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Abstract

Load sharing has traditionally been used to improve system performance in distributed 

networks by transferring jobs from heavily loaded hosts to idle or lightly loaded hosts. 

Performance is improved by distributing workload more evenly among hosts, thus better 

utilising system resources.

This thesis investigates the use of load sharing for a different purpose^ that is as a power 

management strategy for mobile computers. Since mobile computers operate on limited battery 

power, which is a scarce resource, and there is unlikely to be a vast improvement in battery 

capacity in the near future, it is vital that power utilisation is managed efficiently and 

economically.

The power management strategy proposed in this thesis is based on the concept of load sharing. 

The strategy attempts to reduce power consumption by the CPU, which is one of the 

components consuming a substantial amount of power, by off-loading computations from a 

mobile computer to a fixed host. A load sharing algorithm which selects suitable Jobs for 

remote execution is proposed. When designing the algorithm, the inherent limitation of 

wireless networks must be taken into account. For example, low bandwidth means that 

communications delays are no longer negligible; sending and receiving messages must also be 

considered carefully as transmitting and receiving also consume a substantial amount of power. 

Consequently, when performing load sharing on wireless networks, more constraints have to be 

dealt with compared to when performing load sharing on fixed networks. In addition to 

reducing power consumption, transferring jobs for remote execution also gives users access to 

faster machines, thus improving response time.

This study identifies the conditions and factors which make job transfer a viable option. The 

results obtained show that under suitable conditions, load sharing can extend battery lifetime 

significantly. Since stability is an important concern when designing load sharing algorithms, 

this issue is also addressed by this study.
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1. Introduction
In recent years, the basic technology has become available to make wireless computing a 

reality. In addition, changing work patterns and an understanding of what technology might 

be able to provide have become business drivers pushing towards environments in which 

tetherless computing has a significant role to play. It is not, therefore, surprising that the 

research community have become increasingly interested in this area, driving it forward from 

the lower levels.

The technologists' goal is to produce systems which are practicable. There are several key 

characteristics of mobile systems which must be addressed in order to allow this to happen. 

Wireless links are relatively slow and unreliable; wireless hosts are resource poor relative to 

their fixed counterparts; mobile users may roam the globe, disconnecting from and 

reconnecting to the network arbitrarily; and mobile hosts must rely on battery power for 

significant periods of time. It is this latter problem that this dissertation seeks to address.

Under continuous use, a typical laptop battery lasts for approximately two to three hours. 

There has been relatively little in the way of innovation in battery technology over the past 

decade. In 1992, Sheng et al projected a 20% increase in battery capacity over a ten-year 

period [Shen92]. More recently, Cox stated that there is unlikely to be a lOx improvement in 

battery capacity [Cox95]. Since the power supply problem cannot easily be solved, the only 

practical solution to providing greater system availability is to reduce power consumption. 

There are several existing approaches to this problem already in use within laptops, generally 

based on powering down hardware components when they are not in use. However, studies 

based on such approaches have failed to consider how best to exploit the potential for power 

saving which can be derived from the existence of a communication link.

In this study, we adopt an approach based around the concept of load sharing, which has 

traditionally been used to improve job response time in distributed systems. It is sometimes 

forgotten that the question of load distribution is simply an instance of a more general class of 

resource allocation problems, with the objective of optimising Job response time. Here, the 

problem is similarly to do with making the most of a resource, that resource being battery 

power and the optimisation constraints being to minimise the amount of power used. As in 

load distribution, the problem is non-trivial; there is a need to invest power in transmitting a 

job to the fixed network in order to receive benefit by allowing the CPU to be placed in doze 

mode. Again, as in load distribution, the benefit cannot be known precisely at the point of 

investment; the key is to estimate intelligently.



1.1 Hypotheses
Since the load sharing algorithm now operates in ah environment which is much different

from the environment previously studied, factors influencing the benefit gained from load

sharing are also expected to be different. In this study, it is expected that:

• low bandwidth impedes load sharing as long delays might result in increased response 

time,

• mobile hosts with low processor power benefit from load sharing as that gives them access 

to faster machines on the fixed network,

• it is jobs with long execution time that brings significant benefit from transfers as they 

considerably reduce power consumption by the CPU,

• combining load sharing with another power management strategy will further extend 

battery lifetime,

• delegating transfer requests among fixed hosts will further improve performance as users 

are given access to other fixed hosts' spare capacity.

Experiments were carried out to verify these hypotheses, and determine if load sharing brings

significant improvement in battery lifetime.

1.2 Contributions
The contributions of this thesis is listed below:

1. This study has successfully adopted a well-known concept in distributed systems to 

address a problem in mobile computing. It is possible to adopt load sharing for use in a 

mobile computing environment as a power management strategy, and load sharing was 

found to be a potentially effective power management strategy. On average, battery 

lifetime was extended by about 20% when load sharing was performed. In an experiment 

which combined load sharing with another power management strategy, battery lifetime 

was extended by an average of 33%.

2. This study identified the necessary modifications required in order to implement load 

sharing in a mobile computing environment, taking into considerations the constraints of 

wireless networks and the objective to be achieved.

3. In addition to establishing that load sharing does extend battery lifetime significantly, the 

findings also identify factors which are favourable, and which may impede load sharing. 

Among the finding of this study is that low bandwidth does not always impede load 

sharing; subject to a constraint, it is possible to transfer jobs even at low bandwidth. Load



sharing was also found to be useful in giving mobile hosts access to faster machines on the 

fixed network.

4. This study identified the type of applications which are most likely to benefit from load 

sharing. Previous studies on load sharing have found that it is CPU-intensive jobs that 

have most to benefit from load sharing. The findings of this study show that this is also 

the case in a mobile computing environment. Off-loading CPU-intensive jobs to fixed 

hosts extends the duration the CPU operates in doze mode considerably, thus reducing 

power consumption. A power management technique which reduces power consumption 

by the CPU is especially important when a user is using his mobile device to perform 

CPU-intensive jobs, in which case it is critical that battery power is not suddenly depleted, 

resulting in a considerable amount of frustration on the part of the user. It is imperative 

that the power management strategy should be able to prolong battery lifetime in order to 

allow the user to finish his tasks. It is on the basis of these considerations that we argue 

the merits and importance of our proposed approach.

5. This study shows that it is possible to make use of unutilised resources on fixed hosts to 

conserve battery power on mobile computers.

1.3 Thesis Outline
The thesis outline is as follows. The wireless networks and mobile computing issues are 

discussed in Chapter 2. This starts with an overview of the diversity of mobile applications, 

followed by a discussion of the challenges which must be met in order to support mobile 

users due to the inherent limitations of wireless communications. The power management 

strategies proposed thus far are examined.

Previous studies on load distribution in distributed systems and the extent to which they are 

relevant to this study are discussed in Chapter 3. This is followed by a discussion on load 

distribution policies and the effect of communication delays on the performance of load 

distribution algorithms. Finally, the importance of addressing stability and scalability issues 

are discussed.

In Chapter 4, the approach taken in designing a load sharing algorithm for wireless networks 

is described. The reasoning behind the design decisions and the factors which were taken 

into account in developing the algorithm are explained, and the extent to which previous work 

on load distribution is relevant is discussed. This is followed by a discussion on the trace 

data collected for use in the simulations, the assumptions made, the simulation environment, 

the system parameters and the experimental design.



In Chapter 5, experiments carried out to determine factors influencing load sharing in 

wireless networks are discussed. In addition, the benefit of combining load sharing with 

another power management strategy is also examined.

In Chapter 6, the issue of stability and scalability of the load sharing algorithm are addressed. 

The modifications carried out on the proposed load sharing algorithm to prevent instability 

are discussed. The way in which the algorithm is modified to disable itself when load sharing 

is no longer feasible and the parameters influencing that decision are explained.

In Chapter 7, the emulation carried out to verify and validate the simulation results is 

discussed. The emulation results are compared to the simulation results in order to determine 

the extent to which the simulation represents a real environment.

In Chapter 8, a vision for the future wireless and mobile applications is discussed, followed 

by a discussion on the applicability of this work. Possible future work is also explored. 

Finally, Chapter 9 concludes.

10



2. Wireless Networks and Mobile Computing Issues
Advancing technology in wireless communication offers users anytime, anywhere access to 

information and network resources without restricting them to the fixed network 

infrastructure. Mobility introduces new challenges as several assumptions made regarding 

distributed networks are no longer valid. Many of the research issues regarding wireless 

networks and mobile computing are not new, for they have been discussed in the context of 

distributed systems. However, the fact that users are no longer restricted to fixed hosts, that 

users are free to roam the globe and can connect to a network from various locations, and that 

addresses no longer give the location of a machine, have made the research problems harder 

and more interesting.

Wireless networks are also associated with various constraints - bandwidth is scarce, the 

quality of connection varies, communication delays are high and users may disconnect 

frequently from the network. In addition, mobile devices usually have lower computing 

power and storage capacity compared to a host on a fixed network. Mobile devices and 

applications have to address these limitations in order to deliver services which are of 

acceptable quality to the users. As users roam, they will encounter heterogeneous network 

environments and computing resources may become lost or new resources may become 

available. Mobile applications need to be smart enough to be able to make full use of 

resources as they become available.

Katz [Katz94] saw the progress in wireless communications as the next logical step in the 

evolution of computers, where computing resources can be used more flexibly as users are 

freed from being physically connected to the underlying network. He defined wireless 

information systems as computing systems that provide the ability to compute, communicate 

and collaborate anywhere at any time. In his paper, Katz gave the following definitions, 

though it should be noted that there is no general consensus in this matter;

• Wireless computing refers to computing systems that are connected to their environment 

via wireless links, such as radio frequency (RF) or infrared (IR), and usually apply to 

computing devices participating in a wireless LAN, with gateways to wired networks. 

Users are able to participate in work groups via a collection of computing devices and 

servers in order to share data and information, implying relatively symmetric bandwidth 

between the wireless node and the network, and relatively high bandwidth.

• Nomadic computing refers to the ability to compute as users relocate from one computing 

environment to another. In this scenario, individual organisations with their own wireless 

infrastructures are linked together by public wired internetworks. Nomadic computing

11



will make it possible for a user to use his own device within a foreign organisation's 

wireless infrastructure. The issues of trust, security and privacy must be addressed to 

enable users to roam in foreign environments while protecting their privacy, and the 

foreign networks against malicious users.

• Decoupled computing refers to the ability to compute when disconnected from the 

network. If mobile devices are full-function computers such as notebook computers, 

decoupled computing makes operations such as file access transparent across 

disconnections by using techniques such as prefetching and caching.

Katz also predicted that the distinction between communications and computing will continue 

to blur, leading to a new field of telecomputing.

In addition to the definitions above, Weiser [Weis93] presented the interesting idea of 

ubiquitous computing where computers are made 'invisible' to users by integrating them into 

users' environment. He pointed out that anthropological studies of work life showed that 

people primarily work in a world of shared situations and unexamined technological skill. 

The computer technology today does not conform to this description because it remains the 

focus of attention instead of being a tool which disappears from users' awareness. Ubiquitous 

computing aims to make computers widely available throughout user environments and 

effortless to use. In other words, users should be able to use computing devices without 

having to acquire technological skills to use them.

The definitions above indicate different classes of applications and, in the following sections, 

the diversity of mobile/wireless applications will be described, followed by a discussion on 

the constraints and limitations imposed by wireless networks which must be addressed in 

order to provide services which are of acceptable quality to the users. Later, how this thesis 

addresses one of the constraints of mobile computing, that of power management, is 

discussed.

2.1 Mobile Computing Applications and Services
There is a wide range of applications (either under study or readily available) to support users 

on the move. The applications and services range from personal guides and electronic news 

services to collaborative applications for emergency services.

Mobile context-aware applications can be used as personal guides in museums and galleries 

which will allow users to take personalised tours [Long96]. Information about an exhibit is 

downloaded as a user moves towards it and he could then download more detailed 

information about it. Personal guides are different from human guides in that a user can 

browse and download information tailored to his own interests. Objects of interest are sensed
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using active beacons or identified using computer vision recognition. The hand-held devices 

might use position measurement systems such as indoor beacons or The Global Positioning 

System (GPS) to locate users, and an electronic compass or inertial navigation system to find 

user orientation.

Context-aware devices can also be used as a measurement tool and to assist field studies. 

Simple hand-held sonar devices can be adapted to videotape and map a room along with 

user's comments. An ecological field study may be assisted by a device that automatically 

records the context of a particular species, assists the user in recognising plants, and also 

notes the surrounding objects. Another application is as an enhanced reality tool where a 

head-up display provides "x-ray vision" for a user surveying a building for renovation, to 

indicate the location of hidden plumbing or electrical conduits to the user based on 

information from sensors and/or building plans.

Another class of application is electronic news services discussed by Imielinski and Badrinath 

[Imie94b]. The electronic news services deliver and filter information according to 

individual user profiles. For example, traffic information or weather reports are filtered 

based on users' locality, while stock information is filtered according to users' portfolios. 

This class of application is further illustrated by Shekar and Lin [Shek94] who described an 

application known as Advanced Traveller Information System (ATIS), which provides up-to- 

date information on weather and road conditions. It also provides travel information such as 

diversions, construction zones, bus schedules and parking etc.

Imielinski et al [Imie95] predicted that the massive market for mobile computing which will 

emerge by the end of the decade will be based on mail-enabled and information services 

oriented applications. These applications differ from traditional applications in that they are 

not computationally intensive applications and will not need to run on powerful computing 

devices.

Duchamp [Duch92] predicted that mobile applications will metamorphosise low-skill and/or 

labour-intensive jobs into more information-based tasks which will affect people whose job 

involves movement over a wide area in order to deliver things or to visit immovable people or 

things, e.g. repair personnel, nurses and inspectors. Katz [Katz94] gave examples of how the 

metamorphosis envisioned by Duchamp will change the way people in various fields work. 

Wireless information systems will make possible collaborative applications that require 

untethered real-time access to multimedia information sources to provide support for 

personnel in the field, emergency services, law enforcement, mapping and location finding 

etc.
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Katz illustrated the diversity of wireless communications in a crisis management application 

using a multimedia terminal for fire-fighters. The application can be used to provide maps 

and architectural blueprints to assist in planning fire-fighting strategy. A locator system may 

be incorporated to track team members as they move through the building. It should also 

provide voice and data communications among the team and other emergency and civil 

defence teams. The dynamic nature of this combined data makes it impossible to pre-store all 

information on the mobile device; instead, communication with a wide range of data rates 

must be supported, some of it unidirectional, some bidirectional and interactive. For 

example, symmetric communication is required to communicate with other members of the 

team, while downloading maps and location and tracking systems can be supported by 

asymmetric communication.

Mobile computing technology can also be used to support field work and increase 

collaboration among field workers by providing on-line access to information and interactive 

communication facilities. The MOST project (Mobile Open Systems Technologies for the 

Utilities Industries) was established to examine the impact of mobility on working practices 

and on the repercussions for computer systems support [Davi93, Chev94, Frid96]. It focused 

on the IT requirements of field engineers within the power distribution industry.

Engineers working in the field were traditionally coordinated by a single control centre which 

approved all switching in the power distribution network and maintained an overall picture of 

the current state. The centralised approach ensured that conflicting requirements were 

resolved safely, but the centre became a bottleneck. The main disadvantages of this approach 

were the global network state was not available to engineers in the field and efficiency was 

reduced due to the bottleneck. The second point was particularly crucial when faults 

occurred requiring multiple unscheduled items of work to be carried out.

In order to help field engineers work more efficiently, they were given access to information 

previously held only at the control centre and were allowed to collaborate by exploiting the 

GSM network. Information which rarely changed was provided on a CD-ROM or stored on 

hard disk, while dynamic information was provided via a communication link to the centre. 

The new system also allowed them to update the current state to reflect the operations they 

carried out. Engineers not physically located together were able to view and manipulate 

shared diagrams and information. They were also provided facilities so that they could 

communicate with each other to ensure that conflicting switching requirements were resolved 

safely. The application had real-time aspects and was based on a peer-to-peer architecture 

instead of a client-server architecture.

14



Another example of collaborative application in the field is W ireless Coyote [Gran93], 

which is an experiment conducted by Apple Classrooms of Tomorrow (ACOT) in 

cooperation with Orange Grove Middle School of Tucson, Arizona. An experiment was 

conducted to investigate how teachers and students could use technology in education. 

Mobile computers were connected by a wireless local area network (WLAN) and a wide area 

network (WAN) and a spreadsheet program was designed to provide real-time data sharing, 

immediate data display and real-time graph plotting. Students were provided with voice- 

activated walkie-talkies to support collaboration so that they could discuss their findings.

This experiment involved 5 groups of students, four teachers, a naturalist and personnel from 

Apple Computer. The students made a field trip to learn about Sabino Canyon in Tuscon. 

Four of the five groups were placed at different locations in the canyon, where three groups in 

the canyon used traditional scientific methods to measure soil and water temperature, wind 

speed and soil pH in their assigned locations, and the fourth group served as a base station 

and provided coordination among the other three groups by walkie-talkie, delivered additional 

supplies and coordinated requests for two digital cameras among the three groups. The base 

station was not involved in data collection, but was responsible for monitoring data collection 

activities of the field groups and transferred those data by cellular modem to the fifth group, 

located at the school which was 15 miles away. The school group built a database about the 

canyon based on the data collected by the field groups and used print and video resources at 

the school to add images and other content to their database. The naturalist provided them 

with expert opinion to help them to understand their findings.

The LAN made each group's data instantly available to all; consequently, they were analysing 

environmental data of the whole canyon. The walkie-talkie helped students and teachers to 

discuss their findings and to decide on the next step to take. The interactive nature of the 

application made the learning process more interesting and fun for the students.

Other collaborative applications proposed are Bayou [Deme94] and W ebExpress [Hous96]. 

Bayou is an architecture which provides users with facilities to share appointment calendars, 

documents, bibliographic databases etc. in spite of intermittent network connectivity. 

W ebExpress was designed for repetitive commercial applications and targeted for visiting 

medical personnel, salespersons, service workers who carry out repair at remote locations etc. 

It was designed to reduce data volume and latency of wireless communication.

This section illustrates the diversity of mobile applications and how the applications might 

change the way people work. Naturally, prediction of future trends is highly speculative and 

often subject to over-optimism by those in the field. However, it is undoubtedly the case that 

mobility has brought and will continue to bring forward new opportunities. Further, there are
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now large commercial concerns whose existence derives from mobile telephony who have a 

vested interest in seeing (and selling) the expansion of the sort of services they offer. 

Consequently, the claims made for wireless computing are probably not far wide off the 

mark, although timescales may differ and commercial pressures are likely to play the major 

role in determining how far and how fast we can go. In the next section, the limitations of 

wireless networks and the challenges which must be met in order to deliver mobile 

applications at a quality of service which is acceptable to the users is discussed.

2.2 Limitations and Challenges of Wireless Networks
Several issues must be addressed in order to deliver the sort of applications and services 

described in the previous section. The problems encountered are not only due to the inherent 

limitations of wireless communications, but also due to the fact that the locations of mobile 

users/devices are constantly changing as users move. The configuration of a wireless 

network changes dynamically because users are no longer attached to a fixed point during the 

duration of a connection. The problem is further compounded by heterogeneous 

environments encountered by users as they move between various points of attachment.

The amount of bandwidth available to users as they move between networks varies greatly. 

While connected to a wireless LAN, a user may have available bandwidth of up to 2 Mbps, or 

10 Mbps in the near future while when venturing outdoors, the available bandwidth may drop 

to only 9.6 kbps. Considering the amount of bandwidth currently available on fixed networks 

and the bandwidth-consuming applications available in the market, the low bandwidth, high 

latency communication medium offered by wireless networks must be considered primitive.

Satellite-based systems which provide wide area coverage are also used to provide the 

wireless communication infrastructure, albeit at a very high cost. Among well known 

satellite services are Odyssey, Globalstar and Iridium. There are three types of satellite 

services:

1. Geostationary/Geosynchronous O rbit System (GEO), which is positioned 36,000 km 

above the earth, requires expensive satellites and large antennas, but with only three 

required to cover the earth. GEO may provide hundreds of high bit-rate data links using 

multiplexing, but involves a transmission delay of 0.5 second due to its high altitude. Its 

large regional coverage makes it difficult to provide the small-cell coverage necessary for 

frequency reuse to provide higher overall system capacity.

2. Low Earth Orbit System (LEO), which is positioned 1000 km above the earth is the 

least expensive of the three types of satellite systems, but more is required to cover the 

earth. The coverage area is small compared to GEO, thus allowing a higher capacity
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within a given spectrum allocation. The transmission delay is also significantly less than 

GEO.

3. Medium Height Earth Systems (MEG) is between the two extremes.

A much less expensive alternative to satellite systems is offered by the Stratospheric 

Telecommunications Services, which uses air platforms that remain geo-stationary above 

metropolitan cities to provide T l/E l access to users in the service area’. The air platforms, 

which are positioned 22 km above the earth, incur very low communication delays and low 

infrastructure costs.

Apart from the variability of available bandwidth, users may also experience rapid and 

massive fluctuation in the quality of service provided by the wireless infrastructure 

[Davi94b]. Bagrodia et al [Bagr95] stated a fundamental way in which mobile computing 

differs from conventional operation is the huge variability in connectivity to users' computing 

environments. Even though there will be improvements as these limitations are addressed in 

future technologies, the discrepancy between wired and wireless networks are likely to 

remain [Wats94]. Badrinath and Welling [Badr95] claimed that although the constraints of 

mobile computing will become less noticeable, the mobility of devices will always induce 

constraints compared to non-mobile devices. Ebling et al [Ebli94] stated that even as global 

wireless connectivity becomes available in the near future, much of it will be intermittent 

with low bandwidth and high latency and will be limited to a few oases in a vast desert of 

poor connectivity. Watson [Wats94] argued that the limitation imposed calls for a software 

architecture which reduces the demands placed on the wireless link and supports 

disconnected operation.

It is very unwise to make any assumptions about the underlying support provided by the 

network infrastructure because, as users encounter heterogeneous environments while 

moving, resources and services not previously available may now be offered by the new 

network, or a critical service needed to run an application may be lost [Davi94a, Davi94b]. 

Mobile applications must deal with this heterogeneity and try to deal with failure gracefully 

while minimising inconvenience to users. Davies et al [Davi94b] termed the class of service 

which is designed to operate in a dynamic environment, and is able to adapt itself to the 

heterogeneity of the network as adaptive service, while Katz [Katz94] termed this type of 

communication adaptive communication. Katz regarded making applications aware of their 

limited and dynamically changing bandwidth as a critical challenge. Applications designed 

for mobile users must take into consideration the resource constraints they may face and be

‘ The information is obtained from the Sky Station International Inc. home page at 
http://www.skystation.com.
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able to make the best possible use of available resources [Badr95], and they may need to 

present different views of functionality and quality depending on the location of the mobile 

device.

Duchamp et al [Duch91, Duch92] listed the challenges in designing system software to 

insulate applications from hardware and networking changes imposed by mobility:

1. Support for mobile operation: most current software for distributed computing assumes 

that computing devices do not move and packets are routed based on network number. 

This is especially true for routing protocols like the Internet Protocol (IP). This 

shortcoming, however, has been addressed by protocols such as Mobile IP [John97, 

Perk97a, Perk97b].

2. User interface design fo r  very small computers: the user interface has to be modified to 

accommodate the shrinking size of portable computer's display.

3. Adjustments to new hardware trade-off: the hardware employed by portable devices will 

inevitably be different from hardware devices on fixed networks. For example, since 

portable devices might have reduced disk storage, new storage management algorithms 

will have to be designed.

4. Emerging new technologies: applications should be able to adjust and take advantage of 

any unique characteristics of new technologies that might be used in future portable 

workstations.

5. Security: providing authentication, accounting and management over a wide area and 

across organisations is not a new problem, but is aggravated and made more urgent by the 

advent of mobile computers.

6. Compatibility: the requirements above should be provided while retaining a reasonable 

level of compatibility, i.e. applications should provide interfaces and performance so that 

a user’s desktop computing environment is available in his/her hand without the need to 

rewrite applications.

Davies et al [Davi93] classified the challenges of mobile computing technology as being 

either communications, distributed systems or cooperative working, which are explained 

below:

1. Communication issues: most existing wireless protocols are tailored for voice whereas 

mobile computing technology needs media access protocols for the radio channel which 

exploit the characteristics of the media and are suitable for transmitting a wide range of 

data types, e.g. voice and image.
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2. Distributed system issues: the low bandwidth and error-prone wireless communication 

medium calls for object replication and message batching techniques to overcome the 

problems associated with poor communication channels.

3. Implications fo r  collaborative working: collaborative applications in high-bandwidth 

networks often use multimedia to enhance interaction among users. The wireless 

communication medium restricts the range of services which can be offered by 

collaborative applications and the impact of this restriction on users' ability to collaborate 

has to be studied.

Davies et al's study of currently available technology and the user requirements of mobile 

computing systems led them to conclude that there is a significant mismatch between the two.

Katz [Katz94] stressed that in spite of the discrepancies between wired and wireless 

networks, mobile users should have access to the services they see in wired networks, albeit 

at potentially lower resolutions and possibly longer latencies. A crucial challenge is to make 

applications aware of their limited and dynamic environment so that they can adapt to what is 

available as appropriate.

Other constraints faced by mobile devices are that they have significantly lower memory 

capacity and computing power compared to a fixed host. For this reason, Badrinath et al 

[Badr93] proposed that the computation and communication load should be borne by the 

static network as much as possible. Doing so will reduce the burden of computation on 

mobile hosts and also helps conserve battery power.

