
Load Sharing as a Power Management Strategy for

Mobile Computers

Mazliza Othman

A dissertation submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

of the

University of London

Department of Computer Science

University College London

May 1999

ProQuest Number: U 642838

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U 642838

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

Load sharing has traditionally been used to improve system performance in distributed

networks by transferring jobs from heavily loaded hosts to idle or lightly loaded hosts.

Performance is improved by distributing workload more evenly among hosts, thus better

utilising system resources.

This thesis investigates the use of load sharing for a different purpose^ that is as a power

management strategy for mobile computers. Since mobile computers operate on limited battery

power, which is a scarce resource, and there is unlikely to be a vast improvement in battery

capacity in the near future, it is vital that power utilisation is managed efficiently and

economically.

The power management strategy proposed in this thesis is based on the concept of load sharing.

The strategy attempts to reduce power consumption by the CPU, which is one of the

components consuming a substantial amount of power, by off-loading computations from a

mobile computer to a fixed host. A load sharing algorithm which selects suitable Jobs for

remote execution is proposed. When designing the algorithm, the inherent limitation of

wireless networks must be taken into account. For example, low bandwidth means that

communications delays are no longer negligible; sending and receiving messages must also be

considered carefully as transmitting and receiving also consume a substantial amount of power.

Consequently, when performing load sharing on wireless networks, more constraints have to be

dealt with compared to when performing load sharing on fixed networks. In addition to

reducing power consumption, transferring jobs for remote execution also gives users access to

faster machines, thus improving response time.

This study identifies the conditions and factors which make job transfer a viable option. The

results obtained show that under suitable conditions, load sharing can extend battery lifetime

significantly. Since stability is an important concern when designing load sharing algorithms,

this issue is also addressed by this study.

Acknowledgement

I would like to express my gratitude to people who have supported me throughout my

postgraduate study;

• first of all, my parents, for their love and support. Where would I be without them!;

• my supervisor. Dr. Stephen Hailes, for his invaluable guidance and advice, and for being

such a wonderful mentor;

• Dr Hale Cuss from the Language Centre who taught the Thesis Writing Course';

• Mr John Wilkes, from Hewlett Packard, for providing the hard disk trace data used in part of

this study;

• fellow sufferers in room 208, Paul, Minseok and Cedric;

• Jungwon, Nadia and Kanta for 'depression outings', and for recommending good books to

read;

• Faez, Gie, Anis and Nor ley, for putting up with my emails, moaning about my predicament;

• Raeis, for making sure I do not forget my mother tongue;

• and finally, Ronnie, for keeping me company while I was tapping away at the keyboard.

"And in the alternation o f night and day,
and the provision (rain) that God sends down from the sky,

and revives therewith the earth after its death,
and in the turning about o f the winds,

are signs fo r a people who understands. "
Al-Quran 45:5

Table of Contents

1. Introduction.. 7
1.1 Hypotheses... 8
1.2 Contributions...8
1.3 Thesis Outline..9

2. Wireless Networks and Mobile Computing Issues.. 11
2.1 Mobile Computing Applications and Services..12
2.2 Limitations and Challenges of Wireless Networks.. 16
2.3 Power Management Strategies..20

2.3.1 Power Management Strategies for Hard D isks...................... 22
2.3.2 Power Efficient Communications...30
2.3.3 Power Management Strategies for C PUs...................................... 33

2.4 Conclusion..38

3. Load Distribution in Distributed Systems.. 40
3.1 Load Sharing Policies..42

3.1.1 Information and Location Policies..43
3.1.2 Transfer Policy... 47
3.1.3 Job Selection Policy... 48

3.2 Effect of Communication Delays on Load Distribution....................................53
3.3 Stability and Scalability...53
3.4 Conclusion.. 55

4. Load Sharing in Wireless Networks.. 57
4.1 An Approach to Load Sharing in Wireless Networks.......................................57
4.2 The Load Sharing Algorithm.. 59
4.3 Trace D ata.. .62
4.4 Power Consumption...63
4.5 Assumptions..64
4.6 The Simulation Environment .. 65

4.6.1 Entities...65
4.6.2 System Parameters... 68
4.6.3 Experimental Design.. 70
4.6.4 Performance M etrics.. 73
4.6.5 Data Analysis....................................... 73

4.7 Summary... . 74

5. Factors Influencing Load Sharing in Wireless Networks.. 75
5.1 Bandwidth... 75
5.2 Processor Power of Mobile Computers... 79
5.3 CPU Utilisation............................. 82
5.4 History and A L S .. 83
5.5 Combining Load Sharing with a Disk Spin-Down Strategy............................ 85
5.6 Conclusion.. 88

6. Stability and Scalability of the Load Sharing Algorithm.. 90
6.1 Backoff Algorithm... 92
6.2 Slotted LS Algorithm.. 95
6.3 Delegating Job Transfer Requests....................................... 103
6.4 Conclusion..107

7. Emulation of Load Sharing on a Wireless LAN..108
7.1 Results of Emulation and Simulation... 109
7.2 Conclusion... 114

8. Future W ork.. 115

8.1. Future Systems.. 115

8.2. Applicability of this W ork...117

8.3. Future w ork... 118

9. Conclusion.. 120

References... 123

T a b le o f F ig u r e s

3-1 Components of a load sharing algorithm.. 43
4-1 Entities and messages passed between them .. 66
5-1 Battery lifetime improvement vs. available bandwidth............................77
5-2 Percentage of jobs transferred vs. available bandwidth 77
5-3 Communication delays vs. available bandwidth.......................................78
5-4 Battery lifetime improvement vs. processor pow er..................................80
5-5 Response time improvement vs. processor pow er....................................81
5-6 Battery lifetime improvement vs. CPU utilisation....................................83
5-7 Performance of History and ALS compared to L S85
5-8 Battery lifetime improvement combining load sharing with a disk

spin-down strategy... 87
6-1 Performance of LS vs. total users.. 91
6-2 Performance of load sharing degrades beyond no load sharing............. 91
6-3 Percentage of jobs transferred vs. total users...91
6-4 Percentage of rejected requests vs. total users...92
6-5 Battery lifetime improvement of LS and Backoff................................... 93
6-6 Percentage of rejected requests of LS and B ackoff................................ 94
6-7 Response time improvement of LS and B ackoff.................................. 94
6-8 Battery lifetime improvement for Slotted LS, Backoff and L S 99
6-9 Response time improvement of Slotted LS, Backoff and L S 100
6-10 . Performance of LS with probes...104
6-11 Percentage of rejected requests of Probes and L S104
6-12 Percentage of rejected requests of LS, P=2 and Slotted P ro b e 105
6-13 Battery lifetime improvement for LS, P=2 and Slotted P ro b e105
6-14 Percentage of jobs transferred for LS, P=2 and Slotted P ro b e105
6-15 Response time improvement for LS, P=2 and Slotted P ro b e106
7-1 Battery lifetime improvement for emulation and simulation................ 110
7-2 Percentage of jobs transferred for emulation and simulation............... 111
7-3 Response time improvement for emulation and simulation................. I l l
7-4 Emulation: battery lifetime improvement vs. CPU utilisation................112
7-5 Simulation: battery lifetime improvement vs. CPU utilisation...............112

In loving memory, bapa.

Al-Fatihah

1. Introduction
In recent years, the basic technology has become available to make wireless computing a

reality. In addition, changing work patterns and an understanding of what technology might

be able to provide have become business drivers pushing towards environments in which

tetherless computing has a significant role to play. It is not, therefore, surprising that the

research community have become increasingly interested in this area, driving it forward from

the lower levels.

The technologists' goal is to produce systems which are practicable. There are several key

characteristics of mobile systems which must be addressed in order to allow this to happen.

Wireless links are relatively slow and unreliable; wireless hosts are resource poor relative to

their fixed counterparts; mobile users may roam the globe, disconnecting from and

reconnecting to the network arbitrarily; and mobile hosts must rely on battery power for

significant periods of time. It is this latter problem that this dissertation seeks to address.

Under continuous use, a typical laptop battery lasts for approximately two to three hours.

There has been relatively little in the way of innovation in battery technology over the past

decade. In 1992, Sheng et al projected a 20% increase in battery capacity over a ten-year

period [Shen92]. More recently, Cox stated that there is unlikely to be a lOx improvement in

battery capacity [Cox95]. Since the power supply problem cannot easily be solved, the only

practical solution to providing greater system availability is to reduce power consumption.

There are several existing approaches to this problem already in use within laptops, generally

based on powering down hardware components when they are not in use. However, studies

based on such approaches have failed to consider how best to exploit the potential for power

saving which can be derived from the existence of a communication link.

In this study, we adopt an approach based around the concept of load sharing, which has

traditionally been used to improve job response time in distributed systems. It is sometimes

forgotten that the question of load distribution is simply an instance of a more general class of

resource allocation problems, with the objective of optimising Job response time. Here, the

problem is similarly to do with making the most of a resource, that resource being battery

power and the optimisation constraints being to minimise the amount of power used. As in

load distribution, the problem is non-trivial; there is a need to invest power in transmitting a

job to the fixed network in order to receive benefit by allowing the CPU to be placed in doze

mode. Again, as in load distribution, the benefit cannot be known precisely at the point of

investment; the key is to estimate intelligently.

1.1 Hypotheses
Since the load sharing algorithm now operates in ah environment which is much different

from the environment previously studied, factors influencing the benefit gained from load

sharing are also expected to be different. In this study, it is expected that:

• low bandwidth impedes load sharing as long delays might result in increased response

time,

• mobile hosts with low processor power benefit from load sharing as that gives them access

to faster machines on the fixed network,

• it is jobs with long execution time that brings significant benefit from transfers as they

considerably reduce power consumption by the CPU,

• combining load sharing with another power management strategy will further extend

battery lifetime,

• delegating transfer requests among fixed hosts will further improve performance as users

are given access to other fixed hosts' spare capacity.

Experiments were carried out to verify these hypotheses, and determine if load sharing brings

significant improvement in battery lifetime.

1.2 Contributions
The contributions of this thesis is listed below:

1. This study has successfully adopted a well-known concept in distributed systems to

address a problem in mobile computing. It is possible to adopt load sharing for use in a

mobile computing environment as a power management strategy, and load sharing was

found to be a potentially effective power management strategy. On average, battery

lifetime was extended by about 20% when load sharing was performed. In an experiment

which combined load sharing with another power management strategy, battery lifetime

was extended by an average of 33%.

2. This study identified the necessary modifications required in order to implement load

sharing in a mobile computing environment, taking into considerations the constraints of

wireless networks and the objective to be achieved.

3. In addition to establishing that load sharing does extend battery lifetime significantly, the

findings also identify factors which are favourable, and which may impede load sharing.

Among the finding of this study is that low bandwidth does not always impede load

sharing; subject to a constraint, it is possible to transfer jobs even at low bandwidth. Load

sharing was also found to be useful in giving mobile hosts access to faster machines on the

fixed network.

4. This study identified the type of applications which are most likely to benefit from load

sharing. Previous studies on load sharing have found that it is CPU-intensive jobs that

have most to benefit from load sharing. The findings of this study show that this is also

the case in a mobile computing environment. Off-loading CPU-intensive jobs to fixed

hosts extends the duration the CPU operates in doze mode considerably, thus reducing

power consumption. A power management technique which reduces power consumption

by the CPU is especially important when a user is using his mobile device to perform

CPU-intensive jobs, in which case it is critical that battery power is not suddenly depleted,

resulting in a considerable amount of frustration on the part of the user. It is imperative

that the power management strategy should be able to prolong battery lifetime in order to

allow the user to finish his tasks. It is on the basis of these considerations that we argue

the merits and importance of our proposed approach.

5. This study shows that it is possible to make use of unutilised resources on fixed hosts to

conserve battery power on mobile computers.

1.3 Thesis Outline
The thesis outline is as follows. The wireless networks and mobile computing issues are

discussed in Chapter 2. This starts with an overview of the diversity of mobile applications,

followed by a discussion of the challenges which must be met in order to support mobile

users due to the inherent limitations of wireless communications. The power management

strategies proposed thus far are examined.

Previous studies on load distribution in distributed systems and the extent to which they are

relevant to this study are discussed in Chapter 3. This is followed by a discussion on load

distribution policies and the effect of communication delays on the performance of load

distribution algorithms. Finally, the importance of addressing stability and scalability issues

are discussed.

In Chapter 4, the approach taken in designing a load sharing algorithm for wireless networks

is described. The reasoning behind the design decisions and the factors which were taken

into account in developing the algorithm are explained, and the extent to which previous work

on load distribution is relevant is discussed. This is followed by a discussion on the trace

data collected for use in the simulations, the assumptions made, the simulation environment,

the system parameters and the experimental design.

In Chapter 5, experiments carried out to determine factors influencing load sharing in

wireless networks are discussed. In addition, the benefit of combining load sharing with

another power management strategy is also examined.

In Chapter 6, the issue of stability and scalability of the load sharing algorithm are addressed.

The modifications carried out on the proposed load sharing algorithm to prevent instability

are discussed. The way in which the algorithm is modified to disable itself when load sharing

is no longer feasible and the parameters influencing that decision are explained.

In Chapter 7, the emulation carried out to verify and validate the simulation results is

discussed. The emulation results are compared to the simulation results in order to determine

the extent to which the simulation represents a real environment.

In Chapter 8, a vision for the future wireless and mobile applications is discussed, followed

by a discussion on the applicability of this work. Possible future work is also explored.

Finally, Chapter 9 concludes.

10

2. Wireless Networks and Mobile Computing Issues
Advancing technology in wireless communication offers users anytime, anywhere access to

information and network resources without restricting them to the fixed network

infrastructure. Mobility introduces new challenges as several assumptions made regarding

distributed networks are no longer valid. Many of the research issues regarding wireless

networks and mobile computing are not new, for they have been discussed in the context of

distributed systems. However, the fact that users are no longer restricted to fixed hosts, that

users are free to roam the globe and can connect to a network from various locations, and that

addresses no longer give the location of a machine, have made the research problems harder

and more interesting.

Wireless networks are also associated with various constraints - bandwidth is scarce, the

quality of connection varies, communication delays are high and users may disconnect

frequently from the network. In addition, mobile devices usually have lower computing

power and storage capacity compared to a host on a fixed network. Mobile devices and

applications have to address these limitations in order to deliver services which are of

acceptable quality to the users. As users roam, they will encounter heterogeneous network

environments and computing resources may become lost or new resources may become

available. Mobile applications need to be smart enough to be able to make full use of

resources as they become available.

Katz [Katz94] saw the progress in wireless communications as the next logical step in the

evolution of computers, where computing resources can be used more flexibly as users are

freed from being physically connected to the underlying network. He defined wireless

information systems as computing systems that provide the ability to compute, communicate

and collaborate anywhere at any time. In his paper, Katz gave the following definitions,

though it should be noted that there is no general consensus in this matter;

• Wireless computing refers to computing systems that are connected to their environment

via wireless links, such as radio frequency (RF) or infrared (IR), and usually apply to

computing devices participating in a wireless LAN, with gateways to wired networks.

Users are able to participate in work groups via a collection of computing devices and

servers in order to share data and information, implying relatively symmetric bandwidth

between the wireless node and the network, and relatively high bandwidth.

• Nomadic computing refers to the ability to compute as users relocate from one computing

environment to another. In this scenario, individual organisations with their own wireless

infrastructures are linked together by public wired internetworks. Nomadic computing

11

will make it possible for a user to use his own device within a foreign organisation's

wireless infrastructure. The issues of trust, security and privacy must be addressed to

enable users to roam in foreign environments while protecting their privacy, and the

foreign networks against malicious users.

• Decoupled computing refers to the ability to compute when disconnected from the

network. If mobile devices are full-function computers such as notebook computers,

decoupled computing makes operations such as file access transparent across

disconnections by using techniques such as prefetching and caching.

Katz also predicted that the distinction between communications and computing will continue

to blur, leading to a new field of telecomputing.

In addition to the definitions above, Weiser [Weis93] presented the interesting idea of

ubiquitous computing where computers are made 'invisible' to users by integrating them into

users' environment. He pointed out that anthropological studies of work life showed that

people primarily work in a world of shared situations and unexamined technological skill.

The computer technology today does not conform to this description because it remains the

focus of attention instead of being a tool which disappears from users' awareness. Ubiquitous

computing aims to make computers widely available throughout user environments and

effortless to use. In other words, users should be able to use computing devices without

having to acquire technological skills to use them.

The definitions above indicate different classes of applications and, in the following sections,

the diversity of mobile/wireless applications will be described, followed by a discussion on

the constraints and limitations imposed by wireless networks which must be addressed in

order to provide services which are of acceptable quality to the users. Later, how this thesis

addresses one of the constraints of mobile computing, that of power management, is

discussed.

2.1 Mobile Computing Applications and Services
There is a wide range of applications (either under study or readily available) to support users

on the move. The applications and services range from personal guides and electronic news

services to collaborative applications for emergency services.

Mobile context-aware applications can be used as personal guides in museums and galleries

which will allow users to take personalised tours [Long96]. Information about an exhibit is

downloaded as a user moves towards it and he could then download more detailed

information about it. Personal guides are different from human guides in that a user can

browse and download information tailored to his own interests. Objects of interest are sensed

12

using active beacons or identified using computer vision recognition. The hand-held devices

might use position measurement systems such as indoor beacons or The Global Positioning

System (GPS) to locate users, and an electronic compass or inertial navigation system to find

user orientation.

Context-aware devices can also be used as a measurement tool and to assist field studies.

Simple hand-held sonar devices can be adapted to videotape and map a room along with

user's comments. An ecological field study may be assisted by a device that automatically

records the context of a particular species, assists the user in recognising plants, and also

notes the surrounding objects. Another application is as an enhanced reality tool where a

head-up display provides "x-ray vision" for a user surveying a building for renovation, to

indicate the location of hidden plumbing or electrical conduits to the user based on

information from sensors and/or building plans.

Another class of application is electronic news services discussed by Imielinski and Badrinath

[Imie94b]. The electronic news services deliver and filter information according to

individual user profiles. For example, traffic information or weather reports are filtered

based on users' locality, while stock information is filtered according to users' portfolios.

This class of application is further illustrated by Shekar and Lin [Shek94] who described an

application known as Advanced Traveller Information System (ATIS), which provides up-to-

date information on weather and road conditions. It also provides travel information such as

diversions, construction zones, bus schedules and parking etc.

Imielinski et al [Imie95] predicted that the massive market for mobile computing which will

emerge by the end of the decade will be based on mail-enabled and information services

oriented applications. These applications differ from traditional applications in that they are

not computationally intensive applications and will not need to run on powerful computing

devices.

Duchamp [Duch92] predicted that mobile applications will metamorphosise low-skill and/or

labour-intensive jobs into more information-based tasks which will affect people whose job

involves movement over a wide area in order to deliver things or to visit immovable people or

things, e.g. repair personnel, nurses and inspectors. Katz [Katz94] gave examples of how the

metamorphosis envisioned by Duchamp will change the way people in various fields work.

Wireless information systems will make possible collaborative applications that require

untethered real-time access to multimedia information sources to provide support for

personnel in the field, emergency services, law enforcement, mapping and location finding

etc.

13

Katz illustrated the diversity of wireless communications in a crisis management application

using a multimedia terminal for fire-fighters. The application can be used to provide maps

and architectural blueprints to assist in planning fire-fighting strategy. A locator system may

be incorporated to track team members as they move through the building. It should also

provide voice and data communications among the team and other emergency and civil

defence teams. The dynamic nature of this combined data makes it impossible to pre-store all

information on the mobile device; instead, communication with a wide range of data rates

must be supported, some of it unidirectional, some bidirectional and interactive. For

example, symmetric communication is required to communicate with other members of the

team, while downloading maps and location and tracking systems can be supported by

asymmetric communication.

Mobile computing technology can also be used to support field work and increase

collaboration among field workers by providing on-line access to information and interactive

communication facilities. The MOST project (Mobile Open Systems Technologies for the

Utilities Industries) was established to examine the impact of mobility on working practices

and on the repercussions for computer systems support [Davi93, Chev94, Frid96]. It focused

on the IT requirements of field engineers within the power distribution industry.

Engineers working in the field were traditionally coordinated by a single control centre which

approved all switching in the power distribution network and maintained an overall picture of

the current state. The centralised approach ensured that conflicting requirements were

resolved safely, but the centre became a bottleneck. The main disadvantages of this approach

were the global network state was not available to engineers in the field and efficiency was

reduced due to the bottleneck. The second point was particularly crucial when faults

occurred requiring multiple unscheduled items of work to be carried out.

In order to help field engineers work more efficiently, they were given access to information

previously held only at the control centre and were allowed to collaborate by exploiting the

GSM network. Information which rarely changed was provided on a CD-ROM or stored on

hard disk, while dynamic information was provided via a communication link to the centre.

The new system also allowed them to update the current state to reflect the operations they

carried out. Engineers not physically located together were able to view and manipulate

shared diagrams and information. They were also provided facilities so that they could

communicate with each other to ensure that conflicting switching requirements were resolved

safely. The application had real-time aspects and was based on a peer-to-peer architecture

instead of a client-server architecture.

14

Another example of collaborative application in the field is W ireless Coyote [Gran93],

which is an experiment conducted by Apple Classrooms of Tomorrow (ACOT) in

cooperation with Orange Grove Middle School of Tucson, Arizona. An experiment was

conducted to investigate how teachers and students could use technology in education.

Mobile computers were connected by a wireless local area network (WLAN) and a wide area

network (WAN) and a spreadsheet program was designed to provide real-time data sharing,

immediate data display and real-time graph plotting. Students were provided with voice-

activated walkie-talkies to support collaboration so that they could discuss their findings.

This experiment involved 5 groups of students, four teachers, a naturalist and personnel from

Apple Computer. The students made a field trip to learn about Sabino Canyon in Tuscon.

Four of the five groups were placed at different locations in the canyon, where three groups in

the canyon used traditional scientific methods to measure soil and water temperature, wind

speed and soil pH in their assigned locations, and the fourth group served as a base station

and provided coordination among the other three groups by walkie-talkie, delivered additional

supplies and coordinated requests for two digital cameras among the three groups. The base

station was not involved in data collection, but was responsible for monitoring data collection

activities of the field groups and transferred those data by cellular modem to the fifth group,

located at the school which was 15 miles away. The school group built a database about the

canyon based on the data collected by the field groups and used print and video resources at

the school to add images and other content to their database. The naturalist provided them

with expert opinion to help them to understand their findings.

The LAN made each group's data instantly available to all; consequently, they were analysing

environmental data of the whole canyon. The walkie-talkie helped students and teachers to

discuss their findings and to decide on the next step to take. The interactive nature of the

application made the learning process more interesting and fun for the students.

Other collaborative applications proposed are Bayou [Deme94] and W ebExpress [Hous96].

Bayou is an architecture which provides users with facilities to share appointment calendars,

documents, bibliographic databases etc. in spite of intermittent network connectivity.

W ebExpress was designed for repetitive commercial applications and targeted for visiting

medical personnel, salespersons, service workers who carry out repair at remote locations etc.

It was designed to reduce data volume and latency of wireless communication.

This section illustrates the diversity of mobile applications and how the applications might

change the way people work. Naturally, prediction of future trends is highly speculative and

often subject to over-optimism by those in the field. However, it is undoubtedly the case that

mobility has brought and will continue to bring forward new opportunities. Further, there are

15

now large commercial concerns whose existence derives from mobile telephony who have a

vested interest in seeing (and selling) the expansion of the sort of services they offer.

Consequently, the claims made for wireless computing are probably not far wide off the

mark, although timescales may differ and commercial pressures are likely to play the major

role in determining how far and how fast we can go. In the next section, the limitations of

wireless networks and the challenges which must be met in order to deliver mobile

applications at a quality of service which is acceptable to the users is discussed.

2.2 Limitations and Challenges of Wireless Networks
Several issues must be addressed in order to deliver the sort of applications and services

described in the previous section. The problems encountered are not only due to the inherent

limitations of wireless communications, but also due to the fact that the locations of mobile

users/devices are constantly changing as users move. The configuration of a wireless

network changes dynamically because users are no longer attached to a fixed point during the

duration of a connection. The problem is further compounded by heterogeneous

environments encountered by users as they move between various points of attachment.

The amount of bandwidth available to users as they move between networks varies greatly.

While connected to a wireless LAN, a user may have available bandwidth of up to 2 Mbps, or

10 Mbps in the near future while when venturing outdoors, the available bandwidth may drop

to only 9.6 kbps. Considering the amount of bandwidth currently available on fixed networks

and the bandwidth-consuming applications available in the market, the low bandwidth, high

latency communication medium offered by wireless networks must be considered primitive.

Satellite-based systems which provide wide area coverage are also used to provide the

wireless communication infrastructure, albeit at a very high cost. Among well known

satellite services are Odyssey, Globalstar and Iridium. There are three types of satellite

services:

1. Geostationary/Geosynchronous O rbit System (GEO), which is positioned 36,000 km

above the earth, requires expensive satellites and large antennas, but with only three

required to cover the earth. GEO may provide hundreds of high bit-rate data links using

multiplexing, but involves a transmission delay of 0.5 second due to its high altitude. Its

large regional coverage makes it difficult to provide the small-cell coverage necessary for

frequency reuse to provide higher overall system capacity.

2. Low Earth Orbit System (LEO), which is positioned 1000 km above the earth is the

least expensive of the three types of satellite systems, but more is required to cover the

earth. The coverage area is small compared to GEO, thus allowing a higher capacity

16

within a given spectrum allocation. The transmission delay is also significantly less than

GEO.

3. Medium Height Earth Systems (MEG) is between the two extremes.

A much less expensive alternative to satellite systems is offered by the Stratospheric

Telecommunications Services, which uses air platforms that remain geo-stationary above

metropolitan cities to provide T l/E l access to users in the service area’. The air platforms,

which are positioned 22 km above the earth, incur very low communication delays and low

infrastructure costs.

Apart from the variability of available bandwidth, users may also experience rapid and

massive fluctuation in the quality of service provided by the wireless infrastructure

[Davi94b]. Bagrodia et al [Bagr95] stated a fundamental way in which mobile computing

differs from conventional operation is the huge variability in connectivity to users' computing

environments. Even though there will be improvements as these limitations are addressed in

future technologies, the discrepancy between wired and wireless networks are likely to

remain [Wats94]. Badrinath and Welling [Badr95] claimed that although the constraints of

mobile computing will become less noticeable, the mobility of devices will always induce

constraints compared to non-mobile devices. Ebling et al [Ebli94] stated that even as global

wireless connectivity becomes available in the near future, much of it will be intermittent

with low bandwidth and high latency and will be limited to a few oases in a vast desert of

poor connectivity. Watson [Wats94] argued that the limitation imposed calls for a software

architecture which reduces the demands placed on the wireless link and supports

disconnected operation.

It is very unwise to make any assumptions about the underlying support provided by the

network infrastructure because, as users encounter heterogeneous environments while

moving, resources and services not previously available may now be offered by the new

network, or a critical service needed to run an application may be lost [Davi94a, Davi94b].

Mobile applications must deal with this heterogeneity and try to deal with failure gracefully

while minimising inconvenience to users. Davies et al [Davi94b] termed the class of service

which is designed to operate in a dynamic environment, and is able to adapt itself to the

heterogeneity of the network as adaptive service, while Katz [Katz94] termed this type of

communication adaptive communication. Katz regarded making applications aware of their

limited and dynamically changing bandwidth as a critical challenge. Applications designed

for mobile users must take into consideration the resource constraints they may face and be

‘ The information is obtained from the Sky Station International Inc. home page at
http://www.skystation.com.

17

http://www.skystation.com

able to make the best possible use of available resources [Badr95], and they may need to

present different views of functionality and quality depending on the location of the mobile

device.

Duchamp et al [Duch91, Duch92] listed the challenges in designing system software to

insulate applications from hardware and networking changes imposed by mobility:

1. Support for mobile operation: most current software for distributed computing assumes

that computing devices do not move and packets are routed based on network number.

This is especially true for routing protocols like the Internet Protocol (IP). This

shortcoming, however, has been addressed by protocols such as Mobile IP [John97,

Perk97a, Perk97b].

2. User interface design fo r very small computers: the user interface has to be modified to

accommodate the shrinking size of portable computer's display.

