificial Intelligence (AI) techniques, manifested as the 5th 

generation computers, have been successfully applied to problems where a well defined 
number of rules determine a system’s behaviour. In the late 1970’s, a number of AJ- 
based medical diagnosis packages and chess playing programs were developed. They 
were so successful that the chess playing programs manage to beat over 99 % of all 
players. But the same AI techniques are found inadequate for problems such as speech 
and image recognition. There are two main reasons for this. Firstly, the rules and 
parameters involved in these problems are unknown or not well defined. Secondly, most 
pattern recognition and optimisation problems are so called NP-complete, and the 
computational requirements for these problems become unsurmountable as the number of 
parameters increases. As a result, the computational requirements increase rapidly, 
pushing sequential, conventional computers to the limits of their performance. Many 
believe the answer is in parallel processing and in new forms of computation based on 
parallel computing.

Neural networks, seen as part of the 6th generation computers paradigm [137] offer 
a radically different type of computation from conventional computers; neural computing 
is not rule based, and it is intrinsically parallel. But, neural computing is not a candidate 
to replace conventional computing, which is quite successful for symbolic and numeric 
applications. Instead, it complements the conventional computing systems, by providing 
solutions to a variety of real-world problems that involve extracting useful information 
from complex, noisy or uncertain data [129]. Neural networks have already been applied 
to a range of pattern recognition problems as sequential simulations, performing better 
than the conventional techniques.
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The proliferating applications and models are pushing the demand for high 
performance simulators. As mentioned above parallelism can be one way of speeding up 
computationally intensive simulations. Yet it brings together difficulties of parallel 
programming which is the topic of this research. In the pursuit of generic representation 
and mapping strategies of neural networks this chapter surveys the state of the art neural 
network algorithms, applications, programming and execution environments.

2.2. Applications and Algorithms

Popular Applications

Constructing a taxonomy of neural network applications is not easy because the 
same application can be categorised as an optimisation, a pattern classification and a 
pattern recognition task, depending on the point of view. Although the boundary is not 
so clear-cut, most neural network applications are optimisation or pattern classification 
problems.

Optimisation tasks are one of the first set of complex problems neural networks 
addressed. Hopfield and Tank [74] showed that a neural network can find a good solution 
to the Travelling Salesman Problem within an acceptable time. TSF requires the shortest 
tour of several cities with the condition that each city is visited only once. TSF is a 
typical NF-complete problem; since the number of cities increases finding a solution 
takes an impractically long time, as the computational requirements increase 
exponentially. Using the Hopfield net, a representative weight space can be constructed 
with the connection weights between the neurons, and this space can be used to solve 
optimisation problems.

Pattern classification is a major application domain for neural networks, as most 
highly dimensional, complex real-world problems can be reduced to pattern classification 
problems. Traditionally, statistical classifiers are used to solve these problems [99]. 
These classifiers separate given patterns to a number of classes by calculating the 
similarity scores for each class, and selecting the closest class as the class identity of the 
pattern.

The main difficulty with traditional classifiers is that they are non-adaptive. Neural 
networks with a different internal computational mechanism, can be used as pattern 
classifiers. In addition to an enhanced performance in classification, they are adaptive, 
robust and fault tolerant. The adaptive behaviour is a direct consequence of the feedback
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mechanisms which most neural networks possess. In training, a neural network 
continuously monitors its own performance, and adapts its weights accordingly. In recall, 
the weights are used to establish the class identity of a novel pattern.

The Perceptron, a supervised neural network classifier, strongly resembles the 
traditional Gaussian classifier. In fact, the Perceptron architecture can be used as a 
traditional classifier with the added advantage of a potential parallel execution.

Neural networks can also be trained by using unsupervised techniques. 
Unsupervised neural network classifiers such as Kohonen’s Self-Organising Maps are 
also known as clustering algorithms. These models do not require labelled data; they 
classify input patterns into a pre-defined number of unlabelled classes. The SOM is 
similar to the traditional K-means algorithm [36,39], yet it is adaptive, and can be 
executed in a massively parallel fashion.

A number of real-world applications are important as part of the broad class of 
pattern recognition problems. These are; speech and image processing, handwritten 
character recognition, and sonar/radar signal processing applications. Financial 
forecasting is one of the areas that has boomed in the last couple of years. The high 
dimensional and fuzzy nature of this area make it a suitable application for neural 
networks.

Adaptive control is another area in which neural networks are used successfully. By 
classifying world data adaptively and taking an appropriate set of actions, multi­
dimensional control problems can be solved. Neural network based adaptive control 
systems find applications in industrial robotics, manufacturing, process control and 
autonomous robot navigation.

Popular Models

A number of neural network models have been put forward, with various 
topologies, learning and recall rules. Learning rules for neural networks are so important 
that, sometimes the networks are named after the learning rule they use. This is the case 
for "Backpropagation" which is a learning rule for multi-layered architectures. Most 
learning rules are derived from the well known Hebbian rule. Examples of these are the 
outer product rule, the Delta rule, the generalised Delta rule (Backpropagation model) 
[84,130]. A number of learning rules also based on the Hebbian rule, are called 
competitive learning rules. Typical examples are Grossberg’s instar and outstar\ 
similarly, Fukushima’s Neocognitron and Kohonen’s SOM use the competitive learning
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rules in training. The three most popular models the Hopfield nets, the Backpropagation 
model and the Self-Organising Maps are analysed in detail, in chapter 4. The 
Neocognitron, Counter-Propagation, Adaptive Resonance Theory [33], and the 
Boltzmann machine [65] are amongst other well known models. The Neocognitron and 
the Counter-Propagation are briefly described here.

The Cognitron and Neocognitron were put forward by Fukushima as close 
imitations of the human visual cortex [47-49]. Biological plausibility is the first 
objective in the design of these models. The structure of the Neocognitron is a multi­
layered architecture containing excitatory and inhibitory neurons and synapses with a 
competitive learning mechanism. The system is a powerful image recognition system, 
working under the conditions of translation, rotation and distortion of the objects, even 
able to recreate the original image from reverse propagation of the network. The 
Neocognitron is fault tolerant and self-recovering when faults occur on processors. One 
problem with the early models was the amount of computational power required.

The Counter-Propagation Network (CPN) [60,61] is a combination of two neural 
network models complementing each other with different properties. It is a three layered 
network; the first layer is the input layer where the external inputs are clamped, the 
second is a Kohonen layer which associates certain neurons with certain input patterns, 
and the third layer is a Grossberg layer following Grossberg’s outstar learning rule. The 
resulting network can be rapidly trained and used as an approximate vector mapping 
system. An average training session is 100 times shorter than that required for the 
Backpropagation network, but CPN is not as accurate as the Backpropagation. The most 
interesting application for CPN is data compression. This involves splitting the CPN into 
two, and using the Kohonen layer as a vector quantiser. Then the labels of the quantised 
vectors, which are much more compact than the original vectors are transmitted and new 
vectors are reconstructed on an identically trained CPN system. CPN is also an 
interesting example of using networks as components. Similar modular neural network 
architectures are put forward and simulated on parallel processors in the following 
sections of this thesis, as powerful problem solving domains.

Conclusion

Computational requirements for neural networks are application and model 
dependent. Neural network representation and execution environments must meet these 
requirements. Current models and applications display a wide variety, and continue to 
expand into new domains. Table 2.1 compares popular neural network models, with
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their popular applications, strengths and weaknesses.

Models Popular Applications Strengths Weaknesses Remarks

Perceptrons Pattern classification Simple, adaptive cannot classify 
con^)lex patterns

first neural 
networks

Hopfield Nets Optimisation, Planning
Content-Addressable
Memory

Large scale analog 
inq>lementation

No learning rule 
Limited storage

Covergence 
in recall

Self-Organising Maps Feature extraction Statistical Analysis 
tool

Noise
sensitive

Unsupervised
learning

Backpropagation 
learning on MU*

Wide applications 
Speech, image processing

Robust
Fault-tolerant

Computationally
demanding

Most popular 
model

Counter-
Propagation

Data Compression Quick and 
approximate

less accurate
than Backpropagatirm

Inverse pattern 
generation

Neocognitron Hand-written 
character recognition

Can handle 
conq)lex patterns

Computationally
demanding

modeled on 
visual cortex

Table 2.1. Neural Networks Applications and Properties

In chapter 4, three case studies are used to assess computational requirements for 
three neural network models. In the remainder of this chapter Neural Network 
Programming Environments and Execution Environments are reviewed.

2.3. Programming Environments

Neural Network Programming Environments are software tools for developing 
computer simulations of real-world applications and monitoring the execution of these 
applications. The effectiveness of the representation and efficiency of the execution 
greatly depend on the programming environment. Neural network representations are 
crucial for mapping purposes, as they are the very domain where partitioning takes place.

NNPEs address a wide variety of users ranging from novices to experts whose 
purpose are research, experimentation, education or a solution to an industrial or business 
oriented problem. NNPEs can be classified into three categories [144]:

•  application-oriented,
•  algorithm-oriented, and
•  general programming environments.

Application-oriented systems are designed to provide solutions in a certain domain 
of expertise. These systems are customised, user-friendly, menu-driven, and are often 
supported by dedicated hardware, offering little flexibility. Nestor provides one of these
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systems, NLS (Nestor Learning System), for applications covering mortgage 
underwriting, and risk assessment in automobile insurance [4].

Algorithm-oriented systems either provide one algorithm or they provide a number 
of parameterised algorithms as an algorithm library. Many programming systems provide 
the Backpropagation model and its variations, as it is the most widely used neural 
network model. Examples are the Brainmaker system, supplied by California Scientific 
Software and the Owl system which provides an algorithm library for computer 
professionals. It is based on a generic, C data structure encompassing 19 parameterised 
neural network models. Users can specify network parameters and call the library 
functions in their routines. The system also offers an optional graphics interface. Esprit 
n  Pygmalion project [14,15,18,146] also provides a C library of the most popular 
models. Applications can be developed by calling appropriate library routines with 
correct parameters.

General programming environments aim to address a wide variety of applications, 
algorithms and users. These are often research or educational systems aiming at 
generality and flexibility as opposed to high performance. Most generic programming 
environments contain the following functional modules;

•  User Interface - This module provides flexible, modular and user-fnendly access to 
neural network models. A number of parameterised models and a High-Level 
Language are provided to ease the programming process. Usually, menu-driven 
graphical systems support the user interface. The execution of applications can be 
monitored, interrupted, saved or loaded. Debugging facilities aid the monitoring in 
the run-time and post-mortem. Results of the execution are displayed both 
numerically and graphically.

•  Neural Network Representation - This constitutes a generic, machine- 
independent, intermediate-level, sophisticated network specification language which 
is capable of covering all possible models and configurations. A number of 
parameterised models can also be stored as an Intermediate-Level Language 
Library. Advanced users can program in ILL if they want to exploit the facilities of 
the low level representation for a high performance execution.

•  Mapper/Translator/Compiler - A sophisticated program or a set of programs that 
generate code for a variety of target hardware architectures. This can be done either 
by direct translation or compilation, from the intermediate-level neural network 
specification language to the target languages. If the target machines are parallel.
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the intermediate-level representation is first partitioned, then distributed over the 
parallel processors. A fast, efficient and optimised execution is the purpose of this 
module.

Popular Systems

An early example for generic programming environments came from SAIC: 
GINNI, Generic Interactive Neural Network Interpreter [2] system provided an 
interactive developmental system for experimentation with neural network modeling. 
This system contains all functional modules mentioned above: networks are defined as 
hierarchical data structures, a high level neural network description language is used to 
define new algorithms, and the networks can be executed on remote machines over the 
Local Area Network (LAN) using an integrated message passing system.

AXON, launched by HNC, is a machine-independent neural network specification 
language [53]. It combines common features of C and Pascal, and a set of neural 
network specific features. AXON encompasses a generic model of neural networks 
regardless of the topology or functionality of the artificial neurons. An object-oriented 
programming approach has been adopted in the network description. A generalised 
Processing Element concept has been adopted to allow future models to be coded in the 
language. The AXON Processing Element is the basic building block of all neural 
models. The PE contains the following attributes: Output State, Transfer Function, 
Connection Classes, Connection Weights, and Local Data Memory. Processing elements 
with different attributes can also be defined and used in the same network description.

PDF simulation package is offered to accompany the book ‘Explorations in Parallel 
Distributing Processing" [1]. It contains a set of programs written in C, and runs on both 
MSDOS and Unix operating systems. Seven algorithms are provided which included the 
Backpropagation, Adaptive Resonance Theory and Competitive Learning models. The 
system is portable, easy to use with the support of the examples in the book, but it lacks a 
graphics user interface.

The Rochester Simulator, developed by the Department of Computer Science at the 
University of Rochester [52], is also written in C and provides a data structure which 
defines the lowest level processing unit. The data structure is flexible, allowing the user 
to define various levels of networks and connections. As, only the Backpropagation 
model is provided with the package, users have to develop their applications in C using 
the provided template.
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The Genesis system was developed by the Division of Computational and Neural 
Systems of the California Institute of Technology [151]. It promotes biologically 
plausible neural network modelling. The package is a Unix/C based environment 
representing the networks as hierarchical objects. The graphic interface Xodus uses the 
X Windows environment.

Conclusion

Popular neural network programming environments presented above, are mainly for 
research, development and experimentation. Most systems are written in C and provide 
data structures for representing neural network concepts. Systems which provide a set of 
simple library functions with their source code are favoured as open systems where users 
can modify and tailor the system to their specific needs. In chapter 3, the Pygmalion 
programming environment is presented in detail as an early system which provided a 
general programming environment with an objective of a parallel execution. In chapter 
5, a number of representation techniques are assessed with simulation examples, and a 
matrix-based library is put forward as modular, clear means for neural network 
programming.

2.4. Execution Environments

Neural network simulations are computationally intensive, involving repetitive 
multiply and add operations. Real-world applications may require the processing of huge 
amounts of data in a short time. Depending on the application size and domain, large 
amounts of memory and high speed processors may be necessary.

The general trend in computing is to use parallel architectures to overcome the 
computational limitations of single processor systems. Indeed, recently, parallelism has 
been used in the implementation of single chip microprocessors [121]. Architectures such 
as Intel 80860 and recent RISC architectures exploit microparallelism to execute 
multiple processes simultaneously by pipelining sequential operations.

Flynn’s classification envisions four types of parallelism [145]. Two of these; 
Single Instruction Multiple Data stream (SIMD) and Multiple Instruction Multiple Data 
stream (MIMD) architectures are relevant for neural network execution. SIMD 
Machines are synchronous, compact, usually fine-grained machines offering high 
performance with simple processors. MIMD Machines are asynchronous, 
programmable, medium or coarse-grained machines with distributed or shared memory
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schemes. Distributed memory (multicomputer) architectures are scalable systems, but 
they suffer from interprocessor data dependency and consistency problems and parallel 
programming difficulties. Shared memory systems are easier to program but the number 
of processors must be kept to a minimum because of interprocessor competition for 
memory access and cache coherency problems [121]. The most advanced form of 
MIMD machines do not have a central controller, and are fully distributed, asynchronous 
systems [77].

Parallel implementation is the natural method for neural networks, which are 
inherently parallel. There have been some special-purpose implementations of neural 
models. These are usually SIMD architectures with simple analog processors connected 
in a matrix topology [101]. For general-purpose neural computing, computational arrays 
provide a good execution platform [125].

Parallel or sequential, execution environments for neural networks are called 
neurocomputers. Neurocomputers appear in great varieties. On one extreme, there are 
dedicated parallel SIMD machines, while on the other, there are simple RAM chips such 
as in the WISARD system [10,11]. Figure 2.1 shows the trade-off between performance 
and flexibility for a number of hardware platforms which are used as execution 
environments for neural network applications.

Performance
RAMs

 ̂ Special-purpose neurocomputers

Computational arrays

General-purpose neurocomputers 

r  V Systolic arrays

Conventional parallel computers 

'  V Sequential computers

Flexibility

Figure 2.1. The Spectrum of Execution Environments [144]

A broad classification is possible depending on the generality and programmability 
of the neurocomputers. Special-purpose neurocomputers provide high performance 
emulating a neural net model, usually with an application in mind. They are hard-wired;
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they lack flexibility and programmability. General-purpose neurocomputers can be 
programmed to emulate a wide range of neural net models. Some architectures can also 
be used for other computationally intensive tasks. Although general-purpose 
neurocomputers can offer a higher performance than conventional computers, they are 
usually a magnitude of order slower than special-purpose neurocomputers [143,144].

2.4.1. Special Purpose Neurocomputers

Special-purpose neurocomputers are physical implementations of neural networks 
for high performance. The implementations are usually algorithm and application- 
oriented. The Hopfield nets and Kohonen’s Self-Organising Maps are the two most 
popular models which were implemented as VLSI chips [90]. Most special-purpose 
neurocomputers are research systems, used in the investigation of hardware 
implementations for a number of neural network models and applications. The 
implementations of special-purpose architectures are analog, digital or optical.

Analog implementations imitate artificial neurons by using basic circuits such as 
transistors, operational amplifiers and resistors. The resistors are used as neural 
connection weights, and the amplifiers emulate the processing elements which carry out 
summations and apply the thresholds. Capacitors are also used to allow weight updating 
for on-chip learning. Special-purpose neurochips have been developed by Mitsubishi, 
AT&T Bell Laboratories, and California institute of Technology. These chips provide a 
very high performance, but they lack flexibility and programmability.

Optical implementations of special-purpose neurocomputers aim to overcome the 
difficulties of realising high level interconnectivity on VLSI architectures. These 
architectures use holograms to communicate incoming signals to a great number of 
processing elements. With a single hologram it could be possible to connect 10,000 light 
sources to 10,000 light sensors without interference even though the light beams cross 
each other. Optical technology could meet the interconnectivity requirements set by the 
biological systems. However, the technology is still young and optical neural computers 
are still in the early stages of development [59].

Digital systems offer the greatest flexibility, programmability and expandability. 
The majority of the neurocomputer implementations are digital. Some of these machines 
are radically different from each other, but most of them are arrays of simple parallel 
processors that operate concurrently. Node complexity, cost, communications facilities, 
granularity, parallelism and performance are important considerations in implementation.
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Two examples can be given for digital general-purpose systems:

WISARD has been developed by I. Alexander’s group at Imperial College, London. 
This system uses Random Access Memories (RAM) as neuron-like devices. The 
hardware implementation of the system is used in image recognition, it has shown some 
success in real-time face recognition.

PNNP, Probabilistic Neural Network Processor by Lockheed, is another digital 
special-purpose neurocomputer implementation. This system implements real-time 
learning for the Probabilistic Neural Network (PNN) model. The system is connected to 
the backplane of an IBM-PC compatible computer through a dual port memory.

Digital!Analog hybrid implementations and wafer scale integration techniques have 
recently gained momentum. In Japan a series of hybrid neurochips have been developed 
[66], and an example is Hitachi’s 576 neurons Wafer Scale Integration neurochip [153].

Institut National Polytechnique de Grenoble (INPG) is also developing a neurochip 
which can be potentially generated in wafer scale [118]. INPG’s design is a neuron- 
based architecture for executing a variety of neural network models. One goal of this 
project is to develop a framework for the automatic generation of application-specific 
VLSI chips, namely silicon compilation. The architecture is based on a processing 
element which is capable of performing all operations required, during the training or 
recall phase of a neural model. Processing elements are linked in a two-dimensional 
array, with each PE is connected to two external buses.

Another attempt to emulate the functionality of a neuron in hardware took place at 
UCL, in the UCL Generic Neuron project {147]. This project developed a framework 
to generate special-purpose chips for most neural network models The project aimed to 
achieve a high performance with some flexibility. A simple processing element (Figure 
2.2) has been designed which can be replicated cheaply, and the functionality of this 
processor can be defined by users. In fact, a generic neuron is the physical 
implementation of the Pygmalion nC data structure neuron the Pygmalion Project is 
presented in chapter 3. nC is used to specify the connectivity and functionality of the 
generic neurons. The architecture uses the bus interconnection strategy for data 
communications, providing the system with flexibility, expandability and scalability. 
Any desired topology can be accomplished using the bus communications, and the access 
to the bus by the PEs is organised by a central controller. To reduce the communications 
between the PEs, both PEs sharing a connection hold copy of weight, but this would 
increase the memory requirements on the chip.
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Figure 2.2. The UCL Generic Neuron [147]

Silicon Compilation is a logical extension to the evolution of special-purpose 
neuro-chip implementation techniques. Silicon Compilers are sophisticated programs, 
which process the neural network representation, and generate the VLSI definition of 
microchips using VLSI development packages. UCL’s Silicon Compiler Project is an 
example of this kind of work. This project aims to develop a framework to generate the 
UCL Generic Neuron based architectures as target products, using Silicon Compilation 
[117].

2.4.2. General Purpose Neurocomputers

General Purpose Neurocomputers are programmable machines for emulating a wide 
spectrum of neural networks [144]. The following hardware architectures are used as 
general-purpose neurocomputers:

•  co-processor based architectures,
•  parallel processor arrays, and
•  massively parallel architectures.

Co-processor Based Architectures

Conventional high performance VLSI processors are the first hardware architectures 
used as general-purpose neurocomputers. These processors are usually floating point, 
single processor accelerator co-processor boards with a local memory. These boards 
plug into the backplane of an IBM PC or a SUN Workstation or a Digital VAX. These 
co-processors speed up the execution of computationally intensive floating point 
multiplications in neural simulations as well as in general computing applications. They 
are similar to maths co-processor boards available for PCs. The performance of these 
products is measured by their capacity to execute the maximum size of network, and 
their speed of processing a network. Speed is expressed as cormection updates per
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second (CPS). Two simple examples can be given; firstly, Intel’s 80x87 series maths 
processor boards, developed for IBM PC compatible machines with a 80x86 central 
processors and secondly. Motorola MC68881 co-processor board developed for 
MC68020 based CPUs [142]. A number of commercial neurocomputers have been put 
forward using the co-processor boards accompanied by a neural network programming 
environment They are usually general-purpose environments with a number of neural net 
models and general-purpose neurocomputer hardware. Some of the examples are 
presented below.

The ANZA neurocomputer is developed and marketed by HNC [62,63]. It is 
designed to support any neural network model. The system comprises a co-processor 
boards for PC-AT, User Interface Routine Library and Basic Netware Package to support 
most neural network models. The ANZA boards exploit cunent hardware domains as 
execution environments. ANZA and ANZA-plus co-processor boards are based on a 
Motorola MC68020 plus a MC68881 floating point co-processor with 4Mbytes of 
dynamic RAM to store networks. ANZA is capable of implementing 30,000 PEs with 
480,000 interconnections. The more recent ANZA-plus supports IM PEs, with 1.5M 
interconnections and is capable of 1.5M connection updates per second during training 
and 6M updates during recall. The Basic Netware Package supports parameterised 
algorithms; the Backpropagation, the Hopfield and the Counter-Propagation.

The TRW Mark Neurocomputer family includes the Mark II software simulator, 
the Mark m  parallel processor system and the Mark IV pipelined processor based system 
[143]. All systems share the Artificial Neural System Environment (ANSE) 
programming environment. Mark IQ comprises 15 parallel physical processors, each 
built from a Motorola MC68020 microprocessor and MC68881 floating point co­
processor, all connected to a VME bus. Networks are distributed across the local 
memories of the 15 physical processors minimising the communications requirements on 
the common bus. Mark IQ supports 65,000 virtual processing elements with over 1 M 
trainable connections and processing 450,000 interconnections per second. Mark IV, on 
the other hand, supports up to 236,000 virtual PEs and 5.5 M interconnections, and is 
capable of processing 5 M interconnections per second.

The SAIC SIGMA-1 neurocomputer uses DELTA [5,116,152] floating point 
processor board in it execution environment DELTA FPP is a high speed floating point 
engine optimised to calculate an activation value for each PE. This operation involves a 
multiplication of two 32 bit numbers followed by an addition to another 32 bit number. 
DELTA is able to execute these multiplication/addition instructions at clock speeds of 11
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MHz, approximating to 22 million floating point operations per seconds peak rate. The 
processor is based on a pipelined Harvard floating point architecture with one program 
memory and two data memories. The 12 Mbyte memory supports up to 3.1 M PEs, with 
a rate of 11 M CPS. SIGMA-1 comes together with an object-oriented programming 
language ANSpec and a neural net library ANSim. ANSim library is menu-driven, and 
contains 13 neural network models, providing an interface to dBase m  and Lotus 1-2-3 
software packages. The models covered by the systems include variations of 
Backpropagation, Adaptive Resonance Theory, Kohonen Feature Maps and the 
Boltzmann machine.

Most large neural network applications are executed on conventional parallel 
architectures [59,144] such as Transputers [108]. Transputer based co-processor boards 
are popular as they offer a good performance for a wide range of applications, and 
Transputer-based systems are cheap and efficient. Similar to Transputers, other general- 
purpose, multi-processing RISC architectures Sparc and Mips processors also provide 
programmability and flexibility. Transputers are much faster than the co-processor 
boards for the PCs. A 20MHz T800 chip provides 10 MIPS and 1.5 MFLOPS and is 3 
times faster than a 20MHz 80386 with a maths co-processor [98]. Transputers are 
medium-grained parallel architectures providing concurrent parallel processing with a 
parallel language called OCCAM [71]. T800 has 4 KBytes internal RAM and supports 
32 bit external memory interface. A transputer can be attached to a maximum of four 
others at a time. Communications are synchronised using a simple protocol with start 
stop bits and message acknowledgement. The maximum data transfer between the T800s 
is 1.7 MBytes/sec. There are two links, and when both are used 2.4 MBytes/sec is 
obtained. The new Transputer INMOS T9000 has a 16 KByte cache and a 64-bit address 
bus [150].

Parallel Processor Arrays

General-purpose neurocomputers based on processor arrays are a result of the 
evolution of co-processor boards on a larger scale. Parallel processor arrays are [135] 
composed of a large number of primitive processing units, connected in a regular and 
restricted topology. An early general-purpose neurocomputer architecture based on 
parallel processor arrays (Figure 2.3) was proposed by Hecht-Nielsen [59]. The structure 
brings together N identical processors connected through an interconnection network. 
Each processor executes a section of the virtual network. To program the neurocomputer, 
the virtual PEs are partitioned across the local memories of the physical processors.
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Execution of a neural network involves a continuous update of the states of the virtual 
PEs. Updating a virtual PE implies broadcasting the update through the network. 
Processors that need access to that information accept and store the update in their local 
system state memory. Computation, therefore is carried out through a sequence of 
iteration cycles. The subsequent iteration occurs in lock step, when all the other 
processors have completed the previous cycle. This approach is a way of time- 
multiplexing [21] several PEs on each available physical processor. Performance can be 
increased by increasing the number of processors, or adding co-processor accelerator 
boards for fast execution, or high-speed memories for fast memory access.
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Figure 23, HNC General Purpose Neural Computer

Some processor arrays are built from replicable boards based on industry standard 
microprocessor chips such as DSPs and Transputers. Others develop custom designed 
neuro-microprocessors. Research groups in the USA, Japan and Europe have developed 
processor array based neurocomputers [143]. Here are some examples:

The NETSEM system is developed by Garth [50] of Texas Instruments (UK) with 
Cambridge University. The system consists of a collection of neural network emulation 
cards arranged in a 3-dimensional array structure. A PC acts as a host system controller.
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Each NBTSIM card is an autonomous single-board processing unit based on an industry- 
standard microprocessor and designed to solve NN problems. A large number of 
NBTSIM cards can be connected via a message passing network. Bach NBTSIM card 
contains the following modules; an Intel 80188 local microprocessor, an associated 
program memory, a Solution engine, and a microprocessor for communications. The 
Solution engine is the heart of the system; operating as a back-end vector co-processor 
for the local microprocessor, and performing mathematical functions on the contents of 
the synapse/input memory. It computes the sum of products between the input vector and 
the synapse vector. The result is returned to the microprocessor, which in turn computes 
the threshold function to produce the output of the neuron, and determines the destination 
for subsequent transmission. The communications processor interconnects NBTSIM 
cards to their nearest neighbours. The host, a SUN, a VAX or a PC acts as a system 
controller for the neurocomputer by initialising and mapping applications to the system. 
The system is programmable, and supports a wide range of NN models. The synapse 
memory size (1 to 2 MBytes) determines the number of input neurons or networks per 
NBTSIM card. The execution time depends on the network configuration of the chosen 
model. A typical implementation using 125 network cards has shown a rate of 450 
million CPS on the recall phase.

The Network Emulator Processor (NBP) by IBM is part of a complete network 
programming environment called Computation Network Environment (CONE) [35,55] 
developed by IBM at Palo Alto. NBP is a cascadable unit designed as a co-processor for 
IBM PC. Up to 256 NBPs can be cascaded in a unidirectional interprocessor 
communications network, to support a total of 1 M virtual PBs and 4 M interconnections. 
A global interface to the host PC is 100 MBytes/sec inter-NBP NBPBUS service. NBP 
can simulate about 4 K virtual PBs and 16 K interconnections, with 30-50 total network 
updates per second. The length of the network update cycle can be reduced by 
partitioning the network across a number of NBPs [35]

Meiko In-Sun Computing Surface is a multi-processor scalable environment 
based on T800 transputer [7]. 96 Transputers can be embedded in a single workstation 
with 512 MBytes system memory and a performance of 20-400 VAX-Mips stations. An 
Electronic Message Link Switch enables configuration of the topology at run-time (these 
could be trees, grids, rings, toroids). Message paths through the switch operate on a 20 
MBits/sec data transfer speed. The computing surface includes a SUN host, and up to 
four additional processors with dual ported shared memory in the SUN address space. 
There is also another proprietary VLSI chip to supervise the execution and diagnostics.
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Intel Scientific Computers offers iPSC, a multiprocessor system which can operate 
concurrently with up to 128 processors as a hypercube. Each node is a board level 
microcomputer with 80286/80287 chip sets. Local memory is 512 K expandable to 4.5 
MB. Each node contains 8 bidirectional communications channels managed by dedicated 
communications co-processors. The first 7 of these channels are direct links, the 8th is 
the global communications link to the Ethernet for program load I/O and diagnosis. The 
system provides a 10 Mbit/second bandwidth for intemode communications. iPSC-VX is 
a vector concurrent system which couples vector processors to the nodes. The system can 
yield up to 1280 MFLOPS on 32-bit data.

The ANNE (Another Neural Network Emulator) [20] system has the following 
modules: a user interface with monitoring facilities, a high level language. Network 
Description Language (NDL) which is based on Scheme (a lexical scoped version of 
Lisp) which is used to describe NN structures; a low level generic neural network 
specification language called Beaverton Intermediate Form (BIF). BIF is generated by a 
compiler from NDL definition, then the Mapper partitions the BIF definition onto Intel’s 
iPSC processors. During the runtime, a message passing scheme supports the 
communications between the different iPSCs nodes. A tuning mechanism is also 
included to synchronise execution.

The Giga CoNection (GNC) [67] system contains a two dimensional array of 
general purpose 64-bit RISC Intel 80860 processors. Each processor has 4 MBytes of 
local memory and 2 FIFOs (first in first out 64-bit memory) for mesh cormection. The 
80860 contains a floating point pipeline providing high performance for multiply/add 
operations. Hiraiwa et al. report 1 Giga CPS on a 128 processor system in the simulation 
of the Backpropagation model. GCN-128 system provides two pipelined 
communications paths. The Sony group is incorporating the system as a super chip.

Ariel [46] is a multiprocessor architecture based on coarse-grained processing 
modules. The modules make use of fast digital signal processors and large 
semiconductor memories to provide the necessary throughput and storage capacity. Each 
Ariel module consists of a 32-bit fixed/floating point DSP (TMS320C320), a 32-bit 
general-purpose processor (GPP), 128 MBytes memory and several high speed 
conununications ports, and a dedicated disk memory unit. The Ariel architecture uses 
bus communications to achieve generality over a wide range of neural network models.

Sandy/8 is another digital neurocomputer architecture [85]. Sandy/8, a research 
system has been developed at Fujitsu Laboratories in Japan. It consists of 256
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TMS320C320 floating point Digital Signal Processors, each with 2K internal and 64K 
high speed external RAMs. A ring communications topology with 67 MBytes/sec band 
width serves parallel processors. The 256 processor system can reach 587 MCPS during 
a Backpropagation training, involving networks with more than 256 neurons. Sandy 
system is also suitable for conventional image processing and vector processing as well 
as neural network applications.

W arp is a MIMD one-dimensional systolic array computer designed at Carnegie 
Mellon University [103,120]. It consists of 10 identical cells in a linear array with a 
peak performance of 100 MFLOPS. Each cell contains one ALU and a multiplier, with a 
4KByte of 152-bit word micro-store and a 4KByte of 32-bit RAM, and can deliver 5 
MFLOPS. Cells can be programmed separately for different operations, and data can be 
pipelined through the cells using the two data channels per cell. The Warp machine is 
designed to interface with VAX 11/780 with a 1 MByte of memory and 24 Mbyte/sec 
bandwidth. High level routines are carried out on the host computer.

CNAPS (Connected Network of Adaptive Processors) [8] is a general purpose 
neurocomputer chip with 64 processors, each containing 4 KBytes of local memory. It is 
a SIMD machine based on a linear array of digital signal processor-like nodes (PNs). 
CNAPS Server has 256 PN processors and provides an Ethernet LAN interface to 
connect to a SUN workstation [54]. The PN processors are designed for traditional 
neural network applications. Each PN has an associated 4KBytes internal memory, 
making altogether 1 MByte per system. Also an external data storage facility provides 8, 
16, 32, 64 MBytes global memory for the array of PNs. The processor array is connected 
by three buses; OUT bus, PNCMD (PN CoMmanD bus) and an IN bus. A single 
controller sequences the linear array of PNs. The sequencer places data onto the IN bus 
and forwards sequencing commands to the PN array. The PNs execute the same 
instruction at each clock cycle. More than one PE can be mapped onto a single PN. Also 
time multiplexing can be used to assign multiple PEs to a PN or divide a complex PE 
onto a number of PNs. The CodeNet [8], provided by Adaptive Systems, is a high 
performance commercial programming environment to support its CNAPS 
neurocomputer. The complete system consists of a server, a programming environment 
(CodeNet) and the CNAPS array processor. CodeNet consists of CNAPS Programming 
Language (CPL); Applications Programming Interface (API) and a library enabling users 
to include CPL programs in C code. CPL is a modular programming language also 
providing low level access to CNAPS hardware. The environment also contains a set of 
tools to debug, modify, and execute CPL programs. Novel applications can be developed
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by using the library calls. An 8 chip configuration can update 2.3 billion CPS in learning 
and 9.6 billion CPS in recall.

Massively Parallel Arrays

The Connection Machine is a fine-grained massively parallel machine. Its recent 
version CM-2 is a data parallel computing system made of 65535 processors. It is an 
SIMD architecture, which requires a sequencer to break down the high level 
representation into low level processing and memory operations [3,64,155]. 64K 
processors can take orthogonal topologies and grids with arbitrary dimensions are 
supported. It can be configured as a 2-Dimensional array of virtual processors. Each 
processor is a bit-serial processor with 4K memory (32 MByte for the computer). 
Interprocessor communications are handled by a message passing system. The CM has 
two communications: each processor is linked to the nearest neighbour and 16 others in a 
n-cube geometry whose binary addresses are 1 bit different. The system supports parallel 
versions of C and LISP. It is an expensive machine, and complex to program with many 
I/O controllers, sequencers, and interfaces. Neural network simulations on CM-2 can 
reach up to 40 MCPS in Backpropagation training, and 180 MCPS in recall [155].

AAP-2 is another massively parallel SIMD processor array which was used for 
neural network execution [149]. It consists of 65,536 one-bit processors with 8 Kbits of 
local memory. The processors are configured as a 2D (256x256) array with high-speed 
data transfer mechanisms. The language for AAP-2 is a parallel programming language; 
AAPL which is an array-oriented language consisting scalar and array operations. The 
performance of the system can reach up to 18 MCPS in Backpropagation training.

Conclusion

Special-purpose neurocomputers are often neuron-based architectures aiming at a 
massively parallel execution of certain models and applications. General-purpose 
neurocomputers, on the other hand, are general, flexible, cost-effective and scalable. 
Early general-purpose neurocomputers are co-processor based architectures aiming to 
speed-up demanding floating point operations involved in neural network simulations. 
Later, processor array based architectures focused on the efficient execution 
vector/matrix operations as vector-based machines. Massively parallel general-purpose 
architectures can potentially be used for mapping neurons or vector/matrix operations. 
On these architectures the complexity is pushed onto software for the efficient 
exploitation of hardware.
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2.5. Summary

This chapter provided a review of neural computing with its rapidly increasing 
number of models, applications, programming and execution environments.

Programming environments are a medium for mapping or transforming real-world 
problems onto computer programs and also for mapping computer representations onto 
hardware. It is felt that, within the programming environments, algorithm libraries are 
particularly useful as they provide the most flexible, user-friendly means for neural 
network programming. In chapter 5, an analysis of neural network representations is 
used to argue for a matrix-based library which is capable of capturing common neural 
network operations, also facilitating the mapping and execution processes on parallel 
hardware.

Neural network execution environments were studied in two categories; special- 
purpose and general-purpose neurocomputers. The main difference is in the performance 
and flexibility of these systems. Special-purpose neurocomputers are favoured for 
processor simplicity, and thus cheaper production rates and high performance. But in 
some cases, the architecture of special-purpose neurocomputers reaches a level of 
complexity comparable to the conventional systems. General-purpose neurocomputers 
aim to serve as fast execution platforms for a wide range of neural network models. Most 
general-purpose architectures can also be used as accelerators for other computationally 
demanding problems.

In terms of mapping strategies, two approaches have been noticed: (i) structural 
mapping - particularly, special-purpose neurocomputers emulate neurons on parallel 
physical processors, and (ii) computational mapping - conventional computers and 
general-purpose neurocomputers optimise the computations which are the core of the 
neural network simulations on co-processor and accelerator boards. A generic 
representation and mapping strategy is required to exploit current general-purpose 
parallel architectures in a cost-effective framework.
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Chapter 3

Pygmalion and Galatea Projects

This chapter presents and assesses two major European neural computing 
projects; Pygmalion and its successor Galatea. Although the two projects 
share many common features, they differ in their intermediate-level 
representations and target hardware architectures. The Galatea General 
Purpose Neural Computer is presented in detail, as it is the test and 
implementation domain for mapping strategies developed in this thesis.

3.1. Introduction

Pygmalion and Galatea are two major European neurocomputing projects. The 
author of this thesis has been involved in both projects, and has contributed to the 
representation techniques developed in both projects. This thesis aims to establish a 
generic representation technique for neural networks. An assessment is made on the two 
representation techniques adopted by the Pygmalion and Galatea in chapter 5. 
Furthermore, the Galatea GPNC is used as the implementation domain for the mapping 
strategies developed as part of this thesis work. Chapter 7 presents the mapping efforts 
on the Galatea GPNC simulator. For these reasons, it was felt that these two projects 
should be presented separately from the rest of the Neural Computing survey.

3.2. Pygmalion Programming Environment

The Esprit II Pygmalion project [14,15,18,146] aimed to promote the application 
of neural networks by European industry, and to develop standard computational tools 
for the programming and simulation of neural networks. Pygmalion programming 
environment is based on a generic hierarchical data structure, covering the most popular 
neural network models. The Pygmalion data structure, system contains a tree of 
networks, layers, clusters, neurons and finally synapses. The Pygmalion environment 
comprises the following modules: (Figure 3.1)

•  The Graphics Monitor allows users to execute and monitor neural network 
simulations. It uses the X Windows graphical interface protocol on SUN 
workstations. A menu-driven system permits the user to choose an application, 
initialise the execution, open and close graphical windows and monitor the
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Figure 3.1. The Pygmalion General Purpose Programming Environment

execution. Trained or partially trained networks can be saved or loaded. Two types 
of windows are available; Top Windows, providing facilities for controlling the 
simulation, and Level Windows allowing the display of the network status for each 
level in the system data structure.