The limited battery power on mobile devices is an issue which has to be addressed as users on 

the move will want their battery to last for as long as possible. Cox [Cox95] pointed out that 

the possibility of a ten-fold improvement in battery capacity in the short to medium term is 

essentially nil. Cox stated that, ''Frequently, the suggestion is made that battery technology 

will improve so that high-power handsets will be able to provide the desired five or six hours 

o f talk time in addition o f 10 or 12 hours o f standby time, and still weigh less that half o f 

today's smallest cellular handset batteries. This "hope" does not take into account the 

maturity o f battery technology, and the long history (many decades) o f  concerted attempts to 

improve it. Increases in battery capacity have come in small increments, a few  percent, and 

very slowly over many years, and the shortfall is well over a factor o f 10. In contrast, 

integrated electronics and radio frequency devices needed fo r low-power low-tier PCS 

continue to improve and to decrease in cost by factors o f greater than 2 in time spans on the 

order o f a year or so. It also should be noted that, as the energy density o f a battery is 

increased, the energy release rate per volume must also increase in order to supply the same 

amount o f power. I f  energy storage density and release rate are increased significantly, the
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difference between a battery and a bomb become indistinguishable! The likelihood o f a xlO 

improvement in battery capacity appears to be essentially zero. "

Since there is unlikely to be much improvement in battery capacity, it is important that power 

utilisation is managed efficiently and economically. Without this, the potential of mobile 

system, and the commercial realisation of projects such as described above will be difficult to 

realise. It is hard to overstate its importance in the future development of mobile systems. 

This is the issue addressed by this thesis. The following section discusses the importance of 

power management and various power management strategies proposed to date.

2.3 Power Management Strategies
Power management strategies deal with techniques to reduce power consumption by power- 

hungry components, which often involve powering down the components during idle period 

in order to reduce power consumption. Imielinski et al [Imie94a] gave three reasons for the 

importance of power management. Firstly, it makes possible the use of smaller and less 

powerful batteries to run the same applications for the same duration, which is important 

from the portability point of view. Secondly, extending battery life allows a unit to run 

longer without the trouble of recharging which also results in monetary savings. The third 

advantage is from an environmental perspective, where disposal of batteries is an 

environmental hazard.

In this section, the studies which have identified the power-hungry components and the 

strategies proposed to reduce power consumption are described. Marsh and Zenel [Mars94] 

discussed the results of measuring power consumption of three components of portable 

computers which consumed a significant amount of power. They measured power 

consumption of the CPU, hard disk and display of four notebook computers, Toshiba 

2200SX, the Toshiba 3300SL, the Dell 320SL1 and the Zenith MasterSport SLe. The results 

of their measurements are as follows.

CPU: Each machine was measured at fast and slow clock speeds. The amount of possible 

saving varied from 11 - 31% of total system power. In the best case, slowing down the CPU 

clock speed extended battery life for over an hour for Dell 320. Since consumption varies 

linearly with CPU clock speed, Marsh and Zenel extrapolated power consumption of the CPU 

of each notebook by a simple calculation:

AClockX = AWatts

and solving for X. The calculations showed that all CPUs consume approximately the same 

amount of power, where the total power consumed by the CPU is 16 - 35% of total power. 

The high percentage is due to the 5V components used in the machines. More modem
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machines which use 3.3V components reduce this figure significantly, because power 

consumption varies quadratically with voltage.

Hard disk: Measurements taken for hard disk power consumption showed that it consumes 8 

-22% of total power. Not spinning the disk extends battery lifetime for 20 - 30 minutes. 

Results showed that a bigger drive consumes even more power. The trend in the marketplace 

however, is to increase density which does not help towards shrinking the disk size, 

indicating that disks will consume increasingly more power. Results also showed that a 

decrease in power due to lower-voltage CMOS logic does not reduce the power consumption 

of disk drives.

Display: The measurements were made with the backlight on and off. Turning the backlight 

off saved over 4 Watts on the Zenith and 2 Watts on Toshiba, but saved less than 1 Watt on 

Dell.

In summary, the measurements showed that slowing the CPU clock rate saved between 11%- 

31%, spinning down the disk saved between 20% - 54% and turning the display off saved 

between 44% - 61% power. The CPU, disk and display were found to account for 44 - 60% 

of total system power.

Marsh and Zenel used three different strategies in powering down by the CPU, which are 

described below, in increasing order of complexity;

1. Halt is a technique for reducing CPU power by executing the halt instruction. Once 

halted, most of the transistors do not change state, reducing power significantly. The halt 

instruction is simple and consists of only 6-10 assembly instructions. The CPU still runs 

at full speed because the clock rate is not altered. When halted, no instructions are fetched 

and nothing happens until an interrupt, which may be generated by the real-time clock or 

any peripheral devices, is sent.

2. Clock relies on hardware and its iS2360 power management chip. When the idle thread 

finds no other threads in the ready queue, it asks the iS2360 to reduce the clock speed. 

The ready queue is continually inspected at the lower speed until a new thread appears. 

The clock is then reset to full speed and control is transferred to the new thread. The 

clock speed is also increased if an asynchronous software trap (AST) is received.

3. Clock/Halt first reduces the clock speed and then calls the halt instruction. Unlike the 

first approach, some logic may change state when halted. This approach reduces the 

CPU's power consumption while waiting for an interrupt. The idle thread checks the ready 

queue and reduces the clock speed and calls the halt instruction if there is no ready thread. 

When an interrupt is received, the chaining code turns the clock back to full speed. When 

the interrupt completes, control returns to the instruction following the halt instruction.
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Results showed that Halt reduces total system power consumption by about 22%. Clock 

reduces power consumption by an additional 8% for Dell, and saved 11% less than Halt for 

Toshiba, Halt/Clock gave the best performance, reducing power consumption by 35%.

Marsh and Zenel demonstrated that using suitable techniques, power consumption by power- 

hungry components can be reduced significantly. Forman and Zahorjan [Form94] suggested 

that power is conserved by careful design and efficient operation, while applications can 

conserve power by reducing their appetite for computation, communication and memory. 

There have been several studies which address the power management issue, by attempting to 

reduce power consumption by the CPU, hard disk and also by using the communication 

medium economically. In the following sub-sections, the proposed strategies are discussed.

2.3.1 Power Management Strategies for Hard Disks
Power management strategies for hard disks involve techniques for spinning down the disk 

during an idle period. The concerns which have to be addressed are summarised as follows:

• an appropriate threshold for the idle period so that the disk can be spun down safely,

• keeping access latency to a minimum, because once a disk is spun down, a delay is 

introduced when spinning up the disk, thus delaying access to data,

• spinning down the disk to reduce power consumption should not adversely affect the disk 

life span,

• spinning down the disk should not result in higher power consumption compared to when 

it is not spun down.

In the following paragraphs, the way in which these concerns are addressed by various studies 

is discussed.

Greenwalt [Gree94] pointed out that recent efforts to achieve low-power operating conditions 

have primarily targeted the hardware, where low-power subsystems are given controllable 

power and clocks to allow them to operate in multiple power states. Advanced Power 

Management provides a mechanism whereby system software can control the transitions 

between power states.

Greenwalt established that hard disk drives consume between 15-30% power depending on 

the amount of memory and disk usage. The amount of power consumed by the disk can be 

reduced by spinning down the disk during idle period, when there is no request to access it. 

The disk is spun up again on the next access request, and spinning it up consumes a 

considerable amount of power and introduces access latency. As a result, spinning down the 

hard disk vigorously can actually increase power consumption, in addition to increasing 

access delay. Hence, the disk must be idle for a minimum period of time in order to offset the
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additional power consumed when spinning it up again and to justify the increased response 

time.

Greenwalt defined a disk critical rate, Ren as the rate where the average power consumed for 

a single access if the disk continually spins and the power needed to spin the disk up after 

spinning it down are equal. A timeout value, which is the minimum period of time a disk has 

to be idle before being spun down, is selected based on Rcr- His experimental results showed 

that:

• Since spinning up the disk after spinning it down consumes a considerable amount of 

power, spinning it down too quickly, might result in an increase in power consumption 

instead of decreasing it. On the other hand, if the timeout value is too high, the 

probability of spinning down the disk is almost zero.

• The power consumed by a disk is equal to the power consumed for the on/off cycle plus 

the extra power needed to keep the disk spinning until the timeout occurs.

• The on/off cycle is costly. Low timeout values reduce the reliability of a disk because 

rapid on/off cycles reduces the life span of a disk whereas large timeout values minimise 

power consumption and lengthen its life span. A common practice is to use a timeout 

value of several minutes in order to balance disk life span and reduce power 

consumption.

• As there is a delay incurred when spinning up the disk, performance improves as timeout 

values becomes longer. However, users may tolerate the increased delay if it happens 

infrequently.

Greenwalt also pointed out that power, performance and reliability are not always compatible 

goals and a compromise must be reached in choosing an appropriate timeout value.

Although Greenwalt proposed that a spin down policy should strike a balance between 

reducing power consumption and latency. Doughs et al [Doug94a] proposed an adaptive 

threshold policy which aggressively spins down the disk at the expense of higher latency. 

Doughs et al claimed that the high fixed threshold values used by manufacturers, which vary 

from 3 seconds to several minutes, was too high, and that spinning the disk for a few seconds 

without accessing it can consume more power than spinning it up again upon the next access. 

To examine the trade-off, they ran trace-driven simulations to evaluate different disk spin- 

down policies. They evaluated two algorithms: an off-line algorithm^, which is optimal in

" An off line algorithm assumes it has a priori knowledge of disk access pattern and is able to make 
optimal spin-down decisions.
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terms of power consumption; an online threshold algorithm^; and a predictive online 

algorithm which uses past history to predict the next access. They found that threshold 

policies which spin down the disk after 1-10 seconds perform almost as well as the optimal 

off-line algorithm. Whilst this approach reduces the timeout value recommended by 

manufacturers by approximately half, in some cases, the threshold significantly increased 

access latency. They claimed that the delays can be avoided if access time could be predicted 

accurately, but admitted that predictive strategies that narrow the gap between optimal off

line and threshold-based algorithms are difficult to formulate.

A later work by Doughs et al [Doug95] proposed an adaptive disk spin-down policy which 

tries to balance between reducing power consumption and reducing access latency. They 

developed a method for distinguishing between undesirable and acceptable spin-up delays. 

Undesirable delays are referred to as bumps and the timeout value was varied based on users' 

tolerance of bumps. The adaptive policy is aimed either:

• to reduce the number of bumps without adversely affecting energy consumption compared 

to a fixed-threshold policy, or

• to reduce energy consumption without adversely affecting the number of bumps.

A fixed threshold policy spins down the disk if it has not been accessed for T seconds. As a 

spin-down policy has two contradicting goals, which is to reduce energy consumption while 

minimising access latency, using a low timeout value may reduce power consumption, but 

increases the number of bumps. Moreover, as mentioned earlier, a short timeout may 

increase instead of reducing power consumption due to the cost of spinning up. A fixed 

threshold policy usually uses a large timeout value to minimise bumps.

Doughs et al used a break-even point, 7 ,̂ which is the critical value Rcr discussed earlier, as 

the minimum period a disk remains idle before spinning it down. The adaptive spin-down 

policy monitors the spin-down threshold and updates the threshold to balance between energy 

consumption and bumps. They defined the measure of acceptability as /? = S/I, where <5 is the 

spin up delay and /  is the idle time of the disk prior to spin-up. A spin-up delay is a bump if 5 

> pi, all spin-up delays are bumps if p=0.

The threshold value is adjusted using either an additive or multiplicative approach. Using an 

additive approach, a value % or Pa is added to T, depending on whether an undesirable or 

acceptable spin-up occurs respectively, where Œa> 0, Pa < 0 and % > \Pa\. The values are 

chosen so that when a bump occurs, T is increased to avoid the possibility of future bumps

 ̂ A threshold algorithm uses a fixed timeout value, T, where the disk is spun down if it has been idle for 
T seconds.
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and when an acceptable spin-up occurs, T is decreased, but more gradually. Using a 

multiplicative approach, T is multiplied by or p„ where a„> 1 and 1 > P„> l/a^.

Simulations were carried out using traces from a Macintosh Power Book, Windows 3.1 and 

HP-UX. The results obtained, which are summarised in Table 2-1, showed different levels of 

power saving were achieved depending on the trace data used.
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Table 2-1
Table summarising simulation results of [Doug95]

p=0.05 Windows Macintosh HP
Fixed threshold
T=2, 5, 10, 30 
and 300 seconds

A fixed threshold of 2s consumed the 
least energy, but caused over 50 bumps 
in a 1.5 hour period. Increasing the 
fixed threshold or using an adaptive 
policy reduced the number of bumps at 
the expense of higher energy 
consumption. E.g. T=30s resulted in no 
bump, but increased energy 
consumption by 48%. A fixed threshold 
of 1 Os decreased bumps by 66% and 
increased energy consumption by 15%.

Results showed no significant improvement 
of adaptive policy over a fixed threshold 
policy.

A fixed threshold of T=30s reduced 
bumps by about 50% with an energy 
increase of 18%.

Adaptive policy
(adaptive
approach)

T was varied between 5 and 30 seconds,
tta=2s, Pa=ls.
Energy consumption increased by 8% 
compared to fixed threshold of 2s and 
the number of bumps decreased by 65%.

Varying T between 10-70 seconds with 
tta=2s, Pa=0-2s reduced bumps by 50% 
with an energy increase of 3%.

Adaptive policy
(multiplicative
approach)

T was varied between 5 and 30s, 
a„,=1.5s, pm=0.5s
Consumed only 0.5% more energy than 
a fixed threshold of 5s and reduced 
bumps by 33%.

A threshold between 2-20s using a 
multiplicative approach consumed 1% 
more energy and reduced bumps by 22%.

Not discussed.
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The algorithm offers a method of varying the threshold dynamically to reduce bumps at the 

expense of power consumption. Users can make the trade-off by varying the threshold 

parameter manually, or the value may be varied dynamically by the algorithm based on recent 

history, which is preferable as user work patterns may change with time.

Li et al [Li94] reduced power consumption and avoided latency by using a disk cache to 

extend the duration a disk operates in sleep mode. Disk caches have been traditionally used 

to reduce disk access response time. From the perspective of power management, disk caches 

will not only reduce access response time, but also incur less energy cost compared to a 

system without a cache by filtering read accesses. Using a disk cache also reduces the overall 

impact of spinning down the disk and the number of spin ups required to service write 

requests. The cache used for the study was LRU (least recently used) with a block size of 4 

kilobytes.

Li et al divided the hard disk operation into 4 modes. O ff mode consumes no power and 

cannot perform any function except power up. Sleep mode is when the disk is powered up, 

but the disk platter is not spinning. In idle mode, the disk is spinning, but there is no disk 

activity. In active mode, the disk platter is spinning, and the disk head is either seeking, 

reading or writing and consumes the most power; this occurs only for short periods of time.

Li et al also studied the effect of a write-back policy which reduces the frequency of write 

accesses to a disk by delaying write operations to a disk for a specified period of time. The 

policy proved to be especially useful in cases where files are quickly over-written. Trace data 

for the study was collected from Microsoft DOS and Sprite file systems. The simulation 

results showed that a minimum amount of energy was consumed using a timeout value of 2 

seconds, where it saved nearly 90% of energy consumed. A timeout value of zero increased 

power consumption due to frequent disk spin ups, as expected.

The performance of disk cache policy with a timeout value of 6 seconds was compared to an 

optimal spin down algorithm with the same timeout value. This value was chosen based on a 

critical value, Rcr, which was identified as 6.2 seconds. Results showed that the 6-second 

timeout policy saved 30% less energy compared to disk spin down with caching.

Li et al established that two factors which determine how much energy saving is achieved are, 

how frequently a disk sleeps and for how long it sleeps. The timeout value should be chosen 

so that it is small enough that it includes a cluster of disk activities, but large enough that the 

energy saved by sleeping is significantly larger than the energy consumed when spinning up. 

Decreasing the timeout value also increases the sleep time, which reduces energy 

consumption.
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An analysis of the trade off between energy consumption and delays showed that a large 

saving can be achieved by tolerating a small amount of user delay. User delay was defined as 

the sum of all the spin up delays which are synchronous with user activities. Asynchronous 

spin ups from delayed writes were not considered because they were transparent to users. 

Results showed that a 2 second timeout did not carry a heavy performance penalty.

The disk cache was found not to have a profound impact on energy savings, even though it 

did reduce energy consumption by filtering disk traffic. The choice of timeout value was 

found to play a more prominent role in energy consumption. A disk cache of 1 megabyte 

reduced power consumption by half, and a larger cache did not further reduce energy 

consumption. The effect of varying write delays was found to be similar to the effect of 

varying the disk cache size, A write delay of 30 seconds reduced energy consumption by 

half, and a write delay greater than 60 seconds did not yield further improvement.

Krishnan et al [Kris95] took a different approach of spinning down the disk by using a 

sequential rent-to-buy problem, which is described as follows. If a resource is required for an 

unknown amount of time, and there is an option of renting it for £1 per unit time, or buying it 

for £c, for how long should the resource be rented before it is bought? An offline algorithm 

with a priori knowledge of resource requirement will immediately buy the resource if it is 

needed for at least c time units, and rent it otherwise. An online algorithm with no a priori 

knowledge will rent the resource for c time units before buying it, incurring a cost of at most 

twice of an offline algorithm. In the context of the spin down algorithm, keeping the disk 

spinning is a rent, while spinning it down is a buy, because spinning it down and then up 

again consumes a fixed amount of energy which is independent of the amount of time before 

the next access.

The disk spin-down algorithm is modelled as a sequence of single rent-to-buy problems, 

where the time between any two disk accesses is termed a round. For each round t, the 

algorithm uses information from the previous (t-1) rounds to decide if it should continue 

spinning the disk (renting) or spin down the disk (buying).

Krishnan et al proposed the "L" algorithm which sets a cut-off on the cost it is willing to 

accrue before buying, where the cut-off value is the critical value, R c :r .  Two requirements for 

the algorithm are that it should produce good cut-offs, and do so using minimum space and 

time. The L algorithm assumes that a spinning disk consumes f  , power and a spun down disk 

consumes P,j> 0 power, where P.j is much smaller than P,. T is the net idle time of a disk, 

which means the disk consumes at least T.Psd energy independent of the disk spin-down 

algorithm.

28



A parameter Sx was used to compare disk spin-down algorithms performance based on the 

excess energy consumed by the algorithm, where Sx = total energy consumed - T.Psd- The 

effective cost of an algorithm X  was defined as

Ecx =  Cl. Ox

where a = relative importance of latency with regards to conserving energy 
Ox = the number of operations delayed when spinning up the disk

The buying cost c was derived as follows. A spin-down delays one operation and, therefore, 

the effective cost of a spin-down is Esd+a, where Esd is the total energy consumed by a spin- 

down and a spin-up. The effective cost per unit time to keep the disk spinning is Ps-Psd and 

hence,

c  =  (a+Esd)/(Ps~Psd)

Simulation results showed that the effective cost for L algorithm was the smallest amongst 

online algorithms tested. Its effective cost was 6-25% lesser than the effective cost of a 2- 

competitive'* algorithm. It saved 17-60% more excess energy than a 2-competitive algorithm, 

and 6-42% more excess energy than the 5 second spin-down threshold for a < 25. For 

sufficiently large a, it reduced the number of operations delayed over both the 2-competitive 

and the optimal offline algorithm. In addition, the rent-to-buy model was found to allow an 

effective trade-off between energy and response time.

An alternative to spinning down the disk to reduce power consumption was proposed by 

Douglis et al [Doug94b], who discussed flash memory as a storage alternative to hard disks, 

since it consumes low power. While hard disks provide large capacity at low cost and have 

high throughput for large transfers, they consume a lot of power and take time to spin up and 

down. On the other hand, flash memory consumes little power, has low latency and high 

throughput for read accesses. A disadvantage is that flash memories cost substantially more 

than disks and require erasing before writing to a segment, giving them a shorter life span.

There are two types of flash memory, a flash memory card, which is accessed as main 

memory and a flash disk emulator, which is accessed through a disk block interface. The 

access time and bandwidth of the devices are different, and so is the file system organisation. 

Since each organisation has its own strategies for power management and performance 

enhancement, when evaluating the suitability of flash memory as a storage alternative, these 

factors must also be considered.

 ̂ An algorithm is c-competitive if it never uses more than c  times the energy used by an optimal 
algorithm [Helm96]. A 2-competitive algorithm uses a pre-determined fixed timeout value which is 
guaranteed to perform well for all sequences o f idle time and its performance never exceeds the 
performance of a best fixed timeout algorithm.
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Simulation results showed that flash memory achieved a power reduction by an order of 

magnitude compared to aggressive disk spin-down policies. The flash disk file system saved 

88% power, while the flash memory file system saved 93% power in the presence of power 

management.

Douglis et al also tested flash memory's read and write performance compared to hard disk in 

the absence of disk spin-down. A flash disk file provided similar read response time, but its 

write performance was 50% worse than for the disk file system. The flash memory file 

system achieved faster read response time, while its write response time is comparable to a 

disk file system. Although the results indicate that flash memory is a good alternative to hard 

disks, at present, its capacity is not big enough to replace hard disks. If this constraint is 

overcome, accompanied with a reduction in price, flash memory may become an attractive 

alternative to hard disks.

While the strategies to spin down the disk vary, they attempt to achieve a common goal: that 

is, to identify a suitable time to spin down the disk in such a way that overall power 

consumption is reduced, while trying to keep latency within acceptable limits. It is difficult 

to compare the efficiency of the different techniques against each other as they used different 

performance metrics, e.g. [Li94] measured performance in terms of percentage of energy 

saved, while [Kris95] measured it in terms of excess energy consumed.

Since the power reduction achieved by a disk spin down strategy relies on the idle period, 

combining disk spin down with disk caching, as proposed by Li et al, seems a good way of 

lengthening idle periods, in addition to reducing access latency. Even though the strategies 

proposed have been successful in reducing power consumption by the disk, the different 

levels of saving achieved by Douglis et al when the spin-down algorithm was simulated using 

trace data from Macintosh, Windows and HP, suggests that the benefit of spinning down the 

disk might be influenced by the operating system used.

2.3.2 Power Efficient Communications
Transmitting and receiving data have been identified as one of the activities which drain 

battery power. The studies which have dealt with power efficient communication 

demonstrate that there are various ways to address the issue. Power consumption by 

transmitting/receiving may be reduced by using data filtering techniques, varying the 

transmitter power, or by using an adaptive error correction method. These are discussed 

individually below.

Imielinski et al [lmie94a] discussed an energy efficient data filtering technique which enables 

palmtops to operate in doze mode frequently and only wake up when data of interest is
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expected to arrive. The ability to wake up when data is expected is termed selective tuning. 

They illustrated the scale of potential saving achieved by operating in doze mode by referring 

to the power consumption of a Hobbit chip from AT&T which consumes only SOpW in doze 

mode, compared to 250mW in active mode.

Imielinski et al proposed two selective tuning techniques, where clients (mobile devices) tune 

in periodically to the broadcast channel to download required data. When a server broadcasts 

the data, it also broadcasts a directory which consists of an index indicating the time when 

particular records are broadcast. The index, which provides a sequence of pointers which 

eventually leads to the required data, is interleaved with data.

The two proposed techniques were (1, m) Indexing and Distributed Indexing. Using (1, m) 

Indexing, an index is replicated m times during the broadcast of one version of a file, where 

the index is broadcast every 1/m fraction of the file. Distributed Indexing is an improved 

version of (1, m) Indexing, where only part of the index is replicated, as it was observed that 

it is not necessary to replicate the entire index between successive data segments. Only part 

of the index indexing the data segments which follows it is replicated.

Imielinski et al established that using Distributed Indexing, the same number of filtering 

requests could be served with 100 times less energy. Four hours of data filtering took only 

1% of the energy used without filtering for the same number of requests. The savings almost 

doubled the working time.

In a later study, Imielinski et al [Imie95] proposed protocols which offer power saving for 

applications such as news groups and electronic mail. The protocol refines indexing of 

multicast data and saves energy by keeping the CPU in doze mode. The protocol keeps the 

receiver off most of the time and was inspired by a similar protocol used in cordless 

telephones and pagers, which extends battery life by switching off their receivers for much of 

the time.

Rulnick and Bambos [Ruln96] addressed the question of how to determine when, and at what 

power, a mobile terminal should attempt transmission. While overcoming interference in 

wireless networks is a focal concern, it should be done in a manner which conserves energy. 

Their aim was to minimise energy consumption on condition that the quality of service 

requirements are met.

Rulnick and Bambos considered a transmitter sending data to a remote terminal over a 

communication channel which is subject to time-varying interference. Transmitting at a 

higher power results in a higher SIR (signal to interference ratio) and success rate, but at the 

expense of rapidly depleting energy supply and increased interference with other users.
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A dynamic power management algorithm (DPMA) which requires no prior knowledge of its 

operating environment was proposed. Its only requirement is a good estimate of the error 

probability function, using which it should be able to decide when to delay transmission if 

interference was too high. The performance of DPMA was compared to constant-SIR and 

constant-power solutions.

Simulation results showed that DPMA achieved power savings of at least 70% and battery 

life was improved by a factor of at least 3.3 compared to any other constant-SIR solutions. 

DPMA was also more stable compared to the constant-SIR scheme which rapidly became 

unstable due to the transmitters competing until power was saturated at exceptionally high 

levels. DPMA did not seem to induce a strong TDMA-like effect, but there was enough 

alternating behaviour which improved SIR per bit, hence suggesting a weak TDMA-like 

effect. Transmitters which used DPMA uniformly provided the same performance (in terms 

of rates and delays) as constant-SIR, and achieved energy savings of 10%- 92%. Battery life 

was extended by a factor of up to 12.

Lettieri et al [Lett97] described an architecture for low power error control over wireless 

links. Error control schemes such as forward error correction (FEC), or automatic repeat 

request (ARQ) are used to increase the reliability of the communication links. In wireless 

links, error control is used to provide sufficient reliability for an end-to-end transport layer to 

ensure that quality of service requirements are met. While error control has a direct and 

substantial effect on power consumption, studies on error control schemes have not addressed 

the amount of energy consumed to transmit bits across wireless links. Lettieri et al assessed 

the impact of error control schemes on battery life and showed that the choice of energy 

efficient control strategy is a strong function of quality of service parameters, channel quality 

and packet size. The error control scheme was adapted to changing channel conditions for 

maximum energy efficiency.