3. Adjustments to new hardware trade-off: the hardware employed by portable devices will

inevitably be different from hardware devices on fixed networks. For example, since

portable devices might have reduced disk storage, new storage management algorithms

will have to be designed.

4. Emerging new technologies: applications should be able to adjust and take advantage of

any unique characteristics of new technologies that might be used in future portable

workstations.

5. Security: providing authentication, accounting and management over a wide area and

across organisations is not a new problem, but is aggravated and made more urgent by the

advent of mobile computers.

6. Compatibility: the requirements above should be provided while retaining a reasonable

level of compatibility, i.e. applications should provide interfaces and performance so that

a user’s desktop computing environment is available in his/her hand without the need to

rewrite applications.

Davies et al [Davi93] classified the challenges of mobile computing technology as being

either communications, distributed systems or cooperative working, which are explained

below:

1. Communication issues: most existing wireless protocols are tailored for voice whereas

mobile computing technology needs media access protocols for the radio channel which

exploit the characteristics of the media and are suitable for transmitting a wide range of

data types, e.g. voice and image.

18

2. Distributed system issues: the low bandwidth and error-prone wireless communication

medium calls for object replication and message batching techniques to overcome the

problems associated with poor communication channels.

3. Implications fo r collaborative working: collaborative applications in high-bandwidth

networks often use multimedia to enhance interaction among users. The wireless

communication medium restricts the range of services which can be offered by

collaborative applications and the impact of this restriction on users' ability to collaborate

has to be studied.

Davies et al's study of currently available technology and the user requirements of mobile

computing systems led them to conclude that there is a significant mismatch between the two.

Katz [Katz94] stressed that in spite of the discrepancies between wired and wireless

networks, mobile users should have access to the services they see in wired networks, albeit

at potentially lower resolutions and possibly longer latencies. A crucial challenge is to make

applications aware of their limited and dynamic environment so that they can adapt to what is

available as appropriate.

Other constraints faced by mobile devices are that they have significantly lower memory

capacity and computing power compared to a fixed host. For this reason, Badrinath et al

[Badr93] proposed that the computation and communication load should be borne by the

static network as much as possible. Doing so will reduce the burden of computation on

mobile hosts and also helps conserve battery power.

The limited battery power on mobile devices is an issue which has to be addressed as users on

the move will want their battery to last for as long as possible. Cox [Cox95] pointed out that

the possibility of a ten-fold improvement in battery capacity in the short to medium term is

essentially nil. Cox stated that, ''Frequently, the suggestion is made that battery technology

will improve so that high-power handsets will be able to provide the desired five or six hours

o f talk time in addition o f 10 or 12 hours o f standby time, and still weigh less that half o f

today's smallest cellular handset batteries. This "hope" does not take into account the

maturity o f battery technology, and the long history (many decades) o f concerted attempts to

improve it. Increases in battery capacity have come in small increments, a few percent, and

very slowly over many years, and the shortfall is well over a factor o f 10. In contrast,

integrated electronics and radio frequency devices needed fo r low-power low-tier PCS

continue to improve and to decrease in cost by factors o f greater than 2 in time spans on the

order o f a year or so. It also should be noted that, as the energy density o f a battery is

increased, the energy release rate per volume must also increase in order to supply the same

amount o f power. I f energy storage density and release rate are increased significantly, the

19

difference between a battery and a bomb become indistinguishable! The likelihood o f a xlO

improvement in battery capacity appears to be essentially zero. "

Since there is unlikely to be much improvement in battery capacity, it is important that power

utilisation is managed efficiently and economically. Without this, the potential of mobile

system, and the commercial realisation of projects such as described above will be difficult to

realise. It is hard to overstate its importance in the future development of mobile systems.

This is the issue addressed by this thesis. The following section discusses the importance of

power management and various power management strategies proposed to date.

2.3 Power Management Strategies
Power management strategies deal with techniques to reduce power consumption by power-

hungry components, which often involve powering down the components during idle period

in order to reduce power consumption. Imielinski et al [Imie94a] gave three reasons for the

importance of power management. Firstly, it makes possible the use of smaller and less

powerful batteries to run the same applications for the same duration, which is important

from the portability point of view. Secondly, extending battery life allows a unit to run

longer without the trouble of recharging which also results in monetary savings. The third

advantage is from an environmental perspective, where disposal of batteries is an

environmental hazard.

In this section, the studies which have identified the power-hungry components and the

strategies proposed to reduce power consumption are described. Marsh and Zenel [Mars94]

discussed the results of measuring power consumption of three components of portable

computers which consumed a significant amount of power. They measured power

consumption of the CPU, hard disk and display of four notebook computers, Toshiba

2200SX, the Toshiba 3300SL, the Dell 320SL1 and the Zenith MasterSport SLe. The results

of their measurements are as follows.

CPU: Each machine was measured at fast and slow clock speeds. The amount of possible

saving varied from 11 - 31% of total system power. In the best case, slowing down the CPU

clock speed extended battery life for over an hour for Dell 320. Since consumption varies

linearly with CPU clock speed, Marsh and Zenel extrapolated power consumption of the CPU

of each notebook by a simple calculation:

AClockX = AWatts

and solving for X. The calculations showed that all CPUs consume approximately the same

amount of power, where the total power consumed by the CPU is 16 - 35% of total power.

The high percentage is due to the 5V components used in the machines. More modem

20

machines which use 3.3V components reduce this figure significantly, because power

consumption varies quadratically with voltage.

Hard disk: Measurements taken for hard disk power consumption showed that it consumes 8

-22% of total power. Not spinning the disk extends battery lifetime for 20 - 30 minutes.

Results showed that a bigger drive consumes even more power. The trend in the marketplace

however, is to increase density which does not help towards shrinking the disk size,

indicating that disks will consume increasingly more power. Results also showed that a

decrease in power due to lower-voltage CMOS logic does not reduce the power consumption

of disk drives.

Display: The measurements were made with the backlight on and off. Turning the backlight

off saved over 4 Watts on the Zenith and 2 Watts on Toshiba, but saved less than 1 Watt on

Dell.

In summary, the measurements showed that slowing the CPU clock rate saved between 11%-

31%, spinning down the disk saved between 20% - 54% and turning the display off saved

between 44% - 61% power. The CPU, disk and display were found to account for 44 - 60%

of total system power.

Marsh and Zenel used three different strategies in powering down by the CPU, which are

described below, in increasing order of complexity;

1. Halt is a technique for reducing CPU power by executing the halt instruction. Once

halted, most of the transistors do not change state, reducing power significantly. The halt

instruction is simple and consists of only 6-10 assembly instructions. The CPU still runs

at full speed because the clock rate is not altered. When halted, no instructions are fetched

and nothing happens until an interrupt, which may be generated by the real-time clock or

any peripheral devices, is sent.

2. Clock relies on hardware and its iS2360 power management chip. When the idle thread

finds no other threads in the ready queue, it asks the iS2360 to reduce the clock speed.

The ready queue is continually inspected at the lower speed until a new thread appears.

The clock is then reset to full speed and control is transferred to the new thread. The

clock speed is also increased if an asynchronous software trap (AST) is received.

3. Clock/Halt first reduces the clock speed and then calls the halt instruction. Unlike the

first approach, some logic may change state when halted. This approach reduces the

CPU's power consumption while waiting for an interrupt. The idle thread checks the ready

queue and reduces the clock speed and calls the halt instruction if there is no ready thread.

When an interrupt is received, the chaining code turns the clock back to full speed. When

the interrupt completes, control returns to the instruction following the halt instruction.

21

Results showed that Halt reduces total system power consumption by about 22%. Clock

reduces power consumption by an additional 8% for Dell, and saved 11% less than Halt for

Toshiba, Halt/Clock gave the best performance, reducing power consumption by 35%.

Marsh and Zenel demonstrated that using suitable techniques, power consumption by power-

hungry components can be reduced significantly. Forman and Zahorjan [Form94] suggested

that power is conserved by careful design and efficient operation, while applications can

conserve power by reducing their appetite for computation, communication and memory.

There have been several studies which address the power management issue, by attempting to

reduce power consumption by the CPU, hard disk and also by using the communication

medium economically. In the following sub-sections, the proposed strategies are discussed.

2.3.1 Power Management Strategies for Hard Disks
Power management strategies for hard disks involve techniques for spinning down the disk

during an idle period. The concerns which have to be addressed are summarised as follows:

• an appropriate threshold for the idle period so that the disk can be spun down safely,

• keeping access latency to a minimum, because once a disk is spun down, a delay is

introduced when spinning up the disk, thus delaying access to data,

• spinning down the disk to reduce power consumption should not adversely affect the disk

life span,

• spinning down the disk should not result in higher power consumption compared to when

it is not spun down.

In the following paragraphs, the way in which these concerns are addressed by various studies

is discussed.

Greenwalt [Gree94] pointed out that recent efforts to achieve low-power operating conditions

have primarily targeted the hardware, where low-power subsystems are given controllable

power and clocks to allow them to operate in multiple power states. Advanced Power

Management provides a mechanism whereby system software can control the transitions

between power states.

Greenwalt established that hard disk drives consume between 15-30% power depending on

the amount of memory and disk usage. The amount of power consumed by the disk can be

reduced by spinning down the disk during idle period, when there is no request to access it.

The disk is spun up again on the next access request, and spinning it up consumes a

considerable amount of power and introduces access latency. As a result, spinning down the

hard disk vigorously can actually increase power consumption, in addition to increasing

access delay. Hence, the disk must be idle for a minimum period of time in order to offset the

22

additional power consumed when spinning it up again and to justify the increased response

time.

Greenwalt defined a disk critical rate, Ren as the rate where the average power consumed for

a single access if the disk continually spins and the power needed to spin the disk up after

spinning it down are equal. A timeout value, which is the minimum period of time a disk has

to be idle before being spun down, is selected based on Rcr- His experimental results showed

that:

• Since spinning up the disk after spinning it down consumes a considerable amount of

power, spinning it down too quickly, might result in an increase in power consumption

instead of decreasing it. On the other hand, if the timeout value is too high, the

probability of spinning down the disk is almost zero.

• The power consumed by a disk is equal to the power consumed for the on/off cycle plus

the extra power needed to keep the disk spinning until the timeout occurs.

• The on/off cycle is costly. Low timeout values reduce the reliability of a disk because

rapid on/off cycles reduces the life span of a disk whereas large timeout values minimise

power consumption and lengthen its life span. A common practice is to use a timeout

value of several minutes in order to balance disk life span and reduce power

consumption.

• As there is a delay incurred when spinning up the disk, performance improves as timeout

values becomes longer. However, users may tolerate the increased delay if it happens

infrequently.

Greenwalt also pointed out that power, performance and reliability are not always compatible

goals and a compromise must be reached in choosing an appropriate timeout value.

Although Greenwalt proposed that a spin down policy should strike a balance between

reducing power consumption and latency. Doughs et al [Doug94a] proposed an adaptive

threshold policy which aggressively spins down the disk at the expense of higher latency.

Doughs et al claimed that the high fixed threshold values used by manufacturers, which vary

from 3 seconds to several minutes, was too high, and that spinning the disk for a few seconds

without accessing it can consume more power than spinning it up again upon the next access.

To examine the trade-off, they ran trace-driven simulations to evaluate different disk spin-

down policies. They evaluated two algorithms: an off-line algorithm^, which is optimal in

" An off line algorithm assumes it has a priori knowledge of disk access pattern and is able to make
optimal spin-down decisions.

23

terms of power consumption; an online threshold algorithm^; and a predictive online

algorithm which uses past history to predict the next access. They found that threshold

policies which spin down the disk after 1-10 seconds perform almost as well as the optimal

off-line algorithm. Whilst this approach reduces the timeout value recommended by

manufacturers by approximately half, in some cases, the threshold significantly increased

access latency. They claimed that the delays can be avoided if access time could be predicted

accurately, but admitted that predictive strategies that narrow the gap between optimal off

line and threshold-based algorithms are difficult to formulate.

A later work by Doughs et al [Doug95] proposed an adaptive disk spin-down policy which

tries to balance between reducing power consumption and reducing access latency. They

developed a method for distinguishing between undesirable and acceptable spin-up delays.

Undesirable delays are referred to as bumps and the timeout value was varied based on users'

tolerance of bumps. The adaptive policy is aimed either:

• to reduce the number of bumps without adversely affecting energy consumption compared

to a fixed-threshold policy, or

• to reduce energy consumption without adversely affecting the number of bumps.

A fixed threshold policy spins down the disk if it has not been accessed for T seconds. As a

spin-down policy has two contradicting goals, which is to reduce energy consumption while

minimising access latency, using a low timeout value may reduce power consumption, but

increases the number of bumps. Moreover, as mentioned earlier, a short timeout may

increase instead of reducing power consumption due to the cost of spinning up. A fixed

threshold policy usually uses a large timeout value to minimise bumps.

Doughs et al used a break-even point, 7 ,̂ which is the critical value Rcr discussed earlier, as

the minimum period a disk remains idle before spinning it down. The adaptive spin-down

policy monitors the spin-down threshold and updates the threshold to balance between energy

consumption and bumps. They defined the measure of acceptability as /? = S/I, where <5 is the

spin up delay and / is the idle time of the disk prior to spin-up. A spin-up delay is a bump if 5

> pi, all spin-up delays are bumps if p=0.

The threshold value is adjusted using either an additive or multiplicative approach. Using an

additive approach, a value % or Pa is added to T, depending on whether an undesirable or

acceptable spin-up occurs respectively, where Œa> 0, Pa < 0 and % > \Pa\. The values are

chosen so that when a bump occurs, T is increased to avoid the possibility of future bumps

 ̂ A threshold algorithm uses a fixed timeout value, T, where the disk is spun down if it has been idle for
T seconds.

24

and when an acceptable spin-up occurs, T is decreased, but more gradually. Using a

multiplicative approach, T is multiplied by or p„ where a„> 1 and 1 > P„> l/a^.

Simulations were carried out using traces from a Macintosh Power Book, Windows 3.1 and

HP-UX. The results obtained, which are summarised in Table 2-1, showed different levels of

power saving were achieved depending on the trace data used.

25

Table 2-1
Table summarising simulation results of [Doug95]

p=0.05 Windows Macintosh HP
Fixed threshold
T=2, 5, 10, 30
and 300 seconds

A fixed threshold of 2s consumed the
least energy, but caused over 50 bumps
in a 1.5 hour period. Increasing the
fixed threshold or using an adaptive
policy reduced the number of bumps at
the expense of higher energy
consumption. E.g. T=30s resulted in no
bump, but increased energy
consumption by 48%. A fixed threshold
of 1 Os decreased bumps by 66% and
increased energy consumption by 15%.

Results showed no significant improvement
of adaptive policy over a fixed threshold
policy.

A fixed threshold of T=30s reduced
bumps by about 50% with an energy
increase of 18%.

Adaptive policy
(adaptive
approach)

T was varied between 5 and 30 seconds,
tta=2s, Pa=ls.
Energy consumption increased by 8%
compared to fixed threshold of 2s and
the number of bumps decreased by 65%.

Varying T between 10-70 seconds with
tta=2s, Pa=0-2s reduced bumps by 50%
with an energy increase of 3%.

Adaptive policy
(multiplicative
approach)

T was varied between 5 and 30s,
a„,=1.5s, pm=0.5s
Consumed only 0.5% more energy than
a fixed threshold of 5s and reduced
bumps by 33%.

A threshold between 2-20s using a
multiplicative approach consumed 1%
more energy and reduced bumps by 22%.

Not discussed.

26

The algorithm offers a method of varying the threshold dynamically to reduce bumps at the

expense of power consumption. Users can make the trade-off by varying the threshold

parameter manually, or the value may be varied dynamically by the algorithm based on recent

history, which is preferable as user work patterns may change with time.

Li et al [Li94] reduced power consumption and avoided latency by using a disk cache to

extend the duration a disk operates in sleep mode. Disk caches have been traditionally used

to reduce disk access response time. From the perspective of power management, disk caches

will not only reduce access response time, but also incur less energy cost compared to a

system without a cache by filtering read accesses. Using a disk cache also reduces the overall

impact of spinning down the disk and the number of spin ups required to service write

requests. The cache used for the study was LRU (least recently used) with a block size of 4

kilobytes.

Li et al divided the hard disk operation into 4 modes. O ff mode consumes no power and

cannot perform any function except power up. Sleep mode is when the disk is powered up,

but the disk platter is not spinning. In idle mode, the disk is spinning, but there is no disk

activity. In active mode, the disk platter is spinning, and the disk head is either seeking,

reading or writing and consumes the most power; this occurs only for short periods of time.

Li et al also studied the effect of a write-back policy which reduces the frequency of write

accesses to a disk by delaying write operations to a disk for a specified period of time. The

policy proved to be especially useful in cases where files are quickly over-written. Trace data

for the study was collected from Microsoft DOS and Sprite file systems. The simulation

results showed that a minimum amount of energy was consumed using a timeout value of 2

seconds, where it saved nearly 90% of energy consumed. A timeout value of zero increased

power consumption due to frequent disk spin ups, as expected.

The performance of disk cache policy with a timeout value of 6 seconds was compared to an

optimal spin down algorithm with the same timeout value. This value was chosen based on a

critical value, Rcr, which was identified as 6.2 seconds. Results showed that the 6-second

timeout policy saved 30% less energy compared to disk spin down with caching.

Li et al established that two factors which determine how much energy saving is achieved are,

how frequently a disk sleeps and for how long it sleeps. The timeout value should be chosen

so that it is small enough that it includes a cluster of disk activities, but large enough that the

energy saved by sleeping is significantly larger than the energy consumed when spinning up.

Decreasing the timeout value also increases the sleep time, which reduces energy

consumption.

27

An analysis of the trade off between energy consumption and delays showed that a large

saving can be achieved by tolerating a small amount of user delay. User delay was defined as

the sum of all the spin up delays which are synchronous with user activities. Asynchronous

spin ups from delayed writes were not considered because they were transparent to users.

Results showed that a 2 second timeout did not carry a heavy performance penalty.

The disk cache was found not to have a profound impact on energy savings, even though it

did reduce energy consumption by filtering disk traffic. The choice of timeout value was

found to play a more prominent role in energy consumption. A disk cache of 1 megabyte

reduced power consumption by half, and a larger cache did not further reduce energy

consumption. The effect of varying write delays was found to be similar to the effect of

varying the disk cache size, A write delay of 30 seconds reduced energy consumption by

half, and a write delay greater than 60 seconds did not yield further improvement.

Krishnan et al [Kris95] took a different approach of spinning down the disk by using a

sequential rent-to-buy problem, which is described as follows. If a resource is required for an

unknown amount of time, and there is an option of renting it for £1 per unit time, or buying it

for £c, for how long should the resource be rented before it is bought? An offline algorithm

with a priori knowledge of resource requirement will immediately buy the resource if it is

needed for at least c time units, and rent it otherwise. An online algorithm with no a priori

knowledge will rent the resource for c time units before buying it, incurring a cost of at most

twice of an offline algorithm. In the context of the spin down algorithm, keeping the disk

spinning is a rent, while spinning it down is a buy, because spinning it down and then up

again consumes a fixed amount of energy which is independent of the amount of time before

the next access.

The disk spin-down algorithm is modelled as a sequence of single rent-to-buy problems,

where the time between any two disk accesses is termed a round. For each round t, the

algorithm uses information from the previous (t-1) rounds to decide if it should continue

spinning the disk (renting) or spin down the disk (buying).

Krishnan et al proposed the "L" algorithm which sets a cut-off on the cost it is willing to

accrue before buying, where the cut-off value is the critical value, R c :r . Two requirements for

the algorithm are that it should produce good cut-offs, and do so using minimum space and

time. The L algorithm assumes that a spinning disk consumes f , power and a spun down disk

consumes P,j> 0 power, where P.j is much smaller than P,. T is the net idle time of a disk,

which means the disk consumes at least T.Psd energy independent of the disk spin-down

algorithm.

28

A parameter Sx was used to compare disk spin-down algorithms performance based on the

excess energy consumed by the algorithm, where Sx = total energy consumed - T.Psd- The

effective cost of an algorithm X was defined as

Ecx = Cl. Ox

where a = relative importance of latency with regards to conserving energy
Ox = the number of operations delayed when spinning up the disk

The buying cost c was derived as follows. A spin-down delays one operation and, therefore,

the effective cost of a spin-down is Esd+a, where Esd is the total energy consumed by a spin-

down and a spin-up. The effective cost per unit time to keep the disk spinning is Ps-Psd and

hence,

c = (a+Esd)/(Ps~Psd)

Simulation results showed that the effective cost for L algorithm was the smallest amongst

online algorithms tested. Its effective cost was 6-25% lesser than the effective cost of a 2-

competitive'* algorithm. It saved 17-60% more excess energy than a 2-competitive algorithm,

and 6-42% more excess energy than the 5 second spin-down threshold for a < 25. For

sufficiently large a, it reduced the number of operations delayed over both the 2-competitive

and the optimal offline algorithm. In addition, the rent-to-buy model was found to allow an

effective trade-off between energy and response time.

An alternative to spinning down the disk to reduce power consumption was proposed by

Douglis et al [Doug94b], who discussed flash memory as a storage alternative to hard disks,

since it consumes low power. While hard disks provide large capacity at low cost and have

high throughput for large transfers, they consume a lot of power and take time to spin up and

down. On the other hand, flash memory consumes little power, has low latency and high

throughput for read accesses. A disadvantage is that flash memories cost substantially more

than disks and require erasing before writing to a segment, giving them a shorter life span.

There are two types of flash memory, a flash memory card, which is accessed as main

memory and a flash disk emulator, which is accessed through a disk block interface. The

access time and bandwidth of the devices are different, and so is the file system organisation.

Since each organisation has its own strategies for power management and performance

enhancement, when evaluating the suitability of flash memory as a storage alternative, these

factors must also be considered.

 ̂ An algorithm is c-competitive if it never uses more than c times the energy used by an optimal
algorithm [Helm96]. A 2-competitive algorithm uses a pre-determined fixed timeout value which is
guaranteed to perform well for all sequences o f idle time and its performance never exceeds the
performance of a best fixed timeout algorithm.

29

Simulation results showed that flash memory achieved a power reduction by an order of

magnitude compared to aggressive disk spin-down policies. The flash disk file system saved

88% power, while the flash memory file system saved 93% power in the presence of power

management.

Douglis et al also tested flash memory's read and write performance compared to hard disk in

the absence of disk spin-down. A flash disk file provided similar read response time, but its

write performance was 50% worse than for the disk file system. The flash memory file

system achieved faster read response time, while its write response time is comparable to a

disk file system. Although the results indicate that flash memory is a good alternative to hard

disks, at present, its capacity is not big enough to replace hard disks. If this constraint is

overcome, accompanied with a reduction in price, flash memory may become an attractive

alternative to hard disks.

While the strategies to spin down the disk vary, they attempt to achieve a common goal: that

is, to identify a suitable time to spin down the disk in such a way that overall power

consumption is reduced, while trying to keep latency within acceptable limits. It is difficult

to compare the efficiency of the different techniques against each other as they used different

performance metrics, e.g. [Li94] measured performance in terms of percentage of energy

saved, while [Kris95] measured it in terms of excess energy consumed.

Since the power reduction achieved by a disk spin down strategy relies on the idle period,

combining disk spin down with disk caching, as proposed by Li et al, seems a good way of

lengthening idle periods, in addition to reducing access latency. Even though the strategies

proposed have been successful in reducing power consumption by the disk, the different

levels of saving achieved by Douglis et al when the spin-down algorithm was simulated using

trace data from Macintosh, Windows and HP, suggests that the benefit of spinning down the

disk might be influenced by the operating system used.

2.3.2 Power Efficient Communications
Transmitting and receiving data have been identified as one of the activities which drain

battery power. The studies which have dealt with power efficient communication

demonstrate that there are various ways to address the issue. Power consumption by

transmitting/receiving may be reduced by using data filtering techniques, varying the

transmitter power, or by using an adaptive error correction method. These are discussed

individually below.

Imielinski et al [lmie94a] discussed an energy efficient data filtering technique which enables

palmtops to operate in doze mode frequently and only wake up when data of interest is

30

expected to arrive. The ability to wake up when data is expected is termed selective tuning.

They illustrated the scale of potential saving achieved by operating in doze mode by referring

to the power consumption of a Hobbit chip from AT&T which consumes only SOpW in doze

mode, compared to 250mW in active mode.

Imielinski et al proposed two selective tuning techniques, where clients (mobile devices) tune

in periodically to the broadcast channel to download required data. When a server broadcasts

the data, it also broadcasts a directory which consists of an index indicating the time when

particular records are broadcast. The index, which provides a sequence of pointers which

eventually leads to the required data, is interleaved with data.

The two proposed techniques were (1, m) Indexing and Distributed Indexing. Using (1, m)

Indexing, an index is replicated m times during the broadcast of one version of a file, where

the index is broadcast every 1/m fraction of the file. Distributed Indexing is an improved

version of (1, m) Indexing, where only part of the index is replicated, as it was observed that

it is not necessary to replicate the entire index between successive data segments. Only part

of the index indexing the data segments which follows it is replicated.

Imielinski et al established that using Distributed Indexing, the same number of filtering

requests could be served with 100 times less energy. Four hours of data filtering took only

1% of the energy used without filtering for the same number of requests. The savings almost

doubled the working time.

In a later study, Imielinski et al [Imie95] proposed protocols which offer power saving for

applications such as news groups and electronic mail. The protocol refines indexing of

multicast data and saves energy by keeping the CPU in doze mode. The protocol keeps the

receiver off most of the time and was inspired by a similar protocol used in cordless

telephones and pagers, which extends battery life by switching off their receivers for much of

the time.

Rulnick and Bambos [Ruln96] addressed the question of how to determine when, and at what

power, a mobile terminal should attempt transmission. While overcoming interference in

wireless networks is a focal concern, it should be done in a manner which conserves energy.

Their aim was to minimise energy consumption on condition that the quality of service

requirements are met.

Rulnick and Bambos considered a transmitter sending data to a remote terminal over a

communication channel which is subject to time-varying interference. Transmitting at a

higher power results in a higher SIR (signal to interference ratio) and success rate, but at the

expense of rapidly depleting energy supply and increased interference with other users.

31

A dynamic power management algorithm (DPMA) which requires no prior knowledge of its

operating environment was proposed. Its only requirement is a good estimate of the error

probability function, using which it should be able to decide when to delay transmission if

interference was too high. The performance of DPMA was compared to constant-SIR and

constant-power solutions.

Simulation results showed that DPMA achieved power savings of at least 70% and battery

life was improved by a factor of at least 3.3 compared to any other constant-SIR solutions.

DPMA was also more stable compared to the constant-SIR scheme which rapidly became

unstable due to the transmitters competing until power was saturated at exceptionally high

levels. DPMA did not seem to induce a strong TDMA-like effect, but there was enough

alternating behaviour which improved SIR per bit, hence suggesting a weak TDMA-like

effect. Transmitters which used DPMA uniformly provided the same performance (in terms

of rates and delays) as constant-SIR, and achieved energy savings of 10%- 92%. Battery life

was extended by a factor of up to 12.

Lettieri et al [Lett97] described an architecture for low power error control over wireless

links. Error control schemes such as forward error correction (FEC), or automatic repeat

request (ARQ) are used to increase the reliability of the communication links. In wireless

links, error control is used to provide sufficient reliability for an end-to-end transport layer to

ensure that quality of service requirements are met. While error control has a direct and

substantial effect on power consumption, studies on error control schemes have not addressed

the amount of energy consumed to transmit bits across wireless links. Lettieri et al assessed

the impact of error control schemes on battery life and showed that the choice of energy

efficient control strategy is a strong function of quality of service parameters, channel quality

and packet size. The error control scheme was adapted to changing channel conditions for

maximum energy efficiency.

Any overhead associated with sending one bit of useful data was accounted for when

calculating the energy cost of sending that bit. For example, the overhead for ARQ schemes

is comprised of the redundancy in the packet for error detection, the acknowledgement

packet and retransmitted packets, if any. The overhead for FEC is the redundancy in each

packet, but no retransmission cost is incurred. FEC may be computationally expensive and

the computational burden on power consumption cannot be ignored. A hybrid scheme incurs

the fixed overhead of FEC, but with lower retransmission overhead.

