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ABSTRACT

It is considered that precise gravimetric geoid determination is one of the 
main geodetic problems in Peninsular Malaysia for the near future, since the Global 
Positioning System (GPS) defined ellipsoidal coordinates require geoidal heights in 
practice. Geoidal heights can be determined by either a geopotential model alone, or in 
combination with local gravity and height data.

The reference gravity field contributed by the geopotential model can be 
improved by a tailoring method. This is the main objective of the study; a tailored 
model called OSU89B-MM (Malaysian Model) complete to degree and order 360 was 
developed by fitting the pre-existing geopotential model OSU89B to the updated mean 
free-air anomalies of half degree blocks in the peninsular region. Numerical analyses 
indicate that the tailoring technique has improved the reference gravity field by about 
50% for point anomalies (from 23 mgals t o l l  mgals). Tests on absolute geoid heights 
in selected areas where GPS and levelling data were available have demonstrated about 
10% improvement ( 1 cm to 2 cm) of the tailored model over OSU89B, whereby the 
long wavelength errors have been partly diminished.

The gravimetric geoid height has been computed in three test areas (which were 
characterised by different types of topography, gravity density and coverage) by Least 
Squares Collocation (LSC) and Fast Fourier Transforms (FFT). The local height data 
were also utilised in a remove-restore procedure in order to study the gravitational 
influence of the topography, especially in test areas of rough terrain. Results show that 
the standard deviation of the absolute differences between the control GPS/levelling 
derived geoid heights and predicted gravimetric geoid heights have improved by 5 cm 
(from 11 cm to 6 cm) compared to the corresponding differences implied by OSU89B- 
MM. Work carried out in areas of high topographic relief (for which no GPS data were 
available) has nevertheless shown the terrain contribution to the geoid height to be as 
much as 0.5 m to 1.5 m .



"IF Y O U V E  EVERYTHING B U T  HAVE NO  FAITH IN  GOD, 

YO U ’LL HAVE NOTHING;

IF YO U V E  NOTHING B U T HAVE FAITH IN  G O D ,

YOU'LL HAVE EVERYTHING  "
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CHAPTER 1 

INTRODUCTION

1.1 Background

Geodesy can be considered as that branch of geoscience which is concerned 
with the determination of the size and figure of the earth, as well as its gravity field; this 
can be described in various ways, for example, providing the form and position of 
equipotential surfaces. Among the infinite number of these surfaces, the geoid is 
distinct insofar as it is loosely defined as an equipotential surface at mean sea level. It 
is the reference surface for the system of geopotential numbers, from which most 
existing height systems can be derived, see Heiskanen and Moritz, (1967-Chapter 4) 
and Bomford, (1980-Chapter 6). The height of the geoid is a geometrical representation 
of variations in the earth's gravity field and has important applications in geophysics, 
oceanography and geodesy.

With the rapid expansion of applications of the Global Positioning System 
(GPS) and the improvement of positioning accuracy, the determination of an accurate 
geoid has been one of the main interests of g’eodesists in recent years. The position of 
points derived from GPS measurements are usually computed in a three-dimensional 
(3D) Cartesian coordinate system, and the resulting X, Y, Z coordinates are easily 
convertible into ellipsoidal coordinates, namely latitude ((j)), longitude QC) and height (h) 
above the reference ellipsoid. However, the conversion of an ellipsoidal height into a 
meaningful physical quantity, namely orthometric height (H) or height above the geoid 
requires a correspondingly accurate knowledge of the geoid-ellipsoid separation (N), 
or so-called geoid height. The only feasible method of determining geoid heights over 
the area of interest, to the required accuracy and density is the gravimetric method. In 
mountainous and remote areas like the central part of Peninsular Malaysia and many 
parts of the world, it would be practically too expensive and time consuming to cover 
all parts of the country by conventional levelling. Thus, the GPS surveys and the 
computation of gravimetric geoids are of importance as an alternative method for 
levelling operations.

Several theories and gravimetric methods such as Stokes' integral. Least 
Squares Collocation {LSC) ond Fast Fourier Tran^orms (FFT) have been developed 
to provide geoid models, each having their inherent strengths and weaknesses. In 
principle, the geoid model solution is determined using various data types that include 
information belonging to separate wavelengths of the total gravity spectrum. For 
example, geopotential models are basically sensitive to long wavelength signals
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whereas gravity anomalies and topographic heights have principally medium and short 
wavelength sensitivities, respectively. The gravimetric geoid solutions are usually 
carried out with respect to | the Geodetic Reference System 1980 (GRS80).

In practice, global geoid solutions are obtained directly from geopotential 
models which are given as a set of coefficients. The coefficients are those of a series of 
spherical harmonic expansion, i.e. the numerical version of an infinite spectrum that 
allows analysis per degree of the series. High degree geopotential models are a major 
source of gravity field information and are invaluable in local studies leading to a 
solution of the boundary value problem (BVP). They define the global behaviour of 
the gravitational potential and provide an absolute datum on which to build the 
anomalous gravity field. Thus, in local geoid solutions, the high degree geopotential 
models are commonly used as reference fields where effects of long wavelength 
signals are removed from a set of terrestrially-observed anomalies prior to 
computations. This procedure will improve the homogeneity of the anomalous gravity 
field and has been successfully proven by Tziavos, (1987), Arabelos and Tziavos, 
(1992), Sevilla, (1993) and Tsui, et.al., (1994). In the case that the available global 
geopotential models do not approximate the regionally existing gravity field data very 
well, there are alternate procedures to create the high degree models. One such 
procedure leads to a 'tailored' potential coefficient model, see Weber and 
Zommorodian, (1988). The tailoring means fitting to the surface gravity data in a 
specific region, thus locally improving the reference field and removing long 
wavelength residuals. The tailored method could be of great benefit in areas where 
gravity data, not included in the analysis for the coefficients for the global models, 
becomes available.

When topographic height data are available, for example, in the form of a 
Digital Elevation Model (DEM), it is possible to smooth the irregularities of the gravity 
field on a local scale by removing the gravitational effects calculated from models of the 
topographic masses. In this way, significant improvements of the geoid determination 
can be obtained, especially in mountainous areas, see Forsberg and Tscheming, 
(1981), Kearsley, et.al., (1985), Sideris and Forsberg, (1990) and Smith, (1992).

An optimal combination of the gravity anomalies and height data with existing 
geopotential models is a complicated process, considering the quantities and qualities 
of each data type used in the areas of interest. The accuracy achieved is dependent 
upon factors such as error estimates, densities and distribution of data used and the 
adopted solution models. For example, errors of the long wavelength coefficients in the 
geopotential models and sparsely distributed surface gravity data may produce biased
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geoid solutions. The precision limitations, data requirements and their error sources 
which affect the accuracy of the gravimetric geoid determination can be found in 
Kearsley, (1984) and Tziavos, etal., (1992).

It is very important to compare the gravimetric solutions with independent 
external results. It has become standard practice in recent years to compare computed 
gravimetric geoid heights with those derived independently from a combination of GPS 
observations and orthometric levelling. Since the ellipsoidal heights can be obtained 
with high accuracy from GPS observations, the question arises of whether geoid 
heights can be gravimetrically determined with comparable accuracy. Some practical 
evaluations are fully presented in Engelis, et.al., (1985), Denker and Wenzel, (1987), 
Forsberg and Madsen, (1990), Veroneau, (1992), Li and Sideris, (1994) and Sideris 
and She, (1995).

1 .2  Significance of the Study

The advent of the GPS has created a revolution in spatial positioning methods in 
most parts of the world, including the Malaysian Peninsula region. Since the GPS 
defined coordinates require geoid heights in practice, i.e. conversion from ellipsoidal 
heights to orthometric heights, it is considered that precise gravimetric geoid 
determination is one of the main geodetic problems for Peninsular Malaysia in the near 
future. In addition to the orthometric height determination, transformation of the GPS- 
derived coordinates from the World Geodetic System 1984 (WGS84) into a local 
datum, the baseline reduction and the vertical datum determination require high accurate 
geoids. Consequently, the attempt for high accurate geoid determination is self-evident

So far, no serious attempts have been made to compute the gravimetric geoid 
for Peninsular Malaysia. Because of the unavailability of uniform gravity data, 
especially in the remote and mountainous areas, and also the lack of local DEM data, it 
is almost impossible at the present stage to produce a precise geoid for the whole 
country. The significance of this prehminary study can therefore be outlined as follows:

(i) To study the quality of gravity field estimation for geoid height 
computation in three test areas in Peninsular Malaysia with respect to the density 
of available terrestrial gravity data, area coverage, 'pre-existing' or 'tailored' 
reference models and topographic data.

(ii) To provide a 'preliminary platform' of geoid height for the test areas 
which can be significantly improved in the near future when the on-going gravity
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survey project' in the unsurveyed areas, and the digitisation of a local DEM is 
completed.

(iii) To fully capitalise upon the capacity of GPS technology in providing 
height values for the Malaysian region so that the GPS users can easily and 
accurately convert the existing GPS-based heights, which have limited practical use, 
to a height which can be used in engineering, surveying and other scientific 
applications. Thus, the preliminary local geoid is an essential element and testing 
platform to perform this height transformation.

1 .3  Scope of Research

As mentioned previously, various strategies can be followed for precise 
determination of the geoid heights where the combination of a global model or 
equivalent model with local data has become a standard procedure. This study is 
primarily concerned with the investigation of tailored models to provide a reference 
field for the anomalous gravity field used for geoid determination in Peninsular 
Malaysia. The computation of tailored models has proven to be an efficient method 
which yields very good results in areas where some new terrestrial gravity data 
(updated data) not included in the development of existing global models, have become 
available. The tailoring means fitting the surface gravity data into a global model, in a 
specific region. The tailoring procedure of global models was first published by Weber 
and Zommorodian, (1988) and refined by Basic, (1989).

The experiments include testing the resulting tailored models against the point 
gravity data, to see if there has been any improvement over the existing geopotential 
model. Apart from the anomalies comparison, the geoid heights generated from the 
existing model and the tailored model are also tested against control values of N, to 
discover if the tailored model has improved the geoid determination. The control data 
N is provided by values found from available GPS-derived ellipsoidal heights and 
orthometric height from heighting operations, e.g. levelling or trigonometric heighting. 
The main tasks of this study, therefore, can be summarised as follows:

(i) To review the current availability of the related data to be used in the
region.

(ii) To develop a 'tailored model' which is based on a fitting of the pre
existing geopotential model OSU89B to match the regional structure implied by updated 
gravity data in the region.
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(iii) To investigate the superiority, reliability and capability of the tailored 
models as reference fields for geoid height determination in Peninsular Malaysia 
compared to the original OSU89B model. These tests will be carried out by comparing 
the results with corresponding point gravity observations and geoid height values 
derived from available GPS/levelling points.

(iv) To model covariance functions for the gravity data which represent 
sufficiently the features of the gravity field in the test areas. Here, a proper choice of 
covariance function is of considerably importance in geoid height determination 
using the LSC method.

(v) To apply the LSC method for geoidal height computations in the 
three test areas, each having different characteristics of data density, data coverage, 
and terrain features.

(vi) The very fast and flexible FFT method is also to be used for geoid 
computations in the same test areas, mainly for comparison reasons.

(vii) To evaluate and to analyse the computed geoid height values (using the 
LSC and the FFT methods) at the GPS points with corresponding geoid height values 
derived from GPS/levelling operations.

(viii) To propose future work for a precise geoid determination in Peninsular 
Malaysia.

1.4 Thesis Overview and Structure

A brief description of some basic properties and detailed formulation of the 
earth's gravity field is given in Chapter 2. A general review of reference surfaces, 
harmonic functions, the formulation of the BVP and its solution is also presented in 
this chapter. Finally, this chapter also briefly focuses on the gravity reduction 
necessary for the gravimetric computations.

Chapter 3 presents a review of the relationship between the orthometric height, 
ellipsoidal height and geoid height. This is followed by a description of data types 
and their characteristics, e.g. spectral resolution, density, and coverage that can be used 
to determine the geoid height. The gravimetric methods that are commonly used in 
geoid determination are also discussed in this chapter. This includes a local gravimetric 
geoid which can be evaluated using a combination of a geopotential model and local 
terrestrial data via computational procedures such as Stokes' integral, LSC method 
and FFT technique. The terrain reduction as part of the contribution to gravimetric
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geoid solutions is also discussed in this chapter. The methods of improving geoid 
height estimation are briefly discussed in the last section of this chapter.

An extensive review of the existing gravity data used for this study is given in 
Chapter 4. This chapter also includes a description of the GPS survey campaign in the 
Malaysian Peninsula. The available topographic data is also described in detail in this 
chapter. There then follows a brief description of the OSU89B model used for the 
development of the tailored model. Finally, the analysis of these data is briefly 
presented, to look at any limitations imposed by them which will give an insight into 
the estimated accuracy of the geoid height computations in the test areas.

Chapter 5, which is the main contribution of this study, mainly deals with the 
description of the theory and model development of a tailored model for improving the 
reference field for anomalous gravity used for the geoid determination in Peninsular 
Malaysia. In this chapter, the results of tailored models are evaluated and analysed 
against the corresponding values derived from point gravity observations and the 
available derived GPS/levelling operations.

The detailed discussion of the gravimetric computational methods used in this 
study is given in Chapter 6. This includes the fundamental mathematical properties 
for the definition of the LSC method and the FFT technique. The various assumptions 
used in each method, their practical evaluations and the computer software used in this 
study are also discussed in this chapter.

Chapter 7 presents and analyses the results obtained from the various tests 
performed on the LSC and FFT methods described in chapter 6 using three test areas.

All practical geoid computations are summarised and concluded in Chapter 8. 
Suggestions for possible future research work that can be carried out are also given in 
this chapter.

Appendices contain relevant information not shown in the main sections.

References and Bibliography contain lists of sources which were consulted in 
the course of the research. They are listed under the authors' names arranged in 
alphabetical order, chronologically for each author.
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CHAPTER 2 

FUNDAMENTALS OF PHYSICAL GEODESY

2.1  Introduction

Geodetic measurements, from which coordinates defining points must be 
derived, are carried out on the earth's physical surface using instrumentation, that 
relies greatly on the earth's gravity field. These measurements must be transferred from 
this irregular surface into the reference surface with respect to equipotential surfaces 
(surface of constant gravity potential) whose study thereby becomes a concern of 
geodesy. The physical aspect of the problem of geodesy follows from the consideration 
of the earth's physical surface and the geoid as bounding surfaces in the earth's gravity 
field.

The gravity field of the earth is used for estimation of geoid heights and 
deflections of the vertical, definition of height systems, estimation of gravity field 
information in unsurveyed areas and satellite orbit determinations. In Physical 
Geodesy, there are fundamental problems which must be overcome before the nature of 
the gravity field of the earth is fully understood. This is the Boundary Value Problem 
(BVP), where the boundary is a chosen surface dividing the internal and external 
gravity fields.

The BVP incorporates a geometrical (the physical and mathematical surface of 
the earth) and a physical (gravity field) formulation of problem; both are closely related. 
The boundary values are gravimetric quantities on this surface which provide 
constraints in the determination of the equipotential surface. This chapter will start 
therefore with some basic properties of the earth's gravity field. The reference surfaces 
and the anomalous gravity field are discussed in the following sections. To discuss the 
solution to the BVP, it is necessary to understand the concept of harmonic functions as 
the BVP solutions rely on the boundary values being harmonic. Therefore, this chapter 
will also overview spherical harmonics and their adaptation to the BVP solutions. The 
determination of the geoid height through Stokes' solution to the BVP are also 
discussed. It closely follows Heiskanen and Moritz, (1967 - Chapters 1 and 2) and 
Bomford, (1980 - Chapter 6) which could be consulted for further details. Finally, the 
gravity reductions and atmospheric correction which are also needed for the 
anomalous gravity field assumption discussed at the beginning of this chapter is 
described and the necessary formulae for these reductions and correction will be 
derived.
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2.2 The Gravity Field of the Earth

From the time when Isaac Newton developed his Universal Law o f Gravitation^ 
it has been accepted that the weight of a body is caused by the gravitational attraction of 
the earth's mass. Similarly, a body rotating with the earth experiences the gravitational 
forces of the earth and of other celestial bodies, as well as the centrifugal force due to 
the earth's rotation. The resultant force is the force o f gravity. It is a function of 
position, but also undergoes temporal variations of secular and periodic nature which 
can occur globally, regionally and locally. In principle, measured gravity has three main 
uses:

• it provides information on the internal structure of the earth;

• it is applied in geodesy in the determination of the figure (the size 
and the shape) of the earth; and

• it is applied in celestial dynamics in the calculation of the effect of the 
earth's attraction on celestial bodies such as moon, artificial satellites 
and space vehicles.

2.2 .1  The Gravitational Potential

The derivation of the gravitational force F is based on Newton's Law of 
Gravitation (1687) which applies only to particles or point masses and states that, see 
Figure: 2.1:

"Every particle in the universe attracts every other particle with a force
which is directly proportional to the product of the two masses and 
inversely proportional to the square of the distance between them;

the direction of the force being in the line joining the two particles ".

P(x,y,z)

m2

-► y

Figure : 2.1 - Gravitational attraction of point masses
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This can be written mathematically as:

F =   (2,1)

where G is the Newtonian Gravitational Constant and 1 is a distance between point 
masses.

If a unit mass m% is situated at point P is attracted by another point P’ of unit 
mj, then the force of attraction would be exerted on m2  by mi. Consequently, m2  

would be caused to accelerate towards m%. For a mass external to and orbiting the 
earth, the acceleration would be gravity g, and from Newton's Second Law o f 
Motion, we have:

F = m2g  (2-2)

Thus, from equation (2.1), we have

g = ^   (2.3)

It is more convenient to obtain the gravitational force by introducing and differentiating 
a scalar function V, termed the Newtonian Potential Function, that is:

F = V = grad(V)  (2.4)

where

V = ^   (2.5)

The value of the potential at point P in the gravitational field indicates the work 
that must be done by the gravitation in order to move the unit mass from infinity (V=0) 
to P. When celestial bodies are considered as solid particles rather than point masses, 
their masses (dm) depend on volume and density:

dm = pdv  (2.6)

where p is the density and dv is an element of volume.

A finite dimensional body such as the earth, composed of an infinite number of 
particles induces a gravitation on the unit mass at P which is computed by summing the 
individual accelerations vectorially. Once more, this is simphfied by changing from the
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vector to scalar field. Consequently, the potentials dV of aU the particles in the body are 
summed to give V. Thus, the potential Vp at point P is computed from:

or

earth earth

V , = V(x,y.z) = G g P (x \y \z ')d x d /d z '

...(2.7)

.(2.7a)

The potential V in equation (2.7) is continuous throughout the whole space and actually 
vanishes at infinity where for very large distances 1, the mass bodies act like point 
masses.

2 .2 .2  Centrifugal Potential

The centrifugal acceleration or force arises as a result of the rotation of the 
attracting body, as exemplified by the earth, about its axis. If a unit mass, on or 
detached from a rotating physical body, rotates with an angular velocity CD, then the 
centrifugal force, F', caused at point P (see Figure: 2.2) is given by:

F  = (o2r  (2.8)

where r is the distance from the centre of the mass and (|) is the latitude of the point

CD
t F

T ^ p

y O  j

Figure: 2.2 - The rotational potential 

If the z-axis of an earth-fixed x, y, z system coincides with the axis of rotation, then

r = I r I = + y^  (2.9)r =
vOy

with
F' = grad F 

we introduce the centrifugal potential

. (2 . 10)
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or

0  = 0 (r) =

0  = ~co^(x^+y^)

..(2.11)

.(2.11a)

2 .2.3 Gravity and Equipotential Surfaces

The potential of gravity W is the sum of the gravitational (equation 2.7) and 
centrifugal potentials (equation 2.11a):

W = W(x,y,z) = G jj|£d v  + i(0^(x^ +y^)
earth ^ ^

(2.12)

Surfaces for which the gravity potential W is a constant are designated equipotential, 
level or geopotential surfaces of gravity. These surfaces can be determined by 
evaluating equation (2.12) if the density distribution and angular velocity are known. 
Of course, the density distribution of the earth is not precisely known. Geodetic 
theories are available to determine the equipotential surface without explicit knowledge 
of the density distribution. Thus, the geoid is defined to be a specific equipotential 
surface having gravity potential:

W(x,y,z) = Constant

The gravity vector g is the gradient of W and can be written as:

.(2.13)

g = gradW = w, (2.14)

where the components W^, Wy, are the partial derivatives of W with respect to 

a rectangular coordinate system (x, y, z). Of particular interest is the magnitude of this 
vector because it is a measurable quantity. It is usually denoted by:

g = (2.15)

and it is called gravity. Gravity is the resultant of the gravitational force and the 
centrifugal force of the earth's rotation which is traditionally measured in unit of gals 
where 1 gal = 1 cm/sec^. Gravity g is in the first approximation, a function of position;
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consequently it is a vector field (the gravity field) and is defined at every point of the 
region where it exists:

gi= g(xi, yi, Zi) .(2. 16)

The equipotential surfaces are intersected perpendicularly by the plumb lines. 
Figure: 2.3 depicts a direction of gravity (g) at a point which is the direction of the 
plumb line or direction of the vertical. The distance along a plumb line from the geoid to 
a point is called orthometric height (H).

There is an important relationship between the direction of the gravity force and 
equipotential surfaces, demonstrated by Figure: 2.3. It provides the link between the 
potential difference (a physical quantity) and the difference in height (a geometrical 
quantity) of neighbouring equipotential surfaces.

Plumb line\
Wp

Equipotential
Siuface

Figure: 2.3 - Equipotential surface, plumb line and the gravity vector

The total differential of the gravity potential at a point is given:

AW = - g dn

where dn is the differential of the outer surface normal.

The above equation can also be rewritten as:

AW

.(2.17)

g = dn
.(2.18)

It can be seen from Figure: 2.3 that if g varies on an equipotential surface, then 
the distance dn to a neighbouring equipotential surface must also vary. Therefore, it is 
obvious that the gravity g cannot be constant on the same equipotential surface because 
the equipotential surfaces are neither regular nor concentric with respect to the centre of
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mass of the earth. Consequently, because the equipotential surfaces are not parallel, 
points of equal orthometric height are not situated on the same equipotential surface.

A surface point P can be determined in the system of equipotential by its 
potential difference to the geoid. Alternatively, one can describe the orthometric height 
in terms of potential, using geopotential numbers (C). The geopotential number is 
simply the algebraic difference between the potential at the geoid and at point P.

From equation (2.18), it can be shown that:

p p
C = W„-Wp = - j A W =  Jgdn  (2.19)

Po P»

For geodetic and plane surveying, the geopotential number C is less suitable 
than the orthometric height, which is the linear distance reckoned along the 'curved' 
plumb line from the geoid to the surface point. Alternatively, from equation (2.19), we 
may get:

H =  (2.20)
w .  8 0 E

Finally, according to equation (2.20), it can be seen that gravity observations and 
levelling height differences yield potential differences.

2.3 The Reference Surface

From observed quantities and through subsequent geodetic computations, one 
attempts to determine the parameters of the physical earth's surface and the external 
gravity field. To this end, reference surfaces and hence reference systems have to be 
introduced. They consist of a coordinate system with defined metric and curvature (2D 
or 3D), and its realisation through a set of coordinates of reference points.

Throughout human history, the earth has been attributed many shapes, from a 
convex disc to rectangle. But, with Aristotle (350 BC), came the idea that the earth was 
spherical, a perfect shape. However, the physical theories of Isaac Newton led to the 
idea that the earth was not exactly spherical, but in the form of an ellipsoid o f rotation. 
However, it has been shown in Section 2.2.1, that variations in potential are caused by 
the variations in internal density and so the actual surface of the earth must also vary if 
it is to remain equipotential. The fundamental reference surface in the context of 
geodesy is the geoid and the rotational ellipsoid whereby their formulation problems are 
used to define a vertical datum and a horizontal datum, respectively.
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2.3.1 The Geoid

Let us consider the waters of the ocean as a freely moving homogeneous 
matter, which is subject only to the force of the gravity of the earth. Upon attaining a 
state of equilibrium, the surface of such an idealised ocean assumes an equipotential 
surface of the gravity field. As mentioned previously, this equipotential surface is called 
the geoid. Here, the geoid can be loosely defined as mean sea level which would be the 
equipotential surface and it is this surface that is considered to be closest to the figure of 
the earth. However, the earth does have land masses, so the oceans are confined, and 
they are also susceptible to other forces. The position of a hydrostatic sea level is 
therefore objured and the visible sea surface does not coincide with geoid.

The shape of the geoid is considered as time invariant, due to daily earth tides, 
contraction of oceanic lithosphere, land uplift and glacial rebound. Its shape is quite 
well known nowadays, particularly over oceans due to satellite coverage and increased 
knowledge of the sea surface topography. The geoid is smooth and continuous, 
although its shape reflects the distribution of mass inside the earth, i.e. geophysical 
phenomena. The curvature of the geoid displays discontinuities at abrupt density 
.variations. Consequently, the geoid is not an analytic surface, and it is thereby 
eliminated as a reference surface for position determinations. However, it is well suited 
as a reference surface for heights defined in the gravity field.

2.3.2 The Reference Ellipsoid

The problem in determining the geoid has led to the introduction of a similar 
shape which can defined mathematically and hence 'located' for use as a horizontal 
datum. If we recognise that the geoid has no simple mathematical expression, we will 
find it convenient to define a relatively simple mathematical surface that closely 
approximates the actual geoid. Here, a simple mathematical surface is very important 
because the position of points on the earth's surface must be expressed by coordinates 
on an arbitrary defined geometrical surface (or figure). The approximation of such 
geometrical reference surfaces can be made for a local area or on a global scale.

Because it rotates, the earth assumes the shape of a sphere that is flattened at the 
poles and bulging at the equator, see Figure: 2.4. In other words, an assumption is 
made that the normal figure of the earth is represented well by an ellipsoid o f 
revolution. The reference ellipsoids, therefore, will have certain characteristics that can 
geometrically represent the actual figure of the earth in several ways. As a result, 
geometrically defined ellipsoidal system is very useful as mathematical device in 
formulating the 2D and 3D mathematical models of surveying and geodesy.
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Ellipsoid  ̂k Pole

Equator

Geoid
Polea=semi-major axis 

b=semi-minor axis

Figure: 2.4 - The Geometry of the ellipsoid as an approximation to the geoid

As illustrated in Figure: 2.4, the rotational ellipsoid is created by rotating the 
meridian ellipse about its minor axis. It represents the nearest mathematical shape of the 
geoid and is defined by the specification of two parameters:

• size, a, the semi-major axis, and

• shape, f, the flattening which is equal to ( 1 - —) where b is the semi-
a

minor axis.

The parameter f is sometimes replaced by the dynamic form factor J2 , which 
also describes the shape of ellipsoid. In addition, for a global fit, the ellipsoid must be 
positioned with its centre at the geocentre and its semi-minor axis parallel to the axis of 
rotation. The coordinates of a point on the ellipsoid are defined in the same way as 
natural coordinates, except that the normal is perpendicular to the surface of the 
ellipsoid rather than the geoid.

The parallel is drawn between the ellipsoid and the geoid where the ellipsoid is 
to be the normal form of the geoid. Thus, a global reference ellipsoid can also be 
assigned values for potential and gravity. It is postulated that the surface of the 
ellipsoid is of equal potential, U = Uq, and this should be equal to the gravity potential 
of the geoid, Wq. U is known as the theoretical or normal gravity potential which is 
the gravity field generated by an ellipsoid adopted to approximate the earth's figure and 
size. Consequently, normal gravity (y) serves to approximate the actual gravity field at 
any point on the geoid. As gravity is the gradient of W, normal gravity is the gradient 
of U along the normal given by:

au
.(2 .21)
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The equipotential ellipsoid provides a useful reference system for geodetic 
purposes and it is also a theoretical gravity field which can be considered as a first 
approximation to the actual. The difference between the theoretical and actual gravity 
fields of the earth is called the anomalous gravity field. This quantity is reviewed in 
Section 2.4.

2.3.2.1 Global and Local Reference Ellipsoid

Several ellipsoids have been derived although not all of these are geocentric or 
equipotential and so do not have an associated gravity field. Global reference ellipsoids 
are those used for general positioning anywhere on the earth's surface and are 
employed by all the major satellite positioning systems (e.g. Doppler System and GPS) 
as well as a number of world-wide terrestrial based systems (e.g. Very Long Baseline 
Interferometry -VLBI). In general, such systems are defined such that the centre of the 
system is as close as possible to the centre of mass of the earth. The global 'best fit' 
ellipsoids such as Geodetic Reference System 1980 (GRS80) and World Geodetic 
System 1984 (WGS84) were produced for purposes of global geodetic applications 
and suitable for gravity field studies. These two global reference elhpsoids are reviewed 
in the next section.

The local ellipsoids can also be determined as local 'best fits ' to the geoid and 
as such are used in one particular area as reference surfaces for horizontal datum. Thus, 
in contrast to the global reference system, many countries adopt their own reference 
ellipsoid. For convenience, an ellipsoid is usually adopted which minimises the geoid- 
ellipsoid separation in the area of interest The Malaysian Peninsula has adopted the 
Modified Everest Ellipsoid (MEE) as a national geodetic datum with the semi-major 
axis (a) and the flattening (f) as 6377276.345 metres and 0.0033244, respectively.

The origin of the MEE datum was located at Kertau Station. As is the case 
common for many local datums, the present Kertau datum is basically a horizontal 

^ a tu m  rather than a three dimensional datum. This means that the position of the 
ellipsoid relative to the surface of the earth is well defined in the sense that specific

geodetic (ellipsoidal) coordinates ((|), X,) are assigned to the points in the Malayan 

Revised Triangulation 1948 (MRT48). Unfortunately, in the three dimensional space 
the position of the elhpsoid is not well defined. The reason for this is the lack of geoidal 
heights, errors in the astronomical observations and deficiencies in the height system. 
The United States Defence Mapping Agency (DMA), however, has established a better
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relationship between WGS84 and the Kertau datum through a GPS survey project. 
Details of the GPS surveys in Peninsular Malaysia and the datum transformation 
between WGS84 and MRT48 will be discussed in Section 4.5.

2.3.2.2 Geodetic Reference System 1980

This reference system, denoted as GRS80 has been developed as a replacement 
of GRS67 because GRS67 no longer represents the size, shape and gravity field of the 
earth to an accuracy adequate for many scientific applications (Moritz, 1980 .̂ Thus, the 
GRS80 was adopted by the International Union of Geodesy and Geophysics (lUGG) 
as an update to the GRS67 due to more accurate values for the ellipsoidal parameters 
being available to suit the increasing demand from scientific areas. As such GRS80 is 
the official reference system for geodetic work and in its recommendations, the 
International Association o f Geodesy (LAG) "encourages computations of the gravity 
field both on the earth's surface, and in outer space based on this system", (ibid). 
Therefore, any geophysical and global geodetic applications should make use of 
this system. Table: 2.1 shows the parameters used to define GRS80, as chosen by the 
lUGG.

Parameter Value

a 6 3 7 8 1 3 7  m

GM 3 9 8 6  0 0 5  X 1 0 *  m^s-z

h 1 0 8  2 6 3  X  1 0 - 8

0) 7 2 9 2  1 1 5  X 1 0 " r a d s - i

Table: 2.1 - Parameters defining the Geodetic Reference System 1980

In general, the closed formulae for geometrical and physical constants of the 
GRS80 are derived in the same way as those for GRS67. Details of all geometrical and 
physical constants of GRS80 used in this study is shown in Appendix A.

2.3.2.3 World Geodetic System 1984

This global datum, which is simply denoted as WGS84 has been developed as 
replacement for WGS72 and represents the DMA modelling of the earth from a 
geometric, geodetic and gravitational standpoint using updated data, techniques and 
technology available throughout 1984. It is an improvement over WGS72 in several
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applications. WGS84 is a Conventional Terrestrial System (CTS), realised by 
modifying the Navy Navigation Satellite System (NNSS) or Transit Doppler R^erence 
System in origin, scale and rotating it to bring its reference meridian into coincidence 
with the Bureau International de THeure (BIH) - defined zero meridian.

Analogous to the BIH - defined CTS, the origin of the WGS84 coordinate 
system is the centre of mass of the earth. Figure: 2.5 depicts the 3D-Cartesian 
coordinate system of the WGS84 which consists of:

• thcZ-sûdsismthcôkecûonofihcConventionalTerrestrialPole (CTP);

• the X-axis is the direction of the WGS reference meridian plane and the 
plane of the CTP's equator; and

• the Y-axis is completed by a right-handed earth-fixed orthogonal 
coordinate system measured in the plane of the above equator, 90“ east 
of the X-axis.

The coordinate system of WGS84 is used as a basis for global geodetic work, 
particularly that using the Global Positioning System. The GPS satellites are positioned 
according to WGS84 and this positional information is broadcast on the satellites' 
signal (describing their orbits in terms of this reference system).

Z(CTP)

iç^ero Meridian(BIH)

0=Geocentre

Figure: 2.5 - The World Geodetic System 1984 
(Cartesian coordinate system)

The WGS84 is very similar to GRS80 in its description (see Table: 2.2) as its 
development was greatly influenced by the recommendations of the lAG in establishing 
GRS80. The parameters defining the WGS84 are the same as for GRS80 apart from 
the shape factor Cjq although this is directly related to J2 (DMA, 1987). C2 0 is the
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normalised second degree zonal gravitational constant from a harmonic expansion of 
the WGS84 gravity model. Translating the two shape factor into a third common one, 
flattening, it is seen how close the two ellipsoids are:

fwGS84 = 298.257223563 

fcRsso =298.257222101

Parameter Value

a 6378 137 m

GM 3986 005 X 10*

C20 -484.16685 x 10‘‘

0) 7292 115x 10'" rads-"

Table: 2.2 - Parameters defining the World Geodetic System 1984

Many parameters associated with the WGS84 ellipsoid other than the four 
defining parameters are needed for geodetic and gravimetric applications. Using four 
defining parameters, it is possible to derive these associated constants. Details of these 
constants can be found in (DMA, 1987).

Due to the similarities of the two reference ellipsoids, differing slightly in just 
one parameter, they are considered identical for the purpose of the work described in 
this thesis.

2 .4  The Anomalous Gravity Field

The normal gravity field is a natural approximation of the actual gravity field, 
and its derivation is based on the assumption that the actual gravity potential W=Wq on 
the geoid is equal to the normal gravity potential on the ellipsoid U=Uq. In practice, 
however, the reference ellipsoid does not necessarily coincide with the geoid, and the 
actual gravity is not equal to the normal gravity.

The equipotential ellipsoid provides a useful reference system for geodetic 
purposes and it is also a theoretical gravity field which can be considered a first 
approximation to the actual. The deviation between the actual gravity potential W and 
the normal potential U is small. Since U can be expressed by closed formulae, it is 
often used as a convenient first approximation of W. The difference between the actual 
and the theoretical gravity fields is known as the anomalous gravity potential for which
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there are similar parameters. Table: 2.3 shows each gravity field with its corresponding 
anomalous gravity field parameters.

Actual Normal Anomalous Parameter

W U T Potential

So Yo Ag Gravity

gp ôg Gravity

0 4) Latitude

A X n Longitude

h H N Height

Table : 2.3 - Parameters of the gravity fields

The basic, and perhaps the most important quantity in the anomalous gravity 
field is T, the anomalous potential or disturbing potential. At a point P, the disturbing 
potential is defined as the difference:

Tp = Wp - Up (2.22)

All the anomalous gravimetric quantities can be expressed in terms of T by 
simple relationships. If T is determined, the related values can be derived; however, 
this is not possible in an exact sense. The determination of T has become a major 
challenge in Physical Geodesy, through which enable the computation of the other 
quantities for practical applications. The problem is termed as a Boundary Value 
Problem (BVP). Details of the BVP are described in Section 2.6.

It should be noted that the values of the anomalous gravity field are very small 
quantities, for example, the separation between the geoid and a best-fitting ellipsoid is 
not more than 100 metres anywhere in the world, (Schwarz, et.al., 1990). The 
anomalous quantities therefore can be considered in spherical approximation, which 
simplifies their relationships and eases their use as data in the Physical Geodesy 
problems.

2 .5  Harmonic Functions

As was mentioned in Section 2.2.1, the potential V is continuous throughout 
the whole space and actually vanishes at infinity. The first derivatives of V, which are 
the force components are also continuous in space, however the second derivatives
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have a discontinuity at points of abrupt density changes. This is shown by the fact that 
the second derivative of the gravitational potential inside the earth satisfies Poisson*s 
Equation, see Heiskanen and Moritz, (1967, p. 5):

%

VV = -47cGp  (2.23)

Outside the surface of the earth where there are no masses, p = 0 and so equation 
(2.23) reduces to:

VV = 0  (2.24)

This is Laplace's Equation, and in full:

is valid outside the gravitating masses of the earth. Continuous functions having 
continuous first and second derivatives and which fulfil equation (2.25) are called 
harmonic functions or potential functions, and any value, e.g. disturbing potential T 
which satisfies it is also harmonic.

It is often more convenient to consider Laplace's Equation in terms of spherical 
coordinates, as much geodetic work is based on a spheroid. Equation (2.25) becomes:

As was stated in Section 2.4, the disturbing potential T, as a harmonic function, 
replaces W in gravity field studies. Harmonic functions provide simple and logical 
solutions to geodetic problems, a property which should be exploited. It can be shown 
mathematically that every harmonic function is analytic in the space where it satisfies 
Laplace's equation. The simplest harmonic function is the reciprocal distance 1/1.

The harmonic functions have three basic properties which are of importance in 
their application to Physical Geodesy.

• Every function and its derivatives is continuous over a surface;

• Every function can be expanded as a series in terms of spherical 
harmonics;

• If the function satisfies Laplace's Equation in the region outside a closed 
surface, then it must be regular and vanish at infinity.
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The BVP has a solution based on the product of these harmonic functions each 
depending on one spherical coordinate:

VV = f(r) g W h m   (2.27)

Each part is a differential equation which can be solved and the solution will be 
linear. Combination of these linear solutions provides an answer for T. For external 
field, the solutions take the form:

f(r) = ^

g('l') = P»,cos(p  (2.28)
h(A,) = cosmX 
h(X) = sinmX

where n, m are integers and q) is the co-latitude.

It is seen that the functions in r and X are quite simple. For (|) however, it is not so 
straightforward and the solution is expressed in terms of the Legendre Polynomials^ 

Enm*

Stated in a somewhat loose fashion, gravity field approximation is the 
estimation of the disturbing potential T in the space Q outside the earth's surface S 
from discrete and noisy data given on S and in O. In spherical approximation, the 
disturbing potential may be expanded in a series of spherical harmonic functions written 
as:

T(P) = X f - ]  È [5 C „  cos(mX) + 6S_ sin(mX)]P^(cose) ..... (2.29)
n=2 \  ^ 7  m=0

where are the associated Legendre functions; 6C^^ and ô S ^  are the differences of

the spherical harmonic coefficients for W and U; a is the semi-major axis of the 
reference ellipsoid; and r, 0, X are the spherical coordinates of point P.

In principle, the approximation problem can be solved by determination of the 
unknown coefficients Cnm> Snm in some suitable manner. An important application is 
the use of spherical harmonic models as a reference for local gravity approximations 
using gravimetric methods. A series of spherical harmonic expansions of equation 
(2.29) is termed as geopotential solutions (models). Details of the gravimetric method 
and geopotential solutions will be discussed in the next chapter.
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2 .6  Boundary Value Problems and Their Solutions

In general, the harmonic functions can be generated by many different mass 
distributions. For example, a function V, harmonic outside a surface S is uniquely 
determined by its values on S, but there are infinitely many mass distributions which 
have the harmonic function V as exterior potential. These constitute the direct and 
inverse problems of potential theory. The inverse problem has no unique solution. This 
leads to Stokes' theorem which states that there is only one harmonic function V that 
assumes given boundary values on a surface S, provided that such a harmonic exists. 
The assertion that for arbitrarily prescribed boundary value is called Dirichlefs 
principle. The problem of computing the harmonic function (inside or outside S) from 
its boundary values on S is called Dirichlet's problem, or the first BVP o f potential 
theory. In second BVP called Neumann's problem, the normal derivative of the 
function V, i.e. dV/dn is given on the surface S, instead of V itself. The normal 
derivative dn is the derivative along the outward directed surface normal n towards S. 
In third BVP called Stoke's problem, a linear combination of V and its normal 
derivative is given on the surface S and this problem is of great interest to Physical 
Geodesy. The determination of the geoid from gravity anomalies is in fact a third BVP, 
with the gravity anomalies as a boundary values.

The BVP comprises the determination of the physical surface of the earth or the
geoid, as well as the external gravity field from the gravity potential W and gravity
acceleration g = grad W on the earth's surface. The problem arises from the first BVP
of potential theory in a harmonic function which must be fitted to surface values of
the potential. The gravity potential, however, is not a harmonic value on and outside
the surface of the earth. Hence, W does not satisfy Laplace's Equation (equation 2.25).
Solutions to the BVP all rely on the boundary value being harmonic and so W must be
replaced by a harmonic parameter, T. Since normal gravity field parameters all include a
rotational potential equivalent to that of the actual earth, it follows that all anomalous
values are, by derivation, harmonic and satisfy Laplace's Equation.

—>
By having the anomalous gravity vector A g :

Ag(P) = g(P)-Y(Q )

we will have the following components, (see Table: 2.3):

.(2.30)

/

Ag = f . =

V

y(A-^)cos(|) 
Y(d)-(j))

- > —>

g Y
)

.(2.31)
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where

P(0, A) is a point on the geoid and
Q((|), X) is the corresponding point on the ellipsoid.

The projection from point P on the geoid to the corresponding point Q on the ellipsoid, 
along the ellipsoid normal is shown in Figure: 2.6.

Ellipsoidal normal
Plumb line

Geoid (W=Wo)

Reference Ellipsoid (U=Uo)

Figure: 2.6 - The relationship between the actual and 
the normal gravity fields

From the above figure, the difference between the two height parameters 
pertaining to each gravity field is the geoid-ellipsoid separation (N) or the geoid 
height. It is well known that this parameter can be related to disturbing potential T 
(Section 2.4) and normal gravity y by Brun's Formula :

.(2.32)N = I
Y

The difference between the actual gravity g at point P and the normal gravity y 
at point Q is called the gravity anomaly vector. Its magnitude Ag is called the gravity 

anomaly. It is thus equal to the difference between the two gravity vectors.

A g p  =  g p  - y g .(2.33)

The parameter y can be expressed by a closed formula as derived by Somigliana in 

1929 which was accepted by the lUGG as the International Gravity Formula in 1930:

Y =
ay^ c o s^  (j) +  b yp  sin ^  (j) 

-^(a^ c o s^  (j) +  b^ sin ^  (j)
.(2.34)
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where y© andyp is the normal gravity at the equator and at the poles, respectively.

In fitting the ellipsoid, it was specified that Uq should equal Wo so Wp=Wq as the 
points are on the respective surfaces. Thus

Yp = 7 q + | ^ N  ..... (2.35)

Substituting, equation (2.35) into (2.33), we have

Agp = g p - ( Y p + ^ N )  .....(2.36)
dn

and using Brun's formula, equation (2.36) becomes

_ ^  = A g - ^ N ......................................................................... (2.37)
9n 9n

Rearrange equation (2.37):

— + A g - — N = 0  (2.38)
9n 9n

or ^ Ï  + A g - —̂ T  = 0  (2.39)
on Y on

This is a Fundamental Equation in Physical Geodesy^ showing the relationship between 
the gravity anomaly and the anomalous potential.

If the reference ellipsoid is approximated to a sphere of radius R, then n = R
with the volume equal to that of the ellipsoid. Without going into derivations, it has
been shown by Heiskanen and Moritz, (1967, p. 87):

 (2.40)
Y On R 

Altogether, equation (2.39) becomes:

^  + - T  + Ag = 0  (2.41)
on R

This is the Fundamental Boundary Theorem, in spherical approximation, which is used 
in the determination of the disturbing potential from gravity anomahes.
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The difference in the directions of the two gravity vectors caused by relative 
slope of the geoid and the reference ellipsoid (see Figure: 2\6) are called deflections o f 
the vertical (e) . This gravimetric quantity is resolved into two components; a meridian 
or north-south component (^) and a prime vertical or east-west component (t|). A s 

elements of the anomalous gravity field, the deflection of the vertical can also be 
expressed in terms of T by simple relationships:

^ = - - J   (2.42)

T1 =  (2.43)
Y dA,

The solution of the BVP by integral equation leads, for a known spherical 
boundary, to Stokes' integral and, for an unknown boundary surface, to Molodensky's 
problem and the resulting integral series. In its simplest form, the solution is:

T(P) = ^ J j A g S ( v ) d a   (2.44)

where R is the mean radius of the earth; Ag is the gravity anomaly function on the 
sphere a  with radius R; S(\|f) is Stokes' kernel function; \|/ is the spherical distance 
between P and the data points Q; a  is a surface of unit sphere with the element 
da = Sin ydyda  and a  is azimuth of the point in question. It should be noted that T 
is determined from one data type only, the gravity anomaly Ag. Upon invoking Brun s 
theorem, equation (2.44) becomes the basic formula for gravimetric determination of 
the geoid:

I

where

 ,2.45)

S(\j/) = — -$sin—+l-5cos\jf-3cos\ | / ln(sin—+ sin^—)  (2.46)
sin— ^ 2 2

2

The BVPs are important in Physical Geodesy because they define the minimum 
information needed to construct an approximation of T outside S. However, in terms of 
data availability, these formulations are not realistic. A more general approach was 
proposed by Krarup in 1969 who sought an approximation of T collocation 
solution. The advantage of the collocation solution is that it allows all functional T to 
be treated as observables and thus makes it possible to handle the actual data more
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easily. It also is not restricted to data on the boundary surface but allows the consistent 
treatment of data on S and in| Q outside S. If the data are available in gridded form, 
the BVP could be solved in a frequency domain using the FFT method. These two 
methods of the BVP solutions wiU be briefly reviewed in the next chapter while details 
of their mathematical properties and computational procedures used in this study is 
fully discussed in Chapter 6.

2 .7  Gravity Reduction and External Masses

Stokes' problem in equation (2.44) deals with the determination of a potential, 
harmonic outside the masses, from gravity anomalies given everywhere on the geoid 
surface. In other words, gravity anomalies as boundary values on the geoid are 
required for gravimetric determination of the geoid. Since we observe the gravity on the 
earth's surface, however, this condition is violated by the presence of the topographical 
masses of the earth. Consequently, in order to implement Stokes' integral, the 
topography of the earth must be eliminated mathematically. In such a case, the 
topography is condensed to form a surface mass layer on the geoid. This process is 
called gravity reduction, (Heiskanen and Moritz, 1967, p. 126). The purpose of gravity 
reduction is therefore to reduce the observed gravity values to the geoid and to displace 
the topographic masses exterior to the geoid in such a way that the geoid becomes a 
bounding surface. In the process of gravity reductions, certain assumptions must be 
made as to the distribution of mass density; the gravimetrically determined geoid is 
subject to the errors of the density hypothesis.

The various methods differ mainly by the way in which they allow for the earth 
masses to be removed. The most common reductions are the Free-air^ the Bouguer 
and the Isostatic reductions which wiU be briefly explained in the following sections. 
Each method provides a value for gravity on the geoid. However, with the 
displacement of the topographic masses, the gravity potential changes and this is termed 
an indirect effect of the gravity reduction which can be accounted for. The equipotential 
surface possessing the potential Wq of the geoid after the masses have been displaced is 
known as co-geoid (compensated geoid).

The Free-air, the Bouguer and the Isostatic reductions are the main practically 
useful methods available. The requirements that make a gravity anomaly useful in geoid 
determination are:

• the anomaly should be small and smooth, allowing easier interpolation 
and giving a good representation of the surrounding area;

• the reduction should be geophysically meaningful; and
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• the indirect effect should not be too large.

2.7 .1  Free-air Reduction

The most pertinent reduction in terms of its practical importance, is the free-air 
reduction. With the assumption that no masses exist between the geoid and the surface 
of the earth, and gravity g changes linearly over the orthometric height H, the free-air 
gravity anomaly can be obtained as follows:

gp = g “ - ^ H   (2-47)

where gp is the reduced gravity value on the geoid.

Since is unknown, it is estimated by so that: 
dH dh

gp = g - ^ H   (2.48)
dh

The value -H  is known as the free-air reduction (F), and has the value:
9h

F = - (0.3086) H  (2.49)
Thus,

gp = g + F = gp - (0.3086)H  (2.50)

The free-air gravity anomaly is then:

Agp = gp - 0.3086H - Yp  (2.51)

Equation (2.51) is used to compute free-air anomalies in Peninsular Malaysia. Details 
of the free-air anomalies in the Peninsular Malaysia region will be discussed in Section 
4.2.

Point free-air anomalies are known to oscillate around a zero average with 
oscillation frequencies depending strongly on the topographical features. They 
comprise regional and local gravity field information. This anomaly is, in general, not 
representative for a large area because of its local character and its strong dependence 
on topography, see Section 4.2.2. It can only be less accurately predicted if the gravity 
data is sparsely distributed and if topography is ignored, especially for mountainous 
areas, see (Sunkel, 1981). The free-air anomaly will be small and the indirect effect is 
practically negligible. However, they are not smooth and are difficult to interpolate,
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especially in rugged terrain. The fact that free-air anomalies are simple to produce lends 
a lot of weight to their choice.

2.7.2 Bouguer Reduction

The objective of Bouguer reduction is the complete removal of the topographic 
masses between the earth and the geoid to infinity and then reducing the point to the 
geoid by free-air correction The topographic correction is derived mathematically from 
the attraction of a plate of infinite extent that exists between the measured point and the 
geoid. This plate is called Bouguer plate. The Bouguer plate is considered as a uniform 
plate of constant density, p, and thickness, H. The attraction of this plate is computed 
as an additional correction to the free-air reduction.

The attraction of an infinite Bouguer plate is given by:

ÔB = 27cGpH  (2.52)

where G is the gravitational constant.

With standard density of p = 2.67gcm-3 and G = 6.672 x lO'^^m-^kg-^S'^, equation 
(2.52) can be written as:

5 b  =0.1119H  (2.53)

The Bouguer reduction uses the Bouguer gradient, given by:

gB = g - Sfi + F = g + 0.1967H  (2.54)

where F = 0.3086H is the free-air correction and H is the orthometric height of the 
gravity station. The Bouguer gravity anomaly is given by:

“  8 b  ■ T q   ( 2 . 5 5 )

Bouguer anomalies tend to be smooth, although large, and so are good for 
interpolation. The indirect effect, however, is also large.

2 .7 .3  Isostatic Reduction

There are several theories concerning the isostatic compensation of large masses 
at depth which lead to the Isostatic reduction. This is a further term added to the 
Bouguer anomaly that involves shifting some masses into the geoid to account for 
deficiencies existing under the continents. The evaluation of the isostatic terms depend 
on the compensation theory followed and is more complex, involving a zone
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summation, see Heiskanen and Moritz, (1967, p.137-141). The isostatic anomaly is 

Agi = gp - Free-air - Bouguer + Isostatic - Yp  (2.56)

given as:

The iso static anomalies combine the respective benefits of each reduction, as they 
combine the actual corrections. These anomalies therefore fulfil all the requirements, 
but they are difficult to compute.

2.7 .4  The Atmospheric Effect Correction

This effect is caused by the attraction of the atmosphere outside the earth's 
surface. Since the boundary condition requires that there be no masses external to the 
geoid, the atmosphere outside the geoid has to be removed. This causes a correction to 
the gravity anomaly Ag termed the atmospheric correction. The magnitude of this effect 
is very small, (Moritz, 1980). Usually a very simple model is sufficient for this 
purpose, (ibid). By assuming the atmosphere has a spherically symmetric layer 
distribution, the atmospheric corrections can be computed by Wichiencharoen, (1982):

SgA = (0.8658 - 9.727 x 10-5 H + 3.482-x 10-9 R2) mgals  (2.57)

where H is the orthometric height in metres.
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CHAPTER 3

REVIEW OF DATA TYPES AND GEOID DETERMINATION METHODS

3.1  Introduction

As previously mentioned in Section 2.3.1, the geoid, loosely defined as an 
equipotential surface at mean sea level, is of considerable importance for the definition 
of a consistent height system. An accurate determination of geoid heights is one of the 
principal aims of geodesy nowadays because it forms a ’bridge' between the 
orthometric heights of levelling operations and the ellipsoid heights of GPS 
measurements. More specifically, the geoid height needs to be evaluated so that 
ellipsoidal height from GPS can be transformed to the orthometric height used in 
surveying and mapping applications.

This chapter touches first on the relationship between these height systems and 
is followed by a description of data sources that are commonly used in geoid height 
computations. A review of various gravimetric methods is also presented. In addition, 
various terrain effects on gravity field modelling are discussed, as well as techniques 
which can be exploited to improve geoid height estimation.

3 .2  The Relationship Between GPS, Levelling and Geoid Height

In remote unsurveyed and mountainous areas, it would be too expensive and 
time-consuming to establish orthometric heights by conventional spirit levelling. The 
advent of high precision relative positioning by use of the GPS technology has opened 
up an alternative to the classical metho^ of height determination in the near future. As 
mentioned before, the GPS surveys determines the position of points in terms of the 
WGS84-Cartesian coordinate system (X, Y, Z), at a very high accuracy. In an 
absolute sense, these Cartesian coordinate components can be converted into 
ellipsoidal components, i.e. (j), X, and h. Similarly, we can also transform the AX, 
AY and AZ into A(|), AX,, Ah components as we are often dealing with relative 
positioning measurements.

The ellipsoidal height (h) of a point is the distance from the reference ellipsoid 
to the point, measured along the line normal to the ellipsoid. The orthometric height 
(H) of a point on the earth's surface is the distance from the reference surface to the 
point, measured along the plumb line normal to the geoid. The difference between the 
ellipsoidal height and the orthometric height is defined as the geoid-ellipsoid separation 
or geoid height (N). Figure: 3.1 illustrates the relationship between ellipsoidal height, 
orthometric height and geoid height.
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ZWGS84
Terrain

Geoid

WGS84
[Ellipsoid

YWGS84

XWGS84

Figure: 3.1- Relationship between ellipsoidal, orthometric and geoid 
heights for single point

Thus, the conversion of ellipsoidal height into a meaningful physical quantity, 
orthometric heights can be employed through the following expression:

h = H + N (3.1)

Terrain

Geoid

Ellipsoid

Figure: 3.2 - Relationship between ellipsoidal, orthometric and 
geoid heights for two points (relative positioning)
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The orthometric height differences between two points P and Q in Figure: 3.2, is 
given by:

Hp - Hq = (hp - hq) - (Np - Nq)  (3.2)

or AHpq = Ahpq- ANpq  (3.2a)

In a simplified approach, one can propagate orthometric heights from a datum 
point (say, Hp) through a network using the differential elements Ah and AN, where 
the former are determined from GPS, and the latter from gravimetry. Several error 
sources that affect the accuracy of orthometric, ellipsoidal, and geoid height values are 
generally common to nearby points. Because these error sources are common, the 
uncertainty of height differences between nearby points is significantly smaller than 
the absolute heights at a point. Thus, equation (3.2a) implies that the accuracy of 
relative geoid height will be greater than that for absolute values and so less error will 
be introduced into the derived orthometric height This fact is the reason why GPS can 
be considered as an alternative method to levelling. However, there remains the 
problem of obtaining sufficiently accurate AN for converting Ah to accurate AH. Can 
the accuracies achieved for these orthometric height differences provide a viable 
alternative to classical levelling techniques with the growing interest in recovering AH 
from GPS?. This interest has generated the need for models capable of recovering 
geoidal features to finer detail.

3.3 Data Sources Used In Geoid Computation

There are many different kinds of data types which can be used to compute 
geoid height. In principle, the gravity field information of data types can be evaluated 
and represented in the form of a series of spherical harmonic expansions (Section 2.5) 
with respect to various groups of wavelengths (or spectral resolution) namely: long 
wavelength (low frequency), medium wavelength (medium frequency) and shortlvery 
short wavelength (high/very high frequency). Contributions per degree can be 
expressed in terms of wavelength, since the degree of expansion is related to the 
angular half-wavelength of the information, 9° :

n = ^   (3.3)
9

The extent of features defined by each degree is the corresponding wavelength, 
and it is shown in Table: 3.1. Thus, in a spherical harmonic expansion of the earth's 
potential, each degree adds increasing information to the gravity field. Details of this 
expansion are fully described in Section 3.3.5 .