Any overhead associated with sending one bit of useful data was accounted for when 

calculating the energy cost of sending that bit. For example, the overhead for ARQ schemes 

is comprised of the redundancy in the packet for error detection, the acknowledgement 

packet and retransmitted packets, if any. The overhead for FEC is the redundancy in each 

packet, but no retransmission cost is incurred. FEC may be computationally expensive and 

the computational burden on power consumption cannot be ignored. A hybrid scheme incurs 

the fixed overhead of FEC, but with lower retransmission overhead.

Simulations were carried out with IP and ATM data packets, assuming data and speech 

transmissions, and users were assumed to move at car or pedestrian speed. Error control 

schemes used were SACK (Selective Acknowledgement), SACK+FEC and Reed-Solomon
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(an FEC scheme which is capable of detecting multi-bit error), SACK was chosen because it 

requires the fewest retransmissions compared to other ARQ schemes, while Reed-Solomon 

was chosen because it incurs relatively low redundancy. SACK or SACK+Reed-Solomon 

generally gives the best performance.

The first simulations assumed data transmission. For ATM packet size, the improvement was 

minimal over a wide range of bit error rates (BER) when using a hybrid error control scheme, 

but the improvement was much greater when ARQ was used. Schemes which employed FEC 

performed better for poorer quality channels, but performance improvement decreased as the 

quality of channels increased due to the fixed cost of FEC schemes.

For IP packets, only SACK reduced energy consumption. FEC reduced the average latency 

for better channel quality, but did not improve energy consumption. In some cases, energy 

consumption was worse when FEC was used. Similar observations were made for both 

pedestrian and car speeds.

Simulations of speech transmission were only run assuming ATM packets and assuming that 

data had to be delivered within 50 msec. For both pedestrian and car speeds, no data was lost 

for low BER. The performance of SACK and SACK+Reed-Solomon were comparable, with 

the hybrid scheme consuming slightly more power. When BER rose above 10' ,̂ the ARQ 

scheme deteriorated to the point that packet drop rate was unacceptable and power 

consumption grew out of control.

The results obtained indicated that the error scheme should be adapted according to the type 

of transmission and different channel conditions in order to achieve efficient energy 

consumption. There is no single scheme which is suitable for all conditions.

The studies above demonstrate that there are various ways to reduce power consumption by 

transmitting/receiving. Even though the techniques proposed depend on which aspect was 

being considered and optimised in order to reduce power consumption by 

transmitting/receiving, there appears to be no reason why the techniques cannot be combined. 

In a real implementation, it is very likely that different power saving techniques will be 

combined to extend battery lifetime as long as possible.

2.3.3 Power Management Strategies for CPU

Power management of the CPU is similar to that of hard disks, in that it relies on powering 

down the CPU during idle periods. However, unlike disks, the cost and delay involved in 

powering down the CPU is negligible. Below is a discussion of studies which have addressed 

how power consumption by the CPU may be reduced.

33



Weiser et al [Weis94] believed that it would be more efficient to spread workload over time 

than to execute it at full speed and then idle. Spreading the workload is achieved by reducing 

the CPU clock speed (i.e. a job is executed at a slower rate), and the speed is chosen so that 

the Job is completed before its deadline. Reducing the clock speed alone does not reduce 

power consumption because since power consumption is proportional to the clock speed, a 

job takes longer to execute, thus consuming an equal amount of power as if the clock was run 

at full speed. Hence, power consumption is reduced by reducing the voltage level as the 

clock speed was reduced. The proposed approach stems from the fact that energy is 

proportional to the square of voltage E/clock x  . Reducing the clock speed creates an 

opportunity for quadratic energy savings, because if the voltage level is reduced linearly as 

the clock speed is reduced, it has the potential to result in a saving proportional to the square 

of voltage reduction.

Trace data for the simulations were collected from UNIX workstations. The trace period was 

divided into intervals, which was varied during the experiments. The run time and idle time 

during an interval was used to decide on a suitable clock speed, where the speed was chosen 

so that the runtime of individual segments were lengthened in order to eliminate idle time. 

Excess cycles left over at the end of an interval were carried over into the next interval. The 

excess cycles indicated that the speed chosen was too slow, and was used as a performance 

penalty.

Three algorithms were used in the simulations. Unbounded-deiay perfect-future (OPT) 

takes the entire trace and stretches all the run times to fill all idle times. OPT assumes 

perfect future knowledge of jobs to be done, and that all idle times can be filled by stretching 

run lengths and reordering jobs. Bounded-delay limited-future (FUTURE) is like OPT, 

but it examines a small window into the future and optimises energy over that window. Jobs 

are never delayed past the window, which was varied between 1 millisecond to 400 seconds. 

FUTURE approaches OPT in energy savings at window period of 400 seconds. FUTURE is 

impractical because it requires future knowledge, but is desirable because no jobs are delayed 

longer than the window period. Bounded-delay limited-past (PAST) is a practical version 

of FUTURE, which examines a window in the past and assumes the next window will be 

similar to the previous one.

A summary of the experiment results are as follows. Results of varying the scheduling 

interval on the algorithms showed that OPT was unaffected by the interval length, while 

FUTURE and PAST approached OPT as the interval increased. For the same interval, 

PAST performed better than FUTURE because it is allowed to defer excess cycles into the
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next interval. Overall, results on PAST showed that a low minimum voltage of l.OV resulted 

in more excess cycles, while longer intervals resulted in more accumulated excess cycles.

There was a trade off between excess cycle penalty and energy savings as a function of 

interval length. As the interval decreased, the CPU speed was adjusted at a finer grain and 

matched the offered load better, resulting in fewer excess cycles but did not achieve an 

optimal level of energy savings.

The amount of energy saving achieved for three minimum voltages, 3.3V, 2.2V and l.OV, 

was examined using an interval of 20 msec. The best energy saving was not achieved by a 

minimum voltage of l.OV because it tends to cause a build up of excess cycles, resulting in 

less efficient energy consumption. On the occasions when l.OV did provide minimum energy 

consumption, 2.2V minimum voltage performed almost as well. Overall, energy saving 

achieved was 25% - 65%. PAST, with 50 msec interval, achieved up to 50% savings for 

3.3V and up to 70% savings for 2.2V.

A later study by Lorch and Smith [Lorc96] tried to reduce power consumption of the CPU by 

optimising the operating systems for power management. They discussed strategies of 

reducing power consumption by the processor in a single-user operating system, focusing 

specifically on Apple's MacOS. When analysing the power consumption of Macintosh 

PowerBook computers, they discovered that up to 18-34% of total power was consumed by 

components whose power consumption could be reduced by power management of the 

processor.

As processors now are capable of operating in doze mode which consume little power, the 

operating system instructs the processor to operate in doze mode when it is predicted that the 

resulting savings will offset the overhead of entering and leaving doze mode. Unlike hard 

disks, the delay and power cost of doing so are typically low, which makes optimal CPU 

power management strategy trivial because the CPU can simply be turned o ff  down whenever 

there is no useful work to do.

The basic strategy turns off the processor when there is no process to run. The current 

strategy.mcà by MacOS is based on an inactivity timer, where the operating system instructs 

the processor to operate in doze mode if no activity is detected in the last 2 seconds, and no 

I/O activity is detected in the last 15 seconds. The processor leaves its doze mode when 

activity is detected, where an activity is defined as any user input, I/O, change in the 

appearance of the cursor or time spent with the cursor as a watch.

Lorch and Smith identified two problems with the existing strategy. Firstly, since the 

operating system was not optimised for power management, a process was sometimes 

scheduled to run even though it had no useful work to do. Secondly, applications were
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usually written with the assumption that they will run in the foreground and, therefore, were 

justified in taking as much processing time as they wanted.

Lorch and Smith developed three techniques to deal with these two problems. The simple 

scheduling technique deals with the first problem by making sure the operating system does 

not schedule a process when it has asked to be blocked. The second problem is addressed 

using one of the following techniques. The greediness technique uses a heuristic to forcibly 

block any process which is making unnecessary requests for processor time. A process is 

considered as acting greedily when it specifies a sleep period of zero even though it is not 

actively computing; and is considered not actively computing if it explicitly blocks or yields 

control several times consecutively without receiving an event or showing signs of activity. 

The parameter of this technique is called the greediness threshold, and is the number of 

control-yield times. The sleep extension technique multiplies all sleep times requested by a 

process by a constant factor known as a sleep multiplier. It ensures a reasonable trade-off 

between energy savings and performance, and is chosen by the user or the operating system.

Simulations were run using trace data collected from six users of Apple Computers and with 

different combinations of the techniques described above. Two parameters were used to 

evaluate the performance of the proposed techniques: processor energy savings was the 

percentage decrease in the time the processor spent in the active state and was deduced from 

the simulations; performance impact was the percentage of overall time increase in running 

the processes as a result o f using a power-saving strategy. The performance penalty is due to 

the fact that a power saving strategy sometimes caused the processor to be turned off when it 

should be performing useful work, resulting in the process being scheduled later and 

increasing the time taken to complete it.

Experimental results showed that an optimal strategy which has foreknowledge of work 

pattern achieved power savings of 82.33% with no performance impact (there is no increase 

in the average time taken to run processes), while the basic strategy achieved power savings 

of 31.98% with no performance impact. Various combinations of the proposed techniques 

achieved power savings of 28% - 66% with performance impact of less than 2%. A 

sensitivity analysis showed that the performance of the techniques was relatively insensitive 

to their parameter values.

The results of this study indicates that if the operating system is optimised for power 

management, a significant amount of power can be saved by turning off/down the processor 

when there are no processes actively performing computations.

A more recent study by Rudenko et al [Rudn98] proposed a strategy which transfers 

computation to a fixed host in order to keep the CPU idle as much as possible, thus reducing
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power consumption. They observed that while some jobs have to be executed locally, some 

can be performed anywhere as long as the results are returned to the portable computer. They 

reasoned that if the cost of sending the job elsewhere and receiving the results is lower that 

the cost of running it locally, remote execution could save battery power. The scenario 

envisioned is an office where untethered users move through a ubiquitous wireless network.

Three types of jobs which were large and time-consuming were selected for the experiment:

1. Program compilation, which required significant CPU processing and a good deal of disk 

activities (read and write accesses).

2. Calculation of Gaussian elimination problem, which performed few disk accesses, but 

made very heavy demands on the CPU and memory.

3. Text formatting of a 200-page LaTeX document, which performed a moderate amount of 

CPU processing and had relatively little disk activity.

The amount of information sent from the portable to the server was varied. For compilation 

and text formatting, the server held a copy of the files locally and the portable was only 

required to send the changes to the server. The amount of changed code was assumed to 

correspond to the amount of work done by the compilation while the amount of data returned 

were always the same. In the case of the Gaussian solution process, the entire matrix was 

transferred and the matrix size was varied, thus varying the amount of data exchanged 

between the portable and the server. The size of results returned was assumed to correspond 

to the size of the matrix.

The experiments were first run in a noiseless environment, and later in a noisy environment. 

The results which are summarised in Table 2-2 shows that in a noisy environment, collisions 

and retransmissions greatly reduced the benefits of remote executions and only very large 

jobs benefit from it. Rudenko et al, however, pointed out that wireless communications 

cards, in general, are fairly new phenomena that are not yet ubiquitous and not yet optimised. 

They expected that there will be improvements in the future.

A shortcoming of this study is the fact that the experiments were carried out with the different 

job types tested separately. They did not consider a mix of jobs, which would be the case in 

real systems. In addition, all jobs were transferred even though they acknowledged that some 

jobs must be executed locally due to the nature of the jobs themselves. If these factors were 

taken into consideration, the results obtained might not be so optimistic. Our own work 

which has been briefly outlined in [Gthm97] and [Gthm98], takes into consideration several 

factors neglected by Rudenko et al.

37



Table 2-2
Summary o f results obtained by Rudenko et al [Rudn98]

Job Type Noiseless Environment Noisy Environment
Program
compilation

For small compilation jobs, the 
power cost of remote execution 
outweighed its benefits. 
However, as the size of altered 
code increased, the benefit of 
remote execution became more 
prevalent. For 500 kilobytes of 
altered code, remote execution 
consumed less than half the 
power consumed by local 
execution.

Only very large compilations 
saved a significant amount of 
power. The amount of 
saving was reduced to 20% 
from 51% for the noiseless 
environment because 
collisions and
retransmissions increased the 
amount of power consumed.

Gaussian solution For matrices of size less than 
500x500, the power cost of 
remote execution were greater 
than the cost of local execution. 
For larger matrices, savings of up 
to 45% were achieved.

The results obtained were 
similar to program 
compilation in a noisy 
environment.

Text formatting LaTeX documents of 30 to 200 
pages were used in the 
experiments. There was no 
significant difference between 
local and remote execution 
except when the amount of 
altered text was 439 kilobytes, 
where remote execution 
performed worse than local 
execution. The reason for this 
observation was text formatting 
consumed less than 1% of total 
battery power. Remote execution 
added to the overhead of power 
costs and, therefore, did not help 
power saving.

Experiment for remote 
execution of text formatting 
in a noisy environment was 
not carried out

In summary, while studies have shown that it is possible to reduce power consumption by 

turning down the CPU during idle periods, and by optimising the operating system, it is 

possible to further reduce power consumption by transferring computations to a fixed host.

2.4 Conclusion
In this chapter, the diversity of mobile applications was illustrated, and the limitations and 

constraints of mobile computing which must be addressed in order to support roaming users 

was discussed. One of these constraints is the focus of this thesis, that is power management. 

Several power management strategies have been proposed, most of which focused on
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designing algorithms to power down hardware components which consume a substantial 

amount of power.

The power management strategy proposed in this thesis takes a different approach, and is 

based on the concept of load sharing, where suitable jobs are selected for remote executions 

in order to reduce power consumption by the CPU. It is, to some extent, similar to the 

strategy proposed to Rudenko et al [Rudn98], but predates their work and also takes into 

consideration several issues which they neglect. In the next chapter, studies regarding load 

sharing are discussed.
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3. Load Distribution in Distributed Systems
Since load sharing has been extensively studied, there are numerous papers discussing various 

load sharing strategies. In this chapter, aspects of load sharing relevant to diis study are 

discussed. As it is our intention to use load sharing within a wireless network environment, 

which is significantly different to the fixed network environment that is assumed within the 

literature to date, the extent to which such a strategy can be adopted is examined. We begin 

with a discussion on how load sharing has been used, and the general issues which need to be 

addressed when implementing load sharing on fixed distributed networks.

Load sharing, or load balancing, is a strategy which distributes workload among processors in 

a distributed system. Some literature distinguishes between the two (e.g. [Eage86b], 

[Krue88], [Krem92]). Load balancing is defined as a strategy which continually attempts to 

equalise workload across a distributed system, while load sharing is defined as a strategy 

which attempts to share loads in a distributed system without attempting to equalise them. 

For the sake of simplicity, a more generic term, load distribution, which was introduced by 

Jacqmot and Milgrom [Jacq93], will be used when referring to both load balancing and load 

sharing in general. The goal of load distribution is to make better use of the system resources 

(usually the CPU) by making sure that no nodes are idle, and this is achieved by transferring 

jobs from a busy host to an idle/underloaded host. The transfer may be in form of job 

placement, i.e. a non pre-emptive transfer of a newly arrived job, or migration, i.e. a pre

emptive transfer of an executing job.

The primary reason for distributing load is to improve performance in distributed systems by 

making sure that no node is idle while other jobs wait for service and to minimise the total 

time taken to process all jobs [Eage86a]. Other reasons are to minimise inter-processor 

communication cost caused by accessing remote resources [Ezza86], and to improve 

performance by smoothing out transient peak overload periods [Krem92]. Shin and Chang 

[Shin89] stated that in real-time systems, load distribution is one way to alleviate a problem 

where some jobs cannot meet their deadlines even though the overall system has the capacity 

to meet all deadlines. This happens when job arrivals are not uniformly distributed causing 

some nodes to be overloaded, while some are underloaded. There are many other such 

reasons given in the literature. Regardless of why or how load distribution is performed, it 

should be performed in a transparent way so that users are not aware of the resources 

distributed across the network.

A load distribution algorithm may distribute workload based on the average behaviour of the 

system (static algorithm) or on the current workload information (dynamic algorithm). The
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first case is simple and straightforward as job allocations are pre-determined, and the 

algorithm does not incur any overhead in collecting/disseminating system state information. 

In the latter case, information about the current system state must be collected and 

disseminated among hosts in the system, and the algorithm must be able to deal with 

information which is out of date due to communication delays. If this is not addressed, the 

inevitable existence of such delays may have a marked effect on the performance of a load 

distribution algorithm.

When designing a load distribution algorithm, it is imperative that the algorithm should be 

stable, i.e. it does not behave in a way which will cause system performance degradation 

under detrimental conditions. For example, when the system is under heavy load, it is 

perhaps better to disable the algorithm as the cost of executing it might degrade system 

performance instead of improving it. We will discuss how the definition o f a "stable 

algorithm" is dependent on the designer's view of what stable behaviour is, and on the 

environment and system for which the algorithm is designed. A consequence of this is, there 

is no standard procedure for determining the characteristics of a stable algorithm, and it is up 

to the designer to identify factors which may cause instability and take the appropriate 

measures to prevent them.

As there are numerous load distribution algorithms proposed throughout the literature, it is 

necessary to examine the nature and precise properties of the algorithms in some detail in 

order to decide which are the most fruitful avenues for exploration with regard to their use in 

power saving within mobile systems. The remainder of the chapter is structured as follows. 

The next section describes the load distribution policies, the assumptions under which they 

were designed, how they have been used and whether the strategies are applicable in mobile 

systems. The effect of system load on the benefit of load distribution is also discussed, 

followed by the impact of communication delays on load distribution. Finally, the issues of 

stability and scalability of load distribution algorithms are addressed, and this chapter is 

concluded with a summary of the problems we wish to address.

Before proceeding to the next section, four commonly used load distribution algorithms are 

briefly described. These algorithms are popular and often used as a baseline comparison to 

other algorithms. In the coming sections. Random, Shortest, Threshold and Central 

algorithms will refer to the ones described below, unless stated otherwise.

A. Random Algorithm

An overloaded host selects a destination host randomly and transfer a job to that host. No 

probes are sent and absolutely no state information is used in selecting a destination host.
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B. Threshold Algorithm

An overloaded host probes Lp hosts and selects a destination host whose queue length is less 

than a pre-determined threshold T, if one exists. The probe terminates when a suitable 

destination host is found, or Lp has been probed. '

C. Shortest Algorithm

An overloaded host probes Lp hosts and selects a host with the shortest queue as a destination 

host to transfer its job, providing the queue length of the probed host does not exceed a 

threshold, T. A short-cut which can be used is immediately to select a probed host with queue 

length zero.

D. Central Algorithm

One host acts as a scheduler, and receives updates of workload information from other hosts 

in the network every t seconds. Each host sends its current workload information to the 

scheduler if there is a significant change in its workload since the previous update. If the 

number of jobs at a host exceeds a threshold T, it sends a transfer request to the scheduler, 

who selects a host with the shortest queue length and informs the requesting host to transfer 

its job there.

3.1 Load Distribution Policies
A load distribution algorithm is comprised of 4 policies: an information policy, a location 

policy, a transfer policy and a job selection policy'. The policies perform functions which 

enable a load distribution algorithm to determine how best to distribute load across the 

network in a manner which improves overall performance based on available workload 

information. Figure 3-1 shows a diagram of the policies and how they relate to each other. In 

the rest of this section, how and when each of these policies are used is described, followed 

by a discussion on the extent to which they are applicable to this study, and the modifications 

which have to be made to apply them to a mobile computing environment. The information 

and location policies are discussed together as they are very closely related.

‘ Watts et al [Watt96] divided load sharing algorithms into five phases, i.e. load evaluation, profitability 
determination, work transfer vector calculation, task selection and task migration. Phase 1 and 2 are 
analogous to the transfer policy, while phase 3 and 4 are a combination o f the location and job selection 
policies. Phase 5 is the job transfer itself.

42



Figure 3-1
Components o f a load distribution algorithm and their relationship to each other
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3.1.1 Information and Location Policies
An information policy deals w ith the co llec tion  and d issem ination o f  system  state 

inform ation used by the location policy . Load distribution algorithm s vary from those w hich  

m ake no use o f  system  state information (e.g . Random algorithm  o f  [E age86a]) to those  

w hich  attempt to make use o f  global state infonnation  (e.g . [K rue94]).

The w orkload inform ation m ay be obtained by probing a subset o f  nodes, by co llec tin g  the 

inform ation periodically , or by having each node advertises its load inform ation w ithout 

exp lic it requests from other nodes. The w orkload m etric m ost frequently used is run queue 

length. If the inform ation is co llected  p eriodically , an optim al period must be determ ined. 

C ollectin g  the inform ation frequently w ill result in accurate and up-to-date inform ation, but is 

exp en sive: 0 ( n f  traffic overhead is incurred each tim e the inform ation is d issem inated , 

w here n is the number o f  nodes in the system . A less frequent period may result in out-of- 

date inform ation being used.

A concern when gathering w orkload inform ation is the effec t o f  com m unication  delays. If  w e  

are to assum e that com m unication  delays are not n eg lig ib le , as is the case w hen d ealing with



low bandwidth wireless links, the delays involved when gathering state information makes it 

difficult to guarantee that the information obtained is up to date. Kremien and Kramer 

[Krem92] stated that, "due to communication delays and state distribution, a complete and 

consistent view of the entire system, or even o f a subset, may never be available at a node o f 

the system". Mirchandaney et al [Mirc89] found that as delays increase, the state information 

obtained becomes so outdated that it is useless. In order to overcome this problem, a number 

of studies have incorporated techniques to deal with the possibility of out-of-date 

information, e.g. Stankovic [Stan84] and Ezzart et al [Ezza86] introduced a bias and a 

window period to deal with the probability of using outdated information when making a 

decision.

If use of outdated information is a concern on fixed networks which have high bandwidth 

available, it is even more so over low bandwidth wireless links. In a wireless network, a 

mobile support station (MSS), or a base station, is the only fixed host a mobile host can 

communicate with directly. When implementing load distribution in that environment, the 

mobile host may request a transfer of a job to the MSS, or it may request that the job be 

transferred to a certain host on the fixed network. If the first approach is used, the MSS may 

decide if it is able to accept the transfer request and executes the job itself, or it may transfer 

the job to another fixed host for execution”. If the second approach is used, mobile hosts 

need to have information about the current workload status of fixed hosts. Even though it is 

possible to disseminate workload information to mobile hosts, the communication latency 

involved increases the probability of the information being outdated, and might even render 

the information useless. Taking this factor into consideration, the approach adopted by this 

study is to send transfer requests to the MSS, and let the MSS decide where the job should be 

executed. Doing so also reduces the complexity of the load distribution algorithm on a 

mobile host.

Selecting a destination host to transfer a job is the task of the location policy. The selection 

is carried out either by choosing a host randomly, or by using workload information gathered 

by the information policy. For adaptive load distribution algorithms which make use of 

current system information state, there is a question of how much state information should be 

used in order to arrive at a decision. Attempting to acquire the most accurate and up-to-date 

information may lead to better decisions, but the overhead incurred may nullify any benefit of 

distributing load.

Eager et al [Eage86a] investigated the appropriate level of complexity for load sharing 

policies. They stated three concerns which arise from the complexity of adaptive algorithms.

In this study, it was assumed that the MSS has the capability to perform these functions.
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Their first concern is that the value of a policy depends critically on the overhead incurred, 

where excessive overhead may negate the benefits of load sharing. Secondly, some state 

information quantities such as the expected congestion at nodes in the near future, or the 

amount of processing required by a particular job, cannot be known precisely. Therefore, 

decisions reached based on this information may not be as good as expected and may even be 

relatively poor. The third concern is the potential for instability, where algorithms may react 

to small distinctions in system load due to the rapidly changing nature of the system state.

Eager et al tested three algorithms: Random, Threshold and Shortest. Threshold and 

Shortest randomly probe at most Lp~3 nodes to determine if a job transfer to the probed 

node causes the load at that node to be above some threshold, T, and if it does not, the job is 

transferred to that node.

All three algorithms use a threshold transfer policy which uses local state information, where 

probes are initiated when the local queue length exceeds T=2. If the number of jobs in a 

probed node is less than T, the new job is transferred to the probed node. No state 

information is exchanged in order to determine if a job should be considered for transfer, and 

transfer of jobs is given pre-emptive priority over processing of jobs.

The performance of the algorithms were compared to two bounding cases, no load sharing (K 

independent M/M/1 queues), and perfect load sharing at zero cost (M/M/K queue). The mean 

response time as a function of system load was used as a performance index.

The results obtained showed that Random yields substantial improvement over no load 

sharing and Threshold achieved further improvement for system loads^ greater than 0.5. The 

further performance improvement achieved by Shortest compared to Threshold is 

negligible. Based on these results. Eager et al concluded that relatively simple information 

concerning potential destination nodes is sufficient to obtain essentially all of the benefits 

available.

There are other more sophisticated load sharing algorithms utilising more complicated 

information and location policies, e.g. the algorithm proposed by Shin and Chang [Shin89] 

for distributed real-time systems, where jobs must be executed before the given deadlines. 

They gave two reasons in support of an argument which says that probing a subset of nodes to 

find a destination node is not suitable for real-time systems. First, probing introduces 

additional delays in completing a job transfer. Second, if only a few nodes are underloaded, 

the sender may not be able to locate a receiver by probing a subset of nodes, which will lead 

to overloaded nodes executing their jobs locally and missing the deadlines of some of their

 ̂ System load indicates the level o f workload at a host, and is defined as p=Xfi,  where A=job arrival rate 
and //=mean service time.
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jobs. In real-time systems, the probability of missing deadlines must be kept to a minimum 

since the outcome may be disastrous.

A brief description of the proposed algorithm is as follows. Each node maintains state 

information for a small set of nodes called a buddy set. The buddy sets overlap each other to 

distribute load evenly over the system. Three thresholds are used to determine the state of a 

node, and a node is classified as either underloaded, fully loaded or overloaded. Whenever a 

node changes state from underloaded to overloaded (and vice versa), it broadcasts its new 

state to other members of its buddy set, which eliminate a fully loaded node from, or add the 

underloaded node, accordingly, to its ordered list, named a preferred list. An overloaded 

node selects the first node in its preferred list and transfers a Job to that node without 

incurring any probing delay. The preferred list is permuted so that a node is the most 

preferred node of one and only one other node in a corresponding buddy set. The preferred 

lists of nodes in the same buddy set are different from each other to avoid flooding, and the 

order of preference may change over time.