Simulations were carried out with IP and ATM data packets, assuming data and speech

transmissions, and users were assumed to move at car or pedestrian speed. Error control

schemes used were SACK (Selective Acknowledgement), SACK+FEC and Reed-Solomon

32

(an FEC scheme which is capable of detecting multi-bit error), SACK was chosen because it

requires the fewest retransmissions compared to other ARQ schemes, while Reed-Solomon

was chosen because it incurs relatively low redundancy. SACK or SACK+Reed-Solomon

generally gives the best performance.

The first simulations assumed data transmission. For ATM packet size, the improvement was

minimal over a wide range of bit error rates (BER) when using a hybrid error control scheme,

but the improvement was much greater when ARQ was used. Schemes which employed FEC

performed better for poorer quality channels, but performance improvement decreased as the

quality of channels increased due to the fixed cost of FEC schemes.

For IP packets, only SACK reduced energy consumption. FEC reduced the average latency

for better channel quality, but did not improve energy consumption. In some cases, energy

consumption was worse when FEC was used. Similar observations were made for both

pedestrian and car speeds.

Simulations of speech transmission were only run assuming ATM packets and assuming that

data had to be delivered within 50 msec. For both pedestrian and car speeds, no data was lost

for low BER. The performance of SACK and SACK+Reed-Solomon were comparable, with

the hybrid scheme consuming slightly more power. When BER rose above 10' ,̂ the ARQ

scheme deteriorated to the point that packet drop rate was unacceptable and power

consumption grew out of control.

The results obtained indicated that the error scheme should be adapted according to the type

of transmission and different channel conditions in order to achieve efficient energy

consumption. There is no single scheme which is suitable for all conditions.

The studies above demonstrate that there are various ways to reduce power consumption by

transmitting/receiving. Even though the techniques proposed depend on which aspect was

being considered and optimised in order to reduce power consumption by

transmitting/receiving, there appears to be no reason why the techniques cannot be combined.

In a real implementation, it is very likely that different power saving techniques will be

combined to extend battery lifetime as long as possible.

2.3.3 Power Management Strategies for CPU

Power management of the CPU is similar to that of hard disks, in that it relies on powering

down the CPU during idle periods. However, unlike disks, the cost and delay involved in

powering down the CPU is negligible. Below is a discussion of studies which have addressed

how power consumption by the CPU may be reduced.

33

Weiser et al [Weis94] believed that it would be more efficient to spread workload over time

than to execute it at full speed and then idle. Spreading the workload is achieved by reducing

the CPU clock speed (i.e. a job is executed at a slower rate), and the speed is chosen so that

the Job is completed before its deadline. Reducing the clock speed alone does not reduce

power consumption because since power consumption is proportional to the clock speed, a

job takes longer to execute, thus consuming an equal amount of power as if the clock was run

at full speed. Hence, power consumption is reduced by reducing the voltage level as the

clock speed was reduced. The proposed approach stems from the fact that energy is

proportional to the square of voltage E/clock x . Reducing the clock speed creates an

opportunity for quadratic energy savings, because if the voltage level is reduced linearly as

the clock speed is reduced, it has the potential to result in a saving proportional to the square

of voltage reduction.

Trace data for the simulations were collected from UNIX workstations. The trace period was

divided into intervals, which was varied during the experiments. The run time and idle time

during an interval was used to decide on a suitable clock speed, where the speed was chosen

so that the runtime of individual segments were lengthened in order to eliminate idle time.

Excess cycles left over at the end of an interval were carried over into the next interval. The

excess cycles indicated that the speed chosen was too slow, and was used as a performance

penalty.

Three algorithms were used in the simulations. Unbounded-deiay perfect-future (OPT)

takes the entire trace and stretches all the run times to fill all idle times. OPT assumes

perfect future knowledge of jobs to be done, and that all idle times can be filled by stretching

run lengths and reordering jobs. Bounded-delay limited-future (FUTURE) is like OPT,

but it examines a small window into the future and optimises energy over that window. Jobs

are never delayed past the window, which was varied between 1 millisecond to 400 seconds.

FUTURE approaches OPT in energy savings at window period of 400 seconds. FUTURE is

impractical because it requires future knowledge, but is desirable because no jobs are delayed

longer than the window period. Bounded-delay limited-past (PAST) is a practical version

of FUTURE, which examines a window in the past and assumes the next window will be

similar to the previous one.

A summary of the experiment results are as follows. Results of varying the scheduling

interval on the algorithms showed that OPT was unaffected by the interval length, while

FUTURE and PAST approached OPT as the interval increased. For the same interval,

PAST performed better than FUTURE because it is allowed to defer excess cycles into the

34

next interval. Overall, results on PAST showed that a low minimum voltage of l.OV resulted

in more excess cycles, while longer intervals resulted in more accumulated excess cycles.

There was a trade off between excess cycle penalty and energy savings as a function of

interval length. As the interval decreased, the CPU speed was adjusted at a finer grain and

matched the offered load better, resulting in fewer excess cycles but did not achieve an

optimal level of energy savings.

The amount of energy saving achieved for three minimum voltages, 3.3V, 2.2V and l.OV,

was examined using an interval of 20 msec. The best energy saving was not achieved by a

minimum voltage of l.OV because it tends to cause a build up of excess cycles, resulting in

less efficient energy consumption. On the occasions when l.OV did provide minimum energy

consumption, 2.2V minimum voltage performed almost as well. Overall, energy saving

achieved was 25% - 65%. PAST, with 50 msec interval, achieved up to 50% savings for

3.3V and up to 70% savings for 2.2V.

A later study by Lorch and Smith [Lorc96] tried to reduce power consumption of the CPU by

optimising the operating systems for power management. They discussed strategies of

reducing power consumption by the processor in a single-user operating system, focusing

specifically on Apple's MacOS. When analysing the power consumption of Macintosh

PowerBook computers, they discovered that up to 18-34% of total power was consumed by

components whose power consumption could be reduced by power management of the

processor.

As processors now are capable of operating in doze mode which consume little power, the

operating system instructs the processor to operate in doze mode when it is predicted that the

resulting savings will offset the overhead of entering and leaving doze mode. Unlike hard

disks, the delay and power cost of doing so are typically low, which makes optimal CPU

power management strategy trivial because the CPU can simply be turned o ff down whenever

there is no useful work to do.

The basic strategy turns off the processor when there is no process to run. The current

strategy.mcà by MacOS is based on an inactivity timer, where the operating system instructs

the processor to operate in doze mode if no activity is detected in the last 2 seconds, and no

I/O activity is detected in the last 15 seconds. The processor leaves its doze mode when

activity is detected, where an activity is defined as any user input, I/O, change in the

appearance of the cursor or time spent with the cursor as a watch.

Lorch and Smith identified two problems with the existing strategy. Firstly, since the

operating system was not optimised for power management, a process was sometimes

scheduled to run even though it had no useful work to do. Secondly, applications were

35

usually written with the assumption that they will run in the foreground and, therefore, were

justified in taking as much processing time as they wanted.

Lorch and Smith developed three techniques to deal with these two problems. The simple

scheduling technique deals with the first problem by making sure the operating system does

not schedule a process when it has asked to be blocked. The second problem is addressed

using one of the following techniques. The greediness technique uses a heuristic to forcibly

block any process which is making unnecessary requests for processor time. A process is

considered as acting greedily when it specifies a sleep period of zero even though it is not

actively computing; and is considered not actively computing if it explicitly blocks or yields

control several times consecutively without receiving an event or showing signs of activity.

The parameter of this technique is called the greediness threshold, and is the number of

control-yield times. The sleep extension technique multiplies all sleep times requested by a

process by a constant factor known as a sleep multiplier. It ensures a reasonable trade-off

between energy savings and performance, and is chosen by the user or the operating system.

Simulations were run using trace data collected from six users of Apple Computers and with

different combinations of the techniques described above. Two parameters were used to

evaluate the performance of the proposed techniques: processor energy savings was the

percentage decrease in the time the processor spent in the active state and was deduced from

the simulations; performance impact was the percentage of overall time increase in running

the processes as a result o f using a power-saving strategy. The performance penalty is due to

the fact that a power saving strategy sometimes caused the processor to be turned off when it

should be performing useful work, resulting in the process being scheduled later and

increasing the time taken to complete it.

Experimental results showed that an optimal strategy which has foreknowledge of work

pattern achieved power savings of 82.33% with no performance impact (there is no increase

in the average time taken to run processes), while the basic strategy achieved power savings

of 31.98% with no performance impact. Various combinations of the proposed techniques

achieved power savings of 28% - 66% with performance impact of less than 2%. A

sensitivity analysis showed that the performance of the techniques was relatively insensitive

to their parameter values.

The results of this study indicates that if the operating system is optimised for power

management, a significant amount of power can be saved by turning off/down the processor

when there are no processes actively performing computations.

A more recent study by Rudenko et al [Rudn98] proposed a strategy which transfers

computation to a fixed host in order to keep the CPU idle as much as possible, thus reducing

36

power consumption. They observed that while some jobs have to be executed locally, some

can be performed anywhere as long as the results are returned to the portable computer. They

reasoned that if the cost of sending the job elsewhere and receiving the results is lower that

the cost of running it locally, remote execution could save battery power. The scenario

envisioned is an office where untethered users move through a ubiquitous wireless network.

Three types of jobs which were large and time-consuming were selected for the experiment:

1. Program compilation, which required significant CPU processing and a good deal of disk

activities (read and write accesses).

2. Calculation of Gaussian elimination problem, which performed few disk accesses, but

made very heavy demands on the CPU and memory.

3. Text formatting of a 200-page LaTeX document, which performed a moderate amount of

CPU processing and had relatively little disk activity.

The amount of information sent from the portable to the server was varied. For compilation

and text formatting, the server held a copy of the files locally and the portable was only

required to send the changes to the server. The amount of changed code was assumed to

correspond to the amount of work done by the compilation while the amount of data returned

were always the same. In the case of the Gaussian solution process, the entire matrix was

transferred and the matrix size was varied, thus varying the amount of data exchanged

between the portable and the server. The size of results returned was assumed to correspond

to the size of the matrix.

The experiments were first run in a noiseless environment, and later in a noisy environment.

The results which are summarised in Table 2-2 shows that in a noisy environment, collisions

and retransmissions greatly reduced the benefits of remote executions and only very large

jobs benefit from it. Rudenko et al, however, pointed out that wireless communications

cards, in general, are fairly new phenomena that are not yet ubiquitous and not yet optimised.

They expected that there will be improvements in the future.

A shortcoming of this study is the fact that the experiments were carried out with the different

job types tested separately. They did not consider a mix of jobs, which would be the case in

real systems. In addition, all jobs were transferred even though they acknowledged that some

jobs must be executed locally due to the nature of the jobs themselves. If these factors were

taken into consideration, the results obtained might not be so optimistic. Our own work

which has been briefly outlined in [Gthm97] and [Gthm98], takes into consideration several

factors neglected by Rudenko et al.

37

Table 2-2
Summary o f results obtained by Rudenko et al [Rudn98]

Job Type Noiseless Environment Noisy Environment
Program
compilation

For small compilation jobs, the
power cost of remote execution
outweighed its benefits.
However, as the size of altered
code increased, the benefit of
remote execution became more
prevalent. For 500 kilobytes of
altered code, remote execution
consumed less than half the
power consumed by local
execution.

Only very large compilations
saved a significant amount of
power. The amount of
saving was reduced to 20%
from 51% for the noiseless
environment because
collisions and
retransmissions increased the
amount of power consumed.

Gaussian solution For matrices of size less than
500x500, the power cost of
remote execution were greater
than the cost of local execution.
For larger matrices, savings of up
to 45% were achieved.

The results obtained were
similar to program
compilation in a noisy
environment.

Text formatting LaTeX documents of 30 to 200
pages were used in the
experiments. There was no
significant difference between
local and remote execution
except when the amount of
altered text was 439 kilobytes,
where remote execution
performed worse than local
execution. The reason for this
observation was text formatting
consumed less than 1% of total
battery power. Remote execution
added to the overhead of power
costs and, therefore, did not help
power saving.

Experiment for remote
execution of text formatting
in a noisy environment was
not carried out

In summary, while studies have shown that it is possible to reduce power consumption by

turning down the CPU during idle periods, and by optimising the operating system, it is

possible to further reduce power consumption by transferring computations to a fixed host.

2.4 Conclusion
In this chapter, the diversity of mobile applications was illustrated, and the limitations and

constraints of mobile computing which must be addressed in order to support roaming users

was discussed. One of these constraints is the focus of this thesis, that is power management.

Several power management strategies have been proposed, most of which focused on

38

designing algorithms to power down hardware components which consume a substantial

amount of power.

The power management strategy proposed in this thesis takes a different approach, and is

based on the concept of load sharing, where suitable jobs are selected for remote executions

in order to reduce power consumption by the CPU. It is, to some extent, similar to the

strategy proposed to Rudenko et al [Rudn98], but predates their work and also takes into

consideration several issues which they neglect. In the next chapter, studies regarding load

sharing are discussed.

39

3. Load Distribution in Distributed Systems
Since load sharing has been extensively studied, there are numerous papers discussing various

load sharing strategies. In this chapter, aspects of load sharing relevant to diis study are

discussed. As it is our intention to use load sharing within a wireless network environment,

which is significantly different to the fixed network environment that is assumed within the

literature to date, the extent to which such a strategy can be adopted is examined. We begin

with a discussion on how load sharing has been used, and the general issues which need to be

addressed when implementing load sharing on fixed distributed networks.

Load sharing, or load balancing, is a strategy which distributes workload among processors in

a distributed system. Some literature distinguishes between the two (e.g. [Eage86b],

[Krue88], [Krem92]). Load balancing is defined as a strategy which continually attempts to

equalise workload across a distributed system, while load sharing is defined as a strategy

which attempts to share loads in a distributed system without attempting to equalise them.

For the sake of simplicity, a more generic term, load distribution, which was introduced by

Jacqmot and Milgrom [Jacq93], will be used when referring to both load balancing and load

sharing in general. The goal of load distribution is to make better use of the system resources

(usually the CPU) by making sure that no nodes are idle, and this is achieved by transferring

jobs from a busy host to an idle/underloaded host. The transfer may be in form of job

placement, i.e. a non pre-emptive transfer of a newly arrived job, or migration, i.e. a pre

emptive transfer of an executing job.

The primary reason for distributing load is to improve performance in distributed systems by

making sure that no node is idle while other jobs wait for service and to minimise the total

time taken to process all jobs [Eage86a]. Other reasons are to minimise inter-processor

communication cost caused by accessing remote resources [Ezza86], and to improve

performance by smoothing out transient peak overload periods [Krem92]. Shin and Chang

[Shin89] stated that in real-time systems, load distribution is one way to alleviate a problem

where some jobs cannot meet their deadlines even though the overall system has the capacity

to meet all deadlines. This happens when job arrivals are not uniformly distributed causing

some nodes to be overloaded, while some are underloaded. There are many other such

reasons given in the literature. Regardless of why or how load distribution is performed, it

should be performed in a transparent way so that users are not aware of the resources

distributed across the network.

A load distribution algorithm may distribute workload based on the average behaviour of the

system (static algorithm) or on the current workload information (dynamic algorithm). The

40

first case is simple and straightforward as job allocations are pre-determined, and the

algorithm does not incur any overhead in collecting/disseminating system state information.

In the latter case, information about the current system state must be collected and

disseminated among hosts in the system, and the algorithm must be able to deal with

information which is out of date due to communication delays. If this is not addressed, the

inevitable existence of such delays may have a marked effect on the performance of a load

distribution algorithm.

When designing a load distribution algorithm, it is imperative that the algorithm should be

stable, i.e. it does not behave in a way which will cause system performance degradation

under detrimental conditions. For example, when the system is under heavy load, it is

perhaps better to disable the algorithm as the cost of executing it might degrade system

performance instead of improving it. We will discuss how the definition o f a "stable

algorithm" is dependent on the designer's view of what stable behaviour is, and on the

environment and system for which the algorithm is designed. A consequence of this is, there

is no standard procedure for determining the characteristics of a stable algorithm, and it is up

to the designer to identify factors which may cause instability and take the appropriate

measures to prevent them.

As there are numerous load distribution algorithms proposed throughout the literature, it is

necessary to examine the nature and precise properties of the algorithms in some detail in

order to decide which are the most fruitful avenues for exploration with regard to their use in

power saving within mobile systems. The remainder of the chapter is structured as follows.

The next section describes the load distribution policies, the assumptions under which they

were designed, how they have been used and whether the strategies are applicable in mobile

systems. The effect of system load on the benefit of load distribution is also discussed,

followed by the impact of communication delays on load distribution. Finally, the issues of

stability and scalability of load distribution algorithms are addressed, and this chapter is

concluded with a summary of the problems we wish to address.

Before proceeding to the next section, four commonly used load distribution algorithms are

briefly described. These algorithms are popular and often used as a baseline comparison to

other algorithms. In the coming sections. Random, Shortest, Threshold and Central

algorithms will refer to the ones described below, unless stated otherwise.

A. Random Algorithm

An overloaded host selects a destination host randomly and transfer a job to that host. No

probes are sent and absolutely no state information is used in selecting a destination host.

4T

B. Threshold Algorithm

An overloaded host probes Lp hosts and selects a destination host whose queue length is less

than a pre-determined threshold T, if one exists. The probe terminates when a suitable

destination host is found, or Lp has been probed. '

C. Shortest Algorithm

An overloaded host probes Lp hosts and selects a host with the shortest queue as a destination

host to transfer its job, providing the queue length of the probed host does not exceed a

threshold, T. A short-cut which can be used is immediately to select a probed host with queue

length zero.

D. Central Algorithm

One host acts as a scheduler, and receives updates of workload information from other hosts

in the network every t seconds. Each host sends its current workload information to the

scheduler if there is a significant change in its workload since the previous update. If the

number of jobs at a host exceeds a threshold T, it sends a transfer request to the scheduler,

who selects a host with the shortest queue length and informs the requesting host to transfer

its job there.

3.1 Load Distribution Policies
A load distribution algorithm is comprised of 4 policies: an information policy, a location

policy, a transfer policy and a job selection policy'. The policies perform functions which

enable a load distribution algorithm to determine how best to distribute load across the

network in a manner which improves overall performance based on available workload

information. Figure 3-1 shows a diagram of the policies and how they relate to each other. In

the rest of this section, how and when each of these policies are used is described, followed

by a discussion on the extent to which they are applicable to this study, and the modifications

which have to be made to apply them to a mobile computing environment. The information

and location policies are discussed together as they are very closely related.

‘ Watts et al [Watt96] divided load sharing algorithms into five phases, i.e. load evaluation, profitability
determination, work transfer vector calculation, task selection and task migration. Phase 1 and 2 are
analogous to the transfer policy, while phase 3 and 4 are a combination o f the location and job selection
policies. Phase 5 is the job transfer itself.

42

Figure 3-1
Components o f a load distribution algorithm and their relationship to each other

information
policy

transfer
policy

collect and disseminate
workload information

determines when a job shoulc
be transferred

location
policy

job selection
policy

/ y
selects a suitable destination
host to transfer job based on

information provided by

I
Ô------------ selects a suitable job for

transfer
4

information policy I

if a suitable host is found, transfer
job to destination host

3.1.1 Information and Location Policies
An information policy deals w ith the co llec tion and d issem ination o f system state

inform ation used by the location policy . Load distribution algorithm s vary from those w hich

m ake no use o f system state information (e.g . Random algorithm o f [E age86a]) to those

w hich attempt to make use o f global state infonnation (e.g . [K rue94]).

The w orkload inform ation m ay be obtained by probing a subset o f nodes, by co llec tin g the

inform ation periodically , or by having each node advertises its load inform ation w ithout

exp lic it requests from other nodes. The w orkload m etric m ost frequently used is run queue

length. If the inform ation is co llected p eriodically , an optim al period must be determ ined.

C ollectin g the inform ation frequently w ill result in accurate and up-to-date inform ation, but is

exp en sive: 0 (n f traffic overhead is incurred each tim e the inform ation is d issem inated ,

w here n is the number o f nodes in the system . A less frequent period may result in out-of-

date inform ation being used.

A concern when gathering w orkload inform ation is the effec t o f com m unication delays. If w e

are to assum e that com m unication delays are not n eg lig ib le , as is the case w hen d ealing with

low bandwidth wireless links, the delays involved when gathering state information makes it

difficult to guarantee that the information obtained is up to date. Kremien and Kramer

[Krem92] stated that, "due to communication delays and state distribution, a complete and

consistent view of the entire system, or even o f a subset, may never be available at a node o f

the system". Mirchandaney et al [Mirc89] found that as delays increase, the state information

obtained becomes so outdated that it is useless. In order to overcome this problem, a number

of studies have incorporated techniques to deal with the possibility of out-of-date

information, e.g. Stankovic [Stan84] and Ezzart et al [Ezza86] introduced a bias and a

window period to deal with the probability of using outdated information when making a

decision.

If use of outdated information is a concern on fixed networks which have high bandwidth

available, it is even more so over low bandwidth wireless links. In a wireless network, a

mobile support station (MSS), or a base station, is the only fixed host a mobile host can

communicate with directly. When implementing load distribution in that environment, the

mobile host may request a transfer of a job to the MSS, or it may request that the job be

transferred to a certain host on the fixed network. If the first approach is used, the MSS may

decide if it is able to accept the transfer request and executes the job itself, or it may transfer

the job to another fixed host for execution”. If the second approach is used, mobile hosts

need to have information about the current workload status of fixed hosts. Even though it is

possible to disseminate workload information to mobile hosts, the communication latency

involved increases the probability of the information being outdated, and might even render

the information useless. Taking this factor into consideration, the approach adopted by this

study is to send transfer requests to the MSS, and let the MSS decide where the job should be

executed. Doing so also reduces the complexity of the load distribution algorithm on a

mobile host.

Selecting a destination host to transfer a job is the task of the location policy. The selection

is carried out either by choosing a host randomly, or by using workload information gathered

by the information policy. For adaptive load distribution algorithms which make use of

current system information state, there is a question of how much state information should be

used in order to arrive at a decision. Attempting to acquire the most accurate and up-to-date

information may lead to better decisions, but the overhead incurred may nullify any benefit of

distributing load.

Eager et al [Eage86a] investigated the appropriate level of complexity for load sharing

policies. They stated three concerns which arise from the complexity of adaptive algorithms.

In this study, it was assumed that the MSS has the capability to perform these functions.

44

Their first concern is that the value of a policy depends critically on the overhead incurred,

where excessive overhead may negate the benefits of load sharing. Secondly, some state

information quantities such as the expected congestion at nodes in the near future, or the

amount of processing required by a particular job, cannot be known precisely. Therefore,

decisions reached based on this information may not be as good as expected and may even be

relatively poor. The third concern is the potential for instability, where algorithms may react

to small distinctions in system load due to the rapidly changing nature of the system state.

Eager et al tested three algorithms: Random, Threshold and Shortest. Threshold and

Shortest randomly probe at most Lp~3 nodes to determine if a job transfer to the probed

node causes the load at that node to be above some threshold, T, and if it does not, the job is

transferred to that node.

All three algorithms use a threshold transfer policy which uses local state information, where

probes are initiated when the local queue length exceeds T=2. If the number of jobs in a

probed node is less than T, the new job is transferred to the probed node. No state

information is exchanged in order to determine if a job should be considered for transfer, and

transfer of jobs is given pre-emptive priority over processing of jobs.

The performance of the algorithms were compared to two bounding cases, no load sharing (K

independent M/M/1 queues), and perfect load sharing at zero cost (M/M/K queue). The mean

response time as a function of system load was used as a performance index.

The results obtained showed that Random yields substantial improvement over no load

sharing and Threshold achieved further improvement for system loads^ greater than 0.5. The

further performance improvement achieved by Shortest compared to Threshold is

negligible. Based on these results. Eager et al concluded that relatively simple information

concerning potential destination nodes is sufficient to obtain essentially all of the benefits

available.

There are other more sophisticated load sharing algorithms utilising more complicated

information and location policies, e.g. the algorithm proposed by Shin and Chang [Shin89]

for distributed real-time systems, where jobs must be executed before the given deadlines.

They gave two reasons in support of an argument which says that probing a subset of nodes to

find a destination node is not suitable for real-time systems. First, probing introduces

additional delays in completing a job transfer. Second, if only a few nodes are underloaded,

the sender may not be able to locate a receiver by probing a subset of nodes, which will lead

to overloaded nodes executing their jobs locally and missing the deadlines of some of their

 ̂ System load indicates the level o f workload at a host, and is defined as p=Xfi, where A=job arrival rate
and //=mean service time.

45

jobs. In real-time systems, the probability of missing deadlines must be kept to a minimum

since the outcome may be disastrous.

A brief description of the proposed algorithm is as follows. Each node maintains state

information for a small set of nodes called a buddy set. The buddy sets overlap each other to

distribute load evenly over the system. Three thresholds are used to determine the state of a

node, and a node is classified as either underloaded, fully loaded or overloaded. Whenever a

node changes state from underloaded to overloaded (and vice versa), it broadcasts its new

state to other members of its buddy set, which eliminate a fully loaded node from, or add the

underloaded node, accordingly, to its ordered list, named a preferred list. An overloaded

node selects the first node in its preferred list and transfers a Job to that node without

incurring any probing delay. The preferred list is permuted so that a node is the most

preferred node of one and only one other node in a corresponding buddy set. The preferred

lists of nodes in the same buddy set are different from each other to avoid flooding, and the

order of preference may change over time.

The algorithm proposed by Shin and Chang is rather more complex than that of Eager's which

simply probes Lp nodes. Although Eager et al argued that simple load sharing algorithms are

sufficient to achieve good performance, it is difficult to say for certain what level of

complexity is appropriate. The system and environment for which the algorithm is designed

are determinant factors. While a simple algorithm may be sufficient in some cases, for the

real-time system studied by Shin and Chang, a more complicated algorithm proved to be

useful in order to arrive at better decisions.

In this thesis, we are not proposing new information and location policies for use on the fixed

network. Assuming that load sharing is already implemented on the fixed network, whatever

policies already in place may be used. If they are not already implemented, the policies must

be chosen so that they fulfil the requirements of the system. There are, literally, hundreds of

load sharing algorithms proposed in literature which were designed according to a set of

requirements and assumptions. It is quite impossible to choose an information/location policy

and say that this is the best policy that should be implemented as its suitability would depend

on the type of tasks performed by the system, and the constraints under which it operates.

The policies may vary according to the system, and that can be made transparent to the

mobile hosts. That said, even the simplest of policies are likely to give significant benefits

and operate well under a wide variety of condition if no further information about the job mix

is available. Moreover, since it is the MSS which decides on a suitable destination host on

which to execute a job, mobile hosts need not concern themselves with the policies used on

the fixed network. An advantage of taking this approach is half of the burden is shifted onto

46

the fixed network, thus reducing the complexity of the load sharing algorithm on the mobile

hosts.

3.1.2 Transfer Policy

A transfer policy determines when a job should be transferred in order to improve

performance. The decision is usually based on the number of jobs in the run queue. Once the

number of jobs exceeds a pre-defined threshold, the job selection policy is triggered.

Previous studies on transfer policies established that the threshold value should be adjusted

according to current system load to avoid performance from degrading at high system loads

[Koya93][Zhan95]. At high system load, it is very unlikely that hosts would have spare

capacity to execute jobs for another host. Under these circumstances, load distribution might

cause performance to degrade if it continues to attempt to transfer jobs, wasting resources on

fruitless transfer attempts. [Eage86a], [Koya93] and [Zhan95] established that a low threshold

is appropriate at low loads, and the threshold should be increased at high loads.

As load sharing in this study is centred on the premise of making use of available spare

capacity on the fixed network, system load is expected to play a prominent role in

determining how many jobs can be transferred to the fixed hosts. Under heavy load, it is

unlikely that hosts will be able to meet the requests from mobile hosts and it would be wise

for load sharing to be disabled, not only to avoid performance degradation, but also to prevent

mobile hosts from wasting battery power on fruitless transfer attempts.

In this study, since mobile hosts do not retain information regarding the current load at the

fixed network and the transfer policy does not use a threshold policy, a different approach is

required to prevent the load sharing algorithm from causing performance degradation at high

system load. The method by which this is accomplished is discussed in Chapter 6 which

addresses the issue of stability.