The High-Level Language N  provides a user-friendly definition of neural network 
algorithm and applications. AT is an Object Oriented language, based on C++.

The Algorithm Library module contains a collection of the most widely used 
neural models written in the high-level language N. A number of rules guide users 
who want to develop new applications. Users can interrupt and store applications 
and continue to execute these later.

The Intermediate-Level Language nC is a machine-independent low-level neural 
network specification language. nC is a subset of C, consisting of a massive 
hierarchical data structure which allows the representation of all possible objects in
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most neural models. The nC data structure tree contains rules, parameters and 
substructures repeating the same pattern until the synapse level. The 
Backpropagation, the Self-Organising Map, the Hopfield and Competitive Learning 
models are provided in this language as parameterised routines. A translator 
automatically generates nC representation from the high-level language N. All run­
time user requests and debugging operations are carried out on this intermediate- 
level representation.

•  The CompUer/Translator allows the porting of the neural network representations 
for execution onto different machines. Pygmalion software is developed in C on 
Unix SUN3 and SUN4 workstations. To improve execution speed a series of 
compilers has been planned to enable the porting of the final nC representation to 
different target architectures, and their execution on these machines. A compiler 
has been developed which translates nC to parallel C, and this representation is 
executed on Transputer based machines.

The Pygmalion programming system is a fully integrated software environment. 
The code generation cycle involves the High Level Language (HLL) definition of neural 
network applications, the translation to Intermediate Level Language (ILL), and the 
porting onto a number of different hardware platforms. The graphical interface provides 
a fast user-friendly manipulation on SUN workstations.

Neural Network Representation and Parallelism in Pygmalion

The Pygmalion programming environment adopted a two-level representation 
strategy. An object-oriented, high-level, neural network definition language N  is used as 
user interface [104], and a machine-independent, intermediate-level language nC is used 
for low level representation [18,147]. nC is a subset of C, based on a hierarchical data 
structure called system (Appendix A.I.). The nC system data structure is a chain of 
pointers, and pointers to pointers, finalised by data or functions at the lowest level of the 
data structure; a neuron or a synapse. A number of algorithms are provided in nC in a 
parameterised format These can be used executed using menu-driven facilities of the 
Graphics Monitor.

Explicit parallelism is accommodated in nC with the control statement PAR. Any 
rule or loop statement preceded by the PAR statement can be potentially executed in 
parallel. Attempts have been made to map nC onto Transputers [19] and two projects 
focused on the automatic generation of the UCL Generic Neuron on silicon VLSI chips
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from nC definitions [117,147]. The nC representation is further assessed in chapter 5, in 
the context of different representation techniques.

3.3. Galatea Neurocomputing Project

The Esprit II Galatea project is developing an integrated software and hardware 
system for the development and execution of neural network applications. The Galatea 
Project comprises the following modules;

1 - A General Purpose Neural Computer (GPNC) hardware, with efficient support for 
a wide range of neural networks,

2 - A Neural Network Programming System (NNPS), a sophisticated neural 
programming environment, allowing the efficient use of the GPNC, domain-specific 
processors, conventional parallel computers and workstations.

3 - A Silicon Compiler for rapid and low cost Application Specific Integrated Circuits 
(ASIC)

A number of applications exploit this high performance and general neural 
computing platform. A neural network based industrial vision workpackage investigates 
the potential use of neural technologies in industrial applications to improve Surface 
Mounted Device assembly technology. Similarly, the industrial vision workpackage has 
been applied to video-grading of damaged oranges. Both applications form a testbed for 
the Galatea GPNC. Optical Character Recognition (OCR) is seen as an ideal application 
for the Neural ASICs, which will be automatically generated by the Galatea Silicon 
Compiler. The aim of this package is to scan a text bitmap and convert it to ASCII form 
involving implementation of neural models suitable for character recognition and 
mapping onto silicon. A commercial prototype PC board is to be produced which will 
provide high performance and speed in optical character recognition tasks.

3.3.1. Galatea General Purpose Neural Computer

Galatea GPNC is a heterogeneous distributed architecture which brings together 
generic modules, called Virtual Machines (VM) (Figure 3.2). The building block of the 
Galatea GPNC, a VM, contains a Communications Unit and an Execution Unit. The 
Communications Unit is responsible for coordination of communications with the host 
and other VMs. An intermediate-level matrix-based language called VML [140] is the 
common language between VMs and the host. All VMs communicate, interpret and
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execute VML concepts. An interpreter for VML has been developed at UCL to allow the 
simulation of the GPNC.

Message Passing Comms Environment

COMMS UNIT (VML)
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CPU RAM
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EXECUTION UNIT (LLVML)

Array of Processors

VIRTUAL MACHINE

Figure 3.2. The Virtual Machine

The Communications Unit links VM to a bus which is connected to a SUN 
workstation host. The CU contains a Central Processor and local memory, and is able to 
store and interpret VML code, carry out scalar arithmetic operations and fire low-level 
instructions to the Execution Unit. These low-level instructions are based on vector and 
matrix arithmetic, and a low-level machine specific representation called Low-Level 
VML {LLVML).

The Execution Unit of VMs is composed of fast matrix multiplier general-purpose 
neurocomputer boards. Two boards are being developed in parallel in Siemens (Munich) 
and Philips (Paris). Although both boards follow the same general-purpose philosophy, 
they differ in local memory management, execution speed and data representation. For 
efficient execution on these boards, LLVML has to meet the requirements of correct data 
placement and typing. Hardware-specific features, such as the ability to multiply four 
vectors simultaneously - as is the case for the Siemens board - must also be exploited at 
this level.

A number of VMs could be plugged to a SUN workstation enhancing the power of 
the GPNC. The common language between these VMs is VML, and the communications
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medium which carries VML instructions is a message passing scheme. Code generation 
for this multi-VM coarse-grained parallel architecture is the task for the Galatea Mapper. 
The run-time operations are monitored by another process, the Scheduler which takes 
over after the initial mapping is completed.
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Figure 33. The Siemens Architecture

The Siemens Architecture

A series of architectures is being developed by U. Ramacher and his group at 
Siemens to emulate neural network models on hardware [122-124]. The design of their 
architecture focuses around cascadable modules of matrix multipliers. Each multiplier 
represents a synapse, where the multiplication of the weight value by the neuron’s state 
takes place. Each column corresponds to one neuron unit. Figure 3.3 shows the 
conceptual structure of a 4-neuron module with 16 synapses. This module is composed 
of 4 columns, each comprising 4 multipliers. Every multiplier receives in parallel, a 
weight and an input value. At the bottom of each colunm there is an adder that sums the 
4 weighted inputs calculated by the multipliers, and an accumulator, which stores the
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partial weighted sum.

The Siemens architecture offers good performance by using the matrix of 
multipliers and fast memories. The parallelism is achieved as a result of the 
simultaneous processing of multiple patterns. The system architecture is flexible and 
general enough to implement a wide range of models. But the full performance can only 
be achieved in cases where the networks are fully connected and multiple pattern 
processing is allowed.

The Philips Architecture

The Philips architecture which is developed in Phihps Labs in Paris, is a neuro-chip 
efficient in matrix multiplication and addition operations. It is a fully digital CMOS 
VLSI chip that allows various kinds of network models to be executed 
[40,107,141,141]. Figure 3.4 shows the conceptual model of this architecture. The 
model contains a synapse memory implemented in RAM. This matrix memory allows the 
storage of NxN weight values coded in binary 8 or 16 bits. The neural state register 
contains N  state values which are obtained from the multiplication of the N  inputs by the 
synapse matrix. Both multiplication and addition processes are executed in parallel, but 
each neuron is treated serially in the state update. The threshold function is evaluated 
off-chip, either by a dedicated hardware, or by a standard processor. After this 
evaluation, the states are stored back in the Neural State Register.
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Figure 3.4. The Philips Architecture
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The first version of this architecture was implemented using 1.6 micron CMOS 
technology, containing an 8-bit 64x64 synaptic memory. This version did not include the 
learning routine. The Philips architecture overcomes the necessity to have fast memories 
by integrating the synaptic memory on-chip. This localised RAM approach is favoured as 
it reduces the number of parallel feeds to the weight multipliers.

3.3.2. Galatea Programming System

The Galatea Neural Network Programming System is based on the same principles 
as those outlined in the Pygmalion system. However, it is more sophisticated, and as a 
design philosophy, a parallel distributed processing approach has been adopted. It 
encompasses the following modules:

•  The User Interface is a sophisticated tool consisting of a set of independent 
programs. It has been built using the Motif graphics application builder. Motif uses 
the X Windows graphics protocol with a set of customised library functions. The 
user interface has three modules; a Graphic Monitor, an Execution Monitor, and a 
Debugging Monitor. The Graphic Monitor is responsible for opening various 
display windows for the input and output patterns, system error graphs, bar charts 
etc. The Execution Monitor is used to initialise, interrupt, save or load the 
execution. The Debugging Monitor allows line by line tracing of the intermediate 
level code during execution. The three programs are independent, and they 
communicate with the system through the central Scheduler.

•  The High-Level Language ^  is an Object Oriented language. It is a further 
development on N, from the Pygmalion programming environment. Again, it is 
supported by a High-Level Language Library containing the code for the most 
popular neural models. Users can use the HLL library, or write their applications in 
N  which is similar to C++, or use the Systems Application Builder (SAB), which 
allows the development of applications using graphic tools.

The Intermediate-Level Language VML is a vector-matrix based language. 
Vectors are considered as one-dimensional matrices. The instruction set for VML 
contains matrix and scalar arithmetic operations, data transfer and control 
commands, and file I/O statements.

The Mapper is responsible for the efficient partitioning and distribution of the VML 
neural network representation. It schedules the operation, and downloads the code 
to VMs generating appropriate data exchange instructions.
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The Scheduler is a run-time process handling user requests and communications 
between the VMs and the host. It runs like a Unix deamon, passively waiting for 
requests from users or the modules of the system.
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Figure 3.5. Galatea Programming System

The code generation process (Figure 3.5) for the Galatea NNFS is a complex 
process. Users defining applications in the high-level language V, prompt the N  to VML 
compiler to generate vectorised VML code. The compilation process also generates a 
Symbol Table that contains a correspondence between N  and VML concepts. Then, the 
Mapper processes the VML representation, and partitions it to exploit the parallel 
execution environment. The Mapper generates parallel VML code with appropriate data 
transfer instructions. This code is downloaded to the VMs, the GPNC is prepared for 
execution and awaits the start signal from the user. Users can initialise execution using 
the Execution Monitor, and the Scheduler issues the start signal to the VMs so that the 
parallel execution starts.
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Neural Network Representation and Parallelism in Galatea

The Galatea project has adopted a two-stage representation scheme, involving an 
object-oriented, high-level language and a matrix-based, intermediate-level language. 
The high-level language N  meets the user requirements of design simplicity, flexibility 
and modularity. The intermediate-level language VML aims to exploit vector-based 
general-purpose hardware boards efficiently.

VML consists of a set of scalar and matrix operations with a C-like syntax. It is an 
interpreted language containing; control statements, I/O operations and arithmetic 
instructions. Tlie VML interpreter which has been developed at UCL, is used to execute 
VML programs on SUN workstations. The interpreter creates an executable image of the 
code, which can be either executed or used to generate Low-Level VML instructions. 
LLVML will be executed on high-performance matrix operator VMs, currently being 
manufactured at Siemens and Philips.

Two levels of parallelism are possible on the Galatea GPNC. On the higher level, 
neural network applications can be distributed across a number of VMs. Further 
parallelism can be exploited within each VM by mapping matrix based operations onto 
processor array based Execution Units. This thesis work involves the high level 
partitioning and mapping of matrix based neural network representations onto a number 
of VMs.

3.4. Summary

This chapter provided a review of the Pygmalion programming environment and the 
Galatea Neurocomputing project with a special emphasis on the Galatea GPNC and its 
programming system.

The Pygmalion programming environment has all the features common to general 
programming environments; an object-oriented, high-level language, an intermediate- 
level representation, an algorithm library and a set of compilers for a number of target 
hardwares. Pygmalion principally targeted neuron-based hardware architectures suitable 
for silicon compilation and similar to the UCL Generic Neuron presented in chapter 2. 
Pygmalion partly achieved its aims of increasing interest in neural computing in Europe, 
providing the end-user with a set of algorithms and an experimental tool. However, it 
has not become a standard for neural network software environments nor has it provided 
a high performance execution.
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The Galatea GPNC marks a change in direction from a neuron-based to a vector- 
based philosophy. It comprises high performance Virtual Machines that exploit vector 
operator Execution Units. The vector-based trend is also reflected in the intermediate- 
level language, VML. Although Pygmalion and Galatea share the same high-level 
language V, their intermediate-level languages are remarkably different. This is further 
investigated in chapter 5, in the analysis of neural network representations. The 
development of the GPNC is still in progress, and the Galatea GPNC is the test domain 
for the mapping strategies developed in this thesis. The mapping efforts for the Galatea 
GPNC are presented in chapter 7.
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Chapter 4

Analysis of Neural Networks

In this chapter, three neural network models, the Hopfield, the Self- 
Organising Map and the Backpropagation are analysed in three case 
studies with appropriate real-world applications. The analysis focuses on 
the computational requirements and possible structural mappings for 
these models. A comparison o f the three models is presented, and the 
potential benefits o f modular, multiple-neural-network architectures are 
discussed.

4.1. Introduction

Neural networks models appear in a variety of topologies with a number of training 
and recall procedures. Chapter 2 presented a survey, which covered a number of models 
in terms of their main characteristics and popular applications. In this chapter, using 
three case studies, three neural network models are analysed. In these case studies, the 
Hopfield nets, the Self-Organising Map and the Backpropagation model are chosen as 
they together contain properties common to most neural network models. Each case 
study presents the model, the application and the results, and a computational analysis is 
followed by structural partitioning and mapping examples. Finally a comparison of the 
three models is presented, and the strengths of the multiple-network models are 
discussed.

4.2. The Hopfield Networks

The Hopfield networks are prime examples of recurrent nets. They are called 
recurrent because outputs of the neurons typically affect the inputs of the same neurons. 
Because of this positive feedback, the main problem with recurrent nets is to achieve 
stability, as the outputs of the neurons may never converge to stable states, but change 
their states continuously in a chaotic fashion. In 1982, J. Hopfield proposed a network of 
binary processing elements (on-off devices) [72] and proved that it converges when a 
number of conditions are satisfied. Since then, a huge amount of research has been 
carried out on applications, hardware implementations, the pattern storage capacity of the 
net and the possible learning algorithms.
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4.2.1. The Model

A Hopfield net consists of a number of fully-connected processing elements (Figure 
4.1), with all neurons connected to the others with symmetrical weight values. To 
achieve convergence, the connection weights matrix (W) must obey the following rules: 
Wii=0 and Wij = Wji. Binary Hopfield neurons are simple processing elements 
performing the following tasks: each neuron independently sums its inputs, thresholds 
the sum and outputs one of the two states, either 1 or -1. Initially, the states of some 
neurons are externally clamped values, later the neurons take values using the outputs 
generated by the other neurons. At the beginning, neurons change their states frequently, 
later the rate of change decreases, and finally the network stays totally stable. The states 
of the neurons at this stage represent the response of the network to the initially clamped 
stimuli. The overall state of the network is described as an energy function which 
continuously decreases until the network reaches a stable low energy state.

INPUTS OUTPUTS

Figure 4.1. The Hopfield Net

Hopfield claimed that the net could be used as a Content Addressable Memory 
(CAM), storing approximately up to 0.15N number of separate memories with N  number 
of neurons. These memories must be distinct enough not to create spurious states in 
recall or merge two or more patterns as a result. An approximate condition for accurate 
recall is that each pattern must be 0.5N Hamming distance units apart from the other 
patterns in the dataset - Hanuning distance being the count of mismatches between the 
elements of two binary vectors. If accurate results are required in recall, an optimum set 
of weights must be found. Hopfield suggested the use of the sum of the outer products of 
all the input vectors in the calculation of the W weight matrix. This is a primitive learning 
procedure which is used to form an orthogonal weight connection matrix. A Hebbian- 
like incremental learning procedure was also suggested which results in pseudo- 
orthogonal weight matrices. Research continues to develop algorithms that store the 
highest number of patterns on a net with a given number of neurons [13,87].
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Hopfield claimed that his net is biologically plausible because neurons can update 
their states asyncbronously, independently of each other. Subsequent research has shown 
that both synchronous and asynchronous state update routines result in convergence. 
Hopfield also showed the net can be used with continuous valued inputs by changing the 
hard limiting threshold function to a nonlinear sigmoidal function [73].

The most powerful applications for the Hopfield net are optimisation problems. 
Hopfield and Tank made two demonstrations; the Travelling Salesman Problem [74] and 
an Analog/Digital converter. Both cases involve considerable effort to set up the 
connection weight matrix. Once this matrix is set up, the net is capable of producing an 
adequate solution to the optimisation problem. In optimisation problems the constructed 
weight space resembles an energy surface with many hills and valleys, with the deepest 
valley being the global optimum solution. Unfortunately, Hopfield nets tend to find local 
minima, rather than reaching the global minimum. To overcome this difficulty a 
procedure based on the process of metal annealing is added to the algorithm. This is a 
stochastic state update procedure that suggests a start with a high temperature to make 
sure the network explores the global search space, the temperature is gradually reduced, 
and the network settles to the global minimum. But this routine is computationally too 
demanding to assure a global solution within a practical period.

4.2.2. Case Study: Pattern Recognition

The auto-associative nature of the Hopfield nets can be exploited in pattern 
recognition tasks as the network tolerates a high degree of noise and can operate with 
partial or incomplete information. This is extremely desirable in pattern recognition 
problems, and a real-world example is presented below:

A teleconununications system involves the transmission of binary patterns between 
two satellite stations in the atmosphere, which is prone to random noise. The patterns 
transmitted from one station reach the other, in a partly corrupted state depending on the 
noise level. The Hopfield net can be used to reconstruct the noisy or incomplete input 
patterns as a Content Addressable Memory. In this case, a dataset containing 12 
orthogonal patterns each with 8x8 grids of elements (Figure 4.2) has been used. The 
two-dimensional nature of the patterns eases the selection of orthogonal patterns, as 
patterns can be designed visually. The weight matrix is set up by taking the outer 
product of all the pattern vectors and adding them up. Random noise is added to the 
patterns by randomly switching on/off the elements of pattern grids.
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Figure 4.2. The Patterns for the Hopfield Net

In the recall phase, a series of synchronous state update operations takes place, until 
the network settles. This is done by updating states of all neurons simultaneously (in a 
lockstep mode), using the outputs of other neurons from the previous step.

A Hopfield net simulator has been coded in C to solve this pattern recognition 
problem, and to carry out a computational analysis. The simulation of the net reaches 
convergence rapidly, finding one of the original pattern vectors as an output. Increased 
noise level, or too little information about the input patterns, causes spurious states to 
emerge in the outputs. Even patterns with 50 % of the original data points result in 
complete patterns with a fast convergence of approximately 4, 5 iterations.

4.2.3. Computational Analysis

This size of Hopfield net simulation (64 neurons) on a SUN Sparc workstation 
converges in a short time. Profiling the execution by using the standard Unix facility 
‘gproff’ produced the following results: for all 12 patterns the net converged to correct 
patterns in under 4.7 seconds. Other computational operations in the simulation, such as 
printing out the outputs and reporting the states of the neurons also consume a 
remarkable amount of computational time. Although the net provides an answer in a 
short time, a real-time usage would necessitate a much faster execution rate. This can 
only be achieved on high performance parallel hardware, or VLSI hardware 
implementations of the network.
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The learning procedure for the Hopfield net involves setting up the weight matrix 
using a set of patterns which are orthogonal one against another. This is done once, and 
it does not pose a big computational load. The recall procedure is the computationally 
intensive part of the Hopfield net simulation, and it involves an iterative procedure of 
state update. This procedure consists of a series of multiplications of inputs by weight 
values, followed by a summation. The sum is then applied to the threshold function 
which can be a simple decision mechanism associated to a value (such as 0) or it may be 
a nonlinear squashing function with bounds -1 to 1. The first is the case for a binary 
Hopfield net, and the second one is used on the continuous valued version. In the case of 
using a hard-shoulder activation function, computational requirements are minimal, in 
fact, in C, this function is an if  control statement. But the continuous valued Hopfield 
requires a sigmoidal or tangent hyperbolical activation function. The tangent 
hyperbolical function can be called by using the C library routine tanh(), or alternatively, 
a look-up table can be set up, and this table can be used. The use of the system built-in 
functions is computationally more demanding, as their implementation involves a 
number of multiplications carried out in double precision arithmetic. The option of using 
look-up tables requires an understanding of the activation function’s characteristics. The 
resolution of the table must be organised properly, where the rate of change is high, more 
data points on the table are necessary.

A typical state update operation for a single neuron involves the following 
operations:

S i = I i + J P j . W i j

The most expensive single operation here is the exponential function, although it is 
carried out only once for each state update. Most of the computation is focused on the 
dot-product operation which involves the element by element multiplication of the 
pattern vector by the weight matrix. For N  neurons this operation can be executed 
simultaneously. A total of multiplications for each state update step can be done in 
parallel. Each multiplication is followed by N  additions, N  thresholding operations and 
finally, the generation of the outputs for the net. A higher level process checks the 
convergence by comparing the current state of the net with the previous state, and 
decides whether the convergence has been achieved.
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4.2.4. Parallel Hardware Mapping

Two cases can be considered for the structural mapping of the Hopfield net onto 
parallel hardware.

1 - Fine-grained parallel mapping - In this case each neuron is mapped onto a single 
physical processor, which can be extremely simple. The processors carry out the 
following tasks: they sum their inputs, threshold the sum and transmit the result to the 
other neurons. An higher level central process checks all neurons’ outputs and reports 
when all neurons stop changing states.

To test the feasibility and viability of such a system the Hopfield net has also been 
simulated on a number of parallel processors. Unix TCP/IP Sockets are used as the 
communications medium between the independent processors. Later, this feasibility 
study involving TCP/IP Sockets is used in the implementation of parallel MATLIB library 
and Galatea GPNC simulations. A 4 neuron Hopfield net simulation, involving 5 Unix 
processes, has been implemented. The first process is a server which expects 4 slave 
processes to plug in. When these 4 identical processes are initiated the execution starts. 
The processes communicate by explicit blocking data exchange statements. Every write 
request to the server is matched by a read request at the client end and vice versa. This 
type of scheduling is an example of intertwined parallel processing, and it is 
synchronised from the beginning of the execution.

Synchronised or independent, the communicating processes can potentially create a 
massive message traffic as the number of neurons are increased in the system. Assuming 
a bus-based architecture, the bandwidth requirements increase polynomially in 
proportion with when the number of neurons increase linearly. Moreover, to 
implement number of connections as separate communications channels on hardware 
is not practical because of the massively increasing wiring requirements. The following 
procedure has been suggested and implemented to reduce the interprocessor 
communications [138]:

"Only neurons which change their states transmit their outputs to the others." This 
method assumes a local storage facility which enables the storing of the previous state to 
compare with the current state. Increasing the local memory use, for the reduction of the 
interprocessor communications is a typical trade-off, frequently used in the 
manufacturing of computer hardware. But this method increases the cost of unit 
production of the processors.
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2 - Coarse-grained structural mapping - this method involves using fewer, but more 
powerful processors with larger local memory (Figure 4.3). In this case, a group of 
neurons is mapped onto each processor, reducing the communications requirements. 
Each processor emulates a group of neurons by time-multiplexing the operation.

INPUTS OUTPUTS

INPUTS

OUTPUTS

A h
INPUTS

OUTPUTS

Figure 43. Structural Mapping of the Hopfield Model

Both types of mapping presented are based on the neuron-based assumption for the 
algorithm. As an alternative view, the Hopfield model can be seen as a vector mapping 
process involving a series of vector by matrix multiplications. This interpretation of the 
Hopfield net is advocated in chapter 5, using a clear and compact matrix-based 
representations of the algorithm.

4.3. Self-Organising Maps

The SOM has been originally inspired by the discovery of various topological 
feature maps in the brain [91]. These maps include retinotopic maps and orientation 
sensitive maps in the visual cortex, and tonotopic maps in the auditory cortex. Neurons in 
these parts of the brain react to a specific type of stimuli, ignoring the other types, and 
cluster the input vector set in a self-organised manner. The neurons themselves are 
grouped together with increasing degrees of sensitivity to specific type of stimuli; the 
sensitivity is maximised in the centre of each neural cluster. To mimic this kind of 
neural behaviour, Kohonen originally put forward the self-organising feature maps [88]. 
He demonstrated that an optimal mapping of a multi dimensional vector space can be 
constructed and used in pattern recognition tasks with a high degree of accuracy [126].
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4.3.1. The Model

The SOM is a two layered network (Figure 4.4). The first layer, or input layer, 
contains n neurons, where n is the dimensionality of the input vector set. The input 
patterns are clamped onto this layer, so the neurons in this layer capture the activation 
levels on the respective dimension. The second layer which is the output layer, is usually 
organised as a two dimensional grid. The nodes in the output layer can be considered as 
fully interconnected, and the physical neighbourhood relationship and distance form the 
basis for the interconnection strength in this layer. All output nodes are also connected to 
all the input neurons with weight values which together constitute vectors of the same 
number of dimensions with the input vectors. Output nodes together form a vector field, 
and each node is a single vector in the vector space.

Inputs

O

Input nodes Output grid

Figure 4.4. The Self-Organising Map

The SOM training [99] algorithm is as follows;

1 - Select a suitable output grid, initialise weights with small random values, define 
a large neighbourhood area with a neighbourhood distance, set a small gain 
coefficient (or the learning rate) for the weight update (typically 0.1 - 0.5), and 
normalise the input vectors (it can be done in two ways [37] and both methods work 
successfully).

2 - Clamp an input vector to the input neurons, calculate the Euclidean distance of 
the input vector to the output vectors, establish the closest output vector, and assign 
that node as the winner. Various measures can be used in the distance calculation, 
and the Euclidean is the most popular one.

3 - Within the current physical neighbourhood distance of the winner, update the 
weights, so that all output vectors get closer to the input vector.
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4 - Repeat steps 2 and 3 for all input vectors.

5 - Narrow the neighbourhood distance and decrease the gain, and repeat 2, 3 and 4
until the neighbourhood is decreased to one node.

As a result of these steps, each output node specialises in a subset of the input set, 
and the neighbouring output nodes represent close vectors in terms of the Euclidean 
distance. The distribution density of the input vectors is reflected in the distribution 
density of the output vectors.

Once the weights are trained, a novel vector can be presented to the network and by 
finding the best matching output node, the class identity of this vector can be established. 
This forms the recall operation for the SOM.

A number of parameters influence the performance and the accuracy of the results 
of the SOM. These are the neighbourhood and the gain settings, and the number of 
nodes in the output layer. Optimum settings for these parameters is matter for research, 
and currently most applications involve a series of trial and error runs.

4.3.2. Case Study: Clustering Neural Spikes

In this case study, the SOM is used in clustering the neural spikes from the rat’s 
hippocampus as a novel technique in the Anatomy field. Datasets consist of electrical 
activity readings of neural spikes recorded from outside hippocampal neuron cells. This 
method of extracellular recording, encounters the difficulty of confidently isolating the 
activity of the single neuron from surrounding neurons [82]. Several techniques have 
been developed to examine the neural electrical activity, or a spike, to identify the 
origins. These examinations involve the classification of the neural spike amplitude and 
shape [132], and most of these classification techniques require representative samples of 
the classes within the dataset. An unsupervised classifier, or a clustering algorithm is 
more advantageous in this case, since no information about the cluster centres is 
available in advance.

Traditional clustering methods can be traced back to the K-means nearest neighbour 
classifier [39]. Variations on this algorithm [36] and performance of other classifiers are 
discussed in the literature [89,99]. Results suggest the that the SOM clustering approach 
provides the best overall performance [76]. In this case study, the SOM is used in 
clustering neural activity into a small number of classes.
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A SOM simulator has been coded in C, to run on SUN Sparc workstations. The 
simulator is tuned to the application and tested with various neighbourhood decrease 
routines, graded gain functions (Figure 4.5) and different distance measures to improve 
the speed and accuracy of the algorithm. Euclidean distance measure proved to be the 
best distance criterion. Multidimensional (hypercube) output grid geometries have also 
been used, but these architectures did not improve the performance, as the number of 
output classes in this problem is too small to exploit the extra dimensionality and 
complex neighbourhood relationship introduced.
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Figure 4.5. Gain and Neighbourhood

The data for the clustering program were recorded in the laboratories of University 
College London. The datasets consisted of recordings of the ‘place cells’ and the ‘theta 
cells’ from the rat’s hippocampus [119]. The spike recordings are 200 voltage values 
read by a number of electrodes. These 200 dimensional input vectors, are clamped into 
200 input nodes. As outputs, the spikes are clustered into a given number of classes. 
However, the definite number of cells recorded is unknown, up to 10 or 12 cells can be 
recorded in each experiment. It is necessary to establish the number of output nodes in 
the network, prior to training the network. As a strategy, it is better to overclassify the 
spikes, and then after an examination merge these sub-classes, rather than under-classify 
and face the difficulty of classifying them again. So, usually, a slightly bigger than 
expected number of output nodes is set as the number of output nodes.

Once the training is completes, the weights are saved, so another set of spikes can 
be clustered into the currently established classes. This approach can also be used to
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bootstrap the network, that is, to start training with a set of weights obtained by other 
methods (such as manual clustering). The training can be supervised, usually to save 
time, by selecting a typical subset of the input set rather than using all the samples 
recorded in an experiment. These selected samples are so called ‘ideal samples’ which 
would form the basis for the cluster centres.

No of Patterns

Cutting Point

200 Distance

Figure 4.6. Error Histogram in Clustering

During the data acquisition stage, noise occurs in two forms; Systematic Noise and 
White Noise. Systematic noise often originates from electrical devices close to the 
laboratories, such as power supplies etc. The network clusters these vectors as a separate 
class, because of the distinct waveform they possess. White noise is random, and may be 
generated by various sources such as the disconnection of one of the electrodes, etc. The 
SOM clusters these noisy input vectors to the closest class available. White noise is 
undesirable especially during the training stage, as noisy vectors influence the weight 
update procedure by corrupting the cluster centres with noisy data. To eliminate this 
problem, a histogram based routine was added to the simulator. This routine calculates 
the distance of all vectors to the respective cluster centres, and an error histogram is set 
up for all vectors with the number of bins typically a tenth of the total number of vectors. 
On this histogram any spike which is further from a certain distance is labelled as noise. 
This distance is determined by examining the histogram bins and identifying the first bin 
with zero spikes, after the mean, as the "cutting point" (Figure 4.6). This method is a 
short-cut measure; the alternative is to calculate the 3-4 standard deviations distance 
from the mean as a threshold point. All spikes beyond the cutting point distance are 
labelled as noise and these spikes are prevented from taking part in the training 
procedure. This process is repeated over each cycle, and result in all outliers being 
accumulated in a separate noise class.

64



A feature of the SOM is that it imitates the input vector distribution in the output 
vector distribution. This poses a problem in the representation of the members of a vector 
set with a low density (a small number of samples). Uneven distributions pull most of 
the output nodes into the densely sampled part of the signal space. This problem has been 
tackled before [38], and a similar procedure is added to the simulator. A limit has been 
introduced to the weight update procedure; when reached, it stops the weight update for 
that node, preventing the over-representation of a class of patterns, and allowing less 
densely distributed patterns to form as a new class.

Another problem related to the input vector distribution occurred in some sets of 
recordings. In these datasets, the spike distribution showed a tendency to form an 
elipsoidal shape of distribution, densely packed around a slope, rather than a spherical 
type of distribution. The Euclidean distance measure assumes a spherically partitioned 
space and it misclassifies the spike vectors. As a solution to this problem, 6 new nodes 
are added to the current 200 input nodes. These nodes are clamped with the 6 slope 
values which relate to each spike’s delta values, delta being the difference between the 
maximum voltage and the minimum voltage read in each electrode. The slope is the 
ratio of these deltas recorded on different electrodes. By adding this information to the 
input vectors, 6 new variables are evaluated in the similarity test. The Euclidean distance 
test that compares the waveforms, also compares these slope values, and spikes are 
grouped together with respect to their distance in slope angles. It is possible to scale the 
importance of the slopes by simply exaggerating the Euclidean error derived from these 
variables. This is done by adding a coefficient to the error calculation that gives a certain 
weight to the error originating from the slopes.

Delta 1

Delta 2

Figure 4.7. Neural Spike Clusters

The results of the automatic clustering with the SOM were compared with the 
results of manual clustering. In manual clustering, an expert can display the spikes on

65



the computer monitor, and by selecting the best combination of the four electrodes, can 
visually isolate a group of spikes from the rest. Clusters can then be purified by using 
histograms. The spikes can be viewed in different combinations of the electrodes (1 
versus 2, 1 versus 3, etc,.). But this is a laborious process and it is partly subjective. A 
numerical comparison between the two methods showed that on a dataset with 2202 
spikes, 142 discrepancies were found between the manual and the automatic methods. 
Of the 142 spikes, 31 spikes were clustered as noise by the SOM, and 47 spikes were 
clustered as noise by manual clustering, only 64 spikes were placed into different clusters 
by the two methods. This is a small difference considering the gains made by automating 
the process.

One measure of success in clustering is the circumference of the clusters. It is 
assumed that the more compact clusters are, the better the classification is. A statistical 
analysis on the two clustering methods shows that clustering with the SOM produced 
more compact clusters. The analysis was done by examining each cluster and measuring 
the variance from the mean (centre of the clusters) for each of 200 dimensions. Then the 
standard deviations were calculated for all these dimensions. The mean of these standard 
deviations for each cluster for both methods are shown in Figure 4.8. Most of the 
clusters (except cluster 1) obtained by the SOM are more compact, with smaller radiuses 
to hold most of the spikes.
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Figure 4.8. Cluster Envelope Widths

Automatic clustering using the SOM gives close results to the results obtained by 
human experts. The system SOM allows us to specify the thickness of the elipsoid 
clusters. Problems posed by uneven input vector distributions can be solved. By adding 
a histogram based noise filtering technique most white noise and systematic noise can be 
eliminated. These results enable us to do a series of automatic clustering runs and 
decrease the time spent in the data processing.

66



4.3.3. Computational Analysis

Currently, the SOM automatic clustering simulator runs on a SUN Sparc station. 
On this machine, an average training session for the simulator takes about 3 to 4 minutes 
for 2000 spikes. This is still far from real-time execution where clustering can be done 
automatically within a few seconds or milliseconds. Once the cluster centres are 
estabhshed, a series of recalls can be done on other datasets to detect any similar spikes. 
The recall operations are much faster, and on SUN Sparc station they last less than 30 
seconds for the same data size. The following operations which involve the calculation 
and the selection of a winner, are the basis of a recall;

Score j  =

j  = imniscorcj)

Once the winner is established the weight update is carried out for all the neurons within 
the current neighbourhood, as follows:

As can be seen above, computationally, the most expensive part of the SOM 
simulation, is the calculation of the scores. In this case, a series of subtractions is 
followed by multiplications, and finally a square root is taken to establish the Euclidean 
distance of the given input pattern to the nodes in the output grid. The winner node is 
established by finding the node with the minimum distance to the given pattern. An 
alternative to this is to calculate the dot product of the normalised input vector and the 
weight vector and to select the output node with the maximum scalar product.

The normalisation, the scaling, and the calculation of the score, the sorting to 
establish the minimum score, take up a sizeable amount of CPU time. In addition to 
these, in this application, a conventional statistical technique, a histogram routine is also 
used which consist of multiplication and sorting. Parallel techniques, such as a parallel 
dot product operation and a parallel sort can be used to speed up the simulations.

67



4.3.4. Parallel Hardware Mapping

Two cases are considered for the structural parallel mapping of the SOM;

1 - Fine-grained mapping - Each neuron in the output grid is mapped onto a single 
processor. This enables the system to calculate the score in parallel for all output 
neurons. Then, all neurons report the result to a central processor which finds the winner. 
To establish the overall winner, local search and sort techniques can be used and 
implemented in parallel. In the weight update stage, the supervisor processor sends 
weight update signals to the neurons within the neighbourhood of the winner node.

Input nodes Output grid

Figure 4.9. Structural Mapping of the SOM Model

2 - Coarse-grained mapping - This approach involves dividing the output grid into 
sections with an equal number of neurons, and distributing the sections onto a number of 
processors (Figure 4.9). Some inter-node communication traffic is localised and reduced. 
However two difficulties remain. The first one is finding the overall winner. This can be 
achieved by finding local winners, reporting them to the central processor which 
identifies the global winner and reports it back to the processors. The second difficulty is 
in expressing the neighbourhood relationship between the output neurons. In weight 
updates, the standard algorithm has a conditional statement that checks each node to 
establish whether it is within the neighbourhood of the winner node. On a parallel 
platform, this would involve the transmission of the neighbourhood definition every time 
a winner is established. Kohonen later suggested that the neighbourhood can be
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interpreted as a form of connection weight [92], and this approach is more suitable for 
eliminating the transmission between parallel distributed processors. The neighbourhood 
relationship can be treated as a lateral connection weight between output neurons. All 
lateral weights have symmetrical values between output nodes, which is based on the 
physical distances of these nodes from each other. Lateral weights could be set at the 
beginning of the simulation and updated after every epoch to result in a shrinking 
neighbourhood. Each epoch typically involves a complete dataset presentation and the 
lateral weight update involves reduction of lateral weights as the training progresses. 
The lateral weight technique can be useful for mapping the SOM onto parallel hardware 
in simulations, and for the hardware implementations of the model.

The SOM has a flavour of neural processing, with biological correlates, but it can 
also be represented using a number of vector, matrix operations. By optimising these 
operations on fast vector/matrix operator hardware architectures, the SOM can be 
simulated much faster. In chapter 5, neural network representation issues are considered, 
and the SOM is programmed using matrix-based representations.

4.4. The Backpropagation Model

The Backpropagation learning algorithm is historically important. It prompted the 
resurgence in the neural networks field, in the 1980s, following the early disappointments 
of the late 1960s, prompted by the Minsky and Papert report [114]. They suggested that 
Perceptions cannot learn certain associations due to the lack of an efficient learning 
algorithm to train the weights in the hidden layers. The Backpropagation algorithm was 
put forward and popularised by Rumelhart [130] and others, answering specifically the 
question of training the weights to the hidden layers in a systematic manner. The model 
is based on the Delta rule (also called Widrow-Hoff learning rule), in which the error is 
back-propagated from the output layer towards the input layer (Figure 4.10).

4.4.1. The Model

The Backpropagation model demands: the choice of a suitable network
configuration with a sufficient number of hidden layers and neurons in the hidden layers; 
the choice of an activation (squashing) function for neurons; the choice of an appropriate 
learning rate, and a tolerance level, allowing a certain amount of error in the accuracy of 
the network; and finally, the initialisation of network weights with small random values.
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The training session has the following steps:

1 - A pattern vector is clamped to the input nodes.

2 - Forward Pass - This process involves each neuron multiplying all the input 
values with the incoming weight values, summing them and passing the resulting 
value through a nonlinear activation function to produce outputs. This process is 
carried out for all layers, and finalised at the output layer. There, the outputs of the 
neurons are the network’s response to the applied input pattern.