51



Degree Wavelength

km Category

20 9 900 Long

180 1 100 Medium

360 0.5 50 Medium

>3600 <0.05 <5 Short / very short

Table; 3.1- Degree of expansion corresponding to wavelength signals

The current data types shown in Table: 3.2 can be characterised according to 
spectral resolution, data density, area coverage and data distribution. The spectral 
properties of each data type have different error characteristics in geoid computation. 
Thus, it can be seen from this table that the quality of geoid height estimation depends 
on several factors such as the density of the available data, area coverage (global or 
local), measurement accuracy and the spectral sensitivity of the gravimetric 
functionals to a given data set

Theoretically, each data type contains the total spectrum; however, in practice 
the measuring process acts as a bandpass filter limiting the range of the spectrum. 
Therefore, a single data type cannot resolve the complete spectrum and it is necessary 
to combine different types of measurements to obtain a homogenous spectral 
resolution. The combination of data types most frequently used for accurate 
determination of geoid heights are a global geopotential model, point or mean gravity 
anomalies and height data. This type of data combination will be discussed in Section 
3.5.

It can be seen from Table: 3.2 that low frequency information comes from 
satellite observations and no other source is in sight for this frequency range. The 
medium range is currently determined from 30'x30' mean gravity anomalies on land 
combined with satelhte altimeter data over the oceans. The above data types are regular 
in distribution and global in coverage, and therefore, are used in series of spherical 
harmonic expansion of geopotential models, for example OSU89B and 0SU91A. The 
high frequency spectrum currently is resolved by mean anomalies of 5'x5', or 
deflection of the vertical, and some of the very high frequency range is resolved by 
point gravity anomalies. The very high frequency range currently is very little known, 
and thus the height data may improved the situation in the future. Some of the very
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Data Type Terrestrial Gravity Anomalies Deflec Satellite Satellite GPS Height Satellite
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Table : 3.2 - Characteristics of various data types (partly taken from Szabo, 1986)

53



high frequency range is removed from gravity anomalies by terrain corrections 
computed from height data on a grid, e.g. 1km x 1km. This removes the frequencies 
dependence on the topography. The GPS level is resolved in medium frequency 
range, and this type is irregular in distribution and regional in coverage. Details of the 
gravity data, geopotential model and height data used for geoid determination in 
Peninsular Malaysia, and also the GPS data will be discussed in Chapter 4.

3.3.1 Terrestrial Gravity Data

On land, the contemporary techniques of measuring gravity entail the 
determination of either the acceleration of mass moving under the influence of gravity 
alone or the force required to balance the mass of a body against gravity attraction. 
Absolute gravity measurements are largely done by determining acceleration of test 
bodies usmg free-fall devices or pendulums. These methods are quite laborious. The 
stations where absolute gravity measurements are observed provide the anchoring 
points of the network, while ties between points are provided by the relative gravity 
measurements. The principle for relative gravity observations involve recording of 
relative forces required to balance a test mass against gravity attraction, using 
gravimeters. With these devices, the measurements are much more simplified and the 
instruments are easily transportable for rapid gravity surveys.

All regional gravity networks should be tied to a global gravity reference 
system so that they referred to a uniform world gravimetric system. The gravity 
reference system is defined by values of gravity at a number of accurately surveyed 
gravity control points. Since 1971, \h& International Gravity Standardisation Net 1971 
(IGSN71) was used as the international gravity reference system to replace the 
Potsdam Gravity System, see Torge, (1989). One of the IGSN71 stations was 
located at the Kuala Lumpur International Airport, Malaysia - (IGSN71 station no. 
02631A).

In order to reduce the terrestrially-observed gravity value (g) to the geoid (go), 
we have to use an appropriate gravity gradient to correct the surface gravity for the 
effect of height (H q ) of the observing station, see Section 2.7. Gravity error estimates 
are normally found in the gravity files associated with the data. For modem land 
gravity, the error estimate is between 0.1 mgals to 0.3 mgals. However, it is 
important to know how the heights of observing stations were obtained, either by 
levelling or barometric observations. Details of gravity measurement in Peninsular 
Malaysia will be described in Section 4.2.
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3 .3 .2  Astronomical Latitude and Astronomical Longitude

The geoid height differences between two points on the surface of the earth can 
be derived by integrating the deflection of the vertical along the path between two 
points. The deflection of the vertical is defined as the angle between the ellipsoidal 
normal and the normal to the geoid, i.e. plumb line as depicted in Figure: 3.3. In other 
words, the deflection of the vertical is also equivalent to the angle between the geoid 
and the ellipsoid surface. It can be split into a meridian component and prime vertical 
component which are horizontal derivatives of the geoid height. They can be evaluated 
as the 'differences' between astronomical and geodetic coordinates.

plumb line
K-X

ellipsoid
normal

Figure: 3.3 - The deflection of the vertical

At any point the relationship between the geodetic coordinates (((), 1) and 
astronomical coordinates (d>. A) can be expressed as:

and

^  =  O  — (})

T| = (A- ^ )C 0 S (j)

.(3.4)

(3.5)

where Ç and r\ are the components of the deflection of the vertical in the meridian and 

prime vertical, respectively.

The components of the deflection of the vertical can be related to geoid height by:
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K 13N

Tl =
1 3N 

rsin(|) 9X,

(3.6)

.(3.7)

Since these quantities represent the slope of the geoid, they give AN between end
points of a baseline. Figure: 3.4 shows the intersection with a vertical plane of 
arbitrary azimuth.

Normal GeoidVertical \  G
dN

Ellipsoid

Figure: 3.4 - The relation between geoid height 
and the deflection of the vertical

If e is the component of the vertical deflection in this plane, then 

dN = - eds

Integrating two vertical deflection points, say between point P and point Q, we get:

Q Q

(3.8)

(3.9)Np -  Nq = J eds = -  J (^ cos a  + T) sina)ds
p ?

where a  is the azimuth; ds is the distance between point P and point Q.

The above method is known as astro-geodetic levelling. The astro-geodetic 
method has several shortcomings such as a limited accuracy of astronomical 
observations and atmospheric refraction corrections. Astronomical observations 
require highly trained personnel and are very much weather dependent.
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It has been shown that the astronomic latitude and astronomic longitude 
can also be determined by the transformation of image coordinates of stars. These 
image coordinates of the stars are observed by using the Charge Couple Device 
(CCD) - photo electronic imaging device. Details of this approach can be found in 
Fosu, (1994). In general, the whole process involves the following observational and 
computational procedures:

(i) The star observations using CCD integrated telescope; the CCD serves 
as recording device while the telescope gathers the light.

(ii) Automated data reduction and measurement and image processing of 
the images on the CCD.

(iii) Star identification.
(iv) Reduction of star places.
(v) Computation of Right Ascension (RA) and declination (9) of the zenith.
(vi) Conversion of RA and d of the zenith to astronomic latitude and 

astronomic longitude.
(vii) The astronomic coordinates are then compared with geodetic coordinate 

to obtain AN.

This method is less accurate compared to gravimetric procedures because it is 
beheved that although the CCD integrated telescope has a high geometric precision and 
stability, it does not have a high spatial resolution required in geodetic astronomy, 
(ibid). In terms of observational and computational procedures, the CCD-astronomical 
method, however, is more efficient since the whole process is highly automated and 
fully computerised, ensuring rapidity and reliability of taking measurements as 
compared to collecting gravity anomaly data which at present still involves manual 
bisection and recording.

3 .3 .3  Combined Satellite-Based Data and Levelling

Satellite positioning methods such as the Transit Doppler System or GPS 
determines positions in a terrestrial 3D-Cartesian frame and the resulting X, Y and Z 
coordinates are easily convertible (or transform) into horizontal ((|), X) and vertical
(h) components, with respect to an arbitrary reference ellipsoid. Details of the 
coordinate transformations can be found in Bowring, (1976).

The (X, Y, Z) coordinates can be transformed into the ((|), X, h) coordinates 
by using the following expressions:

(i) The longitude (X,) can be computed directly from:
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Xr, = arctan
.(3.10)

(ii) Computing the latitude, however, is not a straight forward procedure 
and can be accomplished by using:

(j)p = arctan Zp + e^VpSin(|)p
i_ 

2 \ 2(Xp^+YpO
....(3.11)

Here, a problem arises as the right hand terms of equation (3.11) contains (|)p, the

value sought after. The usual approach is to solve using an iterative method where 
the initial approximation of (t>p is calculated from:

(j)p = arctan 1
L(Xp  ̂+ Yp")^J

.(3.12)

Using this initial approximation, computation is iteratively carried out until the value of 
(|)p converges.

(iii) Finally, the geodetic height hp can be computed using:

hp =(Xp'+Yp')^sec(|)-Vp

= Zp cosec(()p -  (1 -  ê  )Vp
.(3.13)

where v = — is the radius of the prime vertical.
(l-e'Sin"(|))2

The X, Y, Z coordinates of points in a global geodetic coordinate system 
observed using satellite techniques (e.g. GPS in WGS84 - Section 2.3.2.3) can be 
transformed to a local coordinate system (e.g. MEE - see Section 2.3.2.1) through:

X X "AX'
Y = Y + AY
Z LOCAL Z GEOCENTRIC AZ

.(3.14)
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where AX, AY, AZ are the datum shifts that are needed to transform the geocentric 
coordinate to the local coordinate system.

If additional information on the transformation parameters i.e., rotations 
(Rx, Ry, Rz) and scale (s), is needed, then the seven parameter transformation 

methods can be implemented using either Bursa-W olf or Molodensky models. 
Details of datum transformation between the WGS84 and the MRT48 will be briefly 
described in Section 4.5.2.

The GPS surveys determine ellipsoidal height which will not correspond to 
geoid height. This parameter, however, is related to the orthometric height and the 
geoid height using equation (3.1). The orthometric height is derived using the 
conventional levelling technique referring to a vertical datum which is typically defined 
by one or more reference tide gauges. If a fairly large number of well distributed 
points with known elUpsoid and orthometric heights are available for an area, then the 
parameter N can be determined, which then can be represented as a geoid chart, see 
Section 4.5.1 and Section 4.5.3.

3.3.4 Satellite Altimetry

Instrumental
corrections

Atmospheric
corrections

Satelhte
Satellite's orbit

Ocean Surface
Geophysical r 
corrections ^ ^

Altimeter

Ground Surface

Geoid

Ellipsoid

Figure: 3.5 - The geometry of geoidal and sea surface height 
determination by the Satellite Altimetry

As illustrated in Figure: 3.5, a satellite carrying a vertically orientated radar 
altimeter can measure continuously the distances to the sea surface below the satellite. 
Such altimeters have been flown on board the SKYLAB in 1974, GEOS-3 in 1975,
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SEAS AT  in 1978, GEO SAT in 1985, ERS-1 in 1991 and TOP EX in 1992.
Satellite altimetry is a technique whereby a satellite orbiting above the earth both emits
shorts bursts of electromagnetic waves downward and records the time of arrival of 
pulses reflected from a footprint on the surface of the ocean. From these timings, the 
vertical distance between the satellite and sea surface can be derived. The satellite is 
constantly tracked by a number of ground tracking stations of known position in order 
to determine the orbit

From Figure: 3.5, knowing the orbital altitude of the spacecraft above the reference 
ellipsoid, the geoid height can be obtained as:

N = h - Ç = (r - r') - Ç................................................... ...(3.15)
where:

N is the geoid height;
r is the geodetic height of the spacecraft;
r' is the measured altitude of space craft above the ocean surface

corrected for the instrumental, atmospheric and geophysical effects; 
h is the height of sea surface above the reference ellipsoid; and
Ç ■ is the sea surface topography.

The sea surface topography (SST) is the departure of the mean sea level from 
the geoid. The causes of SST include ocean currents, water density variation , as 
well as air pressure and wind stress. The effect of unremoved SST from the altimeter 
observations can cause long wavelength error in the recovered gravity anomalies.

In an ideal case, a satellite altimeter measurement is equal to the instantaneous 
distance between the satellite geocentre and the sea surface. However, an altimeter 
measurement is subject to many disturbances which have to be accounted for. The 
measured quantities in the satellite altimetry are therefore usually given as a set of 
geophysical data records that include altimeter measurement information as well as 
corrections that should be applied to the data. The corrections include: corrections due 
to position offset of the altimeter instrument from the satellite's geocentre; geophysical 
corrections for the atmosphere's effect on radar range measurement, i.e. atmospheric 
and ionospheric correction; and corrections for the effect of earth tides and ocean tides.

3.3.5 Satellite Perturbation Data Analysis and Combined Data Sources

On a global scale, the geoid height of a point can be derived from sets of 
coefficients consisting of a series of spherical harmonic expansions. The coefficients 
of the various terms in the series are determined using satellite perturbations data
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analysis which are known as satellite-only solutions. These models (for the long 
wavelength geoid features) involve only low order spherical harmonics and thus 
contain relatively few coefficients. Some examples of this type of model are shown in 
Table: 3.3.

Model Degree

(Harmonic)

Number of 

Coefficients

GEM-9 (Lerch et.al., 1979) 30 594

GEM-L2 (Lerch et.al., 1982) 30 594

GEM-Tl (Marsh etal., 1988) 36 1406

GEM-T2 (Marsh et.al., 1989a) 50 2028

Table: 3.3 - Satellite-only solution

Satellite-only geopotential models have varied applications. Their use in local 
gravity field studies, however, is restricted as they lack the detailed information of 
higher degrees. Terrestrial data accounts for this extra detail but lacks the global 
coverage needed to determine lower frequencies well. A combination of the two data 
sources allows the definition of the spectrum over a greater range of frequencies 
which are more appropriate to local and detailed studies. Therefore, in the past several 
years, a number of advances have taken place that enable a more accurate high-degree 
to be computed. These developments include improved theoretical modelling, more 
accurate and complete satellite models, improved and expanded terrestrial data, more 
accurate processing of satellite altimeter data, and advancement of computer 
technologies that enabled large-scale computational problems to be solved.

A series of geopotential models of increasing harmonic coefficients is 
developed by adding surface gravimetry and satellite altimeter data over the ocean 
(both having medium to short wavelength features, respectively - see Table: 3.2) to the 
satellite-only solutions. This combination is then adjusted in a least squares sense. 
Generally, the more coefficients there are in a model, the more precise the model 
usually is since it contains shorter wavelength information of the earth's gravity 
field. Such models have now been published up to a maximum degree and order 
(nmax=360*) which, theoretically at least, can model features in the geoid with 
half wavelength of 0.5 degrees, or about 55 km spatial resolution, to an accuracy of 
±0.2 m as described by Rapp, et.al, (1991). All higher degree geopotential models 
have contributed to the more accurate approximation of the gravity field in local and
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regional evaluations. The enormous impact of high degree geopotential models on 
local geoid determination is due to the need to reduce the size of computation areas 
without inducing errors through neglecting long wavelengths and remote effects. 
Table: 3.4 shows examples of these type of geopotential models.

The difference in degree of expansion is due to the amount of terrestrial data 
involved: as a general rule, the degree of expansion is determined by equation (3.3) 
where 9 is the size of the block in which gravity anomaly is given. Therefore, for 
example, GPM2 uses T x T mean gravity anomalies and OSU89B is based on 
30' X 30' data.

Model
Degree

(Harmonic)
Number of 
Coefficients

GEMIOB - (Lerch etal., 1981) 36 1406

RAPP78 - (Rapp, 1978) 180 32942

RAPP81 - (Rapp, 1981) 180 32942

GPM2 - (Wenzel, 1985) 200 40602

OSU86E and OSU86F - (Rapp and Cruz, 1986) 360 130682

OSU89A and OSU89B - (Rapp and Pavlis, 1990) 360 130682

0SU91A - (Rapp etal., 1991) 360 130682

Table: 3.4 - Higher degree geopotential models

The development of the GEMIOB and RAPPS 1 models are based on GEM-9 
sateUite-only solution. GPM2 and OSU86E/F are based on the GEM-L2 model, and 
OSU89A/B and OSU91A on the GEM-T2 model. The geopotential models are 
normally checked and tested in several ways so that they represent a substantial 
improvement over previous high-degree expansions. These tests include satellite orbit 
residual analysis. Geosat geoid height comparisons and GPS/levelling geoid height 
differences. Details can be found in Rapp and Pavlis, (1990) and Rapp, etal., (1991).

The geoid height Nqm of a point is computed from a set of normalised 
geopotential coefficients Cnm and Snm using the following formula relating to the 
spherical harmonic expansions of the geopotential (Heiskanen and Moritz, 1967):
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GM °*°*? ̂  a _* _ _
Nqm =  X  ~  y^[CnmCosmA, + SnmSinmA,]Pnm(sin<|>) ....... (3.16)

ry i^V ry ^
where:

nmax is the maximum degree at which the coefficients are known, e.g. 360;
6  nm is Cnm less the zonal coefficients of the normal potential of

the selected reference ellipsoid;
GM is the earth's gravitational constant;
a is the earth's equatorial radius;
r is the distance from the earth's centre of mass;

is the geocentric latitude and longitude;
Pnm(sin(t)) is the normalised associated Legendre function;
7  is the normal gravity; and
n, m are the degree and order, respectively.

In practice, the ability of geopotential models to provide a reference field for 
local geoid determination varies according to the model used, and its maximum degree 
and order which also depends on a number of factors including the data type used 
and the extent and density of the data coverage. Some areas will be better modelled 
than others, and tests have shown significant differences in the ability of geopotential 
models to recover geoidal height differences, see Kearsley, (1987) and Rapp and 
Wang, (1993). In terms of computing time, it can be expected that the higher the 
degree and order of the harmonic adopted, the more computer time is needed is 
solving the above equation. A comprehensive discussion and comparison of methods 
for computing equation (3.16) is given by Tscheming et.al., (1983). In this study, the 
available OSU89B geopotential model is to be tested for modelling the gravity field 
over the region of Peninsular Malaysia. The exercise will be presented and 
discussed in Section 5.3.

3.3.6 Satellite Gradiometry

The Satellite gradiometry technique makes use of gravity gradiometers to 
measure values of the spatial second derivatives of gravitational potential in situ in 
satellite orbits, see Torge, (1989 - Chapter 8). The primary objective of satellite 
gradiometry missions is the determination of a detailed structure of the earth's gravity 
field with a precision of approximately ±5 to ± 10 cm, when expressed in terms of 
geoid heights, or ±3 to ±5 mgal in terms of gravity anomalies and with a resolution of 
50 to 100 km over land as well as over oceans. In order to meet this objective, several 
mission requirements must be considered, for example, using a gradiometer with a
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precision around 10'^ to 10"̂  Eotvos (E) and selecting a low altitude orbit less than 
200 km.

Because of physical inaccessibility problems, e.g. mountainous areas, it is 
almost impossible to collect gravity data covering the whole peninsula region. 
Therefore, satellite gradiometer technique is one of the gravimetric tool to determine 
the gravity field precisely. In the near future, the analysis of satellite gradiometer data 
is expected to be effective in increasing our knowledge of the fine structure of the 
earth's gravity field over the land and ocean of this region and elsewhere.

There are two gradiometer missions proposed for the 1990's that promise 
high-resolution gravity data. They are the Aristoteles Mission and the Superconducting 
Gravity Gradiometer Mission. The gradiometer measurements are represented by the 
tensor component Fzz, Fzy, Fyy where the subscripts z and y denote components in 
the satellite radial and cross-track directions, respectively. The outputs of the 
gradiometer will be the differences of the gravity field measured at each accelerometer 
centre. Consequently, gravity gradients can be derived from these outputs. In an earth- 
fixed orientation, the gravity gradient is along the Fzz component

There are two types of error that effect the measurements of the accelerometers 
namely: the system errors and the measurement errors. The system errors are 
introduced by the non-gravitational perturbations, satellite angular motion, change of 
satellite geometry and mass distribution. These errors in turn will induce measurement 
errors that include bias, scale error and orientation error for each accelerometer.

3 .4  Geoid Users and Their Requirements

The general approach which will be emphasised in this section is that which 
uses gravimetry to find N. In its strict sense, the term gravimetric method refers to 
solutions of the EVP described in Section 2̂ 6, whereby N is determined from gravity 
anomalies Ag on the boundary surface.

Table 3.5 summarises the uses for which geoid heights are required, the 
precisions to which they are required by the user, and possible ways of obtaining N. 
Obviously, the choice will be dependent on the availability of geopotential models, 
terrestrial gravity data and topographic models. In general, if the area is adequately 
sampled with these types of data, there should be no barriers to gaining AN to the 
highest possible precision.
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N used for Order of N Possible means of evaluating N

1.Geophysical exploration. 
Reconnaissance surveys

Low:
Gn '- db5-10m

Low order (nmax = 36") 
geopotential models

2.Transforming between 
geodetic datums

3rd. order: 
Gn ±l-2m

High order (nmax=180") 
geopotential models

3.Control surveys for large 
scale mapp., engineering 

projects

2nd. order:
Gan ~ il0~20cm

over 20 km 
(5-lOppm)

a) Surface fitting N, as measured 
by GPS and levelling

b) Detailed gravimetric 
evaluation

Height control:
(between 2nd.to 3rd. order) 
from GPS:
Special projects

1st. order:
Gan -  ±20-30cm
over 100 km 
(2-3ppm)

Detailed gravimetric 
evaluations

Table: 3.5-Geoid requirements and methods of evaluation (taken from Kearsley, 1988)

3.5 Overview of Gravimetric Methods

Using a geopotential model with local gravity data and digital elevation data in 
geoid computation has become a very commonly used methodology. The geopotential 
model information contains long and medium wavelength features. The contribution 
of local gravity is mainly of medium and short wavelength nature whereas the local 
height data is short wavelength in nature. The optimum combination of these data 
types leads to solutions that currently give the best resolution of those wavelengths 
important for a good representation of the geoid. Formally, this solution can be written 
as:

^  “  ^GM ^Ag ^TC
.(3.17)

where Nqm» N^g and Nyc are the contributions of the geopotential model, the gravity 

anomalies, and the height data, respectively. Figure: 3.6 shows the different 
contributions for a typical geoid profile in mountainous terrain.
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Reference Ellipsoid

Figure: 3.6 - Contribution of different data to local geoid determination

The contribution of N^g in equation (3.17) is computed using reduced gravity

anomalies (Agr) or residual anomalies . These values are obtained by subtracting the 
observed gravity anomalies (Ago) from the effect of long wavelength component, 
AgGM (from a chosen geopotential model), and the effect of short wavelength 
component, Agjc (from height data). Thus we have:

Agr = Ago- AgGM-AgTC 

where AgGM is computed from:

.(3.18)

GM
n=2

^ g o M  =  “  %  (C nm  COS m X  + Snm s i u  O i l )  P nm  (COS (|))  (3.19)
m=0

where the terms are similar to the terms described in equation (3.16). The computation 
of AgTc is necessary to account for two effects. First, for the smooth interpolation of 
gravity anomalies via some type of gravity reductions as discussed in Section 2.7; and 
second, for the approximate determination of the high frequency part of the geoid 
heights via terrain effect. The terrain effect can be computed using conventional prism 
integration. The evaluation of the terrain effect is discussed in Section 3.6.

Eliminating these contributions considerably 'smooths' the gravity field 
causing a much lower variation and more homogeneity. If the global geopotential 
models perfectly represent the local gravity field, the mean value of the Agr should be 
close to zero. The procedure described for the reduction of the signal to only the 
medium wavelength component and the later addition of these effects given by 
(equation 3.17) is known as the 'remove-restore ' technique, and is used nowadays
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for most local gravity field studies (especially in mountainous areas) by any 
gravimetric method. If the geoid height is to be estimated without terrain-reduced 
anomalies, the fiee-air anomalies are to be reduced according to:

Agr= Ago- AgGM ..... (3.20)

and no terrain effect is accounted for in the final geoid heights, i.e.

N = Nqm +......................................................................... ..... (3.21)

The remove-restore technique described by equations (3.17), (3.18), (3.20) and
(3.21) will be implemented in this study, see Sections 6.6.1, 6.6.3.2, 6.7.1 and
6.7.3.

As mentioned previously, the determination of a detailed gravimetric geoid 
has been one of the main interests of geodesists because it is needed to convert the 
high precision ellipsoidal heights obtained from modern GPS technology to 
orthometric heights. There are several techniques being used in computing the local 
geoid, such as Stokes' formula, and the LSC method using a combination of 
heterogeneous data. For faster computation speed, Stokes' formula can also be 
implemented in the frequency domain using the FFT algorithm. Although all of these 
three methods have been successfully used in gravimetric solutions, very few direct 
comparisons between solutions have been made however, see Barzaghi, et.al., (1988) 
and Arabelos and Tziavos, (1994).

3.5.1 Stoke's Integral

A solution to the BVP was first developed in 1849 by Stokes, a Cambridge 
mathematician. Stokes formulated a unique solution to Laplace's equation (equation 
2.25), as a function, S(\j/), of spherical distance through which the disturbing potential 
could be determined. In this classical approach the geoid height at any point on the 
surface of the earth is analytically expressed as an integral of the gravity anomalies, 
weighted by the Stoke's function over an entire sphere. Thus, the integral that Stokes 
proposed must be evaluated across the earth and the gravity anomalies must be 
continuous across the surface. This is clearly not the situation that exists and so 
problems are introduced. The integration must be limited to a small area around the 
prediction point, commonly referred to as a spherical cap, where the data will be more 
consistent with requirements. However, continuous data is still an impossibility; 
gravity measurements are made at discrete points at some separation. An 
approximation to the integral is acceptable due to the data situation, in the form of a 
summation over a set of blocks into which the cap is divided:
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N = - 5 - Y  S(\|/)Agsin  (3.22)
47ry k

where Ag is the mean anomaly of the block; and 
k is the number of blocks.

For each block, \j/ and hence S(y) can be evaluated; it is often tabulated for values 
0 < Y < 7t to ease computation. The most information will be contained in a region 
close to the prediction point.

As stated before, Stokes' function is a solution to Laplace's equation. It is 
therefore harmonic and can be expanded in a series of harmonic expansion:

S(V) = X ^ 7 ^ ^ P „ (c o s v )   (3.23)
S  (n -1 )

Because the integral is only extended over a local area, the distant, global effects can 
be eliminated from equation (3.22) leaving the Modified Stokes' Function. Lower 
degrees of expansion in the series may be evaluated by satellite observations as a 
reference field on which to build the long wavelength geoidal features. The integral 
kernel becomes:

S(V)N_ = X  ^ ^ ^ P . ( c o s v )   (3.24)

where nmax is the maximum degree covered by the reference fields. The modified 
Stokes' integral is given by:

N = ^  I  I  [S(v) -  S(x|/)N](Ag -  AgQ„)9a  (3.25)

where:

N grav  is the total geoid height;
Ngm is computed using equation (3.16);
R is the mean earth radius;
Ag are the gravimetric observations given as free-air gravity anomahes; 
s(v|f) is Stokes' Kernel function (Heiskanen and Moritz, 1967. p. 94); and 
AgGM are free-air gravity anomalies computed in spherical approximation 

from the geopotential model by the equation (3.19).

68



The selection of the optimum cap size can be quite tricky. If the geopotential 
model used were perfect, then the cap size corresponding to the resolution of the 
global model should in principle be sufficient. However, as the global models may 
have quite large errors in the coefficients of higher degrees, larger cap sizes are 
required in many cases, (Sideris and Schwarz, 1986).

Stokes' function is often modified in search of an optimum solution that would 
minimise the truncation error in equation (3.25), e.g. Molodenskii's Truncation 
Method and Miessl's Modified Function. Details of this classical method used in 
determining the geoid height can be found in Wichiencharoen, (1984), Despotakis, 
(1987), Chang, et.al., (1989), Featherstone, (1992) and Featherstone and Olliver, 
(1994).

3.5.2 Least Squares Collocation (LSC)

Collocation is a least squares approach to modem estimation theory utilising 
statistical information based on covariances to describe the function being estimated. 
Mathematically, the technique is the determination of a function through the 
approximation of a set of linear functionals, (Moritz, 1980). More simply, the LSC is 
a generalisation of Least Squares Interpolation such that any arbitrary value can be 
predicted from any other value. The methods allows an approximation to the 
anomalous potential T, and subsequently other elements of the anomalous gravity 
field, (see equations 2.41, 2.42 and 2.43). The data used can be any gravimetric or 
geodetic measurement, the only requirement being that it can be related to T by a 
simple linear (or linearised) function. As such, LSC is an optimal estimation technique 
which statistically combines gravity field information to predict other quantities. This 
method involves estimation, filtering and prediction processes.

The covariance function, as the essential basis of LSC, is a function that 
allows quantities to be estimated with a minimum variance, and therefore implicitly 
contains the characteristics of the gravity field of which these quantities are a direct 
consequence. The vector of signals involved in the collocation formulae can include 
several different types of signal and the covariance matrices for these are the key to 
handling such heterogeneous data, e.g. gravity anomalies, deflections of the vertical, 
and satellite altimeter data. This method has been used extensively in the computation 
of geoid heights by Forsberg and Tscheming, (1981), Kearsley, et.al, (1985), 
Dodson and Gerrard, (1989), and Ayhan, (1993) amongst others.

When used specifically to derive N, the relationship can be expressed as:

Ngrav = N .^ + ( A^C"^ A)"^ A^CAg  (3.26)
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where N g r a v » A g are the vectors of the geoid height and gravity anomalies, 
respectively; A is the design matrix; C is the covariance matrix, derived from the 
covariance function; and Ngm is the geoidal height computed in spherical 
approximation using equation (3.16). Details of the LSC method used for this study 
is fully discussed in Sections 6.2 and 6.6.

3.5.3 Fast Fourier Transforms (FFT)

From a practical point of view, the two categories as described above require 
either very time consuming numerical integration or large matrix inversion. The need 
for large amounts of computation time for these methods is particularly significant 
when dealing with large scale computations in which large volumes of data are 
involved. This drawback could be overcome by using the FFT method. The FFT 
method of gravity field approximation is a frequency domain method in planar 
approximation.

In the FFT method, Stoke's integral is planarised and integrated over a 
Cartesian rectangular zone of gravity anomalies defined on a grid. However, many 
approximations are involved that decrease the amount of true information from the 
gravity field. A full account of FFT and their application to gravity field approximation 
can be found in Schwarz, et.al., (1990). This approach has been successfully 
implemented by Zhao, (1989), Mainville et.al., (1990), Tscheming and Forsberg, 
(1992) and Li and Sideris, (1994). Another similar approach has been carried out by 
Steward and Hipkin, (1989) who computed the geoid for the British Isles by 
integrating separately the Bouguer anomaly and the attraction of a terrain model and 
applying the FFT algorithm.

In general, the confuted geoid using the FFT technique is as:

^  i  (3.26)

where F and F'^ denote the two-dimensional discrete Fourier transforms and its 
inverse, respectively and k is the radial frequency.

The FFT method requires gridded gravity data. Thus in this approach, a grid 
of gravity data is derived from observed gravity over the area of interest and 
gravity anomalies are transformed to the geoid separation at the same grid point by 
using the spectrum of the gravity field. The value of N at the points of computation
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are then obtained by interpolation from the grid. Details of the FFT technique used in 
this study is also discussed in Sections 6.3 and 6.7.

3.6  The Terrain Effect Evaluation

As previously mentioned in Section 3.3 (Table: 3.2), the short (or very short) 
wavelength variations of the gravity field come mainly from the topographic masses, 
i.e. rugged terrain. The influence of these masses will not be great on the geoid height, 
but will be considerable in the case of gravity anomalies and deflection of vertical 
which are much more terrain dependent. A terrain correction causes the gravity field to 
be much smoother and more homogeneous, as particular detail is removed prior to 
computations. Thus, in mountainous areas, the terrain effects completely dominate the 
local variation of the gravity field, and some kind of terrain reduction is indispensable 
when attempting gravity field modelling in such areas. The application of a good 
terrain reduction in mountainous areas decreases the gravity field variation to levels 
comparable with lowland areas, (Forsberg, 1984).

When a topographic model or height data is available, usually in the form of a 
Digital Elevation Model (DEM), the potential due to the terrain may be developed as a 
harmonic function to be subtracted firom the original function. Again, the signal retains 
its harmonicity. The various terrain effects in use are illustrated in Figure: 3.7. To use 
terrain reduced data in a remove-restore technique for gravity field modelling, the 
utilisation of known or assumed density models is very essential covering a given 
geographical area.

(A) - Topography

Mean Height Surface 

(C) - Residual Terrain Model

D~32 km

(B) - Isostatic

Figure: 3.7 - Density anomalies associated with various terrain effects
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The most well known terrain reduction is the topographic reduction or 'a 
complete Bouguer reduction \  consisting of the effects of a Bouguer plate minus the 
terrain correction. The topographic effect is well suited for geophysical work and the 
prediction of mean free-air anomalies, but is not applicable for reduction of geoid 
heights. Conventional isostatic reduction (see Section 2.7.3) formalises the prevailing 
tendency of the earth's topography to be compensated at depth. This type of terrain 
effect evaluation provide the smoothest residual fields and is easily applicable to aU the 
various types of gravity field data available. A drawback of the isostatic reduction is 
that it primarily should be global, that is, it requires height or depth data to be 
integrated over large regions.

An alternative to the use of the isostatic reduction is only to take the short 
periodic variations of the topography into account. This is done by only considering 
the deviations of the topography from some mean elevation surface using a Residual 
Terrain Model (RTM) method, see Figure: 3.7 (C). The RTM method has the 
advantage over the topographic and isostatic reduction methods that a fixed area is 
unnecessary in the calculations. Another advantage of the RTM method is that, 
because there is no need for any sort of isostatic compensation masses, the calculation 
is also quicker as fewer prisms are involved in the 'building ' of the terrain masses. 
Moreover, as the RTM have oscillating in positive and negative densities 
corresponding to the 'removal ' of mountains and 'filling ' of valleys, the effect of 
these will, in general, cancel out at certain distance from the calculation point. Thus, 
the total mass removed by using a reference surface will on average equal zero, but the 
major requisite is that the mass removed be a harmonic function. In this way, the 
recovery of only short wavelength information from the topography has the advantage 
that elevation data is only needed for a limited area. The application of the terrain 
reduction used in this study is presented in Section 6.5.

In general, the terrain effect can be quantified for the disturbing potential by:

*2 y2*2
TTc = G p j |j ia z 3 y 9 z

 (3.28)*1 yi zi

where r = -^(x -  )̂  + (y -  )̂  + (z -  )" 

and p is the density for the element.

This computation is most naturally done using the simplest form of finite 
element representation of the density distribution by assuming that the density anomaly 
Ap is constant in each finite element or sub-block with each sub-block being a
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rectangular prism, see Figure: 3.8. For terrain reductions using digital models, these 
prisms, for example, naturally correspond to the subdivision defined by the height 
data grid. For computational efficiency, the size of these sectors is increased at a 
distance whereby the majority of the effect is due to very near topography. The 
integral described in the above equation gives a global estimation. Thus, in practice, 
the integral need only extend to a given distance from computation point, as the effect 
of distant topography is negligible. For contributions at a distance r, a condensed 
formula is used through which equation (3.28) is modified to:

Ttc = GkJ J-3ydx
*1 yi ^

.(3.29)

where k  is the surface mass density p(z2 - z%).

Pnsm

Computation

Figure: 3.8 - Terrain effect of distant prism

Terrain contributions to the gravity anomaly and geoid height are given by:

A g H = ^ - - T ^  dz r .(3.30)
and

.(3:31)

where Y is the normal gravity.

3.7 Techniques of Improving the Geoid Height Estimates

The geoid height computed using the three methods described in Sections 
(3.5.1), (3.5.2) and (3.5.3) may contain biases due to several factors, such as the 
problem arising from the differences in the GPS and geoid model datums. This is 
especially apparent in the case of using a regional or local geoid computed by 
combining a global solution with terrestrial gravity data. Here, the biases may consist 
of long wavelength errors contributed by geopotential model errors, poor gravity
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coverage and a bad elevation datum for the gravity observations, since barometric 
levelling is commonly used. These biases can be reduced or absorbed by implementing 
some kind of transformation procedure as that used by Forsberg and Madsen (1990). 
The geoid change (N'-NModei) due to these biases can be expressed in geodetic 
coordinates in the form of a regression formula^ (ibid):

^  Model = +a2Cos(|)cosA, + a3Cos(|)sinX + a4sin(|)  (3.32)

By using at least four known geoid heights, N', in the above equation, the four 
coefficients in the regression model can be computed. These coefficients are then used 
in computing the correction that will be applied to NModei in deriving the geoid height 
and orthometric heights at the other points.

The geoid height estimation can also be improved by a technique of 'tailoring' 
the existing geopotential model with updated gravity anomalies in a specific region. 
These data should be representative of the block means used to derive the 'corrections ' 
to the potential coefficients, see Weber and Zomoirrodian, (1988) and Basic, (1989). 
An analysis of 'tailored' model approach to potential coefficients determination has 
been carried out by Kearsley and Forsberg, (1990). This .paper, however, points out 
some of the problems in the creation and use of tailored models, for example, poorly 
distributed and inaccurately observed data (updated data) will seriously degraded the 
model. As previously mentioned in Section 1.3, the tailoring technique of the 
geopotential model to fit the regional gravity field will be tested for Peninsular 
Malaysia. Details of this technique, results and analyses will be fully presented in 
Chapter 5.

The estimation of the gravimetric geoidal heights can also be improved by 
optimising the potential coefficient model and by replacing Stokes' kernel function 
with weighting function, and then reduced the total error in a least squares sense, see 
Wang, (1993). Thus, by using this technique, the geoid error due to the truncation 
error, the coefficient error and the error of the terrestrial gravity data is minimised. 
Finally, the tailoring technique together with the use of a spatial filter that considers the 
statistical information of the geopotential coefficients has also been applied to improve 
the geoid height estimation, see Li and Sideris, (1994).
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CHAPTER 4 

THE DATA USED

4.1  Introduction

As previously mentioned in Section 3.3.5, high degree geopotential models are 
a major source of gravity field information and are invaluable in local studies leading to 
a solution of the BVP. The combination of the geopotential model with local gravity 
data and height data currently lead to the optimum resolution of the gravity field which 
is important for obtaining a good representation of the geoid. This chapter therefore 
describes and analyses these data types that are most commonly used for this 
gravimetric geoid height solution, for the Malaysian Peninsular region. These include 
the available surface gravity data, the existing geopotential model OSU89B and the 
height data. In addition, some GPS data used as a test for geoid height comparisons 
is also described as well as the limitations imposed by the data used which offers 
insight into the accuracy of geoid height estimation.

4.2  Gravity Data

Since 1983, more than 4500 gravity points have been observed independently 
in Peninsular Malaysia at the international, regional, road traverse and local scales by 
different organisations for various purposes. All gravity data were tied to the IGSN71 
stations (Section 3.3.1) and these observations can be divided into four categories:

(i) Occupation of 180 gravity base stations carried out by the Department 
of Surveying, University of Technology Malaysia (UTM) and Directorate of 
Surveying and Mapping, Malaysia (DSMM) to form the Gravity Base Network 
throughout the country, started from 1983 to late 1991. The first net comprising 
31 stations covering the most strategic areas, was established by UTM from 1983 
to 1985 to meet the requirements of geophysics, geology and geodesy. These were 
the first order gravity measurements which were carried out along the coastal areas 
and levelling lines to produce the first comprehensive gravity base network for the 
country. Two La Coste and Romberg gravimeters (G540 and G542) were used in the 
measurements of the base net. The gravity base stations were tied and adjusted within 
the framework of the three IGSN71 stations, namely at Kuala Lumpur (02631A) and 
Singapore (02613A) and Songkla, Thailand (G9). The final adjustment showed a point 
standard error of better than ±0.05 mgals, (Majid, 1987). The number of regional 
gravity base stations has been increased to 180 points covering the entire country.
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These gravity surveys were also conducted independently by UTM (1987-1989) and 
DSMM (1990-1991).

(ii) A total of about 1200 gravity data points covering the upper part of the 
west coast area have been collected by the Department of Physics, University of 
Sciences, Malaysia (USM). The gravity surveys were carried out from 1983 to 1988, 
(Loke and Lee, 1989), The observed accuracy is estimated as ± 0.2 mgals. The 
regional gravity surveys covering the southern part of the Peninsular Malaysia have 
been carried out by UTM since 1989. Up to 1991, a total of about 700 gravity 
data distributed over the accessible area had been gathered with an observed accuracy 
of ±0.1 mgals, (Majid, etal., 1989). The example of gravity data format supplied 
by UTM is shown in the Appendix B.

(iii) The regional gravity surveys irregularly distributed over the peninsula 
had also been carried out by the DSMM from 1990 to 1993. These surveys were 
conducted for the purpose of applying orthometric corrections to the levelled heights 
throughout the peninsula and the gravity survey was designed to follow the gravity 
base network route and the proposed levelling route. Out of a total of about 1200 
gravity observations, only 601 'validated' gravity values were made available in 
March, 1994 to be used in this study, (Samad - Private Communication). Appendix C 
shows the format of the gravity data files from the DSMM.

(iv) The GSM is in the process of establishing gridded gravity survey with a 
density of one station at every 25 km2 for this region. These include a total of 1775 
stations in the northern region (covering an area of 40,000 km^) and 520 stations 
in the southern region (covering an area of 13,000 km2 ). The accuracy of this gravity 
is of the order of ± 0,2 mgals. These gravity data were made available in June, 1994 
to be used in this study, (Zawawi, Private Communication). The format of the gravity 
data files from the GSM is shown in Appendix D.

4 .2 .1  Formatting the Gravity Data

It has to be mentioned here that, since the gravity data were supplied by the 
DSMM and the GSM at a very late stage of this study, only the gravity data collected 
by the USM and the UTM were used in the tailoring procedure, see Section 5.5. 
However, all gravity data collected by these two universities, the DSMM and the GSM 
were used in the geoid determination for the three test areas. The analysis of these test 
areas will be presented in Section 6.4.

Since three separate files were obtained with different formats, these files 
therefore have to be individually edited to yield files with the same format structure, and
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which could be eventually concatenated. Consequently, a number of FORTRAN?? 
programs had to be written for this editing exercise. The program FILORGJFOR was 
written to read and to format the gravity data files provided by the DSMM and the 
GSM, so that they will have the same format as with the UTM gravity data file. The 
written SORDATF'OR program was employed in sorting the data in the UTM, DSMM 
and GSM files in order of increasing latitude. Three original files contained common 
points, and in some cases each file contained one or more duplicates of some of the 
gravity points. These had to be eliminated, and the program DELDAT.FOR was 
designed for this purpose. For this purpose, it was decided that two stations were 
deemed to be the same, if they are within 0.“ 0005 (approximately 50 m) of each other. 
A total of 23 common points were eliminated from the original 4891 data points, 
leaving 4868 data points which were then stored in file GRAVMSIA. This gravity 
data file listed the identification number of each point; its position in latitude and 
longitude; elevation; the ffee-air anomaly and the Bouguer anomaly. The Bouguer 
anomaly in this case is the simple Bouguer anomaly, since the terrain reduction 
methods described in section 3.6 have not been applied.

4 .2 .2  Distribution and Characteristic of Gravity Data

In general, much attention has been paid to and enormous effort put into 
gravity measurement with a dense and sufficiently uniform distribution along the 
coastal and fairly flat areas, while in remote land areas and mountainous regions, 
gravity data is very sparsely distributed or simply not available because of physical 
inaccessibility problems or lack of levelled heights. Thus, the observed gravity data 
are seen to be very unevenly distributed and in some areas there is no observed gravity 
at all. The area containing the terrestrial observed gravity points is basically plateau, 
lying between 5 metres to 1000 metres altitude. The heights of the stations were 
obtained mainly by two means; some 20% of the total stations were located on the 
levelling benchmarks and the heights of the remaining stations were obtained by 
altimeter readings with resulting accuracy of ± 1.5 meters, implying the accuracy in the 
gravity anomaly of ±0.5 mgals. The estimated errors for the regional gravity surveys 
is of the order ± 0.2 mgals. The distribution of the gravity points extracted from 
GRAVMSIA file is shown in Figure: 4.1.
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Figure; 4.1 - The Distribution of gravity points in Peninsular Malaysia
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It can be seen from Figure: 4.1 that the density of gravity data for the northern 
region is quite low and irregular, for exangle on average one gravity station per 40 
km2, compared to, on average one gravity station per 30 km^ for the southern region. 
A reasonably good gravity coverage is found on smooth to medium terrain in the 
south-west region of the peninsula which is, on average about one gravity station per 
20 km^. The rest of the region is considered to be medium to poor gravity coverage 
regardless of whether they are located in the smooth or medium topography. Due to 
very rough topography and the remoteness of the area, most parts of the north-east, the 
south-east and the central-north of the peninsula have less than ten gravity points or 
have no observed gravity at all.

The first compilation and adjustment of the measured gravity data in the 
Malaysian Peninsula can be found in (UTM, 1989). The gravity data obtained from 
UTM consisted of 1900 stations, parts of which was the gravity data from USM. Data 
reduction was done using the GRS80 formula and the Bouguer correction was made 
with an assumed density of 2.67 g/cm^. In the creation of the gravity data base, the 
main problem was the detection of gross errors in gravity anomalies. The procedure 
applied to validate the gravity data, in principle, depends on the predicted value for 
each point using weighted means and the data collected inside a radius of 50 km, 
(Majid, 1992 - Private Communication). In this prediction method, the differences 
between the predicted and the observed values larger than 2.5 times the standard error 
of the differences, then the gravity data have been detected as doubtful gross errors. 
Consequently, about 5% of the points in the gravity data base were excluded after being 
indicated as gross errors. Thus, in total 1815 validated gravity data points extracted 
from the UTM gravity database are specifically used for the formation of mean free-air 
anomalies in the tailoring procedure, see Section 5.4.

The free-air anomaly values vary between -30 to 83 mgals. Figure: 4.2 shows 
the contour map of these anomalies with a contour interval of 5 mgals. It can be seen 
from this figure that the free-air anomaly associated with points of height less than 
200 metres varies from -30 to 30 mgals in the northern part of the peninsula and from 
0 to 30 mgals in the south. Due to the fact that the free-air anomaly at low altitude 
approximates the Bouguer anomaly, the variation of the anomalies is believed to be 
influenced mainly by the variation in the bedrock density of those particular areas.
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Figure: 4.2 - Free-air anomaly map for Peninsular Malaysia - (C.I -  5 mgals)
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Free-air anomalies are usually found to be correlated with the point height due 
to the effect of topographic masses in the short-wave range. The correlation is 
approximately expressed by:

Agp = a + bH .(4.1)

where 'a' is a variable which approximates the simple Bouguer anomaly Ag^; and *b' 
is also a variable which usually regarded as an approximation of the constant in the 
Bouguer reduction, see equation (2.52). The a value changes from area to area but its 
variability is much less than the free-air anomaly, and b is almost constant, (Sunkel 
and Kraiger, 1983).

The variation of the free-air anomalies with respect to heights in the peninsular 
region is shown in Figure: 4.3. In this figure, it can be seen that, at points higher than 
100 metres, the free-air anomaly increases proportionately with the increment of height, 
i.e. between -30 to 80 mgals.
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Figure: 4.3 - Correlation between free-air anomaly and height for Peninsular Malaysia

4 .3  Height Data

As previously mentioned in Section 3.5, precise gravity field modelling requires 
the combination of all the available data especially in areas showing strong variations in 
the gravity field, e.g. mountainous areas. Among other data types, the information 
concerning the visual topography and its isostatic compensation is very important for 
smoothing the gravity field. Such information relates to the effect of the topography on
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the earth's gravity field, i.e. the high frequencies of the gravimetric signals (see tables
3.1 and 3.2). For the computation of various kinds of topographic corrections 
discussed in Section 3.6, a DEM is needed comprising the appropriate coverage and 
resolution. For regional or global scale computations there are global OEMs available 
with different resolutions. Such a DEM is the ETOP05U 5' x 5' mean heights and 
depths. In local scale computations, precise and high resolution local DEMs are usually 
available in the framework of national geodetic banks.

4 .3 .1  ET0P05U Global Digital Elevation Model

The original DEM supplied by the International Geoid Service (IGS), Milano- 
Italy was the ET0P05U 5' x 5' mean heights, covering the peninsula region in the 
geographical window ( 0° < (|) 99“ < X, < 105“ ), see Figure: 4.4. The resolution
of this global scale terrain database is, however, known to be very poor in many 
regions, especially in the Asian regions, (Sanso, 1993 - Private Communication). On 
land, the 5' x 5' height data have been interpolated from a 10' x 10' mean height 
data set, originally estimated by visual inspection of small scale maps. It has been 
shown that, the use of this global DEM may produce errors in the gravity field 
modelling process, as any systematic errors in the DEM will show up as corresponding 
errors in the estimation of mean free-air data. For example, this was found in a 
preliminary determination of the geoid in the Philippines where the poor gravimetric 
results are mainly due to low resolution (inaccurate) of the ET0P05U model and also 
sparse local gravity data, see Forsberg, (1990).

4 .3 .2  Local Height Data

An improved DEM of, e.g. 5' x 5' mean height from ET0P05U would have 
made the resolution of the geoid prediction a lot better. Ideally, of course, a fine height 
grid, say 1 km to 5 km, depending on the roughness of the topography should be used 
because a strong gravity signal is due to the gravitational attraction of the topographic 
masses itself, i.e. a signal which dominates at shorter wavelengths, see Forsberg, 
(1984). However, no such data were available for the whole peninsula.

82



6.5 -

5 .5 -

100.5 101.5 102.5 103.5
I I I I I I I I I I I I I I I ( I I

— 4.5 -

(D■a3
ro

Bmtang
g |R a n g ^

%

Titiwangsa ^jTimor 
R1R a n g e ^ ^ ^  U\y Range

Area A

Area B

h- 6.5

5.5

-  4.5

-  3.5

-  2.5

-1 .5

99.5 100.5 101.5 102.5

Longitude (E)

103.5 104.5

Figure; 4.4 - The 5'x5’ mean heights and depths of Peninsular Malaysia (C.I. 100 m)

83



Since the principal use of terrain data in local gravity field modelling is to 
provide a smoother residual field making interpolation easier (see Section 3.6), some 
form of local DEM should be used. Due to the non-avaüability of suitable DEM which 
can be used in this study, the height data were visually estimated by the author from 
25 topographical maps (supplied by the DSMM in May, 1994) for three test areas; 
Area A, Area B and Area C - (see Figure: 4.4). These three test areas were chosen with 
respect to terrain types, gravity density and coverage viewpoint Details relating to 
these three test areas are given in Table: 4.1 and also depicted in Figure: 4.5, Figure: 
4.6 and Figure: 4.7, respectively. The height data were gridded in west to east rows 
sequentially from north to south, according to the format specifications as required by 
the 'terrain evaluation program TCI see Section 6.5. Each latitude row comprising 
one record of elevation values in metres. First record in file is a label record ((|)i, (|>2 , 
A,i, %2y A(|), AA,) defining boundary of grid. Obviously, this procedure is very tedious 
and time-consuming.

Test
Area

Block Size 
(Approx.)

Relief Type 
(Average Height)

Gravity
Coverage

Scale Map/
Contour
Interval

Gridded
Mean
Height

Area A 90km X 90km Medium - Rough 
with 15% smooth 

~ 600 m

Poor
(at lowland 
area only)

1:50000/ 
20 m

1km X 1km

AreaB 100km X 90km Smooth - Medium 
'-300 m

Average 1:63360/ 
30 m

2kmx2km

AreaC 60km X 100km Smooth 
~ 30 m

Good 1:63360/ 
30 m

5km X 5km

Table: 4.1 - Details of the gravity coverage and heights characteristics in test areas
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From Table: 4.1, it can be expected that the precision of estimation of heights 
for the 1: 50000 and 1: 63360 topographical maps, varies from about ±lm for spot 
heights and points through which contours pass, to about ±10m and ±15m, in between 
contours where heights are interpolated, respectively. The accuracy of DEM may be 
assessed by comparison of height values derived from the DEM surface with heights 
of the corresponding points obtained by measurement of the terrain surface to a known 
(higher) order of accuracy. The data obtained from such a comparison will consist of 
height differences at the test points, i.e. gravity points. These values may be positive or 
negative in sign, depending on the relative heights of the two surfaces at successive 
points. The computations of the RTM contribution using the height data for all test 
areas will be presented in Section 6.5.

4.4 Geopotential Model OSU89B

The OSU89B is a high degree spherical harmonic expansion model that has 
been developed from the combination of satellite perturbation analysis with both surface 
gravity and satellite altimetry data. The development of the OSU89B geopotential model 
is briefly described below. Details of the development and analysis of this geopotential 
model can be found in Rapp and Pavlis, (1990).

The OSU89B global model has been developed through a combination of the 
GEM-T2 satellite-only solution model (n < 36), in a least squares sense, with 30'
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mean free-air anomalies, to obtain an adjusted set of coefficients and gravity anomalies. 
The adjusted anomalies were then harmonically analysed to yield a set of potential 
coefficients to degree 360. The 30' mean anomalies were estimated from updated 
terrestrial gravity data, from altimeter-derived anomalies, and from T x T terrestrial 
anomalies where such data were available. For areas devoid of gravity information, 
e.g. most part of Asia, Arctic and Antarctic regions, the anomalies were computed in 
two ways: (i) from the GEM-T2 coefficients only; and (ii) from the GEM-T2 
coefficients to degree 36 plus coefficients implied by a topographic-isostatic model. 
These values will not provide the resolution of the 30'x30' mean anomalies but they 
will provide valuable gravity field information beyond what is available from satellite 
orbit perturbations. These 'filled in' anomalies led to two potential coefficient models; 
OSU89A for method (i) and OSU89B for method (ii). The general development leading 
to OSU89B potential coefficient model is illustrated in Figure: 4.8. Figure: 4.9 portrays 
different types of 30' mean anomalies used in a combination solution for this global 
geopotential model.

Satellite Potential Coefficient Model 
GEM-T2, Nmax = 36

30' Anomalies from 
Geosat/Geos-3/Seasat+
30' Surface Gravity 

Data
t

Solution
Orbit Corrections 
Potential Coefficients (36)

30' Topographic 
Isostatic Fill in

Solution I
Potential Coeff. (36) 
Adjusted Anomalies

Solution n
Orthogonality Relationship 
Give Coefficients to 360

2 to 36 
Coefficients OSU89B ^ ------------

Ï
37 to 360 

Coefficients

Figure: 4.8 - General development leading to OSU89B potential coefficient model
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The OSU89B geopotential model were checked in several ways including 
satellite orbit residual analysis, GEOSAT geoid height comparisons and GPS/levelling 
geoid height differences. After correction for sea surface topography, orbit error, and 
permanent tidal effects, the geoid heights from the OSU89B model had an rms 
discrepancy with GEOSAT-implied geoid height of ± 59 cm over a complete 17-day 
exact repeat cycle. The comparisons with GPS information in Canada, Scandinavia, 
and Australia indicated the accuracy of computation of a relative geoid height is of the 
order of 3 - 4 ppm of the distance between stations. The OSU89B geopotential model 
represents a substantial improvement over previous high-degree expansions such as 
OSU81, OSU86E and OSU86F.

The OSU89B geopotential model has been extensively used to provide 
reference fields for the anomalous gravity field used for local and regional geoid 
determination. For example, Sevilla, (1993) and Sevilla, et.al., (1993) used this 
geopotential model together with the latest geopotential model, OSU91A, and the 
tailored model IFE88E2 for the gravimetric geoid for the Mediterranean Sea and 
Portugal, respectively. The tailored model 1FE88E2 was proved to be the best reference 
gravity field for this region when compared to the OSU89B and OSU91A models. It 
also revealed that there was no significance improvement of the 0SU91A model over 
the OSU89B model, (ibid). It was decided that the 0SU91A model will not to be 
used in this study, due to the following reasons:

(i) This model was not available at the Department of Photogrammetry 
and Surveying, University College London; and

(ii) No new terrestrial gravity data from this region has been incorporated 
into world gravity database for the solutions of this latest geopotential 
model.