Another important consideration when designing a transfer policy is the cost incurred by the

policy. Eager et al [Eage86a] represented the cost of job transfer as a processor cost only and

did not consider the communication network cost. They assumed that the average job transfer

cost was 0.10S,yvhQTQ 5=job processing cost, and claimed that transfer cost higher than O.JOS

was unlikely because that indicates jobs with very low processing requirement are being

transferred. They expected that any practical implementation of load distribution would

select jobs with a relatively high ratio of processing cost to transfer cost. An analysis of the

average response time vs. system load for four average transfer costs showed that

performance was insensitive to transfer cost below 0.05S, and degrades rapidly as the cost

exceeds 0.25S. Eager et al stated that the average transfer cost may be used to select a value

for the transfer policy threshold, where low thresholds are appropriate for low transfer costs.

47

while high costs require higher thresholds.

When designing the load sharing algorithm for this study, the transfer costs includes both the

processor cost and communication network cost. Considering that bandwidth is a scarce

resource in wireless networks, it would be unwise to ignore the communication costs. The

cost incurred is explained in Chapter 4,

3.1.3 Job Selection Policy

The task of a job selection policy, when triggered by the transfer policy, is to select a suitable

job for transfer, A number of studies have paid little attention to how a job is selected for

transfer and, often, it is assumed that jobs are homogeneous, and a newly arrived job is

selected for transfer if the local queue length exceeds a specified threshold, Wang et al

[Wang93] claimed that these are not practical assumptions as jobs have different

characteristics, which should be considered when deciding if a job is suitable for transfer. It

is, therefore, inadequate simply to choose a newly arrived job for remote execution.

In addition to local queue length, Zhou [Zhou88] considered job execution time when

deciding if a job should be transferred. He introduced a threshold, Tcpu , which is the job

execution time threshold. If the local queue length exceeds T and the job execution time is

more than Tcpu, the job is transferred if a suitable destination host can be found. He stated

that although job execution time is difficult to predict, it is possible to classify jobs into two

categories: big jobs, which are worth considering for load balancing; and small jobs, which

should not be considered. Trace data collected for the study showed that it was possible to

classify jobs simply by looking at job names.

Experimental results showed that performance is relatively insensitive to the value of Tcpu-

The average response time of Tcpu=i-0 second gave similar performance to Tcpu=0.5 or

Tcpu=2.0 seconds, confirming Zhou's suspicion that only an approximate separation between

large and small jobs is necessary to achieve good performance,

Zhou also observed that not all jobs are suitable for transfer, and that some jobs are immobile,

i,e, they must be executed locally. Examples of such jobs are those which perform local

services and/or require local resources, such as system daemons, and mail and message

handling programs. He introduced an Immobility factor, which is the percentage of eligible

jobs that have to be executed locally, and varied the value to study the effect of immobile

jobs. The results obtained indicate that effective load sharing is still possible even if a

significant proportion of jobs are immobile. Results showed that out of 50-70% eligible jobs,

only 10-20% were actually transferred, and the small amount still brought performance

benefits.

48

A later study by Svensson [Sven90] proposed a filter to be incorporated in load sharing

algorithms to detect short-lived jobs and pass only long-lived jobs to the load sharing

algorithm. The filter factor is 0 < F < 1.0, where all jobs are passed to the load sharing

algorithm when F = 0 and the algorithm is disabled when F = 1.0. A filter factor of 0.3

means only 70% jobs are passed to the load sharing algorithm.

Three filters were proposed: History filter based its decision on the average CPU time

required to execute a job; Optimal filter (the upper bound) assumes a priori knowledge of the

CPU time required by a job; and Random filter (the lower bound) selects jobs to be passed to

the load sharing algorithm randomly. The load sharing algorithms used to test the filter are

Shortest and Central algorithms.

The load level, load index and response ratio were used as performance metrics. The load

le^el is the average CPU utilisation of all workstations, while the load index indicates the

current workload at a workstation and is based on resource queue length. The response ratio

is a function of response time, total CPU time taken to execute a job, mean disk access time,

number of disk operations made by a job and total jobs.

Simulation results showed that the performance of Shortest with History was best when

0.8 and degraded for larger values, implying that effective load sharing can be achieved by

transferring a small portion of jobs, if the right jobs were chosen. The RR when F=0.95 was

found to be much the same as when F=0. Svensson also found that minimum system

overhead should be spent on short-lived jobs, and the best strategy was to execute them

locally.

There was a small difference between the performance of History and Optimal. Their

performances were almost identical for moderate to high loads, while at high loads. Optimal

outperforms History because the mistakes committed by History carry a higher penalty at

high loads. The RR when F=0.9S was much the same as when F=0 for Optimal.

Experiments with Central showed similar results to those with Shortest.

To ascertain the benefit of having a filter, Shortest was run without any filter and results

showed that Shortest without a filter degrades rapidly with increasing job transfer cost due

to the transfer of short jobs. An added advantage of using a filter was reduced traffic on the

communication links. Using Shortest, the amount of traffic reduction was proportional to

the value of F, where traffic was reduced from 90% to 20% when the filter value increased

from 0.2 to 0.9. The traffic reduction with Central was lower because update messages were

sent to a central machine.

The filter approach proposed by Svensson concurs with [Eage86a] which stated that a

practical implementation of load sharing should attempt to select jobs with a relatively high

49

ratio of processing costs to transfer cost. It is also supported by Krueger and Livny [Krue88]

who found that it is long jobs that benefit most from response time improvement.

A study by Koyama et al [Koya93] briefly examined three job selection policies: selecting a

job randomly, selecting a job with the lowest priority and selecting a job with the smallest

size. As their simulation results showed that the smallest size policy yielded the best

performance, they expected that in a practical load balancing implementation, job size will be

an important factor for selecting a job to be migrated.

A later study by Wang et al [Wang93] addressed the concern of selecting suitable jobs for

remote execution by proposing a scheduler which learns the behaviour of a job and

determines whether it is suitable for transfer. They stated three advantages of the proposed

scheduler:

• A job is selected for transfer based on the characteristics of the specific job, in addition to

the current network conditions;

• Knowledge of job characteristics is accurate because it is acquired through continuous

observation;

• Whenever the system configuration or workload changes, the scheduler relearns and

adapts itself automatically.

Jobs are classified as either CPU-bound, local I/O-intensive or memory intensive. Each job is

associated with a weight, ranging between -100 and 100. Initially, the scheduler transfers

jobs randomly. When the result of a transferred job is returned, its execution time is

compared to the expected execution time, which is an average of recent execution times of

the same type of job executed on the local machine. If the execution time is longer than

expected, transferring the job is considered an incorrect decision and the corresponding

weight is decreased; otherwise it is increased. If the system configuration changes, the

corresponding weights are adjusted, and the scheduler relearns without human intervention.

The job selection policy was incorporated into StealthGS, which is a component of the

Stealth Distributed Scheduler [Krue91]. Three factors were considered in making a

transfer decision :

• the difference between local and remote CPU queue length,

• the difference between local and remote available memory sizes,

• the remote processor type.

Results of experiments with CPU-bound jobs showed that when a local node had more jobs

than a remote node, the weights corresponding to these conditions rose to 100 after 40

executions. As a result, the policy almost certainly transferred the job. Short jobs were

50

considered suitable for transfer only when a local node had at least two more jobs than a

remote node. If a local node had at least one job less than a remote job, the communication

overhead of transferring a short job would negate its benefit. The selection policy learnt the

behaviour of a job within 20 commands.

For local I/O-intensive jobs, the weights dropped below zero in all situations regardless of the

local CPU queue length, and this type of job was never considered suitable for transfer.

Memory-intensive jobs still benefit from remote execution even if a remote node contained

one more job than a local node. In the case where both nodes contained the same number of

jobs, but differed in the amount of available memory, the policy chose to transfer a job only

when the remote machine had more available memory than the local machine. The results

showed that once the policy learns a job is suitable for remote execution, it chooses to

transfer the job most of the time.

Wang et al compared the performance of their intelligent job selection policy to the

Threshold policy with T=2. Table 3-1 compares the performance of the two algorithms. For

both CPU-bound and memory-intensive jobs, the intelligent job selection policy

outperformed Threshold. The third performance comparison involved a mixed-job type.

Results showed that Threshold caused performance to degrade because such jobs were not

suitable for transfer. The job selection policy learnt not to transfer the job and, eventually,

the average execution time dropped below local execution time. Finally, Wang et al

examined the adaptability of the policy and found that it adapted itself after about 50

commands, leading them to conclude that it was capable of identifying changes and adjusting

itself.

Table 3-1
Table summarising the average execution time o f Threshold and intelligent job selection

Job type
Average job execution time

(as a fraction of average local execution time)

Threshold Intelligent job selection
policy

CPU-bound 0.95 0.60
Memory intensive 0.90 <0.40

An earlier a study by Hac [Hac89] proposed an algorithm which determines if it is better to

move jobs which performs remote I/O to the remote machine, or to move the files it is

accessing to the local machine. She found that for small files, moving the files resulted in a

performance which is as good as transferring the job; when the files are large, transferring

jobs resulted in better performance.

51

In summary, the studies above emphasised the importance of selecting suitable jobs for

remote executions. It is not practical to simply transfer a newly arrived job as jobs have

different characteristics and requirements. The following factors must be considered when

selecting a job:

• Job execution time: short jobs should not be transferred as the overhead of transferring

them outweighs any benefit which might be obtained. [Zhou88] established that only an

approximate classification is required between big and small jobs.

• Job size: [Koya93] found that its policy of selecting the smallest size job yields the best

performance, which is not surprising as small size jobs incur low communication costs.

• Available memory: a selected job should not exceed the available memory at the remote

host. In addition, a memory-intensive job benefits from being transferred to a host with

larger memory rather than to a host which is less loaded.

• I/O: jobs which perform a great deal of local I/O should not be selected for remote

executions, and neither should interactive jobs. For jobs which perform remote I/O, the

decision of whether the job or the files should be transferred, depend on the size of the

files accessed by the job.

Interestingly, [Zhou88] and [Sven90] showed that only a small proportion of jobs, between

10-20%, have to be transferred in order to improve system performance, so long as the right

jobs are selected.

As not all jobs are suitable for transfer, we classify jobs into migratable and non-migratable

jobs. When a new job arrives, the transfer policy determine if the job is migratable or non-

migratable. If it is migratable, it triggers the job selection policy which determines if the job

should be transferred, or if it should be executed locally. The objective of the job selection

policy is not to transfer as many jobs as possible, but to select suitable jobs so that power

consumption is reduced. The job selection policy makes its decision based on job execution

time and job size. We are unable to take available memory into consideration because that

information is not available from the trace data used in this study (the trace data is discussed

in Chapter 4). Even though the trace data provides information about the average amount of

I/O performed by a job, it is not known if the operations were carried out on local or remote

machines. Neither were there any information about the files accessed. Due to this lack of

information, we were unable to examine the effect of remote I/O operations in wireless

networks. The way in which job selection is carried out is further discussed in the next

chapter.

52

3.2 Effect of Communication Delays on Load Distribution
A number of previous studies have assumed negligible communication delays, e.g. [Wang85],

[Eage86a] and [Shin89]. On the other hand, there are several studies which considered

communication delays as an important factor influencing the performance of load

distribution. Since jobs are transferred to a less loaded host in expectation of improving

response time, communication delays may have an adverse effect on performance. Stankovic

[Stan84] and Hsu and Liu [Hsu86] found that even though response time does not increase

linearly as communication delay increases, high delays do lead to increased response time.

When studying the effect of communication delays on the performance of load sharing,

Mirchandaney et al [Mirc89] assumed that the relative size of probes and jobs were different.

If the size of probes was significantly smaller than the job size, the delays incurred by probes

was assumed to be negligible. Mirchandaney et al established that, at low delays,

performance improvement was substantial and was greater than that at higher loads. All three

studies agreed that at high delays, the best strategy is to disable load sharing.

Given that load sharing now has to operate over low bandwidth wireless links,

communication delay is a factor which cannot be ignored. In fact, high delay is a factor

which may impede load sharing. In the load sharing algorithm we are proposing, the

algorithm takes into account the available bandwidth and calculates the amount of delay

which may be involved to perform remote execution. If the delays involved would cause

worse response time than if the job was to be executed locally, the job is considered not

suitable for transfer, and is executed locally.

3.3 Stability and Scalability
Stability is an important issue to address to prevent load distribution causing performance

degradation under unfavourable conditions. Factors which cause instability and the measures

taken to avoid instability differ according to the environment for which an algorithm is

designed. Stankovic [Stan85] defined stability as reasonable behaviour of an algorithm

within a bounded environment, where a bounded input will produce a bounded output, e.g.

response time must have a finite bound which may be a non-linear function. Choosing the

function is a subjective matter and when one has been chosen, it might be difficult to prove

that the algorithm will always produce a response time lower than that given by the function.

What constitutes reasonable behaviour is determined by the environment in which the

algorithm operates, and what the designer of the algorithm perceives as reasonable behaviour.

He stated that it is very difficult to define what is proper under all conditions - to ensure that a

distributed algorithm always achieves the defined stability characteristics; and to evaluate or

53

identify all possible functional dependencies that exist. A stable algorithm should be robust,

i.e. it should be able to handle failures.

Kremien and Kramer [Krem92] claimed that while bounded input produces a bounded

output'" condition is necessary for an algorithm to be stable, it is not sufficient. In addition,

an algorithm should make local decisions and minimise incorrect decisions. They introduced

hit-ratio and the percentage of remote execution in the system as measures of stability, where

hit-ratio is the ratio of remote executions concluded successfully. A high hit-ratio indicates

that an algorithm is successful in making correct transfer decisions, thus avoiding worthless

information exchange and possible fruitless job movements. In order to be stable, remote

executions should be bounded and restricted to a small percentage of system activities.

Kremien and Kramer considered algorithm stability as a pre-condition to scalability, and is an

indication of the ability of the algorithm to avoid poor allocation decisions. An algorithm is

scalable if it is independent of the system size and, in order to be independent, it should be

symmetrically distributed, maintaining only a partial view of the system at each node, and it

must be capable of making the most of partial information. A stable algorithm not only

avoids a single point of failure, but is also fault-tolerant.

Stankovic illustrated how the stability of scheduling algorithms is a subjective issue using

two algorithms, stochastic learning automata (S L A) and a bidding algorithm for jobs with

deadlines. Using S L A , a host maintains the state of at most M underloaded host at a time.

For stability purposes, each host has a priority sequence of hosts for which it observes if the

hosts are underloaded, where the sequence is varied between hosts using a cyclic chain. By

doing so, hosts will react differently even if they recognise the same network state. A

destination host is selected based on a probabilistic vector which further reduces the chance

of more than one host selecting the same destination host.

The bidding algorithm was designed for a real-time distributed systems with jobs having

explicit deadlines. If a local scheduler cannot guarantee a job can be executed before its

deadline locally, a bid is sent to other hosts. A host which receives the bid replies to the bid

only if it has enough surplus (the surplus is the resource required to execute the job, e.g. CPU

cycle, memory etc.) to guarantee the job. The stability issue here concerns the estimation of

surplus, which is calculated using a technique called Length o f the Memory Accumulation

Period (LMAP), also known as the moving average forecasting technique. It is based on the

assumption that the surplus'in the future is similar to that in the recent past, which is a

window of length t seconds. The performance metric used was the percentage of jobs

guaranteed in the system and, since the algorithm deals with jobs with deadlines, a good

estimate of the surplus is important because is affects how many jobs can be guaranteed. An

54

incorrect estimate will cause either jobs not being executed even though there is enough

surplus, or jobs missing deadlines even though they have been guaranteed due to

overestimates of surplus.

The examples given by Stankovic demonstrate how stable behaviour depends on the system

for which an algorithm is designed. In the context of our study, the load sharing algorithm is

considered stable if it does not cause power consumption to be worse than in a no load

sharing case. This is especially important when there is a high number mobile users

competing for a fixed host's spare capacity. The issue is elaborated in Chapter 6.

3.4 Conclusion
In this chapter, we have discussed aspects of load sharing relevant to this study. We first

discussed how load sharing has been used in distributed systems and then proceed to explain

how relevant the approaches taken by previous studies are to the problem we wish to resolve.

Although to some extent the approaches may be adopted, modification is inevitable as load

sharing now operates in a different environment, and under different constraints.

When designing the load sharing algorithm, the objective is to extend the period the CPU

operates in doze mode and select jobs for transfer to reduce power consumption. A good load

sharing algorithm is not necessarily one which moves a high number of jobs, but one which

chooses the right jobs for transfer. In fact, previous studies have shown that less than 20%

job movement is required in order to achieve performance improvement.

In Chapter 2, the limitations of wireless networks were discussed. Due to these limitations,

there are additional factors which must be considered when performing load sharing in a

wireless network environment and the assumptions made are inevitably different. Factors

which are non-issues in fixed distributed networks now must be considered. One of the

factors is available bandwidth.

When performing load sharing on fixed networks, bandwidth is not an issue as high

bandwidth is available. This, however, is not the case with wireless networks. While on

fixed network an assumption of negligible communication delays may be reasonable, this is

certainly not the case in wireless networks which are associated with a low bandwidth, high

latency communication medium. Consequently, when making transfer decisions, the

available bandwidth and the communication delays associated with transferring a job must be

taken into account to avoid degradation of job response time. At the beginning of this

chapter, the goal of load sharing is stated as to distribute workload evenly across the system

so that resources are better utilised. Doing so improves overall system performance, which is

often measured in terms of improved response time, compared to the case when no load

55

sharing is performed. While the main objective of this study is to conserve power, load

sharing is expected to give mobile users access to faster machines; thus transferring jobs is

also expected to improve response time.

In section 3.3, the importance of addressing the issue of stability was discussed. Depending

on the design of the algorithm, different factors have been identified to avoid unstable

behaviour of a load sharing algorithm which may lead to performance degradation. The

discussion has also demonstrated that the definition of stable behaviour depends on the

environment in which an algorithm operates. In the context of this study, the load sharing

algorithm is considered stable if, under unfavourable conditions, it does not cause power

consumption to be worse than when there is no load sharing. Unfavourable conditions, in this

case, are when there is a high number of users competing for the spare capacity on the fixed

network. Under these circumstances, it is crucial that mobile hosts do not continue to send

transfer requests when they are unlikely to be accepted, as doing so would only waste

precious battery power. A method of disabling the algorithm is required to avoid instability.

Once the issue of stability has been addressed, we proceed to determine if the algorithm is

scalable. It is probably not practical to expect only one fixed host to cater for job transfer

requests, especially when there are a high number of users wishing to transfer jobs, as one

fixed host might not be able to cope with the demand. When examining the scalability of the

load sharing algorithm, the benefit of delegating transfer requests to other fixed hosts, and

how well this approach scales, were investigated.

Another issue examined in this study is combining different power management strategies.

Various power management strategies were discussed in Chapter 2. In a real implementation,

it is desirable that various strategies be combined in order to provide maximum extension of

battery lifetime. In one of the experiments conducted, the benefit of combining load sharing

with another power management strategy was examined.

In the next chapter, the way in which the load sharing algorithm proposed in this study is

designed to take into consideration the characteristics of the mobile computing environment

is discussed.

56

4. Load Sharing in Wireless Networks
The load sharing algorithm was designed with the objective of extending the duration the

CPU operates in doze mode by making use of spare capacity on the fixed network to execute

jobs. In Chapter 2, the constraints associated with wireless networks were discussed. The

way in which the constraints were considered when designing the load sharing algorithm is

discussed in this chapter.

The remainder of this chapter is structured as follows. Firstly, the modifications on load

sharing policies for a mobile computing environment discussed in the previous chapter are

briefly revisited. Additional factors which must be considered and parameters influencing

remote execution decisions are also discussed. Next, the approach taken in designing the load

sharing algorithm is described, and the cost of remote execution and the trace data used in the

simulations are explained. This is followed by a discussion on the simulation environment,

experimental design, and the performance metrics and method used for data analysis. This

chapter is concluded with a summary and the hypothesis for this study.

4.1 An Approach to Load Sharing in Wireless Networks
This section discusses how the assumptions made regarding load sharing in a mobile

computing environment differ from those in fixed distributed networks and, consequently, the

extent to which previous work in this area is likely to have a bearing on the problem we seek

to address. The differences are now explained, starting with the load sharing policies.

In Chapter 3, the extent to which previous studies on load sharing are relevant to this study

and the modifications necessary were discussed. The load sharing policies are now briefly

revisited.

1, Information and location policies-. We have argued that the policies chosen for a

distributed system depends on the tasks it performs and the requirements of the system.

While simple policies may suffice for one system, more sophisticated policies may be

necessary in another system. Hence, for the purpose of this study, new information and

location policies are not proposed as existing policies currently implemented on the

system can be used. We chose not to disseminate workload information to mobile hosts

because, even if the information are disseminated, mobile hosts are still required to send a

transfer request to the fixed host in order to ascertain that the fixed host is willing to

execute a job on their behalf. Omitting this phase might cause flooding if several mobile

hosts simultaneously attempt to transfer their jobs to an underloaded fixed host. Instead of

disseminating the information, transfer requests are sent to the MSS which invokes the

57

location policy to find a suitable destination host to execute a job on a mobile host's

behalf, or it may execute the job itself. In this study, it is assumed that the MSS is capable

of performing this function. In cases where the MSS does not offer this service, the

request can be forwarded to a fixed host which offers the service. By taking this approach,

half of the computation and communications burden of load sharing is transferred onto the

fixed network. This is based on the suggestion of Badrinath et al [Badr93], [Badr96] that

when designing an algorithm for mobile computing networks, the costs of computation

and communications should be borne by the fixed network as much as possible. The core

objective of the algorithm is achieved through distributed executions among fixed hosts

and a mobile host only performs functions necessary for the overall functionality.

2. Transfer volicv: Unlike previous studies, where the transfer policy triggers the job

selection policy when the number of jobs waiting in the queue exceeds a pre-defined

threshold, the policy does so on the arrival of a new job classified as migratable. The

different approach is due to the fact that previous load sharing algorithms are trying to

distribute load in order to improve performance while in this case, the goal is to conserve

battery power. The classification of jobs is explained in section 4.3.

3. Job Selection Policy: The policy selects a job for transfer with the objective of extending

the period the CPU remains in doze mode. Jobs are selected in such a way that power

consumption of transferring jobs is less than that when the job is executed locally. The

factors considered when selecting a job for transfer are execution time and job size. An

additional factor considered is communication delays: jobs are only transferred if they do

not increase job response time.

In addition to the policies, the cost assumption in this study is also different from previous

studies, which usually assumed the cost of transferring a job as a function of probe cost, or

time taken to transfer the job, or as a fraction of job service time, or a function of

communication delays. Since the purpose of our load sharing algorithm is to minimise power

consumption, the cost is calculated in terms of power consumed by transmitting/receiving and

by the CPU. Even though communication delays are taken into consideration to avoid

increased job response time, this is not factored into the cost. The cost of load sharing is

explained in section 4.5.

Another assumption which is essentially different from traditional load sharing regards

communication delays. Due to the limited bandwidth inherent in wireless networks, it is no

longer valid to assume negligible communication delays, and probes can no longer be

assumed to take zero time. In fact, the limited bandwidth and communication latency may

become factors which impede load sharing in wireless networks.

58

Now that the differences between load sharing in fixed networks and wireless networks have

been explained, the next section describes the proposed load sharing algorithm.

4.2 The Load Sharing Algorithm
When designing the load sharing algorithm, we decided to keep it as simple as possible for

two reasons. Firstly, previous studies have shown that simple load sharing algorithms are

often adequate to achieve good performance. Secondly, and most importantly, the algorithm

should not be computationally expensive as that would put a heavy demand on the CPU, thus

contradicting our goal to extend the period the CPU remains in doze mode.

It is assumed that only newly arrived jobs may be considered for remote executions. Jobs are

classified as either migratable or non-migratable. When a job arrives and is identified as a

migratable job, the load sharing algorithm determines the trade off between local and remote

execution. Since the main goal of remote executions is to conserve battery power on mobile

hosts, a job is only transferred if the amount of power consumed transferring it is less than the

amount of power consumed by the CPU, if it is to be executed locally. If that is the case, the

mobile host sends a transfer request to the MSS. Depending on its current workload, the

fixed host sends a reply accepting or rejecting the request.

Three algorithms were used in the simulations. The algorithms perform the same

calculations, but differ in the way they estimate the CPU requirement of a job. The base

algorithm is as follows:

At a mobile host.

1 For each new job, determine if it is migratable.
1.1 If it is migratable, go to step 2.
1.2 If it is non-migratable, send job to local queue. Go to step 5.

2 Determine if a job transfer is feasible.
2.1 Calculate the amount of power consumed to execute the job locally.
2.2 Calculate the amount of power consumed for remote execution.
2.3 Calculate the response time of local execution vs. remote execution.

3 Send a transfer request iff:
3.1 The amount of power consumed transferring the job is less than the amount

consumed to execute it locally, and
3.2 The response time of remote execution will not exceed that of local

execution.
4 Wait for a reply:

4.1 If the request if accepted, transfer the job.
4.2 If the request is rejected, schedule the job for local execution.

5 Algorithm terminates.

59

Step 1 is the transfer policy and step 2 is the job selection policy. In step 2.2, the amount of

power consumed for remote execution is the amount of power consumed transmitting and

receiving messages. The messages exchanged between the mobile and the MSS are:

• a transfer request sent by the mobile host to the MSS,

• a reply from the fixed host accepting or rejecting the request,

• the job transfer itself,

• execution result returned by the fixed host.

The transfer request sent in step 3 specifies a maximum period of time, max-wait-time, it is

willing to wait for the fixed host to execute the job on its behalf. The maximum waiting time

is based on the time required to execute the job locally. Condition 3.2 is imposed to ensure

that job response time does not increase due to remote execution. The underlying assumption

is that the mobile is aware of the processing capability of the fixed host and is able to predict

how much faster the job will execute there, and specifies a value, reserve-time, which is used

to reserve the CPU time required to execute the job at the fixed host.

At a fixed host

1 Upon receiving a transfer request, the fixed host checks its queue length and

determines if it will be able to execute the job within the specified time, max-wait-time, based

on the execution time of jobs it has waiting in its queue.

2 If it is possible to execute the job within the specified time:

2.1 Send a reply accepting the request.
2.2 Reserve the processor cycles required to execute the job. Go to step 4.

3 If it is not possible to execute the job within the specified time, send a reply rejecting

the request.

4 Algorithm terminates.

Transfer requests are dealt with in a first-come-first-served manner. The reservation in step

2.2 is to guarantee job response time and also to prevent the fixed host from accepting too

many transfer requests. The reservation is carried out as follows: if J + /? < max-wait-time,

reserve processor cycles to execute the job,

N M

where J - ^ J, and /? = y ^ R , ,
i=I j=l

Ji = CPU time required to execute job i in queue,
A^= total jobs in queue,
Rj = CPU time reserved to execute job j for an accepted transfer request,
M= number of transfer requests accepted by the fixed host.

6t)

After a request is accepted, R is updated,

R = R + reserve-time.

It is assumed that the fixed host knows the CPU requirements of the jobs in its queue. In

reality, this information might not be available, in which case an estimate must be used. As

mentioned earlier, the algorithms (at a mobile host) differ in the way that they estimate the

CPU time required to execute a job. How each algorithm estimates the CPU requirement is

explained below.

Algorithm 1: Optimal Load Sharing (LSI

This algorithm assumes a priori knowledge of CPU requirements, where the CPU time

required to execute a job used by this algorithm is obtained from trace data. It is used in

calculation 2, and as max-wait-time. The calculation performed by this algorithm always

gives accurate estimates and it is, therefore, used as an upper bound algorithm.

In reality, it is highly unlikely that this information will be available in advance, hence

algorithm 2 and algorithm 3 make no assumption of this a priori knowledge and the CPU time

used in calculation 2 is an average value.

Algorithm 2; History

The simulation is first run in a no load sharing mode (NLS) and the average CPU time taken

to execute each job is calculated. For example, the CPU time taken for each execution of job

A is totalled and the average value is calculated at the end of the simulation. Later, when the

job is run in load sharing mode using History, the average value calculated in the previous

simulation run is used in calculation 2. This value is also used as max-wait-time.

Since the same trace data is used when running simulations in NLS and History mode, the

user's workload is exactly the same. In reality, it is highly unlikely that the same workload

will be reproduced. Therefore, this algorithm provides an upper bound on performance for

the use of history information.