3 - Error Calculation - The outputs of the network are compared with the targets. 
Resulting error values are passed through the derivative of the squashing function.

4 - Error Feedback - The error values for the output neurons are propagated 
backwards by multiplying with the related connection weights.

5 - Weight Update - The calculated and stored error values for each neuron are used 
to reduce the error of the system.

6 - The processes of forward pass, error calculation and feedback, and weight 
update are repeated until the error is below the allowed tolerance level.

A number of parameters have a strong effect in the training process, and the 
resulting internal representation heavily depends on them. These are:

• Learning Rate - The learning rate is a coefficient used in updating the weights. 
Usually a small value between 0.1 to 0.3 is used, but there are various strategies for 
optimising the learning rate throughout the execution. If the learning rate is set too 
high the network might saturate and get trapped in a local minimum. Keeping the
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learning rate too low results in a long training time.

• Tolerance - the tolerance value determines the amount of error allowed between the 
outputs of the network and the targets. If the tolerance is too small, the network 
may never pass this value, and if it passes the network is often overtrained, and it 
cannot generalise.

• Hidden Units - The number of hidden units in a multi-layer network is important. 
Having too many hidden units results in an accurate recall with no generalisation. 
On the other extreme, a network with too few hidden units cannot leam the task.

4.4.2. Case Study: Financial Forecasting

The Backpropagation model is a hetero-associative vector mapping algorithm. The 
Backpropagation network can leam trends, and provides a good degree of generalisation, 
which is desirable in financial data processing applications. In this field, the 
Backpropagation model has been successfully applied to problems such as stock market 
prediction, risk assessment on mortgages and bond rating [43,86]. Stock market and 
currency exchange rate prediction are historically difficult problems for conventional 
models. Therefore, financial forecasting was used as case study for the Backpropagation 
model.

A simulator based on Backpropagation algorithm has been developed using C, and 
supported by pattern processing routines to allow time-series handling. The network 
consists of three layers. The input layer is a string of nodes where the elements of the 
time series are clamped. The number of input neurons represents the number of past 
steps scanned in the time series. As a rule of thumb, the same number of neurons are 
selected for the hidden layer. Finally, the output layer contains a single unit. In training, 
the next step in the time series; the target is clamped to this node. In recall, this value is 
generated by the network providing the network’s prediction, based on the training. The 
model is supported by pre-processing and post-processing modules to transform data into 
formats which produce observable results.
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Figure 4.11. Lagged Patterns for the Backpropagation

Pattern Handling - The pre-processing of input patterns takes up an important part 
of the simulation. The inputs for the simulator are time-lagged values taken from the 
related time series (Figure 4.11). First, a suitable width for the time window is selected. 
As an alternative, in some cases, important lags in the time series are identified, and these 
may be scattered in the time series. When choosing the time lags, an auto-correlation 
routine can be used to identify the most significant lags in the time series This can be 
done by correlating elements of the time series with all the other elements of varying 
time distances. (Figure 4.12).
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Figure 4.12. Autocorrelating Input Values

The network is provided with normalised or scaled input patterns as the nonlinear 
activation functions have certain bounds. The patterns can be organised in such a way
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that the elements of the time series represent differences between the current value and 
the previous value (this is called differencing). In the post-processing stage, the output 
vectors are ‘undifferenced’ or ‘unsealed’, depending on the pre-processing type applied.

Once a satisfactory level of training is achieved, the network can be used to 
generate a forecast. Then, the network is provided with a novel input vector, and it 
generalises from its training. Depending on the pre-processing already done, the output 
values are post-processed and displayed in the required format. There are two modes of 
forecasting:

a) Short term forecasting (Recall Mode) - An input pattern is clamped to a trained 
network, and an output is obtained. By shifting the time window, and repeating this 
process, a series of short-term forecasts can be made. The simulator can be trained to 
generate values relating to one, two or more steps ahead.

b) Long term forecasting (Forecast Mode) - Exactly the same steps as for the short 
term forecast are followed, to generate an output value for a given input pattern. This 
time the recalled output value is used to form the next input pattern. Another prediction 
is made and the process is repeated to generate further predictions by using the 
predictions as inputs.

The learning rate and the number of hidden nodes are important as together they 
balance generalisation versus overtraining. The correct identification of the most 
significant lags and the width of the time window are also important in the forecast. The 
network can be overtrained, or saturated, by choosing a high learning rate and a small 
number of hidden nodes. This often results in highly accurate recalls, but poor 
generalisations, and thus poor forecasts. On the other hand a loosely trained network, 
although not very accurate, generalises much better and produces better forecasts.

Having a greater number of input nodes allows the system to scan larger amounts of 
data at each step. In this case, computational constraints must be considered, as the 
increased number of neurons causes the network training to take longer. An optimum 
network topology must be engineered considering the hardware environment and the 
problem domain. Other parameters, such as initial random weights, affect the training 
procedure, and the initial point for a long term forecast also affects the results.

The most versatile use of the simulator is that other data can be presented together 
with the time series information. These additional data are clamped onto new input nodes
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in the same way as new input dimensions. As long as these elements are scaled in the 
same way as the time series data, the simulator treats them in the same way. In financial 
forecasting, these additional dimensions can be parameters relating to the current 
political climate, risk factors relating to the economy or even the public opinion polls.

A series of test runs was made on the simulator using real data. The objective was 
to test the feasibility of the technique and to evaluate the computational requirements for 
such an application. One dataset consisted of 97 days values of the FTSE 100 index 
(Figure 4.13). The dataset is divided into two sections; the first 50 days comprise the 
training set, and the rest of the data are used as the test set.

FT 100 Index
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Figure 4.13. The Dataset FTSE 100 index

An 8 days wide time window is selected; so, the input patterns are 8 dimensional vectors, 
stretching 7 days into the history of the time series. In this test, two hidden neurons were 
used, and a single output neuron clamped to the target value, which is the next value 
(tomorrow) on the time series. The patterns have been differenced and scaled and 
clamped into the input layer. After about 4000 cycles consisting of all 40 pattern 
presentations, the error dropped down to an acceptable level (Figure 4.14).
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Figure 4.14. Euclidean Error in Training

When tested on the training dataset, the simulator generates very close results to the 
targeted values (Figure 4.15). It must be noted that, these experiments only show the 
applicability of the Backpropagation model to forecasting problems. Otherwise this size 
of dataset is not sufficient for a good generalisation.
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Figure 4.15. Test on Learning FTSE Index
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Following this, a long term forecast was made in the second half of the dataset (Figure
4.16). The long term forecast results are particularly interesting as they shows that the 
network seems to have captured a sinusoidal trend from the first half of the dataset. It is 
forecasting the same trend for the second half.
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Figure 4.16. Long Term Forecasting FTSE Index

As a result, the experiments show that, the simulator is able to generalise where it 
has no prior experience. As the training times get longer, the simulator gains higher 
accuracy. There is a trade off between the number of datasets learned and accuracy in 
recalling previously learnt datasets. The forecasts depend on the network architecture and 
the choice of parameters and initial conditions. The simulator behaves very much like a 
human expert. In the training stage, it builds an internal representation and in forecasting, 
uses this representation to generate an expert guess. Again like most human experts, the 
simulator is not able to explain why it has predicted a certain sequence, and it would not 
be able to predict a stock market crash unless it had experienced one.

4.4.3. Computational Analysis

Real financial neural network applications are computationally demanding. They 
require the scanning and processing of large amounts of data quickly. Real-time training 
systems are particularly demanding on computational resources. Because of this, most 
systems carry out training off-line in batch mode, and execute only real-time recalls.
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The Backpropagation training process involves the simulation of the following 
operations:

Recall:

Error Calculation:

Weight Update:

Sh=fiAh)

K  =

O =Ao =f(A„)

Eo =f'(SMT„)  

Eh =f\Sh).Y^oWo

AW=^.S.E

Each operation can be carried out simultaneously for all the neurons in the same 
layer, but there is a strict sequence of data flow between the layers, which must be 
followed. Unix ‘gproff’ results show that, during these simulations, most of the CPU time 
is spent on multiplications. The nonliner threshold function simulations are also 
computationally demanding, but they are not repeated as many times as the 
multiplications. Look-up tables can be set up to approximate the functionality of the 
activation functions, but special care is necessary in the implementation of these tables. 
A close look at the sigmoid function shows the rate of change is not uniform throughout 
this function, with a near-linear transition in the middle, and a strong nonlinear character 
at either ends of the function. This characteristic must be preserved on the look-up table 
representing the function.

In financial forecasting the Backpropagation model is computationally intensive on 
the training stage depending on the data and network size. On the SUN Sparc 
workstations, most practical financial forecasting networks can be trained within a couple 
of hours. In extreme cases, overnight executions might be necessary due to increased 
dataset size, such as the last 10 years daily index of a financial indicator. Although data 
can be processed by the network without human intervention, it makes sense and saves 
time to carry out a cluster analysis on data to purify and obtain a smaller representative 
dataset. A simple data scan can eliminate unusual or corrupted patterns to save time.
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preventing the network from spending hours on a difficult sample which is impossible for 
it to leam.

Usually, neural networks in financial forecasting are not large, the shifting window 
technique is sufficient to process data from the last few days or a month, to make a short 
term prediction (for the following day). The FTSE prediction system needed a network 
with 30 input, 30 hidden and 1 output neurons. The pre-processing and post-processing 
operations and graphics display functions are also computationally significant. These 
non-neural computations coven finding a maximum or a minimum for an array, 
normalising, scaling, transforming, and the graphics displaying of the patterns. The 
experience in many simulations is that the graphical tools cannot keep up with the neural 
network part of the simulator.

4.4.4. Parallel Hardware Mapping

Two cases are considered for mapping the Backpropagation model onto parallel 
hardware.

1 - Fine-grained structural mapping - Assuming there are the same number of 
processors as the number of neurons in a network, and as many conununications 
channels are available as the number of connections in the network, each neuron can then 
be mapped onto a single processor. A central processor can supervise the parallel 
execution, and check whether the tolerance test is passed. The outcome of this approach 
is massive interprocessor traffic particularly between the processors for the hidden layers 
and the output layer. An alternative to this is to accumulate small weight changes and 
carry out a batch of weight updates after all the patterns are presented. In fact, the batch 
weight update techniques are frequently used to reduce the communications traffic, and 
achieve efficient mapping on parallel hardware.

2 - Coarse-grained structural mapping - Considering that there are less processors than 
neurons in the system, two types of structural partitionings and subsequent mappings can 
be carried out; layer partitioning and network splitting.

Layers of a Backpropagation network represent concentrations of similar 
computations on data. All operations taking place within a layer can be executed 
simultaneously, as data for each layer are presented at the same time. For example, a 
three layered Backpropagation network can be mapped onto a two processor parallel 
system with a host. The host would undertake the VO operations and send patterns to the 
first processor which is the hidden layer. The hidden layer calculates the states of the
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neurons and passes them onto the output layer. When the output layer is calculating its 
states, the hidden layer can continue with the next input pattern. The overall process 
would be a data pipelining process with performance heavily dependent on the 
interprocessor communications speed and bandwidth. The pipelining approach could be 
effective where batches of recalls or forward passes are carried out, keeping all 
processors busy. However, this method cannot provide any speed up in a real-time recall 
operation where an output pattern is desired following a single pattern presentation.

The second approach involves splitting the network in a horizontal line (Figure
4.17). This type of mapping creates a data parallel execution and parallel processing 
takes place on all processors. There are two problems with this approach. Firstly the 
Backpropagation algorithms is a so-called non-local learning rule, where the weight 
values depend on parameters other than the immediately connected neuron states. This 
necessitates the transmission of the state or error values to all other neurons. In the case 
of network splitting these values must be transmitted to other processors to measure 
success globally. This introduces inter-processor communications. The second problem 
with this mapping technique is that a 100 % load balance between the parallel processes 
must be achieved for an efficient parallel executions where no processor stays idle. This 
may not be possible all the time, considering networks with odd number of neurons.

Another parallel mapping approach which is useful for training but impractical for 
single pattern real-time recall, is called pattern parallelism or training parallelism. This 
approach prescribes the mapping of complete nets onto each one of the many parallel 
processors. All networks train on different subsets of patterns, occasionally updating the 
common weights through a communications mechanism.

The Backpropagation model can be seen as a multi-dimensional feedback control 
process with the following functions. Firstly, the input vectors are multiplied by weight 
matrices, and the resulting vectors are transformed by a nonlinear function. On the 
consecutive layers the same operations are repeated, and finally an output vector is 
generated as the response of the system. The output vector is subtracted from a target 
vector, an error vector is generated and then multiplied by the connection weights vector 
and the result is transformed by the derivative of the nonlinear function. Error vectors 
calculated by this process are used to modify the weights matrices.

The biological plausibility of the Backpropagation model is extremely unlikely. It is 
more plausible to think of it as an adaptive feedback control mechanism, modifying 
internal system parameters to achieve desired outputs. This kind of thinking is more
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Figure 4.17. Structural Mapping of the Backpropagation

liberating as it puts the emphasis onto the actual computations rather than the neural 
philosophy. The computations involved in the simulations of the Backpropagation model 
are a set of vector/matrix operations. By optimising the execution of these operations the 
Backpropagation model can be executed efficiently. This thesis strongly supports the 
view that the Backpropagation model is a vector-matrix based algorithm with a large 
fanin/fanout. In chapter 5, the model is programmed in matrix/vector based 
representations, and in the following chapters, these representations are mapped onto 
parallel hardware.

4.5. Comparison of the three Models

The three models differ in their training and recall procedures, in their applications 
and computational requirements. They show structural differences which are important 
for parallel hardware mapping. Table 4.1 shows a comparison between these models in 
terms of their structure, learning and recall procedures. In this table, most calculations 
are vector arithmetic operations with the exception of activation functions (/) and their 
derivatives (f).

The main strength of the Hopfield model is that the Hopfield neurons can operate 
synchronously or asynchronously, independently of each other, on binary or continuous 
values. The network can be used in optimisation tasks, producing a good solution in a 
short time. The main weakness of the Hopfield net is the setting up of the weight matrix.
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Model Structure Learning rule Recall procedure Error calculation

Hopfield Nets Each node connected 
to all others

w =Yj '.i Si=Aio+USjW) E = Y /-S

Self-Organising Map Input nodes fiilly 
connected to Output grid
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Backpropagation Multi-layer Perceptron AWfi^.S,Æj net=Yj-W
S=f(net)
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E j,= finet).J^.W

Table 4.1. Neural Networks Structure and Properties

Even in the case of successful setting, the number of patterns that can be stored is 
limited. In addition to this, Hopfield nets tend to fall into local minima.

The main strength of the SOM is that it is an unsupervised learning algorithm driven 
by input data. Real world data can be presented as training data, with the network 
adapting itself to changes in the inputs. The parameter selection process for the SOM is 
the main obstacle in the design of the applications.

The strengths of the Backpropagation algorithm are proven by its popularity and its 
wide use on a range of real world applications. The major weakness of the 
Backpropagation model is the initial design of its architecture, which is a problem- 
dependent operation involving a series of tests and experiments. In fact, the design of the 
network and the selection of the parameters is more of an art than a science.

Research is continuing in optimum neural network topology and parameters, fast 
learning algorithms and automatic network design. One way of computationally tackling 
this problem is to use multiple neural network architectures.

4.6. Multiple Neural Networks

A large number of real-world applications require the use of hybrid neural network 
architectures due to the heterogeneous nature of the problem data. Robotics applications 
demand the extraction and processing of multiple sensory information, and the use of this 
in simultaneous control tasks [93]. In financial forecasting, many different financial 
indicators affect a particular time series. The indicators can be analysed separately and 
the results can be incorporated in the final prediction system. In other applications it 
makes sense to divide tasks into smaller ones and to use a number of simple networks 
[31,100,105,106].
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The theoretical limitations of understanding a massively large number of interacting 
elements is hindering neural network development. Also, it is widely known that large 
neural networks computationally do not scale-up. In addition to that, some models are 
suitable for solving certain problems. Modular architectures can enhance the 
performance of models by integrating these models so they complement each other 
[69,75,139]. The Nestor Learning system [4,127] was an early example of using 
multiple neural networks in pattern recognition problems.

Network level competition can be used to achieve automatic task decomposition 
[80,81]. Jacobs and others [80] demonstrate the use of modular architecture and 
automatic task decomposition. They focus on a major problem with the Backpropagation 
model, the so-called ‘temporal crosstalk* problem. This problem is manifested as the 
inability of the Backpropagation network to leam patterns which produce conflicting 
information in the hidden units. A fast learning has been demonstrated through 
automatic task decomposition on a modular architecture. Similar approaches have been 
used in classification problems [29,30].

Optimum neural network design is another time-consuming problem. Choosing the 
correct topology and initial parameters for a network is itself a NP-complete problem. 
The complexity is increased especially if general solutions are required for a wide range 
of problems. Again, network competition can be used to achieve optimum networks for 
a specific problem. A large number of networks can be initialised with different 
parameters and the ones which reach a convergence with a good generalisation and 
robust performance are chosen. This approach is close to a new computational paradigm; 
Genetic Algorithms which itself is a candidate for solving pattern recognition and 
optimisation problems.

The brain, which is the most advanced computational device known to humans, is 
not homogeneous. In fact, it portrays a modular architecture with task partitioning which 
is noticeable at the highest level with its two hemispheres. Different tasks seem to take 
place in different parts of the brain. PET (Positron Emission Tomography) scans and 
MRI (Magnetic Resonance Imaging) results confirm this claim. Biological evidence 
from the brain encourages task decomposition and modularism at network level with 
inter-module cooperation and competition. There is neither the technology currently 
available to build machines which have millions of interacting processes, nor is there the 
expertise to program machines with such complexity. Technological limitations force 
the design of modular software and hardware.
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Modular designs and task decomposition can be used to argue for the design and 
development of Hybrid Systems. These systems will be programmable and evolvable, 
and will exploit intelligent knowledge-based systems, neural networks and genetic 
algorithms combining the best features of all three models [9]. For example, neural 
networks are particularly good at knowledge extraction which is the main problem for 
building knowledge-based systems. An interesting combination would then be to use 
neural networks as the front-end, in knowledge extraction and elicitation for expert 
systems [96]. Genetic algorithms can be used to design optimum neural network 
architectures through evolution [58,133]. General-purpose parallel hardware platforms 
can be used to achieve a parallel evolution in the automatic generation of neural 
networks.

An efficient mapping strategy must consider these trends in algorithm research, and 
support modularism and parallelism in the four levels of neural network execution: the 
application, model, representation and execution environment domains.

4.7. Conclusion

In this chapter, in the form of three case studies, three neural network models and 
their overall computational requirements have been analysed. This approach has proved 
to be more informative compared with exclusive algorithm analyses. The three neural 
network models examined here, show differences in their applications, training and recall 
procedures, their structural properties, and in terms of parallel mapping and hardware 
implementations.

The Hopfield nets are suitable for auto-associative recall problems. Research is 
necessary on this model to find learning or data storage algorithms to fiilly exploit its 
potential. The Backpropagation model has proved itself in many commercial 
applications. In training, it requires great computational power for realistic applications. 
The SOM is a good statistical tool to detect salient features in datasets, automatically 
clustering patterns with no prior knowledge about them.

Structural parallel mapping examples shown in this chapter reveal that there is not a 
single method applicable for all neural network models. The Hopfield and SOM neurons 
are homogeneous, and they can be grouped arbitrarily and mapped onto parallel 
processors with varying granularity. The complexity is increased in the case of the 
Backpropagation model as different partitioning techniques result in varying load and 
communications requirements. The difficulty of designing a generic mapper for a wide
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range of neural network models is stressed in the variation of structure and properties 
during the evolution of these models.

In terms of hardware mapping and implementation, the Backpropagation model is 
the most complex of the three models. Its multi-layer structure makes it difficult to 
implement on silicon. Neuron by neuron implementation on silicon would be relatively 
more expensive due to the complexity of the Backpropagation neurons. Both Hopfield 
nets and the SOM have already been implemented onto silicon, and this trend will 
continue as the relative cost of hardware implementations is reduced.

The most common aspects in all three models, is that all computations involved are 
vector-matrix based operations. The Hopfield net is an association matrix acting upon 
noisy, corrupted or incomplete input vectors, settling to a state which represents the 
original vector. The Backpropagation model provides hetero-associative mapping 
between input and output vector sets, achieving this by a series of weight matrices 
between consecutive layers. Finally the Self-Organising Map topologically orders sets of 
input vectors on an output grid.

Real world applications involving the three models require conventional computing 
routines such as, normalisation, scaling, histogram and graphics display and input/output 
procedures. These routines sometimes require greater computational power than the 
neural network simulations they support. Again these routines are also vector-based 
operations involving parallel arithmetic, search, and graphics display operations. A 
General Purpose Neural Computer architecture, optimising the execution of a set of 
matrix operations would be valuable in neural network simulations. Chapter 5 presents 
MATIJB, a matrix-based library, as a step in this direction.

84



Chapter 5

Neural Network Representation

In this chapter, neural network representation and programming issues 
are discussed. Function-oriented, object-oriented and vector-oriented 
representation techniques are analysed in terms o f their ability to capture 
neural network properties and mapping onto general-purpose parallel 
hardware. Based on the analysis, matrix-based C libraries MATLIB and 
NETUB are designed and developed to meet these requirements.

5.1. Introduction

Most neural networks today, are simulations on sequential conventional computers, 
and some simulations run on parallel hardware. Neural network simulations involve a 
two-stage mapping process; firstly the representation of an application as a computer 
program, and secondly mapping this representation onto hardware. Neural network 
programming languages serve as a medium for these two tasks. The efficiency of 
mappings and the performance of executions strongly depend on the choice of the neural 
network simulation language. A good simulation language facilitates the programming 
task, provides easy access to data and methods, and can be easily mapped onto parallel 
hardware leading to an efficient execution.

Application-oriented and algorithm-oriented programming environments often 
employ a single programming language for the two mapping tasks. Because of the 
difficulty of obtaining generalised features in one programming language, some 
environments adopt multiple representations. General programming environments which 
aim for generality and flexibility, with high performance-, often use two-level 
representations, employing a high-level language and an intermediate-level language.

An HLL serves as a user-friendly programming domain easing the process of neural 
network application representation. HLLs are usually supported by graphics application 
builders and graphics monitors. An algorithm library containing parameterised models 
often helps in the development of applications. Graphics-based and menu-driven 
systems appeal to users. They provide a bidirectional medium for neural network 
programming, as all actions are answered by graphics-based reactions, easing the task of 
mapping a world problem onto a computer. One disadvantage of graphics-based routines
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is that they are computationally demanding, and they can slow down the execution on 
most hardware. What is required from an HLL is that it captures neural-network- 
oriented features and provide user-friendly access to models and applications.

The ILL representations on the other hand, determine the efficiency of the potential 
execution. They are used in debugging, monitoring and control tasks during the 
execution, and also provide an interface between programming and execution 
environments. The two-level representation strategy introduces a complication, in that 
the ILL representation often has to be automatically generated from the HLL 
representation by a compiler, optimiser or translator. ILL representations are either 
directly compiled to executable code, or a cross-compiler can be used for execution on 
different target architectures. Hardware mappers exploit the ILL representation, so the 
efficiency of the mapping and execution directly depends on this low-level 
representation. Ideally, an ILL, or a low-level neural network representation supports a 
range of hardwares without losing efficiency. The following considerations are 
important in the choice of a low-level neural network specification language:

•  Machine independence - The specification language should be easily ported and 
executed on a number of different target machines.

•  Flexibility - The representation should be easily modified and it should meet the 
requests from the HLL.

•  Clarity and Modularity - Neural network features coded in the representation must 
be easily accessed by the user for debugging, monitoring and control purposes.

• Parallelism - The representation must support implicit and explicit control for 
parallel execution.

• Efficient execution - The representation must facilitate a fast execution on different 
hardwares.

High-level or low-level, there are two alternatives in the design of a neural network 
programming language. Either a new programming language is developed and 
promoted, or a popular programming language is extended with neural-oriented features. 
The design and promotion of a new language is not desirable as it suffers from the "yet 
another language syndrome". Users are reluctant to leam a new language for a new form 
of computation. This is the reason that most general programming environments use 
subsets or supersets of current languages such as Pascal, C or C++. Using C is the most
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popular approach, widely adopted for its flexibility, availability, and its low-level 
features which makes it suitable for exploiting hardware efficiently.

In this chapter, three representation techniques used in neural network 
programming, are analysed with simulation examples. The analysis focuses on the 
ability to capture neural network properties, generality, flexibility and the ease of 
mapping of these representations onto general purpose parallel hardware. As result, a 
matrix-based C library MATLIB is proposed, designed and implemented, and the three 
models are programmed using the library functions. Using MATLIB functions as
building blocks, NETLIB library is developed which consists of the learning and recall
functions of the three algorithms. As part of MATLIB, a number of data communication 
routines are provided to enable parallel simulations and test mapping strategies in the 
course of this thesis work.

5.2. Neural Network Representation Techniques

Three different representation techniques can be used in neural network 
programming. These are:

•  function-oriented,
•  object-oriented, and
•  vector-oriented representations.

Function-oriented representations primarily focus on the functionality of algorithms. 
They are the extensions of the classic algorithmic way of thinking to computer 
programming. Function-oriented philosophy has been popularised by a number of 
procedural languages such as C and Pascal. Task break-down and parallelism are 
feasible within these representations, considering that programs are a list of functions or 
procedures scheduled by a flow chart. Function-oriented representations are useful in the 
algorithm development stage, but they deny access to the low-level and fine-grained 
features of the algorithms which are necessary when mapping onto parallel hardware.

Object-Oriented Programming (OOP) philosophy is one of the recent and most 
powerful trends in general computing. It is based on the idea that the world is made of 
self-contained objects, with their own methods, and computer languages should preserve 
this structure. Currently, C++ is the most popular object-oriented programming 
language. It provides a set of classes, as a basis for objects comprising data and methods. 
If a design follows the object-oriented philosophy, the resulting C++ programs are 
modular, easy to modify and upgradable. The programming task for neural network
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models is easier using an OOP language as a high-level language, and the resulting 
representation also reflects the neural network structure. C data structures can also be 
used in an object-oriented manner. An example of this is presented in the section with 
simulations using Pygmalion’s nC system data structure. In terms of parallelism, OO 
representations have one major drawback; current hardware architectures are not object- 
oriented parallel architectures; they cannot match the fine level of neural network 
granularity with a large number of communications channels between parallel 
processors. The lack of communications facilities hampers the mapping efforts onto 
hardware.

Vector-Oriented representations emerged in computing to exploit vector processors 
and general purpose parallel hardware. Recently, some general purpose, high 
performance commercial programming systems have used these representations in their 
low-level languages. An example is the SKY system provided by Sun Microsystems 
[114]. This system provides a set of low-level vector/matrix-based instructions in a 
library, which are executed on fast vector-matrix multiplier parallel hardware. 
Applications are written in a high-level language such as C or FORTRAN, and they are 
processed by a compiler/optimiser which identifies loops, and generates the vector-based 
intermediate level representation. Executions of these vector arithmetic operations are 
optimised on the target architecture. The SKY system is also an example of a two-level 
representation which is used in general computing.

In the following sections, programming examples of function-oriented, object- 
oriented and vector-oriented neural network representations are demonstrated. The 
advantages and disadvantages of each approach are highlighted in terms of their 
flexibility, ease of mapping onto parallel hardware and feasibility of automatic code 
generation.

5.2.1. Function-Oriented Representations

This philosophy views algorithms as a list of functions or procedures which can be 
further subdivided into simpler tasks, until they are directly represented by the 
instructions of the simulation language. This approach is not concerned with the way data 
are represented, as its main focus is on the methods of processing data.

Typically, neural network data, such as states of artificial neurons, connection 
weights between the neurons, input and output patterns, are represented as one or two 
dimensional arrays. These arrays can be global or local variables, depending on the
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language and programming technique used. Local variables and modular designs result in 
programs which can be easily modified, expanded and debugged. Most application- 
oriented and algorithm-oriented neural network programming environments use C or 
Pascal based languages with added neural-oriented features. C algorithm libraries with a 
number of customised applications and a set of parameterised functions, provide a sound 
basis for neural network programming. C is widely available, well known, provides 
low-level features, and is close to the Unix operating system which most high 
performance workstations run. C is used in all the simulations carried out in the 
structural analysis of the neural networks in chapter 4. As an example of programming a 
neural network model in C, the recall phase for the Hopfield model is presented below:

Function-Oriented Programming with C

Although there are many ways of achieving the same result, to program a neural 
network in C, typically a pseudocode of the algorithm is written. The pseudocode for the 
recall stage for a Hopfield net is as follows:

1 - Allocate memory for input and output patterns, and weights.
2 - Read the fixed weight matrix.
3 - Read an input pattern.
4 - Update the states of all neurons until they are stable.
5 - Output the states.

The fourth step is the core of the Hopfield algorithm. It involves the following 
operations; an input vector is clamped to neurons, and all states are updated by 
multiplying the current outputs of all other neurons with the connection weights, 
summing the results and applying a threshold function to the sum. Then convergence 
test comprises the comparison of the current states with the previous states of aU neurons. 
When convergence is reached the states are reported as outputs.

A pattern recall function written in C is shown in Appendix A.2. In the listing in 
Appendix A.2., the dot_product() function can be executed in parallel for all NEURONS, 
in addition to this, the for loop in the function can also be paralleUsed. Finally, the 
thresholdO function can be executed simultaneously for aU NEURONS. Task 
parallelism is the natural form of parallelism in function-oriented representations. Large 
problems can be divided into smaller tasks, and tasks which can be executed in parallel 
are identified. By mapping these tasks onto separate processors, a parallel execution can 
be achieved. If C procedures are highly interconnected units with little communication
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with other procedures, a small interprocessor communication requirement can be 
expected. But, as the writing of the C procedures are subjective and user-dependent, 
there is no guarantee that any task partitioning operation will result in low interprocess 
communications.

5.2.2. Object-Oriented Representations

It is widely held that neural networks are hierarchical structures, and this structure 
can be reflected in computer programs by using similar data structures. Data structure 
based representations are object-oriented representations in terms of their emphasis on 
data, rather than functions. One major difference is that object-oriented representations 
do not necessarily have a hierarchy, unless specifically enforced. The initial design of 
the data structure is important, and a range of neural network models must be examined 
to build a generic structure. This structure must cover all models in terms of their 
connection topology, data and functionality. The main advantage of this approach is 
that, independent of the neural network model, the data structure remains the same. This 
makes the monitoring, debugging and control tasks much easier. An independent 
graphics program can monitor the data structure during execution and display its data. 
Functions at any level of the hierarchy can be fired by using a graphics based execution 
monitor. The low-level access to data and functions is advantageous if neurons or 
synapses need to be mapped onto fine-grained parallel architectures. Neuron structures 
can be accessed and isolated as independent objects with their particular data and 
methods.

The Pygmalion programming environment developed a machine-independent 
intermediate-level language, nC, for the low-level neural network representation 
[18,147]. nC is based on a hierarchical data structure called system which is presented in 
chapter 3. Object parallelism is possible with nC and, as part of the mapping 
investigations, an automatic low-level object generator codejgen has been developed. 
This program scanned the already initialised nC structure and generated all initialised 
data structures in an ASCII program listing called nC_code. This list of C data structures 
can be compiled and executed using a C compiler, or the data structures can be 
potentially mapped onto a fine-grained parallel hardware. The nC data structure 
representation is a low-level representation and was designed to be generated by 
translating from a high-level language.
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Object-Oriented Programming with nC

Programming an application with the help of the Pygmalion Graphics Monitor is a 
simple task. It involves the calling of the parameterised algorithms from the ILL library 
and initialising the data structures. Programmming or modifying an algorithm, and 
manipulating the nC data structure, on the other hand, is not a trivial task. The main 
difficulty lies in the setting up of the pointers in the hierarchical tree and allocating 
memory for corresponding neural network connections. Programming with the nC data 
structure is a low-level programming task. It first involves the identification of the 
lowest level objects with common functionality. These tasks could be a state-update task 
for a layer, or a weight-update operation for all the synapses in the network. Then, a C 
function is written following the nC parameter passing convention. Finally, the function 
is placed on the hierarchical tree, by setting up the relevant function pointers to it. When 
the system is prompted for execution in the highest level, the pointers activate each other 
hierarchically, and the C code is executed.

Appendix A.3. shows a function which is written to decrement the distance and the gain 
in the SOM. This rule is a simple function that has been made complex by the use of the 
nC data structure. It can be argued that nC was not meant to be for code writing, and it 
was designed to be automatically generated from the high-level language N. But it was 
unavoidable to code in nC in the algorithm development stage for the Pygmalion project. 
In practice, the translation requirement from N  language, also meant that N  had to adopt 
the same hierarchical structure, thus making it similar to nC. In terms of parallel 
mapping, the nC representation targeted fine-grained, neuron-based parallel hardware 
architectures, and it was not suitable for matrix-based general-purpose parallel hardware. 
It would require additional modules such as optimiser/vectoriser to extract vectors and 
matrices from the data-structure representation. Only explicit parallelism was 
accommodated within nC which was applied only to repetitive operations such as for and 
while loops.

5.2.3. Vector-Oriented Representations

The development of vector-based neural network programming languages is a 
natural step, given the fact that most neural network simulations involve arrays of 
patterns, states and weights, and vector operator hardwares are fast, high performance 
devices. Vectorisation would ease the conceptual mapping of algorithms to code, and 
vector/matrix-based representations would be efficiently executed on parallel hardware. 
Defenders of the matrix representation philosophy, hold the view that neural networks
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are matrix-based computational paradigms because of the large fanin/fanout and the fine 
granularity they possess. This is particularly true in the case of the most popular neural 
network algorithm; the Backpropagation model, which was analysed in chapter 4. Other 
neural network algorithms also involve vector arithmetic operations which can be 
represented in a vector/matrix-based language.

As mentioned in chapter 3, the Galatea Neurocomputing project has adopted this 
philosophy, and developed a matrix-based intermediate-level language, VML, with the 
main objective of exploiting matrix-based general-purpose hardware boards efficiently.

Vector-Oriented Programming with VML

The same steps are followed in the programming of neural network models in C. A 
pseudocode is written, which is based on the functionality of the algorithm, and VML 
rules are written using VML I/O, control and execution statements. The resulting code is 
a compact, C-like program which is easy to code. The coding of the Hopfield, the SOM 
and the Backpropagation models took a short time. These VML based simulations ran 
successfully, demonstrating the viability of the technique. An example of VML listing is 
shown in Appendix A.4.

The main weakness of VML is that it has to accommodate all user requirements in 
the language. Therefore, it is in continuous competition with a language like C. The 
parser and the interpreter have to be modified every time a new statement is introduced. 
As the VML is intended to be generated automatically from V, access to data is not 
straightforward from the high-level object-oriented language in which applications are 
originally coded. To extract the real-world data, a strategy and a symbol correlation table 
must be used every time data is monitored. In all aspects, the VML representation is a 
procedural representation with data grouped together in a tightly coupled vector form for 
the convenience of fast execution. The neural concept about the algorithm is totally lost 
in this representation. As there are no concepts such as a neuron or synapse, this 
representation is not suitable for mapping neural networks onto special-purpose, neuron- 
oriented, massively parallel architectures.

5.3. MArUB Matrix Library

The analysis of neural networks in chapter 4 indicated that the most common 
operations between the three models can be captured in vector-matrix operations. These 
operations were mainly vector arithmetic operations with some neural network specific

92



functions applied to vectors. One of the goals of this thesis has been to achieve a generic 
representation which is: (i) capable of capturing neural network properties, and (ii) 
suitable for general-purpose parallel hardware mapping. Here a matrix-based C library, 
MATLIB is proposed to meet these requirements.

An efficient way of developing neural network simulations is to use parameterised 
libraries. Source libraries are particularly valuable as they are open, modular, flexible 
and expandable. Using C as the source language makes libraries accessible to other 
programmers, preventing the repeat of the similar programming efforts. Users can build 
their applications easily by calling these routines in their applications. As mentioned in 
chapter 2, C Algorithm Libraries provided as part of the major neural network 
programming environments are the most popular programming tools. Another strength 
of using the library functions is that it is fundamentally an object-oriented approach. 
Library functions are multi-purpose modular units communicating with the external 
world through a list of parameters.

Simulations in VML (Version 1.0) show that the language is simple, clear and 
compact representation of neural network models. The experience with VML showed 
that programming neural networks, using matrix arithmetic operators, is easy and 
conceptually acceptable. The language can be used for other programming domains with 
fine granularity. Furthermore, the VML functions can be optimised for general-purpose 
parallel architectures, and executed with a high performance. The main problem with 
VML is that it is a new language with a syntax, parser and a set of operators. A set of 
matrix-based C functions would have been a better choice for neural network and 
general-purpose programming.

MATLIB library functions have been designed exactly for this reason. C is chosen 
as the library language for its wide availability and accessibility. MATLIB functions are 
C routines, and can be modified and upgraded by anyone with the knowledge of C. The 
functions are vector, matrix operators, neural network specific functions and data 
communication statements. A complete list of the MATLIB functions and their 
arguments are presented in Appendix B.

5.3.1. Functions

An incremental approach has been used in the development of MATLIB. First, the 
common routines have been developed which are sufficient to represent the three models; 
the Hopfield, SOM and Backpropagation. MATLIB programs for the three algorithms are
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compact, clear representations which are easy to modify and update. The listings of 
these algorithms are provided in Appendix C. The MATLIB functions are divided into 
four categories;

•  data operators
•  arithmetic operators
•  neural operators
• communications operators

The data operators are memory management, input/output, data assignment and 
copy related functions. Examples are, matrix definition (jnatdej), matrix copy (mcpy), 
vector (or row) copy (vcpy), column copy (ccpy) operators. These operators are handled 
in a different way on different hardwares. For example, on conventional systems a 
matrix assignment operation can be carried out by passing the pointer to that matrix; the 
same operation would involve transmitting the matrix data on a distributed memory 
multi-processor system. The use of data operators in the three models is shown in Table 
5.1.

Mneumonic Description Hop SOM BP
matdef matrix definition / X X
matld matrix load / X X
matsv matrix save / X X
matsh matrix show X X X
vcpy matrix rows copy X X
mset matrix element set X X
sval get matrix element X
mtra matrix transpose X
mran matrix randomise X X

Table 5.1. The use of MATLIB data operators

The arithmetic operators used by the three algorithms are; matrix addition (madd), 
matrix subtraction {msub\ matrix multiplication (mmul) and a number of submatrix 
versions of these operators, which can operate on submatrices within given row or 
column references. The use of arithmetic operators are presented in Table 5.2.
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Mneumonic Description Hop SOM BP
mmul matrix multiplication / X
vadd matrix row addition X X
msub matrix subtraction X X
vsub matrix row subtraction X X
memu matrix element multiplication X
mmax matrix maximum X
mmin matrix minimum X
mobs matrix absolute X
mavg matrix average X X
mscm matrix scalar multiplication X X

Table 5.2. The use of MATLIB arithmetic operators

In addition to the above, a number of functions are developed to match the so-called 
‘neural’ functions of the three algorithms. These are: application of tangent hyperbolic 
or sigmoid type of logistic functions, or their derivatives to elements of a matrix, 
calculation of RMS of a matrix {mrms\ and the SOM specific lateral matrix update mlat 
function. Table 5.3 shows that the number of neural operators required to program the 
three algorithms is relatively low, and this is an advantage in the realisation of these 
functions on the potential hardwares.