The algorithm proposed by Shin and Chang is rather more complex than that of Eager's which 

simply probes Lp nodes. Although Eager et al argued that simple load sharing algorithms are 

sufficient to achieve good performance, it is difficult to say for certain what level of 

complexity is appropriate. The system and environment for which the algorithm is designed 

are determinant factors. While a simple algorithm may be sufficient in some cases, for the 

real-time system studied by Shin and Chang, a more complicated algorithm proved to be 

useful in order to arrive at better decisions.

In this thesis, we are not proposing new information and location policies for use on the fixed 

network. Assuming that load sharing is already implemented on the fixed network, whatever 

policies already in place may be used. If they are not already implemented, the policies must 

be chosen so that they fulfil the requirements of the system. There are, literally, hundreds of 

load sharing algorithms proposed in literature which were designed according to a set of 

requirements and assumptions. It is quite impossible to choose an information/location policy 

and say that this is the best policy that should be implemented as its suitability would depend 

on the type of tasks performed by the system, and the constraints under which it operates. 

The policies may vary according to the system, and that can be made transparent to the 

mobile hosts. That said, even the simplest of policies are likely to give significant benefits 

and operate well under a wide variety of condition if no further information about the job mix 

is available. Moreover, since it is the MSS which decides on a suitable destination host on 

which to execute a job, mobile hosts need not concern themselves with the policies used on 

the fixed network. An advantage of taking this approach is half of the burden is shifted onto
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the fixed network, thus reducing the complexity of the load sharing algorithm on the mobile 

hosts.

3.1.2 Transfer Policy

A transfer policy determines when a job should be transferred in order to improve 

performance. The decision is usually based on the number of jobs in the run queue. Once the 

number of jobs exceeds a pre-defined threshold, the job selection policy is triggered. 

Previous studies on transfer policies established that the threshold value should be adjusted 

according to current system load to avoid performance from degrading at high system loads 

[Koya93][Zhan95]. At high system load, it is very unlikely that hosts would have spare 

capacity to execute jobs for another host. Under these circumstances, load distribution might 

cause performance to degrade if it continues to attempt to transfer jobs, wasting resources on 

fruitless transfer attempts. [Eage86a], [Koya93] and [Zhan95] established that a low threshold 

is appropriate at low loads, and the threshold should be increased at high loads.

As load sharing in this study is centred on the premise of making use of available spare 

capacity on the fixed network, system load is expected to play a prominent role in 

determining how many jobs can be transferred to the fixed hosts. Under heavy load, it is 

unlikely that hosts will be able to meet the requests from mobile hosts and it would be wise 

for load sharing to be disabled, not only to avoid performance degradation, but also to prevent 

mobile hosts from wasting battery power on fruitless transfer attempts.

In this study, since mobile hosts do not retain information regarding the current load at the 

fixed network and the transfer policy does not use a threshold policy, a different approach is 

required to prevent the load sharing algorithm from causing performance degradation at high 

system load. The method by which this is accomplished is discussed in Chapter 6 which 

addresses the issue of stability.

Another important consideration when designing a transfer policy is the cost incurred by the 

policy. Eager et al [Eage86a] represented the cost of job transfer as a processor cost only and 

did not consider the communication network cost. They assumed that the average job transfer 

cost was 0.10S,yvhQTQ 5=job processing cost, and claimed that transfer cost higher than O.JOS 

was unlikely because that indicates jobs with very low processing requirement are being 

transferred. They expected that any practical implementation of load distribution would 

select jobs with a relatively high ratio of processing cost to transfer cost. An analysis of the 

average response time vs. system load for four average transfer costs showed that 

performance was insensitive to transfer cost below 0.05S, and degrades rapidly as the cost 

exceeds 0.25S. Eager et al stated that the average transfer cost may be used to select a value 

for the transfer policy threshold, where low thresholds are appropriate for low transfer costs.

47



while high costs require higher thresholds.

When designing the load sharing algorithm for this study, the transfer costs includes both the 

processor cost and communication network cost. Considering that bandwidth is a scarce 

resource in wireless networks, it would be unwise to ignore the communication costs. The 

cost incurred is explained in Chapter 4,

3.1.3 Job Selection Policy

The task of a job selection policy, when triggered by the transfer policy, is to select a suitable 

job for transfer, A number of studies have paid little attention to how a job is selected for 

transfer and, often, it is assumed that jobs are homogeneous, and a newly arrived job is 

selected for transfer if the local queue length exceeds a specified threshold, Wang et al 

[Wang93] claimed that these are not practical assumptions as jobs have different 

characteristics, which should be considered when deciding if a job is suitable for transfer. It 

is, therefore, inadequate simply to choose a newly arrived job for remote execution.

In addition to local queue length, Zhou [Zhou88] considered job execution time when 

deciding if a job should be transferred. He introduced a threshold, Tcpu , which is the job 

execution time threshold. If the local queue length exceeds T and the job execution time is 

more than Tcpu, the job is transferred if a suitable destination host can be found. He stated 

that although job execution time is difficult to predict, it is possible to classify jobs into two 

categories: big jobs, which are worth considering for load balancing; and small jobs, which 

should not be considered. Trace data collected for the study showed that it was possible to 

classify jobs simply by looking at job names.

Experimental results showed that performance is relatively insensitive to the value of Tcpu- 

The average response time of Tcpu=i-0 second gave similar performance to Tcpu=0.5 or 

Tcpu=2.0 seconds, confirming Zhou's suspicion that only an approximate separation between 

large and small jobs is necessary to achieve good performance,

Zhou also observed that not all jobs are suitable for transfer, and that some jobs are immobile, 

i,e, they must be executed locally. Examples of such jobs are those which perform local 

services and/or require local resources, such as system daemons, and mail and message 

handling programs. He introduced an Immobility factor, which is the percentage of eligible 

jobs that have to be executed locally, and varied the value to study the effect of immobile 

jobs. The results obtained indicate that effective load sharing is still possible even if a 

significant proportion of jobs are immobile. Results showed that out of 50-70% eligible jobs, 

only 10-20% were actually transferred, and the small amount still brought performance 

benefits.
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A later study by Svensson [Sven90] proposed a filter to be incorporated in load sharing 

algorithms to detect short-lived jobs and pass only long-lived jobs to the load sharing 

algorithm. The filter factor is 0 < F < 1.0, where all jobs are passed to the load sharing 

algorithm when F = 0 and the algorithm is disabled when F = 1.0. A filter factor of 0.3 

means only 70% jobs are passed to the load sharing algorithm.

Three filters were proposed: History filter based its decision on the average CPU time 

required to execute a job; Optimal filter (the upper bound) assumes a priori knowledge of the 

CPU time required by a job; and Random filter (the lower bound) selects jobs to be passed to 

the load sharing algorithm randomly. The load sharing algorithms used to test the filter are 

Shortest and Central algorithms.

The load level, load index and response ratio were used as performance metrics. The load 

le^el is the average CPU utilisation of all workstations, while the load index indicates the 

current workload at a workstation and is based on resource queue length. The response ratio 

is a function of response time, total CPU time taken to execute a job, mean disk access time, 

number of disk operations made by a job and total jobs.

Simulation results showed that the performance of Shortest with History was best when 

0.8 and degraded for larger values, implying that effective load sharing can be achieved by 

transferring a small portion of jobs, if the right jobs were chosen. The RR when F=0.95 was 

found to be much the same as when F=0. Svensson also found that minimum system 

overhead should be spent on short-lived jobs, and the best strategy was to execute them 

locally.

There was a small difference between the performance of History and Optimal. Their 

performances were almost identical for moderate to high loads, while at high loads. Optimal 

outperforms History because the mistakes committed by History carry a higher penalty at 

high loads. The RR when F=0.9S was much the same as when F=0 for Optimal. 

Experiments with Central showed similar results to those with Shortest.

To ascertain the benefit of having a filter, Shortest was run without any filter and results 

showed that Shortest without a filter degrades rapidly with increasing job transfer cost due 

to the transfer of short jobs. An added advantage of using a filter was reduced traffic on the 

communication links. Using Shortest, the amount of traffic reduction was proportional to 

the value of F, where traffic was reduced from 90% to 20% when the filter value increased 

from 0.2 to 0.9. The traffic reduction with Central was lower because update messages were 

sent to a central machine.

The filter approach proposed by Svensson concurs with [Eage86a] which stated that a 

practical implementation of load sharing should attempt to select jobs with a relatively high
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ratio of processing costs to transfer cost. It is also supported by Krueger and Livny [Krue88] 

who found that it is long jobs that benefit most from response time improvement.

A study by Koyama et al [Koya93] briefly examined three job selection policies: selecting a 

job randomly, selecting a job with the lowest priority and selecting a job with the smallest 

size. As their simulation results showed that the smallest size policy yielded the best 

performance, they expected that in a practical load balancing implementation, job size will be 

an important factor for selecting a job to be migrated.

A later study by Wang et al [Wang93] addressed the concern of selecting suitable jobs for 

remote execution by proposing a scheduler which learns the behaviour of a job and 

determines whether it is suitable for transfer. They stated three advantages of the proposed 

scheduler:

• A job is selected for transfer based on the characteristics of the specific job, in addition to 

the current network conditions;

• Knowledge of job characteristics is accurate because it is acquired through continuous 

observation;

• Whenever the system configuration or workload changes, the scheduler relearns and 

adapts itself automatically.

Jobs are classified as either CPU-bound, local I/O-intensive or memory intensive. Each job is 

associated with a weight, ranging between -100 and 100. Initially, the scheduler transfers 

jobs randomly. When the result of a transferred job is returned, its execution time is 

compared to the expected execution time, which is an average of recent execution times of 

the same type of job executed on the local machine. If the execution time is longer than 

expected, transferring the job is considered an incorrect decision and the corresponding 

weight is decreased; otherwise it is increased. If the system configuration changes, the 

corresponding weights are adjusted, and the scheduler relearns without human intervention.

The job selection policy was incorporated into StealthGS, which is a component of the 

Stealth Distributed Scheduler [Krue91]. Three factors were considered in making a 

transfer decision :

• the difference between local and remote CPU queue length,

• the difference between local and remote available memory sizes,

• the remote processor type.

Results of experiments with CPU-bound jobs showed that when a local node had more jobs 

than a remote node, the weights corresponding to these conditions rose to 100 after 40 

executions. As a result, the policy almost certainly transferred the job. Short jobs were
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considered suitable for transfer only when a local node had at least two more jobs than a 

remote node. If a local node had at least one job less than a remote job, the communication 

overhead of transferring a short job would negate its benefit. The selection policy learnt the 

behaviour of a job within 20 commands.

For local I/O-intensive jobs, the weights dropped below zero in all situations regardless of the 

local CPU queue length, and this type of job was never considered suitable for transfer. 

Memory-intensive jobs still benefit from remote execution even if a remote node contained 

one more job than a local node. In the case where both nodes contained the same number of 

jobs, but differed in the amount of available memory, the policy chose to transfer a job only 

when the remote machine had more available memory than the local machine. The results 

showed that once the policy learns a job is suitable for remote execution, it chooses to 

transfer the job most of the time.

Wang et al compared the performance of their intelligent job selection policy to the 

Threshold policy with T=2. Table 3-1 compares the performance of the two algorithms. For 

both CPU-bound and memory-intensive jobs, the intelligent job selection policy 

outperformed Threshold. The third performance comparison involved a mixed-job type. 

Results showed that Threshold caused performance to degrade because such jobs were not 

suitable for transfer. The job selection policy learnt not to transfer the job and, eventually, 

the average execution time dropped below local execution time. Finally, Wang et al 

examined the adaptability of the policy and found that it adapted itself after about 50 

commands, leading them to conclude that it was capable of identifying changes and adjusting 

itself.

Table 3-1
Table summarising the average execution time o f Threshold and intelligent job selection

Job type
Average job execution time 

(as a fraction of average local execution time)

Threshold Intelligent job selection 
policy

CPU-bound 0.95 0.60
Memory intensive 0.90 <0.40

An earlier a study by Hac [Hac89] proposed an algorithm which determines if it is better to 

move jobs which performs remote I/O to the remote machine, or to move the files it is 

accessing to the local machine. She found that for small files, moving the files resulted in a 

performance which is as good as transferring the job; when the files are large, transferring 

jobs resulted in better performance.
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In summary, the studies above emphasised the importance of selecting suitable jobs for 

remote executions. It is not practical to simply transfer a newly arrived job as jobs have 

different characteristics and requirements. The following factors must be considered when 

selecting a job:

• Job execution time: short jobs should not be transferred as the overhead of transferring 

them outweighs any benefit which might be obtained. [Zhou88] established that only an 

approximate classification is required between big and small jobs.

• Job size: [Koya93] found that its policy of selecting the smallest size job yields the best 

performance, which is not surprising as small size jobs incur low communication costs.

• Available memory: a selected job should not exceed the available memory at the remote 

host. In addition, a memory-intensive job benefits from being transferred to a host with 

larger memory rather than to a host which is less loaded.

• I/O: jobs which perform a great deal of local I/O should not be selected for remote 

executions, and neither should interactive jobs. For jobs which perform remote I/O, the 

decision of whether the job or the files should be transferred, depend on the size of the 

files accessed by the job.

Interestingly, [Zhou88] and [Sven90] showed that only a small proportion of jobs, between 

10-20%, have to be transferred in order to improve system performance, so long as the right 

jobs are selected.

As not all jobs are suitable for transfer, we classify jobs into migratable and non-migratable 

jobs. When a new job arrives, the transfer policy determine if the job is migratable or non- 

migratable. If it is migratable, it triggers the job selection policy which determines if the job 

should be transferred, or if it should be executed locally. The objective of the job selection 

policy is not to transfer as many jobs as possible, but to select suitable jobs so that power 

consumption is reduced. The job selection policy makes its decision based on job execution 

time and job size. We are unable to take available memory into consideration because that 

information is not available from the trace data used in this study (the trace data is discussed 

in Chapter 4). Even though the trace data provides information about the average amount of 

I/O performed by a job, it is not known if the operations were carried out on local or remote 

machines. Neither were there any information about the files accessed. Due to this lack of 

information, we were unable to examine the effect of remote I/O operations in wireless 

networks. The way in which job selection is carried out is further discussed in the next 

chapter.
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3.2 Effect of Communication Delays on Load Distribution
A number of previous studies have assumed negligible communication delays, e.g. [Wang85], 

[Eage86a] and [Shin89]. On the other hand, there are several studies which considered 

communication delays as an important factor influencing the performance of load 

distribution. Since jobs are transferred to a less loaded host in expectation of improving 

response time, communication delays may have an adverse effect on performance. Stankovic 

[Stan84] and Hsu and Liu [Hsu86] found that even though response time does not increase 

linearly as communication delay increases, high delays do lead to increased response time. 

When studying the effect of communication delays on the performance of load sharing, 

Mirchandaney et al [Mirc89] assumed that the relative size of probes and jobs were different. 

If the size of probes was significantly smaller than the job size, the delays incurred by probes 

was assumed to be negligible. Mirchandaney et al established that, at low delays, 

performance improvement was substantial and was greater than that at higher loads. All three 

studies agreed that at high delays, the best strategy is to disable load sharing.

Given that load sharing now has to operate over low bandwidth wireless links, 

communication delay is a factor which cannot be ignored. In fact, high delay is a factor 

which may impede load sharing. In the load sharing algorithm we are proposing, the 

algorithm takes into account the available bandwidth and calculates the amount of delay 

which may be involved to perform remote execution. If the delays involved would cause 

worse response time than if the job was to be executed locally, the job is considered not 

suitable for transfer, and is executed locally.

3.3 Stability and Scalability
Stability is an important issue to address to prevent load distribution causing performance 

degradation under unfavourable conditions. Factors which cause instability and the measures 

taken to avoid instability differ according to the environment for which an algorithm is 

designed. Stankovic [Stan85] defined stability as reasonable behaviour of an algorithm 

within a bounded environment, where a bounded input will produce a bounded output, e.g. 

response time must have a finite bound which may be a non-linear function. Choosing the 

function is a subjective matter and when one has been chosen, it might be difficult to prove 

that the algorithm will always produce a response time lower than that given by the function. 

What constitutes reasonable behaviour is determined by the environment in which the 

algorithm operates, and what the designer of the algorithm perceives as reasonable behaviour. 

He stated that it is very difficult to define what is proper under all conditions - to ensure that a 

distributed algorithm always achieves the defined stability characteristics; and to evaluate or
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identify all possible functional dependencies that exist. A stable algorithm should be robust,

i.e. it should be able to handle failures.

Kremien and Kramer [Krem92] claimed that while bounded input produces a bounded 

output'" condition is necessary for an algorithm to be stable, it is not sufficient. In addition, 

an algorithm should make local decisions and minimise incorrect decisions. They introduced 

hit-ratio and the percentage of remote execution in the system as measures of stability, where 

hit-ratio is the ratio of remote executions concluded successfully. A high hit-ratio indicates 

that an algorithm is successful in making correct transfer decisions, thus avoiding worthless 

information exchange and possible fruitless job movements. In order to be stable, remote 

executions should be bounded and restricted to a small percentage of system activities.

Kremien and Kramer considered algorithm stability as a pre-condition to scalability, and is an 

indication of the ability of the algorithm to avoid poor allocation decisions. An algorithm is 

scalable if it is independent of the system size and, in order to be independent, it should be 

symmetrically distributed, maintaining only a partial view of the system at each node, and it 

must be capable of making the most of partial information. A stable algorithm not only 

avoids a single point of failure, but is also fault-tolerant.

Stankovic illustrated how the stability of scheduling algorithms is a subjective issue using 

two algorithms, stochastic learning automata (S L A ) and a bidding algorithm for jobs with 

deadlines. Using S L A , a host maintains the state of at most M  underloaded host at a time. 

For stability purposes, each host has a priority sequence of hosts for which it observes if the 

hosts are underloaded, where the sequence is varied between hosts using a cyclic chain. By 

doing so, hosts will react differently even if they recognise the same network state. A 

destination host is selected based on a probabilistic vector which further reduces the chance 

of more than one host selecting the same destination host.

The bidding algorithm was designed for a real-time distributed systems with jobs having 

explicit deadlines. If a local scheduler cannot guarantee a job can be executed before its 

deadline locally, a bid is sent to other hosts. A host which receives the bid replies to the bid 

only if it has enough surplus (the surplus is the resource required to execute the job, e.g. CPU 

cycle, memory etc.) to guarantee the job. The stability issue here concerns the estimation of 

surplus, which is calculated using a technique called Length o f the Memory Accumulation 

Period (LMAP), also known as the moving average forecasting technique. It is based on the 

assumption that the surplus'in the future is similar to that in the recent past, which is a 

window of length t seconds. The performance metric used was the percentage of jobs 

guaranteed in the system and, since the algorithm deals with jobs with deadlines, a good 

estimate of the surplus is important because is affects how many jobs can be guaranteed. An
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incorrect estimate will cause either jobs not being executed even though there is enough 

surplus, or jobs missing deadlines even though they have been guaranteed due to 

overestimates of surplus.

The examples given by Stankovic demonstrate how stable behaviour depends on the system 

for which an algorithm is designed. In the context of our study, the load sharing algorithm is 

considered stable if it does not cause power consumption to be worse than in a no load 

sharing case. This is especially important when there is a high number mobile users 

competing for a fixed host's spare capacity. The issue is elaborated in Chapter 6.

3.4 Conclusion
In this chapter, we have discussed aspects of load sharing relevant to this study. We first 

discussed how load sharing has been used in distributed systems and then proceed to explain 

how relevant the approaches taken by previous studies are to the problem we wish to resolve. 

Although to some extent the approaches may be adopted, modification is inevitable as load 

sharing now operates in a different environment, and under different constraints.

When designing the load sharing algorithm, the objective is to extend the period the CPU 

operates in doze mode and select jobs for transfer to reduce power consumption. A good load 

sharing algorithm is not necessarily one which moves a high number of jobs, but one which 

chooses the right jobs for transfer. In fact, previous studies have shown that less than 20% 

job movement is required in order to achieve performance improvement.

In Chapter 2, the limitations of wireless networks were discussed. Due to these limitations, 

there are additional factors which must be considered when performing load sharing in a 

wireless network environment and the assumptions made are inevitably different. Factors 

which are non-issues in fixed distributed networks now must be considered. One of the 

factors is available bandwidth.

When performing load sharing on fixed networks, bandwidth is not an issue as high 

bandwidth is available. This, however, is not the case with wireless networks. While on 

fixed network an assumption of negligible communication delays may be reasonable, this is 

certainly not the case in wireless networks which are associated with a low bandwidth, high 

latency communication medium. Consequently, when making transfer decisions, the 

available bandwidth and the communication delays associated with transferring a job must be 

taken into account to avoid degradation of job response time. At the beginning of this 

chapter, the goal of load sharing is stated as to distribute workload evenly across the system 

so that resources are better utilised. Doing so improves overall system performance, which is 

often measured in terms of improved response time, compared to the case when no load
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sharing is performed. While the main objective of this study is to conserve power, load 

sharing is expected to give mobile users access to faster machines; thus transferring jobs is 

also expected to improve response time.

In section 3.3, the importance of addressing the issue of stability was discussed. Depending 

on the design of the algorithm, different factors have been identified to avoid unstable 

behaviour of a load sharing algorithm which may lead to performance degradation. The 

discussion has also demonstrated that the definition of stable behaviour depends on the 

environment in which an algorithm operates. In the context of this study, the load sharing 

algorithm is considered stable if, under unfavourable conditions, it does not cause power 

consumption to be worse than when there is no load sharing. Unfavourable conditions, in this 

case, are when there is a high number of users competing for the spare capacity on the fixed 

network. Under these circumstances, it is crucial that mobile hosts do not continue to send 

transfer requests when they are unlikely to be accepted, as doing so would only waste 

precious battery power. A method of disabling the algorithm is required to avoid instability.

Once the issue of stability has been addressed, we proceed to determine if the algorithm is 

scalable. It is probably not practical to expect only one fixed host to cater for job transfer 

requests, especially when there are a high number of users wishing to transfer jobs, as one 

fixed host might not be able to cope with the demand. When examining the scalability of the 

load sharing algorithm, the benefit of delegating transfer requests to other fixed hosts, and 

how well this approach scales, were investigated.

Another issue examined in this study is combining different power management strategies. 

Various power management strategies were discussed in Chapter 2. In a real implementation, 

it is desirable that various strategies be combined in order to provide maximum extension of 

battery lifetime. In one of the experiments conducted, the benefit of combining load sharing 

with another power management strategy was examined.

In the next chapter, the way in which the load sharing algorithm proposed in this study is 

designed to take into consideration the characteristics of the mobile computing environment 

is discussed.
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4. Load Sharing in Wireless Networks
The load sharing algorithm was designed with the objective of extending the duration the 

CPU operates in doze mode by making use of spare capacity on the fixed network to execute 

jobs. In Chapter 2, the constraints associated with wireless networks were discussed. The 

way in which the constraints were considered when designing the load sharing algorithm is 

discussed in this chapter.

The remainder of this chapter is structured as follows. Firstly, the modifications on load 

sharing policies for a mobile computing environment discussed in the previous chapter are 

briefly revisited. Additional factors which must be considered and parameters influencing 

remote execution decisions are also discussed. Next, the approach taken in designing the load 

sharing algorithm is described, and the cost of remote execution and the trace data used in the 

simulations are explained. This is followed by a discussion on the simulation environment, 

experimental design, and the performance metrics and method used for data analysis. This 

chapter is concluded with a summary and the hypothesis for this study.

4.1 An Approach to Load Sharing in Wireless Networks
This section discusses how the assumptions made regarding load sharing in a mobile 

computing environment differ from those in fixed distributed networks and, consequently, the 

extent to which previous work in this area is likely to have a bearing on the problem we seek 

to address. The differences are now explained, starting with the load sharing policies.

In Chapter 3, the extent to which previous studies on load sharing are relevant to this study 

and the modifications necessary were discussed. The load sharing policies are now briefly 

revisited.

1, Information and location policies-. We have argued that the policies chosen for a 

distributed system depends on the tasks it performs and the requirements of the system. 

While simple policies may suffice for one system, more sophisticated policies may be 

necessary in another system. Hence, for the purpose of this study, new information and 

location policies are not proposed as existing policies currently implemented on the 

system can be used. We chose not to disseminate workload information to mobile hosts 

because, even if the information are disseminated, mobile hosts are still required to send a 

transfer request to the fixed host in order to ascertain that the fixed host is willing to 

execute a job on their behalf. Omitting this phase might cause flooding if several mobile 

hosts simultaneously attempt to transfer their jobs to an underloaded fixed host. Instead of 

disseminating the information, transfer requests are sent to the MSS which invokes the
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location policy to find a suitable destination host to execute a job on a mobile host's 

behalf, or it may execute the job itself. In this study, it is assumed that the MSS is capable 

of performing this function. In cases where the MSS does not offer this service, the 

request can be forwarded to a fixed host which offers the service. By taking this approach, 

half of the computation and communications burden of load sharing is transferred onto the 

fixed network. This is based on the suggestion of Badrinath et al [Badr93], [Badr96] that 

when designing an algorithm for mobile computing networks, the costs of computation 

and communications should be borne by the fixed network as much as possible. The core 

objective of the algorithm is achieved through distributed executions among fixed hosts 

and a mobile host only performs functions necessary for the overall functionality.

2. Transfer volicv: Unlike previous studies, where the transfer policy triggers the job 

selection policy when the number of jobs waiting in the queue exceeds a pre-defined 

threshold, the policy does so on the arrival of a new job classified as migratable. The 

different approach is due to the fact that previous load sharing algorithms are trying to 

distribute load in order to improve performance while in this case, the goal is to conserve 

battery power. The classification of jobs is explained in section 4.3.