Algorithm 3: Adaptive Load Sharing (ALS)

The adaptive algorithm learns and adapts its decisions based on previous executions of jobs.

It works as follows. When job A is executed for the first time, its CPU requirement is

unknown and, therefore, no assumption can be made regarding the feasibility of transferring

it. It is executed locally and the algorithm keeps a record of the CPU time taken to execute

the job.

The next time job A is executed, the CPU time from the previous execution is used in

calculation 2 to estimate if remote execution is beneficial. Each time job A is executed, the

61

CPU time taken to execute the job is used to calculate a new average value which will be

used in future calculations. Hence, when job A is executed for the n-th time, where «>7, the

average CPU time calculated from the previous {n-1) executions is used as an estimate. Like

History, this average value is also used as the value of max-wait-time.

This algorithm is expected to be the most practical of the three algorithms since it makes no

assumption of a priori knowledge and is able to adapt its behaviour according to a user's

working pattern.

The approach taken by History and ALS is similar to the filter approach proposed by

Svensson [Sven90] which selects long-lived jobs for remote execution.

4.3 Trace Data
The discussion in Chapter 2 demonstrated the diversity of mobile applications. The type of

workload generated by an application is likely to differ depending on the application, e.g. the

workload generated by emergency services which mainly involves downloading information

from a central database is probably different from the workload generated by the spreadsheet

application used in the W ireless Coyote experiment. We would like the workload generated

for the simulations to represent the workload generated by mobile applications as closely as

possible. However, due to the diversity of mobile applications, it is impossible to guarantee

that the workload generated is representative of all types of possible applications.

There are two options which could be taken to generate the workload: the use of a stochastic

model or the use of trace data. A stochastic model was not selected because it does not

capture user's behaviour accurately and, in particular, tends to misrepresents the bursty nature

of users' activities. On the other hand, the major question with trace data collected from

conventional network is: how well does the trace data represent the type of workload

generated by mobile users? It is not possible to say for certain what type of workload is

generated by mobile applications because, at present, people are not yet using mobile

applications on a regular basis. Consequently, it is not possible to gauge the type of workload

generated by mobile applications. However, it is plausible to assume that users will expect a

seamless environment. In addition to mobile-specific applications, users will expect to be

able to use similar applications and tools they are currently using at the workplace. If a

seamless environment is not provided, users will have to face the inconvenience of working

in two different environments. Taking this into consideration, trace data collected from

existing applications provides the approximation most rooted in reality, and requiring the

least amount of supposition about factors which are currently unknowable.

62

For this study, trace data for the experiments were collected from Sun workstations in the

undergraduate labs at the Department of Computer Science, UCL, where process accounting

was used to collect trace data for 24-hour periods. The trace data shows that the jobs

executed consists of text processing, program compilation, email, web browsing etc.

The data was summarised to contain only the time period when the machines were being

used. The time period during which no users were logged on were deleted, giving trace data

for a period of 4 to 8 hours. [ZhouSS] identified that some jobs are immobile and,

consequently, must be executed locally. In this study, each job type is classified as either

migratable or non-migratable. Examples of migratable jobs are program compilation,

simulations and program runs, while non-migratable jobs are interactive jobs, text formatting

and email. Among information provided by the trace data are job name, job start and end

time, the CPU time (in seconds) taken to execute a job and the average amount of I/O (bytes)

performed by a job. The trace data does not provide information regarding job size (size of

executable files). This information was obtained by using the Unix command Is -I and

incorporated into the trace data.

4.4 Power Consumption
An AST Power Executive 325/SL NiMh battery provides (14.4 V * 2.4 A-hr) « 34.6 W-hr.

Transmitting and receiving are assumed to consume 3.4W and 1.7W respectively [Imie96].

[Form94] lists power consumption of hardware components of a portable computer. A simple

estimate of battery lifetime based on this information, is that a brand new battery lasts for

about 3.4 hours, assuming that general power consumption (i.e. power consumption by the

basic components such as the display, hard drive, keyboard etc.) is approximately 10.1 W.

Power consumed when transmitting = 3.4 • —-— W- hr
3600

tr = time taken to transmit a message (sec)

Power consumed when receiving is calculated in a similar way.

Power consumed by the CPU is = P.n,/ • —-— W - h r
3600

PcFi! - power consumed by the CPU
t„ = CPU time taken to execute a job on a mobile (sec)

Based on the information provided in Intel's Application Note [Inte94], the average active

CPU power consumption (with Advanced Power Management) is assumed to be 4.59 Watts

and idle power consumption (doze mode) is 1.24 Watts.

63

4.5 Assumptions
As mentioned earlier, since the aim of the load sharing algorithm is to minimise power

consumption, the cost of transferring jobs is calculated in terms of power consumed by local

and remote executions. The parameters used in order to determine if a job transfer is feasible

are;

• available bandwidth

• job size

• power consumed by the CPU to execute a job on the mobile host

• power consumed transmitting and receiving messages.

B = available bandwidth
R] = packet size o f request message
R2 = packet size o f transfer reply
J = size job to be transferred
R3 = packet size o f the returned result
P, = power consumed transmitting packets
Pr = power consumed receiving packets
Pcpu = power consumed to execute a job on the mobile host

cost of sending transfer request = ^ Pt

cost of receiving a reply

cost of transferring a job

= — Pr
B

= cost of transmitting a job +

cost of receiving result

= — P, + — Pr
B B

cost of remote execution = cost of sending a request +

cost of receiving a reply +

cost of transferring a job

J R,
- P ,

\ B ' B

cost of executing a job on a mobile host = CPU 3600

The job service time and job inter-arrival time of the mobile hosts were obtained from the

trace data. Additional workload on fixed hosts was generated using an exponential

64

distribution because, in reality, a fixed host may have its own jobs to execute. If so, it can

only accept a Job transfer request if it has some spare capacity. By taking this approach, we

create an environment in which a mobile host must compete for a fixed host’s resources. By

doing so, we hope to reduce the chances of obtaining over-optimistic results.

In the next section, the simulation environment and the experiments are described.

4.6 The Simulation Environment
The simulation was written using Maisie [Shor95], a C-based simulation language which is

designed specifically for simulating wireless networks. Maisie provides a discrete event

simulation environment, where an event is signified by the arrival of a message. It introduces

the concept of an entity, where an entity may be defined to represent a component involved in

a simulation. The entities communicate with each other using buffered message passing. An

entity is similar to an object in C++.

Maisie was chosen as a simulation tool for this study because the concept of an entity makes

the representation of various components simple and the message passing facility makes

managing communication between entities effortless; and its simplicity makes it very flexible

to use. It has been used to simulate wireless networks in other studies, e.g. Bagrodia et al

[Bagr95] and Short et al [Shor95]. The environment is assumed to consist of cells with a

MSS in each cell. At the start of the simulation, mobile hosts are evenly distributed among

the cells. The rest of this section discusses the entities and parameters for the simulation.

4.6.1 Entities

For the purpose of this study, entities were defined to represent mobile hosts, mobile support

stations, fixed hosts and communication channels. The entities defined for the simulation and

their interaction with each other are depicted in Figure 4-1. Below is a description of the

functions performed by each entity.

65

Figure 4-1
Entities and messages passed between them.

MSS Source MH Source

new jobnew job

transfer reqyds
job trans

job execution
done transfer request,

lob transfer / / transfer
reply

execution
done,

PU idle/
ve time

transfer reply

MSS CPU Channe MH CPU

MSS-Source Entity

This entity generates the additional workload on fixed hosts, where fixed hosts are assumed

to have an exponential service time of p and job arrival rate of X. It notifies the M SS entity

of new job arrivals by sending a message to it. There is one MSS-Source for each MSS

entity.

M SS Entity

When it receives a message from M SS-Source notifying it of a new job arrival, the jobs is

scheduled for execution and the MSS keeps track of the CPU requirement of jobs in its

queue. The MSS executes the algorithm described in section 4.2 when it receives a transfer

request and sends a reply message accordingly. When a transferred job is received, it is

scheduled for execution along with local jobs and the result is returned to the MH entity when

its execution is completed.

66

MSS-CPU Entity

There is one M SS-CPU entity for each M SS entity. Each time a new job or a transferred job

arrives at the M SS entity, the job is sent to the MSS-CPU entity for execution on a first-

come-first-served basis. Once a job is executed, the MSS-CPU entity sends a message to the

MSS entity informing it that the jobs has finished executing.

MH-Source Entity

This entity reads the trace data and generates new jobs for entity MH. There is one MH-

Source for each MH entity. The job inter-arrival time is calculated from the trace data based

on job start time. If the algorithm is operating in NLS or LS mode, the CPU time for a job is

obtained from the trace. If it is operating in History or ALS mode, a table lookup is carried

out in order to determine the average CPU time for the job. Once this is done, a message is

sent to the MH entity to inform it of the arrival of a new job.

MH Entity

Upon receiving the message from MH-Source notifying it of the arrival of a new job, the MH

entity executes the load sharing algorithm described in section 4.2. It also calculates the

remaining power on the mobile host periodically (every 60 seconds). The entity and,

therefore, the simulation, terminates if the remaining power is less than the amount of power

required by the basic components.

The entity outputs data which is used to calculate:

• battery lifetime,

• the percentage of transfer requests, rejected transfer requests and jobs transferred,

• the mean and standard deviation of job response time,

• the rnean and standard deviation of communication delays.

There is one output file for each MH entity.

MH-CPU Entity

This entity performs 2 functions:

• simulate the execution of jobs sent to it by the MH entity and informs the MH entity when

the jobs finish executing,

• keep a record of the amount of time the CPU is active and idle.

The amount of time the CPU remains idle/active is sent to MH periodically (every 60

seconds) and is used by the MH entity when calculating remaining power on the mobile host.

67

Channel Entity

Channel is used to simulate communication delays. When MH sends a message to its MSS,

the message is sent through Channel entity, where the communication delay is calculated

based on the packet size and available bandwidth. The same procedure is followed when

M SS sends a message to MH. A reliable communication medium was assumed, and channel

allocation was not simulated to simplify the simulation.

4.6.2 System Parameters

The 9 system parameters, listed in Table 4-1, were varied to allow us to examine the

effectiveness of load sharing under different operating conditions. In the experiments, we are

interested in establishing:

• the influence of available bandwidth on load sharing,

• the effect of job transfers on response time,

• the effects of processor power of a mobile host on load sharing,

• the effectiveness of the adaptive algorithms compared to the optimal load sharing

algorithm,

• the benefit of combining load sharing with another power management strategy,

the required measures to ensure the stability of the load sharing algorithm,

further benefits which may be obtained from delegating job transfers to other fixed hosts.

Table 4-1
Table listing parameters used to vary the simulation environment.

Param eter Specifies...
param.alg algorithm mode during a simulation
param.mss total number of MSS
param.mh total number of mobile hosts
param.bw available bandwidth
param.proc-speed processor speed of the mobile relative to the fixed host's
param.mss-load (additional) job arrival rate at a fixed host
par am. disk enable/disable disk spin-down strategy
param.probe,
param.fixed-hosts

enable/disable delegating transfer request;
param.fixed-hosts is enabled when param.probe is
enabled

Param.alg was used to vary the algorithm used in a simulation to either NLS, LS, History or

ALS. The total number of users during a simulation was represented by param.mh. Each

trace data represented one user and the initial experiments were run dissum\ngparam.mh=30.

Later, when examining the stability of the algorithm, some of the traces were replicated to

68

provide a total of 40 users. In order to achieve a reasonable density of users, param.mss was

set to 7. Since there is an MSS in every cell, param.mss not only specifies the number of

MSS in the environment, but also the number of cells.

Using param.bw, the available bandwidth was varied to 9.6, 20, 28, 56 and 100 kbps. Low

available bandwidth was chosen because it was expected that it is a factor which may impede

load sharing, and would like to test to what extent this limitation may hamper load sharing.

The highest data rate provided by a GSM call is 9.6 kbps. High-speed circuit-switched data

(HSCSD) addresses this constraint by specifying the use of multiple slots for a single call.

Each GSM radio carrier can support up to 8 simultaneous calls, each call occupying a single

time slot. HSCSD specification allows a call to be allocated up to 8 time-slots, thus providing

as much bandwidth as 8 calls. As a result, data rates up to 76 kbps can be supported. A

reliable communication link was assumed to exist between the mobile hosts and the MSS, and

possible interference or packet loss were not simulated. No attempt was made to economise

power consumption by the transceiver.

The next parameter is param.proc-speed. In the experiments, it was assumed that mobile

hosts have lower processing capacity than fixed hosts. Mobile hosts with low processing

capacity are expected to benefit more from load sharing as doing so gives them access to

faster machines. A param.proc-speed of 1/n means that mobile hosts are n times slower than

fixed hosts. If param.proc-speed=J/2, jobs which previously take t seconds to execute, now

require 2t seconds to execute.

System load on the fixed network is represented by param.mss-load, where system load is

defined as p=2,p, /f=mean service time and À=}ob arrival rate. Even though it is

acknowledged that mobile hosts may encounter heterogeneous environments, we made a

simplifying assumption that extra/external job arrival rates at fixed hosts is homogeneous. If

a heterogeneous inter-arrival rate is assumed, it is possible that there are mobile hosts which

may be served by fixed hosts with higher spare capacity compared to other mobile hosts. As

a result, the percentage of jobs transferred and saving achieved may be influenced by the

fixed hosts serving them. By making a homogeneous inter-arrival rate assumption, this

possibility is eliminated and allows a fairer comparison of the results obtained among the

mobile hosts.

As mentioned earlier, the additional load at fixed hosts are generated to create an

environment where mobile hosts have to compete for spare capacity on the fixed network.

Previous studies have shown that at low to moderate load (p<0.6), load sharing improves

system performance, while at high load (p ^ .6), it is best to disable load sharing as it is

difficult, if not impossible, to find a suitable destination host. Performing load sharing under

69

high loads may lead to performance degradation as precious resources, which are better spent

to execute jobs locally, are wasted on load sharing efforts. In initial experiments, system load

was maintained at p=O.J to allow a reasonable amount of load sharing. Later, when the

stability and scalability of load sharing was examined, fixed hosts were put under heavy load

to examine the impact of system load on load sharing. However, instead of varying p

between 0.Ï and 0.9, the system was put under heavy load by concentrating users in one cell

to create a heavy demand for the fixed host's spare capacity. The reason for this approach is

as follows. Putting the fixed host under heavy load by increasing p means that the fixed host

have little spare capacity. Under such condition, there really is no action which can

ameliorate the situation, and previous studies have shown that the best course of action is to

disable load sharing. We are more interested in investigating a situation where a fixed host

has spare capacity, but is put under heavy load due to competition from a high number of

users. Under these conditions, the load sharing algorithm should be able to react in an

appropriate way.

The last two parameters are param.disk and param.probe. Param.disk is set to 1 when

running simulations examining the benefit of combining load sharing with a disk spin-down

strategy; otherwise, the value is set to 0. Param.probe is enabled by setting its value to 1 in

order to establish the benefit of delegating transfer requests to other fixed hosts. Delegating

transfer requests is disabled when param.probe=0. Param.fixed-hosts is enabled when

param.probe=l and specifies the number of fixed hosts, in addition to the MSS, which offers

its services to the mobile hosts.

Simulations were run until the battery was flat, which usually took between 2 to 2.5

simulation hours in no load sharing mode and between 3 to 3.5 simulation hours in a load

sharing mode.

4.6.3 Experimental D esign

An exponential distribution was used to determine the additional job inter-arrival time at

fixed hosts and the srand(x) function was used to reset the random number generator to a

random starting time. The same value x was used for all experiments so that the same

workload is reproduced at the fixed hosts for each experiment.

The experiments were carried out in five stages to investigate factors which influence the

benefit of load sharing. In the first two stages, param.disk and param.probe were set to 0.

Stage 1 :

The first set of experiments were carried out in no load sharing (NLS) mode. The values of

the parameters were as follows:

70

Param eter Values
param.alg NLS
param.mss does not have any influence on the result as jobs are not

transferred
param.mh 32
param.bw does not have any influence on the result as jobs are not

transferred
param.proc-speed varied to 1, 1/2, 1/3, 1/4 and 1/5
param.mss-load does not have any influence on the result as jobs are not

transferred

Stage 2:

Experiments were carried out in load sharing (LS) mode and the influence of available

bandwidth, processing power and CPU utilisation were identified.

Experiment J:

Determine the effect of available bandwidth on load sharing.

Param eter Values
param.alg LS
param.mss 7
param.mh 32
param.bw varied to 9.6, 20, 28, 56 and 100 kbps
param.proc-speed 1/5
par am. mss-load 0.1

Experiment 2:

Determines the impact of processing power on load sharing.

Param eter Values
param.alg LS
param.mss 7
param.mh 32
param.bw 56 kbps
param.proc-speed varied to 1, 1/2, 1/3, 1/4 and 1/5
param.mss-load 0.1

Experiment 3:

Determines the influence of CPU utilisation on the gain from load sharing. Battery lifetime

improvement the CPU utilisation of each trace was calculated and a graph was plotted to

determine if there was any relationship between them.

71

Experiment 4\

Examined the effectiveness of ALS and History. From this experiment onwards, the values of

param.bw and param.proc-speed were fixed at 56 kbps and 1/5 respectively.

Param eter Values
param.alg History, ALS
par am. bw 56 kbps
param.proc-speed 1/5
param.mss 7
param.mh 32
param. mss-load 0.1

Stage 3:

Examined the benefit of combining load sharing with a disk spin down algorithm.

Param.disk was set to 1 and the results were compared to load sharing without a disk spin-

down strategy.

Stage 4:

Examines the stability and scalability of the load sharing algorithm.

Experiment 1\

Users were concentrated into one cell to create a heavy demand for the fixed host's spare

capacity by setting param.mss to 1. Experiments were run using the LS algorithm and two

modified load sharing algorithms (discussed in Chapter 6) which were designed to prevent

instability.

Param eter Values
param.alg LS, Backoff, Slotted LS

param.bw 56 kbps
param.proc-speed 1/5
param.mss 1
param.mh varied between 1 and 40
param.mss-load 0.1

Experiment 2:

Examines the benefit of delegating transfer requests to other fixed hosts. The parameters

were set to the same values as the previous experiments except param.probe which was set to

1 and param.fixed-hosts which was varied to 2 and 3. Whenever the MSS is unable to accept

a transfer request, it sends probes to other fixed hosts to delegate the requests.

72

Stage 5:

The simulation results were verified by running an emulation of the load sharing algorithm on

a wireless LAN. The emulation results were compared to simulation results run under a

similar operating condition as the live environment. The parameter values of the simulation

were as follows:

Param eter Values
param.alg LS
param.bw 2 Mbps
param.proc-speed 1/5
param.mss 1
param.mh 1
param.disk 1

4.6.4 Performance Metrics

Studies discussed in Chapter 3 have used performance metrics which were concerned with

measuring performance of the load sharing algorithm as a result of transferring jobs to less

loaded hosts in expectation of improved performance. The performance metrics were usually

a function of the distribution of workload across the network. Performance was also

measured in terms of improved response time.

The metrics chosen to measure the performance of the load sharing algorithm in this study

were different from those of previous studies because the distribution of workload on the

fixed network is not a primary concern from a mobile host's point of view. The objective is to

make use of spare capacity on the fixed network whenever it becomes available in order to

conserve battery power. Consequently, the performance metric chosen reflects of this

concern. The performance metrics are percentage of battery lifetime improvement,

percentage of jobs transferred, response time improvement and percentage of rejected

requests.

4.6.5 Data Analysis

For each experiment, the results were compared to a no load sharing case and statistical

analysis using either z-test or ANOVA, was carried out at 95% confidence interval to see if

there is a significant improvement from the no load sharing case.

Where appropriate, graphs show error bars which express potential error amounts relative to

each datum in a data series, calculated at a 5% interval.

73

4.7 Summary
In this chapter, the assumptions made when designing the load sharing algorithm, and the way

in which the assumptions are different from those in previous studies were discussed. This

was followed by a discussion on the trace data used in the experiments and thé simulation

environment; the system parameters and the experimental design were also described. Before

proceeding to the next chapter, the hypotheses for this study is once again listed below;

• low bandwidth impedes load sharing as long delays might result in increased response

time,

• mobile hosts with low processor power will benefit from load sharing as that gives them

access to faster machines on the fixed network,

• it is jobs with long execution time that will bring significant benefit from transfers as they

will considerably reduce power consumption by the CPU,

• combining load sharing with another power management strategy should further extend

battery lifetime,

• delegating transfer requests will further improve performance as users are given access to

other fixed hosts' spare capacity.

The next chapter discusses the first three stages of experiments carried out to identify factors

influencing load sharing in wireless networks and the effectiveness of load sharing in

conserving battery power.

74

5. Factors Influencing Load Sharing in Wireless
Networks
In this chapter, experiments carried out to determine the factors influencing load sharing are

discussed. Five experiments were carried out to investigate:

1. the influence of available bandwidth on job transfers,

2. the influence of a mobile host's processor power on the job transfer decision,

3. the relationship between CPU utilisation and gain from load sharing,

4. the effectiveness of History and ALS compared to LS in extending battery lifetime,

5. the benefit of combining load sharing with a disk spin-down strategy.

For each experiment, the motivations, hypothesis and methodology of the experiment are

explained, followed by a discussion of the result obtained and an analysis of the results. For all

experiments discussed in this chapter, param.mss-load 'wzls set to 0.1 to create an environment

conducive to load sharing. In the next chapter which addresses the issue of stability and

scalability, the impact of putting the fixed hosts under heavy load is examined.

5.1 Bandwidth
Motivation:

As has been mentioned previously, bandwidth is a scarce resource in wireless networks. While

bandwidth is much less of an issue on a fixed network, and can consequently be assumed to be

so as in most previous studies, bandwidth might become a factor which hampers load sharing in

a wireless network. Consequently, we wish to determine the extent to which it impedes load

sharing.

Hypothesis:

The discussion in Chapter 3 regarding the effect of communication delays on load sharing came

to a conclusion that in the presence of high communication delays, load sharing should be

disabled to avoid an increase in job response time. Consequently, it is expected that at low

bandwidth, very few jobs can be transferred as the delays involved may cause an increase in job

response time. As more bandwidth is available, it is expected that users will be able to transfer

more jobs, thus a higher level of saving may be achieved.

Methodology:

Param.bw was varied to 9.6, 20, 28 and 56 kbps. It is expected that slow mobile devices would

benefit more from load sharing as they are given access to faster machines. The next

experiment will test how true this is, but for this experiment, was set to 1/5.

75

Simulations were first run in a no load sharing mode (NLS), then in a load sharing (LS) mode.

Simulations were run with 32 users and detailed figures are given for five of those users,

together with an average over all users. In this way, it is possible to see both general behaviour

and the way that behaviour may vary between different classes of users. The five users were

selected to show how the work pattern of a user may influence the gain obtained from load

sharing. As will be shown later, given the same set of conditions, users exhibit different

behaviour when load sharing was performed. Table 5-1 lists the characteristics of the five

users.

Table 5-1
Table showing the characteristics o f five users

users average job size

(bytes)

average job

execution length (sec)

CPU

utilisation

userl 8303 10.17 0.69

user2 30441 11.07 0.89

user3 46154 13.50 0.94

user4 22383 0.73 0.01

user5 4980 0.94 0.02

Results:

Figure 5-1 shows the battery lifetime improvement for different bandwidths. The graph shows

that for userl, user2 and user3, battery lifetime improvement increased as the available

bandwidth increased, while user4 and user5 did not show significant improvement in battery

lifetime. The reason for this is discussed in section 0. Table 5-2 gives a summary of the

improvement of battery lifetime of each user.

At low bandwidth, few jobs were transferred because communication delays involved would

cause worse response time than if the jobs were executed locally. Furthermore, the amount of

time spent transmitting and receiving would consume more power than executing the jobs

locally, on the basis of the assumption that a transmitter consumes the same power regardless of

bandwidth. As available bandwidth increased, more jobs were transferred, as shown in Figure

5-2 and, therefore, more power saving was achieved. On average, between 20% to 30% jobs

transferred brings improvement in battery lifetime.

76

Figure 5-1
Graph show'ing the percentage o f battery lifetime extension as available bandwidth increases

battery lifetime improvement (%)

userl

Table 5-2
A summary o f battery lifetime improvement for each user for different bandwidths

bandwidth

(kbps)

userl user2 user3 user4 user5 avg. for

32 user

% hour % hour % hour % hour % hour %

9.6 15 0 3 9 0 0 < 1 0.01 0 0 0 0 3

20 16 0.44 0 0 1 0.03 0 0 < 1 0.02 3

28 17 0.45 20 0.51 18 0.46 0 0 < 1 0.02 11

56 18 0.47 21 0.53 19 0.48 < 1 0.02 < 1 0.02 11

100 18 0.48 22 0.55 19 0.50 < 1 0.02 1 0.04 11

Figure 5-2
Graph showing percentage o f jobs transferred as the available bandwidth increases

job transferred -available bandwidth

user?

Contrar)' to the expectation that low bandwidth im pedes load sharing. Figure 5-2 sh ow s that

userl transferred a high percentage o f jo b s com pared to other users at low bandwidth. The

reason for this is that userl execu tes sm aller Jobs com pared to other users, as sh ow n in T able 5-

1. C onsequently, userl w as able to transfer a high percentage o f jo b s even at low bandwidth.

Interestingly, the graph sh ow s that there is a sudden increase in the percentage o f job s

transferred (and hence, battery lifetim e im provem ent) w hen availab le bandwidth increased from

20 kbps to 28 kbps. H ow ever, w hen availab le bandwidth increased to 56 kbps and 100 kbps.

77

there w as on ly a slight increase in the percentage o f jo b s transferred. T his indicates that there

is a lim it on the number o f jo b s w hich can be transferred; an alm ost 2x im provem ent in

availab le bandwidth did not bring a sign ifican tly higher increase in the percentage o f job s

transferred.

Figure 5-3
Graph showing communication delays vs. available bandwidth

communication delays - available bandwidth

r m a-Tkn
userl user2 user3 user4 userS

Figure 5-3 sh ow s that com m unication delays decreased as the available bandwidth increased, as

exp ected . For userl and user2, the m ean com m unication d elays increased slightly w hen the

available bandwidth increased from 56 .0 kbps to 100.0 kbps. The sam e observation can be

m ade for user3, w hen the availab le bandwidth increased from 28 .0 kbps to 56 .0 kbps. The

reason for th is observation is that, as the availab le bandwidth increases, jo b s w hich w ere

previously not transferred because it w as not feasib le to do so, w ere now selected for transfer.

Since these w ere jo b s with relatively large jo b size, that caused a slight increase in average

com m unication delays.

Analysis o f Results.

The results confirm the h ypothesis that available bandwidth plays an important factor in

determ ining how many jo b s can be transferred. A lthough the results show that low bandwidth

d oes im pede load sharing, it a lso sh ow s that for a user execu tin g relatively sm all job s, load

sharing is still p ossib le at low bandwidth. Therefore, to say that low bandwidth im pedes load

sharing is not n ecessarily true because, providing the job size is relatively sm all, it is still

p ossib le to transfer a high percentage o f jo b s, thus extend ing batteiy lifetim e, as exhib ited by

u ser l. This find in g is encouraging because it sh ow s that it is still p ossib le to perform load

sharing even at low bandwidth. H ow ever, contrary to our expectation that a higher level o f

saving can be ach ieved as the percentage o f jo b s transferred increased w ith an increase in

available bandwidth, the results sh ow that this w as not the case.

The next step is to analyse if the im provem ent obtained is statistically sign ificant. Table 5-3

sh ow s the result o f z-test carried out at 95% con fid en ce interval on users' battery lifetim e with

78

no load sharing and with load sharing, and the improvement was found to be significant. The

maximum battery lifetime improvement achieved is 33 minutes with an average of 20 minutes.

In Chapter 1, we stated that we believe load sharing to be especially important in cases where

users are using their mobile devices for CPU-intensive jobs, in which case it is imperative

battery lifetime is extended to allow users to finish their tasks. Being able to extend battery

lifetime for 33 minutes may be critical to allow users to finish the tasks they are performing.