Mneumonic Description Hop SOM BP
mtan apply tanh to matrix X X
dtan apply derivative tanh to matrix X
mrms matrix root mean square X X
mlat lateral weight update for SOM X

Table 53, The use of MATLIB neural operators

The aim of this separation of data, arithmetic and neural operators, is that these 
different categories of operators can be executed in different parts of a potential Virtual 
Machine. The Communications Units of a VM is the place for the data operators 
execution. The arithmetic operators can be optimised on the specific Execution Unit or 
the accelerator board of a VM. In fact, current general-purpose hardware developers 
provide most of matrix arithmetic functions as library routines. Intel 80860 and 
TMS320C40 Digital Signal Processors are such examples. The main difficulty is in the 
execution of neural operators. Currently hardware developers are working on the 
efficient implementation of these functions of parallel hardwares. As part of the Galatea
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Project, Siemens and Philips are currently developing Virtual Machines for the efficient 
execution of these library functions. For the time being the neural operators can be 
executed sequentially on the local CPUs of VMs. This separation of neural operators, is 
the justification for the Virtual Machine philosophy of local CPU and parallel accelerator 
board combination.

In this thesis simulations of MATLIB programs are used for assessing mapping and 
execution strategies. Developing MATLIB simulations involve the following steps; 
programs are edited, using available library functions, then they are compiled by using 
standard C compilers, and finally run like any C program. As MATLIB is an open- 
system, new routines can be added easily, using the same parameter passing mechanism. 
When programming a new algorithm, if a specific matrix operation is not in the library, 
either the library is extended, or normal C functions can be used in conjunction with the 
MATLIB operators. MATLIB programs can also be ported onto different target machines 
by using cross-compilers generating hardware-specific code. In addition to eliminating 
parsing and interpreting, the use of C libraries also meant that debugging is a known 
process for the standard C programmer.

5.3.2. Parallelising M ATLIB

A number of data communications operators have been included in MATLIB to 
enable parallel simulations on the Local Area Network at UCL. Standard TCP/IP sockets 
have been used to develop a number of simple functions that can be called in C programs 
with MATLIB functions. These functions are used to open a server, to connect to an open 
server, send integer or double precision values or matrices through the open server. 
Workstations connected to the Ethernet network can then be used, as parallel processors 
or as simulations of Virtual Machines.

The following two functions are developed to open a socket by the server, and to 
connect to an open socket by the clients;

•  opensocket ( socket_array_addr, total_VMs ); This function opens a TCP/IP 
communications channel, waits for the number of clients defined in the total_VM 
and returns the socket addresses in the integer array socket_array. It is used by the 
server or the scheduler program. Each client can be then addressed using array 
reference, such as vm[I], or vm[2] etc.
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•  consocket ( socket_id, client_no ); This function is used by the clients to connect to 
the already open socket. The socket_id is used to address the scheduler throughout 
the program. Parallel programming with MATLIB is simple.

A list of the communications operators are provided in Appendix B. These 
functions are blocking get_ and put_ statements as they block program flow until data are 
read or written respectively. put_ statements don’t block the execution until the buffer is 
full, but all get_ statements are blocking they halt operation until the request is satisfied. 
In the use of the get_ statements, these statements must be matched by put_ statements at 
the other end.

In addition to the blocking and matching data exchange commands a passive server 
has also been developed which uses the following routine.

•  servis ( socket_id ); This routine in a loop scans all open socket links and checks 
whether there are any data transfer requests, servis function needs a non-blocking 
read statement. A blocking read would result in the halting of all conununications 
between the message passing modules.

Clients use the passive server with the help of a new data transmission command:

•  post ( socket_id, destination, matrix_name ); This command uses the open socket to 
send data to a third party using the passive server. The passive server parses the 
post request and forwards data to the desired destination.

5.4. A®ÏX/iB Neural Network Library

The MATLIB library functions are extended to a parallel neural network library, 
NETLIB. This incremental approach of building high-level libraries from simple 
building blocks is a modular and plausible method. The library allows neural network 
functions to be called from C programs by setting up a number of parameters, without a 
detailed knowledge of neural network progranuning. Currently, NETLIB consists of the 
recall and training functions of the Hopfield, the SOM and the Backpropagation models.

hrecall ( Inputs, Weights, Outputs, Iterations );

The Hopfield recall function requires Inputs and Weights matrix data structure pointers, 
and the maximum number of iterations allowed for convergence of a single pattern. The 
Outputs matrix contains the system’s response.
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slearn ( Inputs, Weights, Outputs, GridDimension,
Iterations, DisStart, DisStep, DisEnd,

GainStart, GainStep, GainEnd );

srecall ( Inputs, Weights, Outputs );

These two functions are designed for the learning and recall phases of the SOM. The 
slearn function requires the Inputs, the initial Weights matrices and a number of 
parameters for network training. These parameters are the dimensionality of the output 
grid, the maximum number of training iterations, the start, decreasing step and the end of 
the neighbourhood distance, the start, decreasing step and the end of the gain (or the 
learning rate). The trained weights are obtained in Weights matrix and the system 
response for given Inputs are returned in Outputs. The srecall^ on the other hand requires 
only Inputs and Weights matrices, and return the Outputs. The topology of the network 
is hidden in the dimensions of the matrices involved in the recall procedure.

bplearn ( Inputs, Targets, Weights 1, Weights!,
Iterations, Gain, Momentum, Tolerance );

bprecall ( Inputs, Outputs, Weights 1, Weights! );

Tuned for a three layered Backpropagation topology, bpleam requires. Inputs, Targets 
matrices, initialised weight matrices (Weights 1, Weights!), the maximum number of 
Iterations, the Gain (or the learning rate), the Momentum term, and the Tolerance level 
for error in learning. The weight matrices could be either randomised values for training 
or partially trained weights for retraining. After the training the network’s response can 
be obtained by calling the bprecall function, which returns Outputs matrix.

As the algorithm library functions are built by using the MATLIB functions in the 
first place, the MATLIB functions can also exploit general-purpose parallel architectures. 
Complete networks can be mapped onto independent processors or VMs which are tuned 
to execute matrix-based arithmetic operations. Three levels of parallelism can be 
realised by using the NETLIB functions together with parallel MATLIB functions. Firstly, 
on the highest level, NETLIB functions can be executed in parallel by mapping complete 
networks onto parallel processors. Secondly, on the intermediate level, MATLIB 
functions within each NETLIB function can be parallelised. Finally, at the operation 
level each MATLIB function can be executed on a parallel systolic array of processors.
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Exploiting the highest level parallelism, complete networks can be executed in 
parallel or data can be pipelined through a series of neural network algorithms. NETLIB 
allows various combinations of networks to be built and experimented on as hybrid 
neural networks. One major gain can be made by using network level parallelism: the 
problem of neural network design can be computationally solved. This is done by 
simulating a number of parallel networks initialised with different parameters, competing 
to solve the same problem. As a result of this evolutionary competition, optimum 
network design could be achieved. Similarly, parallel networks can be trained to 
specialise in different parts of a complex training dataset, thus reducing the training time.

5.5. Summary

In this chapter, a number of neural network representation techniques have been 
analysed with programming examples, and the strengths and weaknesses of each 
approach were discussed. Matrix-based C hbraries have been put forward as clear, 
modular representations for neural networks, facilitating mapping and efficient execution 
on high performance, general-purpose, parallel platforms. C libraries MATLIB and 
NETLIB have been designed and developed and the three major models have been 
simulated using the functions of these libraries. The analysis and discussions in this 
chapter conclude that:

Function-oriented programming techniques represent algorithms as a sequential set of 
tasks or procedures. Their use is widespread in the test and design stage of algorithms. 
In this class, C is the most popular neural network programming language amongst 
programmers. The power of C stems from its availability and the popularity of its low- 
level features. Using these low-level features, it is possible to program in a function- 
oriented or object-oriented manner.

Object-oriented representations provide a conceptually plausible framework for neural 
network programming. Object-oriented programming languages are suitable as high- 
level languages providing a user-friendly environment for programming. Most high- 
level languages are based on the best known OOP language C++. A less pure approach 
is to use hierarchical data structures and to build a generic neural network tree structure, 
consisting of layers, clusters, neurons and synapses. In fact, C++ provides a pre­
processor which translates objects and classes of the language into C data structures. The 
C representation is then compiled and executed on a sequential execution environment. 
A new trend in this area is towards parallel object-oriented languages that allow users to 
control parallelism explicitly or implicitly. Object-oriented and data structure-based
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representations facilitate mapping neural networks onto neuron-based massively parallel 
architectures and special-purpose neurocomputers.

Vector-oriented representations capture properties common to most neural network 
algorithms and provide a suitable environment for executions on general-purpose 
neurocomputers and fast vector based parallel architectures. Galatea’s VML is a good 
example, but it suffers from "yet another language" syndrome. MATLIB on the other 
hand is similar to VML, with the added advantage that it provides flexibility and openness 
as it consists of a set of C functions. MATLIB functions are studied in four categories 
(Appendix B). Data and communications operators can be implemented on current 
hardwares. Most matrix arithmetic operators are provided by parallel hardware 
suppliers, and the high performance execution of neural operators can be possible on 
programmable parallel processor arrays. The three neural network models which are the 
focus of this research, have been simulated using the MATLIB functions (Appendix C). 
The MATLIB functions are grouped together forming a high-level library, NETLIB, 
which facilitates neural network programming. Parallel features of MATLIB enable the 
testing of parallel mappings and simulations on a SUN LAN. Parallel simulation results 
from this environment, are presented in chapter 8.

The design and development of MATLIB meets some of the objectives set for this 
research work. MATLIB captures properties common to the three models, it is flexible 
and modular, and it promises a high performance execution, through automatic mapping 
on general-purpose parallel hardwares which is the main focus of research.
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Chapter 6

Mapping Strategy

This chapter presents motivations and design considerations for a generic 
Mapper. Mapping techniques are reviewed, and computational 
optimisation is chosen as a general and flexible strategy for mapping 
neural networks onto parallel hardware. A Computational Analysis Tool 
is designed to detect parallelism in MATLIB representations, an 
Automatic Parallel Mapper is put forward to automate mapping.

6.1. Design Considerations
In the wake of proliferating neural network models and applications, current 

sequential hardware platforms are not able to match the increasing requirements for 
faster processors and larger storage capacities. Using parallelism, general-purpose and 
cost-effective execution of neural networks can be achieved. A major difficulty in this is 
the parallel programming or mapping onto parallel hardware. Ultimately, what is desired 
is a mapper with a generic mapping strategy which is capable of automatic generation of 
parallel code from sequential representations. The following considerations are 
important in the design and implementation of such a mapper.

High Performance - Achieving high performance is the first objective in the design of a 
mapper. The high performance requirements vary in the training and recall phases of 
neural network simulations, depending on the data size, the model and the problem 
domain.

In training, fast convergence is required, especially in the research and development 
area, where a series of tests is carried out to establish, verify or benchmark a model or an 
application. Financial forecasting applications involving real-time training are such 
applications, as networks are expected to adapt and respond appropriately. For example, 
financial forecasting simulations with the Backpropagation model, reported in chapter 4, 
require the testing of many network configurations and parameters until acceptable 
results are obtained. This is partly because of the difficulties in setting up the correct 
parameters for the Backpropagation model, and partly because the Backpropagation 
model is notoriously slow in training. Indeed, most neural network simulations are 
computationally demanding during training due to the differential equations involved in
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their weight update routines. These equations are often expressed as difference equations 
in computer simulations which require repetitive operations. Fast processors are needed 
to satisfy this computational demand. The high level connectivity of neural network 
architectures are often simulated on conventional computers by using Random Access 
Memories. Large and high speed RAMs are necessary to improve the performance of 
simulations on these machines [6]. In addition to these requirements, simulations on 
distributed parallel systems require high-speed, wide-band interprocessor 
communications links.

In recall, real-world problems often require a real-time response. This is a level of 
performance which is acceptable to humans. A pattern is presented to a trained network, 
a single pass execution of the network takes place and a quick response is expected. 
When there are many patterns, the accumulative performance is also needs to be quick. 
Vision and speech applications are particularly demanding in recall, as networks must 
respond in very short periods. A neural network speech recognition system has to 
correctly recognise speech within milliseconds, otherwise the solution would be 
worthless. Vision problems involve the processing of large grids of data matrices as 
patterns for neural networks. Another demanding example is the real-world 
implementation of the Hopfield pattern recognition application, reported in chapter 4. 
The telecommunications system implementation of this application requires convergence 
rates in recall, in the level of milliseconds or microseconds.

Generality - The second consideration is the generality of the mapping approach. A 
proposed mapping strategy must be applicable for a range of neural network models, 
applications and parallel hardware platforms. The strategy should also be easily 
extended to other neural network models and applications, and onto heterogeneous 
hardware platforms. If the strategy is general enough, it could be applied to fine-grained 
non-neural network applications such as gr^hics-based problems.

Parallelism - High performance must be achieved through the efficient exploitation of 
parallel resources. Three types of parallelism which are applicable to neural networks 
are considered; pattern parallelism^ data parallelism and task parallelism.

Pattern parallelism, also called training parallelism, is a way of speeding up the 
training process when large datasets are involved. Large datasets are divided and 
distributed over a number of parallel processors, which run identical neural network 
simulations. This method is applicable to a number of models which can carry out batch 
weight updates, during training. With the batch updates method, the weight changes are
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accumulated until all patterns are presented, then the changes are averaged and the 
update takes place. In a parallel system, each network can be trained on a subset of data, 
on an independent processor which communicates only the weight changes with a central 
processor, at regular intervals. As a result, a 100% parallel load balance can be achieved 
with little communications requirements. But this method cannot be applied to all 
models as it relies on batch weight updates, and this form of parallelism cannot be used 
in real-time recall operations.

Data parallelism involves the partitioning and distribution of the neural network 
structure. Structural partitioning examples shown in chapter 4 are examples of this type 
of parallelism. Object-oriented representations and fine-grained parallel hardware 
platforms are more suitable for data parallelism, where objects or groups of objects from 
the representation domain can be mapped onto message-passing, parallel distributed 
processors.

Task parallelism, on the other hand, is the natural consequence of using function- 
oriented representations. These representations can be parallelised by detecting 
concurrent, independent task paths and generating task parallel or pipelined code. Due to 
the data dependencies between tasks, this type of parallelism is more suitable for coarse­
grained parallel architectures, where groups of tasks can be pipelined through the parallel 
processors. Although, it can be useful in training, its application to the recall phases is 
limited. Data parallelism and task parallelism are examined further in this chapter and 
communications costs for these types of parallelisms are parameterised.

Scalability - Increasing the number of parallel processors in the system should result in a 
faster execution.

Flexibility - Mapping and execution strategies must be flexible for update, modification, 
future expansion and manipulation by the user.

Modularity - Another consideration is the modularity of the mapping/execution strategy. 
Applications which require multiple neural or hybrid solutions are recently on the 
increase. A modular design would allow the interfacing of multiple networks, genetic 
algorithms and expert systems in a framework as independent and integrated modules. 
Modularity is necessary both in software and hardware environments, and the mapping 
strategy must adopt and exploit this.

Automation - The final consideration is to achieve the parallel mapping automatically. 
This is particularly challenging considering the number of models, software
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representations and hardware platforms. Various degrees of automation can be 
considered, such as manual, semi-automatic or user directed mappings which may be 
necessary in some cases, but a fully automatic mapping, resulting in high performance 
parallel execution is the ultimate target.

6.2. Mapping Techniques

A number of research groups have mapped popular neural network models onto 
general-purpose parallel processors. These hardware platforms include massively 
parallel processor arrays, one and two dimensional systolic arrays. Digital Signal 
Processors (DSP), Transputer arrays, and hypercube processor architectures. Most of this 
previous work involves mapping specific models onto specific hardwares aiming for high 
performance. The Backpropagation model is the most popular model and has been 
simulated on a number of parallel hardware platforms.

The Backpropagation model has been simulated on an SIMD architecture, the 
Connection Machine, and later, on its improved version CM-2 [155]. Simulations on 
CM-2 make use of the 2 dimensional, nearest neighbour communication link facility 
provided by the system. Similarly Watanabe et al. reported an implementation of 
Backpropagation on the massively parallel cellular array processor AAP-2 [149], which 
is also a 2 dimensional, 256x256, mesh-connected array of processors. The performance 
of AAP-2 on the Backpropagation model reaches 18 MCPS (Million Connections Per 
Second). Both techniques distribute the Backpropagation neurons onto SIMD processors 
are examples of structural or data parallel mappings. Other SIMD examples are the 
implementation of the Backpropagation model on the CNAPS Neurocomputer chip [109] 
and HNC’s work on linear floating point array SNAP machine [111].

One of the early reports of successful mapping of the Backpropagation model onto a 
MIMD processor array, came from Carnegie Mellon University [120]. This work 
reported the mapping of a Backpropagation network onto a linear, 10-processor array 
Warp machine. The results show the simulator is able to perform at 17 Million CPS. 
Two different mapping techniques have been used on the Warp machine; the first one 
involves the partitioning or spatially mapping of the Baclq)ropagation network structure, 
and the second technique involves pattern parallelism, which reduces the training time 
considerably. In this case, the dataset is divided into 9 subsets and distributed over 9 
Warp processors. Each one of the 9 processors runs identical Backpropagation networks, 
while the 10th processor updated the global weights and pumped the new weights 
through the network.
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An interesting example of the parallel mapping of the Backpropagation model is the 
distribution of the network over the Intel iPSC/860 hypercube [79]. The network 
partitioning (data parallelism) technique is applied onto the MIMD architecture of the 
Intel machine. An increase in the number of processors results in a higher performance 
reaching 11 MCPS with 32 processor. This work also reports complications in data 
parallel mapping of Backpropagation networks with odd number of neurons, because of 
the difficulties in achieving a load balance. Another example of mapping on the Intel 
iPSC/2 machine focuses on the decomposition of networks based on a computational 
load analysis [56].

A number of research groups have mapped Backpropagation networks onto 
general-purpose, high performance, digital signal processor (DSP) arrays. Iwata et al. 
report an implementation of the Backpropagation on a 4 DSP ring coupled architecture, 
Neuro Turbo [78], which is an neural network accelerator board for the NEC personal 
computer series PC98. The mapping technique focuses on the mathematical equations 
involved in a Backpropagation simulation. The equations are distributed over the 4 
processors and executed in parallel. The 4 processor system produces 2 MCPS, but the 
system is scalable and produces 1.8n MCPS for each one of the n processors in the 
system.

The self-organising feature maps have also been mapped onto parallel hardware. 
One of these mappings is an example of pattern parallelism [103] where a training 
dataset is divided into 10 processors of the Warp Systolic computer. This work adopts 
the batch-weight update method for the SOM to reduce the interprocessor 
communications load. It is also reported that this approach sometimes produces 
unexpected results, such as maps folding, instead of an orderly distribution of input 
vectors in the output grid. Another example of mapping the SOM is an attempt to 
parameterise the mapping process [68]. It involves structural partitionings similar to the 
mappings suggested in chapter 4. One-dimensional and two-dimensional processor 
arrays are explored, and the work shows that the system scales for large networks.

Transputers have been used in a number of topologies as parallel hardware 
platforms for neural networks [44,112,113,154]. The SOM has been mapped onto 
Transputer arrays [136]. This work makes use of 16 Transputers in a ring topology; the 
system is said to be scalable, as the number of Transputers increases, the system 
performance increases.
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Hopfield nets also have been mapped onto Transputer-based neurocomputers 
[83,138]. These simulations use structural network partitioning techniques and distribute 
nodes of the output grid across a number of processor arrays.

Conclusion

These techniques are model-, hardware- and sometimes application-specific. Some 
generic approaches have been suggested [94,95], but they do not address generic 
representation issues. Most of the techniques achieve a high-performance by partitioning 
neural network structures, or dividing training patterns to identical neural networks 
running on a number of parallel processors. Sometimes these mapping techniques 
modify algorithms, so interprocessor communications are reduced. These techniques are 
not general, flexible, nor can they be automated. Following the neural network analysis 
in chapter 4, and the assessment of representation techniques in chapter 5, this thesis has 
established a matrix-based generic representation for a range of neural network models 
and applications. This generic representation is now supported by a generic mapping 
strategy.

6.3. The strategy
The mapping strategy cannot be seen in isolation, as it is closely linked to the 

execution and the representation strategies.

Execution Strategy - In chapter 2, two possible paths for neural network execution 
were presented; special-purpose and general-purpose neurocomputers. Special-purpose 
neurocomputers often emulate the neural features on hardware, aiming for high 
performance for specific models and applications. General-purpose neurocomputers, on 
the other hand, provide a high performance execution for the computations involved for a 
wide range of neural network models and applications. The general-purpose execution 
philosophy is more general, flexible and cost-effective.

The execution strategy adopted in this research is based on exploiting general- 
purpose parallel processors in the execution of neural network computations. The overall 
system is a GPNC, with a comprehensive programming environment and a number of 
independent, high performance parallel processors. These general-purpose modules 
contain local memory and accelerator board-based processors, which communicate 
through a message passing protocol. A bus communications architecture is presumed as 
it would provide the most flexible interprocessor communications scheme. The system
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scales well; ie when the number of processors are increased, the system performance also 
increases.

Representation Strategy - The neural network analysis in chapter 4 shows that the 
most common operations in neural network simulations are computationally intensive, 
repetitive multiplication and addition operations, with some neural-specific functions. 
Most of these operations could be abstracted in a vector-oriented representation. In 
chapter 5, a matrix-based library was designed to show that most neural networks can be 
represented using simple vector/matrix arithmetic operations. General-purpose 
neurocomputers provide high performance execution platforms for these vector/matrix 
operations. Using a number of parallel general-purpose devices to increase performance 
is a cost-effective and scalable approach. This solution requires efficient mapping 
strategies to partition and distribute neural network representations across a number of 
parallel modules. The main duty of a mapper is to exploit these increasingly parallel 
environments. Matrix-based representations have been chosen as they are able to capture 
computationally intensive neural and non-neural characteristics, and they are suitable for 
general-purpose parallel hardware platforms.

Mapping Strategy - The mapping strategy is to design a mapper as a computational 
optimiser process aiming for a high performance, general, flexible and efficient 
execution. Although the strategy is global, the mapping efforts in this thesis focuses on 
the optimisation of the use of a small number of powerful parallel computers, as modules 
of a general purpose neural computer. This mapping strategy has a number of 
advantages. The main advantage is that it is the most general approach, ie the strategy 
can be applied to other problems with little change. Secondly, once the problem is 
defined as an optimisation problem, a number of optimising approaches can be applied. 
These solutions range from the straightforward computational cost analysis to the use of 
neural networks or genetic algorithms. Parallelism introduces a new computational cost; 
communications costs. The optimiser mapper aims for a high performance execution by 
minimising:

1 - Processing costs through achieving a load balance.
2 - Communications costs.

The mapper achieves its task by projecting many possible partitionings of the neural 
network representation, deciding on an optimum partitioning and distributing the 
representation onto parallel hardware. The projection operation involves the calculation 
of potential processing and communications costs for the possible parallel mappings and
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execution.

This chain of execution, representation and mapping strategies can be viewed in the 
context of a General Purpose Neural Computer. This framework contains a coarse 
number of Virtual Machines, and each VM contains a local CPU and a fine-grain parallel 
processor array. Parallel mapping is necessary in both levels: (i) at the high level, neural 
network representations are mapped onto a number of VMs, and (ii) at the low level, 
within the VMs, matrix-based instructions are mapped onto a parallel processor array.

The mapping strategy developed in this thesis aims to partition neural network 
representations to a coarse number of parallel VMs. Although similar requirements are 
valid within the VMs, this level of mapping is a hardware design issue, as it involves the 
optimisation of the matrix-based operations on parallel processor arrays with specific 
memory and communications characteristics.

Parameters of the Mapper

A number of parameters play an important role in the mapping decision for 
parallelism. These parameters are application, model, representation and hardware- 
related.

• Application-related parameters are directly linked to the problem domain. Some 
problems require single domain neural networks, and others can be solved on multi­
domain, modular or hybrid systems. As a result, parallelism may be required at the 
highest level; the application or the network level. Cooperating or competing networks 
are examples where parallelism is required at this level.

•  Model-related parameters are hidden in the connectivity, functionality and 
sequentiality of neural network algorithms.

Connectivity - of a neural network can be treated separately from the functionality 
of the network. It is the definition of rules relating to operations such as copying or 
modifying data, between the different parts of the network. For most algorithms, the role 
of connections is a simple copy operation, if the multiplication by weight operation is 
included as part of the processing element’s functions. In pruning and growing 
networks, the connectivity is treated as an active object with a capacity for expansion and 
self-modification. This approach also allows connectivity to be more complex than a 
copy operation. In the case of matrix-based representations, the connectivity information 
is expressed in the dimensionality of the matrices that describe the network topology, and
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these matrices are treated like any other data matrix.

Functionality - describes the operations involved within the processing elements or 
the nodes of a neural network. These operations may be simple scalar arithmetic 
operations or complex functions depending on the complexity of the algorithm. In 
hierarchical or object-oriented representations, functionality can be described in various 
levels of granularity. Matrix-based representations focus on the overall functionality of 
the algorithms, rather than the fine-grained description of the processing elements.

Sequentiality - defines the temporal relationship between different functional 
modules. This relationship is often implicitly expressed in the order of the instructions in 
computer simulations. In C, VML and MATLIB representations the program flow 
indicates the sequence of instructions. In contrast to sequentiality, parallelism can be 
instructed either explicitly, or sequential programs can be analysed, concurrent paths are 
detected and parallel sections of code can be generated. "

• Hardware related parameters comprise; granularity, communications scheme, and 
processor speed and memory.

Granularity - describes the hardware platforms with the number of processor they 
contain. On the one extreme, there are massively parallel architectures comprising 
hundreds of simple processors, on the other, there are coarse-grained or single processor 
architectures.

Communications Scheme - is possibly the most important parameter in the parallel 
mapping. The interconnection topology of the parallel processors, communications 
bandwidth and speed must be evaluated in parallel mapping. These characteristics can be 
obtained from the manufacturers.

Processor Speed and Memory - directly determine the efficiency of the execution. On a 
parallel architecture, the processors’ performance, local memory capacity, and memory 
access times must be considered. These features are also provided by the manufacturers.

6.4. Cost of Parallelism

Data and task parallelisms, are discussed below in terms of the communications 
costs they introduce, in an attempt to parameterise these costs and automate mapping 
decisions.
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Data Parallelism

A data partitioning example, to describe the communications costs, is as follows. 
Let us consider a matrix operation involving the element by element multiplication of 
two matrices, executed on sequential hardware. This operation has fine-grained 
components such as elements of the first matrix, and the elements of the second matrix 
that are multiplied. The matrix operation can be separated into subcomponents involving 
a number of multiplications of the submatrices down to the element level, which would 
involve the multiplication of two scalars. The submatrix element multiplication 
operations can be distributed and executed simultaneously on a number of parallel 
processors, as they don’t have data dependency. The results can be reassembled 
producing a single result matrix, which would be identical to the result obtained by the 
sequential execution. If the operation can be evenly chopped and distributed, a balanced 
load on similar parallel processors would take an equal amount of time. The distribution 
of the subcomponents and the reassembling of the results would be the communications 
costs on the parallel execution (Figure 6.1).

tIO t03 t30toi t02 t20

Server

Figure 6.1. Communications Costs in Data Parallelism

To parameterise the problem, consider that a matrix operation takes T seconds on a 
sequential computer, and the distribution of the submatrices onto 3 identical parallel 
processors takes ^oi, 0̂ 2 , hs  seconds, respectively (Figure 6.1). Assuming 
divisibility by 3, a parallel execution on similar processors would take T/3. Finally, 
reassembly costs for the results are fio, t 20, and 3̂ 0 * The total computational cost for the 
parallel execution can be estimated as;

^  = ^ 0 1  + ^ 0 2  + 0̂3 + ( T/3 -  to2 -^03 ) 4-̂ 10 4- 2̂0 + ^ 3 0

Depending on the total cost, a decision can be made to partition or not to partition the 
instruction into parallel components. Although a sequential server is assumed in this 
example, a concurrent server would present a similar problem. In that case, the
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simultaneous transmission of the submatrix data from the host to/from the parallel 
processors must be considered, and these would be constrained by the bandwidth limits.

Task Parallelism - Pipelining

Instruction pipelining is a way of speeding up repetitive operations. It is used 
extensively on recent high performance hardware platforms such as RISC architectures. 
A sequential program can be pipelined through a linear array of processors. A pipeline 
can be organised on systolic array processors with one instruction per processor, or data- 
independent sections of code can be identified and mapped onto each processor of the 
array. There are two considerations for setting up a pipeline:

1 - The section of code must have a repetitive set of operations.

2 - The section must have one-directional data-flow.

Suppose that a section of code containing 3 instructions, is repeated N  times, and it 
has only a forward data-flow. Assume that each instruction on the sequential host takes 
TI, T2 , and T 3  seconds. Repeating the executionN times takes:

iV* ( 7 1 + 7 2  + ^ 3 ) seconds

Let the communications costs for the transmission of data and arguments between the 3 
processors and the host, be 0̂ 1 , ^1 2 , ^ 2 3  and ^ 3 0  (Figure 6.2). Assuming all processors 
and the host are identical and processing costs are bigger than communication costs, the 
pipelined execution would last:

= ^ 0 1  + ^ 1  + ^ 1 2  + ^ 2  + 2̂3 + ^ 3  + 3̂0 + ( ^ - 1 ) * max ( T2 , T3 )

The partitioning/mapping decision can be based on this calculation. An even load 
balance, coupled by minimised communications requirements can result in reduced 
execution times, especially when a high repetition rate {N) is involved. Loops with 
reverse flow data paths cannot be pipelined, as the beginning of the loop requires data 
from the end, and this would block the data flow in the pipeline.

Both types of parallelism can be guided by explicit instructions from the 
programmer who knows a near optimum partitioning. An example of this is, the nC PAR 
statement which instructs the compiler that the following operation can be executed in 
parallel. Alternatively, in task mapping, vectorisers, compilers or optimisers can be used 
for the automatic generation of parallel code from sequential representations. Fully
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Figure 6.2. Communications Costs in Task Parallelism

automatic mapping is one of the objectives of this thesis. Based on the cost analysis 
calculations outlined above, a Computational Analysis Tool and an Automatic Parallel 
Mapper are put forward to achieve automatic mapping.

6.5. Computational Analysis Tool

As the basis for parallel mapping is the computational execution cost, a 
computational analysis tool (CAT) has been developed to calculate all aspects of 
processing and communications costs. Using this tool, a line by line, and overall cost 
profile is generated without executing the code. The profile can be used as the basis for 
data or code partitioning for data parallelism or instruction pipelining.

To profile MATLIB programs, first, a computational costs lookup table is set up by 
executing MATLIB functions on the potential hardware, and the processing cost for each 
call is modelled. After this, CAT can estimate the computational cost for any algorithm 
as long as the algorithms are written, using MATLIB in a restricted syntax format. These 
restrictions are applied to ease the parsing, and to be able to calculate computational 
costs during compilation time. Below are the list of these constraints on the MATUB 
definitions which must be followed for processing by CAT:

1 - Programs must be written by using MATLIB functions. If new matrix operators are 
added to the library, their estimated unit computational costs on the potential hardware 
must be added to the computational look-up table.

2 - Programs must be written in single C main function listings, with no rule hierarchy. 
Data definitions and execution statements must be kept on top of the the same file.

3 - Each MATLIB (or C) statement must be typed on a separate line. This is a requirement 
to ease the parsing operation, to be able to generate a line-by-line computational profile
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and to allow a line-by-line code partitioning for task parallelism.

4 - Only ‘for’ loops with constant loop indices are allowed. These constants can either be 
defined at the top of the file as ‘int’, or scalar values can be used directly. This enables 
the calculation of the number of repetitions involved in each loop. In fact, this is not too 
restricting, as in practice, most of the loop indices relate to the network^topology which is 
defined at the beginning of the execution. Often, the only unknown loop parameter is the 
number of iterations to reach the convergence. This is not a big problem, as a large 
enough number of iterations can be assigned at the beginning and the loop can be broken 
if the convergence is reached, earlier than estimated.

5 - Only ‘if’ control statements are allowed. This is often sufficient for checking 
convergence and quitting the execution when convergence is reached.

6 - ‘for’ loops and ‘if’ control statements must be opened with ‘{’, and ended with 
operators which must be typed on a separate line.

CAT is a simple simulation tool which calculates computational costs based on 
given criteria. It estimates sequential, data parallel or task parallel costs, following the 
cost calculations outlined in section 6.3. CAT has the following functional modules.

• MATUB Parser
The parser is a C program module, which scans a MATUB program, identifies 
constants, matrices, loops and MATUB functions. Only matrix operations are 
examined, as these are the main bulk of neural network computations and 
communications. The parser equipped with the MATLIB calling protocol, identifies 
which variables are read and which are written at each program line. As a 
convention, the first arguments are always the destination and these variables are 
registered as written by the calling function. The records are used in the variable 
analysis to generate data dependency paths which are necessary for partitioning. 
The ‘for’ loops are parsed and registered into loop data structures with the starting 
line, the ending line and the number of iterations involved. The parsing of the ‘for’ 
loops require the parsing of the ‘if’ statements as they share the common closing 
operator

•  Loop Analysis
Loops are essential for neural network programs as all neural network programs 
contain repetitive operations. The number of repetitions in any line of the program 
can be calculated by parsing the loops, and this repetition value can be used as a
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coefficient to calculate the computational cost for the line and the total cost for the 
program. The same repetition value is also used to calculate communications costs 
in the case of splitting the data or the program in a specific line. But the loops have 
a much more important task than this; they provide reverse data flow within the 
program by carrying data values from later stages to the previous lines. This is the 
case when a variable is first read within a loop, then written somewhere else within 
the same loop. This will be further explained in the variable analysis.

• Variable Analysis
As MATLIB programs are listings of C statements, any partitioning technique must 
identify the concurrent and independent data flow paths. Normally, a program with 
no loop statements would be a series of data write operations followed by a read, 
further read and write operations. Loops operations complicate this straightforward 
data flow. The variable analysis routine is responsible for the generation of data 
paths which are dumped for analysis by the programmer. These paths are labelled as 
forward paths which show variables which emerge at certain lines of the code as a 
result of a write operation; they are read, or read and written in the following lines. 
Reverse or backward data paths involve variables read and written at the early 
stages of a loop, then rewritten in the same loop. So the loop structure carries the 
new data to the beginning of the loop. Forward or backward, the data dependency 
is very important if program or data partitioning and parallelism are considered.

The Computational Analysis Tool provides the following information about the 
potential execution, without running the code.

1 - Total matrix memory usage in Bytes.

2 - Total sequential processing costs in seconds.

3 - Line by line listing of the computational cost and possible computational cost in 
the case of data partitioning and parallelism for a given parallel configuration.

4 - Line by line listing of the communications cost in the case of code partitioning 
in that line for a pipeline on a given configuration.

5 - Forward and backward data flow charts, which is list of symbols, for all 
matrices, indicating whether the matrix is read or written, is in a forward or reverse 
flowing data stream or if it flows in both directions, for each line of the program.

114



To use CAT, a MATLIB listing of the program is presented to the program ‘map’. 
The computational analysis results can be used either as a guide for manual network 
partitioning and mapping, or in automating the parallel mapping process.

6.6. Automatic Parallel Mapper

The Computational Analysis Tool is extended to generate parallel or pipelined 
MATLIB definitions automatically. The result is the Automatic Parallel Mapper, which is 
a C function that exploits the variable and loop analyses carried out by CAT, and 
automatically generates parallel MATLIB definitions with complete data and function 
definitions, and matching data transfer instructions. APM mapping decisions are based 
on the same parameters provided to CAT. These are the number of parallel processors, 
their computational characteristics (in the computational lookup table), and the main 
parameter of the communications architecture; the transmission rate in Bits/sec. CAT 
analyses MATLIB programs and explores data and task parallelisms, depending on its 
projections and decision APM generates parallel code (Figure 6.3).

Data parallelism can be performed by exploiting the line by line computational 
analysis carried out by CAT. The pseudocode for the automatic generation of data 
parallel programs is as follows:

1 - Read the number of parallel processors, the communications speed, and the look-up
table relating to the unit execution costs of the MATLIB functions on the hardwares 
involved.

2 - Calculate the sequential computational cost of the MATLIB operation for the host.

3 - Calculate the potential parallel computational cost for the current MATLIB
operation on the available parallel hardware. This parallel cost includes the 
distribution costs, parallel processing costs and re-assembly costs.

4 - Compare the sequential computational cost with the parallel cost, and if the parallel
cost is smaller, then generate parallel code.

The automatic generation of the parallel code involves the following:

•  On the host side: the division of matrix data into the number of processors, the 
generation of put_ instructions to transmit partitioned data, and get_ instructions to 
reassemble the resultant matrix.
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Figure 6.3. Automatic Parallel Mapper

• On the parallel clients side: the data definition statements, the matching get_ 
instructions to obtained partitioned matrices, the matrix operation, and the 
transmission of results by put_ which is matched at the host end.

Task parallelism is also possible using the CAT results. Repetitive sequential 
operations such as the stages of a network training can be pipelined through an array of 
processors. Certain heuristic rules can be followed to prevent partitionings which would 
result in a high interprocess communications. For example, loops represent a high 
interconnectivity, and they should not be broken unless there are subloops which can be 
mapped onto separate processors. The pseudocode for instruction pipelining is as 
follows:

1 - Read the number of parallel processors, the communications speed and the lookup
table.

2 - Calculate the line by line, and total computational cost for the sequential execution
on the host.

3 - Divide the total cost by the number of processors (assuming they are identical
processors). This gives the ideal cutting lines with a perfect load balance for a 
pipeline.
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4 - Cut only the forward data flow streams, and avoid to cut any backward flow data
paths.

5 - Generate the host and slave sections of the code, with correct data definition and
data exchange statements.

Once parallel code listings are generated, they are compiled using a C compiler and 
they are ready for execution the parallel system.

6.7. Summary

In this chapter, firstly, the motivations and design considerations have been 
outlined, other mapping techniques have been reviewed. A number of model-specific 
and hardware-specific techniques have been assessed. It was concluded that they cannot 
be generalised to all models and hardwares. The execution, representation and mapping 
strategies have been estabhshed. The execution strategy is based on the exploitation of 
general-purpose parallel processors. The Virtual Machine philosophy promotes the use 
of vector-based hardwares in a general-purpose neural computing framework. Matrix- 
based representations seem to capture neural network properties, and are suitable for 
general-purpose parallel hardwares. The mapping strategy has been outlined as the 
computational optimisation of execution costs, as a general, flexible and potentially 
upgradable approach.

The main challenge in the computational optimisation is the parameterisation and 
costing of the executions. For this purpose, the computational costs for data and task 
parallelism are parameterised. A Computational Analysis Tool has been designed and 
developed for analysing and profiling matrix-based MATLIB representations. Once the 
computational costing is achieved, the automatic generation of the parallel code is a 
relatively simple task. An Automatic Parallel Mapper has been designed for this purpose 
which exploits CAT results in the automatic code generation. Chapter 8, presents the 
CAT/APM projections and mappings of MATUB neural network representations.
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Chapter 7

Galatea Mapper and Scheduler

In this chapter, the Galatea Mapper and Scheduler are presented. As part 
o f this thesis work, the Galatea Mapper is implemented, the Scheduler is 
specified, and using the GPNC simulator a number o f parallel simulations 
have been carried out to test mapping strategies.