3. Job Selection Policy: The policy selects a job for transfer with the objective of extending 

the period the CPU remains in doze mode. Jobs are selected in such a way that power 

consumption of transferring jobs is less than that when the job is executed locally. The 

factors considered when selecting a job for transfer are execution time and job size. An 

additional factor considered is communication delays: jobs are only transferred if they do 

not increase job response time.

In addition to the policies, the cost assumption in this study is also different from previous 

studies, which usually assumed the cost of transferring a job as a function of probe cost, or 

time taken to transfer the job, or as a fraction of job service time, or a function of 

communication delays. Since the purpose of our load sharing algorithm is to minimise power 

consumption, the cost is calculated in terms of power consumed by transmitting/receiving and 

by the CPU. Even though communication delays are taken into consideration to avoid 

increased job response time, this is not factored into the cost. The cost of load sharing is 

explained in section 4.5.

Another assumption which is essentially different from traditional load sharing regards 

communication delays. Due to the limited bandwidth inherent in wireless networks, it is no 

longer valid to assume negligible communication delays, and probes can no longer be 

assumed to take zero time. In fact, the limited bandwidth and communication latency may 

become factors which impede load sharing in wireless networks.
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Now that the differences between load sharing in fixed networks and wireless networks have 

been explained, the next section describes the proposed load sharing algorithm.

4.2 The Load Sharing Algorithm
When designing the load sharing algorithm, we decided to keep it as simple as possible for 

two reasons. Firstly, previous studies have shown that simple load sharing algorithms are 

often adequate to achieve good performance. Secondly, and most importantly, the algorithm 

should not be computationally expensive as that would put a heavy demand on the CPU, thus 

contradicting our goal to extend the period the CPU remains in doze mode.

It is assumed that only newly arrived jobs may be considered for remote executions. Jobs are 

classified as either migratable or non-migratable. When a job arrives and is identified as a 

migratable job, the load sharing algorithm determines the trade off between local and remote 

execution. Since the main goal of remote executions is to conserve battery power on mobile 

hosts, a job is only transferred if the amount of power consumed transferring it is less than the 

amount of power consumed by the CPU, if it is to be executed locally. If that is the case, the 

mobile host sends a transfer request to the MSS. Depending on its current workload, the 

fixed host sends a reply accepting or rejecting the request.

Three algorithms were used in the simulations. The algorithms perform the same 

calculations, but differ in the way they estimate the CPU requirement of a job. The base 

algorithm is as follows:

At a mobile host.

1 For each new job, determine if it is migratable.
1.1 If it is migratable, go to step 2.
1.2 If it is non-migratable, send job to local queue. Go to step 5.

2 Determine if a job transfer is feasible.
2.1 Calculate the amount of power consumed to execute the job locally.
2.2 Calculate the amount of power consumed for remote execution.
2.3 Calculate the response time of local execution vs. remote execution.

3 Send a transfer request iff:
3.1 The amount of power consumed transferring the job is less than the amount 

consumed to execute it locally, and
3.2 The response time of remote execution will not exceed that of local 

execution.
4 Wait for a reply:

4.1 If the request if accepted, transfer the job.
4.2 If the request is rejected, schedule the job for local execution.

5 Algorithm terminates.
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Step 1 is the transfer policy and step 2 is the job selection policy. In step 2.2, the amount of 

power consumed for remote execution is the amount of power consumed transmitting and 

receiving messages. The messages exchanged between the mobile and the MSS are:

• a transfer request sent by the mobile host to the MSS,

• a reply from the fixed host accepting or rejecting the request,

• the job transfer itself,

• execution result returned by the fixed host.

The transfer request sent in step 3 specifies a maximum period of time, max-wait-time, it is 

willing to wait for the fixed host to execute the job on its behalf. The maximum waiting time 

is based on the time required to execute the job locally. Condition 3.2 is imposed to ensure 

that job response time does not increase due to remote execution. The underlying assumption 

is that the mobile is aware of the processing capability of the fixed host and is able to predict 

how much faster the job will execute there, and specifies a value, reserve-time, which is used 

to reserve the CPU time required to execute the job at the fixed host.

At a fixed host

1 Upon receiving a transfer request, the fixed host checks its queue length and 

determines if it will be able to execute the job within the specified time, max-wait-time, based 

on the execution time of jobs it has waiting in its queue.

2 If it is possible to execute the job within the specified time:

2.1 Send a reply accepting the request.
2.2 Reserve the processor cycles required to execute the job. Go to step 4.

3 If it is not possible to execute the job within the specified time, send a reply rejecting

the request.

4 Algorithm terminates.

Transfer requests are dealt with in a first-come-first-served manner. The reservation in step

2.2 is to guarantee job response time and also to prevent the fixed host from accepting too 

many transfer requests. The reservation is carried out as follows: if J  + /? < max-wait-time, 

reserve processor cycles to execute the job,

N  M

where J -  ^  J, and /? = y ^ R , ,
i=I j=l

Ji = CPU time required to execute job i in queue,
A^= total jobs in queue,
Rj = CPU time reserved to execute job j  for an accepted transfer request,
M=  number of transfer requests accepted by the fixed host.
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After a request is accepted, R is updated,

R = R + reserve-time.

It is assumed that the fixed host knows the CPU requirements of the jobs in its queue. In 

reality, this information might not be available, in which case an estimate must be used. As 

mentioned earlier, the algorithms (at a mobile host) differ in the way that they estimate the 

CPU time required to execute a job. How each algorithm estimates the CPU requirement is 

explained below.

Algorithm 1: Optimal Load Sharing (LSI

This algorithm assumes a priori knowledge of CPU requirements, where the CPU time 

required to execute a job used by this algorithm is obtained from trace data. It is used in 

calculation 2, and as max-wait-time. The calculation performed by this algorithm always 

gives accurate estimates and it is, therefore, used as an upper bound algorithm.

In reality, it is highly unlikely that this information will be available in advance, hence 

algorithm 2 and algorithm 3 make no assumption of this a priori knowledge and the CPU time 

used in calculation 2 is an average value.

Algorithm 2; History

The simulation is first run in a no load sharing mode (NLS) and the average CPU time taken 

to execute each job is calculated. For example, the CPU time taken for each execution of job 

A is totalled and the average value is calculated at the end of the simulation. Later, when the 

job is run in load sharing mode using History, the average value calculated in the previous 

simulation run is used in calculation 2. This value is also used as max-wait-time.

Since the same trace data is used when running simulations in NLS and History mode, the 

user's workload is exactly the same. In reality, it is highly unlikely that the same workload 

will be reproduced. Therefore, this algorithm provides an upper bound on performance for 

the use of history information.

Algorithm 3: Adaptive Load Sharing (ALS)

The adaptive algorithm learns and adapts its decisions based on previous executions of jobs. 

It works as follows. When job A is executed for the first time, its CPU requirement is 

unknown and, therefore, no assumption can be made regarding the feasibility of transferring 

it. It is executed locally and the algorithm keeps a record of the CPU time taken to execute 

the job.

The next time job A is executed, the CPU time from the previous execution is used in 

calculation 2 to estimate if remote execution is beneficial. Each time job A is executed, the
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CPU time taken to execute the job is used to calculate a new average value which will be 

used in future calculations. Hence, when job A is executed for the n-th time, where «>7, the 

average CPU time calculated from the previous {n-1) executions is used as an estimate. Like 

History, this average value is also used as the value of max-wait-time.

This algorithm is expected to be the most practical of the three algorithms since it makes no 

assumption of a priori knowledge and is able to adapt its behaviour according to a user's 

working pattern.

The approach taken by History and ALS is similar to the filter approach proposed by 

Svensson [Sven90] which selects long-lived jobs for remote execution.

4.3 Trace Data
The discussion in Chapter 2 demonstrated the diversity of mobile applications. The type of 

workload generated by an application is likely to differ depending on the application, e.g. the 

workload generated by emergency services which mainly involves downloading information 

from a central database is probably different from the workload generated by the spreadsheet 

application used in the W ireless Coyote experiment. We would like the workload generated 

for the simulations to represent the workload generated by mobile applications as closely as 

possible. However, due to the diversity of mobile applications, it is impossible to guarantee 

that the workload generated is representative of all types of possible applications.

There are two options which could be taken to generate the workload: the use of a stochastic 

model or the use of trace data. A stochastic model was not selected because it does not 

capture user's behaviour accurately and, in particular, tends to misrepresents the bursty nature 

of users' activities. On the other hand, the major question with trace data collected from 

conventional network is: how well does the trace data represent the type of workload 

generated by mobile users? It is not possible to say for certain what type of workload is 

generated by mobile applications because, at present, people are not yet using mobile 

applications on a regular basis. Consequently, it is not possible to gauge the type of workload 

generated by mobile applications. However, it is plausible to assume that users will expect a 

seamless environment. In addition to mobile-specific applications, users will expect to be 

able to use similar applications and tools they are currently using at the workplace. If a 

seamless environment is not provided, users will have to face the inconvenience of working 

in two different environments. Taking this into consideration, trace data collected from 

existing applications provides the approximation most rooted in reality, and requiring the 

least amount of supposition about factors which are currently unknowable.
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For this study, trace data for the experiments were collected from Sun workstations in the 

undergraduate labs at the Department of Computer Science, UCL, where process accounting 

was used to collect trace data for 24-hour periods. The trace data shows that the jobs 

executed consists of text processing, program compilation, email, web browsing etc.

The data was summarised to contain only the time period when the machines were being 

used. The time period during which no users were logged on were deleted, giving trace data 

for a period of 4 to 8 hours. [ZhouSS] identified that some jobs are immobile and, 

consequently, must be executed locally. In this study, each job type is classified as either 

migratable or non-migratable. Examples of migratable jobs are program compilation, 

simulations and program runs, while non-migratable jobs are interactive jobs, text formatting 

and email. Among information provided by the trace data are job name, job start and end 

time, the CPU time (in seconds) taken to execute a job and the average amount of I/O (bytes) 

performed by a job. The trace data does not provide information regarding job size (size of 

executable files). This information was obtained by using the Unix command Is -I and 

incorporated into the trace data.

4.4 Power Consumption
An AST Power Executive 325/SL NiMh battery provides (14.4 V * 2.4 A-hr) « 34.6 W-hr. 

Transmitting and receiving are assumed to consume 3.4W and 1.7W respectively [Imie96]. 

[Form94] lists power consumption of hardware components of a portable computer. A simple 

estimate of battery lifetime based on this information, is that a brand new battery lasts for 

about 3.4 hours, assuming that general power consumption (i.e. power consumption by the 

basic components such as the display, hard drive, keyboard etc.) is approximately 10.1 W.

Power consumed when transmitting = 3.4 • —-—  W- hr
3600

tr = time taken to transmit a message (sec)

Power consumed when receiving is calculated in a similar way.

Power consumed by the CPU is = P.n,/ • —-— W - h r
3600

PcFi! -  power consumed by the CPU
t„ = CPU time taken to execute a job on a mobile (sec)

Based on the information provided in Intel's Application Note [Inte94], the average active 

CPU power consumption (with Advanced Power Management) is assumed to be 4.59 Watts 

and idle power consumption (doze mode) is 1.24 Watts.
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4.5 Assumptions
As mentioned earlier, since the aim of the load sharing algorithm is to minimise power 

consumption, the cost of transferring jobs is calculated in terms of power consumed by local 

and remote executions. The parameters used in order to determine if a job transfer is feasible 

are;

• available bandwidth

• job size

• power consumed by the CPU to execute a job on the mobile host

• power consumed transmitting and receiving messages.

B = available bandwidth
R] = packet size o f request message
R2 =  packet size o f transfer reply
J  =  size job to be transferred
R3 = packet size o f the returned result
P, = power consumed transmitting packets
Pr =  power consumed receiving packets
Pcpu =  power consumed to execute a job on the mobile host

cost of sending transfer request = ^  Pt

cost of receiving a reply 

cost of transferring a job

= —  Pr
B

= cost of transmitting a job + 

cost of receiving result

= — P, + —  Pr
B B

cost of remote execution = cost of sending a request +

cost of receiving a reply + 

cost of transferring a job

J R,
- P ,  

\ B  ' B

cost of executing a job on a mobile host = CPU 3600

The job service time and job inter-arrival time of the mobile hosts were obtained from the 

trace data. Additional workload on fixed hosts was generated using an exponential
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distribution because, in reality, a fixed host may have its own jobs to execute. If so, it can 

only accept a Job transfer request if it has some spare capacity. By taking this approach, we 

create an environment in which a mobile host must compete for a fixed host’s resources. By 

doing so, we hope to reduce the chances of obtaining over-optimistic results.

In the next section, the simulation environment and the experiments are described.

4.6 The Simulation Environment
The simulation was written using Maisie [Shor95], a C-based simulation language which is 

designed specifically for simulating wireless networks. Maisie provides a discrete event 

simulation environment, where an event is signified by the arrival of a message. It introduces 

the concept of an entity, where an entity may be defined to represent a component involved in 

a simulation. The entities communicate with each other using buffered message passing. An 

entity is similar to an object in C++.

Maisie was chosen as a simulation tool for this study because the concept of an entity makes 

the representation of various components simple and the message passing facility makes 

managing communication between entities effortless; and its simplicity makes it very flexible 

to use. It has been used to simulate wireless networks in other studies, e.g. Bagrodia et al 

[Bagr95] and Short et al [Shor95]. The environment is assumed to consist of cells with a 

MSS in each cell. At the start of the simulation, mobile hosts are evenly distributed among 

the cells. The rest of this section discusses the entities and parameters for the simulation.

4.6.1 Entities

For the purpose of this study, entities were defined to represent mobile hosts, mobile support 

stations, fixed hosts and communication channels. The entities defined for the simulation and 

their interaction with each other are depicted in Figure 4-1. Below is a description of the 

functions performed by each entity.
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Figure 4-1
Entities and messages passed between them.
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MSS-Source Entity

This entity generates the additional workload on fixed hosts, where fixed hosts are assumed 

to have an exponential service time of p  and job arrival rate of X. It notifies the M SS  entity 

of new job arrivals by sending a message to it. There is one MSS-Source  for each MSS  

entity.

M SS  Entity

When it receives a message from M SS-Source  notifying it of a new job arrival, the jobs is 

scheduled for execution and the MSS  keeps track of the CPU requirement of jobs in its 

queue. The MSS  executes the algorithm described in section 4.2 when it receives a transfer 

request and sends a reply message accordingly. When a transferred job is received, it is 

scheduled for execution along with local jobs and the result is returned to the MH entity when 

its execution is completed.
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MSS-CPU  Entity

There is one M SS-CPU  entity for each M SS  entity. Each time a new job or a transferred job 

arrives at the M SS  entity, the job is sent to the MSS-CPU  entity for execution on a first- 

come-first-served basis. Once a job is executed, the MSS-CPU  entity sends a message to the 

MSS  entity informing it that the jobs has finished executing.

MH-Source Entity

This entity reads the trace data and generates new jobs for entity MH. There is one MH- 

Source  for each MH entity. The job inter-arrival time is calculated from the trace data based 

on job start time. If the algorithm is operating in NLS or LS mode, the CPU time for a job is 

obtained from the trace. If it is operating in History or ALS mode, a table lookup is carried 

out in order to determine the average CPU time for the job. Once this is done, a message is 

sent to the MH entity to inform it of the arrival of a new job.

MH Entity

Upon receiving the message from MH-Source notifying it of the arrival of a new job, the MH 

entity executes the load sharing algorithm described in section 4.2. It also calculates the 

remaining power on the mobile host periodically (every 60 seconds). The entity and, 

therefore, the simulation, terminates if the remaining power is less than the amount of power 

required by the basic components.

The entity outputs data which is used to calculate:

• battery lifetime,

• the percentage of transfer requests, rejected transfer requests and jobs transferred,

• the mean and standard deviation of job response time,

• the rnean and standard deviation of communication delays.

There is one output file for each MH entity.

MH-CPU Entity

This entity performs 2 functions:

• simulate the execution of jobs sent to it by the MH entity and informs the MH entity when 

the jobs finish executing,

• keep a record of the amount of time the CPU is active and idle.

The amount of time the CPU remains idle/active is sent to MH periodically (every 60 

seconds) and is used by the MH entity when calculating remaining power on the mobile host.
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Channel Entity

Channel is used to simulate communication delays. When MH sends a message to its MSS, 

the message is sent through Channel entity, where the communication delay is calculated 

based on the packet size and available bandwidth. The same procedure is followed when 

M SS  sends a message to MH. A reliable communication medium was assumed, and channel 

allocation was not simulated to simplify the simulation.

4.6.2 System  Parameters

The 9 system parameters, listed in Table 4-1, were varied to allow us to examine the 

effectiveness of load sharing under different operating conditions. In the experiments, we are 

interested in establishing:

• the influence of available bandwidth on load sharing,

• the effect of job transfers on response time,

• the effects of processor power of a mobile host on load sharing,

• the effectiveness of the adaptive algorithms compared to the optimal load sharing 

algorithm,

• the benefit of combining load sharing with another power management strategy, 

the required measures to ensure the stability of the load sharing algorithm, 

further benefits which may be obtained from delegating job transfers to other fixed hosts.

Table 4-1
Table listing parameters used to vary the simulation environment.

Param eter Specifies...
param.alg algorithm mode during a simulation
param.mss total number of MSS
param.mh total number of mobile hosts
param.bw available bandwidth
param.proc-speed processor speed of the mobile relative to the fixed host's
param.mss-load (additional) job arrival rate at a fixed host
par am. disk enable/disable disk spin-down strategy
param.probe,
param.fixed-hosts

enable/disable delegating transfer request; 
param.fixed-hosts is enabled when param.probe is 
enabled

Param.alg was used to vary the algorithm used in a simulation to either NLS, LS, History or 

ALS. The total number of users during a simulation was represented by param.mh. Each 

trace data represented one user and the initial experiments were run dissum\ngparam.mh=30. 

Later, when examining the stability of the algorithm, some of the traces were replicated to
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provide a total of 40 users. In order to achieve a reasonable density of users, param.mss was 

set to 7. Since there is an MSS in every cell, param.mss not only specifies the number of 

MSS in the environment, but also the number of cells.

Using param.bw, the available bandwidth was varied to 9.6, 20, 28, 56 and 100 kbps. Low 

available bandwidth was chosen because it was expected that it is a factor which may impede 

load sharing, and would like to test to what extent this limitation may hamper load sharing. 

The highest data rate provided by a GSM call is 9.6 kbps. High-speed circuit-switched data 

(HSCSD) addresses this constraint by specifying the use of multiple slots for a single call. 

Each GSM radio carrier can support up to 8 simultaneous calls, each call occupying a single 

time slot. HSCSD specification allows a call to be allocated up to 8 time-slots, thus providing 

as much bandwidth as 8 calls. As a result, data rates up to 76 kbps can be supported. A 

reliable communication link was assumed to exist between the mobile hosts and the MSS, and 

possible interference or packet loss were not simulated. No attempt was made to economise 

power consumption by the transceiver.

The next parameter is param.proc-speed. In the experiments, it was assumed that mobile 

hosts have lower processing capacity than fixed hosts. Mobile hosts with low processing 

capacity are expected to benefit more from load sharing as doing so gives them access to 

faster machines. A param.proc-speed of 1/n means that mobile hosts are n times slower than 

fixed hosts. If param.proc-speed=J/2, jobs which previously take t seconds to execute, now 

require 2t seconds to execute.

System load on the fixed network is represented by param.mss-load, where system load is 

defined as p=2,p, /f=mean service time and À=}ob arrival rate. Even though it is 

acknowledged that mobile hosts may encounter heterogeneous environments, we made a 

simplifying assumption that extra/external job arrival rates at fixed hosts is homogeneous. If 

a heterogeneous inter-arrival rate is assumed, it is possible that there are mobile hosts which 

may be served by fixed hosts with higher spare capacity compared to other mobile hosts. As 

a result, the percentage of jobs transferred and saving achieved may be influenced by the 

fixed hosts serving them. By making a homogeneous inter-arrival rate assumption, this 

possibility is eliminated and allows a fairer comparison of the results obtained among the 

mobile hosts.

As mentioned earlier, the additional load at fixed hosts are generated to create an 

environment where mobile hosts have to compete for spare capacity on the fixed network. 

Previous studies have shown that at low to moderate load (p<0.6), load sharing improves 

system performance, while at high load (p ^ .6 ), it is best to disable load sharing as it is 

difficult, if not impossible, to find a suitable destination host. Performing load sharing under
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high loads may lead to performance degradation as precious resources, which are better spent 

to execute jobs locally, are wasted on load sharing efforts. In initial experiments, system load 

was maintained at p=O.J to allow a reasonable amount of load sharing. Later, when the 

stability and scalability of load sharing was examined, fixed hosts were put under heavy load 

to examine the impact of system load on load sharing. However, instead of varying p  

between 0.Ï and 0.9, the system was put under heavy load by concentrating users in one cell 

to create a heavy demand for the fixed host's spare capacity. The reason for this approach is 

as follows. Putting the fixed host under heavy load by increasing p  means that the fixed host 

have little spare capacity. Under such condition, there really is no action which can 

ameliorate the situation, and previous studies have shown that the best course of action is to 

disable load sharing. We are more interested in investigating a situation where a fixed host 

has spare capacity, but is put under heavy load due to competition from a high number of 

users. Under these conditions, the load sharing algorithm should be able to react in an 

appropriate way.

The last two parameters are param.disk and param.probe. Param.disk is set to 1 when 

running simulations examining the benefit of combining load sharing with a disk spin-down 

strategy; otherwise, the value is set to 0. Param.probe is enabled by setting its value to 1 in 

order to establish the benefit of delegating transfer requests to other fixed hosts. Delegating 

transfer requests is disabled when param.probe=0. Param.fixed-hosts is enabled when 

param.probe=l and specifies the number of fixed hosts, in addition to the MSS, which offers 

its services to the mobile hosts.

Simulations were run until the battery was flat, which usually took between 2 to 2.5 

simulation hours in no load sharing mode and between 3 to 3.5 simulation hours in a load 

sharing mode.

4.6.3 Experimental D esign

An exponential distribution was used to determine the additional job inter-arrival time at 

fixed hosts and the srand(x) function was used to reset the random number generator to a 

random starting time. The same value x  was used for all experiments so that the same 

workload is reproduced at the fixed hosts for each experiment.

The experiments were carried out in five stages to investigate factors which influence the 

benefit of load sharing. In the first two stages, param.disk and param.probe were set to 0.

Stage 1 :

The first set of experiments were carried out in no load sharing (NLS) mode. The values of 

the parameters were as follows:
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Param eter Values
param.alg NLS
param.mss does not have any influence on the result as jobs are not 

transferred
param.mh 32
param.bw does not have any influence on the result as jobs are not 

transferred
param.proc-speed varied to 1, 1/2, 1/3, 1/4 and 1/5
param.mss-load does not have any influence on the result as jobs are not 

transferred

Stage 2:

Experiments were carried out in load sharing (LS) mode and the influence of available 

bandwidth, processing power and CPU utilisation were identified.

Experiment J:

Determine the effect of available bandwidth on load sharing.

Param eter Values
param.alg LS
param.mss 7
param.mh 32
param.bw varied to 9.6, 20, 28, 56 and 100 kbps
param.proc-speed 1/5
par am. mss-load 0.1

Experiment 2:

Determines the impact of processing power on load sharing.

Param eter Values
param.alg LS
param.mss 7
param.mh 32
param.bw 56 kbps
param.proc-speed varied to 1, 1/2, 1/3, 1/4 and 1/5
param.mss-load 0.1

Experiment 3:

Determines the influence of CPU utilisation on the gain from load sharing. Battery lifetime 

improvement the CPU utilisation of each trace was calculated and a graph was plotted to 

determine if there was any relationship between them.
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Experiment 4\

Examined the effectiveness of ALS and History. From this experiment onwards, the values of 

param.bw and param.proc-speed were fixed at 56 kbps and 1/5 respectively.

Param eter Values
param.alg History, ALS
par am. bw 56 kbps
param.proc-speed 1/5
param.mss 7
param.mh 32
param. mss-load 0.1

Stage 3:

Examined the benefit of combining load sharing with a disk spin down algorithm. 

Param.disk was set to 1 and the results were compared to load sharing without a disk spin- 

down strategy.

Stage 4:

Examines the stability and scalability of the load sharing algorithm.

Experiment 1\

Users were concentrated into one cell to create a heavy demand for the fixed host's spare 

capacity by setting param.mss to 1. Experiments were run using the LS algorithm and two 

modified load sharing algorithms (discussed in Chapter 6) which were designed to prevent 

instability.

Param eter Values
param.alg LS, Backoff, Slotted LS

param.bw 56 kbps
param.proc-speed 1/5
param.mss 1
param.mh varied between 1 and 40
param.mss-load 0.1

Experiment 2:

Examines the benefit of delegating transfer requests to other fixed hosts. The parameters 

were set to the same values as the previous experiments except param.probe which was set to 

1 and param.fixed-hosts which was varied to 2 and 3. Whenever the MSS is unable to accept 

a transfer request, it sends probes to other fixed hosts to delegate the requests.
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Stage 5:

The simulation results were verified by running an emulation of the load sharing algorithm on 

a wireless LAN. The emulation results were compared to simulation results run under a 

similar operating condition as the live environment. The parameter values of the simulation 

were as follows:

Param eter Values
param.alg LS
param.bw 2 Mbps
param.proc-speed 1/5
param.mss 1
param.mh 1
param.disk 1

4.6.4 Performance Metrics

Studies discussed in Chapter 3 have used performance metrics which were concerned with 

measuring performance of the load sharing algorithm as a result of transferring jobs to less 

loaded hosts in expectation of improved performance. The performance metrics were usually 

a function of the distribution of workload across the network. Performance was also 

measured in terms of improved response time.

The metrics chosen to measure the performance of the load sharing algorithm in this study 

were different from those of previous studies because the distribution of workload on the 

fixed network is not a primary concern from a mobile host's point of view. The objective is to 

make use of spare capacity on the fixed network whenever it becomes available in order to 

conserve battery power. Consequently, the performance metric chosen reflects of this 

concern. The performance metrics are percentage of battery lifetime improvement, 

percentage of jobs transferred, response time improvement and percentage of rejected 

requests.