Therefore, it is important to discover if the available OSU89B model (although 
some new gravity data from the peninsular region have not been released to be included 
in this model) can be used as a reference field for geoid determination in Peninsular 
Malaysia. This experiment is fully exercised in the next chapter.

4.5 GPS Data

The existing geodetic networks which are currently used are mainly based on 
field observations and computations made in the first decade of this century. Studies 
carried out by the DSMM indicated that the network does not meet the requirements of 
geodetic standard for surveying and mapping purposes. The definition of the Kertau 
Datum discussed in 2.3.2.1 is incomplete since the geoid height and deflection of the
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vertical is not taken into account in the data reduction. Therefore, in Peninsular 
Malaysia, with many difficult and inaccessible areas, coupled with unpredictable 
climatic conditions, the use of GPS offers significant advantages both from cost- 
effectiveness and accuracy in setting-up of a highly precise geodetic network. Details 
of the GPS satellite surveying method, e.g. satellite configuration, characteristics of 
satellite and receiver frequency modes, field observations, computation and adjustment 
procedures can be found in Leick, (1990).

The following section will give a brief description of the work and the results 
obtained in a GPS campaign in Peninsular Malaysia carried out by the DSMM and the 
Overseas Agency o f Land Survey o f Sweden (Swedsurvey). Details of the GPS 
surveys in the peninsula region are fully documented in Thomas and Bo-Gunner, 
(1991) and DSMM, (1994).

4 .5 .1  The Malaysian GPS Campaign

The first Malaysian GPS campaign was started in late 1990 when the DSMM 
and Swedsurvey made a joint project to use GPS technology in positioning of control 
points. The main objectives of the project are as follows:

(i) To estabhsh a new Geodetic Network for Peninsular Malaysia;
(ii) To analyse the existing geodetic network, i.e. the MRT48;

(iii) To densify points for the production of topographical maps.

The first phase of the project was started in December, 1990 and completed in 
March, 1991. During this period, 108 points in the southern part of Peninsular 
Malaysia which consist of existing Doppler, geodetic, primary, secondary and new 
GPS points were observed with LI frequency Ashtech LXII GPS receivers^ see 
Thomas and Bo-Gunner, (1991). A closer analyses revealed that there were weak 
spots in the mountainous areas and the eastern part of the new network and in late 
1991, a campaign of complementary measurements started in order to strengthen the 
network by using receivers with both LI and L2 frequencies (Dual Frequency Ashtech 
GPS Recievers). In ecirly 1993, the National GPS Network was also extended to 
include the northern network by using the same dual frequency Ashtech GPS receivers. 
In total, 238 GPS stations have been observed that include:

• 5 existing Doppler Stations,
• 13 existing geodetic,
• 8 existing primary,
• 8 existing secondary.
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• 8 existing benchmarks, and
• 196 new GPS stations.

However, only 35 GPS stations which partly constitute the Southern GPS 
Network was made available by the DSMM, (Samad, 1993 - Private Communication). 
These GPS stations have their orthometric height values either because they were tide 
gauge stations or partly connected by the trigonometric heighting. Figure: 4.10 shows 
the contour map of the geoid height that was derived from 35 GPS/lovelling points for 
the Southwest GPS network'. Details of the Southwest GPS Network is listed in 
Appendix E.
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Figure: 4.10 - The contour map of geoid heights derived from 35
GPS/Levelling points for the Southwest Network - (C.I = 0.5 m)
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4.5.2 The Analysis of the GPS Campaign

The new GPS network has been computed on an approximate WGS84 datum. 
For the network adjustment, the GEO LAB software was used to perform a 
simultaneous adjustment in 3D-Cartesian coordinates, (DSMM, 1994). The baseline 
components or the coordinates sets must be adjusted to a unified network for the whole 
project. A minimally constrained adjustment was made with Kertau as the fixed point. 
This datum was constructed by transforming the MRT48 for Kertau Station with the 
DMA-formula, and then using it as the starting point for the GPS campaign. The DMA- 
transformation formula was in the form of a three parameter transformation of Cartesian 
coordinates, (ibid):

X' x “ -11m
Y = Y + 851m
Z WGS84 Z MRT48 5m

.(4.2)

Before the computation of the Cartesian coordinates is done, the levelled heights must 
be corrected for geoid heights according to the formula, (ibid):

Nmrt48 = - 3.833-2.701U+17.86IV + 0.386U2 + 0.980V2 
- 0.793V3 - 2.390UV3 - 1.455 IJ3V3 (4.3)

where:
U = K((|) - 3°)
V = K(A,- 102')
K =0.41887902

There is no description of how the calculation of the formulas was done. The 
only information is that five Doppler points were used for the three parameter formula 
and that the accuracy was ± 3m/coordinate, (ibid). The Ashtech's transformation 
software called DATUM used these parameters for the transformation from WGS84 
to MRT48.

With this new network, a better relationship can be made between the WGS84 
and the MRT48. The Bursa-Wolf transformation model was used for the coordinate 
transformations. In the GPS observations, 32 existing MRT48 points had been 
observed and then were used for getting the six transformation parameters. These six 
parameters are as follows, (ibid):
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(a) 3 translations:

Ax = 378.57465 ± 18.32329s 
Ay = -774.53796 ± 4.68657s 
Az = 86.17115 ± 13.30894s

(b) 3 rotations:

R ^  =  2 " . 5 9 8 0 1 ± 0 " . 4 3 1 1 8  

R y  =  2 " . 1 0 4 2 3 ± 0 " . 2 3 2 0 4  

R / = - 1 2 " . 1 1 3 1 3 ± 0 " . 6 0 9 9 5

In the case of the MRT48, it was agreed to use the above six parameters instead 
of seven since a scale factor is not introduced because this parameter is probably more 
homogeneous in the GPS network, (Thomas and Bo-Gunner, 1991). Another reason is 
that it gives a better fit in the plane to the existing MRT48 than the solution with the 
three translations, (ibid). Furthermore, the rotations are fairly small, giving rise to 
errors in the azimuth of less than one second of arc.

The results of the transformation revealed that the planimetric and height 
differences between the existing coordinates and the GPS derived coordinates are 
within ± 1-3 m level. Thus, they are good enough to qualify for use in all mapping 
works. Furthermore, the distances derived from GPS for the five Doppler points were 
compared with the original distances and found to come within 1-6 ppm. By using a 
three dimensional, six parameter similarity transformation the maximum difference 
between transformed geodetic heights and the Land Survey Datum 1912 (LSD 1912)1 
mean sea level heights is about one metre for the southern part of the MRT. This 
difference is principally the result of inaccuracies in the heights of the triangulation 
points and geoid heights. Thus, in the author's opinion, the results show that GPS 
cannot be used for height determination (as an alternative to levelling operations) for 
the entire country until the entire GPS network has been connected to the first-order 
levelling network.

The on-going scientific work with the advent of the GPS network now 
includes an analysis of a new MRT to replace the old MRT, for surveying and mapping 
purposes. To improve the accuracy of heights derived from GPS measurements, the 
measurement and computation of the precise levelling network should be completed. 
The new MRT system (from GPS surveys) also should be connected to the precise

1 The LSD 1912 had been established by the British Admiralty who carried out tidal observations at 
Port Kelang (known as Port Swettenham before independence) in order to determine the mean sea 
level (MSL). This 'uncorrected' value for the MSL was then adopted as the origin for the levelling 
network.
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levelling network, so that in the near future, the precise geoid heights implied by 
gravimetric methods can be evaluated against the external geoid height estimates, i.e. 
the geoid heights derived from GPS/levelling network.

Currently, a revision of the first-order levelling network is being executed by 
the DSMM with the aim of carrying out a simultaneous adjustment of this levelling 
network. The input data consists of both old data from conventional levelling and 
new data from the Motorised Levelling programme. Up to now, the only results 
revealed in connection with vertical datum realisation is that the difference between the 
LSD 1912 and the mean sea level values obtained for consecutive years, 1983-1987, 
at Port Klang tide gauge station is 59mm. Moreover, it has been estimated that the 
accuracy of the revised heights of the triangulation points is of the order of about half 
a metre, (DSMM, 1994).

4 .5 .3  The Federal Territory GPS Project

Since it is impossible at the present stage to produce a precise local geoid for 
the whole Peninsular Malaysia (mainly because of the unavailability of uniform 
gravity data -Section 4.2, and lacks of local DEM -Section 4.3), the Federal Territory 
area has been chosen by the DSMM as the test area for a pilot project in establishing the 
optimum height values in a fully observed heighting system. The aim of this project is 
to fully capitalise upon the impact of GPS to provide meaningful height values for the 
Federal Territory area which can be used for surveying and scientific purposes. 
Therefore, in early 1994, about 50 GPS stations, spacing between 2 km to 30 km in 
length were established in the Federal Territory area using four Ashtech dual frequency 
receivers. One receiver was always operated on a fixed reference station, whereas the 
other three receivers were used on the traverse simultaneously. The field work as well 
as the coordinate adjustment computations of these control points were done by the 
DSMM, which made this data set available in April 1994, (Samad - Private 
Communication).

In conjunction with this GPS campaign, orthometric heights were also 
established at these control points from the second order and tertiary levelhng lines, for 
which no homogeneous adjustment has been performed. Details of the Federal 
Territory GPS Network project is listed in Appendix F. Figure: 4.11 depicts the 
location of GPS stations and the contour of GPS-derived geoid heights.

94



101.65 101.70 101.75

-4.03

-  3.2253.225 -

8
cô05

-  3.2003.200 -
CP COw

-3 .1 7 53.175 -

S' 3.150 — -  3.150
0)

T33
(0 -  3.1253.125 -

-  3.1003.100 -

-  3.0753.075 -
CO

s

-  3.0503.050 -

101.65 101.70
Longitude (E)

101.75
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4 .6  Analysis of the Data Used for Geoid Height Estimation

The gravimetric geoid estimation has an important role to play in the 
propagation of orthometric heights from GPS heighting (equation 3.2). The question 
may arise how well N will need to match h in higher precision so that the precision of 
H will not be seriously eroded. However, the precision required for H will depend 
upon the purpose for which heights are being used. For example, some tasks will only 
require H to a few metres, in which case the constraints on the determination of h and 
N can be relaxed (see Table: 3.5). For the highest order requirement, the precision to 
which h (or Ah) can be found limits the precision of H (or AH), and dictates the 
precision requirements for N (or AN). The following sections therefore, will analyse

95



the limitations imposed by the data used in this study which will give an insight into 
the accuracy of geoid height estimation and its evaluation against the available 
GPSAevelling-derived geoid in some of the test areas.

4 .6 .1  Analysis of Elements Ag and N

In general, the quality of the estimation of N or AN depends on several factors 
such as the choice of the reference field, density of the data set, data coverage and 
measurement accuracy. These factors show interrelated phenomena. A number of 
different estimates of geoid height accuracies have been quoted by many geodesists, 
and it is informative to review some of these. The aim of this section is to look at some 
limitations which may be imposed by the data used in evaluation of accuracy estimates 
for geoid determination in Peninsular Malaysia.

As previously mentioned in Section 3.5, apart from a geopotential model, the 
main contribution to the regional or local geoid height computation comes from 
terrestrial gravity data and height data. In practice, the measurements (signals) are 
always given in some regular grid or randomly distributed in a finite area. According to 
the sampling theorem (Bracewell, 1978), it is in fact possible to recover the 
intervening signal from sample data if the signal is band limited. In reality, however, 
there is always an error in the spectrum of the gravity quantity due to insufficient 
sampling which is termed an 'aliasing ejfect ', see Figure: 4.12.

.Signal

Aliased Signal

Figure: 4.12 - Aliasing effect due to insufficient sampling rate

Since the gravity data in most parts of the peninsula region are not well covered, 
it is rather difficult to reduce the aliasing error of a given data set. However, this error 
could be minimised in a very dense data set, for example in the southern area of the 
peninsular. According to Tscheming and Forsberg, (1986), the short wavelength part 
of the gravity field is mainly contained in the topographic information, especially in the
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mountainous areas. If we, e.g. have gravity anomalies predominantly from the valleys, 
the gravity field will generally be too low, resulting in a biased geoid. Thus, using the 
terrain correction, discussed in Section 3.6, can also in some sense reduce the aliasing 
error for the test areas which have accurate (high resolution) gridded elevation data.

The question also arises as to how well the geopotential model OSU89B can 
represent the medium to long wavelength characteristics of the gravity field, e.g. Ag 
and N (or AN) for the peninsula region. The accuracy of the geopotential model is 
dependent on that of the observational data, i.e., gravity field information from which it 
is derived. The medium to long wavelength errors in the geopotential model may 
originate in insufficient satellite tracking data, lack of terrestrial gravity data and 
systematic errors in satellite altimetry, (Forsberg and Madsen, (1990).

As previously mentioned in Section 3.5, the main effect of reducing the data 
from the geopotential is to get a more homogeneous gravity field, i.e. the mean value of 
the reduced anomalies should decrease to a small value (preferably close to zero). Since 
the gravity anomalies for areas hampered by lack of surface gravity data, e.g. in most 
Asian regions including Peninsular Malaysia, were 'filled in' by low resolution of 
gravity field information for the OSU89B model solutions (see Section 4.4), the model 
therefore, is not expected to give accurate representation of the Ag field in this region. 
However, before any definite conclusion can be drawn, the geopotential model 
OSU89B needs to be analysed against available point gravity anomalies in the 
peninsula, and this exercise will be presented in the next chapter.

Various tests have been carried out to evaluate the ability of geopotential models 
for recovering the medium to long wavelength features of geoid heights. For example, 
the analyses of four data sets (in Ontario, Manitoba, Western Australia and South 
Australia) has shown that the ability of the geopotential model, for example, 
OSU81(nniax=180) model to fit AN varies greatly with location; being 4 to 5 ppm in the 
Ontario and South Australia areas, and about 10 ppm in the Manitoba and Western 
Australia areas, see Kearsley, (1986). The report by Schwarz and Sideris, (1985) 
suggested that, in Canadian areas, high order geopotential models can recover AN at 
the 5 to 7 ppm level in flat terrain and 6 to 9 ppm in mountainous terrain. Another test 
has also been carried out by Rapp and Wang, (1993) which showed that the relative 
geoid height comparisons between the Nqsu91A  and the N o p s / i e v e i i in g  was about 
4 ppm, 5 ppm and 7 ppm for the areas of Europe, Australia and Canada, respectively. 
Tests in the Irian Jay a (Indonesia) region have shown that the OSU89A model can 
recover the relative geoid at about 10 ppm, see Kasenda and Kearsley, (1992). These 
large differences probably reflect the comparative weakness in the gravity field 
information from this region used in the solution of the OSU89A (and OSU89B) and
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the poor quality of the height information used (ETOP05U global DEM) in the 
gravimetric solution. Therefore, as was the case for the Indonesian region, it can be 
expected that the contribution of the medium to long wavelength components ( N q m )  

of the OSU89B model to AN could be as much as 10 ppm for the Peninsular Malaysia 
region.

In the case where the available geopotential models do not approximate the 
regional gravity field data very well, a tailored model could be used. The tailoring 
means fitting to the surface gravity data in a specific region. This method has proved 
useful in some areas. For example, the comparisons of the OSU86F model and the 
tailored model IFE88E2 with GPS/levelling data from the Scandinavian GPS traverse 
has shown an improved accuracy of the IFE88E2 model, see Basic et.al., (1989). 
Since the tailoring method has proved to yield very good results for.local confutations, 
the available geopotential model OSU89B is therefore, to be tailored to updated 
gravity anomalies in this region. As previously mentioned in Section 1.1, it has 
become standard practice in recent years to compare computed geoid heights with those 
derived independently from a combination of GPS observations and orthometric 
levelling, i.e. NopsAeveiiing* Thus, the results of 'NxaUored model' will be compared 
against NopsAeveiiing and also N q s u 89B» see Section 5.7.3.

The accuracy of the short wavelength component (N/\g) can be estimated by 
analysing the density of the gravity data coverage within the area where the control 
point is positioned. The short wavelength component ( N t c )  can be analysed using the 
topographic features of the site. It is expected that for the smooth areas with plentiful 
gravity, e.g. Area C (see Figure: 4.4), and Federal Territory (located in Southwest of 
Area B- see Figure 4.5), the accuracy of the gravimetric geoid will be better. In the 
eastern part of Area A (see Figure: 4.6) and the central part of Area B with very sparse 
gravity coverage and rugged terrain, the accuracy of the gravimetric geoid will be 
considerably worse.

4 .6 .2  Analysis of Element h

Apart from problems in the coverage and roughness of the gravity field, the 
possible error in the element h and H of the control data, i.e. GPS data also has to be 
considered in the estimation of N and AN. In general, there is little significant variation 
in the error estimation of h at all the control points after the adjustment, reflecting 
reasonably homogeneous and well-conditioned data. This parameter is, therefore, not a 
critical, or sensitive gauge of the veracity of the h values used in the analysis. Probably 
the only errors occurring in element h are the relative error of ellipsoidal heights (9Ah), 
which were directly observed in the GPS surveys. These errors are subjected to satellite
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orbit error and the tropospheric and ionospheric effects, and therefore they might have 
degraded the integrity of the GPS heights in the vicinity of these baselines. Otherwise, 
the h element is expected to be the most trustworthy element as compared to H. In the 
author's opinion, the element h therefore, is the one which is probably the best 
determined of all elements. This is because the relative accuracy of the element h for 
baselines between 10 to 50 km is about 2-3 ppm, (DSMM, 1994). However, it should 
be emphasised that not all levelled lines were directly measured by GPS, and that the 
Ah over these lines were determined indirectly, (ibid).

4 .6 .3  Analysis of Element H

Spirit levelling is a highly precise procedure for relative height determination 
(AH), but as with all observational techniques relying on mechanical instruments, it is 
subject to errors. For example, there are sources of error within a levelling loop, due to 
such factors as the length of line, number of stations (and topography) and even the 
amount of time spent in observing. Errors are classified as systematic and random 
(Bomford, 1980). The accuracy of levelling is conventionally described as a function 
of line length, even though the accumulation of error may be due to other factors. In 
1948, the lAG defined first-order levelling, i.e. geodetic levelling to have a probable 
total error (systematic and random effects) of less than 2 millimetres per Vkm of 
length (2 mm Vkm) along a line. The error in second and third-order levelling derived 
height is difficult to ascertain, but an estimate for peninsular Malaysia is adopted from 
the tolerance of ±6 and ±12 millimetres per Vkm, respectively, (Khairul, 1994-Private 
Communication). The specifications translate into relative accuracy of 0.6 to 1.9 ppm in 
the first case and 1.2 to 3.8 ppm in the second case for distances between 10 to 100 
km. It has been shown by Featherstone, (1992) that the assumed errors in orthometric 
height (an) and ellipsoid height (ah) can be combined to give the geoid height 
uncertainty (gn) using simple error propagation theory; (cTn = V^h This gives 

the following estimates of GPS derived geoids to be: ±4 cm for geodetic levelling, ±6 
cm for secondary levelling, ±9 cm for tertiary levelling, ±50 cm for trigonometric 
heighting over a distance of 50 km, (ibid). Figure: 4.13 depicts the allowable errors in 
leveUing operations.
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Figure: 4.13 - Allowable error in levelling

By looking at the above estimated accuracies of various levelling procedures 
and element N(and Ag) and h, the H value is the most likely to be in error and, as 

such, is most likely to be suspect. Since most of the orthometric heights at GPS points 
have been taken from the second order and tertiary levelling lines, for which no 
homogeneous adjustment has been performed, the accuracy for the Federal Territory 
GPS-derived geoid height can be estimated not better than ± 10  cm. The accuracy for 
the Southwest GPS-derived geoid height can also be estimated, but as low as half a 
metre because most of the orthometric heights of these GPS points have been 
determined using trigonometric heighting. Thus, it is obvious that orthometric heights 
at each GPS station have been determined with varying degrees of accuracy making 
comparisons between gravimetric and geometrical geoids inhomogeneous and 
unreliable. At the time that this study takes place, it therefore cannot be used to 
ultimately control the gravimetric geoid in the test areas but does provide a valuable 
comparison.
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CHAPTER 5

THE FORMULATION AND APPLICATION OF A TAILORED 
MODEL FOR THE MALAYSIAN PENINSULAR REGION

5.1  Introduction

As previously mentioned in Section 3.5, the role of existing geopotential 
models in geoid studies is mainly to determine the medium to long wavelength geoidal 
features and to provide a reference field for terrestrially-derived gravity anomalies used 
in for example, Stokes' Integral, to find the short wavelength component of the geoid 
signal. 'Tailored' geopotential models fitted to the regional anomalous gravity field 
have also been developed to provide a similar reference field although they are restricted 
to certain conditions. The need for these geopotential models is further augmented by 
the increasing use of GPS data. This is because of the need to recover geoid features 
to a higher precision in order to obtain conpatible precise orthometric heights from 
the GPS. This chapter therefore will present the information on the work done for the 
application of the existing geopotential model and the development of the tailored model 
as reference field for the anomalous gravity field used for this study. The analysis of 
the test results with respect to point gravity anomalies and GPS control data are also 
presented and discussed in this chapter.

The significance of the application of the available geopotential models and 
tailored models as reference gravity fields for geoidal studies is first discussed in this 
chapter. Next, the pre-analysis of the existing OSU89B model that was used to smooth 
the available local gravity anomalies is briefly presented. The following sections then 
will describe the theoretical background of the tailored method and its development. 
The numerical results for both, the existing OSU89B model and tailored model for 
residual gravity anomalies and geoid model (medium to long wavelength features) 
compared to GPS-derived geoid heights is fully presented and analysed in the last 
section of this chapter.

5 .2  Review of Existing Geopotential and Tailored Models Used as
Reference Gravity Fields

The representation of the earth's gravitational potential by a set of spherical 
harmonic potential coefficients (Cnm. Snm) has evolved considerably in the past 25 
years. Initial representations were of low degree and hampered by lack of surface 
gravity information (see Table: 3.3). The improvements in data availability, 
mathematical developments, and computer hardware and software facilities have led to
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solutions that are complete to degree and order 360, (see Table 3.4). These high degree 
geopotential models have proven to be very useful to provide medium and long 
wavelength reference fields for anomalous gravity, enabling geoid determination to be 
carried out using local gravity data, as demonstrated by many geodesists, e.g. see 
Kearsley and Holloway, (1989), Mainville, et.al, (1992) and Gil, etal., (1993). 
Depending on the maximum degree of the geopotential model applied and on the 
regional extent of the computation area, the medium part of the gravity spectrum is 
contributed from the overlapping portion of the geopotential model and the observed 
gravity data. Here, the main effect of reducing the data by the geopotential model is a 
decrease in variation of the gravity field, i.e. the mean value is close to zero and the 
gravity field becomes more homogeneous. However, it has been recognised that the 
modelled part of the gravity may contain long wavelength errors, which adversely 
affect the geoid heights derived therefrom (Forsberg and Kearsley, 1989).

The development of accurate geopotential models is dependent on accurate 
satellite observations from a variety of satellites at different inclinations, from the use 
of satellite altimeter data in some form, and the use of updated surface gravity data. 
However, as progress in the collection and compilation of new gravity field data is 
slow, improved geopotential models are released only at time intervals of two to five 
years, e.g. OSU81, OSU86E&F, OSU89A&B and the latest OSU91A model. Thus, it 
is not guaranteed that both sources of information represent the same structures because 
regional studies of the geoid, carried out by local authorities, are often based on detailed 
gravity information some or all of which did not enter into the computation of the 
existing geopotential models. Consequently, the models do not approximate the 
regionally existing gravity field data very well in some parts of the world.

Various strategies can be followed for optimum combination of geopotential 
model and local data for determination of medium and short wavelength signals of the 
geoidzd height One way of resolving the contributions of these wavelength signals is 
the truncation of harmonic expansions to a certain low degree and extending the size 
of the area within which the data is evaluated by the LSC method, see Sideris and 
Schwarz, (1986). Unfortunately, the advantages of having a high degree harmonic 
expansions are lost.

One development in this area is the tailoring of the available geopotential 
model to fit the gravity field over the area under consideration. This approach was 
originally developed by Weber and Zommorodian, (1988) and further refined by 
Basic, (1989). The resultant tailored models, for example, IFE87E2 (Basic, 1989), 
IFE88E2 (Basic, et.al., 1989), GPM2-T1 (Ayhan, 1993) and 0SU91AT (Li and
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Sideris, 1994) have been proven to yield very good reference fields for local 
geoid solutions. An analysis of tailored model approach to potential coefficient 
determination has been carried out by Kearsley and Forsberg, (1990). This paper 
points out that tailored models can only provide a good reference field for local or 
regional geoid solutions, if the gravity data used in the tailoring procedure has 
improved, in density and quality, since the original geopotential models were 
developed. Furthermore, these 'updated' data should be distributed evenly over the 
areas of the fit. In areas where no new gravity data were available, no geoid model 
improvements were found, (ibid).

It should be emphasised that there is no improvement of the fitted models with 
respect to global applications as they are derived specifically to improve local geoid 
solutions. Nevertheless, their solution is fairly straightforward, and significantly less 
demanding than a full global solution, i.e. no global database is used. This method 
also has the advantage over the other methods in that the application of high degree 
harmonic expansions are preserved since no truncation is necessary. The tailored 
method could be of great benefit for Peninsular Malaysia since most of the updated 
gravity data in the region were not released for the available geopotential model 
computations, (Majid, 1992 - Private Communication).

5 .3  Pre-analysis of the OSU89B Geopotential Model
for the Malaysian Peninsular Region

The use of a higher degree and order geopotential model like OSU89B to 
smooth the terrestrially-derived gravity anomalies is a well known procedure before a 
local or regional gravimetric geoid computation takes place. The choice of the global 
model must be done by subtracting the contribution of such models from the local 
gravity data and then analysing the residuals that must have: (i) an empirical mean 
value as near to zero as possible. If OSU89B were a perfect representation of the field 
then these residuals would be very close to zero; (ii) A small standard deviation as 
evidence of the internal consistency of the gravimetric values, and (iii) a small signal 
variance. The results can also be tested using the root mean square (rms) which gives 
some measure of the fluctuation of the residual gravity field from the geopotential 
model.

To visualise the effect of the gravity reductions achieved by the OSU89B 
geopotential model, the medium to long wavelengths contribution of this model to 
gravity anomalies are computed at 1815 points, using the written program 
GEOMODJFOR . The residual anomalies (Aĝ ) are then derived as a difference between
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the corresponding observed anomalies (Ag^) and the model derived-anomalies, i.e. 
Umax =360* using equation (3.19):

Agr = Ago - AgGM (5.1)

Hie techniques utilised for testing the OSU89B geopotential model are standard 
statistical tests. The ST AT.FOR program was written to calculate these statistical tests 
which include the mean, the standard deviation, the rms and the variance values for the 
residuals (differences) between the observed Ag value and the corresponding global 
gravity model.

The mean value takes account of the sign of the residual gravity anomalies, and 
will tend to zero if there are similar magnitudes of positive and negative values. The 
mean value of the residual gravity anomalies is given by:

lA g ,
Ag = ^ ----- .(5.2)

A standard deviation of residual gravity anomalies is evidence of the internal 
consistency of these gravimetric value, and is given as:

Std.Dev(Ag) .(5.3)

The rms value is derived from equation (5.4) below, which indicates how well the 
model picks up the high frequency signal in the gravity field.

rms(Ag) =
lA g f

(5.4)

Variance is a measure of variation that is the averaged the squared deviation of the n 
sample observation from the sample mean. Thus, the variance of the residual gravity 
anomalies is given by:

Var(Ag) =  — ,(5.5)
n -1
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The statistical characteristics of observed gravity anomalies and the corresponding
anomalies reduced to the OSU89B model are given in Table: 5.1.

Statistical Test 
(in mgals)

Observed Anomaly Residual Anomaly

Mean 12.85 -16.09

Rms 19.92 27.85

Standard Deviation 15.22 22.74

Variance 231.6 517.1

Table: 5.1 - Statistical results of anomalies using OSU89B 
as a reference model

From the results of Table: 5.1, it is apparent that the mean of the residual 
anomalies was not close to zero value and in fact was bigger than the counterpart mean 
value of the observed anomalies. Similarly, the rms, the standard deviation and the 
variance values of the residual anomalies have shown that the use of OSU89B does not 
perfectly represent the gravity field over this region. It is of more importance to 
discover if the tailored model has a similar effect when comparing against point values 
of geoid height (N) because such factor is not so critical as when comparing to gravity 
anomalies (point or mean anomalies), see Kearsley and Forsberg, (1990). However, 
this test on N and more comprehensive statistical tests of the residual anomalies using 
this OSU89B with the tailored model will be analysed later. To this end, it can be 
recognised that the available OSU89B model does not approximate the regionally 
existing gravity field data very well. Thus, the modelled part of the gravity signals in 
the OSU89B coefficients, may contain long wavelength errors, which may also affect 
the geoid heights derived therefrom.

5 .4  A Tailored Method

This section describes a method for geopotential model improvements based on 
a fitting of the model to match the regional structure implied by the terrestrial gravity 
data. The mathematical derivation is based on the method published by Weber and 
Zomorrodian, (1988). The method leads to a harmonic expansion of non-global 
distributed differences between model and regional terrestrial data up to a certain degree 
and order. The resultant potential difference coefficients consequently have to be added 
to the original coefficients, giving an improved geopotential model fitted to the regional 
gravity field, which is suited for further consistent combination solutions.

105



In spherical approximation the expansion for gravity anomalies is given by:

GM ^  /"aY n
Ag' = — ~  (ACnrnCOSmA, + ASmnSinmX)Pnm(COS0)} .....(5.6)

^ n=2 V r  ✓ m=0

where GM is the product of the gravitational constant and the mass of the earth; r is 
the geocentric radius; a is the semi-major axis of the reference ellipsoid; Pmn is a fully 
normalised associated Legendre function; n^ax is the maximum degree of expansion; 
pn is a damping function which can be evaluated from a recurrence relation; 0 is the 
spherical polar distance and A. is the longitude.

As we are primarily interested in finding the potential coefficients from gravity 
anomalies, the orthogonality relationship can be applied on (5.6) yielding:

AC.

AS_
,= _ L r f_ E L f iT J _ A g

47 tJJG M U ; n -1
^cosmXV

P„(cos0)da  (5.7)
sinmX

where da is the element of unit sphere.

The actual evaluation of (5.7) is carried out using a set of mean gravity 
anomalies. Thus a mean anomaly can be computed from (5.6) as follows:

A g '= - ^ ^ Y ( n - l ) f - l  Y  [(AC...., cosm>. + AS„ sinmX,)dA-Jp„(cos0)sin0d0

 (5.8)

where Aa is the surface element of the unit sphere, and 0n> 0s, W , are the 
boundaries of the integration area.

The mean anomalies Ag', computed from the potential coefficients of the start 

model AC...,, AS,, using (5.8), are subtracted from the terrestrial mean anomahes Ag 

yielding residual anomahes:

5Âg’ = A g -A Ï  (5,9)

These residual anomalies can be expanded in spherical harmonics to yield corrections to 
the higher order potential coefficients:
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3AC,

BAS'.
.(5.10)

where lis  the number of differences occurring between model and terrestrial anomalies, 
Aa is the area of integration, and Pn is the Pellinen damping function which can be
viewed as a de-smoothing operator that tries to take into account that frequencies are 
damped out in taking the average to obtain the mean anomaly. The p^ function can be

computed using the following expression:

Pn =
1 1

1-cosYo V2n+T
(Pn-i (cos Yo )) -  Pn+i (cos Yo )) .(5.11)

where Yo is the radius of a spherical cap with the same size as the area of integration 
Aa. A computation of the P„ can be performed using the recurrence procedure, see 
Sjoberg, (1980).

Finally, the coefficients of the fitted potential model are obtained by adding the 
potential difference coefficients obtained from (5.10) to the start coefficients, that is:

AC",

AS''

A C _ 9AC„
► + '

A S '„ . 9A S „ ,

.(5.12)

Mean anomalies from this improved set of potential coefficients can be obtained by 
analogy to equation (5.8):

GM
Ag"=-r— Y  (n -1 ) -  Y  I (A C "„„cosm X  +  AS"n,„sinmX)d>. I P nm (cos0)sin0d0

rAa;S vry L
.(5.13)

where n^ax is the maximum degree of expansion. Then the differences 0Ag" will give 

the residual misfit to the new model where:

0Ag"=Ag- Ag" (5.14)

is defined in analogy to equation (5.9).
From the new tailored model the differences OAg" may once again be formed 

iteratively. Thus, the iteration procedure will give the following residual misfit as:
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(3Ag)i =Ag- (Ag' )i .... (5.15)

where the index i signals the ith tailoring step. The differences (dAg)^ will not vanish 

completely, i.e. will not be zero due to aliasing and leakage effect, and the various 
approximations in the method. Equations (5.10), (5.11), (5.12), (5.13) and (5.15) can 
be used iteratively until (9Ag)  ̂ no longer shows a significant decrease in the rms 
variation. In practice, two to four iterations are required before sufficiently small 9Ag 
values are obtained. When the integration of equation (5.10) is carried out over a local 
area only, it is thus implicitly assumed that the (9Ag) is equal to zero outside a.

5 .5  The Data

A set of 0.5“ X 0.5“ mean anomalies was constructed for the test area using 
1815 gravity data points. As described in Section 4.2(ii), these data were observed by 
the Department of Physics, USM and the Department of Surveying, UTM, and their 
values are referred to the IGSN71. For the construction of the mean anomaly set 
for the peninsula, the area of (1“ < (|) < 7“, 99“ < A,< 105“) was divided into small 
grid cells of 5' x 5'. For each of these cells the gravity mean anomahes were estimated 
using weighted means prediction method from the available gravity points in the area 
under consideration. Due to poor resolution of ET0P05U global DEM and the absence 
of detailed local DEM for the whole peninsula, the mean anomalies are directly 
predicted from point free-air anomahes without anticipation of topographic effect. The 
prediction of point or mean gravity anomahes based on point gravity anomahes can be \ j  
processed directly without associated with terrain reductions, as long as the terrain is 
reasonably flat within the area of consideration, (Sunkel, 1981). In fact, more than \ ‘ 
95% of the gravity points are located in the area of considerably smooth terrain, i.e. 
less than 200 metres in altitude, and therefore, no data reduction seems to be necessary.
The correction for atmospheric effects according to equation (2.57) was also apphed for 
the observed gravity anomahes. In the computation, a constant term ÔgA = 0.87 mgals, 
which is the atmospheric correction at sea level, was used. Doing this wih not cause 
any accuracy loss in this correction considering the smooth terrain in most areas, and 
the small effect of the atmospheric effect itself.

The weighted means method predicts the gravity anomaly at a prediction point 
by taking the weighted mean of the nearest observations surrounding the point. 
Weights are assigned to the observations inversely proportional to the distance d, raised 
to some power v, of the observations from the prediction point. The observed 
anomalies which are closest to the prediction point contribute most to the prediction 
value. However, the method performs very well in areas where data is comparatively
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dense, and may yield unacceptable results where data coverage is sparse. The weighted 
mean prediction method is simple, and requires minimal programming effort

The program WEGT.FOR was written to perform these computations. The 
mathematical model of the weighted means prediction method is given by:

y  ^gj
Zrf JV

Y —
.(5.16)

where Agp is the predicted gravity anomaly at point P; Ag. is the value of anomaly at 
ith. data point; d^ is the separation between ith. data point and P; n is the number of 

observations; v is the ejq)onent of d for the weights, and in practice, it is usually taken 
as 2, see Kostainien and Kakkuri, (1980).

The accuracy of the prediction is obtained by error propagation:

dAgp
- .(5.17)

where is the variance of the i th observed gravity anomaly, so that

i = l

-

2
1 2

d^

/   ̂ \ 2 "
n

I
i = l

(5.18)

where Âgp is the variance of the predicted anomaly at point P.

The mean anomalies of 10' x 10' blocks were obtained by taking a simple 
average of the 5' x 5' grid cells anomalies. The mean 0.5* x 0.5* mean free air 
anomalies were then obtained by averaging the values of 10' x 10' sub-blocks. For 
the final product, mean anomalies were deleted where no observation or sparsely 
distributed data was located inside corresponding 0.5* x 0.5* blocks. This editing 
resulted in a set of 38 mean free-air anomahes for the peninsula that were used for 
the computation of the tailored model. A full set of mean gravity anomaly values are
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given in Appendix G and Figure: 5.1 shows the location of their corresponding 0.5° x 
0.5° blocks that were used in the tailoring procedure.

The stepwise averaging, taking 10' x 10' block means as intermediate results 
used for this computation of 0.5° x 0.5° mean anomalies, supports the need for higher 
resolution gravity data and avoids the generation of block means from insufficiently 
distributed sub-blocks. The stepwise averaging procedures have been implemented in 
Weber and Zommorodian, (1988) and Basic, (1989).
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Figure: 5.1 - The 0.5° x 0.5° mean anomaly blocks used in the 
computation of the tailored model OSU89B-MM

5.6  The Tailored Model Development

The 0,5° X 0.5° mean anomaly data set was used to compute a tailored model, 
called OSU89B-MM {MM stands for Malaysian-Mode I ). The available geopotential 
model OSU89B complete to degree and order 360, was chosen as a start model in the 

program GEOIGP, (Denker, 1993-Private Communication). The program was modified 
to perform this task. As previously mentioned, the very low degree harmonics should 
not be modified based on local data, both because of the limited data collection area and 
systematic effects, and because these coefficients are well determined from satellite
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solutions, see Basic, (1989). In this experiment, the coefficient changes for the low 
degree harmonics, i.e. n < 20 were then tapered off to reduce leakage effects since they 
have relatively little influence on the results. This was achieved by multiplying the 
potential difference coefficients OAC^, OAS'^ obtained firom equation (5.10) by a 
weight function Wn depending on the harmonic degree n. Here, a weight function 
was put equal to zero up to degree 20, and equal to 1.0 above degree 20.

Wn = 0; for 2“ ^ n < 2 0 "  and W n = l ;  for 2 r < n ^ 3 6 0 * .(5.19)

The differences 9Ag' between the corresponding 0.5° x 0.5° mean anomalies 

from the observed data and the start model OSU89B were calculated, and then 
expanded into a series of spherical harmonics up to degree and order 360. A 
consequence, however, of using such a procedure is a reduced rate of convergence 
of the whole process and the necessity to carry out the computations iteratively until 
dAg no longer shows a significant decrease in the rms variation. In total, 3 iterations 
were performed for the computation of the tailored model, OSU89B-MM.

Results firom the comparison of the 0.5° x 0.5° mean gravity anomalies between 
the start model OSU89B and the tailored model OSU89B-MM is summarised in 
Table: 5.2. The improvement of the results is graphically reflected in Figure: 5.2.

Iteration 0 1 2 3

Geopotential
Model

Start Model 
OSU89B

Tailored Model OSU89B-MM

Mean -13.80 -1.37 -0.12 -0.02

Std. Dev. 21.45 3.85 1.74 1.15

Rms 25.26 4.04 1.72 1.14

Min. -83.23 -12.96 -2.88 -2.48

Max. 7.15 4.58 2.42 2.00

Table: 5.2 - Comparison of 0.5° x 0.5° mean gravity anomalies with the 
start model OSU89B and the tailored model OSU89B-MM
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Figure: 5.2 - Decrease of differences between mean gravity anomalies from 
OSU89B and OSU89B-MM with respect to iteration number

As can be seen from Table: 5.2 and Figure: 5.2 the tailored model OSU89B- 
MM improves the mean value significantly over the start model OSU89B, decreasing 
from -13.80 mgals to 1.37 mgals after only the first iteration. More improvement 
occurs with successive iterations. The rms fit of OSU89B-MM shows a very 
significant improvement, changing from 25.26 mgals to 4.04 mgals in the first 
iteration and 1.14 mgals in the last iteration. Similarly, the standard deviation, 
minimum and maximum values also show a very dramatic improvement in the first 
iteration, with lesser improvements in the subsequent iterations. Thus, to this end, it 

could be concluded that OSU89B-MM fits the mean gravity anomalies (Ag) in the 

Peninsular Malaysia region significantly better than OSU89B.

As previously mentioned in Section 5.2, the analysis carried out by Kearsley 
and Forsberg, (1990) has pointed out that a tailored model will only provide a good 
reference gravity field to the area for which new gravity data (updated data) was added, 
and these data must also be accurate and distributed sufficiently over the area of the fit. 
In other words, in areas where no updated gravity data was included in the analysis for 
the coefficients of the available geopotential model, no model improvements can be 
obtained. Thus, in order to substantiate the above statements, the computation of 
another tailored model, called OSU89B-MM1 was then carried out.
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The tailored model OSU89B-MM1 was developed using the same gravity data 
as with OSU89B-MM tailored model development, with the exception that the gravity 
points (about 300 points), located in the selected test area. Area X (2.5“< (j) <3.5% 
101.5°< X < 102.5° - see Figure: 5.3) were not used for this tailoring computation. It 

was revealed that most of the updated gravity data in this area have not been released to 
be included in the geopotential model OSU89B, (Majid, 1993-Private Communication). 
The same tailoring procedures described in Sections 5.4, 5.5 and 5.6 was applied to 
develop OSU89B-MM1 model. Figure: 5.3 also shows the location of the mean firee- 
air anomalies of 0.5° x 0.5° blocks that were used to develop tailored model OSU89B- 
MMl.
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Figure: 5.3 - The 0.5° x 0.5° mean anomaly blocks used in the 
computation of the tailored model OSU89B-MM1

5 .7  Evaluation of the Pre-existing Geopotential Model OSU89B and 
Tailored Models OSU89B-MM and OSU89B-MM1

The following sections deal with various tests between the pre-existing 
geopotential model OSU89B and the two developed tailored models OSU89B-MM and 
OSU89B-MM1 against point gravity anomalies and mean anomalies in the area of
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interest These higher degree and order models will also be tested against the available 
GPS-derived geoid heights.

5.7 .1  Evaluation of Point and Mean Gravity Anomalies

A number of tests have been carried out to evaluate the ability of the pre
existing geopotential model OSU89B and the tailored models, OSU89B-MM and 
OSU89B-MM1 against point gravity observations. These models were used to estimate 
values of the gravity signal at points where they have been observed. A subtraction of 
the estimation values from the observations leave the residual values which will 
describe the local behaviour of the gravity signals only. As previously mentioned in 
Section 5.3, the signals are required to have a small mean value (preferably zero mean 
value) and to describe a homogeneous (smooth) gravity field. To assess how far each 
model behaves, the AgcM (equation 3.19) at each data point was generated from each 
model's potential coefficients using the program GEOMOD. The test can be divided 
into four parts:

(i) Test I - Test of OSU89B and OSU89B-MM against 1815 point gravity 
anomalies (supplied by UTM in July 1992) for the whole peninsula. The aim is to 
evaluate which one of these reference models can describe adequately the local 
behaviour of the gravity field and also can provide the most homogeneous gravity field 
information for Peninsular Malaysia.

(Ü) Test II - Test of OSU89B and the two tailored models against point 
gravity anomalies in the test area X (Figure: 5.2). The aim is to see whether the 
tailored model is degraded or not, when the updated gravity data (accurate and good 
coverage) from this test area is excluded in the tailoring procedures. This test will 
also highlight the conditions under which such fitted models are an improvement over 
the pre-exising geopotential model, i.e. reflects the strengths and weaknesses of the 
data used in the tailored model developments.

(iii) Test IB - Test against new point gravity observations, supplied by the 
DSMM in March, 1994. These new gravity values were not used in the development 
of the tailored model OSU89B-MM. The aim is to see whether tailored model 
OSU89B-MM can approximate the 'recent updated' regional gravity field very weU 
compare to geopotential model OSU89B. Also, from this test results, one may verify 
the improvement of OSU89B-MM over OSU89B because this verification is of 
considerably importance before combining the reference model (either pre-existing or 
tailored models) with local gravity data for preliminary gravimetric geoid determination 
in Peninsular Malaysia, see Chapter 6.
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(iv) Test IV - Test between the mean residual anomalies of OSU89B and 
OSU89B-MM. The mean residual anomalies were derived using equation (5.2). The 
aim this test is to evaluate the closeness of fit to mean anomalies (mean residual 
anomalies on 0.5" x 0.5" block basis) for each model with respect to gravity density 
and coverage, and the terrain types over Peninsular Malaysia. Again, the analysis will 
suggest how good the coverage of the long wavelengths is, per model, in this region.

5.7.1.1 Test I

In this test, the statistical data of the residuals (differences) between the 
generated gravity model from OSU89B and OSU89B-MM, and the corresponding 
1815 observed Ag values were analysed for the whole peninsula. The differences 
between the observed and predicted values suggest how good the coverage of the long 
wavelengths is, per model, in the peninsula region. The results of these comparisons 
are summarised in Table: 5.3.

Unit in mgals
Observed
Gravity ■ ^êoSU89B ■ ^SosU89B-MM

Mean 12.85 -16.09 -0.60

Standard Dev. 15.22 22.74 11.22

Rms 19.92 27.85 11.23

Min. -31.45 -96.10 -65.55

Max. 82.09 37.25 65.69

Table: 5.3 - Statistical comparisons between OSU89B and OSU89B-MM 
for point gravity anomalies over the Peninsular Malaysia

From Table: 5.3, it is clear that the tailored model OSU89B-MM gives better 
results for the gravity reference fields over the peninsula region with the mean of 
residuals of only -0.60 mgals, compared to -16.09 mgals for the original model 
OSU89B. The standard deviation and the rms value is reduced by more than 50% 
with the OSU89B-MM, i.e. 11.22 mgals and 11.23 mgals compared to 22.74 mgals, 
27.85 mgals for the OSU89B, respectively. From the above statistical results, it is 
obvious that the tailored model OSU89B-MM describes more homogeneous gravity 
field of Ag compared to the pre-existing model OSU89B, implying better long
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wavelength signals in this region. This condition is very important in local studies 
leading to a solution of the BVP.

5.7.1.2 Test U

It is quite interesting to discover if OSU89B-MM can approximate the available 
gravity field data very well for the test Area X, compare to OSU89B-MM1 and 
OSU89B. This test will lead to the conclusion that a tailored model can provide a 
superior reference gravity field, even for a small area if the gravity data used in the 
tailoring procedure has improved, in both density and quality, and is also well 
distributed, since the original model coefficients were evaluated. On the other hand, 
poorly distributed and inaccurate updated gravity data may not improve the existing 
model, see Kearsley and Forsberg, (1990). As a result of these tests, it can also be 
suggested that geopotential models, properly fitted to the local gravity field, may have 
significant applications in local or regional geoid solutions. The results of these 
con^arisons are summarised in Table: 5.4.

Unit in mgals
Observed
Free-air
Anomalies

(^Eo)

^Eo" ^EoSU89B ^Eo‘^EoSU89B-MM ^Eo - ^E oSU89B-MM1

No. of points 295 295 295 295

Mean 10.31 -22.38 -1.27 -17.75

Std. Dev. 14.39 20.91 11.10 15.20

Rms 17.68 30.60 11.31 22.60

Min. -19.35 -60.91 -23.40 -53.01

Max. 57.89 23.27 57.35 29.28

Table: 5.4 - Comparison against gravity points in the test Area X

From Table: 5.4, it is clear that OSU89B-MM offers the best results for Area X 
with the mean of residual anomalies only -1.27 mgals. The improvement in the 
gravity signal is also reflected with OSU89B-MM whereby its standard deviation and 
rms value in the differences are smaller compared to OSU89B and OSU89B-MM1. 
From the same table, one may seen that OSU89B-MM1 was, in this instance, unable to 
recover significant improvement over OSU89B. For example, the mean value of the 
OSU89B-MM1 solution is slightly better than that from OSU89B (-17.75 mgals cf.
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-22.38 mgals). One of the possible reasons for its slight improvement over the 
OSU89B might be the contribution from other updated gravity anomalies (SO'xSO* 
mean anomalies) surrounding the test Area X during the development of the tailored 
model OSU89B-MM1, see Figure: 5.2. In general, it is apparent that the tailored 
model OSU89B-MM1 does not provide smooth gravity field for the test area, compared 
to the tailored model OSU89B-MM. Because of the inhomogeneity of the gravity field 
information occurring in the tailored model OSU89B-MM1, this model therefore, wül 
not produce suitable reference boundary values, i.e. reference anomalies for the BVP 
solutions.

From this test, it is apparent that the fit of the models depends on the variation 
in the gravity field information in the area of interest. Thus, one may recognise that the 
reference models which were developed from insufficient data density and coverage 
will have poor long wavelength gravity signals, and this may adversely affect the geoid 
heights derived therefrom. As new gravity data becomes available (with good quality, 
density and coverage) then incorporation of these data to a new tailored model will 
result in improved gravity field modelling. Finally, it can be expected that the tailored 
model OSU89B-MM will provide better estimate of the reference gravity field for the 
large unsurveyed areas and areas of sparse gravity coverage, e.g. Titiwangsa, Timor 
and Bintang Ranges (Figure: 4.4), than OSU89B and OSU89B-MM1 do. Obviously, 
such estimates will not be as accurate as those based on the actual measurements.

5.7.1.3 Test HI

The existing model OSU89B and the tailored model OSU89B-MM were also 
tested against new point gravity observations. As previously mentioned in Section 
4.2(iii), these new gravity values were supplied by the DSMM at a very late stage, i.e. 
in March 1994, and therefore were not used in the development of OSU89B-MM. A 
comparison of 601 observations with OSU89B and OSU89B-MM resulted in the 
same statistical tests as listed in Table : 5.5.
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Unit 
in mgals

Observed
Free-air
Anomalies

^go" ^ëosU89B ^go" ^g0SU89B-MM

Mean 14.16 -16.00 -1.09

Rms 19.45 26.28 12.76

Std. Dev. 13.34 20.86 12.73

Variance 178.0 435.1 162.1

Table: 5.5 - Comparisons of OSU89B and OSU89B-MM against 
new gravity points in Peninsular Malaysia

From Table: 5.5, it is apparent that the mean value of the residual anomalies 
relative to OSU89B-MM is smaller, i.e. -1.09 mgals whereas the counterpart mean 
value of the residual anomalies relative to OSU89B is far from zero, i.e. -16.00 mgals. 
Similarly, the rms, the standard deviation and the variance values of the residual 
anomalies have shown that the use of OSU89B-MM has a better fit on the regional 
gravity field over the OSU89B, implying good long wavelength coverage. Again, this 
condition is of considerably importance in local studies leading to a solution of the 
BVP. Thus, it could be concluded that the tailored model OSU89B-MM offers a better 
reference model for Peninsular Malaysia compared to the pre-existing model OSU89B. 
It could be also pointed out that the computation of tailored model OSU89B-MM was 
carried out in a correct procedure.

Since OSU89B-MM fits the gravity field over the Peninsular Malaysia better 
than OSU89B-MM1, the following further comparisons and analyses are therefore 
carried out to this tailored model only and also to the existing geopotential model 
OSU89B.

5.7.1.4 Test IV

In order to further verify the fitness of OSU89B and OSU89B-MM over the 
peninsula, the mean of residual anomalies with respect to both models were analysed 
on 0.5° X 0.5° block basis for 1815 gravity points, i.e. extracted from the UTM gravity 
database. This gravity database has a maximum of 145 and minimum of 2 points in any 
of the 0.5° X 0.5° blocks. The aim of this test is to analyse the variations in the gravity 
field produced by OSU89B and OSU89B-MM, in more detail with respect to the 
topographic point of view in this region. The program RESDAT.FOR was written to 
perform the statistical tests on the reduced gravity anomalies in a user-defined area by 
analysing the mean, minimum and maximum values as well as the sample size. The
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chosen category bins of the mean fit differences are summarised in Table: 5.6 and are 
reflected in the form of a histogram in Figure: 5.4. The distributions of their 
corresponding mean residual anomalies analysed on the 59 blocks for the whole 
peninsula is also illustrated in Figure: 5.5 and Figure: 5.6, respectively. Details of 
these results for both OSU89B and OSU89B-MM are given in Appendix H.

Bin
No.

Geopotential
Model

Original Model OSU89B Tailored Model OSU89B-MM

Bin Category 
(In mgals)

Frequency
Distribution

Percentage

(%)

Frequency
Distribution

Percentage

(%)

1 5 to 15 7 11.9 4 6.8

2 0 to 5 10 16.9 18 30.5

3 0 to -5 11 18.6 22 37.3

4 -5 to -10 9 15.3 10 16.9

5 -10 to -20 6 10.2 3 5.1

6 - 20 to -30 2 3.4 2 3.4

7 < - 3 0 14 23.7 0 0.0

Table: 5.6 - Chosen bin limit and results of mean distribution of gravity points

OSU89B
OSU89B-MM

^  3 0 -

& 25

S 20-

15-

2 3 4 5 6 7
Bin Category

Figure: 5.4 - The histogram of mean residual anomalies 
analysed on a 0.5°x0.5° block basis
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The histogram of the residual anomalies in Figure: 5.4 shows that only 35.5% 
of the 0.5* X 0.5“ blocks have a mean residual of between 0 to ± 5 mgal (Bin 2 and 
Bin 3) for OSU89B, compared to 67.8% for OSU89B-MM. The fit of OSU89B-MM 
is much better than that of OSU89B where 23.7% of the blocks have the mean 
residuals between ±5 mgals to ± 10 mgals (Bin 1 and Bin 4) compared to 27.2% 
generated by OSU89B for the same bin categories. The mean residuals greater than -30 
mgals (Bin 7) visible in OSU89B have almost disappeared when using the Ag field 
generated by OSU89B-MM.

A noticeable feature in the distribution of mean fit is the dominance of negative 
biases with OSU89B having about 71.2% and OSU89B-MM, 62.7% of negative 
blocks. The histogram has shown that OSU89B-MM does approximate the regionally 
existing gravity field data quite weU, compared to OSU89B, suggesting that the former 
model is suitable as a reference field for the Malaysian Peninsular region.

From Figure: 5.5, it can be seen that the areas of poorest mean residual 
representation with respect to terrestrial gravity implied by OSU89B are in the 
central north Peninsula Malaysia. The main reason for these biases over the mainland 
is that no terrestrially observed gravity data were supplied over the area that covers the 
mountainous areas, i.e. Titiwangsa Range, Bintang Range and Timor Range. This 
reason is supported by the fact that in the development of the pre-existing geopotential 
model OSU89B, for areas devoid of gravity information (especially in Asia, Arctic and 
Antarctic regions), the mean anomalies were estimated firom coefficients implied by a 
topographic-isostatic model, see Figure: 4.9. These 'filled in' mean anomalies do not 
provide the resolution of the 30' x 30' data but rather provide valuable gravity field 
information beyond what is available from satellite orbit perturbations (low degree 
harmonic), and therefore, will not be as accurate as those based on actual 
measurements, see Rapp and Pavlis, (1990).

On the contrary, the poorest fits occurring in OSU89B almost disappear in 
OSU89B-MM. This phenomenon is clearly shown in Figure: 5.6. These areas do have 
a reasonable number of sample points for each half degree block although most of these 
were not well distributed and are concentrated mainly along accessible roads, with very 
few points on the highlands (less than 1000 m elevation). The larger biases of the mean 
residual anomalies for OSU89B-MM however are still concenttated in the central parts 
of the peninsula. This is the region of rough terrain, and thus probably indicates 
problems in the mean free-air anomahes in the existing values of the global data sets for 
these regions. This is not a suprising result because essentially the same gravity field 
information from these regions was used for the development of OSU89B-MM, i.e.
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low resolution gravity field information which was estimated fi-om coefficients implied 
by a topographic-isostatic model for the development of OSU89B. Thus, it is evident 
that the high order geopotential models do not model the medium to high frequency 
components well, particularly in the mountainous areas. However, when a complete 
terrestrially-observed gravity data set is available in the unsurveyed area (especially in 
the Titiwangsa, Bintang and Timor Ranges), it is expected that the mean residual 
anomalies for these mountainous areas wül substantiaUy be reduced, i.e. the variation 
of the gravity field in these areas wül be smooth and homogeneous.