7.1. Introduction

This chapter presents the Galatea Mapper development as part of the Galatea GPNC 
simulator. Research presented in this chapter is the work of the author, carried out as 
part of the Galatea Project. The Galatea Mapper shares the same design considerations 
set out for the Mapper in chapter 6, and the mapping and scheduling strategies developed 
in this chapter are directly related to the research goals outlined for this thesis. Both the 
Mapper and the Galatea Mapper are designed to map matrix-based representations 
{MATUB and VML) onto coarse-grain parallel architectures. This chapter presents the 
Galatea Mapper in the context of the Galatea GPNC to highlight the real-world 
constraints and the outcome.

The Galatea General Purpose Neural Computer is an advanced architecture, 
designed for the execution of a range of neural network models and applications. In 
chapter 3, a detailed description of the Galatea system is provided, including its general 
programming environment and multi-processor parallel architecture. In this chapter, the 
Galatea Mapper is presented in the context of the Galatea GPNC automatic code 
generation chain. As the mapper is responsible for the initial scheduling of the parallel 
execution, the scheduler development is also described.

As seen in chapter 3, the Galatea GPNC is a coarse-grained parallel architecture, 
which brings together generic hardware devices called Virtual Machines. Each VM 
consists of a Communications Unit, responsible for the control of the accelerator board, 
and an Execution Unit containing an accelerator board. The communications unit 
typically consists of a CPU and a large local RAM. Execution units are based on fast 
matrix operator generic boards, currently being developed by Siemens and Philips 
[41,42]. VMs communicate and interpret VML, a matrix-based, intermediate-level
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language, consisting of scalar and matrix arithmetic operations. Consistent with the VM 
philosophy, the user-interface is designed in a parallel distributed fashion with a number 
of independent processes called Graphical Virtual Machines (GVM). All the 
independent modules of the GPNC; VMs, GVMs and the Scheduler, are interfaced with a 
message passing conununications protocol.

The Galatea Mapper’s duty in this environment is to partition and distribute the 
VML representation across a number of parallel VMs. The Mapper is responsible for the 
initial scheduling of the execution, and for generating necessary data transfer instructions 
accordingly. The Galatea Mapper processes raw VML and generates parallel VML. This 
is essentially VML with a number of data exchange commands, which are interpreted by 
the Scheduler and the Communications Units of the VMs. After the initial mapping, the 
execution is controlled by the Scheduler, which serves as the conununications interface.

In this chapter, first, the Mapper is defined in the context of the Galatea GPNC 
automatic code generation process. Secondly, the Scheduler, the communications 
protocol and the run-time operations are explained. Then, the implementation steps, the 
practical issues relating to the implementation and problems encountered during the 
implementation, are discussed. Finally, Galatea mapping examples and parallel 
simulations on the Galatea GPNC are presented.

7.2. Galatea Mapper

The Galatea Mapper is a building block of the Galatea General Purpose Neural 
Computer. It plays an important role in the correct partitioning, placement of the code, 
and scheduling of the parallel execution on the GPNC. The Galatea Neurocomputing 
group at UCL has developed a complete simulation of the GPNC, which runs on SUN 
workstations. As part of the GPNC simulator, an interpreter [140] is used to execute 
VML programs with a number of applications, including pattern recognition, image 
processing and financial forecasting. The GPNC simulator provides an adequate 
environment for testing various mapping and scheduling strategies. The mapper is an 
independent module in the GPNC simulator’s automatic code generation chain.

The code generation process (Figure 7.1) for the GPNC involves the following 
stages. First, a user writes high-level language N  code for the application. An algorithm 
library can be used to code applications in N  (an object-oriented language based on 
C++). The Systems Architecture Builder (SAB) can be used during this process. Later, 
the N  to VML compiler automatically generates the raw VML code. The compilation

119



process involves vectorising and optimising the object-oriented representation to 
generate the VML code. During the compilation process a symbol table is also generated. 
The symbol table contains a data/rule correspondence table for cross reference purposes. 
The table maps names and entities between N  and VML. The mapper processes the raw 
VML code following any existing user directives, and generates parallel VML code for 
specific VMs. The code also includes appropriate data movement instructions.

Mapping Data

Library
VML

Library

Library

Config.
Table

Placement
Table

Raw 
VML 

Intermediate 
Level Language

COMPILER

parallel
vml

VM2

parallel
vml

VM3

parallel
vml

VM1

USER

MAPPER

N - High Level Language

SAB

Figure 7.1. The Galatea Mapper

Once the VML representation is generated, the hierarchical object structures created 
in the N  environment are lost. Only matrix and scalar names are relevant at the VML 
level. A user enquiry relating to a user-defined object name, has to go through a symbol 
table or a name generation scheme to find a correspondence in the intermediate-level 
matrix representation.

It is planned that a C library should be used to support operations which are not 
available in VML. These are sophisticated functions such as Fourier Transformations.

120



These routines can be called in a similar way as VMs using the GPNC’s message passing 
communications scheme. A Placement Data file is also generated by the mapper. This 
tells the scheduler which VML rules, variables and data reside in which VM.

In the VM level, the Communications Unit CPU stores the VML code in its local 
memory. It parses and interprets the VML definition to fire low level VML commands. 
These instructions are similar to VML commands, but they are without control and loop 
statements. The communications unit generates scalar and matrix arithmetic operations. 
The scalar arithmetic operations are executed on the local CPU efficiently. The low level 
matrix operations are sent to the accelerator board, which in turn converts them to the 
microcode, for execution on the processor array.

The Galatea GPNC with its SUN workstation host and a number of Virtual 
Machines presents a coarse-grained parallel mapping problem. The mapping operation 
involves parallelising the raw VML representation and generating parallel VML for 
specific VMs with appropriate data movement instructions. VML listings contain a 
number of rule bodies and a main rule. In this form, task mapping is the primary 
mapping option and data partitioning is not favoured. Galatea believes that the VMs are 
powerful modules, and that they can meet both the memory and the CPU requirements 
for large applications. Typical applications for the GPNC would be multi-network 
applications with whole networks mapped on single VMs. The Mapper’s task is then to 
partition the multi-network VML specification, and to achieve a parallel efficient 
execution. When single networks are involved, the mapper can map VML rules or tasks 
onto a number of parallel VMs.

Galatea considered two types of mappings depending on the time of the mapping. 
Static Mapping is the initial process that occurs during the compilation time, before the 
execution starts. Dynamic Mapping, on the other hand, is done during the execution, 
after re-assessing the results of the previous mapping. For example, if the load balance is 
not satisfactory, the execution can be frozen and the application is saved and remapped. 
Dynamic mapping can also be performed as a result of user instructions for modifying 
the configuration during execution.

7.3. Galatea Scheduler

Once the initial mapping is completed the execution can start. The Scheduler 
provides the run-time communications interface between the various modules of the 
GPNC. The Scheduler is a passive process, waiting for requests from users through the
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Graphical Virtual Machines (GVM), and the VMs, carrying out instructions and 
supporting routine monitoring tasks. The scheduler is planned to be a single process 
running on the host machine, but it can also run on a Transputer based computer or 
distributed over a number of parallel processors. The duties of the scheduler are:

1 - Setting up and initialising VMs
2 - Transmitting data and rules to the VMs
3 - Analysing user requests and taking necessary measures
4 - Updating data values on the VMs
5 - Carrying out user monitoring requests
6 - Data exchange between VMs

A communication diagram based on the scheduler is shown in Figure 7.2 All 
physical blocks have message queues, and these queues are processed by routines which 
sort the messages with respect to their priority and arrival time.
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Figure 7.2. The Galatea Scheduler
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The scheduler receives requests from users through the graphics, execution and 
debugging monitors which are independent processors as parts of the user interface. The 
requests go into a message queue and are prioritised before being processed. The 
Placement Table which was prepared by the mapper, is used to determine which VML 
concept (data) resides in which VM, and which VML rule is executed on which VM. The 
Symbol Table keeps N  and VML concept-correspondence which are lost during the 
compilation from the high level language.

The GPNC is fundamentally a MIMD architecture with a message passing 
communications protocol. All modules of the GPNC and the scheduler use a generic 
message structure to send and receive messages, data and code. Messages contain source 
and destination fields, message type information as explained above, priority of the 
message, time of origination, size of the data and the data themselves. The generic 
message structure is as follows:

typedef struct message {
int source;
int destination
int typel;
int type2;
int priority;
struct timevaltime;
int size;
char ♦data;

The conununication protocol consists of 19 different message types. The Table 7.1 
explains these message types with respect to the data they contain. Two type fields 
identify each message. The first field, Fieldl, groups the messages into 5 main types of 
messages. These are responses, rules, data, control and graphics related messages. The 
second type field Fieldl specifies the character of each message within these 5 groups. 
Response messages are issued as acknowledgements or progress reports etc. Rule 
messages addresses control issues at the rule level, for example to execute, continue or 
interrupt a rule. Data messages handle data transfer issues such as sending or requesting 
data. Control messages are used to set the debug level in execution or to stop (kill) 
execution of a certain VM or the whole application. It entails the level of ’kill’ required. 
The last message type covers graphic commands, which are used in setting up the 
graphics canvasses and plotting graphs, bar charts or displaying data.
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Fieldl Field2 Description Data

0 Responses
0 Acknowledgement none
1 End of rule rule name, return code
2 Exception condition type, value
3 Progress message string
4 Statement statement type

1 Rule
0 Definition code
1 Execute rule name, option
2 Pause rule name
3 Continue none
4 Trace on rule name
5 Trace off rule name
6 Interrupt rule name, option

2 Data
0 Definition code
1 Request sync, block, freq, type, variable, rang
2 Send variable, range, value(s)

3 Control
0 Kill VM
1 Set debug level

4 Graphics
0 Graphics ; canvas incanvas, title, x_axis, xl, x2, y_axis.
1 Graphics : line initcanvas, index/ typel, type2 [, string ]
2 Graphics : plot canvas, index, x, y [, string ]

Table 7.1. Message Types

The message types and the message structure are used by all the VMs, GVMs and 
the Scheduler. Currently the data exchange and graphics plot statements in VML 
implicitly use the message protocol outlined above. The scheduler is based on a Message 
Passing Communications Scheme. All modules of the GPNC and the scheduler contain 
input request queues which are processed continuously depending on the message 
priority and type. All messages, which are put into the socket are placed into an input 
queue. The input queues are basically temporary memory storage for messages. A queue 
handler checks the message priority and executes the one with the highest priority. If 
there is more than one message with the same priority it fetches the oldest message. 
After a message has been found, copied and executed that message is removed from the 
input queue. This is especially important when carrying out user requests, but similar 
processes can be used to handle VM-Scheduler communications.

This section is presented to demonstrate the run-time operations on the GPNC 
simulator. The specification of the scheduler is the work of the author. The definition of 
the message types has been achieved in collaboration with a colleague at UCL, and the 
simulator of the Scheduler has been implemented later, by the same colleague. Graphical 
Virtual Machines have also been developed at UCL, by another colleague, to complete 
the GPNC simulator.
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7.4. Mapping and Scheduling
A number of options are available for mapping and scheduling an execution on the 

distributed memory, message passing GPNC architecture. First of all, the following 
data-transfer protocols are considered between different modules of the system.

1 - Nonblocking write - The transmitting VM simply sends the data to the scheduler 
which in turn transmits the message to its destination. The transmitting VM continues 
the execution without confirmation from the receiving end.

2 - Blocking write - The same as above, but the transmitting VM continues execution 
after it receives confirmation that its message has been received.

3 - Nonblocking read - If the data request is not matched by immediate delivery, the VM 
continues with execution using its current copy of the same data. This mode can be used 
to simulate asynchronous models.

4 - Blocking read - When a data request is made by the VM the execution is paused until 
the required data is received.

The most practical combination is a nonblocking write matched by a blocking read. 
To implement this, VML is extended to incorporate the following data exchange 
commands on the TCP/IP server.

put_data ( destination, data_name ) 
get_data ( source, data_name )

The source and destination above relate to GVMs and VM, any data sent to a GVM is 
displayed by default. To plot any graph the graphical command is:

plot ( destination, x, y, index, canvas )

Here, the destination is a GVM, x and y are the axes, the index is a number between 0 
and 9, referring to the dataset which will be displayed on a canvas. Up to 20 canvasses 
can be opened by a GVM.

Two radically different scheduling options are available. An active scheduler view 
supports the scheduler as the master process, controlling aU execution, and data transfer 
instructions to the slave VMs. A passive scheduler view is more suitable for the 
distributed memory, multicomputer architecture of the GPNC. In this case, the 
Scheduler runs as a passive server process, unpacking messages originated by VMs and
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GVMs, interpreting them and taking the necessary action.

7.5. Galatea Mapper Implementation

To implement the GPNC simulator on SUN workstations, the first step is to enable 
parallel simulations on a SUN local area networks (LAN). For this purpose Unix TCP/IP 
sockets have been used as the communications medium. TCP/IP is widely available on 
SUN and DEC workstation LANs, providing reliable, flow-controlled two-way 
transmission of data and messages. Initially, a prototype was developed to test the 
reliability of the communications medium. This prototype was used in chapter 4, in the 
simulation of parallel Hopfield nets. Later, this prototype was incorporated into the 
GPNC simulator, and has become the core of a comprehensive server, which undertakes 
scheduling tasks.

An evolutionary approach was followed in the implementation of the Mapper. It 
has involved, the manual mapping of parallel VML code onto a multi-VM environment, 
and its execution. Later, a semi-automatic mapper was developed, and an automatic 
mapper has been planned.

The first step in the implementation of the mapper is manual mapping or 
programming. After assessing the execution and the communications requirements for a 
given application and hardware characteristics, parallel VML code is written for all the 
parallel modules involved in the execution. The inter-VM data dependency and the load 
balance must be estimated, and data transfer instructions must be explicitly written by the 
programmer. The data movement commands are written in such a way that they display 
a handshake pattern between different modules. That is, a get_data statement in one VM 
is matched by a putjdata in the other. If inter-VM data dependencies are not followed 
properly, the execution might come to a halt as a result of an unmatched data request 
statement. The time-sequence of the events must be planned in advance for a successful 
multi-processor parallel execution.

The second step in the mapper implementation is semi-automatic mapping. This 
involves the mapper parsing the sequential (raw) VML definition and generating parallel 
VML code, following the user directives stored in the placement table file. This file 
provides the total number of parallel VMs in the GPNC configuration, and the 
instructions for where to map each VML rule in the raw VML listing. The task mapping 
is straightforward and user-driven. It relies on the users’ mapping instructions, based on 
their analysis and judgement of the application. The semi-automatic mapper is a C
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program which carries out the following tasks:

• Parses raw VML definition,
• Reads user mapping directives,
• Identifies and forms VML rule objects,
•  Generates parallel VML listings.

The final step in the mapper implementation involves the full automation of the 
parallel code generation process. The Automatic Mapper generates parallel VML code 
for all VMs in the GPNC configuration, based on the minimisation of the computational 
costs. Automatic mapping is done by calculating parallel processing and 
communications costs on all possible combinations of rule mappings on a coarse number 
of VMs. The partitioning that results in the minimum computational cost is selected, the 
rules are grouped, and ASCII listings of the parallel VML code are generated with correct 
data transfer instructions. The Galatea project chose the VML rules to be the lowest level 
objects to be mapped. To achieve that, the Galatea Mapper breaks the raw VML code 
into self sufficient rule objects, all with a data definition part and a rule body. The 
automatic mapper consists of the following modules:

• VML Parser
• Variable and Rule Analysis
• Calculation of the Computational Costs
• Parallel VML code generation

Now, let us examine the modules of the automatic mapper, and the parameters 
involved in the automatic generation of parallel code for the Galatea GPNC.

VML Parser - The Mapper uses the same parser routines as the VML interpreter [25]. 
This approach reduced the workload, as it ensures that the mapper automatically follows 
the modifications in the VML syntax. As a result of the parsing, the mapper generates its 
internal model of the VML rule and data structures upon which it carries out the variable 
and rule analysis.

VML Variable and Rule Analysis - MIMD machines suffer from a data dependency 
problem. A classification of variable types is necessary to identify which variables have 
to be transmitted to other VMs, in a parallel execution. The Mapper carries out a 
variable analysis in which all variables are classified into 4 different variable types:

127



•  Constant
•  Local
•  Read
•  Write

The Constant type needs to be transmitted only once, at the beginning. This type of 
variables stay unchanged throughout the execution. The Local type refers to temporary 
variables. The Read type needs to be received from the Scheduler (or other VMs). 
Finally, the Write type implies that a variable has been modified within that VM, and 
should be transmitted to the Scheduler or other VMs. Similarly, a rule analysis is carried 
out to reveal the rule dependency, and to buüd the rule hierarchy for all the subrules and 
the caller rules for each rule.

Computational Costs - Performance of the parallel execution, which is defined as the 
computational cost of the execution depends on two different parameters: 
Communications Costs and Processing Costs. The communications costs directly depend 
on the amount of data exchanged between various processors (VMs). Using the variable
and rule analysis for a given mapping, data sizes are calculated for all the Read and Write
type variables. The VML LOOP statement is decoded to obtain an approximate measure 
for the number of repetitions occurring for each command line. This measure is 
necessary to determine the volume of data which is transferred between the VMs and to 
establish the processing costs within loops. Real processing costs are hardware 
dependent. For a given architecture, the processing costs depend on the following 
parameters:

•  Operation Type
•  Data Type
•  Data Size
•  Placement Type
•  Hardware Characteristics (speed and memory)

After identifying these parameters, estimates of the processing costs for each 
operation type were requested from Siemens and Phihps hardware groups, with the 
intention to use the parameters as inputs for automatic mapping strategies. As a result, 
the following issues are highlighted;

1 - The optimal data type must be decided in VML code before or during the mapping. 
This is a very important issue for the hardware, and it is hardware-specific. For example
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the Philips accelerator board achieves the highest performance on fixed point arithmetic 
operations.

2 - The optimal placement type must be defined for different data types in VML. The 
Siemens group [17] stressed the importance of the correct placement of data on the local 
memories of their VM, at the initial mapping stage. Four types of memory were reported 
on the Siemens hardware, namely: wmem, ymem, zmem and cniem. Siemens also listed 
the best memory placement for a number of data types as follows:

Placement Type Memory Type

PLACEMENT_COMMS
PLACEMENT_FREE wmem
PLACEMENT_STATE ymem
PLACEMENT_WEIGHT wmem
PLACEMENT_PATTERN ymem
PLACEMENT_LUT cmem
PLACEMENT-INPUT ymem
PLACEMENT_OUTPUT ymem
PLACEMENT_TEMPORARY ymem

3 - The calculation times for matrices of various sizes can be made available after the 
manufacturing and tests. Only approximate information was given about the clock 
cycles for certain matrix operations which will be executed on the VM hardware.

Following these developments the new version of VML (version 2.0), incorporated 
PLACEMENT_TYPE field in the matrix declaration. As VML has no concept of pattern or 
weights this field can be ideally decided by the N  level and passed down to VML through 
the compiler. Mimetics notified that they could generate PLAŒMENT_STATE, 

PLACEMENT_WEIGHT, PLACEMENT_TEMPORARY placement types using the N  to VML 
compiler. Mimetics also suggested that INPUT, OUTPUT placement types can be 
determined in V, and hinted that new placement types could be necessary for optimal 
mapping. In addition to this, VML 2.0 also includes the data type information prefixed to 
all VML instructions. In this way, VML becomes similar to low level VML (LLVML) 
[42] and the generation of the low level commands on the VMs, is made easier.

Mimetics automatically generated VML 2.0 code for a number of neural network 
models including the Gradient Descent Backpropagation model. N  to VML compiler is 
used in the automatic optimisation and generation of the raw VML code, completing the 
full cycle of GPNC automatic code generation. The cycle involves the N  to VML
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compiler and the Mapper running together and generating parallel VML code for the 
VMs. The compiler generates the raw VML code, the symbol table, and the 
configuration table. The Mapper generates parallel VML and the Placement table to 
indicate the rule placement on the VMs. This data can also be used if a re-configuration 
is required like in the case of Dynamic Mapping.

7.6. Mapping VML to Galatea GPNC

This section presents the Galatea Mapper results and simulations on the GPNC. 
The results of the manual, semi-automatic and automatic mappings are presented.

7.6.1. Co-operating Hopfield/Backpropagation Networks

Two simulations are designed to demonstrate the co-operation of two neural 
network models on configurations consisting of two or three parallel VMs. These 
simulations are examples of manual mapping or parallel programming on the GPNC 
simulator, with the aim of demonstrating the feasibility and the strength of the parallel 
techniques.

The simulations involve using a Hopfield and a Backpropagation networks in co­
operation. The Hopfield net is used as an auto-associative memory unit reconstructing 
noisy or partially corrupted patterns. The Backpropagation network is trained to imitate 
the associations made by the Hopfield net In this two-network architecture, the Hopfield 
net trains the Backpropagation network. The following advantages can be gained using 
this multi-network configuration. Firstly, the Backpropagation network is fast in recall 
and extremely slow during the training. The Hopfield net, on the other hand, which 
operates with fixed weights, is relatively slow during the recall, as the convergence takes 
place at this stage. Secondly, the Backpropagation model is more robust than the 
Hopfield net in recall. If the Backpropagation network can be trained to respond like the 
Hopfield net, later, the Hopfield net can be bypassed, and the Backpropagation network 
can be used in auto-associative recall tasks much more efficiently. Once the 
Backpropagation network is trained on a training set, it can be used more reliably in 
pattern classification tasks.

The multi-network configuration can be efficiently executed on two VMs with each 
network running in parallel on separate VMs. Both networks receive noisy inputs from 
the external world, and the Hopfield net provides the target patterns for the 
Backpropagation network. In this case the data exchange between the VMs is uni­
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directional. As an application, the same pattern recognition problem is outlined as the 
one used in the analysis of the Hopfield net in the chapter 4. The Hopfield net has fixed 
weights prior to the execution, and the Backpropagation network starts with small 
random weights.

From the scheduling point of view, this is an intertwined application requiring 
explicit data transfer instructions. This can be achieved by writing the apphcation in 
VML, or semi-automatically partitioning the raw VML code. It is hard to achieve the 
same configuration through automatic partitioning and mapping. The difficulty lies in 
the automatic generation of data transfer instructions as they are intrinsic to the 
algorithms. Users either write the VML code with relevant data transfer instructions, or 
alternatively, they can supervise parallel VML generation by putting mapping instructions 
in the placement_data file.

The simulation shows data exchange and cooperation between a number of VMs in 
solving a problem together. Two Graphical Virtual Machines accompany the two VMs, 
to coordinate the graphical display operations required by the VMs. Together with the 
Server, 3 VMs and 3 GVMs, a total of 7 processes run concurrently as independent Unix 
processes, communicating with each other through TCP/IP sockets. The server opens a 
socket communications channel, and all other processes plug into this medium. In the 
run-time, the server decodes messages sent by VMs and GVMs, routes them to their 
appropriate destinations. Two different scheduling methods have been tested on the 
Hopfield/Backpropagation cooperating networks simulations involving an active and a 
passive scheduler.

Demonstrator I

VMl acts as an active Scheduler organising data movements between the other 
VMs (Figure 7.3). The VML code organises the handshake for data transfer operations in 
the following way. AU put_data statements are nonblocking and the matching get_data 
statements are blocking.

VM2 VMl/Scheduler VM3
put_data (1, matrixl) > get_data (2, matrixl)

put_data (3, matrixl) -> get_data (1, matrixl)

The duties of the three VMs in the Hopfield/Backpropagation co-operating neural 
networks example are:
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1 - VMl is the Scheduler. It has access to the system file storage devices. All the file I/O 
operations are performed using this VM. It coordinates data exchange between the other 
two VMs. The execution in the three VMs is started simultaneously. VMl loads the 
trained weights for the Hopfield net from the file store, sends them to VM2. And VM3 
initialises its weights with small random values. VM2 waits for an input pattern to recall 
and reconstruct, and VM3 waits for the training pair to arrive. VMl reads the incomplete 
or noisy input patterns and routes them to VM2 and VM3. After this, it receives 
reconstructed patterns from VM2 and reroutes them to VM3 which starts the 
Backpropagation network training. After a training run, it receives the resulting 
Backpropagation network weight sets from the VM3, and saves them onto the file store.

TCP/IP Unix Socket

Server

Hopfield Net

VM2

SCHEDULER 

VM1 

FILE I/O

VM3

Backpropagation

Net

Figure 73. Demonstrator I

2 - VM2 is a Hopfield network. It receives the trained weights and the incomplete input 
patterns and starts a Recall operation. As a result it reconstructs the patterns and sends 
them to the VM2.

3 - VM3 is a Backpropagation network. It receives the same inputs as the Hopfield 
network, and then as it receives targets, reconstructed by the Hopfield network, it trains 
with the pairs it received, as it receives. When it receives all the targets it trains for all 
the patterns, in the end transmitting the results back to the Scheduler.

Demonstrator II

In this version, the Scheduler is a passive process that allows VMs to communicate 
with each other directly by addressing one another (Figure 7.4). This way of scheduling 
creates intertwined VML listings. There is no need for a separate program as the
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scheduler passively enables the inter-VM data communications. Messages are received 
by the Scheduler and the data are routed to their correct destinations on the socket 
communications. It is hard to generate this kind of parallel mapping automatically. 
Manual mapping enables us to design such an application with the correct handshake 
between the getjdata and put data statements, and it is hard to see how such an 
application could be generated automatically. The VML code in the two VMs is as 
follows:

VMl
put_data (3, matrixl) -->

VMS
get_data (1, matrixl)

This time VMl is not the Scheduler, but it is like the other VMs; an ordinary VM only 
with an access to the file storage. To start the demonstration, first the server is run, then 
all the VMs connect to it. Again, 7 processes run on the Unix network. All requests 
generated by the VMs are put into the Scheduler input queue which are processed 
according to their priorities defined in the message structure.
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Backpropagation
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Figure 7.4. Demonstrator II

Each VM is accompanied by a Graphical Virtual Machine providing interactions 
with the Scheduler and the external world. In interactions with the external world (Unix 
environment) X Windows Event Handler is used to detect user requests from the graphics 
and windows environments.

7.6.2. Semi-Automatic Mapping of Backpropagation

This simulation involves mapping the Backpropagation Recall rule onto a high 
performance VML. The rest of the execution is contained on the host. The manually
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generated Backpropagation VML listing consists 4 rule bodies:

Rule 0: Randomise
Rule 1: Recall
Rule 2: Leam
Rule 3: Main

On a 2 VMs configuration the Placement table instructs the mapper to place the 
Recall rule and data definition to the VM2. This table, in a file contains the following 
data;

2 #Number of VMs
0 1 #Rule 0 to VMl
1 2 #Rule 1 to VM2
2 1 #Rule 2 to VMl
3 1 #Rule 3 to VMl

The semi-automatically mapped parallel Backpropagation simulation on two 
SUN4s ran 90 times slower than running sequentially on a single SUN4. That is a 1 
minute-long sequential simulation took approximately 90 minutes. These results not 
encouraging, and they are due to the low communications throughput provided by the 
scheduler on the SUN LAN.

7.6.3, Automatic Mapping

Galatea Project viewed the automatic mapping of secondary importance, as an 
optimisation issue, and it focused on the efficient execution of VML on the generic 
boards of Siemens and Philips VMs. Only approximate hardware characteristics could 
be used at the time, as VM boards have not been built. The experiments with manually 
mapped Cooperating Networks and the semi-automatic mapping of the Backpropagation 
model examples show inter-VM communications present the highest share of the total 
computational cost. Considering this is only a software simulation, and the Galatea 
GPNC will have a much faster communications medium, the resulting system might be 
much more rewarding. When the real performance figures on the hardware are available, 
the mapper can use these parameters for an accurate mapping.
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7.7. Summary
This chapter presented the Galatea Mapper and Scheduler as part of the Galatea 

GPNC simulator. The Galatea Mapper has been designed, developed and tested as part 
of the Galatea automatic code generation process. The Galatea Mapper focused on the 
manual and semi-automatic generation of parallel VML from a sequential definition.

The manual mapping of the Hopfield/Backpropagation model, and and the parallel 
simulations developed as part of this research, were displayed as the demonstration for 
the Galatea GPNC, in Brussels during the Esprit week, in October 1991.

Semi-automatic mapping of the the Backpropagation model onto two SUN 
workstations, and the consequent parallel simulation resulted in a 90 times slower 
execution than the sequential simulation of the same application. This was due to the 
overheads on the Scheduler, and the slow communications medium'provided by the 
Ethernet.

The semi-automatic Galatea Mapper does not meet the requirements of high 
performance, flexibility and generality. It requires optimum rule definitions and explicit 
mapping instructions from the user. Automatic mapping was left out of the Galatea 
GPNC development as an optimisation issue. As one of the objectives of this thesis is to 
achieve an automatic mapping strategy, it is further investigated in the mapping of 
MATJJB representations in chapter 8.
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Chapter 8

Mapping MATLIB Representations

This chapter presents the computational analysis tool projections and 
parallel MATUB simulations on a SUN network. First, the CAT results 
are verified, then the three neural network models are parallelised, finally, 
parallel multiple neural network simulations are presented.

8.1. Simulations Overview
The main objective of parallel mappings is to enhance neural network performance 

and provide a scalable, efficient execution on parallel hardware platforms. To achieve 
this objective, a general-purpose execution strategy has been adopted, which exploits 
general-purpose parallel neurocomputing modules called Virtual Machines. A matrix- 
based C hbrary, MATLIB has been designed and developed as a suitable representation 
for parallel mapping onto VMs. The mapping strategy has been outlined as the 
optimisation of computational costs on a number of parallel processors. To apply the 
mapping strategy on MATUB representations the CAT and APM have been designed and 
developed. The efficiency of mappings depends exclusively on the proper computational 
analysis of neural network representations and assessment of parallel hardware 
characteristics.

It is then necessary to verify the CAT results, as the mapping decisions depend on 
its performance. The first part of this chapter is dedicated to the validation of CAT 
simulation results. For this purpose, CAT was used to analyse the MATUB listings of the 
three models, the Hopfield, the SOM and the Backpropagation. A number of neural 
network and hardware configurations were used in the simulations on a number of SUN 
workstations assumed as a number of parallel VMs. CAT results were then compared 
with results from standard Unix timing facilities.

The Computational Analysis Tool has been implemented as an integral part of the 
parallel mapping process with an intention to automate the mapping. However, the 
primary use of CAT is in the identification of computational bottlenecks and potential 
data and task parallel executions.
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For data parallelism, the computational cost of a potential data parallel execution is 
estimated for each instruction. The estimate is then compared with the potential 
sequential cost on the host. Based on this comparison, a mapping decision is made and 
finally, the overall parallel cost is estimated.

Task parallelism, or a potential pipelined execution on parallel hardware is also 
explored by CAT through a variable/loop analysis. The communications costs are 
estimated in the case of splitting MATLIB representations for an instruction-pipeline type 
parallel execution.

The CAT results are used both as a guideline for parallel programming and in the 
automation of the mapping process. Using CAT, the three models were partitioned, and 
simulated on a number of SUN workstations Local Area Network. Parallel simulation 
results were timed and compared with sequential execution results.

Finally, as the main objective is to enhance neural network performance on parallel 
hardware, MATLIB and NETLIB parallel libraries were used in mapping and simulating 
multiple neural network models on parallel platforms. A number of complete neural 
networks were mapped onto separate parallel processors as cooperating and competing 
modules. These simulations are also examples of efficient algorithms that can exploit 
coarse-grained general-purpose parallel computers.

8.2. Computational Analysis Tool Results

This section presents the results of the CAT simulations on MATLIB representations 
of the three neural network models. The main objective in these simulations is to 
validate the CAT computational modelling approach on a SUN LAN, and to demonstrate 
that the technique can be used reliably in automating the parallel mapping process. In 
addition to this, a secondary objective is to assess computational characteristics of the 
three models. To achieve an approximate computational model of the hardware, the 
processing and the communications costs must be parameterised. A number of 
simulations was used to parameterise the processing and communications costs of the 
SUN LAN.

Firstly, a computational look-up table is set up, which consists of the computational 
unit costs of all MATLIB functions. Each MATLIB function is executed using various 
data size and repetitions on a SUN4 workstation to establish the unit cost for each 
operation. Table 8.1 shows the estimated unit costs for each matrix operation. These 
costs are multiplied by the data size to calculate the operation cost for an instruction, and
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the operation cost is multiplied by the repetition of that line to estimate the cost for that 
code line. The repetition is a result of the ‘for’ loops encircling that specific line, and is 
obtained by the loop analysis. By adding all the line costs, the overall execution cost for 
the potential execution of the MATUB listing is estimated. A linear model is assumed 
for simplicity, so the computational cost is a linear function of the data size. The data 
size is always the actual processed data size, rather than the destination matrix size. For 
example, in the case of mmul, the multiplication of A(2,10) by B( 10,1) matrices results in 
a column matrix of R (2,1 ), To use the destination matrix size, 2 as the data size would 
be a massive underestimation of the computations involved. Instead, the data size is 
calculated for each type of operation separately. For the above example, the data size 
would be the multiplication of the output matrix size by the column size of the first A 
matrix, which is 10. Similar considerations are made for other operations. In the case of 
mmin and mmax the computational time varies depending on the execution of the 
conditional ‘if’ statements in these operations. For this reason, the computational look­
up table is not 100% accurate, but it provides a good approximation for computational 
evaluation purposes.

MATLIB Functions Description Unit Cost 
\isec

mmul matrix multiplication 8.0
madd, vadd matrix/vector addition 6.0
msub, vsub matrix/vector subtraction 6.0
memu, vemu matrix element multiplication 6.2
mscm matrix scalar multiplication 6.2
mtan apply tanh to matrix 36.0
dtan apply derivative tanh to matrix 12.0
msig apply sigmoid to matrix 21.4
dsig apply derivative sigmoid to matrix 6.5
mrms matrix root mean square 8.0
mmax, mmin matrix maximum/minimum 5.0
mobs matrix absolute 5.0
mavg matrix average 6.0
mlat lateral weight update for SOM 9.0
mcpy, vcpy, ccpy, mtra matrix copy, transpose 4.5
mset, sval, msal matrix element set/get 4.5
mran matrix randomise 7.7

Table 8.1. Computational costs for MATUB on sun4

Secondly, unit communications costs are established for the network of SUN 
workstations. A number of simulations have been carried out to model the average
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communications cost. The results in Figure 8.1 show a quasi-linear model for the 
communications costs. As the data size increases, transmission time increases. Various 
sizes of matrices have been transmitted through the sockets. The transmission times have 
been measured using MATLIB communications statements, put mat and get mat. An 
overhead of 0.5 seconds is found for opening up a socket and connecting to an open 
socket. In addition to this, as the sockets are packetised communications media, there is 
a minimum cost of 0.1 seconds regardless of the transmitted matrix size. Considering 
that the purpose of the parallel simulations is to assess the mapping strategy, rather than 
achieving a high performance on the Ethernet, these extra costs are negligible, and a 
linear model is sufficient in this case. The communication speed for the MATLIB data 
transmission on the SUN network was found to be 180,000 bits/second. In other words 
the cost of transmission is 1/180,000 sec/bit. This approximate figure includes time 
delays during the packing of messages before transmission, and the unpacking that takes 
place after the reception.
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Figure 8.1. Socket Communications Costs

A number of simulations are carried out to verify the results of the Computational 
Analysis Tool simulations on the Hopfield, the SOM and the Backpropagation MATLIB 
representations with different topologies and parameters. These simulations also show 
the computational sensitivity of the models to the parameters of the networks. CAT 
results shown in Figures (8.2, 8.3, 8.4) are very close to the actual results obtained by 
timing the executions. In fact, the method of timing the executions using Unix 
commands is not as reliable as CAT results, as the timing method depends on the
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processing load of the workstation, the ethemet traffic, and the fileserver load, at the time 
of the execution. The Computational Analysis Tool, on the other hand, produces 
estimates of execution times regardless of these parameters, based purely on the 
computational unit costs and data size.

The first set of results for the Hopfield model show a polynomial increase in the 
computational cost (and the requirements), as the number of neurons increases linearly 
(Figure 8.2). This is a result of the mmul operation whose computational cost also shows 
a polynomial increase as the number of neurons increase. As the number of neurons N  
increases, computational time t increases rapidly, following the polynomial relationship 
t=N^ .  This is in line with expectations, as the Hopfield weight matrix size follows the 
same relationship when the number of neurons are increased.

Execution Time
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Figure 8.2. Actual and CAT results in Hopfield Net

The results for the SOM model show a linear increase in the execution time, when 
the number of neurons in the input layer is increased (Figure 8.3.a). The SOM is most 
sensitive to the increase in the number of neurons in the output layer (Figure 8.3.b). In 
this case the computational requirements increase polynomially as a result of the 
enlarged output grid. Again, as expected, computational requirements polynomially 
increase with the increasing number of output nodes.

140



input layer output grid

sec sec

sun4
CAT

sun4
CAT' 1008

6

4

2

0 neuronsneurons
200 40004000 200

Figure 8.3. Actual and CAT results for the SOM

The results for the Backpropagation model show a linear incre^^ in the execution 
time, when an increase is made in the number of training patterns or the number of 
neurons in the input layer, hidden layer or output layer (Figure 8.4).
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Figure 8.4. Actual and CAT results for the Backpropagation

An accurate computational analysis is important for the mapping decision which is 
based on the computational optimisation of the use of parallel resources. CAT provides 
very close results to the actual results obtained by standard Unix time function, and CAT 
results can be reliably used for the computational analysis of any algorithm coded in 
MATLIB. Other CAT functions, such as variable and loop analyses, parallel and 
pipelined communications cost calculations are shown in the parallel mappings of the 
three neural network models.
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8.3. Mapping the Three Models

In this section, the three neural network models which have been the centre of focus 
throughout this thesis work, are used in data parallel and task parallel mappings and 
simulations. The MATLIB representations of these models are processed by CAT, and 
simulated onto a number of parallel SUN4 workstations. The same pattern recognition 
problem is used in all these simulations to assess the performance of the three models 
and their relative computational requirements for the same problem.

In addition to dumping total memory use and sequential computational costs on the 
host, the CAT results point to computational bottlenecks and possible parallelism in 
sequential MATLIB programs.