4.6.5 Data Analysis

For each experiment, the results were compared to a no load sharing case and statistical 

analysis using either z-test or ANOVA, was carried out at 95% confidence interval to see if 

there is a significant improvement from the no load sharing case.

Where appropriate, graphs show error bars which express potential error amounts relative to 

each datum in a data series, calculated at a 5% interval.
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4.7 Summary
In this chapter, the assumptions made when designing the load sharing algorithm, and the way 

in which the assumptions are different from those in previous studies were discussed. This 

was followed by a discussion on the trace data used in the experiments and thé simulation 

environment; the system parameters and the experimental design were also described. Before 

proceeding to the next chapter, the hypotheses for this study is once again listed below;

• low bandwidth impedes load sharing as long delays might result in increased response 

time,

• mobile hosts with low processor power will benefit from load sharing as that gives them 

access to faster machines on the fixed network,

• it is jobs with long execution time that will bring significant benefit from transfers as they 

will considerably reduce power consumption by the CPU,

• combining load sharing with another power management strategy should further extend 

battery lifetime,

• delegating transfer requests will further improve performance as users are given access to 

other fixed hosts' spare capacity.

The next chapter discusses the first three stages of experiments carried out to identify factors 

influencing load sharing in wireless networks and the effectiveness of load sharing in 

conserving battery power.
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5. Factors Influencing Load Sharing in Wireless 
Networks
In this chapter, experiments carried out to determine the factors influencing load sharing are 

discussed. Five experiments were carried out to investigate:

1. the influence of available bandwidth on job transfers,

2. the influence of a mobile host's processor power on the job transfer decision,

3. the relationship between CPU utilisation and gain from load sharing,

4. the effectiveness of History and ALS compared to LS in extending battery lifetime,

5. the benefit of combining load sharing with a disk spin-down strategy.

For each experiment, the motivations, hypothesis and methodology of the experiment are 

explained, followed by a discussion of the result obtained and an analysis of the results. For all 

experiments discussed in this chapter, param.mss-load 'wzls set to 0.1 to create an environment 

conducive to load sharing. In the next chapter which addresses the issue of stability and 

scalability, the impact of putting the fixed hosts under heavy load is examined.

5.1 Bandwidth
Motivation:

As has been mentioned previously, bandwidth is a scarce resource in wireless networks. While 

bandwidth is much less of an issue on a fixed network, and can consequently be assumed to be 

so as in most previous studies, bandwidth might become a factor which hampers load sharing in 

a wireless network. Consequently, we wish to determine the extent to which it impedes load 

sharing.

Hypothesis:

The discussion in Chapter 3 regarding the effect of communication delays on load sharing came 

to a conclusion that in the presence of high communication delays, load sharing should be 

disabled to avoid an increase in job response time. Consequently, it is expected that at low 

bandwidth, very few jobs can be transferred as the delays involved may cause an increase in job 

response time. As more bandwidth is available, it is expected that users will be able to transfer 

more jobs, thus a higher level of saving may be achieved.

Methodology:

Param.bw was varied to 9.6, 20, 28 and 56 kbps. It is expected that slow mobile devices would 

benefit more from load sharing as they are given access to faster machines. The next 

experiment will test how true this is, but for this experiment, was set to 1/5.
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Simulations were first run in a no load sharing mode (NLS), then in a load sharing (LS) mode. 

Simulations were run with 32 users and detailed figures are given for five of those users, 

together with an average over all users. In this way, it is possible to see both general behaviour 

and the way that behaviour may vary between different classes of users. The five users were 

selected to show how the work pattern of a user may influence the gain obtained from load 

sharing. As will be shown later, given the same set of conditions, users exhibit different 

behaviour when load sharing was performed. Table 5-1 lists the characteristics of the five 

users.

Table 5-1
Table showing the characteristics o f five users

users average job size 

(bytes)

average job  

execution length (sec)

CPU

utilisation

userl 8303 10.17 0.69

user2 30441 11.07 0.89

user3 46154 13.50 0.94

user4 22383 0.73 0.01

user5 4980 0.94 0.02

Results:

Figure 5-1 shows the battery lifetime improvement for different bandwidths. The graph shows 

that for userl, user2 and user3, battery lifetime improvement increased as the available 

bandwidth increased, while user4 and user5 did not show significant improvement in battery 

lifetime. The reason for this is discussed in section 0. Table 5-2 gives a summary of the 

improvement of battery lifetime of each user.

At low bandwidth, few jobs were transferred because communication delays involved would 

cause worse response time than if the jobs were executed locally. Furthermore, the amount of 

time spent transmitting and receiving would consume more power than executing the jobs 

locally, on the basis of the assumption that a transmitter consumes the same power regardless of 

bandwidth. As available bandwidth increased, more jobs were transferred, as shown in Figure 

5-2 and, therefore, more power saving was achieved. On average, between 20% to 30% jobs 

transferred brings improvement in battery lifetime.
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Figure 5-1
Graph show'ing the percentage o f battery lifetime extension as available bandwidth increases

battery lifetime improvement (%)

userl

Table 5-2
A summary o f battery lifetime improvement for each user for different bandwidths

bandwidth

(kbps)

userl user2 user3 user4 user5 avg. for 

32 user

% hour % hour % hour % hour % hour %

9.6 15 0 3 9 0 0 < 1 0.01 0 0 0 0 3

20 16 0.44 0 0 1 0.03 0 0 < 1 0.02 3

28 17 0.45 20 0.51 18 0.46 0 0 < 1 0.02 11

56 18 0.47 21 0.53 19 0.48 < 1 0.02 < 1 0.02 11

100 18 0.48 22 0.55 19 0.50 < 1 0.02 1 0.04 11

Figure 5-2
Graph showing percentage o f jobs transferred as the available bandwidth increases

job transferred -available bandwidth

user?

Contrar)' to the expectation  that low  bandwidth im pedes load sharing. Figure 5-2 sh ow s that 

userl transferred a high percentage o f  jo b s  com pared to other users at low  bandwidth. The 

reason for this is that userl execu tes sm aller Jobs com pared to other users, as sh ow n  in T able 5- 

1. C onsequently, userl w as able to transfer a high percentage o f  jo b s even  at low  bandwidth. 

Interestingly, the graph sh ow s that there is a sudden increase in the percentage o f  job s  

transferred (and hence, battery lifetim e im provem ent) w hen availab le bandwidth increased from  

20 kbps to 28 kbps. H ow ever, w hen availab le bandwidth increased to 56 kbps and 100 kbps.
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there w as on ly  a slight increase in the percentage o f  jo b s transferred. T his indicates that there 

is a lim it on the number o f  jo b s  w hich  can be transferred; an alm ost 2x  im provem ent in 

availab le bandwidth did not bring a sign ifican tly  higher increase in the percentage o f  job s  

transferred.

Figure 5-3
Graph showing communication delays vs. available bandwidth

communication delays - available bandwidth

r m a-Tkn
userl user2 user3 user4 userS

Figure 5-3 sh ow s that com m unication  delays decreased as the available bandwidth increased, as 

exp ected . For userl and user2, the m ean com m unication d elays increased slightly  w hen the 

available bandwidth increased from 56 .0  kbps to 100.0 kbps. The sam e observation can be 

m ade for user3, w hen the availab le bandwidth increased from 28 .0  kbps to 56 .0  kbps. The 

reason for th is observation is that, as the availab le bandwidth increases, jo b s  w hich  w ere 

previously  not transferred because it w as not feasib le to do so, w ere now  selected  for transfer. 

Since these w ere jo b s with relatively  large jo b  size, that caused a slight increase in average 

com m unication  delays.

Analysis o f Results.

The results confirm  the h ypothesis that available bandwidth plays an important factor in 

determ ining how  many jo b s  can be transferred. A lthough the results show  that low  bandwidth  

d oes im pede load sharing, it a lso  sh ow s that for a user execu tin g  relatively sm all job s, load 

sharing is still p ossib le at low  bandwidth. Therefore, to say that low  bandwidth im pedes load 

sharing is not n ecessarily  true because, providing the job  size  is relatively sm all, it is still 

p ossib le to transfer a high percentage o f  jo b s, thus extend ing batteiy lifetim e, as exhib ited  by 

u ser l. This find in g is encouraging because it sh ow s that it is still p ossib le  to perform load 

sharing even  at low  bandwidth. H ow ever, contrary to our expectation  that a higher level o f  

saving can be ach ieved  as the percentage o f  jo b s  transferred increased w ith an increase in 

available bandwidth, the results sh ow  that this w as not the case.

The next step is to analyse if  the im provem ent obtained is statistically  sign ificant. Table 5-3 

sh ow s the result o f  z-test carried out at 95%  con fid en ce interval on users' battery lifetim e with
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no load sharing and with load sharing, and the improvement was found to be significant. The 

maximum battery lifetime improvement achieved is 33 minutes with an average of 20 minutes. 

In Chapter 1, we stated that we believe load sharing to be especially important in cases where 

users are using their mobile devices for CPU-intensive jobs, in which case it is imperative 

battery lifetime is extended to allow users to finish their tasks. Being able to extend battery 

lifetime for 33 minutes may be critical to allow users to finish the tasks they are performing.

Table 5-3

z-test; a  = 0.05 NLS LS
Mean 2.86 3.18
Known Variance 0.06 0.02
Observations 32 32
Hypothesised Mean Difference 0
z -6.39
P(Z<=z) one-tail 0
z Critical one-tail 1.64
P(Z<=z) two-tail 0
z Critical two-tail 1.96

5.2 Processor Power of Mobile Computers
Motivation-.

It is expected that slow mobile devices are more likely to benefit from load sharing as it gives 

users access to faster machines on the fixed network. If mobile devices are as powerful as fixed 

hosts, it is expected that few jobs will be transferred as the delays incurred by the transfer 

would cause degradation of job response time. In this experiment, the processor power of 

mobile hosts were varied relative to the fixed host to examine if this is true.

Hypothesis:

Mobile hosts with low processor power ought to gain more benefit from load sharing. 

Methodolo2v:

The speed at which mobile hosts processed jobs were varied by varying param.proc-speed to 7, 

7/2, 7/i, 1/4 and 7/i; param.bw was 56 kbps, param.proc-speed of 1/n means that mobile hosts 

are n time slower than fixed hosts. If param.proc-speed=l/2, jobs which previously took t 

seconds to execute, now require 2/ seconds to execute.

Results:

The result shows that when mobile hosts were as fast as the fixed hosts (param.proc-speed=l\ 

there is little improvement in battery lifetime because few jobs were transferred. This is 

because the delay in transferring the jobs would cause increased response time. However, as
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the value o f  param.proc-speed decreased, m ore jo b s  w ere transferred because rem ote execution  

resulted in better response tim e in addition to con serv in g  power.

Figure 5-4 sh ow s that for m obile hosts w ith low er p rocessin g  power, greater pow er saving is 

ach ieved  by transferring job s. A s slow er m achines require more CPU tim e to execu te  a job , the 

cost o f  transferring jo b s becom es less than the cost o f  execu ting  them  locally . Therefore, on 

slow  m achines, more jo b s  w ere transferred and a sign ifican t am ount o f  pow er w as saved. O nce 

again, user4 and user5 do not exh ib it sign ifican t im provem ent in their battery lifetim e.

Figure 5-4
Graph showing that slower mobile computers benefit more from job transfers
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A s transferring jo b s  g ives users access to faster m ach ines, mean response tim e w as im proved. 

The response tim e im provem ent w as calcu lated  as fo llow s:

RT im provem ent =  {{RTa -RTt,) ! RTa) %

w here. RTa = m ean response tim e w ithout load sharing, 

RTt =  m ean response tim e with load sharing.

Figure 5-5 sh ow s that there is a vast im provem ent in response tim e as the processor cyc le  

decreases. W hat happens during the sim ulation is: the job  inter-arrival tim e w as calculated  

from the trace data and as this value rem ains the sam e as param.proc-power w as decreased, 

jo b s still arrived at the sam e rate even though they w ere serviced  at a slow er rate, causing them  

to w ait longer in queue before being served. The long w ait occurred esp ecia lly  during periods 

w hen there w as a burst o f  activity w here jo b  arrival rates w ere m ore than 1 jo b s /sec . W hen 

jo b s w ere transferred to a fixed  host, the w aiting  tim e w as reduced drastically , resulting in the 

very high im provem ent in response tim e w hen jo b s  w ere transferred from  the s lo w  m achines. 

The response tim e im provem ent from the sim ulation  is very high and w e are scep tical that this 

level o f  im provem ent is p ossib le  in real it) .

A nother p ossib le reason for the high response tim e im provem ent is the sim p lification  o f  the 

Channel entity, w here a reliable com m unication  m edium  w as assum ed, and possib le
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in terference, packet loss and retransm issions w ere not sim ulated. In reality, these factors would  

lead to increased com m unication  delays, and hence much lower response tim e im provem ent. 

T he em ulation results presented in Chapter 7 exhibit a much low er and m ore reasonable 

response tim e im provem ent, im plying that the sim plification  o f  the Channel entity m ight have 

contributed to the high response tim e im provem ent. N o  attempt w as m ade to sim ulate these 

con d itions w hich  w ould a lso  in volve econ om isin g  power utilisation o f  the transceiver in the 

presence o f  such con d itions, because the pow er m anagem ent strategy used for the transceiver  

m ight a lso  have an im pact on the overall level o f  pow er saving achieved.

Figure 5-5
Graph showing response time improvement by giving mobile hosts access to faster machines

on the fixed netw’ork

response time improvement - processor power

user2

Analysis o f Results:

O n e-w ay A N O V A  w as used to ascertain if  the battery lifetim e im provem ent is sign ificant as 

param.proc-speed v,'2ls varied. T able 5-4 sh ow s that there is a sign ificant d ifferen ce in battery 

lifetim e im provem ent, sh ow in g  that m obile d ev ices with low  processing pow er is m ore likely to 

benefit from load sharing.

Table 5-4
Hq: mean battery^ lifetime is equal for different processor power

on e-w ay A N O V A ; a = 0 .0 5
Source o f Variation d f F P-value F critical

Processor Pow er 1.94 4 0.48 11.38 0 2.43
W ithin Groups 6 .6 0 155 0.04

Total 8.53 159

' sum o f square 
■ degree o f  freedom 
 ̂mean square
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5.3 CPU Utilisation
Motivation:

The results presented in section 5.1 shows that user4 and userS did not exhibit any 

improvement of battery lifetime at all. This experiment was carried out to determine if this has 

to do with CPU utilisation.

Hypothesis:

Users with high CPU utilisation are more likely to benefit from load sharing as that allows the 

CPU to operate in doze mode more frequently and for longer periods. Users with low CPU 

utilisation are unlikely to benefit as the CPUs are not heavily utilised in the first place.

Methodology:

The average CPU utilisation for each trace data was calculated and Table 5-1 shows that the 

CPU utilisation of user4 and user5 are low compared to other users. CPU utilisation for each 

trace was calculated as follows:

y j i
CPU utilisation = --------,

T

where J, = CPU time to execute job i (sec)
T= simulation period (sec)

A graph was plotted to determine if there is any relationship between CPU utilisation and 

battery lifetime improvement.

Analysis o f Results:

Figure 5-6 shows that battery lifetime does indeed correspond to CPU utilisation with a 

correlation coefficient of 0.96, confirming the hypothesis, and explaining why user4 and user5 

hardly show any improvement in battery lifetime. The result confirms that it is applications 

which use the CPU intensively that have much to gain from load sharing.
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Figure 5-6

Graph showing the relationship between CPU utilisation and the benefit o f job transfer 
(param. bw=56 kbps; param.proc-power= 1/5)
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Referring back to Figure 5-2, even though the percentage of jobs transferred for userS is 

comparable to userl, user2 and user3, there is no significant improvement in battery lifetime 

because, since his CPU utilisation is low, transferring jobs did not extend the duration that the 

CPU remained idle significantly enough to result in substantial saving. The percentage of jobs 

transferred for user4 was low simply because most jobs were short-lived and, therefore, not 

worth transferring.

5.4 History and ALS
Motivations’.

The experiments done so far were run using the optimal LS algorithm which assumes it has a 

priori knowledge of the CPU requirement of each job. In reality, it is very unlikely that such 

information is available in advance. Consequently, an algorithm which makes no assumption of 

a priori knowledge is required for a real life implementation. In this experiment, two adaptive 

algorithms which do not assume a priori knowledge of CPU requirements were tested and the 

results compared to the results of optimal LS. The adaptive algorithms. History and ALS, were 

described in Chapter 4.

Hypothesis’.

As the adaptive algorithms make use of imperfect information, the level of savings achieved by 

these algorithms might not be as good as the optimal LS. It is expected that the amount of 

saving will be lower, but hopefully, still brings significant battery lifetime improvement.

Methodology:

Simulations were run with param.alg set to ALS and History mode; param.bw=56 kbps; 

param.proc=I/5.
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Results:

Table 5-5 summarises the simulation results for users using History and ALS compared to LS. 

From the table, we can see that the average performance of History and ALS were almost as 

good as the upper bound LS.

Table 5-5
Table comparing the performance o f LS, History and ALS

battery life extended (%) job transferred (%) RT improvement (%)
LS History ALS LS History ALS LS History ALS

userl 15 14 16 31 16 31 98 95 98

user2 21 16 20 25 13 26 98 97 98

userS 19 16 18 27 15 27 97 94 97

average 
for 32 
users

11 9 10 27 16 27 95 81 87

The trace data shows that the execution time of a job is not a constant value, but may fluctuate. 

Both History and ALS make use of an average CPU time in its calculation. Since an average 

value is used, it is possible that sometimes an incorrect estimate is made regarding power 

consumption. A wrong prediction may cause either an unnecessary Job transfer, or cause a job 

to be executed locally when it should have been transferred. Incorrect predictions result in a 

waste of battery power.

Since History makes use of an average value from a previous simulation in its calculation, the 

same average value for job A is used in the calculation each time job A is executed. Therefore, 

an incorrect estimate will be used repeatedly, without consideration of recent behaviour. On 

the other hand, ALS uses current information, where the average value is updated after each job 

execution. Consequently, it is capable of adapting its behaviour over time and of improving its 

estimates. Even though ALS may still make mistakes, these are not as often or as serious as 

History. Consequently, ALS outperformed History. Figure 5-7 which compares the 

performance of History and ALS to LS shows that there is little difference in the performance 

of the algorithms.
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Figure 5-7
Graphs showing the performance o f History and ALS compared to LS
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Analysis o f Results.

Even though it w as expected  that History and ALS would not perform as w ell as the optim al 

LS, the results show  that their perform ance is not m uch different from optim al LS. An 

A N O V A  analysis w as carried out to determ ine i f  there is a sign ificant d ifferen ce in the 

perform ance o f  the three algorithm s, and the result in Table 5-6 sh ow s that there is no 

sign ificant d ifference betw een their perform ances, im plying that History and ALS perform as 

w ell as the optim al LS.

The adaptive algorithm s perform ed better than exp ected , w hich is very encouraging as it sh ow s  

that the adaptive algorithm s w ere able to m ake good  predictions o f  C PU  requirem ents. A  good  

prediction is important for a real im plem entation w here CPU requirem ents are not known in 

advance.

Table 5-6

one-w ay A N O V A ; a = 0 .05
Source o f Variation 5"̂ D f F P-value F critical
A lgorithm s 0.11 2 0 .05 2 .47 0 .09 3 .09
W ithin Groups 2 .00 93 0 .02
Total 2.11 95

5.5 Combining Load Sharing with a Disk Spin-Down Strategy

Motivation'.

In Chapter 2, various power m anagem ent strategies w ere d iscussed . It is on ly  practical that a 

real life im plem entation w ould  com bine various strategies to prolong battery lifetim e as much 

as possib le. In this experim ent, w e w ould  like to exam ine the level o f  sav in g  possib le by 

com bining load sharing with a disk sp in-dow n strategy.
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Hypothesis:

Combining two power management strategies ought to further extend battery lifetime compared 

to using load sharing alone.

Methodology:

Disk trace data obtained from Hewlett-Packard were collected from three computer systems 

running the HP-UX operating systems. Cello was a time sharing system used by a group of 

researchers at HP, S nak e was a file server which served nine clients at the University of 

California, Berkeley, and hplajw was a disk on a personal workstation which was mainly used 

for electronic mail and editing papers. Trace data from hplajw was selected for this simulation 

because since as it was obtained from a personal workstation, it probably better reflects the type 

of activities carried out by a user of a mobile computer. Details of the disk access patterns are 

discussed in [Ruem92].

A number of disk spin-down strategies are discussed in Chapter 2. Since hplajw has a buffer 

cache associated with it, the access frequency ought to be less than if there was no cache. As a 

result, it should be possible to spin down the disk more vigorously than when there is no cache. 

Consequently, the strategy proposed by Li et al [Li94] (discussed in section 2.3.1) was chosen, 

where a timeout value of 2 seconds and a disk critical rate, R cr, of 6 seconds were assumed. 

However, unlike the study carried by Li et al, the access latency was not measured because the 

use of buffer cache is an established technique to improve disk access time. The study of Li et 

al also confirms this fact and, therefore, it is unnecessary to examine this issue any further.

A new entity. Disk entity, was introduced for this experiment. There is one Disk entity for 

each MH entity. Its function is to read a disk trace and simulate disk accesses, spin-downs, and 

spin-ups. It also keeps a record of how long a disk remains active and idle, and the number of 

spin-ups and spin-downs to calculate power consumption. Every 60 seconds, it sends a 

message to the MH entity informing it of the duration the disk is idle and active. This 

information is used in part of the calculation to determine the remaining power on the mobile 

host. The Disk entity is instantiated by the MH entity ifparam.disk is 1. Once instantiated, the 

entity runs independently from the MH entity. The only communication between the two 

entities is the message sent by the Disk entity informing MH entity of the duration the disk is 

idle/active.

One flaw of the simulation combining disk spin-down and load sharing is due to the fact that 

the traces were obtained from two independent sources. Consequently, there is no way of 

associating disk accesses with user jobs, and simulation of disk accesses was run independently 

of user jobs. It is also acknowledged that it is not possible to ascertain if the trace accurately 

represent disk access pattern on a mobile device. However, like the argument presented in
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Chapter 4 regarding the use o f  trace data, sin ce p eop le are not yet using m obile applications on 

a regular basis, it is not p ossib le  to obtain a disk  trace for m obile applications. U sin g  a disk 

trace from existing  ap p lications is the c lo sest approxim ation to m odellin g  disk access  

realistica lly . In spite o f  these shortcom ings, w e exp ect that the results obtained are indicative o f  

the am ount o f  saving p ossib le  w hen different pow er m anagem ent strategies are com bined.

Results:

Figure 5-8 com pares battery life  im provem ent using load sharing and load sharing w ith disk 

sp in-dow n (L S + S D ) p o licy , w h ile  Table 5-7 sum m arises the result obtained. A s expected , 

com b in in g  load sharing and a disk  sp in-dow n p o licy  further improved battery lifetim e. In the 

best case , battery lifetim e w as extended by about 33%  or 50 m inutes. C om bin ing a disk spin- 

dow n strategy further extended  battery lifetim e by approxim ately 3-11% , w ith an average 

im provem ent o f  about 8%. N o  strong cla im s can be m ade as a result o f  this experim ent, 

h ow ever, there is som e indication that extra benefit can be obtained. Table 5-8 sh ow s the result 

o f  the z-test.

Figure 5-8
Graph showing battery lifetime improvement using load sharing and load sharing combined

with a disk spin-down policy
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Table 5-7
Table summarising results o f load sharing and load sharing with disk spin-down

im provem ent (% ) im provem ent (hour)

LS L S + S D LS L S +SD

M axim um 22 33 0.55 0.83
m inimum I 4 0.05 0.15
average 13 21 0.35 0.57

standard deviation 5 7 0.13 0.17
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Table 5-8

z-test; a=0.05 LS LS+SD
Mean 3.18 3.41
Known Variance 0.02 0.01
Observations 30 30
Hypothesized Mean Difference 0
z -7.46
P(Z<=z) one-tail 0
z Critical one-tail 1.64
P(Z<=z) two-tail 0
z Critical two-tail 1.96

5.6 Conclusion
Results of experiments presented in this chapter indicate that load sharing is a potentially 

effective power management strategy, forming an orthogonal approach to those already in use, 

and enhancing their benefits. Transferring jobs from mobile hosts for remote execution has 

been shown to be successful in extending battery lifetime and improving job response time, 

subject to some constraints.

The benefits of remote execution depend on available bandwidth, CPU utilisation and processor 

power of the mobile relative to the fixed host. While generally, more jobs are transferred as 

available bandwidth increases, mobile hosts with small jobs were found to be able to transfer a 

considerable number of jobs even at low bandwidth. This finding is encouraging because it 

shows that load sharing is still possible at low bandwidth, subject to the constraint of job size. 

A slightly unexpected finding is that the percentage of jobs transferred does not increase 

linearly as available bandwidth increases. This results from the fact that the level of possible 

saving is limited by the number of jobs which can be transferred. On average, between 20% to 

30% jobs were transferred, and this is enough to bring significant battery lifetime improvement. 

Previous studies have shown that less than 20% job movement is required to improve system 

performance.

CPU utilisation was established to be an important factor influencing the benefit of remote 

execution. Mobile hosts with high CPU utilisation benefit more from remote execution as 

doing so allows the CPU to operate in doze mode more often, thus extending battery lifetime 

significantly. This implies that mobile applications which are likely to benefit from load 

sharing are those which perform heavy computations and uses the CPU intensively, e.g. 

spreadsheet applications and program compilation.

Mobile hosts with low processing power were found to benefit from remote execution as this 

assured them access to a faster machine, resulting in lower response time, in addition to

88



reducing power consumption by the CPU. If mobile hosts have limited processor power, load 

sharing will have its role in giving access to fast machines, in addition to conserving power.

The two adaptive algorithms. History and ALS, were found to perform as well as LS in 

conserving power. Since they make no assumption of a priori knowledge of CPU requirements. 