In general, the results show that the OSU89B and OSU89B-MM models fit the Ag 
field quite weU along the eastern coastal areas and in most of the southern region (smooth 
terrain). These areas have a good number of sample points, eveiüy distributed. It is obvious 
from this analysis that the tailored model OSU89B-MM shows good long wavelength 
quality and clearly behaves better than the pre-existing geopotential model OSU89B, 
especiaUy over the lowland and coastal areas. Thus, to this end, it could be concluded that 
the taüored model OSU89B-MM represents the reference gravity field information in the 
area under investigation better than does the OSU89B. However, it is more important to 
discover if this improvement is repeated when using this taüored model to generate the 
geoid heights and compare with those independently from a combination of GPS 
observations and orthometric levelling in the test region. The comparison between the 
N o s u 89B-m m  (“ d also Nosu8 5b) with the corresponding wUI be presented in
Section 5.7.3.

5 .7 .2  Geoid Height Difference Between OSU89B and OSU89B-MM

Absolute geoid heights across the peninsula region from both OSU89B and 
OSU89B-MM have been generated on a 15' x 15' gridded format, using equation 
(3.16) in the program GEOMOD. The geoid height map from OSU89B-MM as shown 
in Figure 5.7, ranges between -20 m to 13.5 m from North to South. From the 
differences in height between these two models, the geoid heights from OSU89B-MM 
have a wider range compared to OSU89B (see Figure; 5.8), consisting of negative 
geoid height values (-19.5 m) in the central part of Peninsular Malaysia but having 
about the same positive geoid height values (13.5 m) in the South.
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The differences in geoid heights between OSU89B and OSU89B-MM over the 
Peninsular Malaysia region have also been generated and are shown in Figure: 5.9. 
This figure which is the map of ( N o s u 89B-M M  -  N o s u 89b )  indicates the difference of 
geoid heights with a range between -4 m to 0 m throughout the peninsula.
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Figure: 5.9 - The map of Nosu89B-MM " N osu89B for Peninsular Malaysia 

(C.I = 0.5 metres)
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From Figure: 5.9, it is apparent that the effect of the tailoring is fairly benign in 
the coastal areas and most parts of the southern regions where the differences between 
this tailored model and the OSU89B geoid is about Omto-1 m. This phenomenon may 
reflect the fact that the resolution of OSU89B-MM has little influence for these smooth- 
terrain areas. From the same figure, it is also apparent that the central regions attract 
rather large geoidal height differences between these two models. For example, 
N o s u 89B-MM - N o s u 89B have values between -2 m to -3 m in most parts of the moderate 
topography areas, that is the north-east, north-west and the central south-west areas. 
These differences are thought to be due to a low resolution gravity field from pre
existing gravity field information (OSU89B) in these regions that have been used in 
combination with new (updated) data to develop tailored model OSU89B-MM.

From the same figure, it can be seen that very large differences occur in the region 
of the central north area of the peninsula where changes of over 3 m occur. This is the 
region of highest mountains (see Figure 4.4), and thus probably indicates the problems in 
the mean anomalies in the existing values in the global data sets for these regions. Again, as 
mentioned previously, these mean anomalies are of considerably low resolution gravity field 
because they were estimated from coefficients implied by a topographic-isostatic model in 
the OSU89B model. The similar disturbing phenomenon is also observed in Kearsley and 
Forsberg, (1990) where the geoid height differences between the existing geopotential 
GPM2 and the tailored model GPM2F has shown more than 3 m level in the rough terrain 
and less dense gravity coverage of the western coast of Norway, north-west coast of 
Western Australia and Papua New Guinea regions.

5.7.3 Evaluation Against GPS/Levelling Derived Geoid Height

As previously mentioned in Section 4.5, the GPS surveys were carried out to 
provide the geodetic control network for the DSMM surveying and mapping purposes.
The orthometric heights at each GPS point have been determined with varying degrees 
of accuracy, either from the trigonometric heighting or from second order and tertiary 
levelling network. These gave geometric evaluations of the geoid height, i.e. 
Ncps/ieveiiing and provided valuable comparison with the corresponding Nmodei- The 
analysis of the GPS/levelling data has been discussed in Sections 4.6.2 and 4.6.3.

5.7.3.1 Comparison of Geoid Heights in the Southwest GPS Network

The GPS network in the Southwest region of the peninsula (Figure: 4.10) was 
used for the comparison with the corresponding Nmodei- For this test, the geoid heights 
were computed from both OSU89B and OSU89B-MM models at the 35 GPS points, 
and compared against the geoid heights found from GPS-derived ellipsoidal heights
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and orthometric heights from levelling data. The results of these comparisons are 
summarised in Table: 5.7. Figures 5.10 and 5.11 illustrate the ON values from 
OSU89B and OSU89B-MM along latitude and longitude profiles, respectively. Details 
of comparisons are given in Appendix I.

Unit in Metre N g PS/Lcv

(Nl)
N q s U89B

(N2)
N q s U89B-MM

(N3)
3N1=N1-N2 3N2=N1-N3

Mean 2.98 4.88 4.57 -1.90(0.00) -1.59(0.00)

Std. Dev. 2.68 2.82 2.80 0.34(0.33) 0.32(0.31)

Min -2.76 -0.24 -0.02 -2.80(-0.90) -2.02(-0.43)

Max 8.82 10.69 10.50 -1.32(0.58) -0.82(0.77)

Range 11.58 10.73 10.52 1.48(1.48) 1.20(1.20)

Table: 5.7 - Results of comparisons of absolute geoidal heights for the Southwest 
GPS Network. Numbers in parentheses represent values after 
removing the systematic biases.
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Figure: 5.10 - Tilts of geoid heights along the latitude profile
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Figure: 5.11 - Tilts of geoid heights along the longitude profile

Table: 5.7 indicates that the overall agreement between the models and the 
GPS/levelling-derived geoid is around 30 cm in terms of standard deviation, and there 
exist systematic biases between two kinds of geoid representations with a mean value 
of less than 2 m, i.e. -1.59 m cf.-1.90 m. These systematic biases may be due to a 
systematic difference between the medium to long wavelength errors in Ngm> errors in 

orthometric heights from levelling (H) and errors in GPS-derived ellipsoidal heights 
(h), see Section 4.6. It is also apparent from this table that the range of the differences 
is significantly improved with OSU89B-MM, i.e. decreased by about 30 cm. This 
implies that the absolute geoid height differences are found more accurately by using 
the tailored model.

After removing the systematic biases, it can be seen that there is a 1 cm 
improvement for the standard deviation of the differences for both models. The results 
in Figure: 5.10 and Figure: 5.11 (before and after removing the systematic biases) 
show that the most striking geoid height difference occurring at point ({)= 2.°68N, 
X=10r.97 E, is reduced significantly to a smaller difference using the tailored model 

OSU89B-MM compared to OSU89B model, although the overall absolute differences 
(3N) or tilts are almost the same for both models.

To look at this interesting phenomenon in more detail, a comparison based on 

geoid differences over the individual GPS baselines, which range in length from 10 km
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to 260 km were carried out. The calculation is done between two stations along the 
line according to the following:

AN = ANgps/Lcv - ANModel .(5.20)
where:

^GPS/Lev is the control geoid difference between the two points; and 
ANModel is the model geoid difference between the two points.

The relative geoid height (AN) is divided by the length of the line and expressed 
in parts per million (ppm, 10"̂ ). This is then averaged for aU lines to get the mean value 
(m):

m = —

AN;

xlO'
n

.(5.21)

where s is the length of i*h line and n is the number of baselines.

Figure: 5.12 depicts the relative differences of the model and the GPS/levelling- 
derived geoid heights in ppm. Appendix J summarises details of these relative geoid 
height differences.

I
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—  OSU89B-MM
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Distance (km)

Figure: 5.12 - Relative differences between the Nmodei and the 
Ncps/LeveUing for the Southwest GPS Network
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From Figure: 5.12, it is apparent that the tailored model OSU89B-MM has a 
slight improvement over the original model OSU89B. In general, the relative agreement 
between the geoid height derived from these two models against NGPS/levelling is of 
the same order of accuracy, i.e. is about 6 to 2.5 ppm for distances between 50 to 250 
km. The use of tailored model OSU89B-MM provides a relative differences about 6 to
5.5 ppm for distance less than 50 km when compared to the existing model OSU89B 
(cf. 6.1 to 5.8 ppm). One of the possible reasons for this slight improvement of the 
relative geoid height differences might be caused by the difference in data density and 
data distribution (coverage) within the area of the Southwest GPS network which are 
used to form the mean anomalies in the tailoring procedure. The southern areas (1°^ (|) 
< 2.5' N, 103.5'< X < 104" E) and the central areas (2.5"< * < 3.5" N, 101.5"< X < 
102.5" E) are characterised by good sample gravity points and reasonably good 
coverage, see Figure: 5.1. In contrast, less dense point gravity data in the areas of (2" < 
(|) < 3" N, 102.5" < X < 103.5" E) is biasing the 30' mean gravity anomalies derived 
from the terrestrial gravity which may partly distort the corrections to the potential 
coefficients in the development of the tailored model OSU89B-MM. In other words, 
the combination of these two kinds of gravity field resolutions may have little effect on 
reducing the long wavelength errors from the existing model OSU89B. Of course, it is 
obvious that this phenomenon is not so critical when comparing the point gravity values 
(Section 5.7,1) since the tailoring procedure is carried out by fitting the surface gravity 
data (medium to short wavelength signals) to the existing geopotential model in this 
region. A similar phenomenon was observed by Kearsley and Forsberg, (1990) when 
they tested the tailored model GPM2F against the original model GPM2 for 37 GPS 
baselines in the south eastern coast of Australia. In general, however, it appears that 
OSU89B-MM would be slightly more suited to N or AN evaluation for this region 
compared to OSU89B, implying that the critical long wavelength errors have been 
partly diminished by means of tailoring procedure.

5.7.3.2 Comparison of Geoid Height in the Federal Territory GPS 
Network

A similar test on the ability of OSU89B-MM to represent the medium to long 
wavelength geoid features has been extended to include the 51 GPS/levelling control 
points in the Federal Territory area (Figure: 4.11). Apart from having a reasonably 
good gravity coverage and smooth topography, this area was chosen because of the 
expected homogeneity in its height datum (close to Port Klang tide gauge station - the 
LSD1912).
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The geoid height values were computed from OSU89B and OSU89B-MM at 
the 51 control points, and compared against the geoid height values derived from 
differences between GPS-ellipsoidal heights and orthometric heights from levelling. In 
this case, the absolute geoid height differences (3N) at control points are compared, as 
in Section 5.7.3.1, but in a fairly small GPS network or across relatively short 
baselines, i.e. between 2 km to 30 km in length. The aim is to limit the analysis to 
points of similar characteristics, such as terrain type and height datum. The results of 
these comparisons are summarised in Table: 5.8. Details of these outputs is listed in 
Appendix K.

Unit in Metres N̂GPS/Lev
(Nl)

NOSU89B
(N2)

N̂ OSU89B-MM
(N3)

3N1=N1-N2 3N2=N1-N3

Mean -4.02 -1.43 -3.30 -2.59(0.00) -0.72(0.00)

Std. Dev. 0.21 2.76 2.60 0.11(0.10) 0.09(0.08)

Min -4.37 -1.78 -3.70, -2.86(-0.27) -0.86(-0.14)

Max -3.61 -1.09 -2.81 -2.38(0.21) -0.49(0.22)

Range 0.76 0.69 0.89 0.48(0.48) 0.37(0.36)

Table: 5.8 - Comparison between Nmodei and Nops/Leveiiing in the Federal Territory 
GPS Network. Number in parentheses represent values after removing 
the systematic biases.

It is interesting to see from the above table (before removing the systematic 
biases) that the tailored model OSU89B-MM, while showing a small mean value 
compared to the corresponding value of the pre-existing geopotential model OSU89B 
(-0.72 m cf. -2.59 m), also indicates slight improvement in the standard deviation of 
the differences (± 0.09 m cf. ± 0.11 m). Although the range of the absolute differences 
between OSU89B-MM and OSU89B (with respect to Nops/Leveiiing) is about 10 cm, 
these comparisons nevertheless have shown that quite large differences do exist 
between the absolute N values derived from these two models. After removing the 
systematic biases, it can be seen that there is a 1 cm improvement for the standard 
deviation of the differences. Thus, in general, these absolute differences numerically 
show how much better the tailored model fits the control data than does OSU89B.

The test was also carried out for relative geoid differences (AN) over the 
individual GPS baselines which range from 2 km to 30 km, in length. The N values at
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stations derived from the best estimate of the GPS-derived ellipsoidal heights and 
orthometric heights were used to provide control for ANmodei values for each individual 
baseline derived from both existing and tailored models. The mean value of these 
differences is expressed in terms of ppm of the length of the baselines as in equation 
(5.21). The comparisons of the AN values between these control points is shown in 
Figure: 5.13. Details of the results are summarised in Appendix L.
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Figure: 5.13 - Relative differences between the Nmodei and the 
Ncps/LeveUing for Federal Territory GPS Network

From the above figure, it is apparent that the relative agreement between the 
geoid height derived from these two models against Ncps/ieveiiing shows that OSU89B- 
MM has a slight improvement over OSU89B of about 0.5 ppm for distances more than 
10 km. The use of OSU89B-MM provides relative differences about 18.7 ppm to 10.2 
ppm for distances less than 10 km when compared to the OSU89B (cf. 20.3 ppm to
10.3 ppm). By examining the above figure, it was found that the overall fimess of the 
relative differences between OSU89B-MM against the Federal Territory GPS network 
indicates this tailored model has a better medium to long wavelength signals compared 
to that provided from OSU89B. Again, it is clearly shown that an apparent local 
improvement in the tailored model is not so critical for point or mean gravity anomalies 
compare to A N , see Kearsley and Forsberg, (1990). Nevertheless, it is apparent that 
OSU89B-MM fits the gravity field across Peninsular Malaysia better than does 
OSU89B strongly suggesting that the former is the preferable reference model for geoid 
studies in this region.
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5 .8  Summary and Conclusion

The available geopotential model complete to harmonic degree and order 360, 
was tailored to the regional gravity data (including an updated set of point gravity 
anomalies) in Peninsular Malaysia. These updated gravity data are not released for the 
available geopotential model developments. The tailoring procedure was started with 
the computation of a set of gravity anomalies in this region from an a priori set of 
potential coefficients, i.e. OSU89B model. These anomalies were subtracted from the 
observed values to form a set of residual anomalies. The residual anomalies were then 
added to the original potential coefficients set. The process was iterated until an 
acceptable convergence was achieved. In this experiment, an improved reference model 
(tailored model) called OSU89B-MM was obtained where the critical long wavelength 
errors in the original model OSU89B, have been partly diminished. The results and 
tests show that the residual gravity anomalies and the geoid height differences (interms 
of both the absolute and the relative differences) are significantly improved in some test 
areas using OSU89B-MM when compared to OSU89B. Therefore, it could be 
concluded that the tailored model OSU89B-MM has a much better performance than the 
existing model OSU89B in Peninsular Malaysia.

As a result of this experiment, it can be suggested that the computation of a 
tailored model is an efficient and convenient way to take updated gravity field data into 
account if the existing geopotential models do not appear to fit these data well. The 
updated gravity data, however, must be accurate and evenly distributed over the region 
of the fit so that they represent high resolution gravity field information of the block 
means used to derive the corrections to the existing potential models. It is expected 
that the tailored model OSU89B-MM could be further improved by having adequate 
gravity points on the mountainous areas, i.e. Titiwangsa Range, Bintang Range and 
Timor Range, and incorporating the topographic effect (high frequency information) in 
the estimation of mean anomaly using a very dense DEM, e.g. 1km x 1km resolution or 
better. This approach has proven very successful in estimating mean anomalies used for 
the development of tailored model 0SU91AT for Canada and the northern United 
States of America, especially in the region of the Rocky Mountains, see Li and Sideris, 
(1994). The standard deviation of the discrepancy between 0SU91AT model and the 
GPS/levelling-derived geoid decreased by more than 50% compared to the original 
model 0SU91A, (ibid).
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CHAPTER 6 

PRACTICAL GEOID COMPUTATION

6.1 Introduction

A wide range of gravimetric methods are used, or have been proposed for the 
solution of the B VP. These methods include Stokes' integral, LSC and the most recent 
one, FFT algorithms. Each method has its own theoretical and computational 
properties, as well as its flexibility and reliability. Practical considerations on the use 
of these methods are subjected to how they can handle the data set and the capability of 
computing resources. For example, Stokes' integral in principle requires a continuous 
gravity field (dense data), and it is also claimed that this method requires excessive 
computation time. The LSC may use randomly (or sparsely) distributed data and has 
the facility to predict errors in the estimated quantities. Unfortunately, this prediction 
method suffers from a practical disability in that it generates equations of the unknown 
equal to the number of observations. The FFT method is, as its name implies, 
computationally extremely fast; however it requires gridded data, and the 
transformation to the frequency domain may involve a modification of Stoke's kernel 
function. Recently, a more advanced spectral technique has been investigated to solve 
the BVP using different kinds of Stokes kernel functions, see Li and Sideris, (1994).

In this chapter, a discussion on the methods used in the estimation of geoid 
height for the three test areas (described in Section 4.3.2) is presented. These include 
the LSC and FFT methods. The basic formulae for the definition of LSC and FFT 
methods are described. The fundamental mathematical properties are outlined and 
serve as a reference for the development of covariance in the LSC method and for the 
development of frequency domain algorithms in the FFT method. Their practical 
evaluations and computer software used for geoid height estimations are also 
discussed. It should be mentioned here that most of the gravimetric geoid 
computations in this study were using slightly modified programs of the GRAVSOFT 
(GRAVimetric SOFTwares) computer software provided by The National Survey and 
Cadastre and Department of Geophysics, University of Copenhagen, Denmark - 
(Forsberg and Tscheming, 1994 - Private Communication). The presentation and 
analysis of the results whl be given in the next chapter.

6.2 Least Squares Collocation

The least squares prediction techniques used for interpolation of gravity 
anomalies are generalised to estimate any element of anomalous gravity field from
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geodetic data of different kinds. The fitting of analytical approximations to given 
functionals is called Collocation and the consideration of the minimum principle of 
mean square error in prediction leads to Least Squares Collocation (LSC). The LSC 
method provides a general theoretical basis for the optimal combination of a great 
amount of geodetic data presently available. On the basis of the given data 
(measurements), the most probable estimates are thus obtained for the unknown 
parameters and for the signals. The following sections wiU derive and describe the 
LSC formulae and also the covariance function, which is essential to the method. 
Details of the mathematical derivations of the LSC formulae can be found in several text 
book and publications, e.g. Moritz, (1976), Moritz, (1980) and Tscheming, (1985).

6.2 .1  Collocation Model

The observational equations in the LSC are represented by the mathematical 
model, (Moritz, 1980):

l = AX + s + n  (6.1)

where 1 is the vector of observations; A is a known fully populated matrix; X is the 
vector of parameters which represents the deterministic component; s is the vector of 
signals and n is the vector of observational errors.

In Physical Geodesy, equation (6.1) can be applied to any gravimetric quantities 
where the element s is the vector of anomalous field signals which are expressed by 
functionals of the disturbing potential. For example, in gravity measurements, 1 is the 
gravimeter reading, s represents the gravity anomaly Ag, n is the random measuring 
error, and X represents systematic parameters which may contain the parameters of the 
normal gravity formula and the instrumental constants as well as other systematic 
effects on the measurement such as drift.

The underlying principle of the collocation approach is the way in which 
the signal quantity in equation (6.1) is dealt with. If we consider the determination of 
parameter X as adjustment, the removal of the noise as filtering, and the computation of 
s at points other than the measuring points as prediction, we can see that the LSC model 
combines adjustment^ filtering and prediction. Thus, the aim of LSC is to estimate 
signals and filter noise at points where observations are made, and predict signals at 
other points. Of importance is the fact that, statistically, both these values have an 
expectation of zero. It is also expected that a knowledge of the covariance structure of 
the discrepancy is given because the model will not be exact. The following text shows 
how these principles of observation equations are applied.
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As previously described in Section 2.4, the disturbing potential T is a very 
small quantity and irregular, and it is very difficult to compute exactly. Therefore, in 
LSC, only an approximation to parameter T can be produced through the linear 
combination of a group of functions which operate on T. These functions should be 
chosen such that they satisfy Laplace's Equation (equation 2.25), i.e. harmonic outside 
the surface of the earth. We, therefore will have the following expressions:

T = Li(T)  (6.2)

and Lj(T) = = Li(T )  (6.3)

where (p̂  is a linear combination of q functions q>; b^̂ are the coefficients which will 
satisfy certain conditions; and Li (T') is the best linear approximation to the functional 
Li(T).

The above equation produces a (qxq) system of equations which will provide 
the solution. Since the difference between Li (T) and Li (T') is very small then the 
error in interpolation should also be as small as possible. In this case, the function q)̂  
must be chosen such that the mean square error of the interpolation is a minimum. In 
general least squares, it can be written as:

I  (Li (T) - Li (T) )2 => minimum  (6.4)

whereby the functions are chosen as:

9k = K(P,Q)  (6.5)

where K(P,Q) is known as a covariance function between values of T at point P and 
point Q. In general form, the covariance function is given by:

K(P,Q) = M(T(P),T(Q))  (6.6)

where Mis an averaging operator.

The covariance function relies on the mean value of the signal whereby its 
statistical expectation should be as small as possible, preferably close to zero. If the 
case is otherwise, then the data can be centred by subtracting the mean value, or by 
altering the global reference system (e.g. using tailored method as discussed in Chapter 
5), thus satisfying the condition. Details of the covariance function and its associated 
parameters are discussed in the next section.
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Now,
9k (P) = LkQK(P,0)  (6.7)

where L̂ Q is the functional relating data type Q to T.
In equation (6.7), P is the point where the prediction is being made and Q is a point 
where the value is known. From equation (6.3):

L,(Tp ) = ;^L,%«K(P,Q)b,  (6.8)
k=l

or Li('rp) = ^ C A   (6.9)
k=l

where Q t is the covariance matrix, L/L|^^K(P,Q).

Referring to the beginning of this section, it can be seen that the stochastic 
component of the observations is expressed by equation (6.1) and consists of three 
basic covariance functions which are associate with the observations (Cu), the signals 
(Css ) and the noise (Cnn )• The relation among them can be written as, (see Figure: 
6 . 1):

Cii(\|f) = Css(Y) + Cnn(V)  (6.10)

where \|/ is the spherical distance.

At\j/ = 0, we have:

Cii(O) = Css(O) + Cnn(0) = Co  (6.11)

and it is called variance.

Cll

8 Cnn
Css■g

g
u

►
spherical Distance (\j/)

Figure: 6Jl - Covariance functions
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From equation (6.10), a least squares solution is obtained by minimising the vector of 
residuals through:

l^Cji'h => minimum ........ (6.12)

or may also be written as, (Moritz, 1980):

s^Css^s + n^Cjin’^n =» minimum ........ (6.13)

This is the minimum norm condition of LSC which will derive optimal
estimates of the signal. The vector of signals involved in the collocation formulae can
include several different types of signal and the covariance matrices for these are the 
key to handling such heterogeneous data. A least squares best linear estimate for the 

gravimetric signals, s, is given by the basic collocation formula:

U c ,,C u - 'l .........(6.14)

where Cu is the observation variance-covariance matrix;
Csi is the covariance matrix of observation of the predictions and the

observations;
1 is the vector of observations.

Again, referring to the beginning of this section, equation (6.9) gives

b k = C u ‘l  (6.15)

From the above equation, one may seen that the need to invert the matrix Cu in order to 
solve the coefficients bk, is the major disadvantage of the LSC method computationally.

As a statistical method, LSC is the only gravimetric solution to the BVP which 
provides error estimates for the predictions. Its ability to do this lies in the use of 
covariance matrices which imply the accuracy of the observations from which the 
predictions are made. The error covariance matrix of prediction is given by, (ibid):

C ..= C „ -C ,C „ -‘C,.  (6.16)

The matrices Cgi and C^ are derived from the covariance function for T by 
the law o f covariance propagation, (Moritz, 1980-p.86). The important of LSC solution 
is that the covariances involved should reflect the actual gravity field accurately in order 
to be as close to Css as possible.
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From LSC solutions in equations (6.14) and (6.16), the contribution of gravity 
anomaly to geoid height computation, N^g (see Section 3.5 - equation 3.17), can be 
computed as follows:

+ C „ rA g ,  (6.17)

and the error variance of N^g is:

a  N d,  =  C n  .Ag, ( ( -A g ,.A g ,  + ^ i m )  ^C\^.Ag,  (6.18)

where C^ ,̂Ag, is the cross-covariance matrix of N^g, Agr ; 
is the auto-covariance matrix of N^g ;

.Ag, is the auto-covariance matrix of Agr ;
Cgg is the error covariance matrix of Agr, and defined by Cnn= I where

the error variance of gravity anomaly and I is the unit matrix;
Agr is the residual gravity anomaly.

6 .2 .2  Covariance Function

It is obvious from the above equations that the covariance function plays a 
decisive role in the collocation solution. The reason for this is that, if data was available 
everywhere (evenly spread all over the earth), then the BVP discussed in Section 2.6, 
could be solved rigorously without having to use the covariance function to describe the 
gravity field as stochastic process. The covariance function can only be evaluated 
therefore based on suitable samples of data.

The covariance function is used to express the relationship between the 
observations and the estimated quantities. As all measurements represent quantities 
belonging to the earth's gravity field, they are inter-related by functional equations, and 
it is therefore possible to derive their respective auto and cross-covariances from one 
basic covariance function. In other words, the covariance function for any gravimetric 
value can be derived from the covariance function of the anomalous potential by the 
application of the linear functional through which the two values are related.

The covariance between two values, P and Q, is the expected product of:

C(P,Q) = E[(P-E (P)) (Q-E (Q))]  (6.19)

For the gravity anomaly, equation (6.19) would become:

C(Agp,Agq) = E [AgpAgq]  (6.20)
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and if these points were coincident:

C (A g)= E  [Ag2] ........ (6.21)

The above equation is a special case of covariance known as the variance (see also 
equation 6.11). The variance, as a square value, is chosen to characterise the signal 
behaviour. Equation (6.21) can be rewritten as: .

C(Agp,Agq) = M{AgpAgg}  (6.22)

Equation (6.22) forms the basic covariance function which implies the 
conditions of a homogeneity (no location dependence) and isotropy (no azimuth
dependence). Thus, it makes the covariance function only a function of spherical
distance y.

For the gravity anomaly, equation (6.22) is written as:

2]cic 2ii

C(P,Q) = M[P,Q] = J j I {Ag,AgQ}sin<pa<pdX9a ....... (6.23)
0 0 0

From equation (6.23), it is seen that the covariance characterises the statistical 
correlation of the gravity anomalies Agp and Agg. However, gravity anomalies at 
points that are far apart may be considered uncorrelated because the local disturbances 
that cause Agp have almost no influence on Agg and vice versa.

By analogy to the above equation, the covariance function for the anomalous potential 
can also be written as:

K(P,Q) = —  I J  |T(P)T(Q)3a9(paX,  (6.24)

The triple integration in equations (6.23) and (6.24) express the homogeneity 
(3(p3A.) and isotropy (3a) of the function. The computational requirements of a 
covariance function are that it is symmetric in P and Q, and harmonic, (Moritz, 1980). 
Unfortunately, minimum variance can only be achieved when the function is the 
complex empirical covariance function derived from the signals. A compromise 
between simplicity and optimality must be made by fitting a model to the ençirical data, 
which naturally introduces a degree of smoothing and induces errors. The covariance 
model fitting or synthetic model will be discussed in Section 6.6.2.
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6.2.3 Local Covariance Function

In the application to gravity field approximation, the empirical covariance 
function is of great value as it closely describes the nature of the anomalous gravity 
field, on whose values it is based. Since most gravity field studies are undertaken 
locally, the application of a global covariance function in equation (6.22) to a small area 
causes numerical instabilities. However, by removing the long wavelength of the 
geopotential model from the covariance function, the prediction of gravimetric 
quantities can be undertaken just within the selected area. This is called a local 
covariance function, which is described by Goad, etal., (1984) as:

"A special case o f a global covariance function where the irformation content of 
wavelengths longer than the extent o f the local area has been removed, and the 
information outside, but nearby, the area is assumed to vary in a manner similar to the 
information within the area ".

The local behaviour of the covariance function can be characterised by means of 
three essential parameters namely; the variance (Co), the correlation length (Ç) and the 
curvature parameter (%), see Figure: 6.2. Due to isotropy, this function will appear the 
same in aU directions, and it is rotationally invariant.

Covariance

First Zero Value

Figure: 6.2 - Essential parameters of covariance function

The variance Co is the covariance for zero separation (equation 6.11) which is 
characterised as the mean square value of all observations. The variance acts as a 
scale factor for the interpolation errors. The correlation length ^ is the distance at 
which the covariance equals half of the variance. The curvature parameter % is related to 
the curvature of the covariance function at the origin through the expression:

X = .(6.25)

where Go is the horizontal gradient variance of the gravity anomalies.
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The essential parameters Co, Gq, Ç should be considered as quantities which 
characterise a certain local field. Typically, the covariance function will have a high 
variance and short correlation length in mountainous areas due to local mass 
disturbances, and the opposite in smoother terrain. It is shown in Figure: 6.1 that the 
function tends to undulate around zero at a distance. The shape of the covariance 
function at distances greater than about 1.5Ç has very little influence on the outcome of 
the collocation process, (Schwarz and Lachapelle, 1980).

6.2 .4  Expansion and Propagation of the Covariance Function

The covariance function is the average of pairs of products over successive 
distances. For two points on the global sphere, we have:

K(P,Q) = A  J 1 |T(P)T(Q)aa3(paX  (6.26)
0 K 0 

2

where a  is the azimuth between the points and the spherical distance between them, \j/, 
is given by:

Cosy = Cos(j)pCos(|)Q + Sin(|)pSin(|)QCos (X,p - X<3)  (6.27)

Averaging pairs of product of T in spherical harmonics leads to:

K(v) = K(P,Q) = ]^k .P .(cosv)  (6.28)
n=2

where = %(Cnm^+Snm^)  (6.29)
m=0

due to the orthogonality of spherical harmonics which state that the average product of 
any two different harmonics is zero, see Heiskanen and Moritz, (1967, p. 29). The 
covariance function is extended into space by introducing a term in r as a scale 
factor:

K(v) = ' Z K
n=2

P„(cosy)  (6.30)

where rp and rg are radius vectors for point P and Q, respectively; y  is the angle 
between rp and rg; P„(cosy) are the Legendre polynomials; and R is the radius of 
some sphere completely inside the mean earth radius: namely the Bjerhammer sphere.
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Equation (6.30) is the covariance function for the disturbing potential in 
spherical harmonics, and this equation can be transformed for other gravimetric 
quantities by the law of propagation of covariances. For example, from equation (2.41) 
in Section 2.6, the relation between Ag and T can be rewritten as:

dT 2T 
Ag = — — .(6.31)

from which the covariance function for gravity anomalies can be obtained using 
covariance propagation as:

Cov(Agp,Agq) =
3K 2K

V J

a"K 23K 23K 4K .(6.32)

Applying this operator on equation (6.30) gives:

C(P,Q) = £ c .
n = H + l

n+2

P„(cosy) .(6.33)

where c^, the gravity anomaly degree variances, are related to the disturbing potential 
degree variances by:

c_ = (n -1 ) '
R2 “ n .(6.34)

Different models of the covariance function can be obtained by defining Cn in different 
ways. For example, Tscheming and Rapp, (1974) defined c  ̂ as:

c_ =
A (n -l)

" (n -2 )(n  + B)
.(6.35)

where A is the scale factor of the degree variance and B is a constant integer parameter 
describing the structure of the degree variances and cannot be obtained from local 
information. In practice, the summation is carried to a very high but finite degree.

6.2 .5  Empirical Determination of the Covariance Function

In practice, observations are given for discrete points in the area and the 
calculation of the covariance function is done by numerical integration. In evaluation,
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the integrals are replaced by summation since the data values will refer to equal size 
areas. As the function is assumed to be isotropic, then the covariance is approximated 
by the average sum of all pairs of products within a specified distance interval A\j/:

C(P,Q) = ^X (A g,A gj)  (6.36)

where N is the number of pairs in the interval Ay.

The empirical evaluation of the variance is straightforward, as it is the mean 
square value of the signals. The parameter Ç can be interpolated from the curve 
produced by equation (6.36), but it must be the first point at which = Co/2. The 
horizontal gradient of gravity may be directly measured by torsion balance methods, but 
this is a cumbersome and, as yet, little used observation technique. Thus, the empirical 
determination of Gq will not be considered in this study.

It is important that the sample data set is sufficiently large and homogeneously 
distributed. The size of sample data is governed by two considerations: a good estimate 
of Ç is obtained when data from an area of at least 1.5^ is used, and the area should be 
of an extent greater than, i.e, longer than the minimum wayelength that has been 
subtracted. If the sample distribution is adequate, then the variance may be accepted as 
the mean square value and the mean of zero more probably gives unbiased values of Co 
and When using a covariance function derived from sparse gravity data with large 
gaps, solutions wül be biased and thus a low accuracy is achieved. In the LSC method, 
the prediction errors and the estimation of heterogeneous quantities rely greatly on the 
optimal function being employed. The importance of reliable and consistent data is 
obvious.

6 .3  Fast Fourier Transforms Method

A lot of research has been done in the application of Fast Fourier Tansforms 
(FFT) to Physical Geodesy in recent years. The following section will summarise some 
basic properties of the FFT and outlines its application for the evaluation of Stokes' 
Integral. Details of mathematical formulation, which follow directiy from the definitions 
can be found in (Bracewell, 1978) and (Schwarz, et. al., 1990) and (Sideris, 1994).

6.3 .1  Fourier-Stokes Formula

In a system of plane polar coordinates (a, s) the geoid height N of a point P can 
be computed by the following integrals, (Heiskanen and Moritz, 1967, p. 121):
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1 ^ n m  2ïC A

N =   J f — sdsda
27Cgo joaio S

where go is the mean gravity.

By expressing the differential surface sdsda in a plane coordinates x, y: 

sdsda = dxdy

,(6.37)

.(6.38)

equation (6.37) can be transformed into a system of plane Cartesian coordinates:

N = —-— f f— dxdy 
U y  r

(6.39)

where r^ = (xp - x)^ + (yp - y)2

More specifically, equation (6.39) can be written in the form:

N(Xp.yp) = — j J Ag(x,y) 
2’tgo

—dxdy .(6.40)

[(xp-x)̂  + (yp-y) r̂

The above equation is di 2D-convolution integral, see (Bracewell, 1978, p. 243). Using 
symbol (*) to denote convolution, and

(6.41)

.(6.42)

lj^(x,y) = ri(x,y) = (x  ̂+ y2)-i/2 

equation (6.40) is abbreviated as:

N(xp,yp) = — Ag(x,y)*l^(x,y)

Now, this convolution can be evaluated using the two properties of the Fourier 
transforms, see (Bracewell, 1978, pp. 241, 244 - 245):

F{h(x,y)*g(x,y)} = F{h(x,y)}F{g(x,y)} = H(u,v) G(u,v)  (6.43)

F-i{H(u,v)G(u,v)} = F-i{H(u,v)}*F‘HG(u,v)}=h(x,y)*g(x,y)  (6.44)

3h(x,y)
dy

9h(x,y)
dx

* ^ = 27ujrlH(u,v) .(6.45)
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where j is the imaginary unit, j = V-1.

The symbols F and denote the direct and inverse Fourier transforms, 
respectively, and H, G denote the spectrums of the functions, u and v are the 
frequencies corresponding to x and y. Making use of equations (6.41), (6.43), (6.44) 
and (6.45) in equation (6.42) yields:

N(x,y) = —̂ F"H A G (u,v)Ln(u,v)}  (6.46)
27Cgo

where
AG(u,v) = F{Ag(x,y)}  (6.47)

and from (Bracewell, 1978, p. 249);

Lj^(u,v) = F{lj^(x,y)} = (u2 + v2)-i/2  (6.48)

The function has an analytically defined spectmm. Hence, finally the geoid height 
can be computed using FFT technique in the form of:

N(x,y) = ^ —F-‘{AG(u,v)--------   p)  (6-49)
2’'®» (u '+ y :) :

It is seen that by the use of the Fourier transforms, the evaluation of Stokes' 
integral is greatly simplified. The numerical integration of Stokes' integral is replaced 
by one Fourier transform of the gravity anomaly and one product and finally one 
inverse Fourier transform.

6 .3 .2  Practical Considerations on the Use of FFT

In the practical implementation of the Fourier transform formulas, two 
approximations are employed: (i) the continuous integration are replaced by discrete 
summations and (ii) the infinite limits of summation are replaced by a finite domain. 
Using discrete Fourier transforms, this assumption replaces the convolution with cychc 
convolution (Schwarz, et.al., 1990). Unavoidably this will result in an erroneous 
Fourier transforms. This effect is called leakage because some spectrum leaks from the 
main lobe to its side lobes, (ibid). It is only caused by the limited record length, which 
does not permit the long wavelengths to be accurately represented. To minimise this 
error, the technique known as padding is used. Padding consists of embedding the 
data margins with a border of zeros and the values of the kernel function are computed 
at both the data and the zero-padded points. The spectrum of the kernel function is
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evaluated via discrete Fourier transforms. Not only does this remove the edge 
discontinuity but it also moves the margins further away from the real data, thus 
decreasing the likelihood of severe leakage contaminating the centre of the array. 
Details of the zero padding approach adopted in this FFT exercises are discussed in 
Section 6.7.2.

6 .4  Criteria and Data Used for Test Areas

As previously mentioned in Section 4.3, the three test areas; Area A, Area B 
and Area C were chosen based on the information of available gravity points and 
detailed elevation data. These include a large variation in the sample size of gravity 
points between the test areas, the position and the irregular distribution of these points 
with respect to terrain types. These are therefore, both from a topographic and gravity 
coverage viewpoint, differences between the areas which are significant for the geoid 
determination. This experiment will also verify the importance of the relationship 
between the gravity coverage and the roughness of the terrain on deriving the expected 
prediction accuracy of the geoid heights over the test areas. To aid in the comparison of 
the three test areas, the classification in terms of the gravity field variations and terrain 
characteristics is summarised in Table: 6.1.

The 'R' value in Table: 6.1, represents a 'Goodness o f Representation ' which 
gives some objective measure or estimate of how well the gravity field variation is 
modelled by the gravity density and the roughness of the terrain in the test areas. This 
value can be calculated using lO'  ̂times the product of the average gravity coverage 

( g) and the standard deviation of height data, an, in the area of interest, see Kearsley, 
et.al., (1985).

Test Area

Gravity Coverage Terrain Characteristics R'

No. of
Gravity
Stations

Average
Coverage

i
(km^/pt)

Mean
Height
(metre)

%
(metre)

'Goodness
of

Representation'

Area A 190 40 525 485 19.4

AreaB 420 25 300 246 6.2

AreaC 224 25 20 32 0.8

Table: 6.1 - Details of gravity coverage and terrain characteristics for the Test Areas. 
(Note: R = g x Oh x lO'^).

147



In general, it can be shown that a low value of R indicates a well represented 
area, e.g. good spacing between stations with a smooth topography. Conversely, a 
high value indicates a poorly represented area, e.g. bad or large spacing in a rough 
topography, (ibid). Therefore, it will be of interest to see for example, how much better 
Area C and Area B are represented than Area A, having a good gravity coverage and, in 
parts, characterised by smooth and medium topography, respectively.

Probably the most striking feature of Table: 6.1 is the contrast in the gravity 
coverage between Area A and Area B. The gravity coverage in Area A is too low, 
i.e. about 1 point per 40 km^ and irregularly located at lowland areas rather than on the 
mountain tops. The goodness of representation factor, R for Area A shows that the 
gravity field in this area is not modelled very well because its high value (R = 19.4) 
indicates a poorly represented area, i.e. no gravity value in a rough topography, see 
Figure: 4.5. Conversely, a low value of R = 6.2 in Area B (see Figure: 4.6) indicates a 
better represented area as the distributed gravity is considered to be at a reasonable 
spacing between stations with a smooth to moderate topography. However, in the 
central part of this area, there was no gravity data set available due to its rugged 
topography. It is interesting to see that the R value for Area C (see Figure: 4.7) is the 
lowest one (R = 0.8) despite having less sample gravity data with respect to Area B. 
This phenomenon has been characterised by the fact that this area is basically more 
smooth terrain, lying between 0 to 150 m, more or less split evenly in the east-west 
direction, and consequently the gravity density and its coverage are considered to be 
reasonably good.

6.5 Practical Determination of the Terrain Contribution

It has been mentioned in Section 3.6 that the rugged topography is a major 
cause of variations in the gravity field which will be local and of a high frequency 
signal. The irregularities of the local gravity field (especially in the mountainous areas), 
however, can be smoothed by a suitable gravity field terrain correction. In this way, it 
is possible to use even very sparse gravity data sets in areas with rugged topography 
and still obtain reasonably good approximation results, (Forsberg and Madsen, 1981). 
The computation of terrain effects in this study, serves for two purposes:

(i) To study the effect of the terrain-reduced anomalies in geoidal 
computation for the areas with smooth to medium topography and also with reasonably 
good gravity coverage (most part of Areas B and C); and

(ii) Naturally, it cannot do anything in a completely large unsurveyed area, 
i.e. the areas with rugged topography (most eastern parts of Area A and the central
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part of Area B) except to use the topography to generate the RTM contribution to the 
gravity anomalies (AgTc) plus the gravity contribution from geopotential model 
(AgGM)* This 'filled-in ' anomalies (Agpu) will naturally give a biased geoid solutions 
but sometimes this is the only possible approach to estimate the gravity field 
information in the 'empty areas', and this is what is called working with a 
geophysically predicted gravity field (Tscherning, 1994 - Private Communication). 
Thus, in the absence of real observations, it should be accepted to use these data for 
the purpose of this study, see Section 1.3(v) and (vi). This choice is justified because 
due to the limitation of the gravity density and coverage, one must still endeavour to 
make a start at computing the geoid in this mountainous area, and at the same time 
assess the influence of the topography on the gravimetric solution.

The computation of terrain corrections was done for the three test areas using 
the program TCI (part of the GRAVSOFT software). This program has the option of 
evaluating the terrain contribution (short wavelength signals) by four different 
techniques, one of which is the RTM (see Section 3.6), for the effect on any 
combination of gravimetric quantities. The computation is based on two OEMs, a 
detailed and a coarse gridded height data which are used in the inner and outer zones, 
respectively. The two grids are assumed to have common boundaries, which is the case 
if the coarse grid have been constructed from the detailed grid by averaging. As 
previously mentioned in Section 3.6, the integration of the terrain effects is performed 
using the formulae for the gravitational effects of a homogeneous rectangular prism (see 
Figure: 3.8).

In the program TCI , a consideration is taken of the very localised effect at, 
say, 1 km or less, from the computation point. The effect is found to be very significant 
for gravity anomalies, so around the computation point the finest DEM is densified 
using a bicubic spline interpolation procedure. Since gravity terrain effects are strongly 
dependent on the height of the computation point (i.e. through the term 27cGph), a 
special precaution is necessary when the height of the computation point does not agree 
with the interpolated height from the DEM. Either the computation points can be 
'forced' to match the interpolated topography level, or the topography can be modified 
locally to give the 'right' value at the computation point The first option was chosen in 
the RTM reduction for all test areas due to the gravity anomalies being closely 
correlated with height (see Figure: 4.3, Section 4.2.2). Less discrepancy is introduced 
this way. The discrepancy between the DEM and station heights will always be present, 
since the DEM will hardly ever have sufficient resolution to represent all features of 
rugged topography.
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To further increase computation speed and allow the use of less detailed remote 
topography, it is practical to use a coarse and detailed grid system. The computation 
may be done out to a fixed distance from the computation point or for all masses in a 
given area. The detailed elevation grid is used out to a minimum distance, and the 
coarse elevation grid is used for the remainder of the topography. This is fully 
implemented in the program TCI for all test areas. Figure: 6.3 shows that, in a small 
inner zone 3 x 3  grid points just around the computation point, the topographic data are 
densified using a bicubic spline interpolation, so that a 'finer' more smooth set of 
prisms is used to integrate the often large effects of the inner zone, see Forsberg, 
(1984).

id -Inher

gridOuter

Figure: 6.3 - Use of innerzone, detailed and coarse height grids in TCI.

From the available detailed height data, the coarse heights were constructed for 
each of three areas. In RTM-reduction, a suitable mean height surface was interpolated 
using the program TCGRID from these coarse mean height grids. Basically, the degree 
of smoothing is determined through the resolution of the mean height surface. 
However, the outcome of the final prediction is almost insensitive to the choice of the 
resolution of the mean height surface, providing it is somewhat bigger than the 
resolution of the gravity data used in the collocation or FFT process, see Tscherning, 
(1981).

Due to the need for height data around every point to a specified distance, there 
will be a considerable overlapping of the grids within the computation areas defined by 
radius r% and radius 1 2  (Figure: 6.3). The substantial value for 1 2  is necessary to avoid 
aliasing effects of the high wavelength (Forsberg, 1984). In this experiment, the 1 2  

value was selected by computing for some points (evenly selected in the test areas) the 
contributions of the RTM to different distances from the computation points in such a 
way that beyond this distance, the results were quite similar showing not much

150



information gain in the terrain effect signal. Thus, the radii (ri, T2 ) chosen were (5km, 
55 km) for Area A, (5km, 40km) for Area B, and (5km, 15km) for Area C. Table: 6.2 
shows the resolution of height information that is used in the terrain effect evaluations 
for each of three areas. Appendix M shows the example of the input and output of 
program TCI.

Area Detail Height Coarse Heights Gridded Mean Height Surface

Area A 30"x30" 

~(lkm X 1km)

2.5' X 2.5' 

-(5km X 5km)

1 0 ' X 1 0 '

-(18km X 18km)

AreaB r  X r  

-(2km X 2km)

3.5' X 3.5' 

-(6km X 6km)

10' X 10' 

-(18km X 18km)

AreaC T  X 2' 

-(4km X 4 km)

5' X 5' 

-(10km X 10km)

15' X 15' 

-(30 km X 30 km)

Table: 6.2 - Height resolution used for the RTM evaluation in the three test areas

6 .6  The Computation Procedure Using the LSC

In this section, details of computational procedures using the LSC method is 
presented. These includes the pre-processing of the data, estimation of empirical and 
analytical covariance functions and geoid prediction in the test areas. The LSC program 
modules (except program GEOMOD) were used in this study. These LSC program 
modules consist of three main programs:

EMPCOV (EMPirical COVariance) - the program to produce (estimate) values 
of an empirical covariance function from a sample data set.

COVFIT (COVariance FITting) - the program to fit an analytical expression 
for the covariance function of the anomalous gravity field.

GEOCOL (GEOdetic COLlocation) - The program to estimate (predict) the 
gravity field model using LSC method (using parameters and 
functions) described in Section 6.2.

A general data flow and program module diagram used in the LSC method for geoid 
determination of each of the three test areas is shown in Figure: 6.4.
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Figure: 6.4 - Data flow and program modules of LSC method used in 
geoid height computations

6 .6 .1  Pre-processing of the Data

A solution for equation (6.17) assumes that the expected value of the residual 
vectors over the test areas is as small as possible; preferably the mean value of the 
residuals should be zero. This condition can be satisfied by subtracting the regional 
trend from the measurements. The gravity data used for the prediction have been 
reduced for the effect of the tailored model OSU89B-MM. That is, the respective 
disturbing potential components at corresponding points, as derived from OSU89B- 
MM have been subtracted from observations forming a residual data set which will 
describe the local behaviour of the gravity field only. Thus,we have:

Ag' -  AgpA - ^gGM ,(6.50)

where Agp^ is the point free-air anomaly, and Ag^^ is the gravity anomaly computed 
from OSU89B-MM using equation (3.19). The above equation is equivalent to 
equation (3.20) in Section 3.5. The effect Agjc of the topographic masses (RTM 
effects) is computed from gridded height data by integration (see Section 6.4), to get 
the terrain-reduced residuals:

^gr -  ^g' - ^gTC .(6.51)
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It should be emphasised here that, since the gravity coverage was not sufficient 
for Area A and Area B (see Figure: 4.5 and Figure: 4.6), the available reduced gravity 
anomalies (Ag^) were merged with the 'filled-in' anomalies (Agpu) which were 
obtained from the tailored model contribution (AgQj^) and also from the RTM 
contribution (Ag-p^). A total of 450 (at 2'x2' spacings in area of 4.07"^ (j> < 4.87", 
101.20"< X < 101.77") and 54 (at 3'x3' spacings in area of 3.00"< ^ < 3.35", 
101.80"< X < 102.2") Agpii were used for Area A and Area B, respectively. The 
chosen grid spacings were based on the following reasons:

(i) To retain the amount of gravity field information (both Ag^^ and Ag-pc) 
in areas of greater geoid variations; and

(ii) To reduce the computational load in the LSC solutions, i.e. to avoid the 
extremely time-consuming matrix inversion and storage problems with the 
available computer resouces.

The 'merged' reduced gravity anomalies in Area A and Area B will be used 
throughout this study. Consequently, it is expected that the computed value of the 
residual geoid heights in these 'filled-in' areas will be systematically of low accuracy. 
This approach of 'fiUed-in' anomalies in large unsurveyed areas has been used by 
Despotakis, (1987) in his computation for gravimetric geoid heights at Laser Tracking 
Stations.

6 .6 .2  Estimation of Covariance Function

Two local empirical covariance functions have been estimated for each test area, 
i.e. using reduced anomalies from equation (6.50) and equation (6.151), respectively. 
Thus in total 6 covariance functions are estimated by the program EMPCOV using the 
technique of equation (6.36). This program requires only a set of reduced data 
observations, given either by equation (6^50) or equation (6.5l). The distance interval 
and the number of steps must be specified along with the type of data. Appendix N 
shows a standard input file for the program, which provides the information required 
and guides the program through its several options by a series of 'logical' values 
(T = 'True' or F= 'False'). The output of EMPCOV is used for the fitting of a model, 
i.e. a synthetic function. Appendix N shows a sample of the corresponding output from 
the standard input file of the program EMPCOV.

The local empirical covariance function computed from program EMPCOV is 
replaced by a model in the form of equation (6.33) which will be specified by equation 
(6.35). The covariance function model used in this study was the Tscherning and
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Rapp, (1974) model. The local model must be fitted to the empirical function by 
adjusting the free parameters of equations (6.34) and (6.35), so that the essential 
parameters of the empirical function are reproduced as closely as possible. These 
parameters are: a positive constant A, the radius of the Bjerhammer sphere Rg, and the

order of the local covariance function N.

The parameter A is influenced by the variance and Rg is the correlation factor.

This parameter is the radius of the Bjerhammer sphere and as such is a large value 
(-6371 kilometres). For ease of adjustment, the parameter Rg is replaced by ( Rg-Rg )

which is the depth of the Bjerhammer Sphere from the sphere of mean earth radius. 
This parameter will still be identified by Rg. The ease of fitting Rg depends on the data

spacing relative to the correlation length. The order of N is selected by fitting the 
first zero value of the empirical covariance function, see Arabelos, et.al., (1987) and 
Gil, etal., (1993). Thus, it has the effect of aiding the fit to the correlation length and 
maintaining as far as possible the first zero value of variance. However, in fitting the 
model to the empirical values of Co and ^ (and also the first zero value of variance, i/o), 
it is not possible to get an exact agreement with each, and therefore, a compromise must 
be made.

The actual fitting procedure is undertaken by holding the variance so that the 
function is defined only by Ç, and then Rg and N are varied until the computed 
correlation length and zero variance more or less agree with the actual (the empirical 
function). The influence of Rg is the major cause of fitting A is determined directly 
from the current values of Cq- The analytical approximation of the empirical covariance 
functions are computed by the sequence of subroutine COVAX, COVBX an4 COVCX 
which form a part of the program COVFIT, (Knudsen, 1987). The standard input file 
and the corresponding output of the program COVFIT is given in Appendix O.

6.6 .3  LSC Residual Geoid Prediction

The essential background work for the prediction of geoid height by LSC has 
been fully described in the preceding sections. This includes reducing data and fitting a 
model to the empirical covariance function. The way in which all these tasks were 
combined to produce a geoid database will be discussed here. The program GEOCOL 
was the main tool used in this prediction.

6.6.3.1 Program GEOCOL

The program GEOCOL computes an approximation to the anomalous potential, 
T, using LSC which can be transformed into any other related gravimetric disturbances,
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(see Table: 2.3). GEOCOL is a vastly flexible program with a wide application to 
gravity field determination. It has a modular structure involving more than 50 
subroutines and functions, although not all of these need be used for a particular run. 
GEOCOL has 18 possible input steps; the number used depends on the data being input 
and the required solution. Thus, the program allows several modes of input and output, 
the selection of which is specified to the program by user-defined logical variables.

In GEOCOL, the computation is performed in a number of steps equal to the 
number of observation sets. For each set, a harmonic function for T is produced, the 
combination of which will give the solution. Each function is produced by multiplying 
the constants b^ by the covariance between the observations and the prediction (Csi) 
described in Section 6.2.1. Hence, for the geoid height:

N = %b,C(N.Ag)  (6.51)
k=0

GEOCOL accepts several kinds of data as input and will output similar 
quantities, as well as bias parameters. The program will also accept or output data on 
several reference systems and undertakes transformations between them; one system 
(e.g. GRS80) is nominated on which to approximate T, but the observations and 
predictions may be on any system, if the transformation parameters are specified. As 
previously mentioned in Section 2.3.2.2, the GRS80 (Code = 5 in GEOCOL program) 
is used in geoid height prediction for all test areas.

As a part of the standard input file, the program is required to output 
information according to the state of completion so far. The major tasks of the program 
are to reduce the observations and solve the normal equation for bk which is very 
extremely time-consuming matrix inversion. The reduced anomalies, with associated 
information, and the solutions to the equations are written into a file called as restart 
file. The GEOCOL program also requires a temporary file for storing the normal 
equations as they are solved; this wül be an extremely large file.

Appendix P shows a standard input file for GEOCOL which permits a full run 
for geoid height predictions either as a list of points (sequential latitude, longitude, 
geoid height) or in grid format which consists of the grid specification (ÿi, (|)2 , Xi, A.2 , 
A(|), AX,) followed by bands of predictions. The latter option was selected since it 
involves considerably less computer space and can be easily manipulated for 
interpolation. The residual geoid heights were computed on 2', 3' and 5' spacing in 
each direction for Area A, Area B and Area C, respectively. These spacings were 
chosen so that detail was retained in areas of greater geoid variation (Area A and Area
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B) and a decreased density would be reasonable for Area C where the geoid gradient is 
relatively low. In total two residual geoid height databases were computed for each test 
area, i.e. with and without terrain contributions, using the GEOCOL program. 
Appendix P shows a sample of the output of program GEOCOL.

6.6.3.2 Final LSC Geoid

The task of GEOCOL is to use gravity anomalies, already reduced for long 
wavelength and short wavelengths, to compute an approximation to the anomalous 
potential which can be converted to any other gravimetric quantity. These effects must 
be restored to the prediction (residual geoid heights) that have been produced by 
GEOCOL for a complete geoid height, either using equation (3|21) for long wavelength 
geoid height contribution, or using equation (3.117) for both the short and long 
wavelength geoid height contributions. The values of Ntc are computed at specified 
points using program TCI.

Given only a set of complete 'LSC geoid height' predictions, it is necessary to 
interpolate these to stations where geoid heights are required for comparison purposes, 
for example at GPS control points. Here, the program GEOGRID - GEOdetic 
GRIDding (also part of the GRAVSOFT program modules) was used to predict the 
geoid height (using weighted means method) for 51 GPS stations in Area B (the 
Federal Territory GPS Network) and for 5 GPS stations in Area C (part of the 
Southwest GPS Network - stations no. GP49, GP50, GP51, GP53 and GP61). No 
GPS control points were made available by the DSMM for Area A. The program 
GEOGRID is a fast program for gridding randomly distributed data into a rectangular 
grid, for interpolating data in profiles, or for interpolating individual points using 
enhanced fast weighted means interpolation or coUocation-kriging method.