8.3.1. Hopfield Nets

This set of simulations aims to parallelise the Hopfield net and reduce execution 
time through parallel execution. The same dataset and the 64-neuron topology with the 
Hopfield net case study in chapter 4, are also used here. The net is initialised with fixed 
weights and is used in recalling the original patterns from the noisy or incomplete inputs. 
A line by line computational analysis of the Hopfield net results are shown in Table 8.2.

line function repetition data size unit cost 
\isec

op. cost 
\isec

line cost 
sec

total cost 
sec

24 vcpy 12 64 4.5 289 0.003 0.003
26 mmul 48 4096 8.0 32768 1.573 1.576
27 mtan 48 64 36.0 2307 0.111 1.687
28 msub 48 64 6.0 384 0.018 1.705
29 mrms 48 64 8,0 512 0.025 1.730
33 mcpy 48 64 4.5 289 0.014 1.744
37 vcpy 12 64 4.5 289 0.003 1.743

Table 8.2. CAT results for the Hopfield net

Using these results, a computational bar chart is drawn in Figure 8.5, which shows 
the line by line computational cost on the Hopfield MATLIB listing. According to these 
results, most of the computational time is spent in the matrix multiplication mmul 
operation, amounting to almost 90% of all computations for a 64-neuron, 12-pattem 
Hopfield net simulation on a SUN4 workstation. This is not surprising considering the 
data size mmul has to process (Table 8.2).
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Figure 8.5. Line by Line Computations in Hopfield Net

Task Parallelism in Hopfield Net

CAT variable/loop analyses reveal that, in the main loop, where the network 
convergence takes place, there is a backward data flow on matrix variable Temp. Table 
8.3 shows the line by line variable analysis for Temp. In this table, crosses indicate read 
and write operations on this matrix, and the resulting forward and backward data paths. 
The backward data stream prevents the instruction pipeline type of parallelism, as the 
beginning of the loop cannot progress without reading data written at the end of the same 
loop, for example in the case of dividing the representation into two. Another reason for 
not favouring task parallelism is that the load balance is impossible on a prospect 
pipeline, as the matrix multiplication takes most of the computations for the Hopfield net. 
This leaves data parallelism as the only viable alternative.

line instruction Backward
Flow

Forward
Flow

Read Write

25 for X X
25 for X
26 mmul / X X
27 mtan X X
28 msub X X X
29 mrms X
30 if X
31 break X
32 endif X
33 mcpy X
34 endfor

Table 83 . Variable Analysis for Temp
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Data Parallelism in Hopfield Net

CAT can estimate both sequential and data parallel computational costs on a line by 
line basis, and these estimates can be used in a parallel mapping decision. The 
calculation of the parallel processing and communications costs is based on the 
parameterised data parallel cost model presented in chapter 6. For each MATLIB line or 
instruction, the estimated parallel computational cost is compared with the sequential 
cost on the host, which is again calculated by CAT. If the potential parallel execution 
cost is less than the sequential cost on the host, the operation is parallelised. Otherwise a 
sequential execution on the host is preferred. Table 8.3 shows sequential versus parallel 
computational costs for all MATLIB instructions on the 64 neuron-Hopfield net, with 12 
patterns, on 2 parallel SUN4 stations linked with a 10 Mbit/sec speed bus. The mapping 
decision which is made on a line by line basis, depends on tiie unit cost, data size, the 
number of parallel modules and the communications speed. For example, in line 24, the 
vcpy vector copy operation is less costly on the host, so this operation is not partitioned. 
The most expensive operation mmul in line 26 will be executed quicker in parallel, so the 
mapping decision is made favourably. Considering that each operation is repeated many 
times, the overall gains are greater than the gains made in single operations. For the 
example shown in Table 8.4, CAT calculated the sequential execution cost as 1.74 
seconds, and projected the parallel execution as 1.56 seconds, for the same Hopfield 
configuration mentioned above on 2 parallel processors connected to a host by a 10 
Mbit/sec bus. The computational characteristics of the parallel processors are assumed to 
be similar to the host, a SUN4 workstation. This performance is assumed to be gained by 
parallel mapping of the three MATLIB functions shown in the table.

line function seq op cost 
lisec

par op cost 
\isec

mapping
decision

24 vcpy 289 2705 -

26 mmul 32768 29798 ✓
27 mtan 2307 1460 ✓
28 msub 384 704 -

29 mrms 512 461 ✓
33 mcpy 289 452 -

37 vcpy 289 2705 -

Table 8.4. Data Partitioning on Hopfield

Using the projected parallel execution costs, comparisons can be made with the 
sequential cost on a number of bus architectures with varying communications speeds
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and a number of parallel processors. Figure 8.6 shows parallel execution costs for the 
same Hopfield net on varying communication speeds and the number of VMs. As all 
mapping decisions are negative for slow speed buses, the maximum execution time does 

not exceed the sequential execution time. In these cases, operations are not partitioned, 

instead, they are executed on the host. Assuming the SUN4 computational 

characteristics, parallel mappings of the Hopfield net onto architectures with 

communications speeds below 4 Mbit/sec result in no speed-up in parallel executions. 

These results show that, on parallel architectures, the communication speed is one of the 

most important parameters.
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Figure 8.6. Projections on Data Parallel Hopfield

Further parallel projections are carried out involving Hopfield nets with varying 

number of neurons and VMs. These projections assume a 10 Mbit/sec communications 

speed, and the nets are iterated a fixed number of cycles with no convergence 

requirements. Results in Figure 8.7 indicate that, as the number of parallel processors 

increases, the parallel executions get progressively shorter. Although the performance is 

improved by increasing the number of parallel processors, the efficiency is another 

matter, which is discussed in chapter 9.
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Figure 8.7. Scalability of Data Parallel Hopfield Executions

Data Parallel Simulation of Hopfield on the LAN

Based on the computational analysis on the Hopfield net (Appendix D .l), it is 

shown that the net is computationally most sensitive to an increase in the number of 

neurons. If networks with a large number of neurons are simulated on sequential 
machines, computational bottlenecks are unavoidable. The backward data path 

mentioned earlier, does not allow instruction pipelining, leaving data parallelism as the 

only effective parallel mapping option for the Hopfield net. In fact only parallelising the 

matrix multiplication would be a big gain for the execution. Parallel MATUB features 

can be used to partition the matrix multiplication operation, and the partitioned operation 

can be executed in parallel on a number of SUNs. A number of simulations have been 

carried out to test this approach.

First, the mmul operation has been parallelised on two parallel SUN4s. To do this, 

parallel code for the main Hopfield rule body, and a number of identical matrix multiplier 

MATLIB modules are written with explicit data transfer statements (Figure 8.8). 

Matching and blocking data transfer instructions are used to transfer data between the 

main body (the scheduler) and a number of parallel multipliers (clients). The scheduler 

program divides the weight matrix into n equal parts and transmits the submatrices to the 

clients (in this case 2 parallel clients are used). The equal parts of the weight matrix HW 

needs to be sent to the clients only once, at the beginning of the execution. As it is 

constant, it can be stored in local memories of the clients. Then, the scheduler sends
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parts of the row matrix STO to the clients, which wait for data to arrive. STO is an 
argument of the matrix multiplication, and must be transmitted prior to the operation. As 
soon as the clients receive partial STO data, they all carry out matrix multiplications, and 
on completion, transmit the resultant row matrix. The scheduler reassembles submatrix 
multiplication results by adding the partial results to form the overall result matrix. This 
addition operation is an overhead, an extra computational load on the scheduling 
processor, which does not occur during sequential execution. This is due to the high- 
level nature of the matrix multiplication operation which involves a series of 
multiplications followed by additions. The overhead introduced by n parallel multipliers 
is n-1 matrix additions.

The Scheduler The Clients

/* Transmit half the HW */ / *  Receive half the HW */
put_rows( vm[l], HW, 0, SIZE/2 ); get_mat( HW, fd );
put_rows( vm[2], HW, SIZE/2, SIZE );

/* Transmit half the ST */ / *  Receive half the ST */
put_cols( vm(l], STO, 0, SIZE/2 ); get_mat( PPl, fd ) ;
put_cols( vm[2], STO, SIZE/2, SIZE );

/* Carry out Multiplications */ 
mmul( STl, PPl, HW );

/ *  Receive partial results */ /* Transmit result */
get_mat( STl, vm[l] ) ; put_jnat( fd, STl ) ;
get_mat( ST2, vm[2] );

/* Sum partial results */ 
madd( ST, STl, ST2 );

Figure 8.8. Scheduler-Client Interaction

As CAT reveals, the parallel simulations on a network exploit the fact that the 
weight matrix is a constant, and needs not be transmitted for every matrix multiplication. 
Currently, CAT’s line by line parallel projections cannot exploit this, as parallel mapping 
decisions are localised for each instruction and a temporal, global variable analysis 
scheme is necessary. In fact, the distribution and the local storage of the weight matrix, 
makes parallel executions on the SUN LAN faster than the sequential execution. The 
results in Figure 8.9, show that parallel simulations of the Hopfield nets with various 
number of neurons, is faster on two parallel SUN4s than the sequential execution on a 
single SUN4.
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Figure 8.9. Sequential and Data Parallel Hopfield

These results are remarkable considering that the communications speed for the 
parallel simulations environment is as low as 180,000 bits/sec due to the high-level data 
transfer routines. In all these Hopfield simulations, varying number of neurons with 
randomly generated weight and pattern matrices are used with no convergence 
requirements, focusing only on the execution time. Following these simulations on two 
SUN4s, a 300 neurons Hopfield net is simulated on 2, 3 and 4 SUN4 workstations with 
the same data parallel method. These simulations show the execution time is reduced 
considerably for 2, 3 and 4 processors (Figure 8.10), and it tends to increase after 4 
processors. This is because of the overheads in the opening up a socket, connecting to 
the socket, and the standard costs relating to communications. These increased 
communications costs prevents a linear curve of reduction in the execution time, when 
the number of VMs increase. These results also highlight the importance of initial 
communications costs such as latency which is constant and independent of the data size.
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figure 8.10. Hopfield on multiple processors

These results confirm that data parallelism is feasible for the Hopfield net, with 
potential gains in performance on parallel hardware. The results also indicate that the 
execution time can be reduced only by dividing the computationally intensive matrix 
multiplication operation into a number of parallel submatrix multiplications. CAT can 
detect this in MATLIB listings, and a data parallel execution is possible using MATLIB 
representations with no modifications. Based on these results, the mapping operation can 
be automated by adding a data parallel code generation module to APM, and this module 
can be triggered by the computational analysis and the subsequent mapping decision 
which is made by CAT.

8.3.2. The Self-Organising Maps

Similar to the Hopfield net, the possibility of data and task parallelisms for the SOM 
has been explored. CAT provided a line by line computational profile (Figure 8.11). In 
this case, the distribution of the computations is more even, with some operations such as 
matrix root mean squared {mrms) and lateral matrix update {mlat) relatively more 
demanding than the other calculations.
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Figure 8.11. Line by Line Computations in SOM

The same pattern recognition problem, used in the Hopfield net simulations is 
solved using the SOM. A 64 input neurons by 12 output neurons SOM topology is used 
to cluster 64 dimensional input vectors into 12 classes. The network is trained in an 
unsupervised fashion, on 12 perfect patterns. After training, noisy input patterns are 
presented to the network, which are recognised by identifying the nearest output vector.

Data Parallelism in the SOM

CAT projections for the SOM show that little speed-up can be achieved through 
data parallelism comparing with the Hopfield net with the same problem size and 
communications speed. This is due to the relatively even distribution of computations on 
the SOM, and the parallel communications costs which offset the gains of parallel 
executions. Figure 8.12 shows data parallel CAT projections on the SOM with 64 input 
12 output neurons, on a number of parallel VMs with communications speeds between 
10 to 40 Mbits/sec. Any significant gain in performance occurs for communication 
speeds higher than 20 Mbits/sec.
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Figure 8.12. Projections on Data Parallel SOM

Task Parallelism on the SOM

CAT results in Appendix D.2 point to the existence of a backward data stream on 
the weight matrix (SW). This prevents a straightforward instruction pipelining type of 
parallelism. The reason for the backward data flow is that the weight matrix is read and 
written at every pattern presentation step. If the changes are accumulated and batches of 
weight updates are carried out after each epoch, the network can be pipelined through a 
number of systolic processors, reducing the execution time considerably. The SOM was 
modified for this purpose, so the weight update changes could be accumulated in a matrix 
of the same size as the weight matrix, and the batch weight updates can be carried out. 
This new definition of the SOM was also processed by the CAT (Appendix D.2), and a 
cutting point on the MATLIB listing for an instruction pipeline was found. This 
partitioning resulted in approximately 30% to 70% load balance, on two parallel 
processors.

Task Parallel SOM on the SUN LAN

The batch-update version of the SOM was partitioned into two self-contained but 
interlinked MATLIB programs, with their own data definition and data transfer 
instructions. Two clients and one scheduler programs were compiled and executed on 
the LAN. This time the scheduler does not take part in neural network related tasks. It 
only loads data from the file server, distributes the data and waits for data routing 
instructions. The scheduler, as a passive server is in an infinite loop, and it runs the 
MATLIB servis function. The clients, in turn, use the post function which allows them to
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send data to other VMs, through the server. The server parses these data transmission 
requests and carries out the orders by rerouting the data.

Figure 8.13 shows the simulation results for a number of SOM configurations 
executing sequentially, and in parallel on 2 SUN4s. The results confirm that even on 
general-purpose computing platforms it is possible to improve execution speed by task 
parallel techniques.
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Figure 8.13. Sequential versus Pipelined SOM

To achieve the task parallelism for the SOM a modification had to be made in the 
weight update procedure of the algorithm. It has been reported that this change can delay 
or prevent the learning on this model. For this reason, the RMS error change is 
monitored both in the parallel SOM with batch weight updates and the sequential SOM 
with single step weight updates on the same pattern recognition problem. Figure 8.14 
shows that, although the single step SOM convergence needs less number of iterations 
for the error to drop to an acceptable level, in the batch update case, the error profile 
follows the single step SOM error very closely. For this dataset, both methods produce 
similar results, and the batch weight updates can be used.
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Figure 8.14. RMS Error in Sequential and Parallel SOM

The results show that data parallelism on the SOM can be useful on high speed 
communications links. Task parallelism is also feasible if the algorithm is modified to 
carry out batches of weight updates instead of standard single step weight updates.

8.3.3. The Backpropagation Model

The same steps are applied to the Backpropagation model. The MATLIB 
representation of the Backpropagation-with-momentum model is written and processed 
by CAT to detect possible parallelism and identify computational bottlenecks (Appendix 
D.3). An even computational profile has emerged, as a result, indicating all operations 
are computationally demanding (Figure 8.15).
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Figure 8.15. Line by Line Computations in Backpropagation
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The same pattern recognition problem was used with a three layered 

Backpropagation network with 64 input, 12 hidden and 64 output neurons. The 

simulation involved training the network for an auto-associative recall with the 12 base 

patterns. Once trained, the network was required to generate the same patterns from 

noisy or incomplete inputs.

CAT projections for a data parallel Backpropagation execution shows that the 

network can be executed faster, on fast communications links between the parallel VMs 

(Figure 8.16). Actual parallel simulations on SUN LAN are not implemented as this 

medium would not meet the communications requirements outlined by the parallel 

projections. The variable/loop analysis for the Backpropagation-with-momentum model 
shows a tightly coupled network architecture. Global matrix variables such as the input 
weights, which are between the input neurons and the hidden layer, and the hidden 
weights, which are between the hidden layer and the output layer, are all on backward 

flow data streams. Again, similar to the SOM case, the single step weight update 

procedure does not allow a profitable task parallelism for the Backpropagation MATLIB 

listing. The only possibility is to modify the algorithm to allow batch updates, and carry 

out instructions pipelines on a coarse number of processors. Task pipeline simulations 

was not carried out for the Backpropagation model, as it involves similar steps to the 

SOM simulation which was previously described.
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Figure 8.16. Projections on Data Parallel Backpropagation
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8.4. Mapping Multiple Neural Networks
In chapter 4, multiple neural network solutions are put forward as powerful ways of 

enhancing neural network performance in complex pattern recognition problems. 
Multiple network architectures consist of a number of neural networks as components, 
with little inter-processor communication requirements, and cooperating or competing to 
solve a problem. In chapter 7, a Hopfield/Backpropagation architecture is presented, as 
an example of such systems. In this chapter, two new architectures are put forward, 
simulated, and mapped onto parallel processors, using MATLIB and NEJUB functions. 
The objective of these simulations is to enhance neural network performance through 
parallelism in terms of achieving efficient parallel executions and designing powerful 
hybrid systems.

8.4.1. Cooperating SOM/Backpropagation Networks

This simulation demonstrates the cooperation of the SOM and the Backpropagation 
models, and their parallel execution on parallel processors. The SOM is an unsupervised 
algorithm, which is used in clustering patterns into a number of classes. The SOM can 
detect salient features in input patterns, and group them in topologically close nodes on 
the output grid. The Backpropagation model, on the other hand, operates on pairs of 
input and target patterns, and builds an internal representation which enables the network 
to produce nonlinear mappings between inputs and targets. The two networks can be 
used in cooperation, complementing each other in pattern classification tasks (Figure 
8.17). The hybrid architecture involves the SOM acting as a front-end feature detector, 
filtering inputs to the Backpropagation network which is trained to take appropriate 
action for the patterns filtered by the SOM. In this case, Backpropagation auto-associates 
noisy input patterns with the original target patterns. The SOM network receives and 
clusters noisy input patterns into a number of classes, then, the vectors representing the 
class centres are used to train the Backpropagation network for an auto-associative recall 
of the targets. This modular, multi-network configuration has a number of advantages. 
Firstly, this architecture enhances the strengths of both models; the SOM as a pattern 
pre-processor, and the Backpropagation as a nonlinear pattern mapping device. 
Secondly, the noise filtering carried out by the SOM facilitates and speeds up the training 
of the Backpropagation network.
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Figure 8.17. Cooperating SOM/Backpropagation Networks

As the application, the same pattern recognition problem has been used. For this 
application, the SOM has 64 input and 12 output nodes, and the three layered 
Backpropagation network architecture has 64 input, 12 hidden and 64 output units. A 
total of 12 patterns is presented to the combined architecture. The following steps have 
been taken in the simulation: firstly, a flat listing of MATLIB definition of the SOM/BP 
algorithm has been written. This listing is processed by the computational analysis tool, 
which identifies data-flow paths, variable dependency and computational costs. The 
analysis reveals a cutting point between the SOM and BP algorithms, suitable for a two- 
processor pipeline. By dividing the representation into two sections, a pipeline is 
organised. The partitioned MATLIB representation is then parallelised on a 3 processor 
configuration involving 3 SUN4s. The first SUN workstation is used as the scheduler, 
which opens a socket, and waits for data transfer requests. The SOM is mapped onto the 
second SUN which trains on the noisy inputs, transmitting the weight matrix and the 
winners table to the third SUN station which runs the Backpropagation model, training 
on the inputs it receives from the SOM and the targets which are local.

The simulation results for the pipelined execution on 3 SUN4s shows an 
improvement in performance on the sequential execution. The parallel pipelined 
execution takes only 43 seconds as opposed to the sequential execution resulting in 1:06 
min (66 sec). Considering that the first processor is only the server, the results 
correspond to a speed-up of 1.5 on the two-processor parallel architecture.

Using the CAT results in the identification of the cutting point, the Automatic 
Parallel Mapper is able to generate automatic parallel pipelined code for this 
configuration with a near optimum cutting point on the MATLIB representation. See 
Appendix D.4 for CAT and APM results.
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8.4.2. Competing Backpropagation Networks

Another method of enhancing neural network performance through parallelism is to 
implement network level competition. Simulations in this section aim to achieve optimal 
neural network designs, exploiting computational methods on parallel hardware. In this 
section, a number of parallel Backpropagation networks are simulated on a number of 
SUN workstations, competing with each other for a better network topology.

One of the major difficulties in using the Backpropagation model is optimising the 
network topology and parameters for the network training. These parameters are: the 
initial set of weights, the learning rate, and the number of nodes in the hidden layer. One 
way of establishing these parameters is to carry out a number of simulations, and to 
choose the network configuration with the best results. But this method is too time 
consuming. A parallel architecture can be used to reduce the time spent in finding an 
optimised network architecture (Figure 8.18).

BPl BP 2 BPN

SCHEDULER

Ethernet

Figure 8.18. Competing Backpropagation Networks

Another difficulty associated with the Backpropagation model is the inherent lack of 
ability to explain any input-output mapping which the network produces. Input 
perturbation techniques can be used to identify the most significant input parameter. This 
method is somehow similar to Monte Carlo simulations. Certain input values are 
modified, and the outputs are observed, by examining the distribution of inputs and 
outputs, dependency to the inputs can be established. The same method can be applied to 
optimise the most significant parameters of the network. Implementation of this method 
is again too time consuming on sequential architectures, as it involves a number of serial 
simulations and the comparison of their results. Again, a parallel hardware configuration 
can be used to obtain results in a shorter time.

In these simulations, the same pattern recognition example as in the previous 
sections is used. A five processor configuration is designed, involving four
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Backpropagation networks, each with a different number of hidden neurons learning the 
same training dataset. Using the simple NETJJB library function bpleam()y 4 
Backpropagation programs are written, compiled and mapped onto 4 SUN workstations. 
The scheduler is used as file I/O and a passive server, which monitors error and decides 
which is the best configuration for the given problem. There is no data dependency and 
little communication between independent neural network modules. Each 
Backpropagation network occasionally reports the recall error to the scheduler program 
which evaluates their performance. NEIUB  listings of server and client programs are 
presented Appendix E.

These simulations bring benefits even on general computing platforms such as the 
SUN LAN used for the simulations. The method of competition is important, as is a 
practical solution to a complex theoretical problem which interests many neural network 
researchers in the pursuit of the optimum network design.

8.5. Summary

This chapter presented the simulation results for analysing, partitioning and 
mapping MATLIB representations. A number of simulations are used to confirm CAT 
results as an approximate computational model of the execution on SUN workstations. 
CAT is then used to analyse and map MATLIB representations of the three neural 
network models that have been the focus throughout this thesis. Feasibility of data and 
task parallel executions are investigated for the Hopfield, the SOM and the 
Backpropagation models, using CAT. Exploiting the results, the three models are 
partitioned, parallelised and pipelined. Parallel simulations are carried out on a SUN 
LAN, and simulation results are presented. Finally, multiple neural networks are 
simulated on a number of parallel processors using MATLIB and NETLIB functions.
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Chapter 9

Assessment

This chapter assesses the thesis work; an investigation o f representation 
and mapping strategies for efficient execution o f neural networks on 
parallel hardware. The thesis consists o f a series o f analyses, design and 
implementation work, towards building a general purpose neural 
computer. Within the context o f the research objectives, the analyses, 
design, implementations and results are assessed, and alternatives are 
explored.

9.1. Target Review
The goal of this research was to establish a generic mapping strategy for a general 

purpose neural computing system, which provides a high performance and is flexible, 
modular, scalable, efficient, and can be automated. Achieving a generic representation 
was part of this main goal. For this purpose three neural network models and neural 
network representations have been analysed and compared, a matrix-based library has 
been put forward; to map matrix-based representations, a computational analysis tool and 
an automatic parallel mapper have been designed and implemented. Matrix-based 
representations have been partitioned and parallelised, manually, semi-automatically and 
automatically. Parallel simulations have been used to assess the performance of the 
mappings.

The analysis of neural network models aimed to: (i) understand neural network 
models and their computational properties, (ii) highlight suitable application domains, 
(Hi) explore potential structural parallelism, and (iv) search for a generic representation. 
Three case studies have been used to achieve these aims, involving the Hopfield, the 
SOM and the Backpropagation models with their appropriate applications.

The analysis of neural network representations aimed to establish a representation 
which is capable of: (i) capturing neural network properties common to most models, (ii) 
exploiting general-purpose parallel computers, and (Hi) providing generality, flexibility 
and modularity. For this purpose, function-oriented, object-oriented and vector-oriented 
representations have been compared, and a matrix-based C library, MATLIB has been put 
forward. NETLIB also has been developed, which is a neural network library, containing
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the recall and training functions of the three algorithms.

The main requirements in the design of a generic mapper were high performance, 
generality, flexibility, modularity, efficiency, scalability and automation. To match these 
criteria a computational cost based mapping strategy was put forward, and CAT and 
APM have been designed and implemented to map matrix-based MATLIB 
representations. The same requirements have been applied to the Galatea Mapper which 
has been designed and developed as part of the Galatea GPNC simulator. Simulations of 
parallel mappings on the Galatea GPNC involved manual and semi-automatic mappings 
of VML rules, on a number of parallel VMs.

To assess the performance, efficiency and scalability, CAT and APM have been 
used to partition MATLIB definitions of single-domain and multiple neural networks. 
Parallel simulations have been carried out on a SUN LAN to verify computational 
analysis projections and demonstrate the use of distributed parallel computer networks 
for achieving high performance.

In the following sections, the work of this thesis on: the analysis of neural network 
models, the neural network representations, the execution and mapping strategies, the 
Computational Analysis Tool, the Galatea Mapper and the Automatic Parallel Mapper, 
and the performance of the parallel simulations, is assessed.

9.2. Neural Network Analysis

In chapter 4, an analysis of neural networks have been provided. Three most 
popular models were chosen, and throughout this research, these three models have been 
used in the analysis of the models and applications, discussions of neural network 
representations and simulations involving parallel mappings. In the analysis, three 
appropriate applications have been chosen to highlight computational properties of these 
models, and to obtain a representative sample of the neural computing field and its 
applications. The three models have their strengths and weaknesses and they are good at 
solving different problems.

The Hopfield nets can successfully be used in pattern recognition and data 
compression tasks. The Hopfield net requires the initial setting of the weight matrix, and 
it is restrictive in the choice of patterns, as they have to be orthogonal with one another. 
As the net could not be used with arbitrary patterns for convergence purposes, for 
realistic applications, real-world patterns must be coded into a set of orthogonal patterns.
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The SOM can be used in clustering arbitrary input patterns, according to a distance 
criterion. The main strengths of this model are; it does not require targets as the input 
patterns are the targets, it requires very little information about data or problem domain, 
and the network can continue to leam new datasets as the weights can adapt themselves 
to the combined dataset. In addition to the parameters relating to the neighbourhood 
distance and the gain, the most important parameter is the number of nodes in the output 
grid which determines the number of clusters the network tries to form. Two difficulties 
are associated with the SOM; dependency to initial conditions, and finding the optimum 
set of network parameters. Initial random weights influence the resulting distribution of 
winner nodes for the same dataset, in consecutive runs. This is not desirable as it 
complicates the interpretation of the results. The second problem involves the setting up 
of the network parameters. This problem can be eliminated by using network level 
competition, similar to the competing Backpropagation networks in chapter 8, in order to 
find the optimum network configuration and parameters.

The Backpropagation model can be used for a wide variety of real-world problems. 
During the training stage, the network requires input-target pattern pairs. Once the 
network is trained on a dataset, it can provide nonlinear mappings between inputs and 
outputs. Because of this, the simulation results are simple to interpret, and this is one of 
the main reasons for the popularity of this algorithm. A trained network cannot be used 
for further training on a new dataset, as in that case the weights may be saturated. The 
correct setting of the learning rate, the momentum term, the choice of the activation 
function and the selection of the number of hidden units are all important for obtaining 
correct and robust results.

One outcome of the analysis was that multiple neural networks are expected to be 
more powerful problem solving domains than single domain systems. These 
architectures require a generic, modular representation strategy and can be mapped onto 
general-purpose architectures with relative ease. Chapter 8 provided simulations, 
exploiting a parallel distributed computer network for neural network level co-operation 
and competition resulting in clear gains in performance.

Structural analysis of the three models shows that the Hopfield neurons and the 
SOM output grid can be distributed onto massively parallel neuron-based architectures. 
In these cases, the interprocessor communications requirements increase polynomially 
parallel to the number of connections. The Backpropagation model can be partitioned 
horizontally or vertically, or one-to-one neuron mapping can be considered with a high 
data traffic on the hidden units. It seems that the massively parallel implementations of
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these models require fast communications facilities between the processors of the system. 
This may be seen as shifting the emphasis from high processing speed to high 
communications speed. The computational optimisation mapping strategy can be also 
applied to hardware implementations to justify manufacturing.

The analysis showed that the computational requirements for the three models are 
different in training and recall. In the case of the Hopfield nets, when large matrices are 
involved, real-time recall requirements can only be met by special-purpose hardware 
implementations. Both the SOM and Backpropagation models require long training 
cycles depending on the problem domain, dataset size, dimensionality of the problem, 
and the hardware platform. The Backpropagation is the most computationally 
demanding of the three models. Simulations of the three models show that the most 
demanding computations are multiplications and additions, and the most common aspect 
of the three models is that they can all be represented by matrix-vector operations. Most 
of these operations are matrix arithmetic with some exceptions of nonlinear activation 
functions. This argument was used to abstract neural networks in a computationally 
more understandable matrix-based representations domain.

9.3. Neural Network Representations
In simulations, neural network data are often processed in the form of arrays and 

matrices of patterns, weights and outputs. The choice of matrix-based representations is 
justified as these representations can capture most neural network models at the highest 
common level. In addition to this, matrix-based representations are suitable for the 
general-purpose execution strategy which employs vector-matrix based parallel 
hardware. The main strengths of matrix-based representations are:

•  Simplicity and compact representation
•  Model independence
• Generality and flexibility

These strengths were demonstrated in the sequential and parallel simulations of the 
three most popular neural network models.

The main disadvantage of matrix-based neural network representations is that as 
data are grouped in the form of matrices, the neural network concepts such as layers, 
clusters, neurons or synapses are not supported. For this reason, mapping these concepts 
onto neuron-based fine-grained architectures is hampered. An object- or data-oriented 
approach is more suitable for mapping onto special-purpose neurocomputers.
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The two matrix-based representations VML and MATLIB are suitable for the 
general-purpose, parallel, accelerator-board-based systems. Matrix-based operations 
present data to general-purpose SIMD architectures, in a format which is relatively free 
from data dependencies. These operations can be easily divided and parallelised on 
SIMD architectures with a good load balance. Considering an element by element 
multiplication of two matrices (memu) on a fine-grained SIMD architecture, the operand 
matrices’ data could be distributed onto the multipher processors, and a single multiply 
instruction to all the processors would complete the operation, in a single step. One 
consideration in the distribution of matrix operations is that some matrix operations are 
composite. If the operation is divided, the results must be reassembled. An example is 
the matrix by matrix multiplication (mmul) which was parallelised in chapter 8. This 
operation requires the addition (madd) of the parallel submatrix multiplication results. In 
automatic mapping and parallel code generation, these exceptions can be included in the 
final system. Alternatively, such composite operations are identified and decomposed 
into simple, divisible matrix operations.

Another difficulty with the matrix-based representations is the execution of neural 
operators. As pointed out in chapter 5, some commercial software/hardware provide 
matrix-based arithmetic operations, but most neural-specific operations still are executed 
on the sequential host computer. Fine-grained parallel architectures are developed with 
programmable processors for executing neural activation functions, derivatives etc. 
Research is in progress in the development of parallel algorithms for matrix operations 
[115], and the hardware implementations of matrix-based operators.

In this research, two matrix-based representations VML and MATLIB are used to 
simulate and map the three neural network models. Both representations proved to be 
excellent tools which allowed the experimentation and the testing of the models and 
applications. VML suffers from a number of weaknesses:

• Yet another language - The main problem with VML is that, it attempts to compete 
with C. As a competitor language it contains similar features to C which is 
unnecessary, as those features are readily available in C. As an interpreted 
language, VML has its own parser and interpreter which are planned to be ported 
onto VMs’ local memory space. This is also unnecessary, as nowadays most 
systems provide their own C compilers. When they do not, a cross compiler can be 
developed which compiles C to relevant executable languages. Similar concerns 
had been raised during the course of the Galatea project [16].
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• High-level features - For most neural network simulations a subset of C would be 
sufficient, and VML should have consisted of only these features. This would also 
have facilitated the mapping process, as the calculation of the computational costs 
would have been simplified. Instead, VML includes a large number of statements, 
with an arbitrary rule hierarchy and a number of loop and control statements. 
Automatically generated raw VML code contains too many VML rules, most of 
which consist of a single line, a call for another rule, reflecting the object-oriented 
rule hierarchy in the high level language N. The rule hierarchy, and the arbitrary 
control loops complicate the cost analysis for the Galatea Mapper. In fact it is 
impossible to cost loop statements such as while which are resolved only during 
run-time.

• Low-level features - In addition to accommodating high-level language features, the 
later version of VML (VML 2.0) includes the data type in its syntax. As a result, for 
example, the number of mmul statements proliferated to 8, with the introduction of 
statements like intSjnmuly double32_mmuh etc. A large number of new statements 
emerged, each dedicated for an operation with a specific data type. These 
development make it hard to code in VML, as the programmer has to consider the 
data type at every stage.

MATLIB was originally designed to overcome these weaknesses. As a library, it is 
basically C, containing only the necessary matrix operations sufficient for programming a 
range of neural network algorithms. It can be extended, using the same conventions and 
the data structures. Added parallel features make MATLIB a matrix-based, parallel, C, 
source library. MATLIB has provided a flexible, open, modular environment for neural 
network programming, ready to be executed on matrix operator parallel hardware.

The use of NETLIB functions is even simpler, these functions make neural network 
programming a matter of calling a C function from a program. As future systems are 
likely to be multiple networks and Hybrid Systems, NETLIB functions are a valuable tool 
for the novice or non-expert Although it is hidden from the user, the NETLIB functions 
consist of MATLIB matrix-based library functions, and these can be executed efficiently 
on parallel hardware. Both libraries provide a clear, modular and object-oriented means 
to program neural networks and other similar fine-grained algorithms.
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9.4. The Strategy

In this thesis, the neural network execution strategy has been to achieve a high- 
performance execution for a wide range of models, by exploiting general-purpose 
parallel hardware platforms. Generality, flexibility and scalability have been other 
considerations. The main disadvantage of the general-purpose execution strategy is that 
the general-purpose devices cannot match the level of performance provided by the 
special-purpose devices [51,70,85,131]. Special-purpose neurocomputers are often 
application- and algorithm-specific devices and are usually too expensive. The level of 
performance provided by general-purpose devices can be acceptable for most 
applications, and can be enhanced through parallelism and cascading. The general- 
purpose execution strategy shifts the complexity to the software, as it requires flexible 
representations and efficient mapping strategies which are capable of exploiting general- 
purpose hardware.

The Virtual Machine concept lies at the centre of the general-purpose execution 
strategy. This idea is not new - similar ideas have been put forward in the past [23,97]. 
TRW Mark III, presented in chapter 2, was an early example of a general-purpose, 
parallel, scalable neurocomputer which pioneered this philosophy in neural computing. 
The Galatea VM typically consists of a communications unit and an execution unit, each 
specialised for separate tasks. The communications unit consists of a local memory unit 
and a CPU, and it is responsible for interfacing with the external environment, 
controlling the co-processor board and carrying out other calculations which would be 
too expensive to execute on the board. Execution units are compact, general-purpose 
neurocomputer, accelerator or co-processor boards. A number of VMs can be connected 
to a host machine producing a general purpose neural computer. The VMs or general- 
purpose neurocomputer units are currently under development at Siemens and Philips. 
After their completion, an assessment of the Galatea GPNC is necessary. The criteria for 
this assessment would be based on the following requirements, which are also the 
research objectives for this thesis. They are: high performance, generality, parallelism, 
flexibility, scalability and modularity.

Siemens and Philips VMs are general-purpose neurocomputers which are expected 
to yield a high performance, targeting large-size real-world applications. Typical 
applications include computationally demanding vision tasks, and image recognition and 
processing. Siemens based VM, SYNAPSE-1, which will be a commercial product, can 
provide up to 800-1000 MCPS. This is well above the computational requirements for 
most current neural network applications [6]. Its local storage capacity is also sufficient
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at 4MBytes, and can be increased by upgrading the local RAM for the communications 
unit.

Two levels of parallelisms are possible with the VM approach. The execution unit 
of each VM is a medium- to fine-grained parallel processor array. In addition to this, 
many VMs can be connected in parallel, providing coarse-grained parallelism. This 
second level of parallelism is the mapping domain that this thesis work has focused on as 
part of the development of a general purpose neural computer.

Two radically different mapping/execution philosophies are practised for the 
execution and mapping of neural networks. The first one exploits the parallel distributed 
structure of networks; the neural-oriented features such as layers, clusters, neurons and 
synapses are mapped and executed on parallel distributed hardware. The three neural 
network case studies in chapter 4 show that these networks favour different types of 
structural mappings due to the differences in their topological and computational 
properties. The structural mapping approach is not general or flexible, yet it is simple to 
understand and can deliver a high performance on massively parallel hardware platforms. 
Strictly speaking the structural parallelism is data parallelism.

The second mapping approach is based on the high performance execution of the 
computations involved in neural network simulations. The second approach has been 
chosen in this thesis, as it is more general, flexible and cost-effective. The mapping 
strategy based on this computational mapping approach is to develop a mapper as an 
optimiser. The mapper’s main task is then to optimise the use of hardware resources for 
an efficient execution. The mapper as an optimiser strategy is upgradable. Any 
optimiser, including genetic algorithms and neural networks can be used to optimise the 
mapping process. In fact, there have already been attempts to use neural networks as an 
optimiser in the mapping problem [134].

Central to the optimisation, is the costing of computational load, with two aspects; 
the processing costs and the communications costs. Most of the parallel mapping efforts 
have been focused on the computational costing of the sequential and the potentially 
parallel executions. Naturally, to demonstrate the approach, a linear computational 
model, and a homogeneous processor architecture have been assumed for simulations on 
the SUN LAN. The heterogeneous hardwares with nonlinear computational models 
would be more challenging, although the same principles apply.
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The mapping strategy of computational optimisation is generic, and it can also be 
applied to structural mapping of networks. In that case, it would involve the evaluation 
of the processing and communications costs for all the objects of the system. Developing 
a computational optimiser object mapper would be facilitated by object-oriented 
languages. In fact, the computational look-up tables could be set up as parts of the object 
classes which are distributed by the mapper. The challenging task for the mapper would 
be to decide on the level of granularity for partitioning neural network object 
representations. To achieve this, the potential computational costs of a number of 
partitionings can be simulated and the execution with the minimum computational cost is 
chosen. An additional degree of complexity to mapping can be foreseen on the 
heterogeneous architectures. Then the computational optimisation can last increasingly 
long in proportion to the granularity of the systems. Neural network or genetic algorithm 
based optimisers can then replace straightforward computational cost calculations.

9.5. The Implementation

The main challenge, in the implementation of the mapping strategy as a 
computational optimiser, is to parameterise and estimate the computational costs for 
potential sequential and parallel executions. The Computational Analysis Tool has been 
developed for this purpose. Any neural network or other algorithm written by using 
MATLIB functions in the restricted format, can be processed by CAT. The total memory 
usage is estimated, a line by line analysis of the computations is made, and the possibility 
of the two types of parallelism - data and task parallelisms - is explored. Then, 
depending on the number and type of parallel processors available, the data parallel and 
task parallel communications costs are estimated. Based on the estimates, the Automatic 
Parallel Mapper then decides whether parallel execution is profitable, and automatically 
generates data or task parallel MATUB programs.

Automatic code generation schemes, particularly an automatic parallel code 
generation is very much desired to minimise and altogether eliminate the human effort in 
programming [32]. The loss of performance during compilations and translations from 
high-level to low-level representations is one of the major disadvantages of automatic 
code generation schemes. Writing code in an intermediate-level language is often more 
efficient than the automatic generation [45]. Where high performance matters, parallel 
programs can be written manually, or alternatively libraries can be used in parallel 
programming. MATLIB and NETLIB libraries were easy to use in manual parallel 
programming, and throughout this thesis, varying degrees of automation are used in code
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generation aiming at a fiilly automatic parallel mapping.

The Galatea Mapper compromises on the automatic generation of VML code, by 
adopting a semi-automatic mapper. At this stage of the project, the computational 
characteristics of the Virtual Machines are not available. The Galatea project is currently 
focusing on the optimisation of the execution of the VML functions on Siemens and 
Philips generic boards. Once the generic boards are produced, and all the parameters of 
the VMs are available, these parameters can be integrated into the semi-automatic 
mapper, and fully automatic mapping can be realised.

The Automatic Parallel Mapper and the Computational Analysis Tool are strongly 
linked. CAT does most of the work by costing, analysing, and projecting parallel 
executions. APM choses one of the options provided by CAT, and based on that, it can 
generate parallel MATUB definitions automatically from sequential MATUB program 
listings. CAT simulations in chapter showed the feasibility of the approach by 
automatically generating C code which is compiled and executed. There are two 
problems with the APM generated code.