History and ALS offer a more practical approach when load sharing is implemented in a real 

environment. Although it is surprising to find the adaptive algorithms performing as well as the 

optimal algorithm, this is encouraging as it indicates that a performance which is close to an 

optimal performance might be possible in a real life implementation.

As expected, combining load sharing with a disk spin down strategy further extends battery 

lifetime. It is only practical that power management strategy on mobile devices combines 

various power saving techniques. There is no reason why load sharing cannot be combined 

with existing power management techniques to further improve battery lifetime.

Having established that load sharing does extend battery lifetime, the next chapter examines the 

stability and scalability of the load sharing algorithm.
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6. Stability and Scalability of the Load Sharing 

Algorithm
In Chapter 2, the importance of mobile applications having the ability to adapt its behaviour 

according to its environment in order to make the best use of available resources was 

discussed. In the context of this study, the adaptive ability is important not only to make the 

best use of available resources, but also to prevent instability.

In section 3.3 of Chapter 3, the issue of stability was discussed. Depending on the design of 

an algorithm, various factors have been identified to prevent unstable behaviour of the 

algorithm. The discussion also illustrated that the definition of stable behaviour depends on 

the environment in which an algorithm operates. In the context of this study, the load 

sharing algorithm is considered stable if, under unfavourable conditions, it does not cause 

power consumption to be worse than when there is no load sharing. Unfavourable 

condition, in this case, occurs when there is a high number of users competing for the spare 

capacity on the fixed network. In this case, it is crucial that mobile hosts do not continue to 

send transfer requests when they are unlikely to be accepted, as doing so would only waste 

precious battery power. A method of disabling the algorithm under such circumstances is 

required.

In order to test the stability of the LS algorithm, the contention at a fixed host was simulated 

by setting the parameterparam.mss=l and increasing the value ofparam.mh gradually. It is 

increased in steps of 1 until param.mh=JO, and then in steps of 5 until param.mh=40. By 

doing so, mobile hosts flood the MSS with transfer requests, creating a heavy demand for its 

processor cycles. Figure 6-1 shows that the performance of LS degrades steadily as the 

number of users increases and Figure 6-2 shows users for whom load sharing caused worse 

power consumption than no load sharing. Figure 6-3 shows that the percentage of jobs 

transferred decreased as the total number of users increased, while Figure 6-4 shows that the 

percentage of rejected requests increased.

As a considerable amount of power is consumed in transmitting/receiving messages, a 

rejected request is considered a performance penalty. The percentage of rejected requests is 

used as a parameter to measure the ability of the load sharing algorithm to adapt itself to 

current condition, where the number of rejected requests should be kept to a minimum. The 

existing LS algorithm is modified to prevent instability by disabling it when it is no longer 

feasible to transfer jobs.
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Figure 6-1
Graph show ing the performance o f LS degrades as the number o f users in a cell increases.
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Figure 6-2
Graph showing users for w>hom performance ofLS degrades beyond no load sharing.
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Figure 6-3
Graph showing the percentage o f jobs transferred decreases as total users in a cell

increases.
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Figure 6-4
Graph showing the percentage o f requests rejected increases as total users in a cell

increases.

LS : percentage o f rejected requests

Note that even if the algorithm is successful in detecting when load sharing is no longer 

feasible and disables itself accordingly, that may not further improve battery lifetime. As 

more mobile hosts compete for the fixed host's processor cycle, spare capacity becomes 

more scarce, thus not many jobs can be transferred for remote execution. What is important 

is to prevent mobile hosts wasting precious battery power by sending fruitless transfer 

requests.

Another important issue which we attempt to address is scalability. Kremien and Kramer 

[Krem92] considered stability as a pre-condition to scalability. Once the issue of stability is 

addressed, how well the load sharing algorithm scales is examined.

The following two sections describe the modified algorithms. Backoff and Slotted LS, and 

examine their effectiveness in disabling themselves in order to avoid instability.

6.1 Backoff Algorithm
Motivation’.

The load sharing algorithm should disable itself during periods when its transfer requests are 

unlikely to be accepted to avoid wasting power. A method is required to bar mobile hosts 

from sending requests when fixed hosts are busy. This experiment tests a Backoff 

algorithm where a busy MSS specifies a backoff period during which a mobile host must 

refrain from sending requests.

Hypothesis:

The Backoff algorithm is expected to reduce the percentage of rejected requests. 

Methodolo2v:

Each time a transfer request is rejected, a mobile host backoffs for a period of time known 

as a backoff period during which jobs are executed locally. The backoff period is specified
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by the M SS, w here each tim e a M S S  rejects a transfer request, it sp ec ifies  a b ack off period  

in its reply. The b ack off period is calcu lated  based on the CPU requirem ent o f  jo b s  it has in 

its queue and the processor c y c le s  reserved by transfer requests it has previously  accepted . 

T he underlying assum ption is the M S S  know s how  m uch CPU is required to execu te the 

jo b s  in its queue. In reality, th is inform ation m ight not be available, in w hich  case an 

estim ate m ust be used.

backoff period = J, +  R,

w here J, =  execu tion  tim e o f  jo b  i in queue 

Rj =  p rocessor cy c le  reserved for job  j

The m obile host abstains from  sen d in g  transfer requests during this period and on ly  starts 

send ing requests after the period exp ires.

Results:

There appears to be very little d ifferen ce in battery lifetim e im provem ent o f  Backoff to LS, 

as show n in Figure 6-5, w h ile  Figure 6-6 sh ow s that the percentage o f  rejected requests o f  

Backoff w as low er than LS. Figure 6-7 sh ow s that there w as on ly  a sm all d ifferen ce in 

response tim e im provem ent o f  LS and Backoff.

Figure 6-5
Graph comparing the performance o f Backoff to LS.
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Figure 6-6
Graph comparing the percentage o f rejected requests o f LS and Backoff.
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Figure 6-7
Graph comparing response time improvement o fL S  and Backoff
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Analysis o f Results:

A n alysis on the results w as carried out using tw o-w ay  A N O V A  with replication. The 

hypothesis tests determ ine i f  there is a sign ifican t d ifferen ce in the percentage o f  rejected  

requests as the num ber o f  users increase, and i f  there is a sign ificant d ifferen ce in the 

percentage o f  rejected requests betw een the LS and Backoff algorithm s. The result o f  the 

an alysis in Table 6-1 show s that there is a sign ificant d ifference in the percentage o f  rejected  

requests as total users increases. It also sh ow s that there is a sign ificant d ifferen ce in the 

percentage o f  rejected requests o f  Backoff and LS, indicating that Backoff su ccessfu lly  

disabled  itse lf when load sharing w as not feasib le . Even though Backoff su ccessfu lly  

disabled  itself, the percentage o f  rejected requests w as still high.
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Table 6-1
Ho : mean rejected requests as total users increases are equal; 

Ho : mean rejected requests o f Backoff and LS are equal.
two-way ANOVA with replication; a  = 0.05
Source o f Variation ss' d f F P-value F critical
Total Users 904191.73 15 60279.45 436.45 0 1.67
Algorithms 52986.82 1 52986.82 383.64 0 3.85
Interaction 5937.28 15 395.82 2.87 0 1.67
Within 172367.07 1248 138.11
Total 1135482.89 1279

The Slotted LS algorithm was designed in an attempt to examine if it is possible to:

• further reduce the percentage of rejected requests, and

• limit competition among mobile hosts so that spare capacity can be allocated more fairly. 

The performance of Slotted LS is compared to Backoff and LS.

6.2 Slotted LS Algorithm
Motivation:

Even though Backoff reduced the percentage of rejected requests, the percentage was still 

high. Therefore, a more effective method is required to disable the load sharing algorithm. 

This experiment tests an algorithm which limits the number of users granted permission to 

send transfer requests, and they are only granted the permission for a limited period. Once 

that period expires, permission is granted to a different set of users.

Hypothesis:

By limiting the number of users granted permission to send transfer requests, competition 

for spare capacity is limited to a small set of users. Limiting the period selected users are 

allowed to send transfer requests ought to allocate spare capacity more fairly among mobile 

users. As a result, the chance that a transfer request has of being accepted is increased. 

When that period expires, users execute their jobs locally until they are once again granted 

permission. This approach is expected to result in better performance than Backoff.

Methodohsv:

Since the instability is caused by a high number of users requesting transfers, one way to 

overcome this problem might be by limiting the number of users allowed to send transfer 

requests. The MSS selects N  mobile hosts, out of a total of M  mobile hosts, which have 

requested permission to transfer jobs in a round robin fashion and grants them permission to

' sum of squares.
 ̂degrees of freedom
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send transfer requests for period T. The period T is termed a slot. The MSS sends a 

message to the selected mobile hosts informing them that they have been granted access for 

the next T seconds. During that period, selected mobile hosts Avishing to transfer a job send 

a transfer request as usual, and the request is accepted if the MSS is able to execute the job 

in the specified time. Any requests sent within that period that have been accepted are 

executed by the MSS even if the period has expired. When there are fewer than N  mobile 

hosts in a cell, the algorithm behaves like the unmodified LS algorithm.

The following example demonstrates how the algorithm works. A mobile host, mh„ sends a 

message to the MSS at time t=0 stating its interest to transfer jobs. If there are fewer than N  

mobile hosts requesting permission. Slotted LS behaves like the LS algorithm: mh, is 

granted permission and no time limit is imposed on the duration mhi is allowed to send 

requests. If there are M  mobile hosts requesting permission, where M>N, N  mobile hosts 

are selected to be granted permission on a first-come-first-served basis. The other {M-N) 

mobile hosts are put in queue and are granted permission after the first slot expires.

Assuming that there are M  mobile hosts requesting permission to send transfer requests and 

mhi is one of W mobile hosts selected for the first slot, the MSS sends a message to mh, to 

' indicate that permission to send transfer requests has been granted. At time t=l, mh, 

receives a reply informing it that it has been granted permission to send requests for the next 

T seconds. Let us assume that T=30. During that period, if mhi has a job it wishes to 

transfer, it sends a transfer request as usual. If the request is accepted, processor cycles are 

reserved for that job and mhi is informed that the request is accepted. Any requests accepted 

within period T will be executed. If a request is accepted at t=30 and the job arrives at 

t=31, the job is still executed by the MSS because processor cycles have been allocated for 

that job. If another mobile host, mhj, also sends a message to the MSS at time stating its 

interest to transfer jobs, but N  mobile hosts have already been selected for the current slot, 

mhj will only be informed that it is granted permission to send transfer requests at time t=31. 

mhj can then starts sending transfer requests between t=31 and t-60. mh, might not always 

send transfer requests during the period T, but this is not a problem as that would increase 

the possibility of other selected users having their requests accepted, mh, is not depriving 

other selected mobile hosts from being allocated the spare capacity on the fixed host.

The next step is identifying suitable values for and T. The value of Æ was chosen to limit 

the number of users so that good performance can be achieved. Figure 6-1 shows that LS 

performs reasonably well when there were fewer than 15 users in a cell, thus the simulations 

were run for A values of 5 and 10. A suitable value for T must also be determined. The

 ̂mean square
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trace data shows that jobs arrivai usually occurs in bursts, and the burst could last for a few 

or several seconds. The interval between bursts varies from less than 60 seconds to a few

minutes. We would like the value T to be long enough to include the time span of a burst,

but not so long so that spare capacity is allocated unfairly among users. Based on the trend 

shown in the trace data, values of T=30 and T=60 were chosen. Experiments were, 

therefore, run with the following parameter values:

• Experiment 1 : N=5, T=30

• Experiment 2: N=10, T=60

• Experiment 3: N=10, T=30 

Results:

When the total number of users is fewer than N, Slotted LS behaves in a similar way to the 

unmodified LS algorithm because the MSS starts limiting the number of users granted 

permission to request transfers only when total users > N. Figure 6-8 shows that there is 

little difference in the performance of Slotted LS (especially for Experiments 2 and 3) and 

LS when the total users < N, but there is a marked difference in the performance of Slotted 

LS (for Experiments 2 and 3) compared to LS once total users > N. In fact, Figure 6-8 

shows that once the algorithm started operating in a Slotted LS mode, there is an increase in 

battery lifetime improvement. Limiting the number of users granted permission to request 

transfers resulted in less contention for the spare capacity on the fixed host, and increased 

the possibility of a request being accepted. As a result, the percentage of jobs transferred 

increased, leading to a higher battery lifetime improvement. Figure 6-8 shows that Slotted 

LS (for Experiments 2 and 3) performed better than LS and Backoff as the number of users 

competing for the fixed host's processor cycles increases. Slotted LS resulted in higher 

battery lifetime improvement because:

• more jobs were transferred during periods when a mobile host is granted permission to 

request transfers, and

• by reducing the percentage of rejected request. Slotted LS prevented mobile hosts from 

wasting battery power.

The reason why there is not much improvement for Experiment 1 is explained later.

Table 6-2 shows that once the total number of users exceeded A, and the algorithm started 

operating in a Slotted LS mode, the percentage of rejected requests was kept to a 

minimum, and dropped to less than 1%. The percentage was kept to a minimum by the 

following factors:

97



• users who were not granted permission to request transfers operate in a no load sharing 

mode, which means the overall number of requests sent was reduced,

• there was less contention for the fixed host's spare capacity, and the period T, during 

which mobile hosts were granted permission to request transfers, was short enough that 

very few requests were rejected during that period. This is different from LS and 

Backoff where the number of rejected requests is accumulated during the duration of the 

simulation.

Table 6-2
Table showing percentage o f  rejected requests fo r  LS, B a c k o f f  and S lo t t e d  L S

total
users LS Backoff

Slotted LS
Expt. 1 Expt. 2 Expt. 3

1 11.91 8.53 11.91 11.91 11.91
2 24.36 17.20 26.54 26.54 26.54
3 36.48 25.56 36.27 36.27 36.27
4 48.10 33.99 49.58 49.58 49.58
5 55.19 40.52 58.16 58.16 58.16
6 61.19 47.17 1.94 64.51 64.51
7 68.50 52.27 0.07 68.74 68.74
8 75.60 57.20 0.07 76.50 76.50
9 79.05 61.24 0.08 81.67 81.67

10 84.85 66.16 0.08 85.47 85.47
15 92.60 75.65 0.13 0.15 0.12
20 95.24 81.25 0.18 0.14 0.13
25 96.91 84.32 0.19 0.23 0.23
30 98.15 88.44 0.20 0.23 0.19
35 98.38 89.27 0.19 0.25 0.30
40 98.62 90.46 0.27 0.28 0.26

Figure 6-9 shows that the response time improvement of Slotted LS was much lower than 

the improvement shown by LS and Backoff when N=5^ but was not much different from LS 

and Backoff when N=JO.
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Figure 6-8
Graph comparing the average performance o f Slotted LS, Backoff and LS.
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Figure 6-9
Graph comparing response time improvement o f LS, Backoff and Slotted LS
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Analysis o f Results:

Analysis of the results were carried out to determine:

• if the drop in the percentage of rejected requests is significant,

• whether there is a significant improvement in battery lifetime between Backoff and 

Slotted LS,

• if the value of parameters N, and T have a significant impact on the performance of 

Slotted LS.

Analysis was carried out using two-way ANOVA with replication, in a similar way as when 

testing Backoff and LS. As expected. Table 6-3 (a) and (b) confirms that there was a 

significant reduction in the percentage of rejected requests when using Slotted LS for 

Experiment 1 and Experiment 2, respectively. Analysis was not carried out for Experiment 

3 as its performance was almost identical to Experiment 2.

Table 6-3
(a)

Hq: mean rejected requests as total users increases are equal; 
Ho .mean rejected requests ofLS and Experiment 1 are equal.

two-way ANOVA wit 1 replication; a  = 0.05
Source o f Variation S3 d f MS F P-value F critical

Total Users 152186 15 10145.76 88.23 0 1.67
Algorithms 1102779 1 1102779.01 9590.36 0 3.85
Interaction 560942 15 37396.15 325.22 0 1.67
Within 143505 1248 114.99
Total 1959413 1279

(b)
Hq: mean rejected requests as total users increases are equal; 
Ho .mean rejected requests o f LS and Experiment 2 are equal.

two-way ANOVA with replication; a = 0.05
Source o f Variation SS d f MS F P-value F critical

Total Users 443238 15 29549.22 211.98 0 1.67
Algorithms 398309 1 398309.10 2857.33 0 3.85
Interaction 718935 15 47929.04 343.83 0 1.67
Within 173970 1248 139.4
Total 1734453 1279

Referring to Figure 6-8, Slotted LS appears to perform better than Backoff as the number 

of users increases, especially in the case of Experiment 2 and Experiment 3. Further 

analysis shows that Experiment 2 really did perform better than Backoff (see Table 6-4).
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Table 6-4
Hq : mean battery lifetime as total users increases are equal;

Ho : mean battery lifetime o f Experiment 2 and B ackoff are equal.
two-way ANOVA wit 1 replication; a  = 0.05
Source o f Variation SS d f MS F P-value F critical

Total Users 13545.94 15 903.06 68.94 0 1.67
Algorithms 574.75 1 574.75 43.88 0 3.85
Interaction 201.02 15 13.40 1.02 0.43 1.67
Within 16347.97 1248 13.10
Total 30669.68 1279

Having established that Slotted LS is more effective than Backoff in avoiding unnecessary 

transfer requests, we now proceed to establish if the parameter N  and T have a significant 

impact on the performance of the algorithm. From the graph in Figure 6-8, Experiment 1 

does not seem to perform as well as Experiments 2 and 3 in extending battery lifetime. 

Table 6-5 confirms that the value N  does have a significant influence in determining how 

well Slotted LS performs: N=10 extends battery lifetime more than N=5. The reason for 

this is that, if the value of N  is too small, the load sharing algorithm is unable to make full 

use of the spare capacity at the MSS, resulting in poorer overall performance. Performance 

appears to be relatively insensitive to variation in T as shown by Figure 6-8, where there is 

little difference in the performance of Slotted LS for Experiment 2 and Experiment 3.

The results show that by choosing suitable values for N  and T, Slotted LS was not only 

effective in reducing the percentage of rejected requests, but also performed better than 

Backoff as contention for the fixed host’s processor cycles increased. Slotted LS was also 

able to distribute spare capacity at the MSS more fairly among mobile hosts, resulting in 

better battery lifetime improvement than that achieved by Backoff.

Table 6-5
Ho : mean battery lifetime as total users increases are equal;

Ho : mean battery lifetime o f Experiment 1 and Experiment 2 are equal.
two-way ANOVA with replication; a  = 0.05
Source of Variation SS d f MS F P-value F critical

Total Users 11.86 15 0.79 23.58 0 1.67
Algorithms 0.22 1 0.22 6.71 0.01 . 3.85
Interaction 0.34 15 0.02 0.67 0.82 1.67
Within 41.84 1248 0.03
Total 54.27 1279
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6.3 Delegating Job Transfer Requests
Motivation:

In the experim ents d iscussed  in th is chapter so far, it w as assum ed that there w as on ly  one  

fix ed  host catering for the transfer requests. W e have show n that load sharing cau ses  

perform ance degradation i f  proper precautions are not taken w hen there is a high num ber o f  

users com p eting  for spare capacity. It is not practical to exp ect on ly  one fixed  host to  cater 

for jo b  transfer requests, as it m ight not be able to cop e w ith  the dem and. A lso , rely ing on 

on e fix ed  host w ould not a llo w  the algorithm  to  sca le  to cater for a high num ber o f  users. 

Slotted LS has been show n to be e ffec tiv e  in preventing perform ance degradation and 

a llocatin g  spare capacity m ore fairly am ong users. N on eth eless , i f  there is on ly  one fixed  

h ost catering for a high num ber o f  users, perform ance degrades stead ily  and load sharing  

w ill eventu ally  cease to be e ffec tiv e . O ne w ay  to a llev iate this bottleneck  is to  have the 

M S S  d elegate transfer requests to other fixed  hosts. Experim ents w ere carried out w ith the 

M S S  send ing  probes to other fixed  h osts, to test i f  that w ould  im prove perform ance.

Hypothesis:

D elega tin g  jo b  transfers to other fixed  h osts ought to lead to an increase in the percentage o f  

jo b s  transferred and, hence, battery life tim e im provem ent.

Methodology:

P other fixed  hosts w ere assum ed to  offer its serv ices to  m obile hosts. W hen the M SS  

rece iv es a transfer request and is unable to  execu te  the jo b  w ithin  the sp ec ified  tim e, it sends 

a probe to P other fixed  hosts requesting i f  the host cou ld  execu te  the jo b  on its behalf. I f  

the probed host is able to execu te  the jo b  w ithin  the sp ec ified  tim e, it accep ts the request and 

p rocessor cyc les  are reserved for the jo b . The fixed  hosts w ere assum ed to  be con n ected  by 

high speed  links and com m unication  d elays in volved  in send ing the probes w ere assum ed to  

be n eg lig ib le , based on the approach taken by [M irc89] and [M irc90] w hich  estab lish ed  that 

i f  the s ize  o f  probes is s ign ifican tly  sm aller than the size o f  jo b s, com m unication  delays  

incurred by probes are n eg lig ib le . A  m ob ile  host requesting a jo b  transfer is not aware o f  

the probes sent by the M SS and has no k now ledge o f  the actual location w here its jo b  is 

execu ted .

S im ulations w ere run with the LS algorithm  send ing probes to P=2 and P=3 hosts. 

S im ulations w ere a lso  run com b in in g  probing and Slotted LS (Slotted Probe) with P = 2 ,  

N=25 and T=60 to see i f  it results in a m ore stable behaviour.

Results:
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Figure 6 -10  sh ow s that the perform ance o f  load sharing w ith probes increased trem endously. 

The battery lifetim e im provem ent did not degrade as rapidly as w hen load sharing w as run 

w ithout probes. A s exp ected . Figure 6 - 1 1 sh ow s that percentage o f  rejected requests w as far 

low er w hen transfer requests w ere delegated. N ote  than even  w hen no request w as rejected, 

battery lifetim e did not im prove beyond 20% , again confirm ing that the im provem ent is 

lim ited by the number o f  jo b s  w hich can be transferred. The graph a lso  sh ow s that the 

percentage o f  rejected requests increased rapidly w hen there were m ore than 25 users, 

indicating high contention for the fixed  hosts' resources. Even though the percentage o f  

rejected requests w as much low er than LS in the beginning, it increased rapidly once the 

spare capacity  at the fixed  hosts w ere alm ost fu lly  utilised. W hen total users w ere 30, the 

percentage o f  rejected requests w ere alm ost as high as LS.

Figure 6-10
Graph comparing the performance o f load sharing with probes.
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Figure 6-11
Graph comparing percentage o f rejected requests o f Probes to LS
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Figure 6-12 sh ow s that the percentage o f  rejected requests w ith Slotted Probe w as ver> 

low . A lthough Figure 6-13 sh ow s that the battery lifetim e im provem ent o f  Slotted Probe 

w as low er than P=2, Figure 6-14 sh ow s that its percentage o f  jo b s  transferred w as higher
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than P=2. Figure 6-15 sh ow s that w hen the algorithm  operates in Slotted Probe m ode, the 

response tim e im provem ent w as m uch low er than P=2, but slightly  higher than LS.

Figure 6-12
Graph comparing the percentage o f rejected requests o f LS, P=2 and Slotted Probe.
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Figure 6-13
Graph comparing battery’ lifetime improvement ofLS, P=2 and Slotted Probe.
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Figure 6-14
Graph comparing the percentage jobs transferred o f LS, P^2 and Slotted Probe.
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Figure 6-15
Graph comparing response time improvement o f Slotted Probe to LS and P=2
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Analysis o f Results.

T w o-w ay  A N O V A  with replication w as performed to determ ine if  there is a sign ificant  

d ifferen ce in perform ance w hen transfer requests w ere delegated to other fixed  hosts. Table 

6-6 sh ow s that there is a sign ificant d ifference in perform ance when transfer requests were  

delegated  to 2 other hosts. Table 6-7 sh ow s that there is a significant d ifferen ce between  

P=2 and P=5, indicating that perform ance im proved as more fixed hosts offered  their 

serv ices to m obile hosts.

Table 6-6
Ho : mean battery life as total users increases are equal; 

H q  : mean battery lifetime o f LS  and P=2 are equal.
tw o-w ay  A N O V A  with replication; a = 0 .0 5
Source o f Variation F P-value F critical
Total users 1109581 15 73972 .05 641.87 0 1.67

A lgorithm s 523613 1 5 2 3 613 .10 4 543 .5 0 0 3.85
Interaction 158526 15 10568.46 91 .70 0 1.67
W ithin 143825 1248 115.24
Total 1935546 1279

Table 6-7
Ho : mean battery life as total users increases are equal; 

Ho : mean battery lifetime o f P=2 and P=3 are equal.

tw o-w ay  A N O V A  with replication; a = 0 .0 5
Source o f Variation d f M y F P-value F critical
Total U sers 1354082 15 9 0 272 .14 1182.06 0 1.67
A lgorithm s 25231 1 25231 .45 330 .39 0 3.85
Interaction 2 1 9 5 2 15 1463.49 19.16 0 1.67
W ithin 9 5 3 0 7 1248 76.37

Total 1496574 1279
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A possible explanation for the reason Slotted Probe did not improve battery lifetime more 

than P=2 even though it resulted in more job transfers is as follows. As is the case with 

Slotted LS, Slotted Probe successfully reduced the percentage of rejected requests by 

limiting the number of users contending for the fixed hosts' spare capacity and distributing 

them more fairly among the mobile hosts, thus more jobs were transferred. However, in 

limiting the number of users in each slot, there is a possibility that Slotted Probe did not 

fully utilise the spare capacity at the fixed hosts. We expect that the performance of Slotted 

Probe can be optimised by tuning the parameter value N.

6.4 Conclusion
Load sharing could cause worse power utilisation than no load sharing as the number of 

users competing for spare capacity increased. If load sharing is to be implemented in a real 

environment, it is imperative that appropriate measures were taken to prevent instability. 

Any algorithm should be equipped with a mechanism to detect when load sharing is no 

longer feasible and to react accordingly. This feature is important not only to prevent 

instability, but also so that the algorithm is scalable.