6.7  The Computation Procedure Using FFT

In the following section, details of practical geoid computation using the FFT 
method are presented. These include data requirement and pre-processing, and the 
computational procedure adopted for residual and final geoid computations. The main 
FFT program modules used in this study is the program GEOFOUR - GEOid FOURier 
(part of the GRAVSOFT program modules). Basically, the program GEOFOUR 
implements the Fourier method of modelling the gravity field (in a frequency domain) 
using gridded input data. The gridded data is produced by the program GEOGRID. As 
with the LSC, results of the FFT computations will also be presented and analysed in 
the next chapter. Figure: 6.5 shows the data flow and the FFT program modules used 
in this study.
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Figure: 6.5 - Data flow and program modules of FFT method used 
in geoid determination in three test areas

6.7 .1  Data Requirements and Pre-processing

The FFT method of evaluating Stokes' Integral requires gravity anomalies (Ag) 
given on a grid. When the point anomalies are randomly distributed, an interpolation 
method has to be utilised in order to predict values at the nodes of the grid. To minimise 
aliasing effects (see Section 4.6.1), a small grid spacing must be selected, especially for 
the zone close to the computation point. The long wavelength variations of the gravity 
field have been taken care of by subtracting the effect of the tailored model OSU89B- 
MM, i.e. using equation (6.50). This also reduces the edge effects of the FFT. The 
short wavelength variations of the gravity field coming mainly from the topography 
were removed using gridded height data, and again this was done using program 
TCI.

The input data for the FFT computation of residual geoid heights were 2'x 2', 
3'x3' and 5'x5' gridded reduced anomalies (with respect to both the tailored model 
OSU89B-MM and the RTM contributions) for Area A, Area B and Area C, 
respectively. These gridded residual anomalies were computed from randomly 
distributed point anomalies in those areas using the techniques of weighted means via 
the program GEOGRlD. It has to be mentioned here again, that the 'filled-in' anomalies
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were applied in the large unsurveyed areas of the eastern part of Area A and also in the 
central part of Area B. These 'filled-in' anomalies were then merged with the existing 
reduced anomalies before the gridding procedure took place.

In this present exercise, the above mentioned grid spacings were chosen in 
such a way that they can verify the correlation between the topographic variations 
(roughness) and the accuracy of the geoid over the test areas. Another reason is that by 
using a denser grid spacing of the data set in the rough variation of gravity field, e.g. 
Area A, some of this detail loss can be minimised.

6 .7 .2  FFT Residual Geoid Height Computation

The essential background work for the estimation of geoid height by FFT has 
been described in the preceding sections. This includes reducing and gridding data 
sets, which is part of the FFT requirement. The gridding of data was the most time 
consuming step in the FFT gravity field modelling process. The method in which all 
these tasks were combined to produce a geoid database will be discussed here.

The program GEOFOUR (GBOid FOURier) was the main tool used in this 
estimation. Taking gridded residual gravity anomalies as input, GEOFOUR uses 
Stokes' Integral by means of Fast Fourier transforms to compute the geoid heights on 
the same grid simultaneously. In principle, this program uses an approximated planar 
Stokes kernel function (in the fiequency domain) given by equation (6.49). The values 
of the kernel function are evaluated via discrete Fourier transforms. For the sake of 
comparison with the LSC method, in total, only 3 residual geoid heights were 
computed using the GEOFOUR program whereby the input data were gridded from the 
reduced anomalies of equation (3.18). To be consistent with the LSC exercise, the 
geoid was computed at 2'x2', 3'x3' and 5'x5' grid spacings for Area A, Area B and 
Area C, respectively. Similar to the LSC exercises, these grid spacings were chosen in 
such a way that detail was retained in areas of greater geoid variation (Area A and Area 
B) and a decreased density would be reasonable for Area C where the geoid gradient is 
relatively low.

As previously mentioned in Section 6.3.2, the solution of the BVP using the 
FFT method suffers the effect of circular convolution. To prevent the effect of the 
circular convolution, a zero padding must be applied. In this exercise, the zero padding 
approach was done by embedding 100% zeros (50% to each side) around the data 
margins for all test areas. The geoid heights from discrete FFT with 100% zeros 
padding around gravity anomalies gives optimal results, i.e. the leakage effect (effect of 
circular convolution) is minimised, see Arabelos and Tziavos, (1994), Tsuie, et.al.,
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(1994)jand Sideris and She, (1995). A drawback with the border of zeros approach, in 
terms of this project which already involves computing exceeding large Fourier 
transforms, is that adding a border increases slightly the array size and hence the 
computation time. However, this is not a main drawback of the FFT when compared to 
the LSC exercise. For example, it has been encountered from these two exercises that, 
for local gravity field computations, the FFT method was about 10  ̂to 10  ̂ times 
quicker than the LSC method, for no significant loss in accuracy. Appendix Q shows a 
standard input file and the output of the program GEOFOUR.

6.7 .3  Final FFT Geoid

The task of GEOFOUR is to use gravity anomalies, already reduced for long 
wavelength and short wavelengths, to compute geoid height in a grid format. These 
effects must be restored to the prediction (residual geoid heights) that was output by 
GEOFOUR for a complete geoid height. Here, the same steps described in Section 
6.6.3.2, were taken for obtaining the final FFT geoid height for each test area.

Similar to the LSC procedure, given only a set of complete FFT geoid height' 
estimations, it is necessary to interpolate these to stations where geoid heights are 
required for comparison purposes, i.e. at 51 GPS control points in Area B and also 5 
GPS control points, i.e. GP49, GP50, GP51, GP53 and GP61 in Area C. As 
mentioned before, no GPS control points were available in Area A for comparison 
purposes. Again, the program GEOGRID was used to predict the geoid height for the 
available GPS points.

6 .8  Summary of Practical Geoid Computation

In Sections 6.6 and 6.7, the geoid height computations were carried out for 
three test areas using the LSC and the FFT gravimetric methods. For the LSC method 
all residual gravimetric geoid heights were computed using anomalies that have been 
reduced to the following contributions:

(i) tailored model OSU89B-MM - (Case I),

(ii) tailored model OSU89B-MM and the RTM effects - (Case H).

For the sake of comparison with the LSC method, the residual gravimetric 
geoid heights in all test areas were also computed using the FFT method. In this FFT 
exercise, the input anomalies were 'gridded' from the residual anomalies which already 
have been reduced with respect to the tailored model and the RTM contribution only, 
i.e. Case II. Since the computation of residual geoid heights are based on the 'remove-
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restore' procedure, these geoid height values have to be restored using either equation 
(3.21) for case I or equation (3.17) for case U.

In order to evaluate the accuracy of the computed gravimetric geoid, the 
external control data such as GPS/levelling points can be employed. In this study, the 
geoid height at 51 GPS stations in Area B (Federal Territory GPS Network) and 5 
GPS stations in Area C (part of Southwest GPS Network) were interpolated from the 
gravimetric geoid height database. As mentioned previously, no GPS control points 
were made available by the DSMM for evaluation against the computed gravimetric 
geoid in Area A.

For the sake of the simplicity of representation and analysis of the results in the 
next chapter, all computational geoid height exercises are summarised in Table : 6.3.

Test Area Area A AreaB AreaC |

LSC method 
(Main Programs): 
EMPCOV 
COVFIT 
GEOCOL

Case I Casell Case I Case n Case I Case n

FFT method 
(Main Programs): 
GEOGRID 
GEOFOUR

- Case II - Case n - Casell

Geoid Heights 
Interpolation at the 
available GPS 
control points 
(using GEOGRID)

- - -

Case n  
(LSC and 
FFT)

-

Case n  
(LSC and 
FFT)

Table: 6.3 - The Summary of Practical Geoid Computation for Three Test Areas
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CHAPTER 7 

PRESENTATION AND ANALYSIS OF RESULTS

7 .1  Introduction

The mathematical formulation and the practical computation of geoid solutions 
using the LSC and the FFT methods have been described and discussed in the previous 
chapter. The geoid heights for the three test areas, i.e. Area A, Area B and Area C were 
computed using a number of different data combinations to enable an evaluation of the 
impact of the various types of data upon the results. The high frequency components 
are evaluated by the RTM effects; the medium frequency components of the gravity 
field are provided by point free-air anomalies, and the low frequencies are modelled by 
the OSU89B-MM tailored model coefficients complete to degree and order 360 which 
fit the gravity field of the Peninsular Malaysia region (see Chapter 5). All gravimetric 
geoid height computations were carried out on the GRS80 reference frame and using 
the 'remove-restore* procedure. The test results are summarised in Table: 6.3, Section 
6.8. For the sake of consistency of representation and discussion of the results, similar 
notations, i.e. 'Case I' and 'Case II' described in Section 6.8 wiU be used again, in all 
relevant tables and figures throughout this chapter.

The results of the RTM computations in all test areas are first analysed in some 
detail in this chapter. The purpose of this section is to see the possible terrain effect on 
the anomalous gravity field (for gravity anomalies and geoid height) with respect to 
topographic viewpoints in the test areas. Then the discussion is focused on the results 
of practical estimation of covariance functions. As covariance reflects the statistical 
correlation between variables, the covariance function describes the correlation across 
the test areas by its variation with spherical distances. Thus, it has certain characteristics 
which are essential to the success of LSC. The solutions of LSC performed are then 
given for each test area for both cases, i.e. Case I and Case II. Comparisons between 
Case I and Case II are also discussed in order to see the effect of the terrain contribution 
in gravimetric solutions. The comparisons between the LSC and the FFT solutions are 
also presented, but this will be for Case II only. Finally, the gravimetric geoid heights 
obtained by the LSC and the FFT solutions (for Case II solution only), are compared 
with independent external results, that is the available GPS/levelling derived geoid 
heights. The discrepancies between the 'observed' and the 'computed' geoid heights 
are summarised and discussed in terms of both the absolute and the relative differences.
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7 .2  Results and Analysis of the Residual Terrain Model Contribution

As previously described in Section 6.5, the RTM contributions for gravity 
anomalies and geoid heights were computed using the program TCI for all test areas. 
In brief, for these RTM computations, two height grids were used in addition to the 
reference grid; a fine grid for close information and a coarser grid for the more remote 
topography. The computations at points were carried out to a fixed radius based on 
these grids using the formulas for the gravitational effects of a homogeneous 
rectangular prism. The majority of the high frequency effects of the anomalous gravity 
field were due to very near topography.

Table: 7.1 contains the statistical results that are associated with the RTM 
contributions for these anomalous gravity field for each test area. Figures 7.1(i), (ii) 
and (iii) depict the contour plots for short wavelength contributions to gravity anomalies 
in Area A, Area B and Area C, respectively. Similar contour plots for the geoid heights 
for these test areas are also shown in figures 7.2(i), (ii) and (iii), respectively.

Test Area Area A Area B Area C

Gravity
Anomaly

(mgal)

Geoid
Height

(m)

Gravity
Anomaly
(meal)

Geoid
Height

(m)

Gravity
Anomaly

(mgal)

Geoid
Height

(m)

Mean 0.15 0.03 0.27 0.03 0.02 0.01

Std. Dev. 42.75 0.22 20.36 0.20 2.27 0.02

Min. -51.50 -0.35 -42.45 -0.30 -2.10 -0.01

Max. 105.60 0.62 86.15 0.56 14.70 0.05

Table: 7.1 - The statistical results of the RTM contribution of gravity anomalies 
and geoid heights for each of test area

It is apparent from Table: 7.1 that the RTM contribution on the gravity 
anomalies and geoid heights is almost insignificant for smooth terrain such as Area C. 
In contrast, a lot of higher frequency gravity field information is gained by the RTM 
effect for the rough terrain of Area A and Area B. Of main interest are the magnitudes 
of the terrain effects on the gravity anomahes and the geoid heights in each of the areas. 
For example, the RTM contribution in Area A for gravity anomalies and geoid height 
amount to over 100 mgals and 0.5 m, compared to Area C which is about 15 mgals and
0.05 m, respectively.
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From the same table and all figures, an analysis of the RTM contributions has 
shown that the total mass removed by using a reference surface was on average close to 
zero, but the major requisite is that the mass removed be a harmonic function. The 
average of zero masses corresponds to the fact that because the RTM is evaluated on a 
reference mean height surface (hj, as finite elements' in effect, that may have a 
negative mass (below h j or positive mass (above hr), only the masses extra to this 
reference surface are modelled as described in Section 3.6 (Figure: 3.7-C). As 
described in Section 2.6, the harmonic condition is very important for the solution of 
the BVP using any gravimetric method.

101.1 101.3 101.5 101.7

-  4.84.8

-40 4.74.7 —

-20

4.64.6 —

Z
4.5

03
__l 4.44.4 —

4.34 .3 -

4.24 .2 -

4.14.1
101.7101.5101.3101.1

Longitude (E)

Figure: 7.1(i)-The RTM contribution of gravity anomahes for Area A - (C.l=20 mgals)
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Figure: 7.1(ii)-The RTM contribution of gravity anomalies for Area B - (C.I=10 mgals)
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Figure: 7.1(iii)-The RTM contribution of gravity anomalies for Area C - (C.l=2 mgals)
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Figure: 7.2(1) - The RTM contribution of geoid heights for Area A - (C.I = 0.05 m) 
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Figure: 7.2(ii) - The RTM contribution of geoid heights for Area B - (C.I = 0.05 m)
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Figure: 7.2(iii) - The RTM contribution of geoid heights for Area C- (C.I = 0.01 m)

It is obvious that to see from figures 7.1(i) and 7.2(i) of Area A and figures 
7.1(ii) and 7.2(ii) of Area B that the RTM contribution shows the usual strong 
correlation with the rough topography compared to the smoother area. Area C in figures
7.1 (iii) and 7.2(iii). In other words, the use of the RTM contribution has shown a lot 
of high frequency gravity field information in mountainous areas than those in lowland 
areas, implying that a strong gravity signal is due to the gravitational attraction of the 
topographic masses itself. The RTM contributions as shown in figures 7.1(i), (ii) and
(iii) were used in the remove process for Case II, and subsequently the RTM 
contribution shown in figures 7.2(i), (ii) and (iii) will be used in the restore process,
i.e. to be added to residual geoid heights, see equation (3.17).

From the above analysis, it is clearly seen that in the mountainous areas, the 
topographic effects completely dominate the shorter wavelength variations of the 
gravity field. In contrast, for smooth areas, the effect of topographic masse is 
insignificant, resulting in very small magnitudes, as would be expected. Therefore, it 
can be expected that by removing the terrain effects from observed anomalies (free-air 
anomalies) in the areas of interest, especially in mountainous areas (e.g. the eastern 
part of area A), the gravity field will become distinctly smoother with a much lower 
variation. This reason is due to the fact that the free-air anomalies tend to be linearly and 
strongly correlated with the topography of observed points, i.e. the free-air anomaly’s 
high frequency variation comes primarily from the influence of the topography. Thus,
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the terrain effect contribution in rough areas is very important as reduced data tends to 
be more isotropic and homogeneous for an optimum estimation of the LSC covariance 
function. A small prediction error can be achieved by a small variance Cq and a large 
It is recommended that the DEM resolution at 30" x 30" (equivalent to 1km x 1km) 
should be used to remove irregularities of the local gravity field (high frequency 
spectrum) in the mountainous areas of areas A and B. By utilising a good resolution of 
local DEM, it is possible to use even very sparse gravity data sets for geoid predictions 
in mountainous areas with reasonably good approximation results, see Sunkel, (1981) 
and Forsberg and Madsen, (1981).

7 .3  Analysis of the Estimated Covariance Functions

A main requirement for the application of collocation to the geoid prediction 
from gravity anomalies is a good choice of the covariance function as it reflects the 
characteristics of the gravity field. For example, in mountainous areas where the gravity 
field is not smooth, the covariance will show greater variation and less correlation in the 
gravimetric signals. Since a major part of the short periodic variation of the gravity field 
in the rugged areas is due to the topographic masses, the irregularities of the local 
gravity field and hence the local covariance function is smoothed by the gravity field 
terrain-reduction before using any gravimetric method. In smooth areas, the effect of 
the topography has the least influence of the gravity anomalies. The optimal shape of a 
covariance function is defined by long correlation length and of course, a low variance 
(see Section 6.2.2). These characteristics, in turn will depend on the sample data set, 
e.g. sufficiently large and homogeneously distributed because the covariances involved 
should reflect the actual characteristics of the gravity field as adequately as possible. 
The characteristics of the gravity field in each of the test area will be analysed in this 
section.

As previously described in Section 6.4, three test areas were chosen, each with 
varying characteristics in terms of gravity coverage, density and topography. For 
modelling the gravity field of these test areas, the long wavelength and the short 
wavelength field were removed as the OSU89B-MM and the RTM contributions were 
subtracted from all observations, respectively. With the reduced anomalies, the 
empirical covariance function was estimated (using program EMPCOV) in order to 
obtain the best agreement between this empirical function and the model function. 
However, in fitting the model (using program COVFIT) to the empirical values of Cq 
and it is not possible to get exact agreement with each, and a compromise has been 
made in this exercise with respect to both parameters.
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Tables 7.2(i)-(iii) shows some characteristics of the empirical and model 
covariance functions. Figures 7.3(i)-(vi) depict the empirical covariance functions of 
the local gravity field with their corresponding synthetic models for each test area of 
Case I and Case II, respectively. It can be seen clearly from tables 7.2 (i)-(ii) and 
figures 7.3 (i)-(iv) that in area A and area B where the gravity fields in these rugged 
areas are not smooth, the covariance functions have shown a greater variation and less 
correlation in the gravimetric signals. This is due to the fact that, for these areas, the 
reduced anomalies were merged with the 'filled in' anomalies from the tailored model 
contribution (Case I) and from both the tailored model and the RTM contributions 
(Case n). As pointed out in Section 6.5, these 'filled in' anomalies in the unsurveyed 
areas caused the variance to be too high and correlation length to be too short. 
Consequently, since the variance functions as a scale factor for the prediction process, 
it can be seen in the next section that the accuracy of geoid prediction for the rough 
areas such as Area A would be of low quality, but the solution is not necessarily 
wrong. The estimated covariance function for Area C as shown in Table: 7.2(iii) and 
figures: 7.3(v)-(iv), has described the gravity field behaviour adequately for local 
studies, i.e. low variance and long correlation distance. Despite data reduction, regional 
factors still influence individual gravity measurement within the area of study causing 
these slight variations. As previously mentioned in Section 6.2.2, the effect of these 
distant variations (>1.5Ç) does, however, have little effect in LSC application.

Respectively, it can be seen that in tables 7.2(i) and (ii) for test Area A and Area 
B, the degrees of expansion (or order of local function) was found to be too high 
compared to Area C. However, by reducing these optimal maximum degrees, a much 
better fit was obtained whereby the covariance was reproduced much more closely 
while the first zero is at about same spherical distance y. The adjusted parameter for Rg 
was also more sensible. It is apparent that from the empirical and model covariance 
functions that although they are quite close at first, at larger distances, the two 
functions begin to separate as the fit is no longer controlled by essential parameters. 
The model at these distances is not reproducing the gravity field behaviour to an 
adequate extent, but again the influence of this on the LSC solution is negligible.

From all figures 7.3, it is apparent that the estimated covariance functions 
varied greatly between each other, and not all behave in the theoretically expected 
manner. The better examples tend to be in the low or smoother areas of Area C 
compared to rugged areas, Area A and Area B. The geopotential model holds a lot of 
information in test Area C; medium wavelength information is most common and much 
of this is available from the gravity data. Area A and Area B are of particular interest as 
they both involve medium to rough terrain and show clearly the expected changes in the
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essential parameters with each reduction, i.e. Case I and Case II. Thus, it is obvious 
that for these rugged areas, the terrain contributions have dominated the characteristics 
of the local covariance function in the expected manner. However, there will be major 
changes in the gravity field if one has some 'observed values' in these rough 
'unsurveyed areas' as the terrain reduction can eliminate the strong correlation between 
the height and the free-air anomalies. In other words, the gravity field is expected to be 
smoother and more homogeneous as particular detail is removed to levels comparable 
with lowland areas. Area C. It is very interesting to see that although the RTM 
contribution is very small for area C, the consideration of this effect in the computation 
still seems to improve the gravity field variation slightly as shown in figures 7.3(v) and 
(vi). Therefore, any data reduction process, e.g. short and long wavelength effects 
which decrease the variance and increase the correlation length has to be considered in 
gravity field modelling.

By examining all figures, it can be said that the optimal synthetic models of 
covariance functions were carried out in a correct way although in reality the actual 
behaviour of the gravity field in the mountainuos areas were not available at the time of 
this study, i.e. no observed gravity values. Again, as previously pointed out in Section 
6.5, this was the only possible means of testing the influence of both the tailored model 
and the terrain effects in these unsurveyed areas. The compromise between the 
empirical and the model covariance functions can also be considered successfully done.

Empirical Function Model Function

Parameter
Co

(mgal2) (arc
min)

\|/o
(arc

min)

Co
(mgal2) %

(arc
min)

\j/o
(arc

min)

Order
N

Rb-Re
(km)

Case I 313.12 12.6 22.2 313.10 12.0 22.5 313 -9.40

Case n 2678.01 10.5 17.4 2678.00 10.2 17.7 400 -8.05

Table: 7.2(i) - Characteristics of covariance functions for Area A

Empirical Function Model Function

Parameter
Co

(mgal2) (arc
min)

\|ro
(arc

min)

Co
(mgal2) (arc

min)

\jro
(arc

min)

Order
N

Rb-Re
(km)

Case 1 70.57 4.2 11.4 70.60 4.5 12.0 520 -1.15

Case n 327.42 10.8 18.6 327.40 11.4 18.0 362 -6.75

Table: 7.2(ii) - Characteristics of covariance functions for Area B

169



Empirical Function Model Function

Parameter
Co

(mgal2) 4
(arc
min)

\)/o
(arc

min)

Co
(mgal2) :

(arc
min)

\\fo

(arc
min)

Order
N

Rb-Re
(km)

Case I 52.92 14.7 52.8 52.90 15.6 52.5 105 -3.55

Case n 50.08 14.7 49.2 50.10 15.6 48.6 110 -3.60

Table: 7.2(iii) - Characteristics of covariance functions for Area C
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Figure: 7.3(i)-The empirical and model covariance functions for Area A-Case I
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Figure; 7.3(ii) - The empirical and model covariance functions for Area A-Case II
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Figure: 7.3(iii)-The empirical and model covariance functions for Area B-Case I
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Figure: 7.3(iv)-The empirical and model covariance functions for Area B-Case II
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Figure: 7.3(v) -The empirical and model covariance functions for Area C - Case I
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Figure: 7.3(vi)-The empirical and model covariance function for Area C-Case II

7.4  The LSC Test Results and Comparisons

Through the LSC geoid prediction method, two data sets of residual geoids 
(Case I and Case II) and hence two final gravimetric geoids for each of the three test 
areas were produced via remove-restore procedures. The residual geoids for each of 
test area were also produced using the FFT method, but as mentioned previously this 
was done for Case II only. This section compares results from the two cases, i.e. Case 
I and Case II and assesses the contribution of terrain effects in each test area. The test 
results and comparisons between the LSC and the FFT and the assessment of the merits 
of each method used in this study is discussed in the next section.

7.4 .1  Test Area A

As previously mentioned in Section 6.4 and highlighted in Table: 6.1, Area A 
is basically characterised by a mixed terrain. One can see that the terrain changes from 
flat to rugged when proceeding from west to east. The trend varies from a 5 m low at 
the west coastline areas to approximately 2000m high at the eastern part of Titiwangsa 
Range.

As previously described in Section 6.6.3, the residual geoid heights for Area A 
were computed at 2' x 2' gridded format giving a total of 625 points for both cases. 
Case I and Case II, and these are given in Appendices R (i) and (ii), respectively.
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Table: 7.3 summarised the statistical results of residual geoid heights for this test area. 
Figures 7.4 (i) and (ii) depict residual plots of geoid height computed using the LSC 
method for Case I and Case H, respectively.

Solution Mean Std. Dev. Minimum Maximum

Case I 0.15 0.21 -0.14 0.66

Case n -0.16 0.55 -1.36 1.06

Case n-Case I -0.31 0.39 -1.21 0.26

Table: 7.3 - The statistical results of the LSC residual geoid heights for Area A

It can be seen from Table: 7.3 that the standard error of the computed residual 
geoid heights found around 20 cm and 50 cm for Case I and Case II, respectively. The 
mean error of the predictions (see equation 6.16) was 22 cm and 56 cm for Case I and 
Case n, respectively. The values are obviously closely correlated with the quality of the 
respective covariance functions, i.e. the accuracy of the observations from which the 
predictions are made. By examining these values, as was to be expected this was due to 
the rough variation of the gravity field in the region for both cases. The quality of the 
covariance function used in LSC prediction for this area depends greatly on the amount 
of variation of the gravity field, and the extent to which the tailored model and the 
topographic model reduce this variation. Very unfortunately, most parts of the areas 
were void of the actual gravity values (observed anomalies), and so, these were 
replaced by the ’filled in' anomalies as described in Section 6.5. Consequently, the 
covariance function in Figure: 7.3(ii) was not of an optimum nature, i.e. poor gravity 
field information, resulting in a biased geoid. In other words, based on the functions 
that were determined, the residual geoid prediction is not to a high standard.
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After removing the long wavelength trend, i.e. Case II minus Case I, the effect 
of the RTM contribution can be clearly seen and this is shown in Figure: 7.5. In 
general, one can see that the pattern of this terrain effect on the geoid is quite similar to 
the topography of the areas as shown in Figure: 4.5. More fundamentally, much 
shorter wavelength components are apparent in the central and eastern part of the 
mountainous area. Thus, one should always use the terrain reduction concept, e.g. the 
RTM effect in the mountainous areas even the lack of data prohibits the estimation of 
the actual gravity field information. This is due to the fact that when appropriate 
methods are used for accounting the short wavelength signals in rough areas, the 
gravimetric methods such as the LSC or FFT can still estimate the geoid heights at 
similar accuracy with those obtained in lowland areas, see Forsberg and Madsen, 
(1981).
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Figure: 7.5 - The residual geoid differences between Case I and Case II - Area A 
(C.I = 0.10m)
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The total contribution of geoid height (final geoid) for Case I and Case II is 
shown in figures: 7.6(i) and(ii), respectively. Appendices S(i) and (ii) show the output 
of the final geoid heights for these two cases, respectively. By examining these figures, 
it is obvious that the Nqm geoid, as the major source of geoid information (long 
wavelength features) dominated the geoid contour plots, but still, the effects of the 
high frequency of the gravity field information can be seen, especially in the 
mountainous areas. In the rest of the area, the overall geoid pattern is almost the same 
as the N^g contributions is of considerably smaller magnitude, see Appendix R(ii). The 
final geoid contour shown in Figure: 7.6(ii) changes around 3 centimetres over 1 
kilometre at its smoothest, and although it is in general smooth, there are slope 
variations. There are major changes, also, in the east-west trend and so the denser 
spacing in this direction is justified.

4

Figure: 7.6(i) - The final LSC geoid heights for Area A - Case I, (C.I.= 0.30m)
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Figure; 7.6(ii) - The final LSC geoid heights for Area A - Case II, (C.I.= 0.30m)

7 .4 .2  Test Area B

Similar to Area A, the test Area B is also basically characterised by mixed 
terrain. The topography in this test area is however more moderate terrain where the 
trend varies from a 0 m low (near the coastline areas) at the southwest part to 
approximately 1600 m high at the northern and central parts of the Titiwangsa Range. 
However the gravity density and coverage in Area B is far better than Area A although 
more than 95% of the gravity points are predominantly from the valleys and lowland 
areas.

The residual geoid heights for Area B were computed at 3' x 3' gridded format 
giving a total of 391 points for both cases, Case I and Case II. Appendices T (i) and (ii) 
show the output of the residual geoid heights for Case I and Case 11, respectively. The 
statistical result is summarised in Table: 7.4. Figures 7.7 (i) and (ii) are the residual 
geoid heights computed by equation (6.17) for Case I and Case II, respectively.
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Solution Mean Std. Dev. Minimum Maximum

Case I O.OI 0.12 -0.17 0.15

Case II 0.15 0.20 -0.17 0.53

Case U-Case I 0.14 0.15 -0.18 0.48

Table; 7.4 - The Statistical results of residual geoid heights for Area B

Figure: 7.7(i) - The LSC residual geoid heights for Area B - Case I, (C.I = 0.03 m)
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Figure: 7.7(11) - The LSC residual geoid heights for Area B - Case H, (C.I = 0.10 m)

As shown In Table: 7.4, the accuracy of the computed residual geoid heights is 
about 10 cm and 15 cm for Case I and Case II, respectively. The mean error of the 
predictions was 13 cm and 20 cm for Case I and Case II, respectively. Again, this was 
expected due to possible degradation In rugged terrain which may occur because of a 
few filled in' anomalies (in central part of Area B- see Section 6.6.1). Consequently, 
the quality of the covariance function used in LSC prediction would not be able to 
describe the actual gravity field behaviour adequately for this area, i.e. did not aid the 
computation of optimal covariance functions. Another reason, perhaps, is due to the 
amount of high frequency detail that 0.5° mean anomalies used in the development of 
tailored model OSU89B-MM cannot portray. However, this phenomenon can still be 
considered as better than Area A because the functions (with small variations) can still 
reflect the characteristics of the gravity field in this area, see figures 7.3(1) - (iv). 
Presumely, when real gravity observations become available in this rough un surveyed 
area, and the data is reduced properly and completely, then a situation may arise where 
the estimated covariance function would be more representative of the actual gravity
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field. In other words, through gravimetric reduction as in equation (3.18), the 
covariance functions will behave in the theoretically expected manner whereby the 
variance will reduce significantly and the correlation length will also decrease.

Figure: 7.8 shows a map of the LSC residual geoid differences when the terrain 
effect is considered and when the terrain effect is not considered, i.e. Case II - Case I. 
Again one can see from this figure that the big differences occurred in the rough areas, 
and the pattern of the terrain effect on the geoid is quite similar to the topography of the 
area as shown in Figure: 4.6. The terrain contribution in this area amounts to about 50 
cm which is considerable for the high wavelengths. In lowland areas (the north-eastern 
and south-western parts of Area B), there are no major differences in residual geoids 
between Case 1 and Case n.
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Figure: 7.8 - The residual geoid differences between Case I and Case n  - Area B 
(CI.= 0.05m)
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The final geoid heights for Case I and Case II is shown in figures 7.9(i) and
(ii), respectively. The corresponding outputs of the final LSC geoid heights for Area B 
are shown in Appendices U(i) and (ii), respectively. Similar to figures 7.6 (i) and (ii), 
the Ngm geoid which is the source of long wavelength features dominated the geoid 
contour plots in this test area. However, by using the remove-restore procedure 
described in Section 3.5, the definite features are visible, i.e. effects of the local gravity 
field information, particularly in the north and central part of Titiwangsa Range. Thus, 
the terrain effect in rough areas of Area B is of importance to be considered in any 
gravimetric method because it is well known that the visual topography has greatest 
influence on the gravity anomalies. For the geoid, however, the local topographic effect 
is small, the variations being typically at the decimetre level, but on a larger scale the 
geoid height caused by the visual topography becomes very significant (Forsberg and 
Madsen, 1981).

From Figure: 7.9(ii), it is apparent that the effect of restoring the N jc 
contribution on the lowland areas did not contribute any significant changes and thus 
the final geoids look similar to each other, although small detail differences exist. One 
can see from Figure: 7.9 (ii), the final geoid in this test area also changes around 3 
centimetres over 1 kilometre for the smooth areas and there are slope variations in the 
north-south trend, especially in the area 3.3° < ({) < 3.5° N, 101.8° < A, < 101.9° E. One 
possible reason for this phenomenon might be that the addition of some local gravity 
data and height data in this particular area removes the smooth trend of the N q m -

0.0

-2i-

w m m

Figure: 7.9(i) - The final LSC geoid heights for Area B - Case 1, (C.I. = 0.30m)
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Figure: 7.9(ii) - The final LSC geoid heights for Area B - Case II, (C.I.= 0.30m)

7 . 4 . 3  Test Area C

As has already seen in Figure: 4.7, Section 4.3, the test Area C is relatively low 
and flat terrain with a maximum elevation of less than 150 m. The gravity density and 
coverage in this area are also good, and therefore are considered to represent the local 
gravity field variation in the expected manner, i.e. a smooth and homogeneous gravity 
field.

The residual geoid heights for Area C were computed at a 5’ x 5’ gridded 
format giving a total of 104 points for each case, and they are given in Appendix V (i) 
and (ii), respectively. Table: 7.5 summarised the statistical results of residual geoids for 
this test area while the plots showing the geoid contours are given as Figures: 7.10 (i), 
and (ii), respectively.

Solution Mean Std. Dev. Minimum Maximum

Case I 4108 0.09 -0.21 0.03

Case II -0.08 0.08 -0.20 0.04

Case Il-Case I 0.00 0.02 -0.04 Œ02

Table: 7.5 - The statistical results of the LSC residual geoid height for Area C
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By examining Table: 7.5 and the corresponding figures 7.10(i) and (ii), one can 
see that the results obtained for the terrain corrected cases were almost identical to those 
which are not terrain corrected. The standard deviation of the computed residual geoid 
heights found around 10 cm for both Case I and Case II. The mean error of predictions 
was 12 cm for both cases. This is not a suprising result because in a smooth area such 
as Area C, the gravity anomalies of the RTM contribution for this test area (in Case II) 
is quite small. Similar results in the test area of Tennessee, USA has also been reported 
by Zhao, (1989). Nevertheless, the values are obviously closely correlated with the 
quality of the respective covariance functions which implies a good representation of 
the gravity field information in this test area compared to Area A and Area B. Again, the 
importance of fitting a synthetic covariance function as close as possible to the empirical 
functions lies in the need to obtain reliable prediction error estimates. The residual 
differences between Case I and Case II for Area C are shown in Figure: 7.11.

103.25 103.50 103.75 104.00

.8 - 0.01 -0.06

.7 -
o
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o
oo -  1.4
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1 .3 - o -1 .3a0.01

103.25 103.50 103.75 104.00
Longitude (E)

Figure: 7.11 - The residual geoid differences between Case I and Case II - Area C 
(C.I.= 0.01m)

Since the residual geoid differences between Case I and Case II have a small 
magnitude, i.e. less than 6 cm, it was decided that only one final gravimetric geoid
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(Case II) was computed for Area C, and this output is given in Appendix W. Figure: 
7.12 depicts the contour map of the final geoid heights for this test area. It can be seen 
from this figure that the geoid contour pattern is mainly long wavelength in nature, i.e. 
corresponds to Ngm> but some small irregular variations did exist in this area due to 
the local data contribution. The final gravimetric geoid in Area C changes by 
approximately 2 centimetres over 1 kilometre for the whole area which is considered 
quite a smooth pattern compared to the final gravimetric geoids of both Area A and Area 
B (for Case II only).

%  #  #  % %

■\0330

Figure: 7.12 - The final LSC geoid heights for Area C - Case II only (C.I. =0.30m)

7 .5  The FFT Test Results and Comparison With the LSC Geoid

The LSC and the FFT methods have been applied to identical data sets of Case 
II. This section compares results from the two methods and assesses the merits of each 
with respect to Case II only. Appendices X(i), (ii) and (iii) list the results of residual 
geoid heights of FFT solutions for Test A, Test B and Test Area C, respectively.
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The statistical results between the LSC and the FFT residual geoid and their 
corresponding differences for all test areas are summarised in Table: 7.6. Figures 
7.13(i), (ii) and (iii) depict the FFT residual geoid heights for Area A, Area B and Area 
C, respectively. The plots showing the residual height differences between the LSC and 
the FFT solutions for Area A, Area B and Area C are given as Figures: 7.14(i), (ii) and
(iii), respectively.

Test Area Area A Area B Area C

LSC FFT Diff. LSC FFT Diff. LSC FFT Diff.

Mean -0.16 -0.13 -0.03 0.15 0.13 0.02 -0.08 -0.07 -0.01

Std. Dev. 0.55 0.51 0.10 0.20 0.18 0.03 0.08 0.07 0.02

Min. -1.36 -1.25 -0.17 -0.17 -0.16 -0.01 -0.20 -0.20 -0.06

Max. 1.06 0.98 0.13 0.53 0.51 0.07 0.04 0.03 0.03

Table: 7.6 - The statistical results of the LSC and the FFT residual geoids and their 
differences for all test areas - Case II only

0.0 -

Figure: 7.13(i) - The FFT residual geoid heights for Area A - 
Case II only, (C.l.=0.25m)
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Figure; 7.13(ii) - The FFT residual geoid heights for Area B - Case H only, 
(C.I.=0.10m)

i03.2^

Figure; 7.13(iii) - The FFT residual geoid heights for Area C - Case H only, 
(C.I.=0.02m)

188



101 j) 101̂ 101.4 101.6

■0.00

•005

-4 .74.7

4.64.6

4.5

*0.10

-4 .4_J 4.4 •0.15

4.3
•0.10

4.14 .1 -

101.0 101.2 101.4
Longitude (E)

101.6

Figure: 7.14(1) - The residual geoid differences between LSC and FFT 
for Area A - Case II only, (C.I.= 0.05m)
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Figure: 7.14(ii) - The residual geoid differences between LSC ana r r  f  
for Area B - Case II only, (C.I.= 0.01m)
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Figure: 7.14(111) - The residual geoid differences between LSC and FFT 
for Area C - Case H only, (C.I.= 0.01m)

By examining Table: 7.6 and ail figures, The FFT and LSC geoids appear to be 
compatible to a large extent but some departures of the two are apparent. Obviously, the 
differences In geoid height computations between the LSC and the FFT methods are 
due to the structures and mathematical properties of these two methods. As discussed In 
Sections 6.2 and 6.3, the LSC has a clear stochastic behaviour analysing each 
observation In two parts. I.e. the signal and the noise whereas the FFT procedures are 
based on Stokes' formula which Is transformed In convolution form. Thus, the power 
of spectral density function In FFT methodology Is equivalent to the covariance 
function In LSC but not absolutely the same thing.

A major discrepancy appears to be due to differences In the treatment of the 
Input data. For example, the LSC prediction method using point values of reduced 
anomalies (see Figure: 6.3) whereas the FFT solution requires gridded data (see Figure: 
6.4) which Inevitably Involves some smoothing. In general, the overall accuracy of the 
LSC solution Is slightly less than the FFT solution. Again, one of the possible reasons 
for this might be that In this prediction method, the geoid was obtained through point 
anomalies which are closely correlated with the optimal estimation of the respective
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covariance functions while the FFT-based method makes use of all the data on the grid. 
Another reason might be that in the discrete Fourier transform computation, the 100% 
zeros padding technique was applied in order to eliminate the unwanted errors causing 
by circular convolution, i.e. spectral leakage. As mentioned before, zero padding 
consists of embedding zeros around the values of the original field(input data) which 
practically doubles the dimensions of the arrays. The 100% zeros padding procedure 
will bring the data smoothly to zero at the edges of the record length, thus eliminating 
the discontinuities, and giving spectra as close as possible to the 'true' spectra, see Li 
and Sideris , (1994).

The geoid in all test areas is smoother when computed by FFT than by LSC. 
One can see that the largest differences occurred in the areas with rough topography of 
Area A and Area B, see Figure: 7.14(i) and (ii), respectively. These discrepancies may 
be due to the quality of the covariance function used in this area which did not 
characterise the gravity field behaviour correctly and consequently did not imply a good 
relative accuracy internally, i.e. a large mean error prediction.

As is expected, the major differences between these two gravimetric methods 
does not occur on the numerical results but rather on computing times. For example, 
to compute the residual geoid height for 104 points using about 250 reduced anomalies 
for the test Area C, the FFT was found to be about 10̂  quicker than the LSC method, 
for no appreciable loss in accuracy. As mentioned before, this was due to the main 
drawback of the LSC method where a system of linear equations with as many 
unknowns as the number of observations has to be solved, and this sometimes caused 
storage problems with the available computer resources.

7 .6  Comparison of the LSC and the FFT Geoids With
GPS/Leveiling Derived Geoid Heights

Both results, computed by gravimetric methods described previously in 
Chapter 6, may contain some systematic errors such as those caused by the optimality 
of covariance functions (for LSC) and leakage effects (for FFT). It is important to 
compare solutions with independent external results. As mentioned in Section 1.1, 
it has become standard practice in recent years to compare computed gravimetric 
geoid heights with those derived (observed) independently from the combination of 
GPS observations and orthometric levelling, i.e. N op s/ieve iiin g - Therefore, for 
completeness, the LSC and the FFT solutions will be compared against the available 
NcpsAeveiUng- Again, as previously mentioned in Section 4.5, only 51 GPS control 
points in Area B and 5 GPS control points (stations no. GP49, GP50, GP51, 
GP53 and GP61) in Area C were available for the comparison purposes but no of
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GPSAevelling data in Area A were made available by the DSMM, simply because 
these control data have not yet been connected to the levelling network, i.e. there are 
no orthometric height values. Also, it has to be pointed out here that orthometric 
heights at the current GPS points have been determined with varying degrees of 
accuracy making comparisons between gravimetric and geometrical geoids 
inhomogeneous and unreliable. Therefore, at the time of this study, it cannot be used 
to ultimately test the quality of the gravimetric geoid but it does provide a valuable 
comparison. The geoid heights at the GPS control points were interpolated from the 
gravimetric geoid database (LSC and FFT final geoids - Case II only), and will used 
for comparison in terms of absolute and relative differences in the following sections.

7 .6 .1  Comparison of Absolute Differences

First, the comparisons are made on 51 GPS Federal Territory control points in 
test Area B. Table: 7.7 summarises the statistics of the differences before and after 
removing the systematic biases. Details of these differences are given Appendix Y 
(before removing the systematic biases).

N g PS/Lcv

(Nl)
N l sc

(N2)
N f f t

(N3)
3N1=N1-N2 3N2=N1-N3

Mean -4.02 -3.32 -3.33 -0.70(0.00) -0.69(0.00)

Std. Dev. 0.21 0.18 0.18 0.06 (0.05) 0.06(0.05)

Min. -4.37 -3.69 -3.69 -0.86(-0.16) -0.85(-0.16)

Max. -3.61 -2.92 -2.93 -0.60(0.10) -0.60(0.09)

Range 0.76 0.77 0.76 0.26(0.26) 0.25(0.25)

Table: 7 . 7  - Absolute differences between the N l s c  » N f f t  and the N g p s / U v

at 51 GPS control points - Area B; Number in parentheses represents 
values after removing the systematic biases. Unit in metres

As shown in the above table, the gravimetric geoid models computed from both 
the LSC and FFT methods have the absolute agreement with the GPSAevelhng in terms 
of the standard error of about 6 cm. In general, it can be seen that the accuracy is 
improved by 5 cm compared to the absolute agreement between the GPS/leveUing and 
the tailored model alone (see Section 5.7.3.2, Table: 5.8). The mean values of the 
absolute agreement with the control GPS points is about 7 0  cm for both the LSC and 
the FFT geoids. The overall result, however, indicates that there exists a significant
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datum difference between the gravimetric geoid and the GPS/levelling. The differences 
can be due to a combination of unmodelled GPS errors, gaps in gravity coverage, the 
long wavelength geoid errors and again, most likely to be suspected, are the levelling 
errors.

The above accuracy of the gravimetric geoid with respect to the GPS/leveUing 
can be further improved by using more precise GPS data which are accompanied by 
orthometric height data of similar precision. Moreover, the incorporation of more local 
gravity data with better quality and coverage, especiaUy in the rough areas (Titiwangsa 
Range) as weU as the high frequency from more accurate DEM can remove the long 
wavelength errors that are inherent in the tailored model OSU89B-MM.

The comparisons are also made on 5 GPS/Levelling points available in test 
Area C, see Appendix Z. Table: 7.8 summarises the statistics of the differences before 
and removing the systematic biases.

N g p s / U v

(Nl)
N l s c

(N2)
N f f t

(N3)
0N1=N1-N2 3N2=N1-N3

Mean 6.44 8.16 8.14 -1.71(0.00) -1.70(0.00)

Std. Dev. 1.50 1.44 1.42 0.25(0.24) 0.25(0.24)

Min. 4.81 6.68 6.70 -1.92(-0.33) -1.89(-0.33)

Max. 8.82 10.33 10.33 -1.38(0.21) -1.37(0.19)

Range 4.01 3.65 3.63 0.54(0.54) 0.52(0.52)

Table: 7.8 - Absolute differences between the Nlsc» Nfft and the Ngps/Uv

at 5 GPS control points - Area C; Number in parentheses represents 
values after removing the systematic biases. Unit in metres.

Table: 7.8 indicates that the overall agreement between both gravimetric 
geoids and the GPS/leveUing derived geoid heights is around 25 cm in terms of 
standard deviation, and there exist systematic biases between the two kinds of geoid 
representations with biases of about 1.7 m. These systematic biases might be due 
to the systematic differences between the gravimetric geoid and the orthometric 
height datum as weU as the long wavelength errors in tailored model OSU89B-MM. 
After removing the systematic biases, it can be seen that there is a 1 cm 
improvement for the standard deviation of the differences. The remaining 
differences, mainly due to the effect of high frequency errors in residual anomalies
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(from the RTM effect although it is small), the errors in GPS-derived ellipsoidal 
heights, the tailored model coefficients errors, and most likely the errors in 
levelling. Perhaps, these errors can only be further reduced by improving the data 
accuracy and density, and the most important thing is to tie up the GPS control 
points with the precise levelling network in future. It must be emphasised here that 
if GPS is to be used as a reliable control or test of the precision of gravimetrically 
determined geoids, it must be accompanied by orthometric height data of similar 
precision.

7 .6 .2  Comparison of the Relative Differences

To evaluate the relative agreement of the gravimetric geoid solutions with 
respect to the GPS/leveUing data, relative differences were formed on all baselines of 
different lengths in the Federal Territory GPS Network. However, since the 
interpolated values of both the Nlsc and the N fft at these GPS control data are almost 
the same, it was decided that only Nlsc wUl be used to evaluate the relative agreement 
with respect to the Nops/ieveiiing- Appendix AA summarised the result of these relative 
differences in ppm for the Federal Territory GPS Network and these are plotted 
against distance in Figure: 7.15.
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Figure: 7.15 - The relative differences between the Nlsc and
NopsAeveUing for the Federal Territory GPS Network

Figure: 7.15 indicates that the overaU relative agreement between the gravimetric 
solution and the GPS/leveUing derived geoid in this smaU GPS network are subject to a 
distance dependent trend. For example, the relative agreement is between 21.3 to 6.7
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ppm over short baselines of 1.5 to 10 km, 6.7 to 4.5 ppm for distances of 10 to 15 km 
and less than 4.5 ppm over a distances of 15 km to more than 25 km. By examining the 
above figure with the relative differences between the model-computed (OSU89B-MM) 
and the same GPS/leveUing control data, see Figure 5.13, Section 5.7.3.2, one can see 
very clearly that the combination of taUored model with the local gravity data and height 
data has significantly improved the overaU accuracy of the relative agreement. However 
over a very short distances, the accuracy of both the gravimetric geoid and the model 
geoid is almost the same. The possible reason might be due to the long wavelength 
errors of the tailored model, i.e. the model is unable to pick up more detail within a 
small area in the gravimetric solution. From this phenomenon, one may observe that 
for a very short distance, the accuracy of GPS-derived orthometric heights will never 
exceed spirit levelling.

The relative differences were also formed on all baselines of different lengths 
for 5 GPS control data in the test Area C, and are listed in Appendix AB. Figure: 7.16 
plots the relative differences between the geoid representations in ppm for the GPS 
control data in area. The comparison of the OSU89B-MM tailored model and the 
GPS/leveUing derived geoid heights is also Ulustrated in this figure.

16-1 aNGPS/lev-aNOSU89B-MM
aNGPS/lev-aNLSC
aNgps/lev-aNFFT

14-

12-

10-

&

100 120
Distance (km)

Figure: 7 . 1 6  - The relative differences between the N l sc . N fft and Ncps/ieveiimg 

for 5 GPS control points (part of the Southwest GPS network)

From the above figure, as to be expected there were no significant relative 
differences between the LSC and the FFT geoid solutions with respect to the 
GPS/leveUing control data. Also, one can see that the relative differences at distances
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up to 30 km are large, i.e. about 13 ppm. For the GPS baselines of 30 to 90 km in 
length, the relative agreement is between 4.5 to 2.8 ppm, and decreasing to about 2.5 
ppm for distances between 90 to 120 km. By examining the same figure, one can notice 
that the relative agreement of the differences of the tailored model alone, are rather poor 
compared to the LSC and FFT geoids. This indicates that the incorporation of local data 
into the gravimetric solutions improves the reference geoid computed by the tailored 
model OSU89B-MM significantly, both absolutely and relatively over distances from 
20 km to over 100 km. Again» by examining this figure, one may conclude that in any 
condition, the accuracy of GPS-derived orthometric heights will never exceed spirit 
levelling, where the dependency on distance is great. On the other hand, for long lines, 
height differences could be determined of in much shorter time and a more cost- 
effective manner. A redefinition of levelling tolerances may be necessary if GPS is to 
be used to determine orthometric heights, which accounts for the geoid evaluation 
methods as shown in Table : 3.5, Section 3.4.
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CHAPTER 8

SUMMARY, CONCLUSION AND FUTURE WORK

8 .1  Introduction

It has been mentioned in Chapter 1 that the main objective of this study is the 
development of a tailored model and the computation of preliminary geoid heights in 
Peninsular Malaysia, by utilising the advantage of all the available heterogeneous data 
sources, i.e. a global sphenczd harmonic gravity model (OSU89B), surface gravity data 
(including some updated gravity points) and the local height data. The development and 
usage of GPS allows the determination of orthometric height without the need for 
levelling by combining gravimetrically-determined geoid heights and GPS derived 
ellipsoidal heights. This chapter summarises the structure and computational procedures 
of the gravimetric methods used in this study. From the experiments, presentation and 
analysis outlined in the previous Chapters 5, 6 and 7, the major conclusions are 
presented. Finally, proposals for possible further work which can be considered for 
future studies to improve the present undertaking are proposed.

8 .2  Summary

The geoid heights in three test areas (Area A, Area B and Area C) in Peninsular 
Malaysia have been predicted by the method of Least Squares Collocation using a 
combination of various gravity field information. In principle, the gravity field 
information can be categorised in three different wavelengths or spectrum resolution 
(see Table: 3.1, Section 3.3):

• The long wavelength part from the tailored model OSU89B-MM up to 
degree and order 360. This model was developed by fitting
the updated regional gravity data to the pre-existing geopotential model 
OSU89B in the peninsular region - (Chapter 5).

• The medium wavelength part from point gravity anomalies - (Chapter 4)

• The short wavelength part from local height data - (Chapter 4)

The whole computation processes or the gravity field modelling was based on a 
'remove-restore' procedure. In this method, the long wavelength reference field of the 
tailored model (using program GEOMOD) was removed mathematically from the 
observed gravity anomalies and these reduced anomalies were denoted as Case I 
solutions. The short wavelength topographic effects (RTM contribution using program 
TCI) were also removed mathematically from the reduced anomalies (Case I) to give
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the Case II solution. The final geoid heights were obtained by restoring the geoid 
effects of the tailored model reference field (Case I) and also by the geoid effects of 
both the tailored model and the topography. For areas devoid of 'observed gravity field 
information', the anomalies were 'filled in' by the tailored model effect and the RTM 
effects.

The LSC prediction method (using program GEOCOL) depends essentially on 
the covariance function used because this function is responsible for the correct 
mathematical stmcture of the gravity field through covariance propagation and must be 
harmonic, (Section 6.2.2). The covariance functions were determined empirically by 
applying sample data in the test areas to equation (6.36). Here, the local covariance 
function was derived by only considering pairs of products within the smaller area 
based on the definition by Goad, et.al., (1984). These were done using the program 
BMPCOV. In the estimation of the empirical covariance function, the function is 
assumed to be isotropic and homogeneous. The computed covariance was assigned to 
the centre of the interval, i.e. the mean distance in that interval, and from this a curve of 
the empirical covariance function was plotted (Section 7.3). In practice, the local 
covariance function is replaced by a synthetic model in the form of equation (6.33) 
which is specified by the empirical degree variance, c .̂ A popular degree variance 
model, and the one used in this study is based on the Tscheming-Rapp model-1974 
(using program COVFIT). The model fitting of the covariance function was carried out 
with care, so that the essential parameters of the empirical function (variance Cq, 
correlation length Ç and zero variance Yo) are reproduced as closely as possible. 
Following this, the extent to which these covariance parameters were reproduced 
indicates the goodness of fit of the function in general.

The geoid database is compiled from point heights on 2'x 2', 3'x3' and 5'x5' 
grid spacings for Area A, Area B and Area C, respectively. These spacings were 
chosen in such a way that detail was retained in areas of greater geoid variation (Area A 
and Area B); a decreased density was reasonable for Area C where the geoid gradient 
is low.

The LSC method has a great potential in gravity field approximation; the degree 
of success with which it has determined residual geoids in the three test areas proves 
that the solutions are rehable. This method, however, is computationally inefficient and 
inconvenient due to the large number of observations, equal to the number of 
unknowns which was created several problems, e.g. very time-consuming and limited 
computer storage.
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The convolution integrals of equation (6.39) allow the evaluation of Stokes' 
function by the Fast Fourier Transforms (FFT) method, provided that the data are given 
on regular grids. Thus, the geoid computations for the same test areas were also done 
in the frequency domain using this spectral method, mainly for comparison purposes, 
in Case II only. The FFT (using program GEOFOUR) gave results on the same grid as 
the grid the data were given on. One of the problems that one has to pay attention to in 
the FFT method is that of circular convolution. To prevent the effect of circular 
convolution, the recently well known procedure called zero-padding has been used. In 
all FFT solutions, 100% zero values were embedded (50% to each side) around the 
gravity anomalies. The values of the kernel functions were computed at both the data 
points and the zero-padded points to give optimal results in geoid height computations.

The performance of the geoid heights computed from the stochastic method 
( N l s c ) and the spectral method (N f f t ) were compared with those external results 
provided by the available NopsAeveiiing» i s. 51 GPS stations in test Area B and 5 GPS 
stations in test Area C. Again, it has to be pointed out here that although the orthometric 
heights at these GPS points have been determined with varying degrees of accuracy, 
they do provide a valuable comparison with N l sc  and also N f f t - The discrepancies are 
summarised in terms of both the absolute differences (in metres) and the relative 
differences (in ppm).

8 .3  Conclusion

From the results and analysis presented in the last three chapters, the following 
conclusions can be drawn:

(I) It appears that the control of the long wavelength errors of high degree 
spherical harmonic reference fields play a major role in the quality of the geoid height 
determination. Thus, in areas of interest where the existing geopotential models show a 
relatively poor fit to the gravity field, a tailoring method as proposed by Weber and 
Zommorodian, (1988) is one of the solutions. The tailoring means fitting to the surface 
gravity data in a specific region.

(H) The result of the tests carried out in Sections 5.7, suggest that 
geopotential models fitted to the local gravity field may have important applications in 
local or regional geoid solutions. An improved reference model will result if the 
updated data (i.e. that not used in the evaluation of the potential model coefficients of 
the pre-existing geopotential model) becomes available.

(Ell) The data used in the tailoring procedure should be representative of 
block means used to derive the corrections to the potential coefficients. However, the
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estimation of mean free-air anomalies can be difficult in mountainous areas with sparse 
data or having no local DEM.

(IV) The fit of the tailored models depends on the variation in the gravity 
field information in the area of interest. The reference models which were developed 
from insufficient data density and coverage will have poor long wavelength 
information. Such models wül not produce suitable reference boundary values, i.e. 
reference anomahes for a B VP solution.

(V) The apparent local improvement in the tailored model is not so critical 
for point or mean anomalies compared to the relative geoid height differences.

(VI) The Least Squares Collocation method has been used successfully 
through the ’remove-restore' procedure for the determination of the geoid heights in all 
test areas. The LSC, therefore, has great potential in gravity field approximation in the 
Peninsular Malaysia region. This method, however, suffers from the practical problem 
that it generates a system of equations of unknowns equal to the number of observation 
points which can affect the memory requirements of the computer resources.