Firstly, CAT’s data parallel projections search for parallelism on an instruction by 
instruction basis, ignoring the temporal relationship between the operations. As a result, 
even constant data matrices are transmitted to the parallel clients for each instance. In 
fact, constant matrices could be transmitted only once, and stored in the local memories 
of the VMs throughout the execution. In the parallel simulations of the Hopfield net on 
the LAN, this approach of transmitting the constant weight matrix only once, is used. 
The approach resulted in some parallel simulations, on a number of SUNs, running faster 
than sequential simulations on a single SUN. This behaviour of transmitting constant 
matrices only once, can be introduced to CAT/APM. In addition to this, a further module 
could identify temporarily constant variables. These variables stay constant during an 
inner loop operation until they are written during an outer loop. Again, communication 
costs can be reduced by transmitting these variables when necessary. There is already a 
template for these potential developments in the current loop/variable analysis routines in 
CAT.

Secondly, in task parallel mapping, CAT’s variable analysis routine focuses 
exclusively on the matrix variables, establishing variable dependency links in the form of 
forward and backward data paths. This is because the transmission costs of these 
variables are significant in the calculation of the communications costs. In fact, the 
scalar variables are as important; they can also halt a parallel simulation if they are not
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received when requested. As a result, the current automatic pipeline mappings may 
result in incorrect parallel code generation. This problem will be resolved by adding a 
scalar variable loop analysis routine.

Finally, dynamic or run-time mapping alternatives to compilation-time and static 
mapping have also been considered but not implemented. This is because dynamic 
mappings place a heavy demand on communications resources due to the continuous 
freeze and download operations on the parallel system. For the time being, the initial, 
static mapping is found sufficient for mapping medium size neural networks.

9.6. Mapping Results and Performance
The mapping results can be assessed in two categories; the Galatea Mapper 

simulations using VML, and parallel mappings of MATLIB definitions. .

The Galatea Mapper simulations focused on mapping and executing complete 
networks on general-purpose neurocomputer modules (VMs) of the system. The semi­
automatic task mappings showed that the GPNC simulator on the SUN workstations is 
too slow to gain any speed-up. Mappings of MATLIB on the other hand show clear gains 
for some parallel simulations on the Local Area Network. This discrepancy is due to the 
slow scheduler on the GPNC, which packs and unpacks messages and transmits data in 
ASCn. As the purpose of the Galatea GPNC simulator was not to yield high 
performance, but to provide a developmental, experimental system to the project 
partners, the performance of the system was acceptable.

The Computational Analysis Tool results on the three models, show that the 
Hopfield and the SOM models do not scale up, as they contain polynomial relationships 
in the computational complexity of the algorithms with respect to the network size. This 
is the case for increasing neuron size for the Hopfield net and increasing output grid size 
for the SOM. In both cases, computational requirements increase polynomially in 
proportion to the square of the number of neurons. In these cases, as the network size 
gets bigger, the computational requirements become unsurmountable. The 
Backpropagation model shows a linear increase in the computational requirements when 
the number of neurons is increased linearly. The steepest increase occurs in the increase 
of the neurons in the hidden layers.

The three neural network models are tightly coupled algorithms with little room for 
task parallelism. Only by changing the algorithms is it possible to pipeline tasks and 
achieve a task parallel execution. The same technique of conversion to the batch weight
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updates, is also used for structural mappings of neural network models. This 
correspondence confirms that the matrix-based representation adopted in this research 
captures the same characteristics on a different plane.

The performance of data parallel executions depend on the communications speed 
and bandwidth of the interconnection architectures. The data parallel execution 
projections carried out by CAT show above 10 Mbits/sec speeds, data partitioning can be 
useful on average size networks. The communications bandwidth limits the 
communications speed when there is a high traffic and large data sizes are transmitted on 
a bus. The feasibility of the Future Bus architecture as the communications medium for 
a general purpose neural computer has been investigated elsewhere [128] with 
encouraging simulations results.

Global measures for success on parallel architectures are speed-up and efficiency. 
Considering a sequential execution lasts 7 ,̂ and a parallel execution for the same 
application on n parallel processors lasts Tp, the speed-up factor is: S = Tg/Tp, and the 
efficiency is: E = S/n.

CAT projections in Figure 9.1 show the performance and efficiency for data parallel 
mapping of a 64-neuron Hopfield net on 2 processors with varying communication 
speeds. These results show that, the higher the communications speed, the better the 
speed-up factor and the efficiency.
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Figure 9.1. Data Parallelism and Communication Speed

A similar relationship is observed between the number of parallel processors and the 
speed-up factor. However, as seen in Figure 9.2, there is a reverse relationship between
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the efficiency and the number of parallel processors. These results are also obtained by 
CAT projections on a 64 neuron Hopfield net, with a constant 10 Mbit/sec 
communications speed. This indicates that although a faster execution can be achieved, 
the resources are used inefficiently.
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Figure 9.2. Data Parallelism and number of Processors

Another issue in parallel mapping is scalability which is linked to the performance 
improvement on a parallel system, with respect to the increasing number of processors. 
The data parallel mapping projections promise a scalable execution particularly for high 
communications speeds. Task parallel, instruction pipelines, on the other hand, are not 
scalable as a result of the difficulties in load balancing. Also, CAT pipeline projections 
showed that finding a cutting point which would result in a pipeline with a good load 
balance, is not always possible. In any case, scalability is limited by physical 
interconnection architectures such as buses which can serve only a certain number of 
parallel processors.

In any case, as shown in chapter 8, current general-purpose, coarse-grained parallel 
architectures can provide a suitable framework for the integration of different problem 
solving modules. As the communications requirements are minimal between the 
independent modules of the system, these architectures can be efficiently used in neural 
network cooperation and competition for better hybrid algorithm designs, and the genetic 
optimisation and automatic generation of neural networks.
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Chapter 10

Conclusion and Future Work

This final chapter presents the conclusions o f this thesis work. The 
possibility o f extending the coarse-grained mapping strategy to fine­
grained or heterogeneous architectures is explored.

10.1. Conclusions
The main objective of this thesis was to achieve generic representation and mapping 

strategies for executing neural networks on parallel hardware. The matrix-based 
Clibrary, MATLIB achieves generality, flexibility and modularity. It captures neural 
network properties at the most common level, and is suitable for general-purpose parallel 
computers. The computational cost analysis based mapping strategy is also general, 
flexible and, modular. It can provide high performance and efficient execution on 
parallel machines with high speed communications interfaces. It has been shown that the 
mapping operation can be automated. The main conclusions of this thesis work are 
presented on a chapter by chapter basis.

In chapter 4, a comprehensive analysis has been carried out using the three most 
popular neural network models; the Hopfield, the SOM and the Backpropagation. The 
following conclusions were reached as a result of the analysis:

•  In computer simulations the most common operations are vector-matrix arithmetic 
operations. A number of neural-network-specific operations exists that can also be 
represented in a vector-matrix based format. Neural network simulations involve 
general computing routines such as the file I/O, pattern pre-processing, sorting and 
graphics interface. These routines can also be abstracted in vector-matrix based 
representations.

• The three models have their strengths and weaknesses, and popular applications. 
Combinations of these models in multiple neural network architectures could 
enhance their performance.

•  Structural partitioning techniques applied to a model cannot be generalised to all 
models.
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In chapter 5, function-oriented, object-oriented, and vector-oriented neural network 
representation techniques have been compared, using a number of simulation examples. 
The following conclusions have been reached:

• Function-oriented representations focus on the functionality of the algorithms and 
are suitable for task parallelism, but not suitable for data parallelism.

• Object-oriented representations can capture neural network concepts down to the 
finest granularity and are are suitable for mapping neural networks onto massively 
parallel architectures that can match the same level of granularity.

•  Vector-oriented representations capture neural network properties at the most 
common level, and are suitable for exploiting general-purpose parallel computers.

This thesis achieved a generic neural network representation by the design and 
development of MATLIB and NETLIB libraries. MATLIB functions are general-purpose 
and encourage programmer to think in a matrix-oriented fashion. They would be suitable 
for many scientific problems with high dimensionality, and other conventional tasks such 
as graphics and pattern processing.

In chapter 6, the computational cost analysis based mapping strategy was outlined. 
It was concluded that the structural mapping techniques are not general or flexible. A 
computational analysis based mapping strategy is general, flexible and can be upgraded 
by using modem optimising techniques in future. Combine with the matrix-based 
representation technique, the mapping strategy can incorporate parallelism in two levels; 
the matrix-based operations can be pipelined in a MIMD fashion, and each operation can 
be parallelised in a SIMD or MIMD fashion.

In chapter 7, the design and development of the Galatea Mapper has been presented. 
The Galatea Mapper distributes a matrix-based common language VML onto general-
purpose, high performance VMs. The following lessons have been learned:

•  Increased complexity in the common language (VML), introduce the following 
difficulties in mapping: (i) high-level features such as loop controls that are 
resolved during the run-time, make compilation-time mapping impossible, (ii) low- 
level features such as hardware-specific instructions should not be in the common 
representation, and (Hi) hierarchical structures such as rules in the common 
representation place unnecessary constraints on the mapping process.
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• Increased complexity on the Scheduler slows down simulations to the point that 
parallelism is useless. Simple, passive scheduling techniques should be adopted for 
higher performance.

In chapter 8, the results of the CAT projections and parallel simulations have been 
presented. Parallel, pipelined, single-domain and multiple neural network architectures 
are used in these simulations. The following conclusions have been reached:

• The three neural network models are tightly coupled algorithms for task parallelism 
purposes. All three models involve forward and backward data streams in their 
MATUB representations. Only after modifying their weight update procedures, the 
SOM and the Backpropagation models can be pipelined through 2 or 3 parallel 
processors, resulting in a faster parallel execution.

• Data parallehsm on an instruction-by-instruction base can produce a speed-up. The 
amount of speed-up strongly depends on the communications speed. The 
simulations on the Hopfield model showed that only by parallelising the matrix 
multiplication a considerable time can be saved. The initial communication costs 
such as latency must be taken into consideration for fine-grain parallehsm.

•  Automatic mapping is possible on a smaU number of parallel processors. CAT and 
APM can resolve data dependencies and generate parallel and pipelined code, 
scheduling data transfer operations.

• Current distributed computer networks can be used for speeding up multiple neural 
network simulations where a number of independent modules compete or co­
operate in the solution of a problem.

10.2. Future Work

A comprehensive computer architecture which is capable of serving a hybrid of 
neural, genetic and rule-based systems is very much desired. Such an architecture would 
be able to handle a mixture of apphcations, in a programming environment with multiple 
representations, and exploit special-purpose, general-purpose and conventional hardware 
modules, all sharing a message passing communications protocol. Such a system is 
called a General Purpose Heterogeneous Computer (GPHC) (Figure 10.1). Primary 
applications for GPHCs would be aU fine-grained algorithms such as; Neural Networks, 
Genetic Algorithms, Virtual Reality systems. Fractal systems. Fluid Dynamics and Finite 
Element systems.
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The programming environment for the GPHC can be realised by linking a number 
of algorithm libraries, in an open, modular system environment, where users could build 
their applications by using the library functions as building blocks. The mapping task in 
this environment, would involve the optimisation of the partitioning and distribution of 
various representations onto the heterogeneous environment for execution. The 
computational optimisation mapping strategy can be extended to the heterogeneous 
system. First, a considerable effort must be put in the computational evaluation of 
processing and communications costs of the library functions within the multiple 
representation environment. Special-purpose, fine-grained and general-purpose, coarse­
grained, all the modules of the execution environment must be parameterised in the 
computational cost analysis. Conversion mechanisms between the different libraries 
must be set up to achieve a load balance in various software and hardware combinations.

Financial
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Real World Applications 
Pattern 

Recognition
Data

Processing

f \ '

Neural
Genetic

Algorithms

Graphics
Interface

Programming Environment

Conventional 
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Library

Procedure 
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Special General Conventional
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Figure 10.1. General Purpose Heterogeneous Computer
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The computational optimisation strategy can also be applied to Silicon Compilers 
which are becoming increasingly important in the wake of low cost automatic generation 
of neural ASICs. In this case, the main cost is not only the potential execution time, but 
also the actual silicon area. Folding algorithms based on optimisers can be used to 
reduce the final silicon area, through projections and simulations which partition neural 
network representations and measure the cost in terms of the silicon area.
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Appendix A

APPENDIX A - Neural Network Representations

This appendix presents sections o f code from the three representation 
techniques studied in this thesis.

A.I. The nC Data Structure

Below is outline of the nC data structure tree for the Pygmalion project.

/ *  -  -      .......
struct SYSTEM {

short n_rules;
short n_parameters;
rule_type ♦rules;
para_type ♦parameters ;
int configs;
char ♦♦config;
int ports ;
port_type ♦♦port;
int nets ;
net_type ♦♦net;

};
/ *  .
struct NET {

short
short
rule_type
para_type
int
layer_type

n_rules; 
n_pareuneters ; 
♦rules; 
♦parameters ; 
layers; 
♦♦layer;

};
/ *  ........
struct LAYER {

short
short
rule_type
para_type
int
cluster_type

n_rules; 
n__parauneters ; 
♦rules ; 
♦parameters ; 
clusters ; 
♦♦cluster;

};
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/ *  —  

struct CLUSTER {
short
short
rule_type
para_type
int
int
neuron_type
synapse_type

n_rules; 
n_parameters; 
♦rules; 
♦parameters ; 
neurons; 
synapses ; 
♦♦neuron; 
♦♦synapse;

};
/ *  .........................
struct NEURON {

short
short
rule_type
para_type
struct NEURON
struct NEURON
int
synapse_type

n_rules; 
n_parameters ; 
♦rules; 
♦parameters ;
♦♦input_neuron;
♦♦output_neuron ; 
synapses; 
♦♦synapse;

/ *  - - - -  

struct SYNAPSE {
short
short
rule_type
para_type

};

n_rules; 
n_parameters; 
♦rules; 
♦parameters;
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A.2. The Hopfield Recall Rule in C
Below is the recall rule for the Hopfield simulation in C.

/ * ...........................................- .......................................................................................—  -  —  * /

int recall (c__pat) 
int c_pat;
{

int i, iter; 
double rms;

for (i=0; i<NEURONS; i++) {
old_out[i] = pats[c_pat][i]; 
out[i] “ pats[c_pat][i];

}
iter = 0;
while (iter < LIMIT) {

for (i-0; i<NEURONS; i++) { 
dot_product(i);
threshold(i) ; .. '

)
rms =0.0;
for (i=0; i<NEURONS; i++) {

rms += (out[i] - old_out[i])*(out[i] - old_out[i]);
}
if (rms ==0.0) {

printf("pattern %d Converged Iteration=%dO, c_pat, iter) 
break;

1
iter++;
for (i-0; i<NEURONS; i++) { 

old_out[i] - out[i];
}

}
return(NOTOK);

}
/* — ........................   - .......................................................................    V
int dot_product(i) 
int i;
{

int j;

for (i-0; j<NEDRONS; j++) {
out[i] +- old_out[j] * weight[i][j];

}
)
/ * .......................    - ...........................................V
int threshold(i) 
int i;
{

out(i] - (double) tanh( out[i] );
}
/ * .................................................................................       V
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A 3. The Decrement Distance Function in nC
Below is the Decrement distance rule for the SOM simulation in nC.

/*  - ..................... - ............- ......................... - ......................................................— ............- V
int Decrement_distance() /* reduce distance and gain * /

{
if ( sys->net[c_net]->parameters[ NET_P_distance ].parameter.value.f <=

sys->net[c_net]->parameters[ NET_P_distance_finish ].parameter.value.f ) { 
return ( TERM );

}
sys->net[c_net]->parameters[ NET_P_gain ].parameter.value.f -=

sys->net[c_net]->parameters[ NET_P_gain_step ].parameter.value.f;

if ( sys->net[c_net]->parameters[ NET_P_gain_step ].parameter.value.f >0.0 ) {
if ( sys->net[c_net]->parameters[ NET_P_gain ].pareuneter.value.f <

sys->net[c_net]->parameters[ NET_P_gain_finish ].parameter.value.f ) { 
sys->net[c_net]->parameters[ NET_P_gain ].parameter.value.f - 
sys->net[c_net]->parameters[ NET_P_gain_finish ].pareuneter.value.f;

}
}
else {

if ( sys->net[c_net]->parameters[ NET_P_gain ].parameter.value.f >
sys->net[c_net]->parêuneters[ NET_P_gain_finish ].parameter.value.f ) { 

sys->net[c_net]->parameters[ NET_P_gain ].parameter.value.f = 
sys->net[c_net]->parameters[ NET_P_gain_finish ].pareuneter.value.f;

}
1
sys->net[c_net]->pareuneters[ NET_P_distance ].parameter.value.f -- 
sys->net[c_net]->pareuneters[ NET_P_distance_step ].parameter.value.f;

if ( sys->net[c_net]->parauneters[ NET_P_distance ].parameter.value.f <0.0 ) { 
sys->net[c_net]->pareuneters[ NET_P_distance ].pareuneter.value.f - 0.0;

}
return ( 0 );

}
/*  ........................................................................... - ..........- ...................................................... V
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A.4. The Recall Rule for the Backpropagation in VML

Below is the data definition and Recall rules for the Backpropagatiom model in
VML,

# name type initial value
define_scalar ■X", 0, 4 * input layer
define_scalar "Y", 0, 2 * hidden layer
def ine_scalar "Z", 0, 4 * output layer
define_scalar "P", 0, 4 # no. of training patterns
define_scalar "T", 0, 0.25 # tolerance
define_scalar "N", 0, 0.02 # learning rate

# name type m n
def ine_matrix "SO", 0, P, X « Input states - training patterns
define_matrix "SI", 0, 1, Y # Hidden states row vector
define_matrix "S2", 0, 1, Z * Output states row vector
define_matrix "Wl", 0, X, Y # Weights between input and hidden lay.
def ine_raatrix "W2", 0, Y, Z # Weights between hidden and output lay.
def ine_matrix "El", 0, 1, Y * Errors in hidden layer
define_matrix; "E2", 0, 1, Z # Errors in output layer
define_matrix "Al", 0, 1, Y * Accumulator in hidden layer
def ine_matrix "A2", 0, 1, Z # Accumulator in output layer
def ine_matrix "PE" , 0, P, Z # individual errors in all patterns
###*#**#«*#*«*###****##*»«***«*##**#**#*###**««#*#**####*#***####*«»##*#*#»«#*#*«*##
define_rule: Recall( P )

Al “ mu ( SO[p,*], Wl ) « [p,*] refers to pth row vector
SI = afm( tanh, Al ) * activation function for hidden layer
A2 = mu ( SI, W2 ) « multiply hidden states
S2 = afm( tanh, A2 ) « activation function for output layer
E2 - es ( SO[p,*], S2 ) # subtract outputs from input pattern
PE[p,*] - cp ( E2 ) « copy to PE
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Appendix B

APPENDIX B - MATLIB Functions

This appendix presents a complete list o f the MATLIB junctions. The 
functions are grouped into four categories; data, arithmetic, neural and 
communications operators.

Data Operators

Data operators relate to the memory allocation, memory management and file I/O 
operations. The syntax and the arguments for the MATLIB data operators are as follows:

matdef ( matrix_name, "matrix_name", rows, colunms );
Matrix definition; for setting up matrix data structures and memory allocation.

mcpy ( destination, source );
Matrix copy; copy froms source to destination, both arguments are pointers to 
matrix structures.

vepy ( destination, source, index 1, index2 );
Matrix row copy; arguments are; two matrix pointers and two indices, index 1 refers 
to the destination matrix and index! refers to the source.

sval ( scalar_addr, source, row, column );
Set scalar value from matrix element; the pointer of the double precision scalar 
value is passed to the function, the element of the source with the row and column 
indices is assigned to the scalar.

mset ( destination, scalar, row, column );
Matrix element set; the row, column addressed element of the matrix is set to scalar 
value.

msal ( destination, scalar );
Matrix all elements set; all matrix elements are set to the scalar value.

mtra ( destination, source );
Matrix transpose; source transposed and placed into destination.
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matsv ( filename, source );
Matrix save; save source matrix into filename.

matld ( destination, filename );
Matrix load; read matrix from filename.

matsh ( filename, source, row, threshold, col );
Output matrix source to filename or the standard output, ‘row’ indexed pattern from 
the source matrix, displayed with line breaks at every ‘col’ for a matrix display 
format with values above the threshold are shown as ‘X’, below the threshold as ‘.’, 
if zero ‘ ’.

mout ( source );
Matrix output; source matrix values are dumped to the standard output for 
debugging purposes.

mran ( destination, min, max )
Matrix randomise; generate random values between min and max, write to 
destination.

Arithmetic Operators

Arithmetic operators relate to the matrix arithmetic operations such as addition, 
multiplication etc.

mmul ( destination, source 1, source! );
Matrix multiplication; source 1 and source! are multiplied and the result is placed 
into destination. All arguments are pointers to matrix structures.

mtrm ( destination, source 1, source! );
Matrix multiplication; the same as above with the second source matrix transposed. 
This saves the execution of transposition as a separate operation.

madd ( destination, source 1, source! );
Matrix additions; all arguments are pointers to matrix structures.

msub ( destination, source 1, source! );
Matrix subtraction; all arguments are pointers to matrix structures.

memu ( destination, source 1, source! );
Matrix element by element multiplication, all arguments are pointers to matrix
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structures.

vadd ( destination, source 1, source!, index 1, index!, index3 );
Matrix row addition; three matrices, and three respective row indices.

vsub ( destination, source 1, source!, index 1, index!, index3 );
Matrix row subtraction; three matrices, and three respective row indices.

vemu ( destination, source 1, source!, index 1, index!, index3 );
Matrix row element by element multiplication, three matrices, and three respective 
row indices.

mscm ( destination, source, scalar );
Matrix by scalar multiplication, all elements of the source is multiplied by the scalar 
and the result is put into destination.

mnor ( destination, source )
Normalise all the rows of the source matrix and put the resulting vectors into the 
destination matrix.

mavg ( scalar_addr, source )
Matrix average; calculate the mean average of the source matrix.

mmax ( scalar_addr, source, row_addr, col_addr )
Matrix maximum; find the maximum element of the source matrix, and return its 
value in scalar, and its position in row and colunm.

mmin ( scalar_addr, source, row_addr, col_addr )
Matrix minimum; find the minimum element of the source matrix, and return its 
value in scalar, and its position in row and column.

mabs ( destination, source )
Matrix absolute; take the absolute values of a source matrix put to destination.

Neural Operators

Neural operators are neural network specific functions which are applied to a 
matrix. They can also be implemented in parallel, yet they require an enhanced level of 
complexity on parallel processors.
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mtan ( destination, source )
Apply tangent hyperbolic function to all elements of the source matrix, and put the 
result into the destination.

dtan ( destination, source )
Apply derivative of the tangent hyperbolic to the source matrix.

msig ( destination, source )
Apply sigmoid function to the source matrix.

dsig ( destination, source )
Apply derivative of the sigmoid function to the source matrix.

mrms ( scalar_addr, source )
Matrix root mean squared; calculate the rms of the matrix pass it to the scalar, 
through its pointer.

mdis ( destination, dimensions )
Matrix distance; this function is specific to the SOM, it calculates distance values 
between the nodes of the output grid with a given dimensionality. The function is 
called once at the beginning of the training to set up the distance values. Once set, 
another function mlat handles the neighbourhood decay and lateral weight update.

mlat ( destination, source, distance )
Matrix lateral; this function takes the source matrix and a given distance and 
reforms the lateral weight matrix for this distance. Again it is specific to the SOM, 
and used to carry out the lateral weight update.

Communications Operators

These operators exploit TCP/IP sockets for data transfer between a number of SUN
workstations on a Local Area Network. The functions are generic, and their equivalents
can be easily implemented on multi-computer parallel systems.

put str ( socket_id, string )
Transmit string through the open socket with socket_id.

put_int ( socket_id, int_scalar )
Transmit integer scalar value through the open socket with socket_id.
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put dbl ( socket_id, double_scalar )
Transmit double scalar value through the open socket with socket_id.

put mat ( socket_id, matrix_name )
Transmit matrix with all double precision values through the open socket with 
socket_id.

put rows ( socket_id, matrix_name, index 1, index2 )
Transmit matrix elements between the row indices; index 1 and index2.

put cols ( socket_id, matrix_name, index 1, index2 )
Transmit matrix elements between the column indices; index 1 and index2. 
Together with put_rows this submatrix data transfer function is used in data 
partitioning and data parallel executions.

put val ( socket_id, double_scalar, every )
Transmit double precision scalars once at ‘every’ iteration. This is for debugging 
purposes for graphics or screen display of the network performance.

get str ( socketjd, string )
Receive string through the open socket with socket_id.

get int ( socketjd, int_scalar )
Receive integer scalar value through the open socket with socketjd.

get dbl ( socketjd, double_scalar )
Receive double scalar value through the open socket with socketjd.

get mat ( socketjd, matrix_name )
Receive matrix with all double precision values through the open socket with 
socketjd.

getval ( socketjd, double_scalar, every )
Receive double precision scalars once at ‘every* iteration.
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Appendix C

APPENDIX C - MATLIB Listings of the three Models

This appendix presents the listings o f the Hopfield, the SOM and the 
Backpropagation MATLIB simulations.

C.l. The Hopfield MATLIB Listing

Below is the MATLIB listing of the Hopfield net simulation. The net has 64 
neurons, and it processes 12 patterns allowing only 4 iterations per pattern for 
convergence.

#include "uv.h" 
int NPATS = 12;
int INSIZE - 64
int JL = 4; 
char *weigfil="weig"; 
char *infile="r.dat" ; 
double rms ; 
int i, j;
mt_type *S0, *51, *ST, *HW, *STO, *SD;
main()

matdef(&S0, "SO", NPATS, INSIZE) 
matdef(SSI, "SI", NPATS, INSIZE) 
matdef(SHW, "HW", INSIZE,INSIZE) 
matdef(SSTO, "STO", 1, INSIZE) 
matdef(SST, "ST", 1, INSIZE)
matdef(SSD, "SD", 1, INSIZE)

matld(SO, infile); 
matld(HW, weigfil); 
for (i-0; i<NPATS; i++) {

printf ("Recalling %dO,i); 
vcpy(STO, SO, 0, i); 
for (j-0; jcJL; j++){

mmul(ST, STO, HW); 
mtan(ST, ST); 
msub(SD, ST, STO); 
mrms(srms, SD); 
if ( rms —  0.0 ) { 

break;
}
mcpy(STO, ST);

1
matsh("", SO, i, 0.0, 8); 
printf ("rms - %fO,rms); 
vcpy(Sl, ST, i, 0, 1); 
matsh("", SI, i, 0.0, 8);

}
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C.2. The SOM MAJL/fi Listing
Below is the MATLIB listing of the SOM simulation. The network topology 

comprises 64 input neurons and 12 nodes in the output grid. 12 patterns are presented to 
the network, and during the training maximum 30 iterations are allowed.

#include "uv.h" 
int NP = 12;
int IN = 64
int OU - 12
int JL = 30;
char *infile="h.dat" ; 
char *weigfil="soweig" ; 
double dist = 2.0; 
double dstp = 0.4; 
double dend = 0.1; 
double gain = 0.9; 
double gstp - 0.1; 
double gend = 0.1; 
double rms, tmp, avg; 
int i, j, k, row, col;
mt_type *S0, *S1, *SW, *LW, *LD, *ST, *SC, *SE; 
main()
I

matdef(&S0, "SO", NP, IN)
matdef (StSl, "SI", NP, IN)
matdef(&SE, "SE", 1, NP)
matdef(&SW, "SW", OU, IN)
matdef(&LW, "LW", OU, OU)
matdef(&LD, "LD", OU, OU)
matdef(&ST, ■ST", 1, IN)
matdef(&SC, "SC", 1, OU)

matld(SO, infile); 
mran( SW, 0.0, 0.05); 
mdis( LD, 2); 
mlat( LW, LD, dist ); 
mscm( LW, LW, gain); 
for (i-0; i<JL; i++) {

for (j=0; j<NP; j++) {
for (k-0; k<OU; k++) {

vsub(ST, SO, SW, 0, j, k) 
mrms(srms, ST); 
mset(SC, rms, 0, k);

1
mmin(&rms, SC, srow, &col); 
mset(SE, rms, 0, j); 
for (k-0; k<OU; k++) {

sval(&tmp, LW, k, col); 
vsub(ST, SO, SW, 0, j, k) 
mscm(ST, ST, tmp); 
vadd(SW, SW, ST, k, k, 0)

}
}
mavg(&avg, SE);
printf ("%d: avg rms - %fO, i, avg); 
mlat( LW, LD, dist ); 
mscm(LW, LW, gain); 
dist - dist - dstp; 
if ( dist < dend ) { 

dist = dend;
}
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gain - gain - gstp; 
if ( gain < gend ) [ 

gain = gend;
1 

1
for (j=0; j<NP; j++) {

. for (k=0; k<OU; k++) {
vsub(ST, SO, SW, 0, j, k); 
mrms(Srms, ST); 
mset(SC, nns, 0, k);

}
mmin(&rms, SC, srow, &col);
printf ("pat %d min nns - %f winner=%dO, j, rms, col); 
matsh(*", SO, j, 0.0, 8); 
vcpy(Sl, SW, j, col); 
matsh("", SI, j, 0.0, 8);

}
matsv(weigfil, SW);

1
/ * ........... - ........... - .................................................................................................V

C.3. The Backpropagation MATLIB Listing

Below is the MATLIB listing of the Backpropagation simulation. The network 
topology comprises 64 input, 12 hidden and 64 output neurons. A total of 12 patterns are 
used as target patterns for a variety of noisy inputs. A maximum of 23 iterations are 
allowed during the training.

#include "uv.h" 
int NP - 12;
int IN - 64;
int HID “ 12;
int OUT - 64;
int JL - 23;
char *infile-"r.dat"; 
char *tarfile-"h.dat" ; 
char *oweig-"oweig"; 
char *hweig-"hweig"; 
double gain = 0.003; 
double momt - 0.5; 
double toi - 0.4; 
doubletmp, avg, max; 
int i, j, p, row, col;
mt_type *SI, *Si, *ST, *Sr, *Sh, *PE;
mt_type *W1, *W2, *WT, *Al, *A2, *ER;
mt_type *M1, *M2, *E2, *D1, *D2, *SR;
main()
{

matdef(&SI, "SI", NP, IN);
matdef(&Si, "Si", 1, IN);
matdef(&ST, "ST", NP, OUT)
matdef(&SR, "SR", NP, OUT)
matdef(ssr. "Sr", 1, OUT)
matdef(&Sh, "Sh", 1, HID)
matdef(&PE, "PE", NP, OUT)
matdef(&ER, "ER", 1, OUT)
matdef(&W1, "Wl", IN, HID)
matdef(&M1, "Ml", IN, HID)
matdef(&W2, "W2", HID, OUT)
matdef(&M2, "M2", HID, OUT)
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matdef(&A1, "Al", 1, HID);
matdef(&D1, "01", 1, HID);
matdef(&E2, "E2", 1, OUT);
matdef(&A2, "A2", 1, OUT);
matdef(&D2, "D2", 1, OUT);
matld(SI, infile); 
matld(ST, tarfile); 
mran( Wl, -0.05, 0.05); 
mran( W2, -0.05, 0.05); 
for (j=0; j<JL; j++) {

for (p=0; p<NP; p++) {
vcpy(Si, SI, 0, p); 
mmul(Al, Si, Wl); 
mtan(Sh, Al); 
mmul(A2, Sh, W2); 
mtan(Sr, A2);
vsub(E2, ST, Sr, 0, p, 0); 
vcpy(PE, E2, p, 0); 
dtan(A2, Sr); 
memu(D2, E2, A2); 
mscm(D2, D2, gain); 
mscm(M2, M2, momt); 
for (i-0; i<HID; i++) {

sval(&tmp, Sh, 0, i); 
mscm(A'2, D2, tmp);
vadd(A2, A2, M2, 0, 0, i);
vadd(W2, W2, A2, i, i, 0);
vcpy(M2, A2, i, 0);

]
mtrm(Dl, D2, W2); 
dtan(Al, Sh); 
memu(Dl, Dl, Al); 
mscm(Ml, Ml, momt); 
for (i-0; i<IN; i++) {

sval(&tmp. Si, 0, i); 
mscm(Al, Dl, tmp);
vadd(Al, Al, Ml, 0, 0, i);
vadd(Wl, Wl, Al, i, i, 0);
vcpy(Ml, Al, i, 0);

}
mabs(Ml, Ml);

J
mabs(PE, PB);
mmax(&max, PE, &row, &col); 
mavg(&avg, PE);
printf("%4d: max-%f avg-%f tol-%f0, j, max, avg, toi) 
if ( max < toi ) { 

break;
}

}
for (p-0; p<NP; p++) (

vcpy(Si, SI, 0, p); 
mmul(Al, Si, Wl); 
mtan(Sh, Al); 
mmul(A2, Sh, W2); 
mtan(Sr, A2); 
matsh("". Si, 0, 0.0, 8); 
matsh("", Sr, 0, 0.0, 8);

}
}
/*..........
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Appendix D

APPENDIX D - CAT and APM Results

This appendix presents the CAT and APM results on the Hopfield, the 
SOM and the Backpropagation MATLIB listings and a multiple network 
architecture SOM!Backpropagation model.

D.l. The Hopfield Net
In this simulation a 64 neuron Hopfield net is analysed by CAT/APM for potential 

data parallelism and task parallelism. First the mepiory use and sequential execution 
costs on a SUN4 station are shown, then the possibility of data parallel execution on 2 
VMs is searched and finally the feasibility of task parallelism on 2 VMs is investigated. 
Below is the CAT results for the MATLIB listing of the Hopfield net.

0: S0[ 12 ][ 64 > 768
1: Sl[ 12 ] [ 64 > 768
2: HW[ 64 ][ 64 > 4096
3 : STO[ 1 ][ 64 > 64
4: ST[ 1 ][ 64 > 64
5; SD[ 1 ][ 64 > 64

TOTAL MATRIX MEMORY- 5824 Elements > 46592 Bytes

line func repeat size unit Icost comp total
24 : vcpy 12 64 4.5 0.000289 0.003 0.003
26: mmul 48 4096 8.0 0.032768 1.573 1.576
27 : mtan 48 64 36.0 0.002307 0.111 1.687
28 : msub 48 64 6.0 0.000384 0.018 1.705
29 : mrms 48 64 8.0 0.000512 0.025 1.730
3 3 : mcpy 48 64 4.5 0.000289 0.014 1.744
37 : vcpy 12 64 4.5 0.000289 0.003 1.747

TOTAL COMPUTATIONAL COST- 1.747 seconds

In the results above a line by line analysis is presented; for example, in line 24 a 
vcpy operation takes place which will be repeated 12 times as a result of the loops, the 
data size copied is 64, the operation unit cost is 4.5 micro seconds. As a result the line 
cost is 0.000289 seconds, the computational cost for the line is 0.003 seconds and finally 
total accumulative cost for the listing is 0.003 seconds.

Below the data parallel projections are shown. Each line is evaluated separately. 
CAT/APM, in this case presumes 10 Mbit/sec communications speed and 2 parallel
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VMs. For example, for the mmul operation, the sequential cost is calculated as 0.032768 
seconds, and the data parallel execution, including the data distribution and reassembly 
costs would be 0.029798 seconds. This would be profitable, and $$$ sign indicates the 
partitioning decision in this case. For other operations the same steps are repeated, and 
overall the parallel execution is estimated to last 1.56 seconds. In comparison with 1.747 
seconds sequential execution cost this result correspond to a 1.12 times speed-up on 2 
processors with 0,56 efficiency factor.

func sequential parallel total
vcpy 0.000289 0.002705 0.003471
mmul 0.032768 0.029798 1.433795 $$$
mtan 0.002307 0.001460 1.503898 $$$
msub 0.000384 0.000704 1.522330
mrms 0.000512 0.000461 1.544448 $$$
mcpy 0.000289 0.000452 1.558333
vcpy 0.000289 0.002705 1.561805

2 VMS, 10000000 Mbit/sec, par cost = 1.561805, speed-up = 1.12, eff = 0.56

For a task parallel execution variable and loop analyses are necessary. CAT results 
are presented below. First in the Hopfield listings, 2 Constant matrices are identified, then 
for each line all matrix variables are analysed. The matrices are SO, SI, HW, STO, ST 
and SD. Each column beneath the matrices have symbols indicating whether the matrix 
is written, read, is on forward or backward data stream. Symbol 0 indicates no operation. 
In two digit symbols, the first digit 1 means forward flow, 2 backward flow, and 3 flow in 
both direction. The second digit 1 means Read, 2 Read and Write, and finally 3 means 
Write only. The pipe_cost column gives an estimate of communications cost in the case 
of splitting the representation in that line, which would result in a data flow breaking and 
a number of data transfers between the broken parts. The final column contains the list 
of backward flow data names in those specific lines. For example between the fines 27 to 
33, the matrix variable STO is in a backward flow path, and prevents a pipeline type of 
task parallelism. Because of this APM efforts to divide the representation into 2 equally 
balanced parts cannot succeed, and APM operation results in "NO CUTTING POINT 
FOUND".

Constant SO 
Constant HW

24 vcpy
SO
0

SI
0

HW
0

STO ST SD pipe_cost backward_flow 
13 0 0 0.010

25 for_JL_4 0 0 0 10 0 0 0.125
26 mmul 0 0 0 31 13 0 0.136 STO
27 mtan 0 0 0 30 12 0 0.627 STO
28 msub 0 0 0 31 11 13 0.637 STO
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29 mrms 0 0 0 20 10 11 1.003 STO
30 if 0 0 0 20 10 0 0.501 STO
31 break 0 0 0 20 10 0 0.501 STO
32 ]_endif 0 0 0 20 10 0 0.501 STO
33 mcpy 0 0 0 33 11 0 0.627 STO
34 }_endfor 0 0 0 0 10 0 0.501
35 matsh 0 0 0 0 10 0 0.501
36 printf 0 0 0 0 10 0 0.501
37 vcpy 0 13 0 0 11 0 0.627

2 vms: total computation» 1.'747
comp» 0 .874 max» 0.961 min» 0.786
cutting point is searched
comp» 0 .874 max» 1.048 min» 0.699
cutting point is searched
comp» 0,.874 max» 1.136 min» 0.612
cutting point is searched
comp» 0..874 max» 1.223 min» 0.524
cutting point is searched
comp» 0..874 max» 1.311 min» 0.437
cutting point is searched
comp» 0..874 max» 1.398 min» 0.349
cutting point is searched
comp» 0,.874 max» 1.485 min» 0.262
cutting point is searched
comp» 0. 874 max» 1.573 min» 0.175
cutting point is searched
CUTTING POINT NOT FOUND
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D.2. The Self-Organising Map
Similar to the Hopfield net explained above, here are the CAT/APM results for the

SOM.