Table 5-3

z-test; a = 0.05 NLS LS
Mean 2.86 3.18
Known Variance 0.06 0.02
Observations 32 32
Hypothesised Mean Difference 0
z -6.39
P(Z<=z) one-tail 0
z Critical one-tail 1.64
P(Z<=z) two-tail 0
z Critical two-tail 1.96

5.2 Processor Power of Mobile Computers
Motivation-.

It is expected that slow mobile devices are more likely to benefit from load sharing as it gives

users access to faster machines on the fixed network. If mobile devices are as powerful as fixed

hosts, it is expected that few jobs will be transferred as the delays incurred by the transfer

would cause degradation of job response time. In this experiment, the processor power of

mobile hosts were varied relative to the fixed host to examine if this is true.

Hypothesis:

Mobile hosts with low processor power ought to gain more benefit from load sharing.

Methodolo2v:

The speed at which mobile hosts processed jobs were varied by varying param.proc-speed to 7,

7/2, 7/i, 1/4 and 7/i; param.bw was 56 kbps, param.proc-speed of 1/n means that mobile hosts

are n time slower than fixed hosts. If param.proc-speed=l/2, jobs which previously took t

seconds to execute, now require 2/ seconds to execute.

Results:

The result shows that when mobile hosts were as fast as the fixed hosts (param.proc-speed=l\

there is little improvement in battery lifetime because few jobs were transferred. This is

because the delay in transferring the jobs would cause increased response time. However, as

79

the value o f param.proc-speed decreased, m ore jo b s w ere transferred because rem ote execution

resulted in better response tim e in addition to con serv in g power.

Figure 5-4 sh ow s that for m obile hosts w ith low er p rocessin g power, greater pow er saving is

ach ieved by transferring job s. A s slow er m achines require more CPU tim e to execu te a job , the

cost o f transferring jo b s becom es less than the cost o f execu ting them locally . Therefore, on

slow m achines, more jo b s w ere transferred and a sign ifican t am ount o f pow er w as saved. O nce

again, user4 and user5 do not exh ib it sign ifican t im provem ent in their battery lifetim e.

Figure 5-4
Graph showing that slower mobile computers benefit more from job transfers

battery lifetime improvement - processor power

25

20

15

10

5

0
userl user2 user] user4 user5 average

1/5

■ 1/4

□ 1/3

□ 1/2

□ 1

A s transferring jo b s g ives users access to faster m ach ines, mean response tim e w as im proved.

The response tim e im provem ent w as calcu lated as fo llow s:

RT im provem ent = {{RTa -RTt,) ! RTa) %

w here. RTa = m ean response tim e w ithout load sharing,

RTt = m ean response tim e with load sharing.

Figure 5-5 sh ow s that there is a vast im provem ent in response tim e as the processor cyc le

decreases. W hat happens during the sim ulation is: the job inter-arrival tim e w as calculated

from the trace data and as this value rem ains the sam e as param.proc-power w as decreased,

jo b s still arrived at the sam e rate even though they w ere serviced at a slow er rate, causing them

to w ait longer in queue before being served. The long w ait occurred esp ecia lly during periods

w hen there w as a burst o f activity w here jo b arrival rates w ere m ore than 1 jo b s /sec . W hen

jo b s w ere transferred to a fixed host, the w aiting tim e w as reduced drastically , resulting in the

very high im provem ent in response tim e w hen jo b s w ere transferred from the s lo w m achines.

The response tim e im provem ent from the sim ulation is very high and w e are scep tical that this

level o f im provem ent is p ossib le in real it) .

A nother p ossib le reason for the high response tim e im provem ent is the sim p lification o f the

Channel entity, w here a reliable com m unication m edium w as assum ed, and possib le

80

in terference, packet loss and retransm issions w ere not sim ulated. In reality, these factors would

lead to increased com m unication delays, and hence much lower response tim e im provem ent.

T he em ulation results presented in Chapter 7 exhibit a much low er and m ore reasonable

response tim e im provem ent, im plying that the sim plification o f the Channel entity m ight have

contributed to the high response tim e im provem ent. N o attempt w as m ade to sim ulate these

con d itions w hich w ould a lso in volve econ om isin g power utilisation o f the transceiver in the

presence o f such con d itions, because the pow er m anagem ent strategy used for the transceiver

m ight a lso have an im pact on the overall level o f pow er saving achieved.

Figure 5-5
Graph showing response time improvement by giving mobile hosts access to faster machines

on the fixed netw’ork

response time improvement - processor power

user2

Analysis o f Results:

O n e-w ay A N O V A w as used to ascertain if the battery lifetim e im provem ent is sign ificant as

param.proc-speed v,'2ls varied. T able 5-4 sh ow s that there is a sign ificant d ifferen ce in battery

lifetim e im provem ent, sh ow in g that m obile d ev ices with low processing pow er is m ore likely to

benefit from load sharing.

Table 5-4
Hq: mean battery^ lifetime is equal for different processor power

on e-w ay A N O V A ; a = 0 .0 5
Source o f Variation d f F P-value F critical

Processor Pow er 1.94 4 0.48 11.38 0 2.43
W ithin Groups 6 .6 0 155 0.04

Total 8.53 159

' sum o f square
■ degree o f freedom
 ̂mean square

81

5.3 CPU Utilisation
Motivation:

The results presented in section 5.1 shows that user4 and userS did not exhibit any

improvement of battery lifetime at all. This experiment was carried out to determine if this has

to do with CPU utilisation.

Hypothesis:

Users with high CPU utilisation are more likely to benefit from load sharing as that allows the

CPU to operate in doze mode more frequently and for longer periods. Users with low CPU

utilisation are unlikely to benefit as the CPUs are not heavily utilised in the first place.

Methodology:

The average CPU utilisation for each trace data was calculated and Table 5-1 shows that the

CPU utilisation of user4 and user5 are low compared to other users. CPU utilisation for each

trace was calculated as follows:

y j i
CPU utilisation = --------,

T

where J, = CPU time to execute job i (sec)
T= simulation period (sec)

A graph was plotted to determine if there is any relationship between CPU utilisation and

battery lifetime improvement.

Analysis o f Results:

Figure 5-6 shows that battery lifetime does indeed correspond to CPU utilisation with a

correlation coefficient of 0.96, confirming the hypothesis, and explaining why user4 and user5

hardly show any improvement in battery lifetime. The result confirms that it is applications

which use the CPU intensively that have much to gain from load sharing.

82

Figure 5-6

Graph showing the relationship between CPU utilisation and the benefit o f job transfer
(param. bw=56 kbps; param.proc-power= 1/5)

battery lifetime vs. CPU utilisation

^ 20 - -

i
J

10 - -

average CPU
utilisation

(sec)
0

0.40.0 0.2 0.6 0.8 1.0

Referring back to Figure 5-2, even though the percentage of jobs transferred for userS is

comparable to userl, user2 and user3, there is no significant improvement in battery lifetime

because, since his CPU utilisation is low, transferring jobs did not extend the duration that the

CPU remained idle significantly enough to result in substantial saving. The percentage of jobs

transferred for user4 was low simply because most jobs were short-lived and, therefore, not

worth transferring.

5.4 History and ALS
Motivations’.

The experiments done so far were run using the optimal LS algorithm which assumes it has a

priori knowledge of the CPU requirement of each job. In reality, it is very unlikely that such

information is available in advance. Consequently, an algorithm which makes no assumption of

a priori knowledge is required for a real life implementation. In this experiment, two adaptive

algorithms which do not assume a priori knowledge of CPU requirements were tested and the

results compared to the results of optimal LS. The adaptive algorithms. History and ALS, were

described in Chapter 4.

Hypothesis’.

As the adaptive algorithms make use of imperfect information, the level of savings achieved by

these algorithms might not be as good as the optimal LS. It is expected that the amount of

saving will be lower, but hopefully, still brings significant battery lifetime improvement.

Methodology:

Simulations were run with param.alg set to ALS and History mode; param.bw=56 kbps;

param.proc=I/5.

83

Results:

Table 5-5 summarises the simulation results for users using History and ALS compared to LS.

From the table, we can see that the average performance of History and ALS were almost as

good as the upper bound LS.

Table 5-5
Table comparing the performance o f LS, History and ALS

battery life extended (%) job transferred (%) RT improvement (%)
LS History ALS LS History ALS LS History ALS

userl 15 14 16 31 16 31 98 95 98

user2 21 16 20 25 13 26 98 97 98

userS 19 16 18 27 15 27 97 94 97

average
for 32
users

11 9 10 27 16 27 95 81 87

The trace data shows that the execution time of a job is not a constant value, but may fluctuate.

Both History and ALS make use of an average CPU time in its calculation. Since an average

value is used, it is possible that sometimes an incorrect estimate is made regarding power

consumption. A wrong prediction may cause either an unnecessary Job transfer, or cause a job

to be executed locally when it should have been transferred. Incorrect predictions result in a

waste of battery power.

Since History makes use of an average value from a previous simulation in its calculation, the

same average value for job A is used in the calculation each time job A is executed. Therefore,

an incorrect estimate will be used repeatedly, without consideration of recent behaviour. On

the other hand, ALS uses current information, where the average value is updated after each job

execution. Consequently, it is capable of adapting its behaviour over time and of improving its

estimates. Even though ALS may still make mistakes, these are not as often or as serious as

History. Consequently, ALS outperformed History. Figure 5-7 which compares the

performance of History and ALS to LS shows that there is little difference in the performance

of the algorithms.

84

Figure 5-7
Graphs showing the performance o f History and ALS compared to LS

performance comparison of LS. ALS and Histor>

□ History

HALS

userl

Analysis o f Results.

Even though it w as expected that History and ALS would not perform as w ell as the optim al

LS, the results show that their perform ance is not m uch different from optim al LS. An

A N O V A analysis w as carried out to determ ine i f there is a sign ificant d ifferen ce in the

perform ance o f the three algorithm s, and the result in Table 5-6 sh ow s that there is no

sign ificant d ifference betw een their perform ances, im plying that History and ALS perform as

w ell as the optim al LS.

The adaptive algorithm s perform ed better than exp ected , w hich is very encouraging as it sh ow s

that the adaptive algorithm s w ere able to m ake good predictions o f C PU requirem ents. A good

prediction is important for a real im plem entation w here CPU requirem ents are not known in

advance.

Table 5-6

one-w ay A N O V A ; a = 0 .05
Source o f Variation 5"̂ D f F P-value F critical
A lgorithm s 0.11 2 0 .05 2 .47 0 .09 3 .09
W ithin Groups 2 .00 93 0 .02
Total 2.11 95

5.5 Combining Load Sharing with a Disk Spin-Down Strategy

Motivation'.

In Chapter 2, various power m anagem ent strategies w ere d iscussed . It is on ly practical that a

real life im plem entation w ould com bine various strategies to prolong battery lifetim e as much

as possib le. In this experim ent, w e w ould like to exam ine the level o f sav in g possib le by

com bining load sharing with a disk sp in-dow n strategy.

85

Hypothesis:

Combining two power management strategies ought to further extend battery lifetime compared

to using load sharing alone.

Methodology:

Disk trace data obtained from Hewlett-Packard were collected from three computer systems

running the HP-UX operating systems. Cello was a time sharing system used by a group of

researchers at HP, S nak e was a file server which served nine clients at the University of

California, Berkeley, and hplajw was a disk on a personal workstation which was mainly used

for electronic mail and editing papers. Trace data from hplajw was selected for this simulation

because since as it was obtained from a personal workstation, it probably better reflects the type

of activities carried out by a user of a mobile computer. Details of the disk access patterns are

discussed in [Ruem92].

A number of disk spin-down strategies are discussed in Chapter 2. Since hplajw has a buffer

cache associated with it, the access frequency ought to be less than if there was no cache. As a

result, it should be possible to spin down the disk more vigorously than when there is no cache.

Consequently, the strategy proposed by Li et al [Li94] (discussed in section 2.3.1) was chosen,

where a timeout value of 2 seconds and a disk critical rate, R cr, of 6 seconds were assumed.

However, unlike the study carried by Li et al, the access latency was not measured because the

use of buffer cache is an established technique to improve disk access time. The study of Li et

al also confirms this fact and, therefore, it is unnecessary to examine this issue any further.

A new entity. Disk entity, was introduced for this experiment. There is one Disk entity for

each MH entity. Its function is to read a disk trace and simulate disk accesses, spin-downs, and

spin-ups. It also keeps a record of how long a disk remains active and idle, and the number of

spin-ups and spin-downs to calculate power consumption. Every 60 seconds, it sends a

message to the MH entity informing it of the duration the disk is idle and active. This

information is used in part of the calculation to determine the remaining power on the mobile

host. The Disk entity is instantiated by the MH entity ifparam.disk is 1. Once instantiated, the

entity runs independently from the MH entity. The only communication between the two

entities is the message sent by the Disk entity informing MH entity of the duration the disk is

idle/active.

One flaw of the simulation combining disk spin-down and load sharing is due to the fact that

the traces were obtained from two independent sources. Consequently, there is no way of

associating disk accesses with user jobs, and simulation of disk accesses was run independently

of user jobs. It is also acknowledged that it is not possible to ascertain if the trace accurately

represent disk access pattern on a mobile device. However, like the argument presented in

86

Chapter 4 regarding the use o f trace data, sin ce p eop le are not yet using m obile applications on

a regular basis, it is not p ossib le to obtain a disk trace for m obile applications. U sin g a disk

trace from existing ap p lications is the c lo sest approxim ation to m odellin g disk access

realistica lly . In spite o f these shortcom ings, w e exp ect that the results obtained are indicative o f

the am ount o f saving p ossib le w hen different pow er m anagem ent strategies are com bined.

Results:

Figure 5-8 com pares battery life im provem ent using load sharing and load sharing w ith disk

sp in-dow n (L S + S D) p o licy , w h ile Table 5-7 sum m arises the result obtained. A s expected ,

com b in in g load sharing and a disk sp in-dow n p o licy further improved battery lifetim e. In the

best case , battery lifetim e w as extended by about 33% or 50 m inutes. C om bin ing a disk spin-

dow n strategy further extended battery lifetim e by approxim ately 3-11% , w ith an average

im provem ent o f about 8%. N o strong cla im s can be m ade as a result o f this experim ent,

h ow ever, there is som e indication that extra benefit can be obtained. Table 5-8 sh ow s the result

o f the z-test.

Figure 5-8
Graph showing battery lifetime improvement using load sharing and load sharing combined

with a disk spin-down policy

35

g 30

I
i::

= 10

: 5

c o m b in in g lo a d s h a r in g \M th disk sp in -d o w n s tra te g y

□ L S

I I 1 !K g s
>c oc O' o

M M n

Table 5-7
Table summarising results o f load sharing and load sharing with disk spin-down

im provem ent (%) im provem ent (hour)

LS L S + S D LS L S +SD

M axim um 22 33 0.55 0.83
m inimum I 4 0.05 0.15
average 13 21 0.35 0.57

standard deviation 5 7 0.13 0.17

87

Table 5-8

z-test; a=0.05 LS LS+SD
Mean 3.18 3.41
Known Variance 0.02 0.01
Observations 30 30
Hypothesized Mean Difference 0
z -7.46
P(Z<=z) one-tail 0
z Critical one-tail 1.64
P(Z<=z) two-tail 0
z Critical two-tail 1.96

5.6 Conclusion
Results of experiments presented in this chapter indicate that load sharing is a potentially

effective power management strategy, forming an orthogonal approach to those already in use,

and enhancing their benefits. Transferring jobs from mobile hosts for remote execution has

been shown to be successful in extending battery lifetime and improving job response time,

subject to some constraints.

The benefits of remote execution depend on available bandwidth, CPU utilisation and processor

power of the mobile relative to the fixed host. While generally, more jobs are transferred as

available bandwidth increases, mobile hosts with small jobs were found to be able to transfer a

considerable number of jobs even at low bandwidth. This finding is encouraging because it

shows that load sharing is still possible at low bandwidth, subject to the constraint of job size.

A slightly unexpected finding is that the percentage of jobs transferred does not increase

linearly as available bandwidth increases. This results from the fact that the level of possible

saving is limited by the number of jobs which can be transferred. On average, between 20% to

30% jobs were transferred, and this is enough to bring significant battery lifetime improvement.

Previous studies have shown that less than 20% job movement is required to improve system

performance.

CPU utilisation was established to be an important factor influencing the benefit of remote

execution. Mobile hosts with high CPU utilisation benefit more from remote execution as

doing so allows the CPU to operate in doze mode more often, thus extending battery lifetime

significantly. This implies that mobile applications which are likely to benefit from load

sharing are those which perform heavy computations and uses the CPU intensively, e.g.

spreadsheet applications and program compilation.

Mobile hosts with low processing power were found to benefit from remote execution as this

assured them access to a faster machine, resulting in lower response time, in addition to

88

reducing power consumption by the CPU. If mobile hosts have limited processor power, load

sharing will have its role in giving access to fast machines, in addition to conserving power.

The two adaptive algorithms. History and ALS, were found to perform as well as LS in

conserving power. Since they make no assumption of a priori knowledge of CPU requirements.

History and ALS offer a more practical approach when load sharing is implemented in a real

environment. Although it is surprising to find the adaptive algorithms performing as well as the

optimal algorithm, this is encouraging as it indicates that a performance which is close to an

optimal performance might be possible in a real life implementation.

As expected, combining load sharing with a disk spin down strategy further extends battery

lifetime. It is only practical that power management strategy on mobile devices combines

various power saving techniques. There is no reason why load sharing cannot be combined

with existing power management techniques to further improve battery lifetime.

Having established that load sharing does extend battery lifetime, the next chapter examines the

stability and scalability of the load sharing algorithm.

89

6. Stability and Scalability of the Load Sharing

Algorithm
In Chapter 2, the importance of mobile applications having the ability to adapt its behaviour

according to its environment in order to make the best use of available resources was

discussed. In the context of this study, the adaptive ability is important not only to make the

best use of available resources, but also to prevent instability.

In section 3.3 of Chapter 3, the issue of stability was discussed. Depending on the design of

an algorithm, various factors have been identified to prevent unstable behaviour of the

algorithm. The discussion also illustrated that the definition of stable behaviour depends on

the environment in which an algorithm operates. In the context of this study, the load

sharing algorithm is considered stable if, under unfavourable conditions, it does not cause

power consumption to be worse than when there is no load sharing. Unfavourable

condition, in this case, occurs when there is a high number of users competing for the spare

capacity on the fixed network. In this case, it is crucial that mobile hosts do not continue to

send transfer requests when they are unlikely to be accepted, as doing so would only waste

precious battery power. A method of disabling the algorithm under such circumstances is

required.

In order to test the stability of the LS algorithm, the contention at a fixed host was simulated

by setting the parameterparam.mss=l and increasing the value ofparam.mh gradually. It is

increased in steps of 1 until param.mh=JO, and then in steps of 5 until param.mh=40. By

doing so, mobile hosts flood the MSS with transfer requests, creating a heavy demand for its

processor cycles. Figure 6-1 shows that the performance of LS degrades steadily as the

number of users increases and Figure 6-2 shows users for whom load sharing caused worse

power consumption than no load sharing. Figure 6-3 shows that the percentage of jobs

transferred decreased as the total number of users increased, while Figure 6-4 shows that the

percentage of rejected requests increased.

As a considerable amount of power is consumed in transmitting/receiving messages, a

rejected request is considered a performance penalty. The percentage of rejected requests is

used as a parameter to measure the ability of the load sharing algorithm to adapt itself to

current condition, where the number of rejected requests should be kept to a minimum. The

existing LS algorithm is modified to prevent instability by disabling it when it is no longer

feasible to transfer jobs.

90

Figure 6-1
Graph show ing the performance o f LS degrades as the number o f users in a cell increases.

performance o f LS degrades as number o f users mcreases

total
users

O ' o o o

Figure 6-2
Graph showing users for w>hom performance ofLS degrades beyond no load sharing.

- E

I I

perform ance o f LS degrades beyond NLS .■ u s e r l

■ user!

□ user?

□ userS

□ user26

total
users

Figure 6-3
Graph showing the percentage o f jobs transferred decreases as total users in a cell

increases.

LS : percentage o f jobs transferred

total users

91

Figure 6-4
Graph showing the percentage o f requests rejected increases as total users in a cell

increases.

LS : percentage o f rejected requests

Note that even if the algorithm is successful in detecting when load sharing is no longer

feasible and disables itself accordingly, that may not further improve battery lifetime. As

more mobile hosts compete for the fixed host's processor cycle, spare capacity becomes

more scarce, thus not many jobs can be transferred for remote execution. What is important

is to prevent mobile hosts wasting precious battery power by sending fruitless transfer

requests.

Another important issue which we attempt to address is scalability. Kremien and Kramer

[Krem92] considered stability as a pre-condition to scalability. Once the issue of stability is

addressed, how well the load sharing algorithm scales is examined.

The following two sections describe the modified algorithms. Backoff and Slotted LS, and

examine their effectiveness in disabling themselves in order to avoid instability.

6.1 Backoff Algorithm
Motivation’.

The load sharing algorithm should disable itself during periods when its transfer requests are

unlikely to be accepted to avoid wasting power. A method is required to bar mobile hosts

from sending requests when fixed hosts are busy. This experiment tests a Backoff

algorithm where a busy MSS specifies a backoff period during which a mobile host must

refrain from sending requests.

Hypothesis:

The Backoff algorithm is expected to reduce the percentage of rejected requests.

Methodolo2v:

Each time a transfer request is rejected, a mobile host backoffs for a period of time known

as a backoff period during which jobs are executed locally. The backoff period is specified

92

by the M SS, w here each tim e a M S S rejects a transfer request, it sp ec ifies a b ack off period

in its reply. The b ack off period is calcu lated based on the CPU requirem ent o f jo b s it has in

its queue and the processor c y c le s reserved by transfer requests it has previously accepted .

T he underlying assum ption is the M S S know s how m uch CPU is required to execu te the

jo b s in its queue. In reality, th is inform ation m ight not be available, in w hich case an

estim ate m ust be used.

backoff period = J, + R,

w here J, = execu tion tim e o f jo b i in queue

Rj = p rocessor cy c le reserved for job j

The m obile host abstains from sen d in g transfer requests during this period and on ly starts

send ing requests after the period exp ires.

Results:

There appears to be very little d ifferen ce in battery lifetim e im provem ent o f Backoff to LS,

as show n in Figure 6-5, w h ile Figure 6-6 sh ow s that the percentage o f rejected requests o f

Backoff w as low er than LS. Figure 6-7 sh ow s that there w as on ly a sm all d ifferen ce in

response tim e im provem ent o f LS and Backoff.

Figure 6-5
Graph comparing the performance o f Backoff to LS.

E ^

fl
14

12

10

8

6

4

2

0

performance o f LS compared to Backoff

i ffl n

ILS

I Backoff

— fN ro
total users

— — r q (N m

93

Figure 6-6
Graph comparing the percentage o f rejected requests o f LS and Backoff.

percentage of rejected requests ILS

I Backoff

total

Figure 6-7
Graph comparing response time improvement o fL S and Backoff

response time improvement
Backoff

1
total users

Analysis o f Results:

A n alysis on the results w as carried out using tw o-w ay A N O V A with replication. The

hypothesis tests determ ine i f there is a sign ifican t d ifferen ce in the percentage o f rejected

requests as the num ber o f users increase, and i f there is a sign ificant d ifferen ce in the

percentage o f rejected requests betw een the LS and Backoff algorithm s. The result o f the

an alysis in Table 6-1 show s that there is a sign ificant d ifference in the percentage o f rejected

requests as total users increases. It also sh ow s that there is a sign ificant d ifferen ce in the

percentage o f rejected requests o f Backoff and LS, indicating that Backoff su ccessfu lly

disabled itse lf when load sharing w as not feasib le . Even though Backoff su ccessfu lly

disabled itself, the percentage o f rejected requests w as still high.

94

Table 6-1
Ho : mean rejected requests as total users increases are equal;

Ho : mean rejected requests o f Backoff and LS are equal.
two-way ANOVA with replication; a = 0.05
Source o f Variation ss' d f F P-value F critical
Total Users 904191.73 15 60279.45 436.45 0 1.67
Algorithms 52986.82 1 52986.82 383.64 0 3.85
Interaction 5937.28 15 395.82 2.87 0 1.67
Within 172367.07 1248 138.11
Total 1135482.89 1279

The Slotted LS algorithm was designed in an attempt to examine if it is possible to:

• further reduce the percentage of rejected requests, and

• limit competition among mobile hosts so that spare capacity can be allocated more fairly.

The performance of Slotted LS is compared to Backoff and LS.

6.2 Slotted LS Algorithm
Motivation:

Even though Backoff reduced the percentage of rejected requests, the percentage was still

high. Therefore, a more effective method is required to disable the load sharing algorithm.

This experiment tests an algorithm which limits the number of users granted permission to

send transfer requests, and they are only granted the permission for a limited period. Once

that period expires, permission is granted to a different set of users.

Hypothesis:

By limiting the number of users granted permission to send transfer requests, competition

for spare capacity is limited to a small set of users. Limiting the period selected users are

allowed to send transfer requests ought to allocate spare capacity more fairly among mobile

users. As a result, the chance that a transfer request has of being accepted is increased.

When that period expires, users execute their jobs locally until they are once again granted

permission. This approach is expected to result in better performance than Backoff.

Methodohsv:

Since the instability is caused by a high number of users requesting transfers, one way to

overcome this problem might be by limiting the number of users allowed to send transfer

requests. The MSS selects N mobile hosts, out of a total of M mobile hosts, which have

requested permission to transfer jobs in a round robin fashion and grants them permission to

' sum of squares.
 ̂degrees of freedom

95

send transfer requests for period T. The period T is termed a slot. The MSS sends a

message to the selected mobile hosts informing them that they have been granted access for

the next T seconds. During that period, selected mobile hosts Avishing to transfer a job send

a transfer request as usual, and the request is accepted if the MSS is able to execute the job

in the specified time. Any requests sent within that period that have been accepted are

executed by the MSS even if the period has expired. When there are fewer than N mobile

hosts in a cell, the algorithm behaves like the unmodified LS algorithm.

The following example demonstrates how the algorithm works. A mobile host, mh„ sends a

message to the MSS at time t=0 stating its interest to transfer jobs. If there are fewer than N

mobile hosts requesting permission. Slotted LS behaves like the LS algorithm: mh, is

granted permission and no time limit is imposed on the duration mhi is allowed to send

requests. If there are M mobile hosts requesting permission, where M>N, N mobile hosts

are selected to be granted permission on a first-come-first-served basis. The other {M-N)

mobile hosts are put in queue and are granted permission after the first slot expires.

Assuming that there are M mobile hosts requesting permission to send transfer requests and

mhi is one of W mobile hosts selected for the first slot, the MSS sends a message to mh, to

' indicate that permission to send transfer requests has been granted. At time t=l, mh,

receives a reply informing it that it has been granted permission to send requests for the next

T seconds. Let us assume that T=30. During that period, if mhi has a job it wishes to

transfer, it sends a transfer request as usual. If the request is accepted, processor cycles are

reserved for that job and mhi is informed that the request is accepted. Any requests accepted

within period T will be executed. If a request is accepted at t=30 and the job arrives at

t=31, the job is still executed by the MSS because processor cycles have been allocated for

that job. If another mobile host, mhj, also sends a message to the MSS at time stating its

interest to transfer jobs, but N mobile hosts have already been selected for the current slot,

mhj will only be informed that it is granted permission to send transfer requests at time t=31.

mhj can then starts sending transfer requests between t=31 and t-60. mh, might not always

send transfer requests during the period T, but this is not a problem as that would increase

the possibility of other selected users having their requests accepted, mh, is not depriving

other selected mobile hosts from being allocated the spare capacity on the fixed host.