(Vn) The errors in the LSC residual geoid heights are primarily due to non- 
optimahty of the covariance function. The quahty of covariance function depends on the 
amount of variation of the gravity field, and the extent to which the tailored model and 
topographic model reduce the variation. In this particular experiment, the covariance 
functions computed for the three test areas vary in complexity. In rugged terrain Area 
A, the functions are not of an optimum nature (due to 'fiUed-in' anomalies) and 
therefore more data reduction is necessary once the gravity data is available for this 
area. A denser DEM would contain a lot of information in this area, the extraction of 
which would leave the gravity field in the desired condition. Based on the functions that 
were determined, the geoid prediction is not of a high standard and observed 
gravimetric data are not well reproduced. In some parts of area B (where the gravity 
density and coverage are considered good) and most of Area C, the gravity field is 
more amenable to analysis and the geoid solutions were produced to an encouraging 
quality. For each stage of data reduction in Area C, theoretically correct behaviour of 
the gravity field was noted, which leads to an optimum covariance function and 
realistically low error predictions.

(Vm) The RTM contribution to the geoid height (indirect effect) can be in the 
order of decimetres in the rough topography in Area A and Area B where it will become 
the dominant source of systematic error. For the case in Area C, although the RTM
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contribution is very small, i.e. a few mgals in Area C, consideration of it in the 
computation still seems to improve the results slightly.

(DC) The total masses removed by using the reference mean height surface in 
the RTM evaluation were on average very close to zero, and they were harmonic 
functions which is a vital requirement for the BVP solution, e.g. the LSC.

(X) By examining the absolute LSC geoids, it appears that very long 
wavelength errors in the spherical harmonic tailored model remained or dominated in 
the final geoid heights. However, with the inclusion of local gravity data and height 
data in the gravimetric solution, some extra detail in the residual geoid is apparent in 
most test areas, especially in the rough terrain.

(XI) Providing sufficient precautions have been taken to minimise the circular 
convolution errors, i.e. spectral leakage errors, the use of 100% zeros padding as 
suggested by Li and Sideris, (1994) around the marginal data gives optimal results 
which are comparable to those predicted by the LSC method.

(XII) In all test areas, the LSC residual geoid heights are apparently less 
accurate compared to the FFT 'method. One of the possible reasons for the lower 
accuracy of Nlsc might be due to the non-optimality of the covariance function (fitted 
covariance model). It is often difficult to know with confidence when the 'correct' or 
'perfect' covariance function is being used, but as far as this experiment is concerned, 
the model has fitted the empirical function quite well to a certain spherical distance 
depending upon the gravity field information in the test areas, i.e. about 1.5 see 
figures 7.2(i) - (vi).

(Xm) From a practical computational viewpoint, the LSC method was 
extremely time consuming, due to large matrix inversion. Contrary to the LSC solution, 
the FFT method was found more efficient in terms of computational time.

(XIV) Comparison of gravimetric geoids with the GPSAevelhng derived geoid 
heights of 51 GPS points in Area B and 5 GPS points in Area C shows the absolute 
agreement better than 30 cm and 10 cm in terms of standard deviation, respectively.

(XV) The relative agreement ranges for the GPS network in Area B is 
between 21.3 to 6.7 ppm over short baselines of 1.5 to 10 km, 6.7 to 4.6 ppm for 
distances of 10 to 15 km and less than 4.5 ppm over distances of 15 to more than 25 
km. For the GPS network in Area C, the relative agreement is about 13 ppm for 
distances up to 30 km, 4.5 to 2.8 ppm over distances of about 30 to 90 km and about 
2.5 ppm for baselines of 90 to over 120 km.

201



(XVI) The relative agreement of the differences of the tailored model alone, is 
rather poor compared to the LSC and FFT geoids. The incorporation of local data into 
the gravimetric solutions ingrove the reference geoid computed by the OSU89B-MM 
tailored model significantly, both absolutely and relatively over distances from 20 km 
to over 100 km. In other words, the improvement is attributed to the presence of some 
medium to short wavelength features of the local geoid.

(XVn) In any condition, the accuracy of GPS-derived orthometric heights will 
never exceed spirit levelling, where the dependency on distance is greater. On the other 
hand, for long lines, height differences could be determined within shorter periods and 
in a more cost-effective manner.

(XVni) It must be mentioned that there may exist significant systematic datum 
difference between the GPSAeveUing data and the gravimetric geoid computed from the 
LSC and FFT methods. This datum difference can be caused by a combination of 
errors coming firom GPS heights, orthometric heights and the long wavelength errors in 
gravimetric geoid heights. It is very difficult to identify the exact contribution of each 
one of the error sources. It has been suggested by Sideris and She, (1995) that at least 
4 levelling benchmarks should be occupied by GPS receivers to provide datum 
transformation parameters (see equation 3.32, Section 3.7) when the GPS heights are 
combined with gravimetric geoid heights to generate the orthometric height (equation 
3.1).

(XIX) The absolute errors in the gravimetric geoid solution of the test areas are 
difficult to quantify, firstly because it is not known to what spectral and spatial extent 
the tailored model OSU89B-MM is in error. It was initially expected that in the future, 
the error in the gravimetric geoid in the test areas could be quantified by the precise 
GPS/leveUing control data. At the present stage, the errors in the geoid can only be 
generated by potential coefficients of tailored model OSU89B-MM and terrestrial 
gravity uncertainties. Thus, without a more detailed GPS survey, it is difficult to 
identify true spurious long wavelength trends in all solutions. Moreover, if GPS is to 
be used as a reliable control or test of the precision of gravimetrically determined 
geoids, it must be accompanied by orthometric height data of similar precision. This 
was not the case for this particular study as the GPS data and especially the orthometric 
heights are of lower than expected quality and cannot provide the level of control on the 
gravimetric geoid expected when this study was proposed. Despite this, the tailoring 
approach of the existing geopotential model does show an improved agreement with 
GPS control data.
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8 .4  Suggestions for Future Work

From the work done in this study, the following proposals are considered to be 
worthy of future investigation:

(I) Since the precision of absolute gravimetric geoid heights is still limited 
by the fit of the tailored model OSU89B-MM (caused by the long wavelength 
coefficient errors) to the local field, this tailored model can be further improved by 
incorporating new gravity anomalies that have been observed by the DSMM and the 
GSM, see Section 4.2 (c) and (d). In addition to the existing local gravity data (old and 
new data), it is recommended that adequate gravity points in the large 'unsurveyed 
areas' of the mountainous areas, such as Titiwangsa Range, Bintang Range and Timor 
Range, also are very important for the development of a more superior reference field 
than the present one (OSU89B-MM). Furthermore, it is obvious that an improved 
higher degree and order geopotential model (which is expected to be available in the 
near future once a joint DMAIGSFC Project for improving the model of the earth's 
gravitational field is completed) should be used to provide reference field for precise 
gravimetric geoid determinations in Peninsular Malaysia - Rapp, (1995-Private 
Communication).

(n) Updating the available gravity and height data are of great influence in 
future computations. Bathymetric maps and marine gravity on the surrounding sea 
areas and over lakes are essential for updating. The compilation of satellite altimeter 
data and marine gravity data of the surrounding sea areas is highly recommended for 
improving the gravity field modelling in areas near coastlines or in small seas, i.e. the 
Malacca Straits and the South China Sea. The recovered gravity field information in 
these areas is very useful for both geodetic and geophysical purposes, e.g. 
oceanography studies related to the determination of the stationary sea surface 
topography from satellite altimeter data, mineral and oil explorations, etc.

(in) An accurate resolution of the local DEM with an optimal grid spacing, 
especially in the mountainous areas, e.g. Titiwangsa Range, Bintang Range and Timor 
Range is very important for reducing the irregularities of the local gravity field. It is 
recommended that the grid size of DEM should be at least 1 km x 1 km for rough 
topography ( 1000-2000 m), 2 km x 2 km for moderate topography (500-1000) and at 
10 km X 10 km for smooth topography (0 - 500m). Here, the local gravity field in the 
mountainous areas can be smoothed by a suitable gravity field terrain modelling before 
using any gravimetric methods, e.g. Stokes' integral, LSC or FFT.
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(VI) Since the distribution of point gravity anomalies in the peninsular region 
is mostly irregular and predominantly located in lowlands and the valleys rather than on 
the mountainous areas, height data can furnish the effect of visible topography (high 
spectral resolution) in combination with airborne gradiometer data. An economically 
feasible and efficient technique for observation of the high frequency field with high 
data density, regional coverage, regular data distribution and high data accuracy will be 
the airborne gradiometry ; the measurement of the earth's gravity field from aircraft. 
The choice of gravity sampling rate should reflects the irregularities of the topography 
so that the statistical properties of the gravity field (usually expressed in terms of a 
isotropic and homogeneous covariance function) could be adequately estimated. For a 
geoid height accuracy of about 5 cm/100 km resp. 20 cm/1000 km, it is recommended 
that the grid sizes for gravity data should be at least 5-10 km for smooth to moderate 
topography and between 3-5 km for rough topography, see Denker, et. al., (1988). 
These specifications therefore could be adopted for Peninsular Malaysia.

(V) No precise estimates of possible errors in the gravimetric geoid solution 
were attained in this study, due to deficiencies in the Nops/ieveiiing measurements. 
Therefore the entire GPS network must be connected by precise levelling to local tide 
gauges (which must be corrected to geophysical phenomena such as ocean currents, air 
pressure and water density variation) so that the true magnitude of such errors 
(systematic biases) can be revealed.

Finally,

"The task of the computation of a geoid in Peninsular Malaysia is an ongoing 
activity. With improvements of gravity data coverage, density and quality which might 
be realised by modern measurement techniques such as airborne gravimetry, the 
realisation of cm-accuracy geoids may be achievable and it is the author's hope that a 
complete and precise geoid will be available in the near future. This will in turn, make it 
possible to replace costly levelling procedures by GPS and gravimetric geoid data to 
generate the orthometric heights (or height differences) with sufficient accuracy for a 
wide range of scientific applications. It is very important for the author to stress here 
that there is a need for strong co-otperation between the DSMM, GSM and the higher 
institutions (e.g. UTM, USM)for the sake of producing a unified gravimetric geoid of 
high accuracy, which in turn, will lead to the redefinition of the Vertical Datum for 
Peninsular Malaysia".
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Appendix A

The Parameters of the Geodetic Reference System 1980 (GRS80)

£1) PRIMARY CONSTANTS

Semi-major axis
h
Geocentric Gravitation 
Rotation Speed

6378137.0 metres 
1082.630 X 10*
398600.50 X lo V s '^  
7.292115000 X 10-* radian/sec

(D) DERIVED CONSTANTS

Square of First Eccentricity 
Square of Second Eccentricity 
Flattening
Equatorial Normal Gravity 
Polar Normal Gravity 
Constant of Somigliana Formula 
Mean Earth Radius 
Mean Earth Normal Gravity 
Normal Potential

0.00669438002290 
0.00673949677547 
1/298.2572221012 
9.78032677 m s-2  

9.83218637 m s-2  

0.001931851353 
6371007.2 metres 
9.79764466 m s-2 

62636860.850 m2g-2

(HI) FULLY NORMALISED ZONAL SPHERICAL HARMONIC COEFFICIENTS 

OF THE ELLIPSOIDAL NORMAL GRAVITY POTENTIAL

Degree C(n,0)

2 -0.484166854895874E-03

4 0.790304072882704E-06

6 -0.168725117564924E-08

8 0.346053239784696E-11

10 -0.265006217692820E-14
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Appendix B

Format of Gravity Data Supplied by the 
University Technology Malaysia (UTM)

Stn. Latitude
C ' ")

Longitude
(o ,

Observed
Gravity
(mgals)

Free
Air

(mgals)

Bouguer
Anomaly
(mgals)

Height
(m)

W1 2 44 29 101 51 46 978034.31 6.90 0.69 55.474
W2 2 43 33 101 53 13 978026.65 5.96 -2.63 76.810
W3 2 43 23 101 54 29 978029.94 3.54 -2.98 58.217
W4 2 43 43 10154 09 978030.25 2.97 -3.24 55.474
W5 2 43 52 101 52 54 978028.14 4.53 -3.02 67.483
W6 2 43 29 101 57 42 978028.43 -0.25 -5.94 50.902
W7 2 43 40 101 58 42 978026.00 -0.79 -7.18 57.089
W8 2 43 22 102 00 01 978022.41 0.42 -8.23 69.799
W9 2 43 15 102 01 39 978017.18 0.43 -9.58 89.428
WIG 2 43 26 102 02 17 978006.06 3.21 -11.85 134.508
W ll 2 43 40 102 03 18 977980.95 15.02 -13.42 254.203
W12 2 43 39 102 03 45 977988.47 12.29 -12.44 220.980
W13 2 43 53 102 04 00 978000.59 14.01 -13.34 155.021
W14 2 43 26 102 02 48 977992.12 7.40 -14.22 193.243
W15 2 44 17 102 06 36 978007.55 0.00 -13.39 119.695
W16 2 26 42 103 03 36 978038.37 20.63 11.80 78.943
W17 2 28 04 103 03 14 978044.15 16.54 11.22 47.594
W18 2 28 33 103 04 06 978043.18 16.45 10.79 50.957
K1 5 29 24 100 23 08 978096.28 17.30 16.89 3.658
K2 5 30 40 100 24 24 978098.36 19.05 18.63 3.780
K3 5 27 11 100 23 04 978093.38 15.03 14.63 3.658
K4 5 31 10 100 25 39 978099.48 20.37 19.82 4.877
K5 5 35 13 100 26 35 978103.17 24.29 23.24 9.449
K6 5 32 30 100 26 22 978100.55 20.62 20.23 3.475
K7 5 37 24 100 28 40 978100.69 20.23 19.52 6.401
K8 5 39 33 100 30 11 978091.83 13.00 11.46 13.716
K9 5 35 33 100 28 23 978103.03 25.19 23.72 13.106
KIO 5 38 20 100 29 19 978092.84 17.98 17.57 3.658
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Appendix C

Format of Gravity Data Supplied by the Department of Surveying 
and Mapping, Malaysia (DSMM)

Latitude Longitude Height. Observed Normal Gravity Free-Air BouguCT

(□ ' ") (□ ’ ") (m) Gravity (mgals) (mgals) (mgals)

(mgals)

1 22 0 103 27 0 5.125 978065.30 978034.8 32.089 31.516

1 23 45 103 26 15 5.478 978065.43 978034.9 32.201 31.589

1 26 0 103 25 0 3.087 978066.72 978035.1 32.587 32.242

1 28 30 103 23 45 3.412 978065.15 978035.3 28.830 28.450

1 29 30 103 42 45 5.459 978052.00 978035.4 18.339 17.728

1 30 0 103 23 15 3.574 978064.76 978035.4 30.469 30.069

1 30 0 103 26 30 3.703 978063.44 978035.4 29.188 28.774

1 30 0 103 32 30 4.192 978055.19 978035.4 21.097 20.628

1 30 30 103 31 0 15.004 978057.67 978035.4 26.010 24.330

1 30 30 103 41 0 13.928 978056.85 978035.4 25.722 24.163

1 31 30 103 28 30 5.796 978062.65 978035.5 28.927 28.278

1 32 15 103 22 0 3.365 978065.07 978035.6 30.536 30.160

1 32 15 103 33 0 38.012 978043.49 978035.6 19.655 15.402

1 32 45 103 39 30 9.112 978062.84 978035.6 30.041 29.021

1 33 30 103 35 30 41.699 978042.13 978035.7 19.334 14.668

1 36 15 103 19 15 3.552 978064.81 978035.9 30.004 29.606

1 38 15 103 17 30 3.382 978066.14 978036.1 31.111 30.733

1 39 45 103 11 30 2.240 978069.44 978036.2 31.111 30.733

141 0 103 8 45 1.918 978069.22 978036.3 33.504 33.290

1 42 0 103 6 15 2.045 978069.54 978036.4 33.778 33.550

1 43 30 103 4 45 2.237 978067.21 978036.5 31.364 31.113

144 0 103 54 0 6.807 978060.04 978036.6 25.567 24.805

1 45 0 103 2 0 2.719 978057.67 978036.7 21.842 21.537

1 45 15 102 59 45 4.519 978054.08 978036.7 18.780 18.275

1 45 45 103 24 45 23.233 978062.08 978036.7 32.514 29.914

1 47 30 103 57 0 23.563 978057.38 978036.9 27.759 25.122

1 48 0 103 20 15 24.885 978058.19 978036.9 28.927 26.142

1 48 15 102 57 30 23.533 978049.94 978037.0 20.240 17.606

1 51 45 104 2 15 35.578 978060.72 978037.3 34.393 30.412

1 53 5 102 46 50 1.995 978071.26 978037.4 34.439 34.216

1 54 30 102 44 20 1.864 978065.20 978037.6 28.196 27.987
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Appendix D

Format of Gravity Data Supplied by the 

Geological Survey Malaysia (GSM)

Station Longitude Latitude Easting Northing Height Observed Free Density Bouguer

Number (□ ’) (□ *) (m) (m) (m) Gravity Air (g/cc) Anomaly

(mgal) (mgal) (mgal)

1 101 7.08 4 36.13 347400 509320 51.90 3030.56 -18.50 2.67 .OOH .OOZ -24.31 B4/1

2 101 8.57 4 36.70 350160 510360 54.10 3023.46 -25.06 2.67 .04H .OOZ -31.12 B4/1

3 101 9.85 4 39.27 352550 515080 75.40 3008.21 -34.35 2.67 .06H .OOZ -42.80 B4/1

4 101 11.99 4 40.11 356500 516620 138.20 2989.56 -33.82 2.67 .48H .OOZ -49.29 B4/1

5 101 9.71 4 41.07 352300 518400 81.00 3010.50 -30.77 2.67 .09H .OOZ -39.84 B4/1

6 101 8.91 4 42.56 350830 521150 85.00 3013.21 -27.20 2.67 .03H .OOZ -36.71 B4/1

7 101 7.78 4 38.32 348700 513350 63.90 3025.28 -20.60 2.67 .OOH .OOZ -27.76 B4/1

8 101 7.18 4 32.88 347560 503330 45.80 3034.08 -16.09 2.67 .OOH .OOZ -21.22 B4/1

9 101 7.89 ' 4 31.75 348870 501240 44.40 3033.18 -17.15 2.67 .30H .OOZ -22.13 B4/1

10 101 6.07 4 31.02 345500 499900 51.50 3041.75 -6.21 2.67 .02H .OOZ -11.98 B4/1

11 101 4.18 4 32.12 342020 501940 31.10 3046.01 -8.51 2.67 .OOH .OOZ -11.99 B4/1

12 101 4,83 4 33.92 343220 505260 37.60 3041.99 -10.95 2.67 .OOH .OOZ -15.16 B4/1

13 101 5.53 4 38.18 344540 513100 42.10 3034.15 -18.43 2.67 .19H .OOZ -23.14 B4/1

14 101 6.90 4 39.87 347100 516210 60.40 3025.47 -21.87 2.67 .OOH .OOZ -28.64 B4/1

15 101 7.43 4 41.49 348080 519200 72.80 3020.74 -23.17 2.67 .OOH .OOZ -31.32 B4/1

16 101 5.49 4 42.71 344500 521450 72.00 3023.50 -20.96 2.67 .31H .OOZ -29.02 B4/1

17 101 5.24 4 40.97 344030 518240 60.80 3027.30 -20.18 2.67 .06H .OOZ -26.99 B4/1

18 101 4.31 4 39.44 342300 515430 56.80 3028.60 -19.75 2.67 .19H .OOZ -26.10 B4/1

19 101 3.16 4 37.63 340170 512100 53.40 3030.82 -18.13 2.67 .28H .OOZ -24.11 B4/1

20 101 5.00 4 35.87 343550 508850 38.10 3038.44 -14.82 2.67 .OOH .OOZ -19.08 B4/1

21 101 8.15 4 35.11 349370 507430 50.70 3026.40 -22.79 2.67 .05H .OOZ -28.47 B4/1

22 101 6.35 4 34.79 346050 506860 43.40 3035.91 -15.46 2.67 .OOH .OOZ -20.31 B4/1

23 101 2.92 4 33.89 339700 505220 42.10 3040.00 -11.55 2.67 .04H .OOZ -16.26 B4/1

24 101 .72 4 29.69 335600 497500 46.60 3044.02 -5.15 2.67 .OOH .OOZ -10.37 B4

25 101 1.91 4 31.06 337800 500000 39.00 3041.48 -10.36 2.67 .03H .OOZ -14.72 B4

26 101 0.00 4 28.29 334250 494920 47.50 3046.10 -2.46 2.67 .OOH .OOZ -7.78 B4

27 100 57.51 4 27.30 329650 493100 43.90 3054.06 4.62 2.67 .OOH .OOZ -.30 B4

28 101 0.03 4 26.19 334300 491050 28.50 3053.65 -0.30 2.67 .OOH .OOZ -3.49 B4

29 100 59.17 4 23.72 332700 486500 22.10 3059.95 4.60 2.67 .OOH .OOZ 2.13 B4
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Appendix E

Details of the Southwest GPS Network

GPS Code 
Station

GPS
Location

Latitude
(degree)

Longitude
(degree)

Ellipsoidal
Height
(metre)

Ortho.
Height
(metre)

Geoid
Height
(metre)

GPIO Senawang 2.6824 101.9745 70.153 72.914 -2.761
GPU Tanjung T. 2.4236 101.8634 15.309 17.807 -2.498
GP12 Lubuk Cina 2.4482 102.0717 15.879 17.332 -1.453

GP13 Tebong 2.4407 102.3393 46.701 47.066 -0.365
GP14 Gemas 2.5772 102.5950 46.133 45.391 0.742

GP15 Muar 2.0649 102.5564 2.932 2.086 0.846

GP16 Pagoh 2.1312 102.7338 35.158 33.500 1.658
GP34 Beserah 3.8593 103.3648 6.170 4.874 1.296
GP35 Airport K. 3.7893 103.2117 13.370 12.446 0.924

GP36 Paloh Inai 3.4831 103.1001 15.905 14.597 1.308
GP37 Tg. Aras 3.5106 103.4693 5.917 3.422 2.495
GP38 Tg. Batu 3.2058 103.4445 46.248 43.579 2.669
GP39 Kg. Bagon 2.9415 103.4197 6.901 3.914 2.987
GP40 Bkt. Payon 2.9754 103.1777 31.382 29.457 1.925
GP41 Felda S 2.6865 103.3616 62.251 58.826 3.425
GP42 Kg. Jawa 2.7057 103.5737 7.932 3.853 4.079
GP43 Kg. Mawar 2.6016 103.7788 10.095 5.034 5.061
GP47 Felda C. 2.3887 102.9332 50.106 47.849 2.257
GP48 Seri Medan 1.9761 102.9336 163.676 161.110 2.566
GP49 Benut 1.6261 103.1999 6.670 1.858 4.812
GP50 Pasong 1.5475 103.3954 8.971 3.211 5.760
GP51 Senai A. 1.6340 103.6668 41.614 35.525 6.089
GP53 Lukut 1.8043 103.8972 30.729 23.997 6.732
GP54 Sedeli B. 1.9255 104.0904 11.783 4.655 7.128

.Continue
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GPS Code 
Station

GPS
Location

Latitude
(degrees)

Longitude
(degrees)

Ellipsoidal 
Height (h)

Ortho.
Height

Geoid
Height

GP55 Tenggaroh 2.0798 103.8889 35.653 29.415 6.238
GP56 Merging 2.3916 103.8728 10.478 4.751 5.727
GP58 I. Haiwan 2.1217 103.4275 76.536 72.213 4.323
GP59 AirHitam 1.9735 103.2277 44.102 40.194 3.908
GP60 Renggam 1.8845 103.3984 60.870 56.166 4.704

GP61 Paloh 1.3698 104.2674 58.720 49.900 8.820
GP84 Batu Pahat 1.8575 102.9417 6.050 3.211 2.839
GP85 Tanjong 1.9088 102.7358 3.858 2.003 1.855

GP91 Hulu Sed. 1.8793 103.6919 25.215 19.554 5.661

GP94 Pencor P. 3.6324 103.3051 6.378 4.591 1.787

GP98 Bkt. Seroh 2.9044 102.8123 23.334 22.247 1.087
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Appendix F

Details of the Federal Territory GPS Network

Station GPS Station Latitude Longitude RSO Coord. Ellipsoid Ortho. Geoid

Code Location (in metres) Height Height Height

(□ • ") (a ' ") Northing Easting (metres) (metres) (metres)

GU02 Bukit Idaman 3 14 30 101 38 55 358725 405878 85.338 89.705 -4.367

GU03 Sksb Selyang 3 14 30 101 40 35 358718 408965 64.669 68.895 -4.226

GU04 Tmn. Sri Go. 3 14 40 101 42 20 359016 412824 164.466 168.482 -4.016

GU05 Gombak 3 14 40 101 43 40 359012 414676 65.720 69.893 -4.173

GU06 Emp. Klang 3 14 20 101 45 10 358391 417453 110.899 114.784 -3.885

GU08 Sek.M Jinj. 3 13 25 101 39 20 356727 406645 50.200 54.479 -4.279

GU09 Kem Kentom 3 13 20 101 40 40 356568 409114 44.294 48.364 -4.070

GUIO Tmn. Melew. 3 13 20 101 41 50 356562 411275 44.735 48.746 -4.011

G U ll Tmn. Melati 3 13 20 101 43 30 356555 414362 55.457 59.406 -3.949

GU12 Tmn. Melawa 3 13 20 101 45 00 356549 417140 55.004 58.817 -3.813

GU13 Manjalar 3 1140 101 37 25 353511 403087 76.757 81.129 -4.372

GU14 Tmn. Petali. 3 1155 101 39 05 353964 406175 40.998 45.245 -4.247

GUI6 Tmn. Dato S 3 1155 101 41 45 353952 411115 36.583 40.635 -4.052

GU17 Selangor Pew. 3 12 00 101 43 40 354098 414665 43.804 47.774 -3.970

GUIS Lembah Ker. 3 12 00 101 45 05 354706 417290 80.702 84.495 -3.793

GU19 Bukit Lanjan 3 10 15 101 37 00 350902 402309 41.305 45.660 -4.355

GU20 T. Sri Harta. 3 10 00 101 39 05 350432 406166 72.830 77.090 -4.260

GU21 Std. Tun Raz. 3 10 25 101 40 35 351193 408947 43.056 47.211 -4.155

GU22 Hos. Besar 3 10 15 101 42 15 350879 412033 33.066 37.124 -4.058

GU23 Esso Keram. 3 10 05 101 43 30 350566 414348 30.092 34.053 -3.961

GU24 Tmn. Sri Ke. 3 10 35 101 44 45 351482 416665 62.791 66.659 -3.868

GU26 Intan .D 3 08 30 101 38 55 347669 405669 60.137 64.357 -4.220

GU27 Sri Perdana 3 08 40 101 40 35 347969 408939 88.166 92.270 -4.104

GU29 Tmn. Maluri 3 08 20 101 44 05 347339 415421 39.280 43.129 -3.849

GU30 Tmn. Nirwan 3 08 45 101 45 20 348101 417738 47.101 50.902 -3.801

GU31 Srkt. Sea PJ 3 07 05 101 37 20 345065 402912 39.537 43.813 -4.276

GU32 Seksyen 13 3 07 05 101 38 40 345059 405382 45.106 49.301 -4.195

GU33 Kom. Sukan 3 07 20 101 40 25 345512 408624 32.938 37.013 -4.075

GU34 TUDM Sg. 3 07 10 101 42 35 345196 412637 29.436 33.389 -3.953

continued
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Station GPS Station Latitude Longitude RSO Coord. Ellipsoid Ortho. Geoid

Code Location (in metres) Height Height Height

(a ' ••) (D ' ") Northing Easting (metres) (metres) (metres)

GU35 Bulatan TAR 3 06 50 101 43 40 344577 414643 49.215 53.026 -3.811

GU36 Kg. Cheras 3 06 30 101 44 55 343957 416957 101.443 105.198 -3.755

GU37 Kg. Tunku 3 05 40 101 37 25 342454 403060 35.848 40.043 -4.195

GU38 Seksyen 4. F 3 05 40 101 38 55 342448 405839 16.758 20.865 -4.107

GU39 Jln. Kucai 3 05 25 101 41 00 341978 409697 44.473 48.162 -3.989

GU40 Esso Salak 3 06 20 101 42 25 343661 412325 31.425 35.337 -3.912

GU41 Tmn. Midah 3 05 50 101 43 40 342734 414638 74.118 77.932 -3.814

GU42 Tmn. Cuepec 3 05 00 101 45 05 341192 417259 67.016 70.624 -3.608

GU43 Pucong Jaya 3 03 05 101 37 20 337694 402894 26.924 31.027 -4.103

GU44 Kinraia 3 03 40 101 38 55 338762 405830 14.463 18.535 -4.072

GU45 O.U.G. 3 04 05 101 40 45 339522 409228 39.168 43.120 -3.952

GU46 Sri Petaling 3 04 10 101 41 55 339670 411389 58.889 62.786 -3.897

GU47 Kem Sg. Besi 3 03 55 101 42 50 339205 413086 58.708 62.519 -3.811

GU48 Tmn. Suria 3 03 40 101 44 50 338736 416790 66.176 69.782 -3.606

GU49 Puchong 3 01 20 101 36 40 334472 401651 7.894 11.964 -4.070

GU52 Tmn. Pura J. 3 02 00 101 42 25 335675 412306 42.717 46.514 -3.797

GU53 Balakong 3 02 00 101 43 40 335670 414622 37.637 41.373 -3.736

GU54 Kg. Bani Bel. 3 02 15 101 44 55 336125 416939 56.762 60.405 -3.643

GK02 Seksyen 8 3 05 45 101 38 20 342604 404759 17.898 22.046 -4.148

GK03 Sungai Besi 3 07 50 101 42 25 346425 412332 51.434 55.412 -3.978

GK04 Kolam Air 3 10 25 101 41 35 351189 410799 62.723 66.877 -4.154

GK05 Damansara 3 08 25 101 37 20 347522 402918 38.562 42.879 -4.317
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Appendix G

Mean Free-air Anomalies Used for a 
Tailored Model Development

No Latitude
(degrees)

Longitude
(degrees)

Mean Height 
(metres)

Mean Anomaly 
(mgals)

1 6.75000 100.25000 33.45 11.90
2 6.25000 100.25000 5.56 15.59
3 6.25000 100.75000 44.93 6.54
4 5.75000 100.25000 9.75 12.88
5 5.75000 100.75000 44.80 3.41
6 5.75000 101.25000 290.15 9.02

7 5.75000 101.75000 338.56 16.21
8 5.75000 102.25000 43.29 12.60
9 5.25000 100.25000 19.87 4.29
10 5.25000 100.75000 31.36 -3.56
11 5.25000 101.25000 166.17 -4.13
12 4.75000 100.75000 22.39 -2.86
13 4.75000 101.25000 76.86 -16.13
14 4.25000 100.75000 9.55 11.51
15 4.25000 101.25000 32.88 -4.24
16 3.75000 100.75000 2.85 24.58
17 3.75000 101.25000 16.92 14.30
18 3.75000 101.75000 172.34 4.85
19 3.75000 102.25000 70.29 17.72
20 3.75000 102.75000 39.51 19.68
21 3.75000 103.25000 20.73 21.54
22 3.25000 101.25000 6.62 18.27
23 3.25000 101.75000 97.69 2.50
24 3.25000 101.25000 79.30 15.96
25 3.25000 103.25000 20.45 18.41
26 2.75000 101.75000 25.32 19.85
27 2.75000 102.25000 89.27 17.44
28 2.75000 102.75000 41.96 25.85

.continued
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No Latitude
(degrees)

Longitude
(degrees)

Mean Height 
(metres)

Mean Anomaly 
(mgals)

29 2.75000 103.25000 25.21 15.99
30 2.75000 103.75000 18.93 27.76
31 2.25000 102.25000 15.09 20.64
32 2.25000 102.75000 21.35 25.05
33 2.25000 103.25000 33.79 21.45
34 2.25000 103.75000 39.33 19.82
35 1.75000 103.25000 15.01 29.03
36 1.75000 103.75000 28.97 25.88
37 1.75000 104.25000 19.12 25.15
38 1.25000 103.75000 13.26 32.70

214



Appendix H

Results of Mean Residual Anomalies for OSU89B and 
OSU89B-MM Analysed on 0.5° x 0.5° Block Basis

Latitude

(degrees)

Longitude

(degrees)

Mean Residual Anomalies 
(in mgals)

OSU89B OSU89B-MM

1.25000 103.25000 6.92 0.02
1.25000 103.75000 1.15 -6.46
1.25000 104.25000 -1.25 -7.16
1.75000 102.75000 2.88 -3.71
1.75000 103.25000 0.21 -0.99
1.75000 103.75000 -2.11 -1.43
1.75000 104.25000 1.40 -1.22

2.25000 102.25000 -4.77 -3.52
2.25000 102.75000 -6.42 -0.21
2.25000 103.25000 -20.86 -1.57
2.25000 103.75000 -7.21 0.77
2.75000 101.75000 -15.92 -4.10
2.75000 102.25000 -4.04 -0.81
2.75000 102.75000 -9.90 -2.45
2.75000 103.25000 -3.17 0.09
2.75000 103.75000 2.21 1.91
3.25000 101.25000 -8.58 -1.42
3.25000 101.75000 -37.65 -3.73
3.25000 102.25000 -1.57 1.58
3.25000 102.75000 6.04 3.31
3.25000 103.25000 -1.49 0.66
3.75000 100.75000 9.32 5.80
3.75000 101.25000 -30.24 -5.54
3.75000 101.75000 -31.55 3.93
3.75000 102.25000 -5.79 -0.88
3.75000 102.75000 -13.89 -3.86
3.75000 103.25000 1.80 -0.31

.continued
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Latitude

(degrees)
Longitude

(degrees)

Mean Residual Anomalies 
(in mgals)

OSU89B OSU89B-MM
4.25000 100.75000 1.71 0.78
4.25000 101.25000 -58.04 -3.50
4.25000 101.75000 -0.04 -11.74
4.25000 102.25000 -0.67 -9.80
4.25000 103.25000 1.60 -5.55
4.75000 100.75000 -31.77 1.32
4.75000 101.25000 -93.49 10.00
4.75000 101.75000 -52.96 -27.11
4.75000 102.25000 -35.30 -15.42
4.75000 103.25000 9.97 4.36
5.25000 100.25000 -16.15 3.80
5.25000 100.75000 -48.81 -0.60
5.25000 101.25000 -82.80 -1.47
5.25000 102.25000 -29.67 -4.45
5.25000 102.75000 -6.92 -18.43
5.25000 103.25000 9.51 4.79
5.75000 100.25000 -7.65 2.67
5.75000 100.75000 -42.54 -0.93
5.75000 101.25000 -49.65 8.53
5.75000 101.75000 -17.98 -0.38
5.75000 102.25000 -10.49 1.60
5.75000 102.75000 -1.57 -9.61
6.25000 100.25000 -8.02 2.42
6.25000 100.75000 -30.37 1.54
6.25000 101.25000 -47.88 -27.07
6.25000 101.75000 -2.97 -9.93
6.25000 102.25000 3.63 6.70
6.75000 99.75000 7.93 -5.00
6.75000 100.25000 -17.06 2.22
6.75000 100.75000 -6.80 -5.08
6.75000 101.25000 2.38 -8.99
6.75000 101.75000 5.21 -5.58
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Appendix I

Comparison of Geoid Height Differences Between N c p s /L e v e l l i n g  

and N o s U 8 9 B  and N o s u 8 9 B - m m  f o r  the Southwest Region (In Unit Metres)

GPS Code 

Station

Latitude Longitude ^GPS/Lev

N1

^OSU89B

N2

^OSU89B-MM

N3

3N1=N1-N2 3N2=N1-N3

GPIO 2.6824 101.9745 -2.761 0.040 -0.960 -2.801 -1.801

GPU 2.4236 101.8634 -2.498 -0.240 -0.820 -2.258 -1.678

GP12 2.4482 102.0717 -1.453 0.530 -0.020 -1.983 -1.433

GPI3 2.4407 102.3393 -0.365 1.490 1.130 -1.855 -1.495

GP14 2.5772 102.5950 0.742 2.290 2.030 -1.548 -1.288

GP15 2.0649 102.5564 0.846 2.850 2.720 -2.004 -1.874

GP16 2.1312 102.7338 1.658 3.560 3.440 -1.902 -1.782

GP34 3.8593 103.3648 1.296 2.830 2.520 -1.534 -1.224

GP35 3.7893 103.2117 0.924 2.480 2.015 -1.556 -1.091

GP36 3.4831 103.1001 1.308 2.760 2.130 -1.452 -0.822

GP37 3.5106 103.4693 2.495 3.900 3.600 -1.405 -1.105

GP38 3.2058 103.4445 2.669 4.460 4.070 -1.791 -1.401

GP39 2.9415 103.4197 2.987 4.870 4.460 -1.883 -1.473

GP40 2.9754 103.1777 1.925 3.950 3.400 -2.025 -1.475

GP41 2.6865 103.3616 3.425 5.100 4.710 -1.675 -1.285

GP42 2.7057 103.5737 4.079 5.870 5.640 -1.791 -1.561

GP43 2.6016 103.7788 5.061 6.910 6.820 -1.849 -1.759

GP47 2.3887 102.9332 2.257 3.930 3.720 -1.673 -1.463

GP48 1.9761 102.9336 2.566 4.680 4.590 -2.114 -2.024

GP49 1.6261 103.1999 4.812 6.294 6.004 -1.482 -1.192

GP50 1.5475 103.3954 5.760 8.041 7.751 -2.281 -1.991

GP51 1.6340 103.6668 6.089 8.170 8.080 -2.081 -1.991

GP53 1.8043 103.8972 6.732 8.840 8.570 -2.108 -1.838

GP54 1.9255 104.0904 7.128 9.410 9.120 -2.282 -1.992

Continue
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GPS Code 

Station

Latitude Longitude ^GPS/Lev

N1

^OSU89B

N2

^OSU89B-MM

N3

8N1=N1-N2 3N2=N1-N3

GP55 2.0798 103.8889 6.238 8.300 7.980 -2.062 -1.742

GP56 2.3916 103.8728 5.727 7.710 7.550 -1.983 -1.823

GP58 2.1217 103.4275 4.323 6.300 6.050 -1.977 -1.727

GP59 1.9735 103.2277 3.908 5.790 5.670 -1.882 -1.762

GP60 1.8845 103.3984 4.704 6.610 6.460 -1.906 -1.756

GP61 1.3698 104.2674 8.820 10.692 10.502 -1.872 -1.682

GP84 1.8575 102.9417 2.839 4.930 4.850 -2.091 -2.011

GP85 1.9088 102.7358 1.855 4.120 3.860 -2.265 -2.005

GP91 1.8793 103.6919 5.661 7.840 7.580 -2.179 -1.919

GP94 3.6324 103.3051 1.787 3.110 2.700 -1.323 -0.913

GP98 2.9044 102.8123 1.087 2.640 2.250 -1.553 -1.163
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Appendix J

A Summary of Relative Differences Between NO S U 8 9 B ’ ^ O S U 8 9 B - M M

With Respect to for the Southwest GPS Network

Mean Distance 
(Km)

No. of Baselines ^OSU89B 
Mean (in ppm)

^OSU89B-MM 
Mean (in ppm)

18.5 19 5.8 5.5

48.6 58 6.1 6.0

72.0 80 5.0 4.8

95.1 90 3.6 3.3

122.2 108 3.3 3.4

157.9 79 3.0 2.8

181.5 63 2.9 2.6

204.6 49 2.8 2.7

228.0 45 2.9 2.7

255.7 17 2.7 2.6

219



Appendix K

Comparison of Geoid Height Differences Between Nops/Leveiiing 
and NQgu89B &nd Nqsu89b-mm Federal Territory GPS Network

GPS Code 

Station

Latitude Longitude % PS/Lev

N1

% SU89B

N2

%SU89B-MM

N3

0N1=N1-N2 3N2=N1-N3

GU02 3 14 30 101 38 55 -4.367 -1.69 -3.70 -2.677 -0.667

GU03 3 14 30 101 40 35 -4.226 -1.56 -3.61 -2.666 -0.616

GU04 3 14 40 101 42 20 -4.016 -1.44 -3.52 -2.576 -0.496

GU05 3 14 40 101 43 40 -4.173 -1.31 -3.45 -2.863 -0.723

GU06 3 14 20 101 45 10 -3.885 -1.25 -3.35 -2.635 -0.535

GU08 3 13 20 101 38 10 -4.279 -1.64 -3.63 -2.639 -0.649

GU09 3 13 25 101 39 20 ^.070 -1.54 -3.56 -2.530 -0.510

GUIO 3 13 20 101 40 40 -4.011 -1.46 -3.49 -2.551 -0.521

G U ll 3 13 20 101 41 50 -3.949 -1.34 -3.40 -2.609 -0.549

GU12 3 13 20 101 43 30 -3.813 -1.24 -3.32 -2.573 -0.493

GU13 3 13 20 101 45 00 ^.372 -1.76 -3.65 -2.612 -0.722

GU14 3 1140 101 37 25 -4.247 -1.64 -3.58 -2.607 -0.667

GU16 3 11 55 101 39 05 -4.052 -1.45 -3.44 -2.602 -0.612

GUI? 3 12 00 101 43 40 -3.970 -1.31 -3.33 -2.660 -0.640

GU18 3 12 00 101 45 05 -3.793 -1.22 -3.27 -2.573 -0.523

GU19 3 10 15 101 37 00 -4.355 -1.78 -3.61 -2.575 -0.745

GU20 3 10 00 101 39 05 -4.260 -1.62 -3.49 -2.640 -0.770

GU21 3 10 25 101 40 35 -4.155 -1.51 -3.43 -2.645 -0.725

GU22 3 10 15 101 42 15 -4.058 -1.39 -3.33 -2.668 -0.728

GU23 3 10 05 101 43 30 -3.961 -1.30 -3.26 -2.661 -0.701

GU24 3 10 35 101 44 45 -3.868 -1.22 -3.21 -2.648 -0.658

GU26 3 08 30 101 38 55 -4.220 -1.63 -3.43 -2.610 -0.790

GU27 3 08 40 101 40 35 -4.104 -1.49 -3.35 -2.614 -0.754

GU29 3 08 20 101 44 05 -3.849 -1.23 -3.15 -2.619 -0.699

GU30 3 08 45 101 45 20 -3.801 -1.15 -3.09 -2.651 -0.711

GU31 3 07 05 101 37 20 -4.276 -1.71 -3.45 -2.566 -0.826

continued
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GPS Code 

Station

Latitude Longitude % PS/Lev

N1

^OSU89B

N2

%SU89B-MM

N3

0N1=N1-N2 3N2=N1-N3

GU32 3 07 05 101 38 40 -4.195 -1.61 -3.38 -2.585 -0.615

GU33 3 07 20 101 40 25 -4.075 -1.48 -3.30 -2.595 -0.775

GU34 3 07 10 101 42 35 -3.953 -1.32 -3.17 -2.633 -0.783

GU35 3 06 50 101 43 40 -3.811 -1.24 -3.10 -2.571 -0.711

GU36 3 06 30 101 44 55 -3.755 -1.15 -3.01 -2.605 -0.745

GU37 3 05 40 101 37 25 -4.195 -1.69 -3.38 -2.505 -0.815

GU38 3 05 40 101 38 55 -4.107 -1.57 -3.30 -2.537 -0.807

GU39 3 05 25 101 41 00 -3.989 -1.41 -3.18 -2.579 -0.809

GU40 3 0 6  20 101 42 25 -3.912 -1.32 -3.15 -2.592 -0.762

GU41 3 05 50 101 43 40 -3.814 -1.23 -3.05 -2.584 -0.764

GU42 3 05 00 101 45 05 -3.608 -1.12 -2.93 -2.488 -0.678

GU43 3 03 05 101 37 20 -4.103 -1.66 -3.27 -2.443 -0.833

GU44 3 03 40 101 38 55 -4.072 -1.45 -3.21 -2.522 -0.862

GU45 3 04 05 101 40 45 -3.952 -1.41 -3.13 -2.542 -0.822

GU46 3 04 10 101 41 55 -3.897 -1.33 -3.07 -2.567 -0.827

GU47 3 03 55 101 42 50 -3.811 -1.26 -3.01 -2.551 -0.801

GU48 3 03 40 101 44 50 -3.606 -1.11 -2.88 -2.496 -0.726

GU49 3 01 20 101 36 40 -4.070 -1.69 -3.22 -2.380 -0.850

GU52 3 02 00 101 42 25 -3.797 -1.26 -2.94 -2.537 -0.857

GU53 3 02 00 101 43 40 -3.736 -1.17 -2.88 -2.566 -0.856

GU54 3 02 15 101 44 55 -3.643 -1.09 -2.81 -2.553 -0.833

GK02 3 05 45 101 38 20 -4.148 -1.62 -3.34 -2.528 -0.808

GK03 3 07 50 101 42 25 -3.978 -1.34 -3.22 -2.638 -0.758

GK04 3 10 25 101 41 35 -4.154 -1.44 -3.38 -2.714 -0.774

GK05 3 08 25 101 37 20 -4.317 -1.73 -3.51 -2.587 -0.807
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Appendix L

A Summary of relative differences between N q s u s p b ’ ^ o s u 89B -m m  

with respect to for the Federal Territory GPS Network

Mean Distance 
(Km)

No. of Baselines ^ O S U 8 9 B

Mean (in ppm)
^^OSU89B-MM 

Mean (in ppm)

1.8 38 20.3 18.7

2.4 142 14.1 13.9

6.6 201 11.8 10.8

8.5 214 10.3 10.2

11.6 204 10.1 9.6

13.7 185 . 10.3 9.5

16.8 144 10.1 9.7

18.7 80 10.3 9.8

21.1 49 10.0 9.7

23.6 24 9.8 9.5

26.7 7 9.7 9.4

28.4 2 9.6 9.3
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Appendix M

A Standard Input Format and Output of the Program TCI

INPUT FILE NAMES: (STATFILE/DTM1/DTM2/REFDTM/0UTFILE)
tc.north
dtmn.30s
dtm2.n
dtmn.ref
rtm.n
INPUT: UYPE (1 DG, 2 DEFL, 3 HA, 4 G+DEFL, 5 FA, 6 ALL

7 TZZ, 8 TXX TYY TZZ, 9 ALL GRAD)
IKIND (1 TOPP, 2 ISO, 3 T.C., 4 RTM)
ECODE (0 CHG SH, 1 CHG TER, 2 FREE, 3 FREE+NOSP)
IGTYPl (1 STD, 2 RC8000, 3 NGS), DENSITY
FIl, FI2, LAI, LA2 (MAX LIMITS, DEG)
Rl, R2 (KM=0, R2=0: NO GRID2)

5 4 11 2.67
4.06667 4.875 100.96667 101.76667 
5 55
INPUT: N (>0: NO. OF PTS, 0: GRID,-1: ALL, -2: ALL (STAT UTM)
-1
===== TC TERRAIN EFFECT COMPUTATION =====
— INPUT CODES: 54  1 1
MAXAREA: 4.07 4.88 100.97 101.77
COMPUTATION RADH: 5.0 55.0 KM
— STATIONS: 640, IN AREA: 4.0670 4.8750 100.9667 101.7667
DETAILED ELEVATION GRID:
- - GRIDLAB 4.0667 4.8750 100.9667 101.7667 0.0083 0.0083 98 97
— SELECTED 4.0667 4.8750 100.9667 101.7667 0.0083 0.0083 
POINTS: 98 X 97 = 9506, ZERO VALUES: 0, MISSING/9999: 0 
HMESr HMAX MEAN STD.DEV: 3 2060 543.49 487.92 
CORNER VALUES: 65 989 7 741

OUTER ZONE ELEVATION GRID:
- -  GRIDLAB 4.0667 4.8750 100.9667 101.7667 0.0417 0.0417 19 19
— SELECTED 4.0667 4.8750 100.9667 101.7667 0.0083 0.0083 
POINTS: 19x19 = 361, ZERO VALUES: 0, MISSING/9999: 0 
HMIN HMAX MEAN STD.DEV: 5 1664 508.89 461.08

REFERENCE ELEVATION GRID:
— GRIDLAB 4.0667 4.8750 100.9667 101.7667 0.1667 0.1667 5 5
— SELECTED 4.0667 4.8750 100.9667 101.7667 0.0083 0.0083
POINTS: 5 X 5 = 25, ZERO VALUES: 0, MISSING/9999: 0
HMIN HMAX MEAN STD.DEV: 96 656 558.68 241.73
======== RESULTS ========
STAT FI LA H DTMELV DG/ANOM KSI ETA HA 
972 4.0667 101.1468 6.9 11.0 -41.59648 0.0000 0.0000 -0.47339
974 4.0682 101.1948 16.1 16.0 -44.67244 0.0000 0.0000 -0.40922
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Appendix N

A Sample of the Input and the Output of the Program EMPCOV

EMPIRICAL COVARIANCE FUNCTIONS, VERS.FEB 1991

INPUT TEXT DESCRIBING DATA (MAX 60 CHAR):
Area C - Case I
INPUT : SAMPLING INTERVAL (MINUTES(, NUMBER OF INTERVALS 
TABLE OUTPUT TO SEPARATE FILE (T/F), MEAN VALUE SUBTRACTION (T/F)

625 I f f f

INPUT: MAX NUMBER OF VALUES, INPUT MODE (WHERE 9 IS FREE FORMAT) 
LATITUDE FIRST IN RECORD (T/F), ANGULAR TYPE: 1, DDMMSS.S 
2: DDMM.M, 3: DD.D, OBSERVATION TYPE 1 (INTEGER) AND 
TYPE 2 (INTEGER, 0 IF NOT PRESENT), SCALE OF HISTOGRAM 
AND DATA TO BE SELECTED WITHIN GIVEN AREA (T/F)

300 9 13 3 0 10 f

INPUT NUMBER OF DATA AND DATA ELEMENT USED 
1 10

INPUT NAME OF FILE HOLDING DATA
gresmm.south
LAST DATA FILE (T/F)?
t
244 VALUES INPUT FROM FILE 
NUMBER OF OBS 3= 244 MEAN = -2.44
HISTOGRAM, USING BIN SIZE= 10.0

0 0  0 0 0 0 0 0 0 1  16 213 14 0 0 0  0 0 0 0 0 0 0  
OUT -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0  1 2 3 4 5 6 7 8 9 10 OUT

PSI COVA(3,3) PROD. STDV. OF COV.
0 M (UNIT)**2 NUMB (UNIT)**2

0 0.00 52.90 587 3.9
0 6.00 42.97 2605 1.4
0 12.00 31.28 4196 1.0
0 18.00 19.47 5160 0.9
0 24.00 13.52 4954 0.8
0 30.00 11.06 4345 0.8
0 36.00 4.45 3270 0.9
0 42.00 4.70 2132 0.9
0 48.00 1.91 1317 0.9
0 54.00 1.05 733 0.9
1 00.00 -1.21 358 0.9
1 06.00 -1.14 165 1.0
1 12.00 0.70 69 1.8
1 18.00 2.00 31 2.5
1 24.00 -1.03 18 4.7
1 30.00 1.86 6 6.3
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Appendix O

A Sample of the Input and the Output of the Program COVFIT

INTERACTIVE INPUT? (T/F) 
t
INPUT MODE, TEST?, LEGENDRE SUM?, LAST?, OUTPUT TABLE? (T/F) 
I f f f f
COMPUTATION MODE= 1
INPUT TYPE OF COY.FCT.MODEL (1,2,3)
2
INPUT INTEGER(S) IN NUMERATOR 
24
THE MODEL ANOMALY DEGREE-VARIANCES ARE EQUAL TO 

/((I-2)*(I+24))
INPUT -DEPTH TO BJ.SPH.(KM), GRAVITY VARIANCE, MAX DEG 
ZERO DEGREE-VAR.?MODEL DEGVA?, TABLE ?(T/F)
-3.55 52.9 105 t f f
105 DEGREE-VARIANŒS EQUAL TO ZERO 
RATIO R/RE = 0.999443
DEPTH TO BJERHAMMER SPHERE(R-RE) = -3.55 KM
THE FACTOR A, DIVIDED BY RE**2 IS = 33.72 MGAL*2
INPUT NCOV, INTERVAL (MINU), AZIMUTH (DD MM SS.S) AND LAST? 
20 6 0 0 0 1
3 TIMES (SOME MAY BE DUMMY): TYPE1,TYPE2
HEIGH1,HEIGHT2, LAST (T/F), WITH TŸPE=1....25, HEIGHT IN KM
NEGATIVE TYPE, INDICATES USE OF ROTATED SYSTEM
1 l OOf
3 1 0 0 f
3 3 0 0 t
TABLE OF COVARIANCES:
BETWEEN QUANTITIES OF KIND KP AND KQ, EVALUATED IN P,Q, 
HAVING SPHERICAL DISTANCE PSI, HEIGHTS HP,HQ 
AND AN AZIMUTH OF OD OM O.OOSEC FROM P TO Q

KP= 1 1 3
KQ= 1 3 3
HP= 0.0 0.0 0.0
HQ= 0.0 0.0 0.0

PSI
0 0.00 0.04451 1.28388 52.90000
0 6.00 0.04440 1.20995 41.94209
0 12.00 0.04152 1.06109 31.55517
0 18.00 0.03753 0.89657 23.01346
0 24.00 0.03289 0.73536 16.60759
0 30.00 0.02794 0.58451 11.38484
0 36.00 0.02292 0.44694 7.23686
0 42.00 0.01801 0.32383 4.80328
0 48.00 0.01335 0.21549 2.40919
0 54.00 0.00902 0.12173 0.53081
1 00.00 0.00509 0.04220 -0.92354
1 06.00 0.00162 -0.02421 -2.16458
1 12.00 -0.00138 -0.07789 -2.82881
1 18.00 -0.00390 -0.11988 -0.68272
1 24.00 -0.00593 -0.15116 1.72552
1 30.00 -0.00750 -0.17273 5.89098
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Appendix P

A Sample of the Input and the Output of the Program GEOCOL

GEODETIC COLLOCATION, VERSION I FEB 1994, RELEASE 3 (UNIX)

NOTE THAT THE FUNCTIONALS ARE IN SPHERICAL APPROXIMATION 
MEAN RADIUS=RE=6371 KM AND MEAN GRAVITY 981 KGAL USED.
MAX NUMBER OF OBS= 56(X), MAX NUMBER OF PARAMETERS=239 
MAX NUMBER OF OBS IN GIVEN REF.FRAME=3200 
SIZE OF NORMAL EQ.BLOCKS=79600, SIZE OF POT.COFF.BLOCK= 130322 
INTERACTIVE INPUT (T/F)
t
INPUT:LTRAN,TRUE IF NON-STANDARD REF.SYSTEM IS USED

LPOT, TRUE IF SPHERICAL HARMONIC EXPANSION IS USED
LTEST, TRUE IF TEST-OUTPUT IS NEEDED
LLEG, TRUE IF LEGEND IS TO BE OUTPUT
LPARAM, TRUE IS PARAMETERS ARE TO BE DETERMINED
LNCOL, TRUE IF COLLOCATION IS NOT USED
LIOSOL, TRUE IF SOLUTION IS STORED OR RECOVERED

f f t f f f t

INPUT:LWRSOL, TRUE IF SOLUTION IS OUTPUT ON UNIT 17 LPIPOT,LBICOV, 
LBISOL, TRUE IF POTENTIAL COEFF.

COVARIANCE FCT.TABLE OR SOLUTION IS OUTPUT BINARY 
LIOSOL, TRUE IF BINARY SOLUTION IS USED

t f f f f
NAME OF RESTART FILE=îestait.south 
INPUT NAME OF FILE WITH NORMAL EQ. 
noreq.south
NAME OF FILE HOLDING NORMAL EQUATTONS=nores.south

INPUT:LONEQ,TRUE IF COEFFICIENTS ARE OUTPUT 
LTTME: TRUE, IF TIMING IS MADE (ONLY UNIX)
LTCOV:TRUE, IF OUTPUT FROM COV.CALCULATION

f t f
ARE ALL PARAMETERS OK? 
t

INPUT CODE FOR BASIC REFERENCE SYSTEM:
0:USER DEFINED, LED50 NORTH SEA, 2: ED50/EDDC,
3-.NAD1927 /NEW MEXICO, 4; GS67,5: GRS80,6: NWL9D 
7:BEST CURRENT, 8:BEST CURR. FAROE ISL, 9:ED50 FOR SF 
10; IAG-75, ll=KRASSOWSKY, DDR, 12: GERMAN DHDN, BESS.
5
REFERENCE SYSTEM:

GRS1980

A = 6378137.00 M
 continued
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l/F = 298.2572221
GM =0.3986005000E+15
REF.GRAVrrY AT EQUATOR = 978032.6772 MGAL
POTENTIAL AT REF.ELL = 62636860.8500 M»*2/SEC**2
STARTT OF COLLOCATION I:
INPUT DEGREE-VARIANCE MODEL NO: (1,2,3)
2
INPUT NOMlNATOR(S) MODEL 
24
THE MODEL DEGREE-VARIANCES AREEE EQUAL TO 
A*(I-1)
+ /((l-2)*(l+24)).