0 S0[ 12 ][ 64 > 768
1 Sl[ 12 ][ 64 > 768
2 SE[ 1 ][ 12 > 12
3 SW[ 12 ][ 64 > 768
4 LW[ 12 ][ 12 > 144
5 LD[ 12 ][ 12 > 144
6 ST[ 1 ][ 64 > 64
7 SC[ 1 ][ 12 > 12

TOTAL MATRIX MEMORY- 2680 21440 Bytes

line func repeat size unit Icost comp total
29: mran 1 768 7.8 0.005952 0.006 0.006
30: mdis 1 144 7.8 0.001116 0.001 0.007
31: mlat 1 144 9.0 0.001296 0.001 0.008
32: ms cm 1 144 6.2 0.000900 0.000 0.009
36: vsub 4320 64 6.0 0.000384 1.659 1.668
37 : mrms 4320 64 8.0 0.000512 2.212 3.880
38 : mset 4320 1 4.5 0.000005 0.020 3.900
40: mmin 360 12 5.0 0.000060 0.022 3.921
41: mset 360 1 4.5 0.000005 0.002 3.923
43 ; sval 4320 1 4.5 0.000005 0.020 3.942
44 : vsub 4320 64 6.0 0.000384 1.659 5.601
45: mscm 4320 64 6.2 0.000400 1.728 7.329
46: vadd 4320 64 6.0 0.000384 1.659 8.988
49: mavg 30 12 6.0 0.000072 0.002 8.990
51: mlat 30 144 9.0 0.001296 0.039 9.029
52: mscm 30 144 6.2 0.000900 0.027 9.056
64: vsub 144 64 6.0 0.000384 0.055 9.111
65: mrms 144 64 8.0 0.000512 0.074 9.185
66: mset 144 1 4.5 0.000005 0.000 9.186
68: mmin 12 12 5.0 0.000060 0.000 9.186
71: vcpy 12 768 4.5 0.003471 0.042 9.228

func sequential parallel total
mran 0.005952 0.005434 0.005434
mdis 0.001116 0.001019 0.006452
mlat 0.001296 0.001339 0.007748
mscm 0.000900 0.001141 0.008648
vsub 0.000384 0.005210 1.667528
mrms 0.000512 0.000461 3.658184
mset 0.000005 0.000041 3.677711
mmin 0.000060 0.000068 3.699311
mset 0.000005 0.000041 3.700938
sval 0.000005 0.000463 3.720464
vsub 0.000384 0.005210 5.379344
mscm 0.000400 0.000507 7.107344
vadd 0.000384 0.005120 8.766224
mavg 0.000072 0.000074 8.768384
mlat 0.001296 0.001339 8.807264
mscm 0.000900 0.001141 8.834264
vsub 0.000384 0.005210 8.889560
mrms 0.000512 0.000461 8.955916
mset 0.000005 0.000041 8.956566
mmin 0.000060 0.000068 8.957286
vcpy 0.003471 0.005422 8.998943

2 10000000 8. 998943 * * * 1.03 0.51
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Constant SO
SO SI SE SW LW LD ST s c pipe_cost backwi

29 mran 0 0 0 13 0 0 0 0 0.125
30 mdis 0 0 0 10 0 13 0 0 0.149
31 mlat 0 0 0 10 13 11 0 0 0.172
32 mscm 0 0 0 10 12 10 0 0 0.172
33 for_JL_30 0 0 0 10 10 10 0 0 0.172
34 for_NP_12 0 0 0 10 10 10 0 0 0.172
35 for_0U_12 0 0 0 10 10 10 0 0 0.172
36 vsub 0 0 0 31 10 10 13 0 0.183 SW
37 mrms 0 0 0 30 10 10 11 0 45.294 SW
38 mset 0 0 0 30 10 10 0 13 0.174 SW
39 }_endfor 0 0 0 30 10 10 0 10 8.633 SW
40 mmin 0 0 0 30 10 10 0 11 8.633 SW
41 mset 0 0 13 30 10 10 0 0 0.174 SW
42 for_0U_12 0 0 10 30 10 10 0 0 0.877 SW
43 sval 0 0 10 30 31 10 0 0 0.877 SW LW
44 vsub 0 0 10 31 20 10 13 0 45.975 SW LW
45 mscm 0 0 10 30 20 10 12 0 45.975 SW LW
46 vadd 0 0 10 32 20 10 11 0 45.975 SW LW
47 )_endfor 0 0 10 10 20 10 0 0 0.854 LW
48 )_endfor 0 0 10 10 20 10 0 0 0.854 LW
49 mavg 0 0 11 10 20 10 0 0 0.854 LW
50 printf 0 0 0 10 20 10 0 0 0.149 LW
51 mlat 0 0 0 10 33 11 0 0 0.172 LW
52 mscm 0 0 0 10 32 0 0 0 0.830 LW
53 dist 0 0 0 10 0 0 0 0 0.125
54 if 0 0 0 10 0 0 0 0 0.125
55 dist 0 0 0 10 0 0 0 0 0.125
56 ]_endif 0 0 0 10 0 0 0 0 0.125
57 gain 0 0 0 10 0 0 0 0 0.125
58 if 0 0 0 10 0 0 0 0 0.125
59 gain 0 0 0 10 0 0 0 0 0.125
60 )_endif 0 0 0 10 0 0 0 0 0.125
61 }_endfor 0 0 0 10 0 0 0 0 0.125
62 for_NP_12 0 0 0 10 0 0 0 0 0.125
63 for_0U_12 0 0 0 10 0 0 0 0 0.125
64 vsub 0 0 0 11 0 0 13 0 45.247
65 mrms 0 0 0 10 0 0 11 0 1.629
66 mset 0 0 0 10 0 0 0 13 8.586
67 }_endfor 0 0 0 10 0 0 0 10 0.407
68 mmin 0 0 0 10 0 0 0 11 0.407
69 printf 0 0 0 10 0 0 0 0 0.125
70 matsh 0 0 0 10 0 0 0 0 0.125
71 vcpy 0 13 0 11 0 0 0 0 0.251

2 vms: total computation- 9.228
comp- 4.614 max- 5.075 min*
cutting point is searched
comp- 4.614 max- 5.537 min*
cutting point is searched
comp- 4.614 max- 5.998 min-
cutting point is searched
comp- 4.614 max- 6.460 min*
cutting point is searched
comp- 4.614 max- 6.921 min*
cutting point is searched
comp- 4.614 max- 7.382 min*
cutting point is searched
comp- 4.614 max- 7.844 min*
cutting point is searched
comp- 4.614 max- 8.305 min*
cutting point is searched
CUTTING POINT NOT FOUND

4.153

3.691

3.230

2.768

2.307

1.846

1.384

0.923
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D.3. The Backpropagation Model
Below is the CAT/APM results for the Backpropagation model. A thorough 

explanation is given in section D.l.

0 SI[ 12 ] [ 64 > 768
1 Si[ 1 ] [ 64 > 64
2 ST[ 12 ] ( 64 > 768
3 SR[ 12 ] [ 64 > 768
4 Sr[ 1 ] [ 64 > 64
5 Sh[ 1 ] [ 12 > 12
6 PE[ 12 ] [ 64 > 768
7 ER[ 1 ] [ 64 > 64
8 Wl[ 64 ] [ 12 > 768
9 Ml[ 64 ] [ 12 > 768

10 W2[ 12 ] [ 64 > 768
11 M2[ 12 ] [ 64 > 768
12 Al[ 1 ][ 12 > 12
13 Dl[ 1 ][ 12 > 12
14 E2[ 1 ][ 64 > 64
15 A2[ 1 ][ 64 > 64
16 D2[ 1 ][ 64 > 64

TOTAL MATRIX MEMORY 6564 52512 Bytes

line func repeat size unit Icost comp total
41: mran 1 768 7.8 0.005952 0.006 0.006
42: mran 1 768 7.8 0.005952 0.006 0.012
45: vcpy 276 64 4.5 0.000289 0.080 0.092
46: mmul 276 768 8.0 0.006144 1.696 1.787
47: mtan 276 12 36.0 0.000432 0.119 1.907
48: mmul 276 768 8.0 0.006144 1.696 3.603
49: mtan 276 64 36.0 0.002307 0.637 4.239
50: vsub 276 64 6.0 0.000384 0.106 4.345
51: vcpy 276 64 4.5 0.000289 0.080 4.425
52: dtan 276 64 12.1 0.000772 0.213 4.638
53: memu 276 64 6.2 0.000400 0.110 4.749
54: mscm 276 64 6.2 0.000400 0.110 4.859
55: mscm 276 768 6.2 0.004800 1.325 6.184
57 : sval 3312 1 4.5 0.000005 0.015 6.199
58: mscm 3312 64 6.2 0.000400 1.325 7.524
59: vadd 3312 64 6.0 0.000384 1.272 8.795
60: vadd 3312 64 6.0 0.000384 1.272 10.067
61: vcpy 3312 64 4.5 0.000289 0.958 11.025
63: mtrm 276 768 8.0 0.006144 1.696 12.721
64: dtan 276 12 12.1 0.000145 0.040 12.761
65: memu 276 12 6.2 0.000075 0.021 12.782
66: mscm 276 768 6.2 0.004800 1.325 14.107
68: sval 17664 1 4.5 0.000005 0.080 14.186
69: mscm 17664 12 6.2 0.000075 1.325 15.511
70: vadd 17664 12 6.0 ,0.000072 1.272 16.783
71: vadd 17664 12 6.0 0.000072 1.272 18.055
72: vcpy 17664 12 4.5 0.000054 0.958 19.013
74: mabs 276 768 5.0 0.003840 1.060 20.073
76: mabs 23 768 5.0 0.003840 0.088 20.161
77: mmax 23 768 5.0 0.003840 0.088 20.249
78: mavg 23 768 6.0 0.004608 0.106 20.355
85: vcpy 12 64 4.5 0.000289 0.003 20.359
86: mmul 12 768 8.0 0.006144 0.074 20.433
87: mtan 12 12 36.0 0.000432 0.005 20.438
88: mmul 12 768 8.0 0.006144 0.074 20.511
89: mtan 12 64 36.0 0.002307 0.028 20.539

TOTAL COMPUTATIONAL COST- 20.539 seconds
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func sequential parallel total
mran 0.005952 0.005434 0.005434 $$$
mran 0.005952 0.005434 0.010867 $$$
vcpy 0.000289 0.002705 0.090708
mmul 0.006144 0.005754 1.678702 $$$
mtan 0.000432 0.000274 1.754282 $$$
mmul 0.006144 0.005670 3.319312 $$$
mtan 0.002307 0.001460 3.722405 $$$
vsub 0.000384 0.002957 3.828389
vcpy 0.000289 0.002705 3.908230
dtan 0.000772 0.000693 4.099620 $$$
memu 0.000400 0.000712 4.210020
mscm 0.000400 0.000507 4.320420
mscm 0.004800 0.006086 5.645220
sval 0.000005 0.000041 5.660190
mscm 0.000400 0.000507 6.984990
vadd 0.000384 0.002957 8.256798
vadd 0.000384 0.005120 9.528606
vcpy 0.000289 0.002705 10.486701
mtrm 0.006144 0.005754 12.074695 $$$
dtan 0.000145 0.000130 12.110580 $$$
memu 0.000075 0.000133 12.131280
mscm 0.004800 0.006086 13.456080
sval 0.000005 0.000207 13.535922
mscm 0.000075 0.000095 14.860722
vadd 0.000072 0.002551 16.132530
vadd 0.000072 0.004954 17.404338
vcpy 0.000054 0.002504 18.362433
mabs 0.003840 0.005606 19.422273
mabs 0.003840 0.005606 19.510593
mmax 0.003840 0.004378 19.598913
mavg 0.004608 0.004762 19.704897
vcpy 0.000289 0.002705 19.708368
mmul 0.006144 0.005754 19.777411 $$$
mtan 0.000432 0.000274 19.780698 $$$
mmul 0.006144 0.005670 19.848742 $$$
mtan 0.002307 0.001460 19.866268 $$$

2 10000000 19.866268 * * * 1.03 0.52

Constant SI 
Constant ST 
Constant SR 
Constant ER

SI Si ST SR Sr Sh PE ER Wl Ml W2 M2 Al Dl E2 A2 D2 pipe_cost backward.
41 mran 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0.125
42 mran 0 0 0 0 0 0 0 0 10 0 13 0 0 0 0 0 0 0.251
43 for._JL_23 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.251
44 for._NP_12 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.251
45 vcpy 0 13 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.261
46 mmul 0 11 0 0 0 0 0 0 31 0 10 0 13 0 0 0 0 3.135 Wl
47 mtan 0 10 0 0 0 13 0 0 30 0 10 0 11 0 0 0 0 3.676 Wl
48 mmul 0 10 0 0 0 11 0 0 30 0 31 0 0 0 0 13 0 3.684 Wl W2
49 mtan 0 10 0 0 13 10 0 0 30 0 30 0 0 0 0 11 0 6.567 Wl W2
50 vsub 0 10 0 0 11 10 0 0 30 0 30 0 0 0 13 0 0 6.567 Wl W2
51 vcpy 0 10 0 0 10 10 13 0 30 0 30 0 0 0 11 0 0 9.565 Wl W2
52 dtan 0 10 0 0 11 10 10 0 30 0 30 0 0 0 10 13 0 46.915 Wl W2
53 memu 0 10 0 0 0 10 10 0 30 0 30 0 0 0 11 11 13 44.043 Wl W2
54 mscm 0 10 0 0 0 10 10 0 30 0 30 0 0 0 0 0 12 41.150 Wl W2
55 mscm 0 10 0 0 0 10 10 0 30 0 30 32 0 0 0 0 10 41.275 Wl W2 M2
56 forjHID_12 0 10 0 0 0 10 10 0 30 0 30 30 0 0 0 0 10 41.275 Wl W2 M2
57 sval 0 10 0 0 0 11 10 0 30 0 30 30 0 0 0 0 10 41.275 Wl W2 M2
58 mscm 0 10 0 0 0 10 10 0 30 0 30 30 0 0 0 13 11 44.158 Wl W2 M2
59 vadd 0 10 0 0 0 10 10 0 30 0 30 31 0 0 0 12 10 75.868 Wl W2 M2
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60 vadd 0 10 0 0 0 10 10 0 30 0 32 20 0 0 0 11 10 75.743 Wl W2
61 vcpy 0 10 0 0 0 10 10 0 30 0 10 33 0 0 0 11 10 75.868 Wl M2
62 }_endfor 0 10 0 0 0 10 10 0 30 0 10 0 0 0 0 0 10 41.150 Wl
63 mtrm 0 10 0 0 0 10 10 0 30 0 11 0 0 13 0 0 11 41.152 Wl
64 dtan 0 10 0 0 0 11 10 0 30 0 10 0 13 10 0 0 0 39.348 Wl
65 memu 0 10 0 0 0 0 10 0 30 0 10 0 11 12 0 0 0 38.808 Wl
66 mscm 0 10 0 0 0 0 10 0 30 32 10 0 0 10 0 0 0 38.392 Wl Ml
67 for_IN_64 0 10 0 0 0 0 10 0 30 30 10 0 0 10 0 0 0 38 .392 Wl Ml
68 sval 0 11 0 0 0 0 10 0 30 30 10 0 0 10 0 0 0 38.392 Wl Ml
69 mscm 0 0 0 0 0 0 10 0 30 30 10 0 13 11 0 0 0 36.050 Wl Ml
70 vadd 0 0 0 0 0 0 10 0 30 31 10 0 12 0 0 0 0 69.562 Wl Ml
71 vadd 0 0 0 0 0 0 10 0 32 20 10 0 11 0 0 0 0 69.437 Wl Ml
72 vcpy 0 0 0 0 0 0 10 0 10 33 10 0 11 0 0 0 0 69.562 Ml
73 }_endfor 0 0 0 0 0 0 10 0 10 30 10 0 0 0 0 0 0 2248.807 Ml
74 mabs 0 0 0 0 0 0 10 0 10 32 10 0 0 0 0 0 0 2248.807 Ml
75 }_endfor 0 0 0 0 0 0 10 0 10 0 10 0 0 0 0 0 0 34.844
76 mabs 0 0 0 0 0 0 12 0 10 0 10 0 0 0 0 0 0 34.844
77 mmax 0 0 0 0 0 0 11 0 10 0 10 0 0 0 0 0 0 34.844
78 mavg 0 0 0 0 0 0 11 0 10 0 10 0 0 0 0 0 0 34.844
79 printf 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.251
80 if 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.251
81 break 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.251
82 }_endif 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.251
83 )_endfor 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.251
84 for_NP_12 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.251
85 vcpy 0 13 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 3.133
86 mmul 0 11 0 0 0 0 0 0 11 0 10 0 13 0 0 0 0 34.969
87 mtan 0 0 0 0 0 13 0 0 0 0 10 0 11 0 0 0 0 0.689
88 mmul 0 0 0 0 0 11 0 0 0 0 11 0 0 0 0 13 0 34.742
89 mtan 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 11 0 3.008

2 vms: total computation- 9.228
comp- 4.614 max- 5.075 min- 4.153
cutting point is searched
comp- 4.614 max- 5.537 min- 3 .691
cutting point is searched
comp- 4.614 max- 5.998 min- 3.230
cutting point is searched
comp- 4.614 max- 6.460 min- 2.768
cutting point is searched
comp- 4.614 max- 6.921 min- 2.307
cutting point is searched
comp- 4.614 max- 7.382 min- 1.846
cutting point is searched
comp- 4.614 maix- 7.844 min- 1.384
cutting point is searched
comp- 4.614 max- 8.305 min- 0.923
cutting point is searched 
CUTTING POINT NOT FOUND
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D.4. The SOM/Backpropagation Model
The same technique is applied to the cooperating SOM and Backpropagation 

networks.

The SOM/Backpropagation Network

0 S0[ 12 ] [ 64 -> 768
1 SM[ 1 ] [ 64 > 64
2 s i [ 12 ] [ 64 > 768
3 SE[ 1 ] 1 12 > 12
4 WI[ 1 ] [ 12 > 12
5 SW[ 12 ] [ 64 > 768
6 DWt 12 ] [ 64 > 768
7 LW[ 12 ] t 12 > 144
8 LD[ 12 ] [ 12 > 144
9 SC[ 1 ] [ 12 > 12

10 Si[ 1 ] [ 64 > 64
. -11 ST[ 12 ] [ 64 > 768
12 SR[ 12 ] [ 64 > 768
13 Sr[ 1 ] [ 64 > 64
14 Sh[ 1 ] c 24 > 24
15 PE[ 12 ] [ 64 > 768
16 ER[ 1 ] [ 64 > 64
17 Wl[ 64 ] [ 24 > 1536
18 Ml[ 64 ] [ 24 > 1536
19 W2[ 24 ] [ 64 > 1536
20 M2[ 24 ] [ 64 > 1536
21 Al[ 1 ] [ 24 > 24
22 Dl[ 1 1 [ 24 > 24
23 E2[ 1 ] [ 64 > 64
24 A2[ 1 ] [ 64 > 64
25 D2[ 1 ] [ 64 > 64

TOTAL MATRIX MEMORY- 12364 98912 Bytes

line func repeat size unit Icost comp total
64: mran 1 1536 7.8 0.011904 0.012 0.012
65: mran 1 1536 7.8 0.011904 0.012 0.024
68: mran 1 768 7.8 0.005952 0.006 0.030
69: mdis 1 144 7.8 0.001116 0.001 0.031
70: mlat 1 144 9.0 0.001296 0.001 0.032
71: mscm 1 144 6.2 0.000900 0.000 0.033
75: vsub 4320 64 6.0 0.000384 1.659 1.692
76: mrms 4320 64 8.0 0.000512 2.212 3.904
77: mset 4320 1 4.5 0.000005 0.020 3.923
79: mmin 360 12 5.0 0.000060 0.022 3.945
80: mset 360 1 4.5 0.000005 0.002 3.947
81: mset 360 1 4.5 0.000005 0.002 3.948
83: sval 4320 1 4.5 0.000005 0.020 3.968
84: vsub 4320 64 6.0 .0.000384 1.659 5.627
85: mscm 4320 64 6.2 0.000400 1.728 7.355
86: vadd 4320 64 6.0 0.000384 1.659 9.013
89: mavg 30 12 6.0 0.000072 0.002 9.016
91: mlat 30 144 9.0 0.001296 0.039 9.054
92: mscm 30 144 6.2 0.000900 0.027 9.081

102: sval 360 1 4.5 0.000005 0.002 9.083
104: vcpy 360 64 4.5 0.000289 0.104 9.187
105: mmul 360 1536 8.0 0.012288 4.424 13.611
106: mtan 360 24 36.0 0.000865 0.311 13.922
107: mmul 360 1536 8.0 0.012288 4.424 18.346
108: mtan 360 64 36.0 0.002307 0.830 19.176
109: vsub 360 64 6.0 0.000384 0.138 19.315
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110: vcpy 360 64 4.5 0.000289 0.104 19.419
111: dtan 360 64 12.1 0.000772 0.278 19.697
112: memu 360 64 6.2 0.000400 0.144 19.841
113: mscm 360 64 6.2 0.000400 0.144 19.985
114: mscm 360 1536 6.2 0.009600 3.456 23.441
116: sval 8640 1 4.5 0.000005 0.039 23.480
117: mscm 8640 64 6.2 0.000400 3.456 26.936
118: vadd 8640 64 6.0 0.000384 3.318 30.254
119: vadd 8640 64 6.0 0.000384 3.318 33,571
120: vcpy 8640 64 4.5 0.000289 2.499 36.071
122: mtrm 360 1536 8.0 0.012288 4.424 40.494
123: dtan 360 24 12.1 0.000290 0.104 40.599
124 : memu 360 24 6.2 0.000150 0.054 40.653
125: mscm 360 1536 6.2 0.009600 3.456 44.109
127: sval 23040 1 4.5 0.000005 0.104 44.213
128: mscm 23040 24 6.2 0.000150 3.456 47.669
129: vadd 23040 24 6.0 0.000144 3.318 50.987
130 : vadd 23040 24 6.0 0.000144 3.318 54.304
131: vcpy 23040 24 4.5 0.000108 2.499 56.804
133: mabs 360 1536 5.0 0.007680 2.765 59.569
135: mabs 30 768 5.0 0.003840 0.115 59.684
136: mmax 30 768 5.0 0.003840 0.115 59.799
137: mavg 30 768 6.0 0.004608 0.138 59.937

func sequential parallel total
mran 0.011904 0.010867 0.010867 $$$
mran 0.011904 0.010867 0.021734 $$$
mran 0.005952 0.005434 0.027168 $$$
mdis 0.001116 0.001019 0.028187 $$$
mlat 0.001296 0.001339 0.029483
mscm 0.000900 0.001141 0.030383
vsub 0.000384 0.005210 1.689263
mrms 0.000512 0.000461 3.679919 $$$
mset 0.000005 0.000041 3.699445
mmin 0.000060 0.000068 3.721045
mset 0.000005 0.000041 3.722672
mset 0.000005 0.000041 3.724300
sval 0.000005 0.000463 3.743826
vsub 0.000384 0.005210 5.402706
mscm 0.000400 0.000507 7.130706
vadd 0.000384 0.005120 8.789586
mavg 0.000072 0.000074 8.791746
mlat 0.001296 0.001339 8.830626
mscm 0.000900 0.001141 8.857626
sval 0.000005 0.000041 8.859253
vcpy 0.000289 0.002705 8.963394
mmul 0.012288 0.011302 13.032258 $$$
mtan 0.000865 0.000548 13.229423 $$$
mmul 0.012288 0.011238 17.275247 $$$
mtan 0.002307 0.001460 17.801020 $$$
vsub 0.000384 0.002957 17.939260
vcpy 0.000289 0.002705 18.043400
dtan 0.000772 0.000693 18.293039 $$$
memu 0.000400 0.000712 18.437039
mscm 0.000400 0.000507 18.581039
mscm 0.009600 0.012173 22.037039
sval 0.000005 0.000079 22.076092
mscm 0.000400 0.000507 25.532092
vadd 0.000384 0.005414 28.849852
vadd 0.000384 0.010035 32.167612
vcpy 0.000289 0.005162 34.666991
mtrm 0.012288 0.011302 38.735855 $$$
dtan 0.000290 0.000260 38.829469 $$$
memu 0.000150 0.000267 38.883469
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mscm 0.009600 0.012173 42.339469
sval 0.000005 0.000207 42.443610
mscm 0.000150 0.000190 45.899610
vadd 0.000144 0.005102 49.217370
vadd 0.000144 0.009907 52.535130
vcpy 0.000108 0.005008 55.034509
mabs 0.007680 0.011213 57.799309
mabs 0.003840 0.005606 57.914509
mmax 0.003840 0.004378 58.029709
mavg 0.004608 0.004762 58.167949

2 10000000 58.,167949 *** 1.03 0.52
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Constants: SO SI DW ST SR ER

SO SM SI SE Wl SW DW LW LD s c Si ST SR Sr Sh PE ER Wl Ml W2 M2 A1 Dl E2 A2 D2 pipe_cost backward_]
64 mran 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0.251
65 mran 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 13 0 0 0 0 0 0 0.501
66 ran 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.501
67 matld 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.501
68 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.627
69 mdis 0 0 0 0 0 10 0 0 13 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.650
70 mlat 0 0 0 0 0 10 0 13 11 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.674
71 mscm 0 0 0 0 0 10 0 12 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.674
72 for_JL_30 0 0 0 0 0 10 0 10 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.674
73 for_NP_12 0 0 0 0 0 10 0 10 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.674
74 for_0U_12 0 0 0 0 0 10 0 10 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.674
75 0 13 0 0 0 31 0 10 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.684 SW
76 mrms 0 11 0 0 0 30 0 10 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 45.795 SW
77 mset 0 0 0 0 0 30 0 10 10 13 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.676 SW
78 )_endfor 0 0 0 0 0 30 0 10 10 10 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 9.134 SW
79 mmin 0 0 0 0 0 30 0 10 10 11 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 9.134 SW
80 mset 0 0 0 0 13 30 0 10 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.676 SW
81 mset 0 0 0 13 10 30 0 10 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.381 SW
82 for_00_12 0 0 0 10 10 30 0 10 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 2.084 SW
83 sval 0 0 0 10 10 30 0 31 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 2.084 SW LW
84 vsub 0 13 0 10 10 31 0 20 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 47.182 SW LW
85 mscm 0 12 0 10 10 30 0 20 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 47.182 SW LW
86 vadd 0 11 0 10 10 32 0 20 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 47.182 SW LW
87 )_endfor 0 0 0 10 10 10 0 20 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 2.060 LW
88 J_endfor 0 0 0 10 10 10 0 20 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 2.060 LW
89 mavg 0 0 0 11 10 10 0 20 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 2.060 LW
90 printf 0 0 0 0 10 10 0 20 10 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.355 LW
91 mlat 0 0 0 0 10 10 0 33 11 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.379 LW
92 mscm 0 0 0 0 10 10 0 32 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 2.037 LW
93 dist 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332
94 if 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332
95 dist 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332
96 )_endif 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332
97 gain 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332
98 if 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332
99 gain 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332

100 )_endif 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332
101 fcr_NP_12 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332
102 0 0 0 0 11 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 1.332
103 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.627
104 vcpy 0 0 0 0 0 11 0 0 0 0 13 0 0 0 0 0 0 10 0 10 0 0 0 0 0 0 0.637
105 mmul 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 31 0 10 0 13 0 0 0 0 4.265 Wl
106 mtan 0 0 0 0 0 0 0 0 0 0 10 0 0 0 13 0 0 30 0 10 0 11 0 0 0 0 5.675 Wl
107 mmul 0 0 0 0 0 0 0 0 0 0 10 0 0 0 11 0 0 30 0 31 0 0 0 0 13 0 5.682 Wl W2
108 mtan 0 0 0 0 0 0 0 0 0 0 10 0 0 13 10 0 0 30 0 30 0 0 0 0 11 0 9.442 Wl W2
109 vsub 0 0 0 0 0 0 0 0 0 0 10 0 0 11 10 0 0 30 0 30 0 0 0 13 0 0 9.442 Wl W2
110 vcpy 0 0 0 0 0 0 0 0 0 0 10 0 0 10 10 13 0 30 0 30 0 0 0 11 0 0 13.317 Wl W2
111 dtan 0 0 0 0 0 0 0 0 0 0 10 0 0 11 10 10 0 30 0 30 0 0 0 10 13 0 62.073 Wl W2
112 memu 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 30 0 0 0 11 11 13 58.324 Wl W2
113 mscm 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 30 0 0 0 0 0 12 54.553 Wl W2
114 mscm 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 30 32 0 0 0 0 10 54.804 Wl W2 M2
115 for_HID_24 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 30 30 0 0 0 0 10 54.804 Wl W2 M2
116 sval 0 0 0 0 0 0 0 0 0 0 10 0 0 0 11 10 0 30 0 30 30 0 0 0 0 10 54.804 Wl W2 M2
117 mscm 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 30 30 0 0 0 13 11 58.564 Wl W2 M2
118 vadd 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 30 31 0 0 0 12 10 145.047 Wl W2 M2
119 vadd 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 32 20 0 0 0 11 10 144.796 Wl W2 M2
120 vcpy 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 10 33 0 0 0 11 10 145.047 Wl M2
121 )_endfor 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 10 0 0 0 0 0 10 54.553 Wl
122 mtrm 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 10 0 30 0 11 0 0 13 0 0 11 54.557 Wl
123 dtan 0 0 0 0 0 0 0 0 0 0 10 0 0 0 11 10 0 30 0 0 0 13 10 0 0 0 53.362 Wl
124 memu 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 10 0 30 0 0 0 11 12 0 0 0 51.952 Wl
125 mscm 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 10 0 30 32 0 0 0 10 0 0 0 50.793 Wl Ml
126 for_BIN_64 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 10 0 30 30 0 0 0 10 0 0 0 50.793 Wl Ml
127 sval 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 10 0 30 30 0 0 0 10 0 0 0 50.793 Wl Ml
128 mscm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 30 30 0 0 13 11 0 0 0 48.443 Wl Ml
129 vadd 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 30 31 0 0 12 0 0 0 0 135.866 Wl Ml
130 vadd 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 32 20 0 0 11 0 0 0 0 135.615 Wl Ml
131 vcpy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 33 0 0 11 0 0 0 0 135.615 Ml
132 l_endfor 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 30 0 0 0 0 0 0 0 5820.678 Ml
133 mabs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 32 0 0 0 0 0 0 0 5820.678 Ml
134 l_endfor 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 45.122
135 mabs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 45.122
136 mmax 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 45.122
137 mavg 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 45.122
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2 vms: total computation- 
comp= 29.969 max=
cutting point is searched 
comp= 29,969 max=
cutting point is searched 
comp= 29.969 max=
cutting point is searched 
comp= 29.969 max=
cutting point is searched 
comp= 29.969 max=
cutting point is searched 
corap= 29.969 max=
cutting point is searched 
comp= 29.969 max-
Cut line:102 comcosts=

59.937 
32.965 min= 26.972

35.962 min= 23.975

38.959 min= 20.978

41.956 min= 17.981

44.953 min= 14.984

47.950 min= 11.987

50.947 min= 8.991
0.627 achieved^ 9.083

The composite listing of the SOM/Backpropagation program is split into two parts 
at line 102. Cutting for this network configuration results in 9.803 sec. computational 
load on the first VM and the rest ( 59.37 - 9.08 ) sec. on the second VM. The two 
MATLIB listings can be pipelined through two parallel machines. A server program 
running on the third processor can be used to carry out File I/O and data transfer between 
the two VMs. The programs are as follows;

#include "uv.h" 
int NP = 12;

IN = 64;
on - 12;
JL ■= 30; 
BPIN - 64; 
HID - 12; 
OUT - 64;

/* The server program */

int
int
int
int
int
int
main() 
{

int i ;
mt_type *SW, *W1, *W2; 
int *vm;

matdef(&SW, "SW", OU,
matdef(&W1, "Wl",
matdef(SW2, "W2",

mran( SW, 0.0, 0.05); 
mran( Wl, -0.05, 0.05) 
mran( W2, -0.05, 0.05)

opensocket( &vm, 2);

put_mat( vm[l], SW) 
put_mat( vm[2], Wl) 
put_mat( vm[2], W2)

for (i-0; i<JL; i++) { 
servis( vm, 1 );

)

IN);
BPIN,
HID,

HID)
OUT)
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The two client listings are as follows;

#include "uv.h" 
int NP = 12; 

IN = 64; 
OU = 12; 
JL = 30;

/* Client 1 listing */

int
int
int
main()
t

double
double
double
double
double

dist = 2.0; 
dstp = 0.4; 
dend = 0.1; 
gain = 0.9; 
gstp = 0.1;

double gend = 0.1;
char *infile="r.dat";

mt_type *S0, *S1, *WI, *SW, *DW, *LW, *LD, *SM, *SC, *SE;
int i, j, k, n; 
int row, col; 
double rms, avg; 
int fd, cli_no = 1;

matdef(&S0, "SO", NP, IN)
matdef(SSI, "SI", NP, IN)
matdef(SSE, "SE", 1, NP)
matdef(&WI, "Wl", 1, NP)
matdef(sSW, "SW" , OU, IN)
matdef(&DW, "DW" , OU, IN)
matdef(&LW, "LW", OU, OU)
matdef(&LD, "LD", OU, OU)
matdef(&SM, "SM", 1, IN)
matdef(SSC, ■SC", 1, OU)

consocket(sfd. cli_.no) ;

mdis( LD, 2);
mlat( LW, LD, dist); 
mscm( LW, LW, gain); 
matld(SO, infile);

get_mat( SW, fd ); 
for (n=0; n<JL; n++) {

for (i-0; j<NP; j++) {
for (k-0; k<OU; k++) {

vsub(SM, SO, SW, 0, j, k) 
vcpy(DW, SM, k, 0); 
mrms(&rms, SM); 
mset(SC, rms, 0, k);

}
mmin(srms, SC, &row, &col); 
mset(WI, (double) col, 0, j); 
mset(SE, rms, 0, j); 
for (k-0; k<OU; k++) {

sval(&rms, LW, k, col);
vcpy(SM,
mscm(SM,
vcpy(DW,

DW, 0, k); 
SM, rms); 
SM, k, 0);

}
madd(SW, SW, DW);

}
mavg(&avg, SE); 
printf ("%d: avg rms 
mlat( LW, LD, dist);

%f0, n, avg);
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mscm( LW, LW, gain); 
dist = dist - dstp; 
if ( dist < dend ) { 

dist = dend;
}
gain = gain - gstp; 
if ( gain < gend ) { 

gain = gend;
}
post ( fd, 2, Wl ); 
post ( fd, 2, SW );

]
/* End of Main for the Client 1*/
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#include "uv.h" 
int NP = 12;
int JL = 30;
int IN = 64;
int OU = 12;
int BPIN = 64;
int HID = 12;
int OUT = 64;
main()
{

double bpgain = 0.003; 
double momt = 0.5; 
double toi = 0.1; 
double rms = 0.0; 
doubleavg; 
double max; 
int i, j, n, k, p; 
int row, col; 
doubletmp;
char *tarfile-"h.dat";

/* Client 2 listing */

mt_type *WI, *SW;
mt_type *SI, *Si, *ST, *Sr, *Sh, *PE;
mt_type *W1, *W2, *WT, *A1, *A2, *ER;
mt_type *M1, *M2, *E2, *D1, *D2, ♦SR;

int fd, cli_no = 2;

consocket(&fd, cli_no);

matdef(SWI, "Wl", 1, NP) ;
matdef(sSW "SW" , OU, IN) ;

matdef(&Si, ■Si", 1, BPIN)
matdef(&ST, "ST", NP, OUT)
matdef(SSR, "SR", NP, OUT)
matdef(SSr, "Sr", 1, OUT)
matdef(SSh, "Sh", 1, HID)
matdef(SPE, "PE", NP, OUT)
matdef(SER, "ER", 1, OUT)
matdef(SWI, "Wl", BPIN, HID)
matdef(SMI, "Ml", BPIN, HID)
matdef(SW2, "W2", HID, OUT)
matdef(SM2, "M2", HID, OUT)
matdef(SWT, "WT", OUT, HID)
matdef(SAl, "Al", 1, HID)
matdef(SDl, "Dl", 1, HID)
matdef(SE2, "E2", 1, OUT)
matdef(SA2, "A2", 1, OUT)
matdef(SD2, "D2", 1, OUT)

matld(ST, tarfile); 
get_mat ( Wl, fd ); 
get_mat ( W2, fd ); 
for (n-0; n<JL; n++) {

get_mat( Wl, fd ); 
get_mat( SW, fd ); 
for (p-0; p<NP; p++) {

sval(&rms, Wl, 0, p ) 
col - (int)rms; 
vcpy(Si, SW, 0, col);

matsh ("", SO, p, 0.0, 8)
matsh ("", Si, 0, 0.0, 8)
matsh ("", ST, p, 0.0, 8)
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mmul(Al, Si, Wl); 
mtan(Sh, Al); 
mmul(A2, Sh, W2); 
mtan(Sr, A2);
vsub(E2, ST, Sr, 0, p, 0); 
vcpy(PE, E2, p, 0); 
dtan(A2, Sr); 
memu(D2, E2, A2); 
mscm(D2, D2, bpgain); 
mscm(M2, M2, momt); 
for (i=0; i<HID; i++) {

sval(&tmp, Sh, 0, i); 
mscm(A2, D2, tmp); 
vadd(A2, A2, M2, 0, 0, i); 
vadd(W2, W2, A2, i, i, 0); 
vcpy(M2, A2, i, 0);

}
mtra(WT, W2); 
mmul(Dl, D2, WT); 
dtan(Al, Sh); 
memu(Dl, Dl, Al); 
mscm(Ml, Ml, momt); 
for (i=0; i<BPIN; i++) {

sval(&tmp, Si, 0, i); 
mscm(Al, Dl, tmp); 
vadd(Al, Al, Ml, 0, 0, i); 
vadd(Wl, Wl, Al, i, i, 0); 
vcpy(Ml, Al, i, 0);

}
mabs(Ml, Ml); 

mabs(PE, PE);
mmax(&max, PE, &row, scol); 
raavg(&avg, PE);
printf("%4d: max-%f avg-%f tol-%fO, n, max, avg, toi); 
if ( max < toi ) { 

break;
}
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Appendix E

APPENDIX E - Competing Backpropagation Networks

This appendix presents the NETLIB listings o f the competing 
Backpropagation networks. Two listings show the server and the client 
programs using parallel features o f the NETLIB.

The first program listing is the server NETUB listing. As can be seen the server 
opens a socket for 2 clients. For input (SI) and target (ST) matrices, memory is allocated 
and the matrix structures are set up. Both matrices are loaded from the infile and tarfile. 
and transmitted to the clients. The model is generic and it is independent of the number 
of clients. The server code is as follows;

♦include "uv.h"
int NP “ 12;
int BPIN = 64;
int OUT - 64;
char *infile - "r.dat";
char *tarfile- "h.dat";
main()
{

int i; 
mt_type *SI; 
mt_type *ST; 
int *vm, total - 2; 
doubleerrl, err2;

opensocket( &vm, total);

matdef(&SI, "SI", NP, BPIN)
matdef(SST, "ST", NP, OUT);

matld ( SI, infile ); 
matld ( ST, tarfile );

for (i-1; i<=total; i++) { 
put_mat( vm[i], SI); 
put_mat( vm[i], ST.) ;

}
)
/ *   ..........
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The clients are self-contained Backpropagation networks. They connect to the open 
socket, receive the input and target patterns, randomise weight matrices and execute their 
NETLIB bplearn and recall functions. Each client can call bpleam function with a 
different set of parameters and a network topology. The results, or the error can be 
monitored if wished. The clients NETLIB definitions are as follows;

*include "uv.h" 
int NP = 12;
int IN = 64;
int HID = 12;
int OUT = 64;
rat_type *SI, *ST, *W1, *W2, *SR;
int p, fd, cli_no - 1; 
main()
{

consocket(&fd, cli_no);

matdef(&SI, "SI" , NP, IN) ;
matdef(&ST, "ST" , NP, OUT)
matdef(&SR, "SR" , NP, OUT)
matdef(&W1, "Wl" , IN, HID)
matdef(&W2, "W2" , HID, OUT)

get_mat( SI, fd );
get_mat( ST, fd )'
mran( Wl, -0.05, 0.05);
mran( W2, -0.05, 0.05);

bplearn ( SI, ST, Wl, W2, 23,
bprecall ( SI, SR , Wl, W2 );

for (p-0; p<NP; P++) {
printf( "Result %dO, p);

matsh("", SI, p, 0.0, 8); 
matsh("", SR, p, 0.0, 8);
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