Two modified algorithms were introduced, i.e. Backoff and Slotted LS. The Slotted LS 

algorithm was found to be effective not only in avoiding instability, but also in allocating 

spare capacity more efficiently among users. As a result. Slotted LS performed better than 

LS and Backoff algorithms in conserving power.

The results suggest that in order for load sharing to scale to cater for a high number of users, 

spare capacity from a few fixed hosts must be utilised. Otherwise, even with Slotted LS 

performance degrades rapidly, and load sharing will eventually cease to be effective. The 

number of fixed hosts offering their service is determined by the workload of the fixed 

hosts; if fixed hosts are busy, they will be unable to offer their services to mobile hosts. 

Consequently, like the finding in previous studies on load sharing, under high system load, 

the best course of action is to disable load sharing.
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7. Emulation of Load Sharing on a Wireless LAN
The simulation results indicate that load sharing is a potentially good power management 

strategy. In this chapter, the emulation carried out to verify the simulation results and to 

ascertain the effectiveness of the strategy in a real environment is discussed.

Motivations:

There are two motivations for emulating the load sharing algorithm. Firstly, simulation 

results need to be verified to ascertain the extent to which the simulation represents a real 

environment. Secondly, there is a discrepancy between our and Rudenko et al's results, which 

we would like to investigate.

Methodolo2v:

The mobile host was a Mobile 3000 Scenic laptop from Siemens Nixdorf, employing an Intel 

Pentium 133 MHz CPU with 40 Mb RAM and running Windows NT 4.0. The CPU 

consumes 4.3 Watts when active and 1.7 Watts in idle mode. The transceiver was a Lucent 

Wavelan 2 GHz system consuming 3.00 Watts when active and 1.48 Watts when operating in 

doze mode. An Ultra Sparc 1 workstation running Solaris with a 143 MHz processor, 160 

Mb of RAM and a 9 Gb hard disk was used as a fixed host.

Code for the emulation was written in C using Microsoft Visual C++, where a connection 

between the laptop and the workstation was established using a SOCket() call and messages 

were exchanged using the s e n d to Q  and recvfrom() functions. Use of the CPU executing a 

job was emulated with a w h ile  loop performing a simple mathematical computation.

A simulation was also run using the same traces and environmental parameters as the live 

environment so that the results could be compared to the emulation results. Both emulation 

and simulation were run for a set of 30 users, with no load sharing and with load sharing. 

Each emulation was run until the battery was flat, and the battery was fully recharged. The 

optimal LS algorithm was used in order to obtain an upper bound on the amount of possible 

saving which may be achieved. As it has been established that it is mobile hosts with high 

CPU utilisation that benefit most from load sharing, both the emulation and simulation were 

run assumingparam.proc-speed=l/5. The simulation was run with param.bw set to 2 Mbps, 

the same as the amount of bandwidth available on the wireless LAN. As the laptop 

implements power saving mechanisms, the simulation was run combining load sharing with a 

disk spin-down strategy.

The results obtained, which are presented below, have also been discussed in [Othm99].

108



7.1 Results of Emulation and Simulation
Figure 7-1 compares the battery lifetime improvement of the emulation and simulation, while 

Table 7-2 summarises the results obtained. On average, the emulation result shows that 

battery lifetime was extended by about 21%, while the simulation result shows an average 

improvement of about 25%. Even though in a few cases there was more than 10% difference 

in the improvement achieved, generally the difference was small.

There was little difference in the percentage of jobs transferred, as depicted by Figure 7-2. 

Both emulation and simulation results shows significant improvement in response time, but 

the response time improvement of the emulation was found to be more reasonable than that of 

the simulation (see Figure 7-3), where the average response time improvements were 65% 

and 96% for the emulation and simulation, respectively. As discussed in Chapter 5, the high 

response time improvement for the simulation might have to do with the simplification of the 

C hannel entity, where a reliable communication medium was assumed, and possible 

interference and packet loss were not simulated. When running the emulation experiments, it 

was observed that the quality of the communication channel sometimes varied over time, 

during which the communication delays were higher. Since these conditions were not 

simulated, the simulation results exhibit a much higher response time. Table 7-1 shows the 

percentage of packet loss and delays when the Unix ping command was executed between a 

fixed workstation and the laptop during one of the experiments.

Table 7-1
Table showing the percentage o f packet loss and delays during one o f the emulation

experiments.

 sisley.cs.ucl.ac.uk PING Statistics----
48 packets transmitted, 30 packets received,.37% packet loss 
round-trip min/avg/max = 8 975.603/9375.171/10645.447 ms
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Figure 7-1
Graph comparing the results o f emulation and simulation.
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Table 7-2
Table comparing the results o f emulation and simulation.

maximum minimum average std. deviation

emulation simulation emulation simulation emulation simulation emulation simulation

battery lifetime NLS (hour) 3.39 3.00 2.34 2.57 3.00 2.79 0.26 0.13
battery lifetime LS (hour) 3.97 3.60 3.07 3.4 3.62 3.48 0.18 0.04

battery lifetime improvement (hour) 1.24 0.90 0.19 0.48 0.62 0.69 0.27 0.12

battery lifetime improvement (%) 52.81 34.84 6.12 16.11 21.39 24.97 11.45 5.35
response time improvement (%) 81.06 97.75 33.16 56.34 64.71 96.41 9.58 7.75

jobs transferred (%) 76.67 75.53 60.04 51.29 66.49 62.95 3.92 6.19

average d ifference in battery lifetim e im provem ent =8 %; standard deviation=5
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Figure 7-2
Graph comparing the amount ofjobs transferred fo r the emulation and simulation.
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Figure 7-3
Graph comparing response time improvement o f emulation and simulation.
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Figure 7-4 and Figure 7-5 show that the relationship between CPU utilisation and battery 

lifetime improvement of the emulation and simulation, respectively. Both graphs show that 

there is a linear relationship between CPU utilisation and battery lifetime improvement, but 

that relationship is more evident in the emulation result. The correlation coefficient is 0.78 

and 0.72 for the emulation and simulation, respectively. This result verifies the result 

discussed in Chapter 5 when the influence of CPU utilisation on the benefit of remote 

execution was examined.

Figure 7-4
Graph showing the relationship between CPU utilisation and battery lifetime improvement

(emulation).
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Figure 7-5
Graph showing the relationship between CPU utilisation and battery lifetime improvement

(simulation).
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Analysis o f Results:

z-tests were carried out to determine:

• if there is a significant difference in battery lifetime when load sharing is performed, for 

both simulation and emulation,

• if there is a significant difference in the emulation and simulation results.
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Both the emulation and simulation results exhibit a significant improvement from no load 

sharing, as shown in Table 7-3 and Table 7-4, respectively. An analysis of the improvement 

achieved by the emulation and simulation shows that the difference is not significant (see 

Table 7-5), implying that the simulation does indeed model a real environment to a good 

degree of accuracy, given the particular parameters chosen.

Table 7-3
Emulation : Hq: mean battery lifetime o f NLS and LS are equal.

z-test; a-0.05 NLS LS
Mean 3.00 3.62
Known Variance 0.07 0.03
Observations 30 30
Hypothesized Mean Difference 0
z -10.72
P(Z<=z) one-tail 0
z Critical one-tail 1.64
P(Z<=z) two-tail 0
z Critical two-tail 1.96

Table 7-4
Simulation : Hq: mean battery lifetime o f NLS and LS are equal.

z-test; a=0.05 NLS LS
Mean 2.79 3.48
Known Variance 0.02 0.001
Observations 30 30
Hypothesized Mean Difference 0
z -27.79
P(Z<=z) one-tail 0
z Critical one-tail 1.64
P(Z<=z) two-tail 0
z Critical two-tail 1.96

Table 7-5
Hq: mean

z-test; a-0.05 emulation simulation
Mean 21.39 24.97
Known Variance 131.13 28.60
Observations 30 30
Hypothesized Mean Difference 0
z -1.55
P(Z<=z) one-tail 0.06
z Critical one-tail 1.64
P(Z<=z) two-tail 0.03
z Critical two-tail 1.96
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The results in Chapter 5 showed that a 2x improvement in available bandwidth did not bring a 

significantly higher increase in the percentage of jobs transferred. The average percentage of 

jobs transferred was approximately 30% at available bandwidth of 100 kbps. The emulation 

results show that the average percentage of jobs transferred was 77%, indicating when high 

bandwidth is available, more jobs were transferred. This, however, did not lead to a higher 

battery lifetime improvement, due to a high overhead cost of transferring large jobs.

With regards to job transfer, the questions which must be answered are: what type of jobs will 

be transferred, and how big are the jobs? Considering that applications are becoming 

increasingly large, job size might become a factor which impedes load sharing. However, it 

is reasonable to assume that if a job is to be transferred, the applications required to execute 

the job should be available on the fixed host. For example, in order to transfer a code 

compilation, the fixed host accepting the transfer request should have the compiler required 

to compile the code. It is not necessary to transfer the compiler to the fixed host, only the 

code file needs to be transferred. If only data files have to be transferred, the job size might 

not be very large, hence incurring lower overhead cost (in Chapter 4, when discussing the 

assumptions for this study, the job size is the size of the executable files because data file 

information is not available).

The use of a distributed file system which provides support for mobile users, such as Coda', 

might help reduce the overhead cost of transferring jobs. Its file replication facility makes it 

possible for a user to send only the changes made to a file since the previous transfer, instead 

of transferring a complete document, thus reducing the overhead cost of job transfers.

7.2 Conclusion
The results obtained exhibit little difference between the simulation and emulation. Further 

analysis shows that there is no significant difference between the two, implying that the 

simulation environment built for the study closely reflects the real environment to a good 

degree given the particular parameters chosen. In most cases, simulation results are close to 

the results obtained for the emulation. Given this result, it is not reasonable to argue that 

simulation using different parameters are also likely to represent a real environment, since 

there was nothing special about the way that parameters were chosen in this case. The results 

not only verify that load sharing is effective in extending battery lifetime, but also confirm the 

influence of CPU utilisation on the benefit of remote execution.

' Information about Coda can be obtained from http://www.cs.cmu.edu/afs/cs/project/coda/Web/docs- 
coda.html.
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8. Future Vision and Future Work
In this chapter, the future scenario for wireless and mobile computing technologies and the 

applicability of this work are discussed. This chapter ends with a proposal for future work.

8.1 Future Systems
Mobile devices are no longer used solely for the purpose of communications, but now are 

also used by roaming users to allow greater flexibility over working practices, effectively 

extending the office into the wider environment. In the next decade, it has been forecast that 

20% to 30% of GSM revenue might come from mobile data. If the rapidity of increase in the 

amount of data carried by terrestrial wired telecom networks in an indicator, this may well be 

a conservative estimate.

By the nature of the way that the radio medium is licensed, the future of mobile data depends 

largely on the development of appropriate standards. Currently, the bandwidth available over 

GSM for mobile data is low (typically in the range of 9.6 kbps to 14.4 kbps). However, there 

are a number of initiatives to develop high speed, wide area, data services. Thus trials of 

High Speed Circuit Switched Data (HSCSD) are currently underway, and it is projected that 

GPRS will roll out in the near future. These services will offer data rates up to about 130 

kbps. Enhanced Data for GSM Evolution (EDGE), which is a successor of GPRS, will 

provide data rates of up to 348 kbps.

In a wider context. Iridium is planning a second generation satellite system offering a 

bandwidth of up to 120 kbps, which it plans to launch in 2003. It is also targeting 64 kbps / 

125 kbps throughput for handheld devices. Ericsson and Telia are testing a wireless 

interconnection to IP-based enterprise networks, effectively providing enterprise LANs for 

fixed and mobile terminals. The commitment shown by the industry to provide support for 

mobile data is evident from the Wireless Application Protocol (WAP) Forum, which is joined 

by 60 companies, with a goal of designing and establishing standards for mobile data.

Perhaps the most significant development for the future will centre around ETSFs work on 

the Universal Mobile Telecommunications Standard (UMTS) or the ITU’s work on IMT- 

2000. UMTS is a third generation mobile (3G) systems. Its goal is to cater for future market 

demands for low cost, high quality mobile personal communications. UMTS will deliver 

pictures, graphics, video communications and other wide-band information as well as voice 

and data to mobile users. It extends the existing capabilities of mobile, cordless and satellite 

technologies to provide increased capacity, data capability and a wider range of services, 

blurring the distinction between the use of telephones for voice communications and the use
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of PCs for data transmissions. Since UMTS provides a wide range of services, it also 

provides support for a wide variety of terminals, from PDAs to palmtops to laptops.

UMTS offers a wide range of quality of service (QoS) by optimising the communications 

channel for each individual service. By tailoring the communications channel QoS 

(bandwidth, error rate and latency) to a range of services, traffic can be packed into the 

channel more efficiently, potentially reducing costs to service providers, and price for users. 

Although UMTS offers connectionless services, users will get the impression of being 

connected for the whole duration of a session. In reality, communication channels and other 

resources will only be occupied while data is being sent. As soon as the transmission is 

completed, the resources are automatically released to another user. 3G systems will provide 

adaptive services where if a requested QoS cannot be met, the service is adapted to provide a 

similar, but lower quality version, taking into account the dynamic nature of radio channel 

and traffic characteristics. A mechanism will be introduced to price services according to the 

QoS provided.

Initially, UMTS will provide transmission rates of up to 2 Mbps. Later on, UMTS will be 

integrated with picocellular systems based on Wireless LAN (W-LAN) and Broadband Radio 

Access Networks (BRANs) to provide a bandwidth of up to 155 Mbps. The UMTS networks 

will be comprised of terrestrial networks and Satellite UMTS (S-UMTS) networks. S-UMTS 

is required to serve rural and remote areas, which is essential to achieve the goal of providing 

a ubiquitous and universal services. In addition to multimedia services, UMTS will also 

provide interactive services and the Virtual Home Environment (VHE) services.

Bluetooth' is another project which will make ubiquitous computing a reality. Bluetooth 

aims to replace proprietary cables connecting devices with one universal short-range radio 

link to facilitate access to both LANs and WANs to provide a universal bridge to existing 

data networks. It will also provide a mechanism to form small private ad hoc groupings of 

connected devices away from network infrastructures. Any digital device can be part of the 

Bluetooth system: laptops, handheld computers and digital cellular phone can be used 

together seamlessly. For example, emails can be received on the laptop via the digital cellular 

phone the user is carrying, and a presentation can be downloaded from a user’s laptop to a 

data projector without connecting cables.

The proliferation of wireless technology applications will not be limited to supporting 

roaming users. In the future, wireless and mobile computing technologies will also be widely 

deployed at home. For example, Shared Wireless Access Protocol (SWAP) aims to provide a 

new, common air interface which supports wireless voice and LAN data services in the home

' Bluetooth web page is at http://www.bluetooth.com/.
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environment. The specification ensures interoperability among PCs, communication and 

consumer electronics devices equipped with wireless communication capabilities, and is 

aimed for the home market. Among the applications which will be made possible by SWAP 

are:

• Information delivered via the Internet to anywhere in the home, e.g. a mobile display pad 

connected to the Internet can access recipe information in the kitchen, or it can be taken 

into the garage for the latest automobile mechanical updates.

• Control of electrical systems and appliances, e.g. to turn on/off lighting in the house 

while users are away to give the impression that someone is at home.

• Effective utilisation of communication channels by dynamically allocating phone line for 

incoming and outgoing calls, fax and Internet access.

These are only a few examples of possible applications, more information can be obtained 

from http://www.homerf.org.

In conclusion, the ongoing work in this field suggests that a ubiquitous computing

environment where users truly have anytime-anywhere-access will one day be achieved, and 

the services will be provided at affordable prices. The use of wireless technologies will 

become widespread, encompassing every aspect of people’s life, and giving users access to 

information whenever it is required. Access to the network will no longer be limited to 

downloading information or exchanges of emails and short messages, but will cover all 

aspects of applications currently available only to users on fixed networks, as well as a range 

of applications yet to be developed for the consumer electronics market.

In summary, we are currently seeing the conception of systems in which computers and 

networks will be transparently integrated into users’ everyday lives. The goal of ubiquity will 

be reached and the demand for the services which run over such systems will be driven by the 

usefulness of the services rather than lower level technical specifications.

8.2 Applicability of this Work
The previous section and Chapter 2 show that there will be a wide range of mobile/wireless 

applications available to users. The question we would like to answer now is how our work 

will be applicable in such a diverse environment. Obviously, not all mobile applications will 

benefit from load sharing, but we believe that it will be particularly useful for applications 

where mobile devices are used as an extension of the workplace. One particular driver for the 

current expansion of the wired network into the home is precisely this, though secondary 

development involves the wider use of systems in leisure activity. The fact that there is an 

increasing demand for mobile data services indicates that users expect to be able to access
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and manipulate data on the fixed network while roaming. In the near future, this data is likely 

to be work associated, though new applications will be developed as the number of mobile 

devices increase, and the type diversifies to include consumer electronic devices.

In the case of work-based use, it is imperative that the necessary support is available so that 

users are able to work whenever, and wherever, they wish to do so. In the case of wider 

applications, this is doubly important, since these will be predicated on embedding computer 

and network systems in such a way that the user should not explicitly be aware of their 

existence. In both scenarios, intelligent dynamic reconfiguration will be essential in 

providing the type of services that are required over extended periods in highly heterogeneous 

environments that are changing. One important part of this is the ability to extend battery 

lifetime, since this is currently (and will be for the foreseeable future) a limiting factor to the 

full exploitation of the potential of such environments. This thesis has demonstrated that load 

sharing affords an important weapon in achieving this goal for certain sorts of tasks.. Indeed, 

since the cost of running the load sharing algorithm is minimal, it will be sensible to run it 

just in case jobs are suitable for transfer. If a job is not CPU-intensive and not suitable for 

transfer, the adaptive algorithm will identify it as such.

Undoubtedly, there are limitations to the scope of the work described in this thesis. We have 

argued that environments may become massively more heterogeneous than is currently the 

case. In this case, load sharing may be impracticable, simply because of the range of different 

types and capabilities of system. However, if people see significant benefit can be brought by 

load sharing, and there is a demand for this service to be provided, the industry will 

eventually have to cater for this demand. One way of addressing this issue is by providing a 

generic platform where jobs can be ported between different machines to avoid heterogeneity 

from becoming a hindrance to load sharing. This may be required in any case in order to 

allow for the full range of dynamic behaviours to be exploited and for cross platform 

applications to be developed.

8.3 Future Work

In this study, it was assumed that mobile hosts compete amongst themselves for a fixed host's 

processor cycles without considering the monetary cost that may be involved. If users are 

being charged for using the wireless link, or for utilising the fixed host's resources, this will 

be another constraint which must be considered when implementing load sharing as a power 

management strategy. An additional question to address is how much users are willing to pay 

in order to execute jobs remotely, and if the cost is justified.
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This problem may be undertaken using the microeconomic approach, previously explored by 

Ferguson et al [Ferg88] and Waldspurger et al [Wald92] as another approach to distributing 

load in a distributed network. In the approach proposed by Ferguson et al, the computer 

system was modelled as resources, consumers and suppliers. Resources are processors, 

memory and communication bandwidth, while the consumers are jobs that have to be 

executed and suppliers are the processors and their operating systems. Processors and jobs 

are modelled as independent economic agents that selfishly attempt to optimise their 

satisfaction without attempting to improve or optimise system performance. If this approach 

is applied in the context of this study, transfer requests will no longer be served on a fist- 

come-fist-served basis, but based on who is willing to pay for the resources. This not only 

enforces competition among users, but also restricts access to those who can afford to pay for 

it.

When the stability of the load sharing algorithm is discussed in Chapter 6, we showed that as 

users competing for the MSS's processor cycle increases, load sharing ceases to be effective. 

In order for it to continue to be feasible, spare capacity at other fixed hosts has to be utilised, 

where the MSS probes other fixed hosts to delegate transfer requests. Another approach to 

this problem is by using an intelligent mobile agent. Stamer et al [Star97] describes an 

intelligent mobile agent as a butler that anticipates the requirements of a user and tries to find 

the required resources to execute a job. In the context of load sharing, instead of having a 

mobile host sends transfer requests the MSS, its intelligent agent may forecast what the user 

requirement in the near future might be and hence reserve the required resources. It may 

facilitate remote execution by reserving communication bandwidth or processor cycle on 

fixed hosts. The agent may even use the microeconomic approach in deciding the best way to 

utilise available resources according to a user's budget.

In the longer term, the exploration of new applications for wireless systems of the type we 

have envisaged above will lead to the identification of different constraints. Although it is 

hard to predict what these might be at present, we can certainly foresee a very interesting 

future for research in the area of intelligent dynamic adaptation in mobile systems.
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9. Conclusion
Mobile devices operate on battery power and, given the fact that there is unlikely to be much 

improvement in battery capacity, it is vital that power utilisation be managed efficiently and 

economically. This study explores the possibility of using the concept of load sharing to 

utilise resources on the fixed network in order to conserve battery power on mobile hosts. It 

is built on the premise of making use of available resources on the fixed network to execute 

jobs on behalf of mobile hosts. The load sharing algorithm selects suitable Jobs for remote 

execution on a fixed host in such a way that the power consumed for transferring the job is 

less than the power consumed if the job is executed locally. Transferring jobs reduces power 

consumption as the CPU is able to operate in doze mode more often.

The extent to which previous work on load sharing is relevant to our work was explained in 

Chapter 3, and the differences in the assumptions and mechanism of load sharing in wireless 

networks were presented in Chapter 4. These differences are inevitable due to the nature of 

the mobile computing environment; consequently, factors which are non-issues in fixed 

networks must now be taken into consideration. As the primary concern is to examine the 

effectiveness of load sharing in conserving power, the design of the algorithm is centred 

around trying to utilise power economically. Modifications to the existing load sharing 

strategy took into considerations the mobile computing environment and the objective of 

conserving battery power.

In Chapter 1, the hypotheses for this study were listed. It was expected that low bandwidth 

would impede load sharing. This hypothesis was tested by running simulations where the 

available bandwidth was varied to determine its effect on battery lifetime improvement. 

Although the results show that low bandwidth does impede load sharing, there is an 

exception. Providing that job size is small, it is possible to transfer a substantial number of 

jobs, resulting in a significant battery lifetime improvement. This indicates that load sharing 

might still be effective even at low bandwidth.

Load sharing is expected to improve performance by giving mobile hosts access to faster 

machines on the fixed network. Results obtained from simulations which varied the 

processor power of the mobile hosts show that this is indeed the case. It was found that if the 

mobile hosts have the same processing power as fixed hosts, it is unlikely that any jobs would 

be transferred, as communication delays cause increased response time. It is mobile hosts 

with low processing power which benefit most from load sharing, not only in terms of battery 

lifetime, but also in terms of better response time.
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A finding of this study, which is similar to previous studies, is that it is CPU-intensive jobs 

that benefit from load sharing. It was found that the transfer of CPU-intensive jobs extends 

the period the CPU operates in doze mode significantly, resulting in reduced power 

consumption. In Chapter 1, we stated that we believe the proposed strategy to be particularly 

important when users are executing CPU-intensive jobs, in which case it is crucial that the 

battery power is not suddenly depleted. This finding shows that load sharing will indeed have 

a role to play in conserving power if users are using applications which are CPU-intensive.

In addition to establishing that load sharing does bring significant battery lifetime 

improvement and identifying factors influencing the benefits gained from load sharing, the 

possibility of combining load sharing with another power management strategy was also 

examined. Simulation combining load sharing with a disk spin-down strategy indicates that 

further power saving is possible when the strategies are combined.

Two adaptive load sharing algorithms, History and ALS, were proposed to offer a more 

practical approach to implementing load sharing in a real environment. Unlike the optimal 

algorithms, the adaptive algorithms assume no a priori knowledge of CPU requirements of 

jobs, and perform almost as well as the optimal algorithm, indicating that a performance 

which is near the optimal performance might be possible.

When addressing the stability and scalability issues, it was found that as the number of users 

competing for spare capacity on the fixed network increases, more than one fixed host is 

required to cater for the demand. If only one fixed host caters for the mobile hosts, load 

sharing does not scale well, and performance degrades rapidly as the number of users 

increases. The number of fixed hosts available to offer their services to mobile hosts depends 

on the current workload on the fixed network. If the fixed hosts are currently under heavy 

load, it is best to disable load sharing. An appropriate measure was introduced to prevent 

performance degradation under heavy load, and the Slotted LS algorithm appears to have 

succeeded in doing so. In addition to preventing performance degradation. Slotted LS also 

allocates spare capacity more fairly among mobile hosts.

There are other factors which may cause instability of the load sharing algorithm. As 

discussed in Chapter 4, to simplify the simulation, we made an assumption that a reliable 

communication link exists between the mobile hosts and the MSS, and did not simulate 

possible interference or packet loss. In reality, high interference and packet loss/error may 

become factors which leads to instability if the load sharing algorithm attempts to transfer 

jobs under such unfavourable circumstances, possibly wasting battery power due to 

retransmissions. Hence, the algorithm needs to be intelligent enough to detect these
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conditions and react accordingly. We did not attempt to address this issue as we believe an 

approach such as the one proposed by [Ruln96], discussed in Chapter 2, may be adopted.

The findings of this study also show that the proposed load sharing algorithm has been 

successful in making use of otherwise unutilised resource on the fixed network. While 

previous studies proposed this adaptive ability to utilise resources/services merely for the 

purpose of executing applications on behalf on mobile hosts, we exploit them to conserve 

battery power. In the context of the load sharing algorithm, this requirement is important not 

only to make the best use of available resources, but also to avoid instability. When load 

sharing is no longer feasible, appropriate measures are required to avoid load sharing from 

causing worse power utilisation than when there is no load sharing.

In conclusion, the proposed load sharing algorithm was shown to be a potentially effective 

power management strategy. The contributions and achievements of this study are 

summarised below,

1. It successfully adapted a well-known concept in distributed system to address a problem in 

mobile computing.

2. It identified the necessary modifications required to implement load sharing as a power 

management strategy in a mobile computing environment.

3. It identified factors conducive to load sharing and factors which impede load sharing.

4. It identified the type of applications which are likely to benefit from load sharing.

5. This study shows that it is possible to make use of otherwise unutilised resources on fixed 

hosts to conserve battery power on mobile computers.
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