INPUT PARAMETER DESCRIBING COV.FCT.
R - NEG. DEPTH TO BJ.SPHERE IN KM OR RATIO RB/RE 
GRAVITY ANOMALY VARIANCE IN MGAL**2 
MAX.DEGREE OF LEGENDRE FCT. EXPANSION 
LZERO - TRUE IF FIRST COEFF. ALL ARE ZERO 
LTABLE - TRUE IF COV. FCT. IS TABULATED IN 2D 
LMODEL - TRUE IF DEGREE-VAR FROM PREDEFINED MODEL 
LTABH - TRUE IF ID TABULATION
-3.55 52.9 105 t f f  f

105 DEGREE VARIANCES EQUAL TO ZERO
RATION R/RE = 0.999443
DEPTH OF BJERHAMMER SPHERE (R-RE) = -3550.0 M
VARIANCE OF POINT GRAVITY ANOMALIES = 52.90 MGAL**2
THE FACTOR A, DIVIDED BY RE**2 IS = 3 1 . 9 4  MGALS**2
ARE ALL PARAMETERS OK?
t

OBSERVATIONS:

INPUT DATA LINE AND OUTPUT SPECIFICATIONS
POSITION OF STATION NUMBER (0:NO NUMBER, -I : NO OUTPUT U6)
POSITION LATITUDE AND LONGITUDE (E.G. 2, 3)
TYPE OF ANGULAR UNITS USED (I: DD MM SS.S, 2: DD MM.M, 3: DD.D) 
POSITION OF HEIGHT (0: NO HEIGHT)
POSITION OF OBSERVATION I AND 2 (0 IF NO OBS. I OR 2)
DATA OR COMPUTATION QUANTITY TYPE CODE (I I :GEOID,

13 : GRAVITY, 15: TZZ, 26: (KSI,ETA), NEGATIVE: REF.SUBTR.) 
COORD.SYST.CODE, - INDICATE GLOBAL SYSTEM, +100 REVERSE TR. 
HEIGHT (IN M OR KM), ONLY USED IF NO INPUT HEIGHT 
LPUNCH - TRUE IF OUTPUT OF RESULT TO FILE 
LWLONG - TRUE IF LONGITUDE POSITIVE EAST 
LMEAN - TRUE OBS. OR COMPUTED QUANTITY IS A MEAN VALUE 
LSA - TRUE IF ALL ERROR ESTIMATES ARE IDENTICAL 
LKM - TRUE IF HEIGHT IN KM
LADMU - TRUE IF UNREDUCED OR CONSTANTS * OR +
STAT - TRUE IF STATISTICS OF RESULT WANTED
LAREA - TRUE IF DATA ONLY INSIDE SPECIFIC AREA, ARE USED
LFORM - TRUE IF FORMAT OF DATA IS INPUT
LIN4 - TRUE IF DATA NOT IN INPUT STREAM (FROM FILE)

 continued
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1 2 3 3 4 5 0 - 1  O. OOf f f t f f t f f t  
INPUT NAME OF FILE HOLDING DATA 
gresmm.south
INPUT FORTRAN UNIT NUMBER 
25
DATA INPUT FROM UNIT 25, FELE=gresmm.south 
INPUT SAMPLING INTERVAL SIZE 
0
INPUT COMMON STANDARD DEVIATION OF OBSERVATIONS 
0.2
ALL SPECIFICATIONS OK? 
t

SELECTED GEOCENTRIC SYSTEM USED.
0 NO LATITUDE LONGITUDE H

DEGREES DEGREES M
STD.DEV. = 7.27 

OBS. ERR
1 1.23 103.00

DELTA G(MGAL)

0.20

.(depending on the number of observations used)
-1
INPUT LSTOP, LRESOL_READ SOLUTION 
t f
DATATYPE=13 
NUMBER: 3
SOLUTIONS TO NORMAL EQUATIONS:
-0.10980243 lE+02 0.685208684E+01 0.184829939E+02 -0.459584049E+01

-0.111796505E+01

NUMBER OF EQUATIONS = 244
NORMALIZED SQUARE-SUM OF OBSEVATIONS = 0.281467E+03 
NORMALIZED DIFFERENCE BETWEEN SQUARE-SUM OF 
OBSERVATIONS AND NORM OF APPROXIMATION = -0.548033E+04

INPUT LCREF, TRUE IF ANOTHER COLLOCATION SOLUTION IS NEEDED 
LNEWDA, TRUE IF PARAMETERS ARE TO BE DETERMINED 

PREDICTION:
I f f

continued

228



INPUT: LGRID - TRUE IF COMPUTATIONS IN A GRID 
LERR - TRUE IF ERROR ESTIMATES ARE TO BE COMPUTED 

OR REPRODUCED IN OUTPUT 
LCOMP - TRUE IF COMPUTED VALUES ARE SUBTACTED FROM OBSERVED 
INPUT GRID SPECIFICATION

MIN, MAX LATITUDE, MIN, MAX LONGITUDE, STEP IN LAT AND LONG 
FUNCTIONAL TYPE (CODE), NEG. VALUE THEN SPH.EXP.SUBTRACTED 
COORD.SYSTEM CODE (-1 THEN GLOBAL SYSTEM)
HEIGHT OF GRID POINTS (M)
LMAP - PRIMITIVE MAP OUTPUT 
LPUNCH - OUTPUT TO UNIT 17 
LMEAN - MEAN VALUES OUTPUT
t t f
1.25 1.81667 103.25 104.2830000 0.0833 0.0833 
11 - lO.Of t f
INPUT NAME OF FILE TO HOLD RESULT 
nreslscmm.sgrid
SIMULTANEOUS OUTPUT TO FILE: nreslscmm.sgrid 
ALL SPECIFICATIONS OK? 
t

PRED
0 NO LATITUDE LONGITUDE H ERR ZETA(M)
+ 1 1.816670 103.250000 0.00 0.11 0.02
+ 2 1.816670 103.333300 0.00 0.09 0.03

+ 104 1.25000 104.243300 0.00 0.10 -0.09
Stop ? 
t
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Appendix Q

A standard input and output file for the program GEOFOUR

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* GEOFOUR - gravity field modelling by FFT - RF/KMS * 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

grdrtmm.n2 
dummy 
nresrtmm.fftn2 
1 0.0

input gridded anomalies 
dummy file (not used) 
ou^ut file for geoid height 
Code for geoid height estimation

0 0 50 50 0 ! Zero padding
mode: 1
wanted sw comer: 0,0000 0.0000, points: 50 50, iwindow=0
Stokes formula - gravity (mgal) to geoid (metre) 
data grid
gridlab: 4.0667 4.8750 100.9667 101.7667 0.0333 0.0333 25 25
selected: sw comer 4.0667 100.9667 50 50.2500
statistics of data selected from input grid:
pts mean std.dev. min max 625 -0.50 45.64 -125.90 107.50
zero padding done on grid, no of ows/cols/ S/N/E/W: 0 25 0 25
power space domain 519.90, mean -0.13
mean value subtracted from input data prior to fft
power freq. domain 519.88
min and max computed values: -1.25 0.98
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Appendix R(i)

The LSC Residual Geoid Heights for Area A - Case I

4*2 X1 A(j) AX,

4 . 0 6 6 6 7 0  4 . 8 7 5 0 0 0 1 0 0  . 9 6 6 6 7 0 1 1 0 1 . 7 6 6 6 7 0 0 . 0 3 3 3 3 0  0 . 0 3 3 3 3 0

- 0 . 0 1 0 . 0 0 0 . 0 1 0 . 0 1 0 . 0 2 0 . 0 1 - 0 . 0 1 - 0 . 0 4 - 0 . 0 7
- 0 . 1 1 - 0 . 1 0 — 0 . 0 6 - 0 . 0 2 0 . 0 3 0 . 0 9 0 . 1 5 0 . 2 1 0 . 2 7

0 . 3 3 0 . 3 9 0 . 4 3 0 . 4 6 0 . 4 7 0 . 4 6 0 . 4 0

0 . 0 0 0 . 0 2 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 2 0 . 0 0 - 0 . 0 4 - 0 . 0 7
- 0 . 1 2 - 0 . 1 1 - 0 . 0 7 - 0 . 0 2 0 . 0 3 0 . 1 0 0 . 1 8 0 . 2 6 0 . 3 3

0 . 4 0 0 . 4 7 0 . 5 2 0 . 5 5 0 . 5 7 0 . 5 5 0 . 4 8

0 . 0 1 0 . 0 3 0 . 0 3 0 . 0 4 0 . 0 3 0 . 0 2 - 0 . 0 1 - 0 . 0 4 — 0 . 0 8
- 0 . 1 3 - 0 . 1 2 - 0 . 0 8 - 0 . 0 2 0 . 0 4 0 . 1 1 0 . 1 9 0 . 2 8 0 . 3 6

0 . 4 4 0 . 5 1 0 . 5 6 0 . 6 0 0 . 6 2 0 . 6 0 0 . 5 2

0 . 0 1 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 2 0 . 0 1 - 0 . 0 1 - 0 . 0 5 - 0  . 0 8
- 0  . 1 3 - 0 . 1 2 - 0  . 0 8 - 0 . 0 2 0 . 0 4 0 . 1 2 0 . 2 0 0 . 2 9 0 . 3 8

0 . 4 6 0 . 5 3 0 . 5 9 0 . 6 3 0 . 6 4 0 . 6 3 0 . 5 4

0 . 0 1 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 2 0 . 0 0 - 0 . 0 2 - 0 . 0 5 - 0 . 0 9
- 0  . 1 3 - 0 . 1 2 - 0 . 0 8 - 0 . 0 2 0 . 0 4 0 . 1 2 0 . 2 1 0 . 3 0 0 . 3 8

0 . 4 7 0 . 5 4 0 . 6 0 0 . 6 4 0 . 6 6 0 . 6 4 0 . 5 6

0 . 0 1 0 . 0 4 0 . 0 4 0 . 0 3 0 . 0 2 0 . 0 0 - 0 . 0 2 - 0 . 0 5 - 0 . 0 9
- 0 . 1 4 - 0 . 1 3 - 0 . 0 8 - 0 . 0 3 0 . 0 4 0 . 1 2 0 . 2 1 0 . 2 9 0 . 3 8

0 . 4 7 0 . 5 4 0 . 6 0 0 . 6 4 0 . 6 6 0 . 6 4 0 . 5 6

0 . 0 1 0 . 0 3 0 . 0 4 0 . 0 3 0 . 0 2 0 . 0 0 - 0 . 0 3 - 0 . 0 6 - 0 . 0 9
- 0 . 1 4 - 0 . 1 3 - 0 . 0 9 - 0 . 0 3 0 . 0 3 0 . 1 2 0 . 2 0 0 . 2 9 0 . 3 8

0 . 4 6 0 . 5 4 0 . 5 9 0 . 6 4 0 . 6 5 0 . 6 3 0 . 5 5

0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 4 0 . 0 3 0 . 0 0 - 0 . 0 2 - 0 . 0 5 - 0 . 0 9
- 0  . 1 4 - 0 . 1 3 - 0 . 0 9 - 0  . 0 3 0 . 0 3 0 . 1 1 0 . 2 0 0 . 2 8 0 . 3 7

0 . 4 5 0 . 5 2 0 . 5 8 0 . 6 2 0 . 6 4 0 . 6 2 0 . 5 4

0 . 0 2 0 . 0 4 0 . 0 5 0 . 0 5 0 . 0 3 0 . 0 1 - 0 . 0 2 - 0 . 0 5 - 0  . 0 8
- 0 . 1 3 - 0 . 1 2 - 0  . 0 8 - 0  . 0 3 0 . 0 3 0 . 1 1 0 . 1 9 0 . 2 8 0 . 3 6

0 . 4 4 0 . 5 1 0 . 5 7 0 . 6 1 0 . 6 2 0 . 6 1 0 . 5 3

0 . 0 2 0 . 0 4 0 . 0 5 0 . 0 6 0 . 0 4 0 . 0 1 - 0 . 0 1 - 0 . 0 5 - 0  . 0 8
- 0 . 1 3 - 0 . 1 2 - 0 . 0 8 - 0 . 0 3 0 . 0 3 0 . 1 1 0 . 1 9 0 . 2 7 0 . 3 5

0 . 4 3 0 . 4 9 0 . 5 5 0 . 5 9 0 . 6 0 0 . 5 9 0 . 5 2

0 . 0 3 0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 5 0 . 0 2 0 . 0 0 - 0  . 0 4 - 0  . 0 7
- 0 . 1 2 - 0 . 1 1 - 0  . 0 8 - 0  . 0 2 0 . 0 3 0 . 1 0 0 . 1 8 0 . 2 6 0 . 3 4

0 . 4 1 0 . 4 8 0 . 5 3 0 . 5 6 0 . 5 8 0 . 5 6 0 . 5 0

0 . 0 3 0 . 0 6 0 . 0 7 0 . 0 7 0 . 0 6 0 . 0 3 0 . 0 0 - 0 . 0 3 - 0 . 0 6
- 0 . 1 1 - 0 . 1 0 - 0 . 0 7 - 0  . 0 2 0 . 0 3 0 . 1 0 0 . 1 7 0 . 2 5 0 . 3 2

0 . 3 9 0 . 4 6 0 . 5 1 0 . 5 4 0 . 5 5 0 . 5 4 0 . 4 7

0 . 0 4 0 . 0 7 0 . 0 7 0 . 0 7 0 . 0 5 0 . 0 3 0 . 0 0 - 0 . 0 2 - 0  . 0 6
- 0  . 1 0 - 0  . 1 0 - 0 . 0 6 - 0 . 0 2 0 . 0 3 0 . 1 0 0 . 1 7 0 . 2 4 0 . 3 1

0 . 3 8 0 . 4 4 0 . 4 8 0 . 5 2 0 . 5 3 0 . 5 1 0 . 4 5 continued
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0 . 0 4
- 0 . 0 9

0 . 3 6

0 . 0 7
- 0 . 0 9

0 . 4 2

0 . 0 7
- 0 . 0 5

0 . 4 6

0 . 0 7
- 0 . 0 1

0 . 4 9

0 . 0 6
0 . 0 4
0 . 5 0

0 . 0 3
0 . 1 0
0 . 4 9

0 . 0 1
0 . 1 6
0 . 4 3

- 0 . 0 2
0 . 2 3

- 0 . 0 5
0 . 3 0

0 . 0 4
- 0 . 0 8

0 . 3 4

0 . 0 6  
- 0  . 0 8  

0 . 4 0

0 . 0 7
- 0 . 0 5

0 . 4 4

0 . 0 6
0 . 0 0
0 . 4 7

0 . 0 5
0 . 0 4
0 . 4 8

0 . 0 3
0 . 1 0
0 . 4 6

0 . 0 1
0 . 1 6
0 . 4 0

- 0 . 0 2
0 . 2 2

- 0 . 0 5
0 . 2 9

0 . 0 4
- 0 . 0 7

0 . 3 3

0 . 0 5
- 0 . 0 6

0 . 3 8

0 . 0 6
- 0 . 0 4

0 . 4 1

0 . 0 6
0 . 0 0
0 . 4 4

0 . 0 4
0 . 0 4
0 . 4 5

0 . 0 3
0 . 1 0
0 . 4 3

0 . 0 0
0 . 1 6
0 . 3 8

- 0 . 0 2
0 . 2 2

- 0 . 0 5
0 . 2 7

0 . 0 2
- 0 . 0 7

0 . 3 1

0 . 0 4
- 0 . 0 5

0 . 3 5

0 . 0 5
- 0 . 0 3

0 . 3 9

0 . 0 5
0 . 0 0
0 . 4 1

0 . 0 5
0 . 0 5
0 . 4 2

0 . 0 1
0 . 1 0
0 . 4 1

- 0 . 0 1
0 . 1 5
0 . 3 5

- 0 . 0 3
0 . 2 1

- 0 . 0 5
0 . 2 6

0 . 0 1  
—0 . 0 6  

0 . 2 9

0 . 0 3  
- 0  . 0 4  

0 . 3 3

0 . 0 4
- 0 . 0 2

0 . 3 7

0 . 0 3
0 . 0 1
0 . 3 9

0 . 0 2
0 . 0 5
0 . 3 9

0 . 0 0
0 . 1 0
0 . 3 8

- 0 . 0 2
0 . 1 5
0 . 3 3

- 0 . 0 3
0 . 2 0

- 0 . 0 5
0 . 2 5

0 . 0 1
- 0 . 0 5

0 . 2 8

0 . 0 3
- 0 . 0 3

0 . 3 1

0 . 0 3
- 0 . 0 1

0 . 3 4

0 . 0 2
0 . 0 2
0 . 3 6

0 . 0 1
0 . 0 6
0 . 3 6

- 0 . 0 1
0 . 1 0
0 . 3 5

- 0 . 0 3
0 . 1 5
0 . 3 0

- 0 . 0 5
0 . 1 9

- 0 . 0 5
0 . 2 4

0 . 0 0
- 0 . 0 4

0 . 2 6

0 . 0 2
- 0 . 0 2

0 . 2 9

0 . 0 2
0 . 0 0
0 . 3 1

0 . 0 1
0 . 0 2
0 . 3 3

0 . 0 0
0 . 0 6
0 . 3 3

- 0 . 0 1
0 . 1 0
0 . 3 2

- 0 . 0 4
0 . 1 4
0 . 2 7

- 0 . 0 5
0 . 1 8

- 0 . 0 6
0 . 2 2

0 . 0 0
- 0 . 0 3

0 . 2 4

0 . 0 1  
- 0 . 0 1  

0 . 2 7

0 . 0 0
0 . 0 0
0 . 2 9

0 . 0 0
0 . 0 3
0 . 3 0

0 . 0 0
0 . 0 6
0 . 3 0

- 0 . 0 2
0 . 1 0
0 . 2 9

- 0 . 0 3  
0 . 1 4  
0 . 2 5

- 0 . 0 5
0 . 1 7

- 0 . 0 5
0 . 2 1

0 . 0 0
- 0 . 0 2

0 . 2 2

0 . 0 0
- 0 . 0 1

0 . 2 4

0 . 0 0
0 . 0 1
0 . 2 6

0 . 0 0
0 . 0 3
0 . 2 7

- 0 . 0 1
0 . 0 6
0 . 2 7

- 0 . 0 2
0 . 1 0
0 . 2 6

- 0 . 0 3
0 . 1 3
0 . 2 2

- 0  . 0 4  
0 . 1 6

- 0 . 0 4  
0 . 1 9

- 0 . 0 2
- 0 . 0 2

0 . 1 9

- 0 . 0 1  
0 . 0 0  
0 . 2 1

- 0 . 0 1
0 . 0 1
0 . 2 3

- 0 . 0 1
0 . 0 4
0 . 2 4

- 0 . 0 1
0 . 0 6
0 . 2 3

- 0 . 0 2
0 . 0 9
0 . 2 2

- 0 . 0 3
0 . 1 2
0 . 1 9

- 0  . 0 4  
0 . 1 4

- 0 . 0 4
0 . 1 7

- 0  . 0 3  
- 0 . 0 1  

0 . 1 6

- 0  . 0 2  
0 . 0 0  
0 . 1 8

- 0 . 0 2
0 . 0 1
0 . 1 9

- 0 . 0 1
0 . 0 3
0 . 2 0

- 0 . 0 2
0 . 0 5
0 . 2 0

- 0 . 0 3
0 . 0 8
0 . 1 8

- 0  . 0 3  
0 . 1 0  
0 . 1 5

- 0 . 0 4
0 . 1 2

- 0  . 0 3  
0 . 1 4

- 0 . 0 4
- 0 . 0 2

0 . 1 2

- 0 . 0 3  
0 . 0 0  
0 . 1 3

- 0  . 0 3  
0 . 0 0  
0 . 1 4

- 0 . 0 3
0 . 0 2
0 . 1 5

- 0 . 0 3
0 . 0 4
0 . 1 4

- 0  . 0 4  
0 . 0 6  
0 . 1 4

- 0  . 0 4  
0 . 0 7  
0 . 1 1

- 0  . 0 5  
0 . 0 9

- 0 . 0 4
0 . 1 1
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Appendix R(ii)

The LSC Residual Geoid Heights for Area A - Case II

1>1 ^2 A(|) AX

4 . 0 6 6 6 7 4 . 8 7 5 0 0  1 0 0 . 9 6 6 6 7 1 0 1 . 7 6 6 6 7  0 . 0 3 3 3 3 0 . 0 3 3 3 3

- 0 . 0 6
- 0 . 2 8

0 . 2 2

- 0 . 0 6  
- 0 . 3 4  

0 . 3 2

- 0 . 0 5
- 0 . 3 4

0 . 4 2

- 0 . 0 6
- 0 . 3 3

0 . 5 0

- 0 . 1 1
- 0 . 3 0

0 . 5 1

- 0 . 1 9
- 0 . 2 3

0 . 5 2

- 0 . 3 0
- 0 . 1 2

0 . 5 0

- 0 . 3 8
- 0 . 0 6

- 0 . 2 3
0 . 1 1

- 0 . 0 4
- 0 . 7 3

0 . 2 7

- 0 . 0 5
- 0 . 7 4

0 . 5 2

- 0 . 0 6
- 0 . 7 0

0 . 6 1

- 0 . 0 7
- 0 . 6 6

0 . 7 5

- 0 . 1 6
- 0 . 6 2

0 . 8 0

- 0 . 2 1
- 0 . 5 9

0 . 7 9

- 0 . 3 0
- 0 . 4 4

0 . 6 7

- 0 . 4 4
- 0 . 3 4

- 0 . 5 8
- 0 . 1 2

- 0 . 0 4
- 0 . 5 5

0 . 2 6

- 0 . 0 3
- 0 . 6 3

0 . 5 2

- 0 . 0 7
- 0 . 6 4

0 . 7 1

- 0 . 0 7
- 0 . 6 5

0 . 8 1

- 0 . 1 9
- 0 . 5 1

0 . 8 5

- 0 . 2 8
- 0 . 3 3

0 . 8 4

- 0 . 4 2
- 0 . 2 0

0 . 7 6

- 0 . 4 4
- 0 . 1 2

- 0 . 5 0
- 0 . 0 2

- 0 . 0 4
- 0 . 8 5

0 . 3 2

— 0 . 0 6  
- 1 . 0 1  

0 . 5 7

- 0 . 1 1
- 1 . 1 2

0 . 7 6

- 0 . 1 5
- 1 . 0 9

0 . 8 7

- 0 . 2 2
- 0 . 9 6

0 . 9 2

- 0 . 2 9
- 0 . 7 0

0 . 9 2

- 0 . 4 1
- 0 . 4 4

0 . 8 3

- 0 . 5 6
- 0 . 0 9

- 0 . 7 0
0 . 0 7

- 0 . 0 6
- 0 . 9 3

0 . 4 4

— 0 . 0 8  
- 1 . 1 0  

0 . 6 5

- 0 . 1 2
- 1 . 2 4

0 . 8 8

- 0 . 1 7
- 1 . 2 1

0 . 9 9

- 0 . 2 4
- 1 . 0 5

1 . 0 1

- 0 . 3 1
- 0 . 8 2

1 . 0 6

- 0 . 4 5
- 0 . 5 3

0 . 9 4

- 0 . 6 0  
- 0 . 1 3

- 0 . 7 7
0 . 1 8

- 0 . 0 4
- 1 . 0 2

0 . 5 9

- 0 . 0 9
- 1 . 2 2

0 . 6 9

- 0 . 1 1
- 1 . 2 9

0 . 9 0

- 0 . 1 7
- 1 . 2 1

1 . 0 1

- 0 . 2 7
- 1 . 1 0

1 . 0 1

- 0 . 3 6
- 0 . 8 2

0 . 9 8

- 0 . 5 0
- 0 . 3 2

0 . 9 1

- 0 . 6 6
- 0 . 0 4

- 0 . 8 4
0 . 3 0

- 0 . 0 6
- 1 . 0 0

0 . 4 1

- 0 . 1 0
- 1 . 1 7

0 . 6 5

- 0 . 1 4
- 1 . 3 0

0 . 8 8

- 0 . 1 8
- 1 . 2 6

0 . 9 7

- 0 . 2 5
- 1 . 1 1

1 . 0 1

- 0 . 3 7
- 0 . 8 7

0 . 9 9

- 0 . 4 7
- 0 . 6 4

0 . 8 7

- 0 . 5 9
- 0 . 1 0

- 0 . 8 2
0 . 1 2

- 0 . 0 7
- 0 . 9 5

0 . 2 1

- 0 . 1 0
- 1 . 1 0

0 . 5 1

- 0 . 1 2
- 1 . 1 7

0 . 7 3

- 0 . 1 7
- 1 . 3 2

0 . 8 9

- 0 . 2 6
- 1 . 2 0

0 . 8 9

- 0 . 3 7
- 0 . 9 7

1 . 0 4

- 0 . 5 0
- 0 . 7 5

0 . 8 9

- 0 . 6 5
- 0 . 5 5

- 0 . 8 2
- 0 . 1 0

- 0 . 0 6
- 0 . 9 5
- 0 . 1 7

- 0 . 0 9
- 1 . 0 4

0 . 3 4

- 0 . 1 1
- 1 . 2 1

0 . 5 5

- 0 . 1 6
- 1 . 3 1

0 . 7 1

- 0 . 2 5
- 1 . 2 9

0 . 8 9

- 0 . 3 6
- 1 . 1 3

0 . 9 4

- 0 . 5 0
- 0 . 9 5

0 . 8 5

- 0 . 6 2
- 0 . 7 0

— 0 . 8 0  
- 0 . 5 1

- 0 . 0 6
- 0 . 8 9
- 0 . 0 9

- 0 . 0 7
- 1 . 0 1

0 . 2 7

- 0 . 1 1
- 1 . 1 6

0 . 4 8

- 0 . 1 7
- 1 . 3 0

0 . 6 3

- 0 . 2 6
- 1 . 3 0

0 . 7 9

- 0 . 3 6
- 1 . 2 3

0 . 9 2

- 0 . 4 6
- 1 . 0 7

0 . 8 3

- 0 . 6 0
- 0 . 8 1

- 0 . 7 6
- 0 . 5 3

- 0 . 0 5
- 0 . 9 0
- 0 . 0 5

— 0 . 0 6  
- 1 . 0 0  

0 . 2 1

- 0 . 0 6
- 1 . 1 3

0 . 4 0

- 0 . 1 4  
- 1 . 3 1  

0 . 5 4

- 0 . 2 1
- 1 . 3 0

0 . 7 8

- 0 . 3 0
- 1 . 1 5

0 . 8 7

- 0 . 4 4  
- 0  . 7 8  

0 . 8 0

- 0 . 5 6
- 0 . 5 5

- 0 . 7 2
- 0 . 3 0

- 0 . 0 5
- 0 . 8 2

0 . 1 6

- 0 . 0 4
- 1 . 0 0

0 . 3 2

- 0 . 0 6
- 1 . 0 9

0 . 5 6

- 0  . 1 5  
- 1 . 2 9  

0 . 6 5

- 0 . 2 2
- 1 . 3 6

0 . 7 8

- 0 . 3 0
- 1 . 2 3

0 . 8 6

- 0 . 4 2
- 0 . 9 7

0 . 7 7

- 0 . 5 4
- 0 . 7 6

- 0 . 6 9
- 0 . 4 0

- 0 . 0 3
- 0 . 7 3

0 . 0 9

- 0  . 0 4  
- 0  . 8 8  

0 . 4 1

- 0  . 0 6  
- 1 . 0 3  

0 . 6 5

- 0 . 1 6
- 1 . 1 5

0 . 7 4

- 0 . 2 3
- 1 . 2 0

0 . 8 9

- 0 . 3 0
- 1 . 1 1

0 . 8 8

- 0 . 3 8
- 0 . 8 7

0 . 7 5

- 0 . 5 2  - 0 . 6 3  
- 0 . 6 4  - 0 . 3 3

m n r i n n e d
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- 0 . 0 3 - 0 . 0 4 - 0 . 0 6 - 0 . 1 5 - 0 . 2 2 - 0 . 3 0 - 0 . 3 4 - 0 . 4 9 - 0 . 6 3
- 0 . 7 4 - 0 . 9 3 - 1 . 1 1 - 1 . 1 9 - 1 . 1 3 - 1 . 0 7 - 0 . 8 7 - 0 . 3 4 - 0 . 1 1

0 . 1 6 0 . 4 2 0 . 6 4 0 . 8 0 0 . 7 9 0 . 7 4 0 . 6 7

- 0 . 0 3 - 0 . 0 8 - 0 . 1 4 - 0 . 2 1 - 0 . 2 8 - 0 . 3 6 - 0 . 4 0 - 0 . 5 1 - 0 . 6 1
- 0 . 7 6 - 0 . 8 7 - 0 . 9 4 - 0 . 9 9 - 0 . 9 3 - 0 . 8 0 - 0 . 5 8 - 0 . 4 3 - 0 . 2 4

0 . 0 2 0 . 3 6 0 . 6 8 0 . 7 9 0 . 7 6 0 . 7 0 0 . 6 2

- 0 . 0 4 - 0 . 0 9 - 0 . 1 1 - 0 . 1 8 - 0 . 1 8 - 0 . 2 8 - 0 . 4 0 - 0 . 4 8 - 0 . 6 0
- 0 . 6 5 - 0 . 8 3 - 0 . 8 8 - 0 . 9 3 - 0 . 9 9 - 0 . 9 3 - 0 . 8 1 - 0 . 5 7 - 0 . 2 5

0 . 1 0 0 . 3 3 0 . 5 5 0 . 7 5 0 . 7 2 0 . 7 0 0 . 5 8

- 0 . 0 7
- 0 . 5 7

0 . 1 5

- 0 . 0 7
- 0 . 7 2

0 . 4 3

- 0 . 0 9
- 0 . 6 8

0 . 6 4

- 0 . 1 2
- 0 . 8 3

0 . 7 0

- 0 . 1 8
- 0 . 9 2

0 . 6 7

- 0 . 2 3
- 0 . 8 9

0 . 6 5

- 0 . 3 0
- 0 . 7 2

0 . 5 8

- 0 . 4 0
- 0 . 5 1

- 0 . 5 2
- 0 . 2 1

- 0  . 0 6  
- 0 . 4 4  

0 . 2 1

- 0 . 0 9
- 0 . 4 8

0 . 4 6

- 0 . 1 1
- 0 . 5 3

0 . 6 2

- 0 . 1 6
- 0 . 7 5

0 . 6 7

- 0 . 2 1
- 0 . 8 9

0 . 6 7

- 0 . 2 2
- 0 . 8 5

0 . 6 5

- 0 . 2 6
- 0 . 6 5

0 . 5 3

- 0 . 3 2
- 0 . 4 1

- 0 . 3 7
- 0 . 0 9

- 0 . 0 9
- 0 . 3 4
- 0 . 1 8

- 0 . 0 7
- 0 . 3 4

0 . 3 2

- 0 . 1 0
- 0 . 3 9

0 . 5 7

- 0 . 1 3  
—0 . 6 0  

0 . 6 0

- 0 . 1 8  
— 0 . 6 8  

0 . 5 6

- 0 . 2 1
- 0 . 8 2

0 . 5 0

- 0 . 2 6  
— 0 . 6 0  

0 . 4 3

- 0 . 2 8
- 0 . 3 8

- 0 . 2 6
- 0 . 1 3

- 0 . 0 5
- 0 . 1 9
- 0 . 0 6

- 0 . 0 7
- 0 . 2 4

0 . 1 6

- 0 . 1 0
- 0 . 3 1

0 . 4 4

- 0 . 2 0
- 0 . 4 9

0 . 4 3

- 0 . 2 4
- 0 . 6 8

0 . 5 2

- 0 . 2 5
- 0 . 7 5

0 . 5 2

- 0 . 2 7
- 0 . 6 9

0 . 4 3

- 0 . 2 4
- 0 . 4 6

- 0 . 1 9
- 0 . 2 6

- 0 . 0 4
0 . 0 4

- 0 . 0 3

- 0 . 0 7
- 0 . 0 4

0 . 2 8

- 0 . 0 9
- 0 . 1 9

0 . 4 1

- 0 . 1 0
- 0 . 3 9

0 . 5 0

- 0 . 1 2
- 0 . 5 6

0 . 4 7

- 0 . 1 2
- 0 . 6 3

0 . 4 3

- 0 . 1 2
- 0 . 4 7

0 . 3 7

- 0 . 0 4
- 0 . 3 6

0 . 0 3
- 0 . 2 0

- 0 . 0 1
0 . 0 6
0 . 0 9

- 0 . 0 4
0 . 0 1
0 . 3 0

- 0 . 0 7
0 . 1 0
0 . 4 0

- 0 . 0 7
- 0 . 2 1

0 . 4 1

- 0 . 0 9
- 0 . 3 8

0 . 4 0

- 0 . 1 1
- 0 . 5 5

0 . 4 5

- 0 . 1 2
- 0 . 4 5

0 . 3 2

- 0 . 1 0
- 0 . 4 0

0 . 0 7
- 0 . 1 5

- 0 . 0 4
0 . 1 7

- 0 . 0 6

- 0 . 0 9
0 . 1 3
0 . 1 5

- 0 . 0 7
0 . 0 1
0 . 2 9

- 0 . 0 6
- 0 . 1 3

0 . 4 8

- 0 . 0 7
- 0 . 3 6

0 . 4 6

— 0 . 0 6  
- 0  . 4 0  

0 . 4 3

- 0 . 0 5
- 0 . 3 8

0 . 3 1

0 . 0 2
- 0 . 3 5

0 . 1 0
- 0 . 2 0

- 0 . 0 3
0 . 1 7

- 0 . 0 6

- 0 . 0 3
0 . 1 2
0 . 1 2

- 0 . 0 5
0 . 0 1
0 . 2 5

- 0 . 0 4
- 0 . 1 8

0 . 4 5

- 0 . 0 8
- 0 . 3 0

0 . 3 6

- 0 . 0 2
- 0 . 2 9

0 . 3 4

- 0 . 0 2
- 0 . 3 3

0 . 2 3

0 . 0 1
- 0 . 3 0

0 . 1 2
- 0 . 2 2

- 0 . 0 4
- 0 . 0 6
- 0 . 1 1

- 0 . 0 5
- 0 . 0 1

0 . 1 2

- 0  . 0 4  
- 0 . 0 7  

0 . 2 3

- 0 . 0 5
- 0 . 1 5

0 . 3 1

- 0 . 0 5
- 0 . 1 9

0 . 3 3

- 0 . 0 7
- 0 . 2 4

0 . 3 1

- 0 . 0 7
- 0 . 2 5

0 . 3 0

- 0 . 0 6
- 0 . 2 2

- 0 . 0 5
- 0 . 1 7
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Appendix S(i)

The Final LSC Geoid Heights for Area A - Case I

f l *2 X i X i A * A X

4 . 0 6 6 6 7 0  4 . 8 7 5 0 0 0 1 0 0 . 9 6 6 6 7 0  1 0 1 . 7 6 6 6 7 0 0 . 0 3 3 3 3 0  0 . 0 3 3 3 3 0

- 1 0 . 4 0
- 9 . 0 8
- 6 . 1 1

- 1 0 . 3 1
- 8 . 8 2
- 5 . 7 5

- 1 0 . 1 9
- 8 . 5 4
- 5 . 4 1

- 1 0 . 0 7
- 8 . 2 1
- 5 . 1 1

- 9 . 9 3
- 7 . 8 8
- 4 . 8 2

- 9 . 7 8
- 7 . 5 3
- 4 . 5 9

- 9 . 6 3
- 7 . 1 8
- 4 . 4 1

- 9 . 4 6
- 6 . 8 2

- 9 . 2 7
- 6 . 4 6

- 1 0 . 3 1
- 9 . 0 3
- 5 . 9 9

- 1 0 . 2 2
- 8 . 7 8
- 5 . 6 2

- 1 0 . 1 1
- 8 . 4 9
- 5 . 2 8

- 9 . 9 9
- 8 . 1 6
- 4 . 9 6

- 9 . 8 5
- 7 . 8 2
- 4 . 6 9

- 9 . 7 1
- 7 . 4 6
- 4 . 4 5

- 9 . 5 7
- 7 . 1 0
- 4 . 2 8

- 9 . 4 0
- 6 . 7 3

- 9 . 2 3
- 6 . 3 6

- 1 0 . 2 4
- 8 . 9 9
- 5 . 9 1

- 1 0 . 1 5  
- 8 . 7 3  
- 5 . 5 3

- 1 0 . 0 3
- 8 . 4 4
- 5 . 1 9

- 9  . 9 2  
- 8 . 1 2  
- 4 . 8 7

- 9 . 7 8
- 7 . 7 8
- 4 . 6 0

- 9 . 6 6
- 7 . 4 1
- 4 . 3 6

- 9 . 5 1
- 7 . 0 3
- 4 . 2 0

- 9 . 3 5
- 6 . 6 6

- 9 . 1 8
- 6 . 2 9

- 1 0 . 1 5
- 8 . 9 4
- 5 . 8 4

- 1 0  . 0 7  
- 8 . 6 9  
- 5 . 4 8

- 9  . 9 6  
- 8 . 4 0  
- 5 . 1 2

- 9  . 8 4  
- 8 . 0 7  
- 4 . 8 1

- 9  . 7 3  
- 7 . 7 2  
- 4 . 5 2

- 9 . 6 0
- 7 . 3 6
- 4 . 3 0

- 9 . 4 6
- 6 . 9 8
- 4 . 1 3

- 9  . 2 9  
- 6 . 5 9

- 9 . 1 1
- 6 . 2 2

- 1 0 . 0 7
- 8 . 8 8
- 5 . 7 9

- 9  . 9 9  
- 8 . 6 3  
- 5 . 4 2

- 9  . 8 8  
- 8 . 3 3  
- 5 . 0 8

- 9 . 7 8
- 8 . 0 2
- 4 . 7 6

- 9 . 6 6  
- 7  . 6 7  
- 4 . 4 8

- 9 . 5 3
- 7 . 3 1
- 4 . 2 5

- 9 . 3 9
- 6 . 9 3
- 4 . 0 9

- 9  . 2 2  
- 6 . 5 5

- 9 . 0 5
- 6 . 1 6

- 9 . 9 9
- 8 . 8 2
- 5 . 7 4

- 9 . 9 0
- 8 . 5 6
- 5 . 3 9

- 9 . 7 9
- 8 . 2 7
- 5 . 0 3

- 9  . 6 9  
- 7 . 9 6  
- 4 . 7 2

- 9 . 5 9  
- 7  . 6 2  
- 4 . 4 5

- 9 . 4 6
- 7 . 2 6
- 4 . 2 2

- 9 . 3 3
- 6 . 8 9
- 4 . 0 7

- 9 . 1 7
- 6 . 5 0

- 8 . 9 9
- 6 . 1 3

- 9 . 8 9
- 8 . 7 5
- 5 . 7 1

- 9  . 8 1  
- 8 . 5 0  
- 5 . 3 5

- 9 . 7 1
- 8 . 2 2
- 5 . 0 2

- 9  . 6 1  
- 7  . 9 0  
- 4 . 7 1

- 9 . 5 1  
- 7  . 5 7  
- 4 . 4 3

- 9 . 3 8
- 7 . 2 1
- 4 . 2 0

- 9 . 2 5
- 6 . 8 4
- 4 . 0 5

- 9 . 1 0
- 6 . 4 7

- 8 . 9 3
- 6 . 0 9

- 9 . 8 0
- 8 . 6 7
- 5 . 7 0

- 9  . 7 2  
- 8  . 4 4  
- 5 . 3 3

- 9  . 6 2  
- 8 . 1 6  
- 5 . 0 0

- 9  . 5 2  
- 7  . 8 4  
- 4 . 7 0

- 9  . 4 0  
- 7  . 5 1  
- 4 . 4 3

- 9 . 2 8
- 7 . 1 6
- 4 . 1 9

- 9 . 1 6
- 6 . 8 0
- 4 . 0 5

- 9 . 0 1
- 6 . 4 3

- 8 . 8 3
- 6 . 0 7

- 9 . 7 0
- 8 . 5 9
- 5 . 6 9

- 9  . 6 1  
- 8 . 3 6  
- 5 . 3 3

- 9  . 5 1  
- 8 . 0 8  
- 5 . 0 0

- 9  . 4 2  
- 7  . 7 7  
- 4 . 7 1

- 9 . 3 0  
- 7  . 4 4  
- 4  . 4 2

- 9 . 1 9  
- 7  . 1 1  
- 4 . 1 9

- 9 . 0 6
- 6 . 7 5
- 4 . 0 3

- 8 . 9 1
- 6 . 4 0

- 8 . 7 5
- 6 . 0 3

- 9  . 5 8  
- 8 . 5 0  
- 5 . 6 6

- 9  . 5 0  
- 8 . 2 7  
- 5 . 3 1

- 9  . 4 0  
- 8 . 0 0  
- 4 . 9 9

- 9 . 3 0
- 7 . 7 0
- 4 . 7 0

- 9  . 1 9  
- 7  . 3 9  
- 4 . 4 2

- 9 . 0 8
- 7 . 0 5
- 4 . 2 0

- 8 . 9 6
- 6 . 7 1
- 4 . 0 4

- 8 . 8 2
- 6 . 3 6

- 8 . 6 5
- 6 . 0 1

- 9 . 4 7
- 8 . 3 9
- 5 . 6 3

- 9 . 3 9
- 8 . 1 9
- 5 . 3 0

- 9  . 2 9  
- 7  . 9 2  
- 4 . 9 8

- 9 . 1 8  
- 7  . 6 3  
- 4 . 7 0

- 9  . 0 8  
- 7  . 3 2  
- 4  . 4 3

- 8 . 9 7
- 6 . 9 9
- 4 . 2 0

- 8 . 8 6
- 6 . 6 6
- 4 . 0 6

- 8 . 7 1
- 6 . 3 1

- 8 . 5 6
- 5 . 9 7

- 9 . 3 5
- 8 . 3 0
- 5 . 5 9

- 9  . 2 7  
- 8 . 0 8  
- 5 . 2 8

- 9 . 1 7  
- 7  . 8 4  
- 4 . 9 7

- 9  . 0 7  
- 7  . 5 5  
- 4 . 7 0

- 8 . 9 6  
- 7  . 2 4  
- 4 . 4 3

- 8 . 8 6
- 6 . 9 3
- 4 . 2 2

- 8 . 7 3
- 6 . 6 0
- 4 . 0 6

- 8 . 6 0
- 6 . 2 8

- 8 . 4 6
- 5 . 9 3

- 9  . 2 3  
- 8 . 2 1  
- 5 . 5 7

- 9  . 1 4  
- 7  . 9 9  
- 5 . 2 6

- 9  . 0 6  
- 7  . 7 4  
- 4 . 9 6

- 8 . 9 5  
- 7  . 4 6  
- 4 . 6 8

- 8 . 8 4  
- 7  . 1 6  
- 4  . 4 4

- 8 . 7 4
- 6 . 8 7
- 4 . 2 2

- 8 . 6 2
- 6 . 5 5
- 4 . 0 8

- 8 . 5 0
- 6 . 2 2

- 8 . 3 5
- 5 . 8 9

r*r»r>tinnprl
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- 9 . 1 1 - 9  . 0 2 - 8 . 9 2 - 8 . 8 3 - 8 . 7 2 - 8 . 6 1 - 8 . 5 0 - 8 . 3 7 - 8 . 2 4

- 8 . 0 9 - 7 . 8 7 - 7 . 6 4 - 7 . 3 8 - 7 . 0 9 - 6 . 7 9 - 6 . 4 9 - 6 . 1 7 - 5 . 8 6

- 5 . 5 5 - 5 . 2 4 - 4 . 9 5 - 4 . 6 8 - 4 . 4 4 - 4 . 2 4 - 4 . 0 9

- 8 . 9 8 - 8 . 8 9 - 8 . 8 0 - 8 . 7 1 - 8 . 6 1 - 8 . 4 9 - 8 . 3 8 - 8 . 2 6 - 8 . 1 2

- 7  . 9 7 - 7 . 7 6 - 7  . 5 3 - 7 . 2 8 - 7 . 0 1 - 6 . 7 2 - 6 . 4 3 - 6 . 1 2 - 5 . 8 3

- 5 . 5 3 - 5 . 2 3 - 4 . 9 5 - 4 . 6 9 - 4 . 4 5 - 4 . 2 4 - 4 . 1 0

- 8 . 8 6 - 8 . 7 8 — 8 . 6 8 - 8 . 5 7 - 8 . 4 8 - 8 . 3 8 - 8 . 2 7 - 8 . 1 4 - 8 . 0 0

- 7 . 8 6 - 7 . 6 6 - 7 . 4 3 - 7 . 1 8 - 6 . 9 2 - 6 . 6 4 - 6 . 3 6 - 6 . 0 7 - 5 . 7 9

- 5 . 5 0 - 5 . 2 2 - 4 . 9 4 - 4 . 6 9 - 4 . 4 6 - 4 . 2 6 - 4 . 1 2

- 8 . 7 4
- 7 . 7 3
- 5 . 4 7

- 8 . 6 5
- 7 . 5 4
- 5 . 1 9

- 8 . 5 6
- 7 . 3 2
- 4 . 9 4

- 8 . 4 5
- 7 . 0 8
- 4 . 6 9

- 8 . 3 5
- 6 . 8 3
- 4 . 4 7

- 8 . 2 6
- 6 . 5 7
- 4 . 2 8

- 8 . 1 5
- 6 . 2 9
- 4 . 1 3

- 8 . 0 2
- 6 . 0 3

- 7 . 8 9
- 5 . 7 4

- 8 . 6 1
- 7 . 6 1
- 5 . 4 3

- 8 . 5 3
- 7 . 4 2
- 5 . 1 7

- 8 . 4 4
- 7 . 2 1
- 4 . 9 3

- 8 . 3 4
- 6 . 9 9
- 4 . 6 9

- 8 . 2 4
- 6 . 7 4
- 4 . 4 8

- 8 . 1 5
- 6 . 4 9
- 4 . 3 0

- 8 . 0 4
- 6 . 2 2
- 4 . 1 5

- 7 . 9 1
- 5 . 9 7

- 7 . 7 7
- 5 . 7 0

- 8 . 4 9
- 7 . 4 9
- 5 . 4 0

- 8 . 4 0
- 7 . 3 1
- 5 . 1 5

- 8 . 3 2
- 7 . 1 0
- 4 . 9 3

- 8 . 2 3
- 6 . 8 8
- 4 . 6 9

- 8 . 1 3
- 6 . 6 5 T
- 4 . 4 8

- 8 . 0 3
- 6 . 4 0
- 4 . 3 1

- 7 . 9 3
- 6 . 1 6
- 4 . 1 6

- 7 . 8 0
- 5 . 9 0

- 7 . 6 6
- 5 . 6 5

- 8 . 3 5
- 7 . 3 8
- 5 . 3 7

- 8 . 2 8
- 7 . 1 9
- 5 . 1 4

- 8 . 1 9
- 6 . 9 9
- 4 . 9 1

- 8 . 1 1
- 6 . 7 8
- 4 . 6 8

- 8 . 0 1
- 6 . 5 5
- 4 . 4 9

- 7 . 9 1
- 6 . 3 2
- 4 . 3 2

- 7 . 8 0
- 6 . 0 9
- 4 . 1 7

- 7  . 6 9  
- 5 . 8 5

- 7 . 5 4
- 5 . 6 1

- 8 . 2 4  
- 7  . 2 5  
- 5 . 3 5

- 8 . 1 6
- 7 . 0 7
- 5 . 1 2

- 8 . 0 7
- 6 . 8 7
- 4 . 9 0

- 7 . 9 8
- 6 . 6 8
- 4 . 6 8

- 7  . 8 9  
- 6 . 4 6  
- 4 . 5 0

- 7 . 7 8
- 6 . 2 6
- 4 . 3 3

- 7 . 6 8
- 6 . 0 3
- 4 . 1 9

- 7  . 5 6  
- 5 . 7 9

- 7 . 4 1
- 5 . 5 7

- 8 . 1 0  
- 7  . 1 3  
- 5 . 3 1

- 8 . 0 3
- 6 . 9 5
- 5 . 0 9

- 7  . 9 5  
- 6 . 7 7  
- 4 . 8 9

- 7  . 8 6  
- 6 . 5 8  
- 4 . 7 0

- 7 . 7 5
- 6 . 3 8
- 4 . 5 1

- 7  . 6 6  
- 6 . 1 7  
- 4 . 3 4

- 7  . 5 5  
- 5 . 9 6  
- 4 . 2 1

- 7  . 4 3  
- 5 . 7 5

- 7  . 2 9  
- 5 . 5 3

- 7 . 9 9
- 7 . 0 1
- 5 . 2 9

- 7 . 9 2
- 6 . 8 4
- 5 . 0 9

- 7  . 8 3  
- 6 . 6 7  
- 4 . 8 9

- 7 . 7 3
- 6 . 4 9
- 4 . 7 0

- 7 . 6 3
- 6 . 2 9
- 4 . 5 2

- 7  . 5 4  
- 6 . 1 0  
- 4 . 3 5

- 7  . 4 3  
- 5  . 9 0  
- 4 . 2 2

- 7 . 3 0
- 5 . 7 0

- 7 . 1 7
- 5 . 5 0

- 7  . 8 7  
- 6 . 9 0  
- 5 . 2 7

- 7  . 8 0  
- 6 . 7 3  
- 5 . 0 8

- 7 . 7 1
- 6 . 5 7
- 4 . 8 9

- 7  . 6 1  
- 6 . 3 9  
- 4 . 7 1

- 7  . 5 1  
- 6 . 2 2  
- 4 . 5 3

- 7 . 4 1
- 6 . 0 3
- 4 . 3 7

- 7 . 3 0  
- 5 . 8 4  
- 4  . 2 3

- 7 . 1 8
- 5 . 6 5

- 7  . 0 5  
- 5 . 4 6

- 7 . 8 0
- 6 . 8 2
- 5 . 2 7

- 7 . 7 2
- 6 . 6 7
- 5 . 0 9

- 7 . 6 3
- 6 . 5 0
- 4 . 9 0

- 7 . 5 2
- 6 . 3 4
- 4 . 7 3

- 7 . 4 2
- 6 . 1 7
- 4 . 5 7

- 7  . 3 3  
- 5 . 9 9  
- 4 . 4 1

- 7  . 2 2  
- 5 . 8 1  
- 4 . 2 6

- 7 . 1 0
- 5 . 6 3

- 6 . 9 7
- 5 . 4 6
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Appendix S(ii)

The Final LSC Geoid Heights for Area A - Case H

*1 *2 ^1 A({) AX

4 . 0 6 6 6 7 0  4 . 8 7 5 0 0 0 1 0 0 . 9 6 6 6 7 0  1 0 1 . 7 6 6 6 7 0 0 . 0 3 3 3 3 0  0 . 0 3 3 3 3 0

- 1 0 . 4 2  
- 9 . 4 5  
- 6 . 2 6

- 1 0 . 3 4
- 9 . 2 3
- 5 . 7 7

- 1 0 . 2 3
- 8 . 9 6
- 5 . 3 3

- 1 0 . 1 4
- 8 . 6 5
- 4 . 9 6

- 1 0 . 0 2
- 8 . 3 2
- 4 . 6 4

- 9 . 9 1
- 7 . 9 5
- 4 . 4 1

- 9 . 8 2
- 7 . 5 5
- 4 . 2 5

- 9  . 7 1  
- 7 . 1 5

- 9 . 5 9
- 6 . 7 1

- 1 0 . 3 7  
- 9 . 4 2  
— 6 . 0 8

- 1 0 . 3 6
- 9 . 2 0
- 5 . 6 4

- 1 0 . 2 8
- 8 . 9 0
- 5 . 2 3

- 1 0 . 2 5
- 8 . 5 6
- 4 . 8 6

- 1 0 . 1 7
- 8 . 2 2
- 4 . 5 3

- 1 0 . 0 7
- 7 . 8 3
- 4 . 2 3

- 9 . 9 7  
- 7  . 4 1  
- 4 . 0 8

- 9 . 8 3
- 6 . 9 9

- 9 . 6 3
- 6 . 5 0

- 1 0 . 3 6
- 9 . 4 1
- 5 . 9 6

- 1 0 . 2 9
- 9 . 2 0
- 5 . 5 4

- 1 0 . 2 0
- 8 . 9 3
- 5 . 1 4

- 1 0 . 1 7
- 8 . 5 8
- 4 . 7 7

- 1 0 . 1 5
- 8 . 2 1
- 4 . 4 5

- 1 0 . 1 1
- 7 . 7 9
- 4 . 1 1

- 1 0 . 0 0
- 7 . 3 9
- 3 . 9 8

- 9 . 8 1
- 6 . 9 5

- 9 . 6 3
- 6 . 4 4

- 1 0 . 3 1  
- 9  . 3 9  
- 5 . 9 2

- 1 0 . 2 4
- 9 . 2 0
- 5 . 5 3

- 1 0 . 1 3
- 8 . 9 4
- 5 . 0 6

- 1 0 . 0 4
- 8 . 6 0
- 4 . 7 0

- 1 0 . 0 9
- 8 . 2 3
- 4 . 3 4

- 1 0 . 0 9  
- 7  . 8 0  
- 4 . 0 7

- 9 . 9 8  
- 7 . 3 9  
- 3  . 8 9

- 9 . 7 9
- 6 . 9 7

- 9 . 5 5
- 6 . 4 5

- 1 0 . 3 0
- 9 . 3 9
- 5 . 9 6

- 1 0 . 1 8
- 9 . 1 9
- 5 . 4 8

- 1 0 . 0 5
- 8 . 9 2
- 5 . 0 3

- 9 . 9 8
- 8 . 5 8
- 4 . 6 5

- 1 0 . 0 4
- 8 . 1 9
- 4 . 3 4

- 1 0 . 0 5
- 7 . 7 7
- 4 . 0 3

- 9 . 9 5  
- 7 . 3 4  
- 3  . 8 5

- 9 . 7 8  
— 6 . 8 8

- 9 . 5 6
- 6 . 4 0

- 1 0 . 1 6
- 9 . 3 7
- 5 . 9 1

- 1 0 . 0 7
- 9 . 1 8
- 5 . 4 6

- 9 . 9 8  
—8  . 8 8  
- 5 . 0 1

- 9 . 9 8
- 8 . 5 4
- 4 . 6 2

- 1 0 . 0 3
- 8 . 2 3
- 4 . 3 0

- 1 0 . 0 1
- 7 . 8 0
- 4 . 0 6

- 9  . 9 3  
- 7 . 3 8  
- 3  . 8 4

- 9 . 8 1
- 6 . 8 9

- 9 . 6 2
- 6 . 3 9

- 1 0 . 0 9
- 9 . 3 7
- 5 . 9 1

- 1 0 . 0 0
- 9 . 1 5
- 5 . 4 5

- 9 . 9 5  
— 8 . 8 6  
- 5 . 0 2

- 9 . 9 6
- 8 . 5 5
- 4 . 6 6

- 9 . 9 8
- 8 . 2 0
- 4 . 3 2

- 9 . 9 4
- 7 . 8 0
- 4 . 0 7

- 9 . 8 7
- 7 . 3 8
- 3 . 8 5

- 9 . 7 3
- 6 . 8 8

- 9 . 5 9
- 6 . 3 7

- 9  . 9 3  
- 9 . 2 3  
- 5 . 8 7

- 9 . 9 1
- 9 . 0 9
- 5 . 4 2

- 9 . 8 9
- 8 . 8 4
- 5 . 0 3

- 9 . 9 1
- 8 . 5 6
- 4 . 6 4

- 9 . 8 8
- 8 . 1 6
- 4 . 3 1

- 9 . 8 3
- 7 . 7 8
- 4 . 0 6

- 9 . 7 6  
- 7 . 3 5  
- 3  . 8 6

- 9 . 6 2  
— 6 . 8 8

- 9 . 4 2
- 6 . 3 6

- 9 . 7 9  
- 9  . 1 9  
- 5 . 8 9

- 9 . 7 9
- 9 . 0 2
- 5 . 4 4

- 9 . 8 0
- 8 . 7 9
- 5 . 0 7

- 9 . 8 2
- 8 . 5 2
- 4 . 6 7

- 9 . 7 9
- 8 . 1 8
- 4 . 3 1

- 9  . 7 4  
- 7  . 7 9  
- 4 . 0 5

- 9  . 6 5  
- 7 . 3 7  
- 3 . 8 6

- 9  . 5 2  
- 6 . 8 9

- 9 . 3 3
- 6 . 4 3

- 9 . 7 1
- 9 . 0 6
- 5 . 9 1

- 9 . 7 2
- 8 . 8 9
- 5 . 4 9

- 9 . 7 3
- 8 . 6 4
- 5 . 0 7

- 9 . 7 2
- 8 . 4 2
- 4 . 7 1

- 9 . 6 7
- 8 . 1 3
- 4 . 3 6

- 9 . 6 1  
- 7  . 8 2  
- 4 . 0 6

- 9 . 5 4  
- 7 . 3 9  
- 3  . 8 7

- 9  . 4 3  
- 6 . 9 3

- 9 . 2 5
- 6 . 4 3

- 9 . 6 8
- 8 . 9 8
- 5 . 9 6

- 9 . 6 4
- 8 . 8 1
- 5 . 5 1

- 9 . 6 5
- 8 . 6 1
- 5 . 0 8

- 9 . 5 9
- 8 . 3 8
- 4 . 7 3

- 9 . 5 5  
— 8 . 0 6  
- 4 . 3 7

- 9 . 4 9  
- 7  . 7 2  
- 4 . 1 1

- 9 . 4 4  
- 7  . 2 9  
- 3  . 8 9

- 9 . 3 1
- 6 . 8 7

- 9 . 1 2
- 6 . 4 2

- 9 . 5 5
- 8 . 8 8
- 5 . 8 9

- 9 . 5 4
- 8 . 7 5
- 5 . 5 3

- 9 . 5 2
- 8 . 5 0
- 5 . 0 6

- 9 . 4 8
- 8 . 2 7
- 4 . 7 4

- 9  . 4 2  
- 7 . 9 7  
- 4 . 3 7

- 9  . 3 7  
- 7  . 6 4  
- 4 . 0 9

- 9 . 3 0  
- 7 . 2 6  
- 3  . 8 7

- 9  . 1 9  
- 6 . 8 1

- 9 . 0 5
- 6 . 3 5
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- 9 . 4 1
- 8 . 7 7
- 5 . 8 7