The next step is identifying suitable values for and T. The value of Æ was chosen to limit

the number of users so that good performance can be achieved. Figure 6-1 shows that LS

performs reasonably well when there were fewer than 15 users in a cell, thus the simulations

were run for A values of 5 and 10. A suitable value for T must also be determined. The

 ̂mean square

96

trace data shows that jobs arrivai usually occurs in bursts, and the burst could last for a few

or several seconds. The interval between bursts varies from less than 60 seconds to a few

minutes. We would like the value T to be long enough to include the time span of a burst,

but not so long so that spare capacity is allocated unfairly among users. Based on the trend

shown in the trace data, values of T=30 and T=60 were chosen. Experiments were,

therefore, run with the following parameter values:

• Experiment 1 : N=5, T=30

• Experiment 2: N=10, T=60

• Experiment 3: N=10, T=30

Results:

When the total number of users is fewer than N, Slotted LS behaves in a similar way to the

unmodified LS algorithm because the MSS starts limiting the number of users granted

permission to request transfers only when total users > N. Figure 6-8 shows that there is

little difference in the performance of Slotted LS (especially for Experiments 2 and 3) and

LS when the total users < N, but there is a marked difference in the performance of Slotted

LS (for Experiments 2 and 3) compared to LS once total users > N. In fact, Figure 6-8

shows that once the algorithm started operating in a Slotted LS mode, there is an increase in

battery lifetime improvement. Limiting the number of users granted permission to request

transfers resulted in less contention for the spare capacity on the fixed host, and increased

the possibility of a request being accepted. As a result, the percentage of jobs transferred

increased, leading to a higher battery lifetime improvement. Figure 6-8 shows that Slotted

LS (for Experiments 2 and 3) performed better than LS and Backoff as the number of users

competing for the fixed host's processor cycles increases. Slotted LS resulted in higher

battery lifetime improvement because:

• more jobs were transferred during periods when a mobile host is granted permission to

request transfers, and

• by reducing the percentage of rejected request. Slotted LS prevented mobile hosts from

wasting battery power.

The reason why there is not much improvement for Experiment 1 is explained later.

Table 6-2 shows that once the total number of users exceeded A, and the algorithm started

operating in a Slotted LS mode, the percentage of rejected requests was kept to a

minimum, and dropped to less than 1%. The percentage was kept to a minimum by the

following factors:

97

• users who were not granted permission to request transfers operate in a no load sharing

mode, which means the overall number of requests sent was reduced,

• there was less contention for the fixed host's spare capacity, and the period T, during

which mobile hosts were granted permission to request transfers, was short enough that

very few requests were rejected during that period. This is different from LS and

Backoff where the number of rejected requests is accumulated during the duration of the

simulation.

Table 6-2
Table showing percentage o f rejected requests fo r LS, B a c k o f f and S lo t t e d L S

total
users LS Backoff

Slotted LS
Expt. 1 Expt. 2 Expt. 3

1 11.91 8.53 11.91 11.91 11.91
2 24.36 17.20 26.54 26.54 26.54
3 36.48 25.56 36.27 36.27 36.27
4 48.10 33.99 49.58 49.58 49.58
5 55.19 40.52 58.16 58.16 58.16
6 61.19 47.17 1.94 64.51 64.51
7 68.50 52.27 0.07 68.74 68.74
8 75.60 57.20 0.07 76.50 76.50
9 79.05 61.24 0.08 81.67 81.67

10 84.85 66.16 0.08 85.47 85.47
15 92.60 75.65 0.13 0.15 0.12
20 95.24 81.25 0.18 0.14 0.13
25 96.91 84.32 0.19 0.23 0.23
30 98.15 88.44 0.20 0.23 0.19
35 98.38 89.27 0.19 0.25 0.30
40 98.62 90.46 0.27 0.28 0.26

Figure 6-9 shows that the response time improvement of Slotted LS was much lower than

the improvement shown by LS and Backoff when N=5^ but was not much different from LS

and Backoff when N=JO.

98

Figure 6-8
Graph comparing the average performance o f Slotted LS, Backoff and LS.

14

12

10

ballery lifetime improvement ofLS, Backoff and Slotted LS

m

■ LS

SlZxptl I I

□ Lxpt2 ' !

□ lZxpt3

□ Backoff, I

10 15 20 25 30 35 40

total
users

99

Figure 6-9
Graph comparing response time improvement o f LS, Backoff and Slotted LS

response time improvement for LS, BaekofTand Slotted LS ■ LS 1

igExptl I

, □ Expt2

□ Expt3

□ Backoff

10 15 20 25 30 35 40

total
users

100

Analysis o f Results:

Analysis of the results were carried out to determine:

• if the drop in the percentage of rejected requests is significant,

• whether there is a significant improvement in battery lifetime between Backoff and

Slotted LS,

• if the value of parameters N, and T have a significant impact on the performance of

Slotted LS.

Analysis was carried out using two-way ANOVA with replication, in a similar way as when

testing Backoff and LS. As expected. Table 6-3 (a) and (b) confirms that there was a

significant reduction in the percentage of rejected requests when using Slotted LS for

Experiment 1 and Experiment 2, respectively. Analysis was not carried out for Experiment

3 as its performance was almost identical to Experiment 2.

Table 6-3
(a)

Hq: mean rejected requests as total users increases are equal;
Ho .mean rejected requests ofLS and Experiment 1 are equal.

two-way ANOVA wit 1 replication; a = 0.05
Source o f Variation S3 d f MS F P-value F critical

Total Users 152186 15 10145.76 88.23 0 1.67
Algorithms 1102779 1 1102779.01 9590.36 0 3.85
Interaction 560942 15 37396.15 325.22 0 1.67
Within 143505 1248 114.99
Total 1959413 1279

(b)
Hq: mean rejected requests as total users increases are equal;
Ho .mean rejected requests o f LS and Experiment 2 are equal.

two-way ANOVA with replication; a = 0.05
Source o f Variation SS d f MS F P-value F critical

Total Users 443238 15 29549.22 211.98 0 1.67
Algorithms 398309 1 398309.10 2857.33 0 3.85
Interaction 718935 15 47929.04 343.83 0 1.67
Within 173970 1248 139.4
Total 1734453 1279

Referring to Figure 6-8, Slotted LS appears to perform better than Backoff as the number

of users increases, especially in the case of Experiment 2 and Experiment 3. Further

analysis shows that Experiment 2 really did perform better than Backoff (see Table 6-4).

101

Table 6-4
Hq : mean battery lifetime as total users increases are equal;

Ho : mean battery lifetime o f Experiment 2 and B ackoff are equal.
two-way ANOVA wit 1 replication; a = 0.05
Source o f Variation SS d f MS F P-value F critical

Total Users 13545.94 15 903.06 68.94 0 1.67
Algorithms 574.75 1 574.75 43.88 0 3.85
Interaction 201.02 15 13.40 1.02 0.43 1.67
Within 16347.97 1248 13.10
Total 30669.68 1279

Having established that Slotted LS is more effective than Backoff in avoiding unnecessary

transfer requests, we now proceed to establish if the parameter N and T have a significant

impact on the performance of the algorithm. From the graph in Figure 6-8, Experiment 1

does not seem to perform as well as Experiments 2 and 3 in extending battery lifetime.

Table 6-5 confirms that the value N does have a significant influence in determining how

well Slotted LS performs: N=10 extends battery lifetime more than N=5. The reason for

this is that, if the value of N is too small, the load sharing algorithm is unable to make full

use of the spare capacity at the MSS, resulting in poorer overall performance. Performance

appears to be relatively insensitive to variation in T as shown by Figure 6-8, where there is

little difference in the performance of Slotted LS for Experiment 2 and Experiment 3.

The results show that by choosing suitable values for N and T, Slotted LS was not only

effective in reducing the percentage of rejected requests, but also performed better than

Backoff as contention for the fixed host’s processor cycles increased. Slotted LS was also

able to distribute spare capacity at the MSS more fairly among mobile hosts, resulting in

better battery lifetime improvement than that achieved by Backoff.

Table 6-5
Ho : mean battery lifetime as total users increases are equal;

Ho : mean battery lifetime o f Experiment 1 and Experiment 2 are equal.
two-way ANOVA with replication; a = 0.05
Source of Variation SS d f MS F P-value F critical

Total Users 11.86 15 0.79 23.58 0 1.67
Algorithms 0.22 1 0.22 6.71 0.01 . 3.85
Interaction 0.34 15 0.02 0.67 0.82 1.67
Within 41.84 1248 0.03
Total 54.27 1279

102

6.3 Delegating Job Transfer Requests
Motivation:

In the experim ents d iscussed in th is chapter so far, it w as assum ed that there w as on ly one

fix ed host catering for the transfer requests. W e have show n that load sharing cau ses

perform ance degradation i f proper precautions are not taken w hen there is a high num ber o f

users com p eting for spare capacity. It is not practical to exp ect on ly one fixed host to cater

for jo b transfer requests, as it m ight not be able to cop e w ith the dem and. A lso , rely ing on

on e fix ed host w ould not a llo w the algorithm to sca le to cater for a high num ber o f users.

Slotted LS has been show n to be e ffec tiv e in preventing perform ance degradation and

a llocatin g spare capacity m ore fairly am ong users. N on eth eless , i f there is on ly one fixed

h ost catering for a high num ber o f users, perform ance degrades stead ily and load sharing

w ill eventu ally cease to be e ffec tiv e . O ne w ay to a llev iate this bottleneck is to have the

M S S d elegate transfer requests to other fixed hosts. Experim ents w ere carried out w ith the

M S S send ing probes to other fixed h osts, to test i f that w ould im prove perform ance.

Hypothesis:

D elega tin g jo b transfers to other fixed h osts ought to lead to an increase in the percentage o f

jo b s transferred and, hence, battery life tim e im provem ent.

Methodology:

P other fixed hosts w ere assum ed to offer its serv ices to m obile hosts. W hen the M SS

rece iv es a transfer request and is unable to execu te the jo b w ithin the sp ec ified tim e, it sends

a probe to P other fixed hosts requesting i f the host cou ld execu te the jo b on its behalf. I f

the probed host is able to execu te the jo b w ithin the sp ec ified tim e, it accep ts the request and

p rocessor cyc les are reserved for the jo b . The fixed hosts w ere assum ed to be con n ected by

high speed links and com m unication d elays in volved in send ing the probes w ere assum ed to

be n eg lig ib le , based on the approach taken by [M irc89] and [M irc90] w hich estab lish ed that

i f the s ize o f probes is s ign ifican tly sm aller than the size o f jo b s, com m unication delays

incurred by probes are n eg lig ib le . A m ob ile host requesting a jo b transfer is not aware o f

the probes sent by the M SS and has no k now ledge o f the actual location w here its jo b is

execu ted .

S im ulations w ere run with the LS algorithm send ing probes to P=2 and P=3 hosts.

S im ulations w ere a lso run com b in in g probing and Slotted LS (Slotted Probe) with P = 2 ,

N=25 and T=60 to see i f it results in a m ore stable behaviour.

Results:

103

Figure 6 -10 sh ow s that the perform ance o f load sharing w ith probes increased trem endously.

The battery lifetim e im provem ent did not degrade as rapidly as w hen load sharing w as run

w ithout probes. A s exp ected . Figure 6 - 1 1 sh ow s that percentage o f rejected requests w as far

low er w hen transfer requests w ere delegated. N ote than even w hen no request w as rejected,

battery lifetim e did not im prove beyond 20% , again confirm ing that the im provem ent is

lim ited by the number o f jo b s w hich can be transferred. The graph a lso sh ow s that the

percentage o f rejected requests increased rapidly w hen there were m ore than 25 users,

indicating high contention for the fixed hosts' resources. Even though the percentage o f

rejected requests w as much low er than LS in the beginning, it increased rapidly once the

spare capacity at the fixed hosts w ere alm ost fu lly utilised. W hen total users w ere 30, the

percentage o f rejected requests w ere alm ost as high as LS.

Figure 6-10
Graph comparing the performance o f load sharing with probes.

ii
l l

16

14

12

10

8

6
4

2

0

perform ance o f LS com pared to Probe

□ P=2

n P = 3

I
— <N m r f

Figure 6-11
Graph comparing percentage o f rejected requests o f Probes to LS

rejected requests ■ LS

□ P=2

□ P=3

100

70

total

users

Figure 6-12 sh ow s that the percentage o f rejected requests w ith Slotted Probe w as ver>

low . A lthough Figure 6-13 sh ow s that the battery lifetim e im provem ent o f Slotted Probe

w as low er than P=2, Figure 6-14 sh ow s that its percentage o f jo b s transferred w as higher

104

than P=2. Figure 6-15 sh ow s that w hen the algorithm operates in Slotted Probe m ode, the

response tim e im provem ent w as m uch low er than P=2, but slightly higher than LS.

Figure 6-12
Graph comparing the percentage o f rejected requests o f LS, P=2 and Slotted Probe.

rejected requests S L S

■ P=2

□ Slotted Probe

100

40

h J t
total users

— — (N (N ro ro Tf

Figure 6-13
Graph comparing battery’ lifetime improvement ofLS, P=2 and Slotted Probe.

batter) lifetim e im provem ent

ii

16

14

12

10

8

6
4

2

0

i

B L S

■ P=2

□ Slotted Probe

total users

Figure 6-14
Graph comparing the percentage jobs transferred o f LS, P^2 and Slotted Probe.

jobs transferred E L S

■ P=2

□ Slotted Probe
40

^ 30
I 25

•Ü 2 0

^ 10

tota l users

105

Figure 6-15
Graph comparing response time improvement o f Slotted Probe to LS and P=2

response tim e im provem ent

Ê

B L S

B P = :

□ Slotted Probe

total
users

Analysis o f Results.

T w o-w ay A N O V A with replication w as performed to determ ine if there is a sign ificant

d ifferen ce in perform ance w hen transfer requests w ere delegated to other fixed hosts. Table

6-6 sh ow s that there is a sign ificant d ifference in perform ance when transfer requests were

delegated to 2 other hosts. Table 6-7 sh ow s that there is a significant d ifferen ce between

P=2 and P=5, indicating that perform ance im proved as more fixed hosts offered their

serv ices to m obile hosts.

Table 6-6
Ho : mean battery life as total users increases are equal;

H q : mean battery lifetime o f LS and P=2 are equal.
tw o-w ay A N O V A with replication; a = 0 .0 5
Source o f Variation F P-value F critical
Total users 1109581 15 73972 .05 641.87 0 1.67

A lgorithm s 523613 1 5 2 3 613 .10 4 543 .5 0 0 3.85
Interaction 158526 15 10568.46 91 .70 0 1.67
W ithin 143825 1248 115.24
Total 1935546 1279

Table 6-7
Ho : mean battery life as total users increases are equal;

Ho : mean battery lifetime o f P=2 and P=3 are equal.

tw o-w ay A N O V A with replication; a = 0 .0 5
Source o f Variation d f M y F P-value F critical
Total U sers 1354082 15 9 0 272 .14 1182.06 0 1.67
A lgorithm s 25231 1 25231 .45 330 .39 0 3.85
Interaction 2 1 9 5 2 15 1463.49 19.16 0 1.67
W ithin 9 5 3 0 7 1248 76.37

Total 1496574 1279

106

A possible explanation for the reason Slotted Probe did not improve battery lifetime more

than P=2 even though it resulted in more job transfers is as follows. As is the case with

Slotted LS, Slotted Probe successfully reduced the percentage of rejected requests by

limiting the number of users contending for the fixed hosts' spare capacity and distributing

them more fairly among the mobile hosts, thus more jobs were transferred. However, in

limiting the number of users in each slot, there is a possibility that Slotted Probe did not

fully utilise the spare capacity at the fixed hosts. We expect that the performance of Slotted

Probe can be optimised by tuning the parameter value N.

6.4 Conclusion
Load sharing could cause worse power utilisation than no load sharing as the number of

users competing for spare capacity increased. If load sharing is to be implemented in a real

environment, it is imperative that appropriate measures were taken to prevent instability.

Any algorithm should be equipped with a mechanism to detect when load sharing is no

longer feasible and to react accordingly. This feature is important not only to prevent

instability, but also so that the algorithm is scalable.

Two modified algorithms were introduced, i.e. Backoff and Slotted LS. The Slotted LS

algorithm was found to be effective not only in avoiding instability, but also in allocating

spare capacity more efficiently among users. As a result. Slotted LS performed better than

LS and Backoff algorithms in conserving power.

The results suggest that in order for load sharing to scale to cater for a high number of users,

spare capacity from a few fixed hosts must be utilised. Otherwise, even with Slotted LS

performance degrades rapidly, and load sharing will eventually cease to be effective. The

number of fixed hosts offering their service is determined by the workload of the fixed

hosts; if fixed hosts are busy, they will be unable to offer their services to mobile hosts.

Consequently, like the finding in previous studies on load sharing, under high system load,

the best course of action is to disable load sharing.

107

7. Emulation of Load Sharing on a Wireless LAN
The simulation results indicate that load sharing is a potentially good power management

strategy. In this chapter, the emulation carried out to verify the simulation results and to

ascertain the effectiveness of the strategy in a real environment is discussed.

Motivations:

There are two motivations for emulating the load sharing algorithm. Firstly, simulation

results need to be verified to ascertain the extent to which the simulation represents a real

environment. Secondly, there is a discrepancy between our and Rudenko et al's results, which

we would like to investigate.

Methodolo2v:

The mobile host was a Mobile 3000 Scenic laptop from Siemens Nixdorf, employing an Intel

Pentium 133 MHz CPU with 40 Mb RAM and running Windows NT 4.0. The CPU

consumes 4.3 Watts when active and 1.7 Watts in idle mode. The transceiver was a Lucent

Wavelan 2 GHz system consuming 3.00 Watts when active and 1.48 Watts when operating in

doze mode. An Ultra Sparc 1 workstation running Solaris with a 143 MHz processor, 160

Mb of RAM and a 9 Gb hard disk was used as a fixed host.

Code for the emulation was written in C using Microsoft Visual C++, where a connection

between the laptop and the workstation was established using a SOCket() call and messages

were exchanged using the s e n d to Q and recvfrom() functions. Use of the CPU executing a

job was emulated with a w h ile loop performing a simple mathematical computation.

A simulation was also run using the same traces and environmental parameters as the live

environment so that the results could be compared to the emulation results. Both emulation

and simulation were run for a set of 30 users, with no load sharing and with load sharing.

Each emulation was run until the battery was flat, and the battery was fully recharged. The

optimal LS algorithm was used in order to obtain an upper bound on the amount of possible

saving which may be achieved. As it has been established that it is mobile hosts with high

CPU utilisation that benefit most from load sharing, both the emulation and simulation were

run assumingparam.proc-speed=l/5. The simulation was run with param.bw set to 2 Mbps,

the same as the amount of bandwidth available on the wireless LAN. As the laptop

implements power saving mechanisms, the simulation was run combining load sharing with a

disk spin-down strategy.

The results obtained, which are presented below, have also been discussed in [Othm99].

108

7.1 Results of Emulation and Simulation
Figure 7-1 compares the battery lifetime improvement of the emulation and simulation, while

Table 7-2 summarises the results obtained. On average, the emulation result shows that

battery lifetime was extended by about 21%, while the simulation result shows an average

improvement of about 25%. Even though in a few cases there was more than 10% difference

in the improvement achieved, generally the difference was small.

There was little difference in the percentage of jobs transferred, as depicted by Figure 7-2.

Both emulation and simulation results shows significant improvement in response time, but

the response time improvement of the emulation was found to be more reasonable than that of

the simulation (see Figure 7-3), where the average response time improvements were 65%

and 96% for the emulation and simulation, respectively. As discussed in Chapter 5, the high

response time improvement for the simulation might have to do with the simplification of the

C hannel entity, where a reliable communication medium was assumed, and possible

interference and packet loss were not simulated. When running the emulation experiments, it

was observed that the quality of the communication channel sometimes varied over time,

during which the communication delays were higher. Since these conditions were not

simulated, the simulation results exhibit a much higher response time. Table 7-1 shows the

percentage of packet loss and delays when the Unix ping command was executed between a

fixed workstation and the laptop during one of the experiments.

Table 7-1
Table showing the percentage o f packet loss and delays during one o f the emulation

experiments.

 sisley.cs.ucl.ac.uk PING Statistics----
48 packets transmitted, 30 packets received,.37% packet loss
round-trip min/avg/max = 8 975.603/9375.171/10645.447 ms

109

_ 60,0
ê
g
S 40.0
2
I 30.0

= 20.0î».
0.0

Figure 7-1
Graph comparing the results o f emulation and simulation.

Comparison o f emulation and simulation results
I e m u l a t i o n

I s i m u l a t i o n

Table 7-2
Table comparing the results o f emulation and simulation.

maximum minimum average std. deviation

emulation simulation emulation simulation emulation simulation emulation simulation

battery lifetime NLS (hour) 3.39 3.00 2.34 2.57 3.00 2.79 0.26 0.13
battery lifetime LS (hour) 3.97 3.60 3.07 3.4 3.62 3.48 0.18 0.04

battery lifetime improvement (hour) 1.24 0.90 0.19 0.48 0.62 0.69 0.27 0.12

battery lifetime improvement (%) 52.81 34.84 6.12 16.11 21.39 24.97 11.45 5.35
response time improvement (%) 81.06 97.75 33.16 56.34 64.71 96.41 9.58 7.75

jobs transferred (%) 76.67 75.53 60.04 51.29 66.49 62.95 3.92 6.19

average d ifference in battery lifetim e im provem ent =8 %; standard deviation=5

10

Figure 7-2
Graph comparing the amount ofjobs transferred fo r the emulation and simulation.

■ e m u l a t i o n

I ■ s i m u l a t i o n

100.0

^ so.o

!£> 20.0

Figure 7-3
Graph comparing response time improvement o f emulation and simulation.

100.0

80.0

60.0

40.0

20.0

0.0

I e m u l a t i o n

I s i m u l â t i on

' î o o O f N \ 0 Ô0 ON O (N vO O n O
u % T "T "T "T T" ' I i

3 3 3 3 3
§

% K % %
i

% %
1)

55
1»

%
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Figure 7-4 and Figure 7-5 show that the relationship between CPU utilisation and battery

lifetime improvement of the emulation and simulation, respectively. Both graphs show that

there is a linear relationship between CPU utilisation and battery lifetime improvement, but

that relationship is more evident in the emulation result. The correlation coefficient is 0.78

and 0.72 for the emulation and simulation, respectively. This result verifies the result

discussed in Chapter 5 when the influence of CPU utilisation on the benefit of remote

execution was examined.

Figure 7-4
Graph showing the relationship between CPU utilisation and battery lifetime improvement

(emulation).

battery lifetime improvement vs. CPU utilisation
60.0

50.0

E e 40.0
c

= I 30.0

H I 20.0

.1 10.0
r* «

CPU
utilisation

0.0
0.40.2 0.6 0.8 1.00.0

Figure 7-5
Graph showing the relationship between CPU utilisation and battery lifetime improvement

(simulation).

I battery lifetime improvement vs. CPU utilisation \

il

40.0
35.0
30.0
25.0

20.0
15.0
10.0

5.0
0.0

0.40.2 0.6 0.8 1.00.0
CPU

] 0 utilisation

Analysis o f Results:

z-tests were carried out to determine:

• if there is a significant difference in battery lifetime when load sharing is performed, for

both simulation and emulation,

• if there is a significant difference in the emulation and simulation results.

112

Both the emulation and simulation results exhibit a significant improvement from no load

sharing, as shown in Table 7-3 and Table 7-4, respectively. An analysis of the improvement

achieved by the emulation and simulation shows that the difference is not significant (see

Table 7-5), implying that the simulation does indeed model a real environment to a good

degree of accuracy, given the particular parameters chosen.

Table 7-3
Emulation : Hq: mean battery lifetime o f NLS and LS are equal.

z-test; a-0.05 NLS LS
Mean 3.00 3.62
Known Variance 0.07 0.03
Observations 30 30
Hypothesized Mean Difference 0
z -10.72
P(Z<=z) one-tail 0
z Critical one-tail 1.64
P(Z<=z) two-tail 0
z Critical two-tail 1.96

Table 7-4
Simulation : Hq: mean battery lifetime o f NLS and LS are equal.

z-test; a=0.05 NLS LS
Mean 2.79 3.48
Known Variance 0.02 0.001
Observations 30 30
Hypothesized Mean Difference 0
z -27.79
P(Z<=z) one-tail 0
z Critical one-tail 1.64
P(Z<=z) two-tail 0
z Critical two-tail 1.96

Table 7-5
Hq: mean

z-test; a-0.05 emulation simulation
Mean 21.39 24.97
Known Variance 131.13 28.60
Observations 30 30
Hypothesized Mean Difference 0
z -1.55
P(Z<=z) one-tail 0.06
z Critical one-tail 1.64
P(Z<=z) two-tail 0.03
z Critical two-tail 1.96

113

The results in Chapter 5 showed that a 2x improvement in available bandwidth did not bring a

significantly higher increase in the percentage of jobs transferred. The average percentage of

jobs transferred was approximately 30% at available bandwidth of 100 kbps. The emulation

results show that the average percentage of jobs transferred was 77%, indicating when high

bandwidth is available, more jobs were transferred. This, however, did not lead to a higher

battery lifetime improvement, due to a high overhead cost of transferring large jobs.

With regards to job transfer, the questions which must be answered are: what type of jobs will

be transferred, and how big are the jobs? Considering that applications are becoming

increasingly large, job size might become a factor which impedes load sharing. However, it

is reasonable to assume that if a job is to be transferred, the applications required to execute

the job should be available on the fixed host. For example, in order to transfer a code

compilation, the fixed host accepting the transfer request should have the compiler required

to compile the code. It is not necessary to transfer the compiler to the fixed host, only the

code file needs to be transferred. If only data files have to be transferred, the job size might

not be very large, hence incurring lower overhead cost (in Chapter 4, when discussing the

assumptions for this study, the job size is the size of the executable files because data file

information is not available).

The use of a distributed file system which provides support for mobile users, such as Coda',

might help reduce the overhead cost of transferring jobs. Its file replication facility makes it

possible for a user to send only the changes made to a file since the previous transfer, instead

of transferring a complete document, thus reducing the overhead cost of job transfers.

7.2 Conclusion
The results obtained exhibit little difference between the simulation and emulation. Further

analysis shows that there is no significant difference between the two, implying that the

simulation environment built for the study closely reflects the real environment to a good

degree given the particular parameters chosen. In most cases, simulation results are close to

the results obtained for the emulation. Given this result, it is not reasonable to argue that

simulation using different parameters are also likely to represent a real environment, since

there was nothing special about the way that parameters were chosen in this case. The results

not only verify that load sharing is effective in extending battery lifetime, but also confirm the

influence of CPU utilisation on the benefit of remote execution.

' Information about Coda can be obtained from http://www.cs.cmu.edu/afs/cs/project/coda/Web/docs-
coda.html.

114

http://www.cs.cmu.edu/afs/cs/project/coda/Web/docs-

8. Future Vision and Future Work
In this chapter, the future scenario for wireless and mobile computing technologies and the

applicability of this work are discussed. This chapter ends with a proposal for future work.

8.1 Future Systems
Mobile devices are no longer used solely for the purpose of communications, but now are

also used by roaming users to allow greater flexibility over working practices, effectively

extending the office into the wider environment. In the next decade, it has been forecast that

20% to 30% of GSM revenue might come from mobile data. If the rapidity of increase in the

amount of data carried by terrestrial wired telecom networks in an indicator, this may well be

a conservative estimate.

By the nature of the way that the radio medium is licensed, the future of mobile data depends

largely on the development of appropriate standards. Currently, the bandwidth available over

GSM for mobile data is low (typically in the range of 9.6 kbps to 14.4 kbps). However, there

are a number of initiatives to develop high speed, wide area, data services. Thus trials of

High Speed Circuit Switched Data (HSCSD) are currently underway, and it is projected that

GPRS will roll out in the near future. These services will offer data rates up to about 130

kbps. Enhanced Data for GSM Evolution (EDGE), which is a successor of GPRS, will

provide data rates of up to 348 kbps.

In a wider context. Iridium is planning a second generation satellite system offering a

bandwidth of up to 120 kbps, which it plans to launch in 2003. It is also targeting 64 kbps /

125 kbps throughput for handheld devices. Ericsson and Telia are testing a wireless

interconnection to IP-based enterprise networks, effectively providing enterprise LANs for

fixed and mobile terminals. The commitment shown by the industry to provide support for

mobile data is evident from the Wireless Application Protocol (WAP) Forum, which is joined

by 60 companies, with a goal of designing and establishing standards for mobile data.

Perhaps the most significant development for the future will centre around ETSFs work on

the Universal Mobile Telecommunications Standard (UMTS) or the ITU’s work on IMT-

2000. UMTS is a third generation mobile (3G) systems. Its goal is to cater for future market

demands for low cost, high quality mobile personal communications. UMTS will deliver

pictures, graphics, video communications and other wide-band information as well as voice

and data to mobile users. It extends the existing capabilities of mobile, cordless and satellite

technologies to provide increased capacity, data capability and a wider range of services,

blurring the distinction between the use of telephones for voice communications and the use

115

of PCs for data transmissions. Since UMTS provides a wide range of services, it also

provides support for a wide variety of terminals, from PDAs to palmtops to laptops.

UMTS offers a wide range of quality of service (QoS) by optimising the communications

channel for each individual service. By tailoring the communications channel QoS

(bandwidth, error rate and latency) to a range of services, traffic can be packed into the

channel more efficiently, potentially reducing costs to service providers, and price for users.

Although UMTS offers connectionless services, users will get the impression of being

connected for the whole duration of a session. In reality, communication channels and other

resources will only be occupied while data is being sent. As soon as the transmission is

completed, the resources are automatically released to another user. 3G systems will provide

adaptive services where if a requested QoS cannot be met, the service is adapted to provide a

similar, but lower quality version, taking into account the dynamic nature of radio channel

and traffic characteristics. A mechanism will be introduced to price services according to the

QoS provided.

Initially, UMTS will provide transmission rates of up to 2 Mbps. Later on, UMTS will be

integrated with picocellular systems based on Wireless LAN (W-LAN) and Broadband Radio

Access Networks (BRANs) to provide a bandwidth of up to 155 Mbps. The UMTS networks

will be comprised of terrestrial networks and Satellite UMTS (S-UMTS) networks. S-UMTS

is required to serve rural and remote areas, which is essential to achieve the goal of providing

a ubiquitous and universal services. In addition to multimedia services, UMTS will also

provide interactive services and the Virtual Home Environment (VHE) services.

Bluetooth' is another project which will make ubiquitous computing a reality. Bluetooth

aims to replace proprietary cables connecting devices with one universal short-range radio

link to facilitate access to both LANs and WANs to provide a universal bridge to existing

data networks. It will also provide a mechanism to form small private ad hoc groupings of

connected devices away from network infrastructures. Any digital device can be part of the

Bluetooth system: laptops, handheld computers and digital cellular phone can be used

together seamlessly. For example, emails can be received on the laptop via the digital cellular

phone the user is carrying, and a presentation can be downloaded from a user’s laptop to a

data projector without connecting cables.

The proliferation of wireless technology applications will not be limited to supporting

roaming users. In the future, wireless and mobile computing technologies will also be widely

deployed at home. For example, Shared Wireless Access Protocol (SWAP) aims to provide a

new, common air interface which supports wireless voice and LAN data services in the home

' Bluetooth web page is at http://www.bluetooth.com/.

116

http://www.bluetooth.com/

environment. The specification ensures interoperability among PCs, communication and

consumer electronics devices equipped with wireless communication capabilities, and is

aimed for the home market. Among the applications which will be made possible by SWAP

are:

• Information delivered via the Internet to anywhere in the home, e.g. a mobile display pad

connected to the Internet can access recipe information in the kitchen, or it can be taken

into the garage for the latest automobile mechanical updates.

• Control of electrical systems and appliances, e.g. to turn on/off lighting in the house

while users are away to give the impression that someone is at home.

• Effective utilisation of communication channels by dynamically allocating phone line for

incoming and outgoing calls, fax and Internet access.

These are only a few examples of possible applications, more information can be obtained

from http://www.homerf.org.

In conclusion, the ongoing work in this field suggests that a ubiquitous computing

environment where users truly have anytime-anywhere-access will one day be achieved, and

the services will be provided at affordable prices. The use of wireless technologies will

become widespread, encompassing every aspect of people’s life, and giving users access to

information whenever it is required. Access to the network will no longer be limited to

downloading information or exchanges of emails and short messages, but will cover all

aspects of applications currently available only to users on fixed networks, as well as a range

of applications yet to be developed for the consumer electronics market.

In summary, we are currently seeing the conception of systems in which computers and

networks will be transparently integrated into users’ everyday lives. The goal of ubiquity will

be reached and the demand for the services which run over such systems will be driven by the

usefulness of the services rather than lower level technical specifications.

8.2 Applicability of this Work
The previous section and Chapter 2 show that there will be a wide range of mobile/wireless

applications available to users. The question we would like to answer now is how our work

will be applicable in such a diverse environment. Obviously, not all mobile applications will

benefit from load sharing, but we believe that it will be particularly useful for applications

where mobile devices are used as an extension of the workplace. One particular driver for the

current expansion of the wired network into the home is precisely this, though secondary

development involves the wider use of systems in leisure activity. The fact that there is an

increasing demand for mobile data services indicates that users expect to be able to access

117

http://www.homerf.org

and manipulate data on the fixed network while roaming. In the near future, this data is likely

to be work associated, though new applications will be developed as the number of mobile

devices increase, and the type diversifies to include consumer electronic devices.

In the case of work-based use, it is imperative that the necessary support is available so that

users are able to work whenever, and wherever, they wish to do so. In the case of wider

applications, this is doubly important, since these will be predicated on embedding computer

and network systems in such a way that the user should not explicitly be aware of their

existence. In both scenarios, intelligent dynamic reconfiguration will be essential in

providing the type of services that are required over extended periods in highly heterogeneous

environments that are changing. One important part of this is the ability to extend battery

lifetime, since this is currently (and will be for the foreseeable future) a limiting factor to the

full exploitation of the potential of such environments. This thesis has demonstrated that load

sharing affords an important weapon in achieving this goal for certain sorts of tasks.. Indeed,

since the cost of running the load sharing algorithm is minimal, it will be sensible to run it

just in case jobs are suitable for transfer. If a job is not CPU-intensive and not suitable for

transfer, the adaptive algorithm will identify it as such.

Undoubtedly, there are limitations to the scope of the work described in this thesis. We have

argued that environments may become massively more heterogeneous than is currently the

case. In this case, load sharing may be impracticable, simply because of the range of different

types and capabilities of system. However, if people see significant benefit can be brought by

load sharing, and there is a demand for this service to be provided, the industry will

eventually have to cater for this demand. One way of addressing this issue is by providing a

generic platform where jobs can be ported between different machines to avoid heterogeneity

from becoming a hindrance to load sharing. This may be required in any case in order to

allow for the full range of dynamic behaviours to be exploited and for cross platform

applications to be developed.

8.3 Future Work

In this study, it was assumed that mobile hosts compete amongst themselves for a fixed host's

processor cycles without considering the monetary cost that may be involved. If users are

being charged for using the wireless link, or for utilising the fixed host's resources, this will

be another constraint which must be considered when implementing load sharing as a power

management strategy. An additional question to address is how much users are willing to pay

in order to execute jobs remotely, and if the cost is justified.

118

This problem may be undertaken using the microeconomic approach, previously explored by

Ferguson et al [Ferg88] and Waldspurger et al [Wald92] as another approach to distributing

load in a distributed network. In the approach proposed by Ferguson et al, the computer

system was modelled as resources, consumers and suppliers. Resources are processors,

memory and communication bandwidth, while the consumers are jobs that have to be

executed and suppliers are the processors and their operating systems. Processors and jobs

are modelled as independent economic agents that selfishly attempt to optimise their

satisfaction without attempting to improve or optimise system performance. If this approach

is applied in the context of this study, transfer requests will no longer be served on a fist-

come-fist-served basis, but based on who is willing to pay for the resources. This not only

enforces competition among users, but also restricts access to those who can afford to pay for

it.

When the stability of the load sharing algorithm is discussed in Chapter 6, we showed that as

users competing for the MSS's processor cycle increases, load sharing ceases to be effective.

In order for it to continue to be feasible, spare capacity at other fixed hosts has to be utilised,

where the MSS probes other fixed hosts to delegate transfer requests. Another approach to

this problem is by using an intelligent mobile agent. Stamer et al [Star97] describes an

intelligent mobile agent as a butler that anticipates the requirements of a user and tries to find

the required resources to execute a job. In the context of load sharing, instead of having a

mobile host sends transfer requests the MSS, its intelligent agent may forecast what the user

requirement in the near future might be and hence reserve the required resources. It may

facilitate remote execution by reserving communication bandwidth or processor cycle on

fixed hosts. The agent may even use the microeconomic approach in deciding the best way to

utilise available resources according to a user's budget.

In the longer term, the exploration of new applications for wireless systems of the type we

have envisaged above will lead to the identification of different constraints. Although it is

hard to predict what these might be at present, we can certainly foresee a very interesting

future for research in the area of intelligent dynamic adaptation in mobile systems.

119

9. Conclusion
Mobile devices operate on battery power and, given the fact that there is unlikely to be much

improvement in battery capacity, it is vital that power utilisation be managed efficiently and

economically. This study explores the possibility of using the concept of load sharing to

utilise resources on the fixed network in order to conserve battery power on mobile hosts. It

is built on the premise of making use of available resources on the fixed network to execute

jobs on behalf of mobile hosts. The load sharing algorithm selects suitable Jobs for remote

execution on a fixed host in such a way that the power consumed for transferring the job is

less than the power consumed if the job is executed locally. Transferring jobs reduces power

consumption as the CPU is able to operate in doze mode more often.

The extent to which previous work on load sharing is relevant to our work was explained in

Chapter 3, and the differences in the assumptions and mechanism of load sharing in wireless

networks were presented in Chapter 4. These differences are inevitable due to the nature of

the mobile computing environment; consequently, factors which are non-issues in fixed

networks must now be taken into consideration. As the primary concern is to examine the

effectiveness of load sharing in conserving power, the design of the algorithm is centred

around trying to utilise power economically. Modifications to the existing load sharing

strategy took into considerations the mobile computing environment and the objective of

conserving battery power.

In Chapter 1, the hypotheses for this study were listed. It was expected that low bandwidth

would impede load sharing. This hypothesis was tested by running simulations where the

available bandwidth was varied to determine its effect on battery lifetime improvement.

Although the results show that low bandwidth does impede load sharing, there is an

exception. Providing that job size is small, it is possible to transfer a substantial number of

jobs, resulting in a significant battery lifetime improvement. This indicates that load sharing

might still be effective even at low bandwidth.

Load sharing is expected to improve performance by giving mobile hosts access to faster

machines on the fixed network. Results obtained from simulations which varied the

processor power of the mobile hosts show that this is indeed the case. It was found that if the

mobile hosts have the same processing power as fixed hosts, it is unlikely that any jobs would

be transferred, as communication delays cause increased response time. It is mobile hosts

with low processing power which benefit most from load sharing, not only in terms of battery

lifetime, but also in terms of better response time.

120

A finding of this study, which is similar to previous studies, is that it is CPU-intensive jobs

that benefit from load sharing. It was found that the transfer of CPU-intensive jobs extends

the period the CPU operates in doze mode significantly, resulting in reduced power

consumption. In Chapter 1, we stated that we believe the proposed strategy to be particularly

important when users are executing CPU-intensive jobs, in which case it is crucial that the

battery power is not suddenly depleted. This finding shows that load sharing will indeed have

a role to play in conserving power if users are using applications which are CPU-intensive.

In addition to establishing that load sharing does bring significant battery lifetime

improvement and identifying factors influencing the benefits gained from load sharing, the

possibility of combining load sharing with another power management strategy was also

examined. Simulation combining load sharing with a disk spin-down strategy indicates that

further power saving is possible when the strategies are combined.

Two adaptive load sharing algorithms, History and ALS, were proposed to offer a more

practical approach to implementing load sharing in a real environment. Unlike the optimal

algorithms, the adaptive algorithms assume no a priori knowledge of CPU requirements of

jobs, and perform almost as well as the optimal algorithm, indicating that a performance

which is near the optimal performance might be possible.

When addressing the stability and scalability issues, it was found that as the number of users

competing for spare capacity on the fixed network increases, more than one fixed host is

required to cater for the demand. If only one fixed host caters for the mobile hosts, load

sharing does not scale well, and performance degrades rapidly as the number of users

increases. The number of fixed hosts available to offer their services to mobile hosts depends

on the current workload on the fixed network. If the fixed hosts are currently under heavy

load, it is best to disable load sharing. An appropriate measure was introduced to prevent

performance degradation under heavy load, and the Slotted LS algorithm appears to have

succeeded in doing so. In addition to preventing performance degradation. Slotted LS also

allocates spare capacity more fairly among mobile hosts.

There are other factors which may cause instability of the load sharing algorithm. As

discussed in Chapter 4, to simplify the simulation, we made an assumption that a reliable

communication link exists between the mobile hosts and the MSS, and did not simulate

possible interference or packet loss. In reality, high interference and packet loss/error may

become factors which leads to instability if the load sharing algorithm attempts to transfer

jobs under such unfavourable circumstances, possibly wasting battery power due to

retransmissions. Hence, the algorithm needs to be intelligent enough to detect these

121

conditions and react accordingly. We did not attempt to address this issue as we believe an

approach such as the one proposed by [Ruln96], discussed in Chapter 2, may be adopted.

The findings of this study also show that the proposed load sharing algorithm has been

successful in making use of otherwise unutilised resource on the fixed network. While

previous studies proposed this adaptive ability to utilise resources/services merely for the

purpose of executing applications on behalf on mobile hosts, we exploit them to conserve

battery power. In the context of the load sharing algorithm, this requirement is important not

only to make the best use of available resources, but also to avoid instability. When load

sharing is no longer feasible, appropriate measures are required to avoid load sharing from

causing worse power utilisation than when there is no load sharing.

In conclusion, the proposed load sharing algorithm was shown to be a potentially effective

power management strategy. The contributions and achievements of this study are

summarised below,

1. It successfully adapted a well-known concept in distributed system to address a problem in

mobile computing.

2. It identified the necessary modifications required to implement load sharing as a power

management strategy in a mobile computing environment.

3. It identified factors conducive to load sharing and factors which impede load sharing.

4. It identified the type of applications which are likely to benefit from load sharing.

5. This study shows that it is possible to make use of otherwise unutilised resources on fixed

hosts to conserve battery power on mobile computers.

122

References

[Badr93] B.R. Badrinath, A. Acharya, T. Imielinski, Impact o f Mobility on Distributed
Computing, Operating Systems Review, Vol. 27, No. 2, April 1993.

[Badr95] B.R. Badrinath, G. Welling, Event Delivery Abstraction for Mobile Computing,
Technical Report, LCSR-TR-242, Rutgers University, 1995.

[Badr96] B.R. Badrinath, A. Acharya, T. Imielinski, Designing Distributed Algorithms for
Mobile Computing Networks, Computers and Communications, Vol. 19, April
1996.

[Bagr95] R. Bagrodia. W.W. Chu, L. Kleinrock. G. Popek, Vision, Issues, and Architecture
for Nomadic Computing, IEEE Personal Communications, December 1995.

[Chev94] K. Cheverst, G.S. Blair, N. Davies A. Friday, A.D. Cross, P.P. Raven, Moving
'Desktop' into the Field, lEE Colloquium on Integrating Telecommunications and
IT on the Desktop, London, March 1994.

[Cox95] D C. Cox, Wireless Personal Communications : What Is It ?, IEEE Personal
Communications, April 1995.

[Davi93] N. Davies, G.S. Blair, A. Friday, A.D. Cross, P.F Raven, Mobile Open Systems
Technologies for the Utilities Industries, lEE Colloquium on CSCW Issues for
Mobile and Remote Workers, London, March 1993.

[Davi94a] N. Davies, S. Pink, G.S. Blair, Services to Support Distributed Applications in a
Mobile Environment, Proc. of the 1®' International Workshop on Services in
Distributed and Networked Environments, Prague, June 1994.

[Davi94b] N. Davies, G.S. Blair, K. Cheverst, A. Friday, Supporting Adaptive Services in a
Heterogeneous Mobile Environment, Proc. of IEEE Workshop on Mobile
Computing Systems and Applications, Santa Cruz, California, December, 1994.

[Deme94] A. Demers, K. Peterson, M. Spreitzer, D. Teny, M. Theimer, B. Welch, The
Bayou Architecture : Support for Data Sharing Among Mobile Users, Proc. of the
IEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz,
California, December, 1994.

[Doug94a] F. Douglis, P. Krishnan, B. Marsh, Thwarting the Power-Hungry Disk, Proc. of
the 1994 USENIX Winter Conference, San Francisco, January 1994.

[Doug94b] F. Douglis, R. Caceres, B. Marsh, Storage Alternatives for Mobile Computers,
Matsushita Information Technology Laboratory Technical Report MITL-TR-93-
93, March 21, 1994.

[Doug95] F. Douglis, B. Bershad, Adaptive Disk Spin-down Policies for Mobile Computers,
Proc. of the 2"̂ USENIX Symposium on Mobile and Location-Independent
Computing, Michigan, USA, April 1995.

[Duch91] D. Durhamp, S.K. Feiner, G.Q. Maguire, Software Technology for Wireless
Mobile Computing, IEEE Network Magazine, November 1991.

[Duch92] D. Duchamp, Issues in Wireless Mobile Computing, Proc. Of the 3'̂ '* Workshop on
Workstation Operating Systems, IEEE, April 1992.

123

[Eage86a] D.L Eager, E D. Lazowska, J. Zahorjan, Adaptive Load Sharing in Homogeneous
Distributed Systems, IEEE Transactions on Software Engineering, Vol. SE-12,
No. 5, May 1986

[Eage86b] D.L. Eager, E.D. Lazowska, J. Zahorjan, A Comparison o f Receiver-Initiated and
Sender-Initiated Adaptive Load Sharing, Performance Evaluation, Vol. 6, 1986.

[Ebli94] M.R. Ebling, L.B. Mummert, D.C. Steere, Overcoming the Network Bottleneck in
Mobile Computing, Proc. of the IEEE Workshop on Mobile Computing Systems
and Applications, Santa Cruz, California, December, 1994.

[Ezza86] A.K. Ezzart, R.D. Bergeron, J.L. Pokoski, Task Allocation Heuristics for
Distributed Computing Systems, Proc. of the b'*’ International Conference on
Distributed Computing Systems, 1986.

[Ferg88] D. Ferguson, Y.Yemeni, C. Nikolaou, Microeconomics Algorithms for Load
Balancing in Distributed Computer Systems, Proc. of the 8^ International
Conference on Distributed Computing Systems, 1988.

[Form94] G.H. Forman, J. Zahorjan, The Challenges o f Mobile Computing, Technical
Report, UW CSE #93-11-03, University of Washington, March 1994.

[Frid96] A.J. Friday, G.S. Blair, K.W.J Cheverst, N. Davies, Extensions to ANSAware for
Advanced Mobile Applications, Proc. of the International Conference on
Distributed Platform, Dresden, Germany, February 1996.

[Gran93] W.C. Grant, Wireless Coyote A Computer-Supported Field Trip,
Communications of the ACM, Vol. 36, No. 5, May 1993.

[Gree94] P.M. Greenwait, Modeling Power Management for Hard Disks, Proc. On
Modelling, Analysis and Simulation of Computer and Telecommunication
Systems, IEEE, January 1994.

[Hac89] A. Hac, A Distributed Algorithm for Performance Improvement Through File
Replication, File Migration, and Process Migration, IEEE Transactions on
Software Engineering, Vol. 15, No. 11, November 1989.

B.
[Helm96] D P. Helmbold, D.D.E. Long, B. Sherrod, A Dynamic Disk Spin-Down Technique

for Mobile Computing,Vvoc.. of'bAoh\c,om'96,\996.

[Hous96] B.C. House), D.B. Lindquist, WebExpress : A System for Optimising Web
Browsing in a Wireless Environment, Proc. of Mobicom '96, 1996.

[Hsu86] C.H. Hsu, J.W. Liu, Dynamic Load Balancing Algorithms in Homogeneous
Distributed Systems, Proc. of the 6^ International Conference on Distributed
Computing Systems, 1986.

[Imie94a] T. Imielinski, S. Viswanathan, B.R. Badrinath, Energy Efficient Indexing on Air,
Proc. of the International Conference on Management of Data, ACM SIGMOD,
May 1994.

[Imie94b] T. Imielinski, B.R. Badrinath, Mobile Wireless Computing : Solutions and
Challenges in Data management. Communications of the ACM, Vol. 37, No. 10,

124

October 1994.

[Imie95] T. Imielinski, M. Gupta, S. Peyyeti, Energy Efficient Data Filtering and
Communication in Mobile Wireless Computing, Proc. of the 2"̂ USENIX
Symposium on Mobile and Location-Independent Computing, Michigan USA,
April 1995.

[Imie96] T. Imielinski (ed.), H.F. Korth, Mobile Computing, Kluwer Academic Publishers,
1996.

[Inte94] Intel Application Note, Pentium® Processor (6I0\75) Power Consumption, Rev.
1.1, October 1994.

[Jacq93] C. Jacqmot, E. Miigrom, A Systematic Approach to Load Distribution Strategies
for Distributed Systems, IFIP Transaction A - Computer Science and Technology,
Vol. 39, 1993.

[John97] D.B. Johnson, Mobility Support in IPv6, IETF Internet Draft, 2U’ November
1997.

[Katz94] R.H. Katz, Adaptation and Mobility in Wireless Information Systems, IEEE
Personal Communications Magazine, Vol. 1, No. 1, 1994.

[Koya93] K. Koyama, K. Shimizu, H. Ashihara, Y Zhang, H. Kameda, Performance
Evaluation o f Adaptive Load Balancing Policies in Distributed Systems,
Singapore International Conference on Networks Information Engineering, Vol.2,
1993.

[Krem92] O. Kremien, J. Kramer, Methodical Analysis o f Adaptive Load Sharing
Algorithms, IEEE Transaction on Parallel and Distributed Systems, Vol. 3, No. 6,
November 1992.

[Kris95] P. Krishnan, P.M. Long, J.S. Vitter, Learning to Make Rent-to-Buy Decisions with
Systems Applications, Proc. of the '12'*’ International Machine Learning
Conference, 1995.

[Krue88] P. Krueger, M. Livny, A Comparison o f Preemptive and Non-Preemptive Load
Distributing, Proc. of the 8th International Conference on Distributed Computing
systems, June 1988.

[Krue91] P. Krueger, R. Chawla, The Stealth Distributed Scheduler, Proc. of the l l ‘*’
International Conference on Distributed Computing Systems, 1991.

[Krue94] P. Krueger, N.G. Shivaratri, Adaptive Location Policies for Global Scheduling,
IEEE Transactions on Software Engineering, Vol. 20, No. 6, June 1994.

[Lett97] P. Lettieri, C. Fragouli, M.B. Srivasta, Low Power Error Control for Wireless
Links, Proc. of the Mobicom '97, Budapest, Hungary, 1997.

[Li94] K. Li, F. Kumpf, P. Horton. T. Anderson, A Quantitative Analysis o f Disk Drive
Power Management in Portable Computers, Proc. of 1994 Winter USENIX
Conference, San Francisco, January 17-21, 1994.

[Long96] S.L. Long, R. Kooper, G.D. Abowd, C.G. Atkeson, Rapid Prototyping o f Mobile
Context-Aware Applications : The Cyberguide Case Study, Proc. of Mobicom '96,

125

Rye NY, USA, 1996.

[Lorc96] J.R. Lorch, A.J. Smith, Reducing Processor Power Consumption by Improving
Processor Time Management in a Single-User Operating System, Proc. of
Mobicom '96, 1996.

[Mars94] B. Marsh, B. Zenel, Power Measurements o f Typical Notebook Computers,
Matsushita Information Technology Laboratory Technical Report MITL-TR-110-
94, May 1994.

[Mirc89] R. Mirchandaney, D. Towsley, J.A. Stankovic, Analysis o f the Effects o f Delays
on Load Sharing, IEEE Transactions on Computers, Vol. 38, No. 11, November
1989.

[Mirc90] R. Mirchandaney, D. Towsley, J.A. Stankovic, Adaptive Load Sharing in
Heterogeneous Distributed Systems, Journal of Parallel and Distributed
Computing, Vol. 9, No. 4, August 1990.

[Othm97] M. Othman, S. Hailes, Load Balancing As a Power Management Strategy for
Mobile Computers, Proc of Malaysia International Conference on
Communications, November 1997.

[Othm98] M. Othman, S. Hailes, Power Management Strategy for Mobile Computers Using
Load Sharing, Mobile Computing and Communications Review, Vol. 2, No. 1,
January 1998.

[Gthm99] M. Othman, S. Hailes, Emulation o f Load Sharing for Power Management on a
Wireless LAN, Submitted for Review.

[Perk97a] C. Perkin, IP Mobility Support Version 2, IETF Internet Draft, 12*’’ November
1997.

[Perk97b] C. Perkin, Route Optimisation in Mobile IP, IETF Internet Draft, 20*’’ November,
1997.

[Rudn98] A. Rudenko, P. Reiher, G.J. Popek, G.H. Kuenning, Saving Portable Computer
Battery Power through Remote Process Execution, Mobile Computing and
Communications Review, Vol.2, No. 1, January 1998.

[Ruem92] C. Ruemmler, J. Wilkes, UNIX Disk Access Patterns, HP Laboratories Technical
Report HPL-92-152, December 1992.

[Ruln96] J.M. Rulnick, N. Bambos, Mobile Power Management for Maximum Battery Life
in Wireless Communication Networks, Proc. of the Infocom ’96, 1996.

[Shek94] S. Shekar, D.R. Lin, Genesis and Advanced Traveller Information systems (ATIS)
: Killer Applications for Mobile Computing ?, MOBIDATA : An Interactive
Journal of Mobile Computing, Vol.l, No. 1, November 1994. Available at
http://www.cs.rutgers.edu/~badri/joumal.

[Shen92] S.Sheng, A. Chandrakasan, R.W. Brodersen, A Portable Multimedia Terminal,
IEEE Communications Magazine, December 1992.

[Shin89] K.G. Shin, Y.C. Chang, Load Sharing in Distributed Real-Time Systems with

126

http://www.cs.rutgers.edu/~badri/joumal

State-Change Broadcasts, IEEE Transactions on Computers, Vol. 38 No. 8,
August 1989.

[Shor95] J. Short, R. Bagrodia, L. Kleinrock, Mobile Wireless Network System Simulation,
Mobicom '95, November 1995.

[Stan84] J.A. Stankovic, Simulations o f Three Adaptive, Decentralized Controlled, Job
Scheduling Algorithms, Computer Networks, Vol. 8 No. 3, June 1984.

[Stan85] J.A. Stankovic, Stability and Distributed Scheduling Algorithms, IEEE
Transactions on Software Engineering, Vol. SE-11, No. 10, October 1985.

[Star97] T. Stamer, S. Mann, B, Rhodes, J. Levine, J. Healey, D. Kirsch, R.W. Picard, A.
Pentland, Augmented Reality Through Wearable Computing, Presence -
Teleoperators and Virtual Environment, Vol.6, No. 4, 1997.

[Sven90] A. Svensson, History, an Intelligent Load Sharing Filter, Proceedings of the 10^
International Conference on Distributed Computing Systems, 1990.

[Wald92] C.A. Waldspurger, T. Hogg, B.A. Huberman, J O. Kephart, W.S. Stronetta,
Spawn : A Distributed Computational Economy, IEEE Transactions on Software
Engineering, Vol. 18, No. 2, February 1992.

[Wang85] Y.T. Wang, R.J.T. Morris, Load Sharing in Distributed Systems, IEEE
Transactions on Computers, Vol. C-34, No. 3, March 1985.

[Wang93] C.J. Wang, P. Krueger, M.T. Liu, Intelligent Job Selection for Distributed
Scheduling, Proc. o f the 13th International Conference on Distributed Computing
Systems, 1993.

[Wats94] T. Watson, Application Design for Wireless Computing, Proc. of IEEE Workshop
on Mobile Computing Systems and Applications, December 1994.

[Watt96] J. Watts, M. Rieffel, S. Taylor, Practical Load Balancing for Irregular Problems,
Proceedings of IRREGULAR '96, Parallel Algorithms for Irregularly Structured
Problems, 1996.

[Weis93] M. Weiser, Some Computer Science Issues in Ubiquitous Computing,
Communications of the ACM, Vol. 36, No. 7, July 1993.

[Weis94] M. Weiser, B. Welch, A. Demers, S. Shenker, Scheduling for Reduced CPU
Energy, Proc. of USENIX 1994 Operating Systems Design and Implementation
Symposium, Monterey, CA, November 1994.

[Zhan95] Y. Zhang, K. Hakozaki, H. Kameda, Effectiveness o f Adaptive and Static Load
Balancing Strategies, International Workshop on Computer Performance
Measurement and Analysis, 1995.

[Zhou88] S. Zhou, A Trace-Driven Simulation o f Study o f Dynamic Load Balancing, IEEE
Transaction on Software Engineering, Vol. 14, No. 9, September, 1988.

127