- 9 . 4 0
- 8 . 5 7
- 5 . 4 7

- 9 . 4 1
- 8 . 4 1
- 5 . 0 4

- 9 . 3 5
- 8 . 1 7
- 4 . 6 8

- 9 . 2 7
- 8 . 5 7
- 5 . 8 1

- 9 . 2 7
- 8 . 3 7
- 5 . 4 4

- 9 . 2 6  
- 8 . 2 6  
- 5 . 0 3

- 9 . 2 3
- 8 . 0 3
- 4 . 6 4

- 9 . 1 6
- 8 . 4 3
- 5 . 7 8

- 9 . 1 5
- 8 . 2 2
- 5 . 3 9

- 9 . 1 3  
— 8 . 0 6  
- 4 . 9 8

- 9 . 0 9
- 7 . 9 3
- 4 . 6 4

- 9 . 0 7
- 8 . 2 4
- 5 . 6 9

- 9 . 0 3
- 8 . 1 0
- 5 . 3 2

- 8 . 9 9
- 7 . 9 0
- 4 . 9 7

- 8 . 9 3
- 7 . 7 4
- 4 . 6 1

■9 . 3 0
■7 . 8 9
- 4 . 3 5

■ 9 . 2 6
■ 7 . 5 8
- 4 . 0 6

■ 9 . 1 7
■ 7 . 1 7
■ 3 . 8 6

- 9 . 1 6 - 9 . 1 0 - 9 . 0 1
- 7 . 7 8 - 7 . 4 9 - 7 . 1 3
- 4 . 3 3 - 4 . 0 6 - 3  . 8 4

- 9 . 0 3 - 8 . 9 5 - 8 . 8 4
- 7 . 6 7 - 7 . 3 6 - 7 . 0 4
- 4 . 3 2 - 4 . 0 5 - 3 . 8 4

- 8 . 8 7 - 8 . 7 8 - 8 . 6 3
- 7 . 5 3 - 7 . 2 0 - 6 . 8 7
- 4 . 3 1 - 4 . 0 4 - 3  . 8 4

■9 . 0 9
- 6 . 7 6

8 . 9 3
6 . 6 9

■ 8 . 7 5
6 . 6 0

■ 8 . 4 3
- 6 . 5 3

■8 . 9 8
■6 . 3 0

■ 8 . 7 9
■ 6 . 2 3

■ 8 . 6 4
■6 . 2 2

■ 8 . 4 1
■6 . 1 2

- 8 . 9 3
- 8 . 1 1
- 5 . 6 9

- 8 . 8 9
- 7 . 9 2
- 5 . 3 3

- 8 . 8 5
- 7 . 7 3
- 4 . 9 4

- 8 . 7 8
- 7 . 5 9
- 4 . 6 3

- 8 . 7 0
- 7 . 3 4
- 4 . 3 2

- 8 . 6 3
- 7 . 1 0
- 4 . 0 6

- 8 . 4 2  
- 6 . 7 9  
- 3  . 8 5

- 8 . 1 9
- 6 . 4 9

- 8 . 2 0
- 6 . 1 2

- 8 . 7 9
- 7 . 9 3
- 5 . 6 7

- 8 . 7 6
- 7 . 7 8
- 5 . 2 8

- 8 . 7 2
- 7 . 5 8
- 4 . 9 2

- 8 . 6 5  
- 7  . 4 7  
- 4 . 6 1

- 8 . 5 7
- 7 . 2 5
- 4 . 3 4

- 8 . 4 9
- 6 . 9 8
- 4 . 0 7

- 8 . 3 3  
- 6 . 6 7  
- 3  . 8 6

- 8 . 1 2
- 6 . 4 1

- 8 . 0 9
- 6 . 0 9

- 8 . 6 4
- 7 . 7 8
- 5 . 6 3

- 8 . 6 1
- 7 . 6 3
- 5 . 2 4

- 8 . 5 9
- 7 . 4 5
- 4 . 9 4

- 8 . 5 2
- 7 . 3 0
- 4 . 6 1

- 8 . 4 3
- 7 . 0 6
- 4 . 3 5

- 8 . 3 5
- 6 . 8 1
- 4 . 1 0

- 8 . 2 3  
- 6 . 5 8  
- 3  . 8 8

- 8 . 0 8
- 6 . 3 3

- 7 . 9 7
- 6 . 0 5

- 8 . 4 9
- 7 . 5 7
- 5 . 5 9

- 8 . 4 7
- 7 . 3 9
- 5 . 2 4

- 8 . 4 3
- 7 . 2 7
- 4 . 9 0

- 8 . 3 8
- 7 . 1 3
- 4 . 6 3

- 8 . 2 9
- 6 . 9 3
- 4 . 3 6

- 8 . 2 0
- 6 . 6 7
- 4 . 0 9

- 8 . 0 9  
- 6 . 3 9  
- 3  . 8 9

- 7 . 9 7
- 6 . 2 0

- 7 . 8 2
- 5 . 9 3

- 8 . 3 8
- 7 . 3 6
- 5 . 5 6

- 8 . 3 4  
- 7  . 2 1  
- 5 . 1 8

- 8 . 3 0
- 7 . 0 9
- 4 . 9 0

- 8 . 2 2
- 6 . 9 7
- 4 . 6 3

- 8 . 1 4
- 6 . 7 7
- 4 . 3 7

- 8 . 0 3
- 6 . 5 4
- 4 . 1 2

- 7 . 9 3  
- 6 . 3 3  
- 3  . 9 2

- 7 . 8 0
- 6 . 1 1

- 7 . 6 2
- 5 . 8 5

- 8 . 2 0
- 7 . 2 0
- 5 . 4 6

- 8 . 1 9  
- 7  . 0 3  
- 5 . 1 4

- 8 . 1 6
- 6 . 9 0
- 4 . 8 8

- 8 . 0 8
- 6 . 7 7
- 4 . 6 4

- 7 . 9 8
- 6 . 6 0
- 4 . 3 8

- 7 . 8 8
- 6 . 4 3
- 4 . 1 5

- 7  . 7 7  
- 6 . 2 1  
- 3 . 9 5

- 7 . 6 4
- 6 . 0 6

- 7 . 4 5
- 5 . 7 6

- 8 . 0 9
- 7 . 0 4
- 5 . 4 3

- 8 . 0 6
- 6 . 8 6
- 5 . 1 8

- 8 . 0 1
- 6 . 7 4
- 4 . 9 1

- 7  . 9 1  
- 6 . 6 1  
- 4 . 6 5

- 7  . 8 2  
- 6 . 4 3  
- 4 . 4 1

- 7  . 7 4  
- 6 . 3 3  
- 4 . 1 6

- 7  . 6 2  
- 6 . 1 4  
- 3 . 9 8

- 7  . 4 8  
- 5 . 9 5

- 7  . 2 9  
- 5 . 7 1

- 7 . 9 6
- 6 . 8 5
- 5 . 4 4

- 7 . 9 0
- 6 . 6 9
- 5 . 1 8

- 7 . 8 3
- 6 . 5 7
- 4 . 9 4

- 7 . 7 3
- 6 . 4 4
- 4 . 6 4

- 7 . 6 4
- 6 . 3 5
- 4 . 4 1

- 7 . 5 4
- 6 . 1 6
- 4 . 2 1

- 7  . 4 3  
- 6 . 0 5  
- 4 . 0 2

- 7 . 2 8
- 5 . 8 9

- 7 . 1 0
- 5 . 6 4

- 7 . 7 8
- 6 . 7 0
- 5 . 4 9

- 7 . 7 1
- 6 . 5 5
- 5 . 2 4

- 7 . 6 2
- 6 . 4 4
- 4 . 9 4

- 7  . 5 2  
- 6 . 3 6  
- 4 . 6 6

- 7  . 4 1  
- 6 . 2 9  
- 4 . 4 3

- 7  . 3 2  
- 6 . 1 6  
- 4 . 2 4

- 7 . 1 9
- 6 . 0 3
- 4 . 1 0

- 7 . 0 6
- 5 . 8 9

- 6 . 9 0
- 5 . 7 1
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Appendix T(i)

The LSC Residual Geoid Heights for Area B - Case I

*1 *2 X i \ i A(|) AX,

2 . 5 5 0 0 0 0  3 . 6 3 3 3 3 0 1 0 1 . 6 1 6 6 7 0  1 0 2 . 4 3 3 3 3 0 0 . 0 5 0 0 0 0 1 0 . 0 5 0 0 0 0

- 0 . 0 5 - 0 . 0 5 - 0 . 0 5 - 0 . 0 3 - 0 . 0 1 0 . 0 1 0 . 0 1 0 . 0 1 0 . 0 1
0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 3

- 0 . 0 5 - 0 . 0 6 - 0 . 0 5 - 0 . 0 4 0 . 0 1 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2
0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 3 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 5

- 0 . 0 6 — 0 . 0 6 - 0 . 0 4 - 0 . 0 2 - 0 . 0 2 0 . 0 1 0 . 0 1 0 . 0 2 0 . 0 2
0 . 0 3 0 . 0 3 0 . 0 2 0 . 0 2 0 . 0 3 0 . 0 5 0 . 0 5 0 . 0 5

- 0 . 0 7 - 0 . 0 7 - 0 . 0 6 - 0  . 0 3 0 . 0 2 0 . 0 1 0 . 0 0 0 . 0 2 0 . 0 3
0 . 0 3 0 . 0 4 0 . 0 4 0 . 0 4 0 . 0 5 0 . 0 5 0 . 0 6  . 0 . 0 5  .

- 0  . 0 6 - 0 . 0 6 - 0 . 0 4 - 0 . 0 2 - 0 . 0 1 0 . 0 1 0 . 0 0 0 . 0 2 0 . 0 3
0 . 0 4 0 . 0 5 0 . 0 5 0 . 0 6 0 . 0 6 0 . 0 7 0 . 0 7 0 . 0 6

- 0 . 0 7 - 0  . 0 4 - 0 . 0 3 0 . 0 0 0 . 0 1 - 0 . 0 1 0 . 0 2 0 . 0 2 0 . 0 4
0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 8 0 . 0 8 0 . 0 8 0 . 0 8 0 . 0 7

- 0 . 0 7 - 0 . 0 6 - 0 . 0 3 0 . 0 2 0 . 0 6 0 . 0 1 0 . 0 0 0 . 0 3 0 . 0 5
0 . 0 8 0 . 0 9 0 . 1 0 0 . 1 1 0 . 1 0 0 . 1 0 0 . 1 0 0 . 0 8

- 0  . 0 7 - 0 . 0 8 - 0  . 0 6 - 0 . 0 2 0 . 0 0 0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 7
0 . 1 0 0 . 1 2 0 . 1 4 0 . 1 5 0 . 1 2 0 . 1 1 0 . 1 1 0 . 0 9

- 0 . 0 9 - 0 . 1 0 - 0 . 0 9 - 0 . 0 5 - 0 . 0 1 0 . 0 0 0 . 0 2 0 . 0 5 0 . 0 8
0 . 1 1 0 . 1 4 0 . 1 6 0 . 1 6 0 . 1 2 0 . 1 1 0 . 1 1 0 . 0 8

- 0 . 1 0 - 0 . 1 2 - 0 . 1 1 - 0 . 0 7 - 0 . 0 1 0 . 0 1 0 . 0 3 0 . 0 6 0 . 0 9
0 . 1 2 0 . 1 5 0 . 1 6 0 . 1 6 0 . 1 2 0 . 1 0 0 . 1 0 0 . 0 8

- 0 . 1 0 - 0 . 1 2 - 0 . 1 2 - 0  . 0 8 - 0  . 0 1 0 . 0 2 0 . 0 4 0 . 0 7 0 . 0 9
0 . 1 2 0 . 1 5 0 . 1 6 0 . 1 6 0 . 1 3 0 . 1 0 0 . 0 9 0 . 0 8

- 0 . 1 0 - 0 . 1 2 - 0 . 1 1 - 0 . 0 7 0 . 0 0 0 . 0 3 0 . 0 5 0 . 0 7 0 . 1 0
0 . 1 3 0 . 1 5 0 . 1 6 0 . 1 6 0 . 1 3 0 . 1 0 0 . 0 9 0 . 0 8

- 0 . 0 9 - 0 . 1 0 - 0 . 0 9 - 0 . 0 5 0 . 0 0 0 . 0 3 0 . 0 5 0 . 0 7 0 . 1 0
0 . 1 2 0 . 1 4 0 . 1 6 0 . 1 6 0 . 1 3 0 . 1 0 0 . 0 9 0 . 0 7

- 0 . 0 7 - 0 . 0 8 - 0 . 0 7 - 0  . 0 5 0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8
0 . 1 0 0 . 1 2 0 . 1 4 0 . 1 4 0 . 1 1 0 . 0 9 0 . 0 8 0 . 0 7

- 0 . 0 6 - 0 . 0 6 - 0  . 0 6 - 0 . 0 5 - 0 . 0 4 - 0 . 0 3 0 . 0 0 0 . 0 1 0 . 0 2
0 . 0 3 0 . 0 5 0 . 0 7 0 . 0 9 0 . 0 9 0 . 0 8 0 . 0 8 0 . 0 7

- 0  . 0 4 - 0 . 0 4 - 0 . 0 4 - 0 . 0 5 - 0 . 0 5 - 0 . 0 5 - 0 . 0 4 • 0 . 0 3 - 0 . 0 2
- 0 . 0 1 0 . 0 1 0 . 0 3 0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 7 0 . 0 6

- 0 . 0 3 - 0 . 0 3 - 0 . 0 3 - 0  . 0 4 - 0  . 0 6 - 0  . 0 7 - 0 . 0 7 ■ 0 . 0 6 - 0 . 0 4
- 0  . 0 4 - 0 . 0 2 0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 6 0 . 0 5
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- 0 . 0 2
- 0 , 0 8

- 0 . 0 2
- 0 . 0 6

- 0 . 0 2
- 0 . 0 4

- 0 . 0 3
0 . 0 0

- 0 . 0 6
0 . 0 3

- 0 . 0 9
0 . 0 5

- 0 . 1 0
0 . 0 6

- 0 . 1 1
0 . 0 4

- 0 . 0 9

- 0 . 0 1
- 0 . 1 1

- 0 . 0 1
- 0 . 1 0

- 0 . 0 2
- 0 . 0 7

- 0 . 0 3
- 0 . 0 2

- 0 . 0 8
0 . 0 2

- 0 . 1 2
0 . 0 4

- 0 . 1 2
0 . 0 5

- 0 . 1 2
0 . 0 4

- 0 . 1 2

0 . 0 0
- 0 . 1 2

0 . 0 0
- 0 . 1 0

- 0 . 0 1
- 0 . 0 7

- 0 . 0 4
- 0 . 0 3

- 0 . 0 8
0 . 0 0

- 0 . 1 1
0 . 0 3

- 0 . 1 2
0 . 0 5

- 0 . 1 2
0 . 0 4

- 0 . 1 3

0 . 0 0
- 0 . 1 1

0 . 0 0
- 0 . 0 9

- 0 . 0 1
- 0 . 0 6

- 0 . 0 4
- 0 . 0 3

- 0 . 0 8
0 . 0 0

- 0 . 1 0
0 . 0 3

- 0 . 1 1
0 . 0 3

- 0 . 1 2
0 . 0 3

- 0 . 1 1

0 . 0 0
- 0 . 1 0

0 . 0 0  

- 0  . 0 8

- 0 . 0 1

- 0 . 0 6

- 0 . 0 5

- 0 . 0 3

- 0 . 0 8

0 . 0 0

- 0 . 0 9

0 . 0 1

- 0 . 1 0

0 . 0 2

- 0 . 1 0

0 . 0 2

- 0 . 1 0

0 . 0 0
- 0 . 0 8

- 0 . 0 1
- 0 . 0 6

- 0 . 0 2
- 0 . 0 5

- 0 . 0 4
- 0 . 0 3

- 0 . 0 7
- 0 . 0 1

- 0 . 0 8
0 . 0 0

- 0 . 0 8
0 . 0 1

- 0 . 0 8
0 . 0 2

- 0 . 0 8
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Appendix T(ii)

The LSC Residual Geoid Heights for Area B - Case II

4»! 4>2 ^ 1 A(}) AA.

2 . 5 5 0 0 0 0  3 . 6 3 3 3 3 0 1 0 1 . 6 1 6 6 7 0  1 0 2 . 4 3 3 3 3 0 0 . 0 5 0 0 0 0  0 . 0 5 0 0 0 0

0 . 2 7 0 . 3 1 0 . 3 4 0 . 3 5 0 . 3 7 0 . 3 8 0 . 3 8 0 . 3 7 0 . 3 5
0 . 2 7 0 . 2 5 0 . 2 3 0 . 1 7 0 . 1 6 0 . 1 2 0 . 0 9 0 . 0 8

0 . 2 9 0 . 3 3 0 . 3 5 0 . 4 0 0 . 4 6 0 . 4 7 0 . 4 7 0 . 4 8 0 . 4 2
0 . 3 6 0 . 2 7 0 : 2 1 0 . 1 7 0 . 1 6 0 . 1 3 0 . 1 1 0 . 0 8

0 . 2 8 0 . 3 6 0 . 3 6 0 . 4 5 0 . 4 7 0 . 5 0 0 . 4 8 0 . 4 7 0 . 4 4
0 . 3 6 0 . 3 1 0 . 2 7 0 . 2 1 0 . 1 8 0 . 1 3 0 . 1 3 0 . 1 0

0 . 2 7 0 . 3 4 0 . 3 8 0 . 4 8 0 . 5 2 0 . 5 2 0 . 4 8 0 . 4 7 0 . 4 4
0 . 3 6 0 . 2 8 0 . 2 2 0 . 1 8 0 . 1 5 0 . 1 4 0 . 1 3 0 . 1 0

0 . 2 8 0 . 3 4 0 . 4 0 0 . 5 0 0 . 5 3 0 . 5 0 0 . 5 0 0 . 4 7 0 . 4 5
0 . 3 6 0 . 2 9 0 . 2 2 0 . 1 9 0 . 1 6 0 . 1 5 0 . 1 3 0 . 0 8

0 . 2 8 0 . 3 0 0 . 3 5 0 . 4 4 0 . 4 6 0 . 4 4 0 . 4 4 0 . 4 1 0 . 3 8
0 . 3 4 0 . 2 8 0 . 2 2 0 . 1 8 0 . 1 7 0 . 1 6 0 . 1 3 0 . 1 0

0 . 2 3 0 . 2 6 0 . 3 3 0 . 3 6 0 . 3 6 0 . 3 3 0 . 2 8 0 . 2 4 0 . 2 3
0 . 2 4 0 . 2 0 0 . 1 6 0 . 1 6 0 . 1 5 0 . 1 5 0 . 1 4 0 . 1 1

0 . 2 2 0 . 2 7 0 . 2 9 0 . 2 4 0 . 0 5 - 0 . 0 2 - 0 . 0 3 - 0 . 0 5 - 0 . 0 3
- 0 . 0 2 - 0 . 0 3 0 . 0 6 0 . 1 1 0 . 1 3 0 . 1 4 0 . 1 4 0 . 1 1

0 . 1 3 0 . 1 6 0 . 1 8 0 . 1 3 - 0 . 0 3 - 0 . 1 7 - 0 . 1 7 - 0 . 1 7 - 0 . 1 4
- 0 . 0 8 - 0  . 0 4 - 0 . 0 2 0 . 0 8 0 . 1 2 0 . 1 3 0 . 1 3 0 . 1 1

0 . 1 2 0 . 1 1 0 . 1 0 0 . 0 8 - 0  . 0 6 - 0 . 1 7 - 0 . 1 7 - 0 . 1 7 - 0 . 1 4
- 0 . 0 9 - 0 . 0 5 - 0 . 0 1 0 . 0 7 0 . 1 0 0 . 1 3 0 . 1 3 0 . 1 0

0 . 0 5 0 . 0 6 0 . 0 6 0 . 0 4 - 0 . 0 2 - 0 . 0 9 - 0 . 1 1 - 0 . 1 2 - 0 . 1 0
- 0 . 0 7 - 0 . 0 4 - 0 . 0 1 0 . 0 5 0 . 1 0 0 . 1 1 0 . 1 2 0 . 1 1

0 . 0 3 0 . 0 3 0 . 0 5 0 . 0 5 0 . 0 3 - 0 . 0 3 - 0  . 0 4 - 0 . 0 5 - 0  . 0 4
- 0 . 0 5 0 . 0 1 0 . 0 5 0 . 0 6 0 . 1 2 0 . 1 3 0 . 1 3 0 . 1 1

0 . 0 6 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 6 0 . 0 1 0 . 0 1 0 . 0 1 0 . 0 1
0 . 0 2 0 . 0 3 0 . 0 5 0 . 0 8 0 . 1 3 0 . 1 4 0 . 1 5 0 . 1 1

0 . 0 5 0 . 0 6 - 0 . 0 1 - 0 . 0 2 - 0 . 0 1 0 . 0 4 0 . 0 4 0 . 0 6 0 . 0 4
0 . 0 3 0 . 0 5 0 . 1 0 0 . 1 1 0 . 1 8 0 . 1 7 0 . 1 5 0 . 1 3

0 . 0 8 0 . 0 9 0 . 0 7 0 . 0 6 0 . 0 5 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0
0 . 1 1 0 . 1 2 0 . 1 4 0 . 1 7 0 . 1 9 0 . 1 9 0 . 1 5 0 . 1 2

0 . 0 5 0 . 0 6 - 0 . 0 1 0 . 0 0 0 . 0 5 0 . 0 7 0 . 0 4 0 . 0 8 0 . 1 1
0 . 1 3 0 . 1 2 0 . 1 6 0 . 2 0 0 . 2 1 0 . 2 0 0 . 1 4 0 . 1 4

0 . 0 5 0 . 0 5 0 . 0 7 0 . 0 8 0 . 0 4 0 . 0 4 0 . 0 3 0 . 0 6 0 . 0 9
0 . 1 3 0 . 1 6 0 . 1 5 0 . 2 0 0 . 2 4 0 . 2 2 0 . 1 5 0 . 1 4
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0 . 0 4 0 . 0 5 0 . 0 6 0 . 0 4 0 . 0 3 0 . 0 1 0 . 0 0 0 . 0 3 0 . 0 8
0 . 1 1 0 . 1 5 0 . 1 8 0 . 1 9 0 . 2 6 0 . 2 4 0 . 1 8 0 . 1 2

0 . 0 3 0 . 0 5 0 . 0 3 0 . 0 3 0 . 0 0 - 0 . 0 2 0 . 0 0 0 . 0 4 0 . 0 8
0 . 1 1 0 . 1 3 0 . 1 7 0 . 2 2 0 . 2 4 0 . 2 2 0 . 2 0 0 . 1 3

0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 2 - 0 . 0 2 - 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8
0 . 0 7 0 . 1 0 0 . 1 3 0 . 1 5 0 . 2 2 0 . 2 4 0 . 2 0 0 . 1 3

0 . 0 4 0 . 0 4 0 . 0 3 0 . 0 0 - 0 . 0 3 - 0 . 0 2 0 . 0 2 0 . 0 6 0 . 1 0
0 . 0 7 0 . 1 0 0 . 1 2 0 . 1 4 0 . 1 7 0 . 2 0 0 . 1 9 0 . 1 5

0 . 0 5 0 . 0 3 0 . 0 1 - 0 . 0 1 - 0 . 0 4 - 0 . 0 2 0 . 0 1 0 . 0 5 0 . 0 7
0 . 0 8 0 . 0 9 0 . 1 1 0 . 1 2 0 . 1 3 0 . 1 5 0 . 1 6 0 . 1 5

0 . 0 4 0 . 0 2 - 0 . 0 1 - 0 . 0 2 - 0 . 0 4 - 0 . 0 3 0 . 0 0 0 . 0 4 0 . 0 5
0 . 0 4 0 . 0 6 0 . 0 7 0 . 1 0 0 . 0 8 0 . 0 9 0 . 1 1 0 . 1 0
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Appendix U(i)

The Final LSC Geoid Heights for Area B - Case I

^1 *2 ^1 Aÿ AX

2 . 5 5 0 0 0 0  3 . 6 3 3 3 3 0 1 0 1 . 6 1 6 6 7 0  1 0 2 . 4 3 3 3 3 0 0 . 0 5 0 0 0 0  0 . 0 5 0 0 0 0

- 4 . 6 4
- 2 . 5 6

- 4 . 4 8
- 2 . 3 0

- 4 . 3 0
- 2 . 0 4

- 4 . 0 7
- 1 . 7 8

- 3  . 8 2  
- 1 . 4 8

- 3  . 5 7  
- 1 . 2 1

- 3 . 3 4
- 0 . 9 6

- 3  . 1 2  
- 0 . 7 3

- 2 . 8 4

- 4 . 5 9
- 2 . 5 1

- 4 , 4 3
- 2 . 2 4

- 4 . 2 1
- 1 . 9 6

- 4 . 0 2
- 1 . 6 8

- 3  . 7 7  
- 1 . 4 1

- 3  . 5 2  
- 1 . 1 6

- 3  . 2 7  
- 0 . 8 9

- 3  . 0 5  
- 0 . 6 3

- 2 . 8 0

- 4 . 5 1
- 2 . 4 7

- 4 . 3 6
- 2 . 1 8

- 4 . 1 6
- 1 . 8 9

- 3  . 9 4  
- 1 . 6 1

- 3 . 7 0
- 1 . 3 4

- 3  . 4 8  
- 1 . 0 7

- 3 . 2 3
- 0 . 8 1

- 2 . 9 7
- 0 . 5 5

- 2 . 7 4

- 4 . 4 2
- 2 . 3 9

- 4 . 2 6
- 2 . 1 1

- 4 . 0 7
- 1 . 8 2

- 3 . 8 7
- 1 . 5 5

- 3  . 6 3  
- 1 . 2 6

- 3  . 4 2  
- 0 . 9 8

- 3 . 1 5
- 0 . 7 2

- 2 . 9 3
- 0 . 4 6

- 2 . 6 5

- 4 . 3 3
- 2 . 3 0

- 4 . 1 7
- 2 . 0 2

- 3  . 9 8  
- 1 . 7 2

- 3  . 7 7  
- 1 . 4 3

- 3  . 5 7  
- 1 . 1 5

- 3  . 3 3  
— 0 . 8 8

- 3  . 1 2  
- 0 . 6 1

- 2 . 8 6
- 0 . 3 6

- 2 . 5 8

- 4 . 2 3
- 2 . 2 1

- 4 . 0 7
- 1 . 9 3

- 3  . 8 7  
- 1 . 6 4

- 3  . 6 5  
- 1 . 3 5

- 3  . 4 5  
- 1 . 0 7

- 3  . 2 6  
- 0 . 7 9

- 3  . 0 3  
- 0 . 5 1

- 2 . 7 5
- 0 . 2 6

- 2 . 4 8

- 4 . 1 3
- 2 . 1 2

- 3  . . 97  
- 1 . 8 2

- 3  . 7 8  
- 1 . 5 4

- 3  . 5 2  
- 1 . 2 5

- 3  . 2 8  
- 0 . 9 7

- 3  . 1 2  
- 0 . 6 8

- 2 . 9 2
- 0 . 4 2

- 2 . 6 5
- 0 . 1 6

- 2 . 3 7

- 4 . 0 2
- 2 . 0 1

- 3  . 8 7  
- 1 . 7 1

- 3  . 7 0  
- 1 . 4 1

- 3  . 4 8  
- 1 . 1 1

- 3 . 2 5
- 0 . 8 4

- 3  . 0 5  
- 0 . 5 7

- 2 . 8 2
- 0 . 3 1

- 2 . 5 7
- 0 . 0 7

- 2 . 2 9

- 3 . 9 1
- 1 . 9 0

- 3  . 7 7  
- 1 . 6 1

- 3  . 6 1  
- 1 . 3 1

- 3  . 3 9  
- 1 . 0 1

- 3 . 1 5
- 0 . 7 5

- 2 . 9 1
- 0 . 5 2

- 2 . 6 8
- 0 . 2 5

- 2 . 4 4
0 . 0 0

- 2 . 1 7

- 3  . 7 8  
- 1 . 7 6

- 3  . 6 6  
- 1 . 4 9

- 3  . 5 0  
r l . 1 9

- 3 . 3 1
- 0 . 9 2

- 3 . 0 1
- 0 . 6 6

- 2 . 7 9
- 0 . 3 9

- 2 . 5 6
- 0 . 1 4

- 2 . 3 2
0 . 0 9

- 2 . 0 5

- 3  . 6 2  
- 1 . 6 6

- 3  . 4 9  
- 1 . 4 0

- 3  . 3 3  
- 1 . 1 1

- 3  . 1 3  
- 0 . 8 3

- 2 . 8 7
- 0 . 5 7

- 2 . 6 6
- 0 . 2 9

- 2 . 4 3
- 0 . 0 5

- 2 . 2 0
0 . 1 9

- 1 . 9 4

- 3  . 4 7  
- 1 . 5 7

- 3 . 3 0
- 1 . 3 0

- 3  . 1 4  
- 1 . 0 2

- 2 . 9 5
- 0 . 7 6

- 2 . 7 8
- 0 . 5 0

- 2 . 5 8
- 0 . 2 5

- 2 . 3 4
0 . 0 1

- 2 . 0 9
0 . 2 6

- 1 . 8 5

- 3  . 3 3  
- 1 . 5 2

- 3  . 1 8  
- 1 . 2 2

- 3 . 0 0
- 0 . 9 6

- 2 . 8 2
- 0 . 6 9

- 2 . 6 4
- 0 . 4 0

- 2 . 4 5
- 0 . 1 3

- 2 . 2 6
0 . 1 4

- 2  . 0 2  
0 . 4 0

- 1 . 7 9

- 3 . 1 9
- 1 . 4 5

- 3  . 0 2  
- 1 . 1 9

- 2 . 8 5
- 0 . 8 9

- 2 . 6 7
- 0 . 6 3

- 2 . 5 2
- 0 . 3 3

- 2 . 3 4
- 0 . 0 5

- 2 . 1 3
0 . 2 0

- 1 . 9 2
0 . 4 7

- 1 . 6 7

- 3  . 0 5  
- 1 . 3 8

- 2 . 8 8
- 1 . 1 2

- 2 . 7 1
- 0 . 8 4

- 2 . 5 4
- 0 . 5 3

- 2 . 4 0
- 0 . 2 3

- 2 . 2 1
0 . 0 5

- 2 . 0 1
0 . 3 2

- 1 . 8 2
0 . 5 5

- 1 . 5 9

- 2 . 9 2
- 1 . 2 6

- 2 . 7 4
- 1 . 0 0

- 2 . 5 6
- 0 . 7 2

- 2 . 3 9
- 0 . 4 2

- 2 . 2 3
- 0 . 1 2

- 2 . 0 6
0 . 1 7

- 1 . 8 8  
0 . 4 3

- 1 . 6 7  
0 . 6 6

- 1 . 4 7

- 2 . 7 6
- 1 . 1 4

- 2 . 5 6
- 0 . 9 0

- 2 . 4 2
- 0 . 6 1

- 2 . 2 6
- 0 . 3 0

- 2 . 0 9
- 0 . 0 3

- 1 . 9 3
0 . 2 7

- 1 . 7 8
0 . 5 4

- 1 . 6 0
0 . 7 6

- 1 . 3 9

continued

243



- 2 . 6 3
- 1 . 0 1

- 2 . 4 5
- 0 . 7 7

- 2 . 2 7
- 0 . 5 1

- 2 . 1 2
- 0 . 2 0

- 1 . 9 5
0 . 0 9

- 1 . 8 0
0 . 4 0

- 1 . 6 5
0 . 6 5

- 1 . 4 5
0 . 8 7

- 1 . 2 4

- 2 . 5 1
- 0 . 8 4

- 2 . 3 6
- 0 . 6 1

- 2 . 1 8
- 0 . 3 4

- 2 . 0 2
- 0 . 1 0

- 1 . 8 6
0 . 1 9

- 1 . 6 8
0 . 4 4

- 1 . 4 7
0 . 7 1

- 1 . 2 7
0 . 9 5

- 1 . 0 6

- 2 . 4 2
- 0 . 7 6

- 2 . 2 2  
- 0  . 5 2

- 2 . 0 6
- 0 . 2 6

- 1 . 8 9
0 . 0 1

- 1 . 7 3
0 . 2 7

- 1 . 5 7
0 . 6 0

- 1 . 4 0
0 . 8 4

- 1 . 1 8
1 . 0 6

- 0 . 9 6

- 2 . 3 3
- 0 . 5 8

- 2 . 1 4
- 0 . 3 7

- 1 . 9 5
- 0 . 0 6

- 1 . 7 4
0 . 2 2

- 1 . 5 7
0 . 3 7

- 1 . 3 7
0 . 6 2

- 1 . 1 9
0 . 8 9

- 0 . 9 9
1 . 1 4

- 0 . 7 9

- 2 . 2 6

- 0 . 4 2

- 2 . 0 4

- 0 . 2 0

- 1 . 8 4

0 . 0 0

- 1 . 6 4

0 . 2 3

- 1 . 4 5

0 . 4 8

- 1 . 2 7

0 . 7 6

- 1 . 0 7

0 . 9 8

- 0 . 8 5

1 . 2 4

- 0 . 6 4

- 2 . 1 7
- 0 . 3 0

- 1 . 9 4
- 0 . 0 8

- 1 . 7 2
0 . 1 0

- 1 . 5 1
0 . 3 4

- 1 . 3 3
0 . 5 7

- 1 . 1 4
0 . 8 2

- 0 . 9 4
1 . 0 9

- 0 . 7 3
1 . 3 2

. - 0 . 5 1
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Appendix U(ü)

The Final LSC Geoid Heights for Area B - Case H

^2 AX

2 . 5 5 0 0 0 0  3 . 6 3 3 3 3 0 1 0 1 . 6 1 6 6 7 0  1 0 2 . 4 3 3 3 3 0 0 . 0 5 0 0 0 0  0 . 0 5 0 0 0 0

- 4 . 3 4
- 2 . 4 2

- 4 . 1 0
- 2 . 1 9

- 3 . 8 0
- 1 . 8 9

- 3 . 4 5
- 1 . 7 0

- 3 . 1 7
- 1 . 4 9

- 3 . 0 1
- 1 . 2 9

- 2 . 9 2
- 1 . 0 7

- 2 . 7 8
- 0 . 8 2

- 2 . 5 8

- 4 . 2 3
- 2 . 2 8

- 3  . 9 4  
- 2 . 1 2

- 3  . 5 8  
- 1 . 8 5

- 3  . 2 4  
- 1 . 6 6

- 2 . 9 1
- 1 . 4 9

- 2 . 8 2
- 1 . 2 8

- 2 . 7 4
- 1 . 0 2

- 2 . 6 3
- 0 . 7 8

- 2 . 4 8

- 4 . 1 1
- 2 . 2 5

- 3 . 8 7
- 2 . 0 3

- 3 . 4 4
- 1 . 7 9

- 3 . 0 0
- 1 . 6 2

- 2 . 7 8
- 1 . 4 1

- 2 . 7 5
- 1 . 2 1

- 2 . 7 0
- 0 . 9 6

- 2 . 5 3
- 0 . 7 1

- 2 . 4 3

- 4 . 0 2
- 2 . 1 8

- 3 . 7 6
- 2 . 0 0

- 3  . 4 4  
- 1 . 7 9

- 2 . 8 5
- 1 . 5 8

- 2 . 7 1
- 1 . 3 7

- 2 . 6 5  
— 1 . 1 2

- 2 . 5 3
- 0 . 8 7

- 2 . 4 1
- 0 . 6 3

- 2 . 2 9

- 3  . 9 7  
- 2 . 0 8

- 3  . 6 8  
- 1 . 9 0

- 3 . 2 5
- 1 . 7 0

- 2 . 8 4
- 1 . 4 7

- 2 . 6 5
- 1 . 2 7

- 2 . 4 8
- 1 . 0 3

- 2 . 3 7
- 0 . 7 8

- 2 . 2 5
- 0 . 5 6

- 2 . 1 8

- 3 . 9 0
- 1 . 9 0

- 3  . 5 9  
- 1 . 7 6

- 3  . 1 2  
- 1 . 5 9

- 2 . 6 1
- 1 . 3 8

- 2 . 4 4
- 1 . 1 6

- 2 . 3 1
- 0 . 9 2

- 2 . 2 1
- 0 . 6 8

- 2 . 0 6
- 0 . 4 4

- 1 . 9 8

- 3 . 7 8
- 1 . 8 1

- 3  . 4 6  
- 1 . 6 8

- 3 . 1 3
- 1 . 5 1

- 2 . 7 7
- 1 . 3 0

- 2 . 5 1
- 1 . 0 8

- 2 . 3 4
- 0 . 8 3

- 2 . 1 6
- 0 . 5 8

- 2 . 0 1
- 0 . 3 4

- 1 . 8 8

- 3  . 7 1  
- 1 . 8 3

- 3  . 5 2  
- 1 . 7 4

- 3 . 2 7
- 1 . 4 7

- 3  . 0 3  
- 1 . 2 3

- 2 . 8 6
- 0 . 9 9

- 2 . 6 3
- 0 . 7 3

- 2 . 3 9
- 0 . 4 7

- 2 . 1 4
- 0 . 2 4

- 1 . 9 6

- 3  . 6 9  
- 1 . 6 2

- 3  . 6 1  
- 1 . 5 2

- 3 . 3 8
- 1 . 3 9

- 3  . 1 6  
- 1 . 1 0

- 2 . 9 7
- 0 . 8 9

- 2 . 6 9
- 0 . 6 3

- 2 . 3 0
- 0 . 3 9

- 1 . 9 9
- 0 . 1 4

- 1 . 7 6

- 3 . 7 0
- 1 . 4 8

- 3  . 5 9  
- 1 . 3 4

- 3  . 4 1  
- 1 . 2 4

- 3  . 1 6  
- 1 . 0 3

- 2 . 9 4
- 0 . 7 9

- 2 . 7 1
- 0 . 5 1

- 2 . 3 7
- 0 . 2 6

- 1 . 9 8
- 0 . 0 5

- 1 . 7 7

- 3 . 7 0
- 1 . 4 0

- 3  . 5 5  
- 1 . 2 2

- 3  . 3 7  
- 1 . 1 0

- 3  . 1 3  
- 0 . 9 4

- 2 . 8 8
- 0 . 6 5

- 2 . 6 6
- 0 . 3 5

- 2 . 3 2
- 0 . 1 5

- 1 . 9 4
0 . 0 7

- 1 . 7 0

- 3  . 6 2  
- 1 . 3 8

- 3  . 4 7  
- 1 . 1 6

- 3  . 2 5  
- 0 . 9 6

- 3 . 0 0
- 0 . 7 8

- 2 . 7 4  
- 0  . 4 9

- 2 . 5 0
- 0 . 2 0

- 2  . 1 7  
0 . 0 3

- 1 . 8 0
0 . 1 8

- 1 . 5 6

- 3  . 4 8  
- 1 . 2 8

- 3 . 3 3
- 1 . 1 0

- 3  . 1 3  
- 0 . 8 6

- 2 . 8 9
- 0 . 6 5

- 2 . 6 2
- 0 . 3 8

- 2 . 3 6
- 0 . 1 0

- 2 . 0 2
0 . 1 6

- 1 . 6 3
0 . 3 0

- 1 . 4 3

- 3  . 3 7  
- 1 . 2 0

- 3  . 2 0  
- 0 . 9 6

- 3 . 0 6
- 0 . 6 7

- 2 . 8 4
- 0 . 4 9

- 2 . 5 9
- 0 . 2 2

- 2 . 2 6
0 . 0 2

- 1 . 8 8
0 . 2 5

- 1 . 5 2
0 . 4 3

- 1 . 3 5

- 3  . 2 4  
- 0  . 9 9

- 3 . 0 6
- 0 . 7 1

- 2 . 8 7
- 0 . 4 6

- 2 . 6 5  
- 0  . 2 7

- 2 . 4 4
- 0 . 0 6

- 2 . 1 8
0 . 1 4

- 1 . 8 0
0 . 3 4

- 1 . 4 8
0 . 5 0

- 1 . 1 9

- 3  . 1 6  
- 0  . 7 3

- 2 . 9 6
- 0 . 5 1

- 2 . 8 3  
- 0  . 2 4

- 2 . 5 9
- 0 . 0 7

- 2 . 3 0
0 . 1 0

- 2 . 0 3
0 . 2 5

- 1 . 7 7  
0 . 4 1

- 1 . 3 9
0 . 6 3

- 1 . 0 3

- 3  . 0 3  
- 0 . 4 7

- 2 . 8 5
- 0 . 2 7

- 2 . 6 3
- 0 . 1 7

- 2 . 3 9  
0 . 1 0

- 2 . 1 9
0 . 2 4

- 1 . 9 3
0 . 3 7

- 1 . 6 6
0 . 5 1

- 1 . 3 1
0 . 7 2

- 0 . 9 2
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- 2 . 9 1
- 0 . 4 5

- 2 . 7 1
- 0 . 2 2

- 2 . 5 0
- 0 . 0 8

- 2 . 3 1
0 . 1 2

- 2 . 0 5
0 . 3 4

- 1 . 7 8
0 . 4 8

- 1 . 5 2
0 . 6 3

- 1 . 2 3
0 . 8 0

- 0 . 8 7

- 2 . 7 9
- 0 . 4 7

- 2 . 5 8
- 0 . 2 1

- 2 . 4 0
0 . 0 0

- 2 . 1 8
0 . 2 2

- 1 . 9 6
0 . 4 1

- 1 . 7 3
0 . 5 9

- 1 . 4 6
0 . 7 6

- 1 . 1 7
0 . 9 3

- 0 . 8 3

- 2 . 6 8
- 0 . 4 1

- 2 . 4 6
- 0 . 0 9

- 2 . 2 6
0 . 1 0

- 2 . 0 5
0 . 3 1

- 1 . 8 6
0 . 5 2

- 1 . 6 2
0 . 7 2

- 1 . 3 3
0 . 8 8

- 1 . 0 6
1 . 0 4

- 0 . 7 4

- 2 . 5 3
- 0 . 3 9

- 2 . 3 3
- 0 . 0 3

- 2 . 1 2
0 . 2 6

- 1 . 9 4
0 . 4 7

- 1 . 7 4
0 . 6 0

- 1 . 5 0
0 . 7 9

- 1 . 2 3
0 . 9 9

- 0 . 9 7
1 . 1 5

- 0 . 6 6

- 2 . 4 1

- 0 . 3 2

- 2 . 2 3  

- 0  . 0 4

- 2 . 0 3

0 . 2 7

- 1 . 8 3

0 . 5 4

- 1 . 6 4

0 . 6 8

- 1 . 3 9

0 . 8 6

- 1 . 1 2

1 . 0 6

- 0 . 8 6

1 . 2 6

- 0 . 5 9

- 2 . 3 0
- 0 . 2 6

- 2 . 0 9
0 . 0 1

- 1 . 9 1
0 . 3 6

- 1 . 7 0  
0 . 7 8

- 1 . 5 0
0 . 7 6

- 1 . 2 6
0 . 9 6

- 1 . 0 0
1 . 1 5

- 0 . 7 4
1 . 3 2

- 0 . 4 8
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Appendix V(l)

The LSC Residual Geoid Heights for Area C - Case I

$1 4>2
X i A(|) A X

1 . 2 5 0 0 0 0  1 . 8 1 6 6 7 0 1 0 3 . 2 5 0 0 0 0  1 0 4 . 2 4 3 3 3 3 0 . 0 8 3 3 3 0  0 . 0 8 3 3 3 0

0 . 0 2
0 . 0 2

0 . 0 3
0 . 0 1

0 . 0 3
0 . 0 2

0 . 0 3  
0 . 0 3

0 . 0 1 0 . 0 2 0 . 0 1 C . 0 1 0 . 0 1

0 . 0 3
- 0 . 0 4

0 . 0 2
- 0 . 0 2

0 . 0 2
- 0 . 0 2

0 . 0 2
- 0 . 0 1

0 . 0 2 0 . 0 1 0 . 0 1 - 0 . 0 3 - 0  . 0 4

0 . 0 1
- 0 . 1 1

0 . 0 0
- 0 . 1 0

- 0 . 0 1
- 0 . 0 9

- 0 . 0 1
- 0 . 0 4

- 0 . 0 2 - 0 . 0 7 - 0 . 0 8 - 0  . 0 8 - 0 . 1 3

0 . 0 2  
- 0 . 1 8

0 . 0 0  
- 0 . 1 6

- 0 . 0 5
- 0 . 1 1

- 0 . 0 8  
- 0  . 0 6

- 0 . 1 6 - 0 . 1 8 - 0 . 1 5 - 0  . 1 4 - 0 . 2 0

0 . 0 1
- 0 . 1 7

- 0 . 0 2
- 0 . 1 5

- 0 . 0 8
- 0 . 1 6

- 0 . 1 7
- 0 . 1 0

- 0 . 1 8 - 0  . 1 9 - 0 . 2 1 - 0 . 1 9 - 0 . 1 7

0 . 0 1
- 0 . 1 6

0 . 0 0
- 0 . 1 5

- 0 . 0 4
- 0 . 1 3

- 0 . 0 7
- 0 . 1 1

- 0 . 1 9 - 0 . 2 0 - 0 . 2 0 - 0 . 1 8 - 0 . 1 6

0 . 0 2  
- 0 . 1 6

0 . 0 3
- 0 . 1 2

- 0 . 0 2
- 0 . 1 3

- 0 . 1 0
- 0 . 1 1

- 0 . 1 4 - 0 . 1 6 - 0 . 1 6 - 0 . 1 5 - 0 . 1 5

0 . 0 0
- 0 . 1 4

0 . 0 0
- 0 . 1 3

- 0 . 0 4
- 0 . 1 0

- 0 . 0 6
- 0 . 0 9

- 0 . 1 0 - 0 . 1 6 - 0 . 1 7 - 0 . 1 4 - 0 . 1 3
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Appendix V(ii)

The LSC Residual Geoid Heights for Area C - Case II

t>l <t>2 Xi A(]) AX

1 . 2 5 0 0 0 0  1 . 8 1 6 6 7 0 1 0 3 . 2 4 0 0 0 0  1 0 4 . 2 4 3 3 3 3 0 . 0 8 3 3 3 0  0 . 0 8 3 3 3 0

0 . 0 3
- 0 . 0 4

0 . 0 3
- 0 . 0 4

0 . 0 2
- 0 . 0 4

0 . 0 3
- 0 . 0 3

0 . 0 3 0 . 0 1 - 0 . 0 3 - 0 . 0 1 - 0 . 0 3

0 . 0 4
- 0 . 0 6

0 . 0 3
- 0 . 0 7

0 . 0 5  
—0 . 0 6

0 . 0 2  
— 0 . 0 6

0 . 0 2 0 . 0 0 - 0 . 0 1 - 0 . 0 4 - 0 . 0 5

0 . 0 2
- 0 . 1 3

0 . 0 2
- 0 . 1 5

0 . 0 1
- 0 . 1 0

- 0 . 0 2
- 0 . 0 7

- 0 . 0 5 - 0 . 0 7 - 0 . 0 7 - 0 . 1 3 - 0 . 1 3

0 . 0 2
- 0 . 1 7

0 . 0 2
- 0 . 1 8

- 0 . 0 1
- 0 . 1 3

- 0 . 0 8
- 0 . 0 9

- 0 . 1 7 - 0 . 1 5 - 0 . 1 4 - 0 . 1 9 - 0 . 1 8

0 . 0 1
- 0 . 2 0

0 . 0 1
- 0 . 1 9

- 0 . 0 1
- 0 . 1 6

- 0 . 1 1
- 0 . 1 4

- 0 . 1 8 - 0 . 2 0 - 0 . 2 0 - 0 . 1 8 - 0 . 1 9

0 . 0 2
- 0 . 1 8

0 . 0 2
- 0 . 1 6

- 0 . 0 2
- 0 . 1 8

- 0 . 1 0
- 0 . 1 4

■ - 0 . 2 1 - 0 . 1 8 - 0 . 1 9 - 0 . 1 9 - 0 . 1 7

0 . 0 2
- 0 . 1 7

- 0 . 0 1
- 0 . 1 5

- 0 . 0 3
- 0 . 1 5

- 0 . 0 6
- 0 . 1 4

- 0 . 1 6 - 0 . 1 6 - 0 . 1 7 - 0 . 1 5 - 0 . 1 7

0 . 0 1
- 0 . 1 3

- 0 . 0 1
- 0 . 1 5

- 0 . 0 2
- 0 . 1 4

- 0 . 0 5
- 0 . 1 2

- 0 . 1 0 - 0 . 1 3 - 0 . 1 4 - 0 . 1 6 - 0 . 1 5
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Appendix W

The Final LSC Geoid Heights for Area C - Case H only

h *2 Xi Xj A(|) AA,

1 . 2 5 0 0 0 0  1 . 8 1 6 6 7 0 1 0 3 . 2 5 0 0 0 0 ' 1 0 4 . . 2 4 3 3 3 3 0 . 0 8 3 3 3 0  0 . 0 8 3 3 3 0

6 . 1 8
8 . 9 3

6 . 4 1
9 . 2 2

6 . 7 2
9 . 5 9

7 . 0 3
1 0 . 0 2

7 . 3 3 7 . 6 4 7 . 9 6 8 . 2 7 8 . 5 2

6 . 2 9
9 . 0 1

6 . 5 4
9 . 4 3

6 . 8 6
9 . 7 2

7 . 1 8
1 0 . 1 7

7 . 4 9 7 . 8 0 8 . 0 9 8 . 4 0 8 . 7 0

6 . 4 2
9 . 1 0

6 . 6 7
9 . 4 4

6 . 9 9
9 . 8 5

7 . 3 2
1 0 . 2 6

7 . 6 4 7 . 9 5 8 . 2 7 8 . 5 3 8 . 8 0

6 . 5 2
9 . 2 3

6 . 7 6
9 . 6 0

7 . 0 9
9 . 9 6

7 . 4 1
1 0 . 3 7

7 . 7 0 8 . 0 3 8 . 3 9 8 . 6 4 8 . 9 0

6 . 6 5  
9 . 4 4

6 . 8 6
9 . 7 3

7 . 1 8
1 0 . 0 7

7 . 4 7
1 0 . 4 5

7 . 7 5 8 . 1 1 8 . 4 6 8 . 8 4 9 . 1 4

6 . 6 7
9 . 6 0

6 . 9 3
9 . 9 0

7 . 2 4
1 0 . 2 0

7 . 5 7
1 0 . 5 4

7 . 8 8 8 . 2 6 8 . 6 1 8 . 9 7 9 . 3 0

6 . 6 8
9 . 6 7

6 . 9 4
9 . 9 8

7 . 2 7
1 0 . 3 2

7 . 6 4
1 0 . 6 3

8 . 0 0 8 . 3 6 8 . 7 3 9 . 0 8 9 . 4 0

6 . 6 4  
9 . 7 0

6 . 9 3
1 0 . 0 4

7 . 2 8
1 0 . 3 9

7 . 6 6
1 0 . 7 0

8 . 0 6 8 . 4 3 8 . 7 8 9 . 1 5 9 . 4 2
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Appendix X(i)

The FFT Residual Geoid Heights for Area A - Case H Only

4>2 Xi Xi Aÿ A X

4 . 0 6 6 6 7 0  4 . 8 7 5 0 0 0 1 0 0 . 9 6 6 6 7 0  1 0 1 . 7 6 6 6 7 0 0 . 0 3 3 3 3 0  0 . 0 3 3 3 3 0

- 0 . 0 3
- 0 . 4 8

0 . 1 9

- 0 . 0 2
- 0 . 5 0

0 . 3 6

- 0 . 0 3
- 0 . 4 8

0 . 5 1

- 0 . 0 5
- 0 . 4 5

0 . 6 1

- 0 . 0 7
- 0 . 4 1

0 . 6 5

- 0 . 1 2
- 0 . 3 3

0 . 6 5

- 0 . 2 1
- 0 . 2 2

0 . 5 7

- 0 . 2 9
- 0 . 1 1

- 0 . 3 9
0 . 0 3

- 0 . 0 2
- 0 . 6 5

0 . 1 9

0 . 0 0  
— 0 . 6 8  

0 . 4 6

- 0 . 0 1
- 0 . 6 1

0 . 6 8

- 0 . 0 4
- 0 . 5 7

0 . 7 9

- 0 . 0 9
- 0 . 5 6

0 . 8 3

- 0 . 1 4
- 0 . 4 6

0 . 8 3

- 0 . 2 4
- 0 . 3 0

0 . 6 9

- 0 . 3 7
- 0 . 2 1

- 0 . 5 0
- 0 . 0 2

- 0 . 0 3
- 0 . 6 9

0 . 2 4

- 0 . 0 3
- 0 . 8 1

0 . 5 2

- 0 . 0 5
- 0 . 8 0

0 . 7 3

— 0 . 0 8  
- 0 . 7 7  

0 . 8 4

- 0 . 1 2
- 0 . 6 8

0 . 8 8

- 0 . 1 9
- 0 . 4 6

0 . 9 0

- 0 . 3 1
- 0 . 3 0

0 . 7 5

- 0 . 4 4
- 0 . 2 4

- 0 . 5 7
- 0 . 0 3

- 0 . 0 2
- 0 . 7 5

0 . 3 4

- 0 . 0 5
- 0 . 8 9

0 . 5 4

- 0 . 0 9
- 0 . 9 6

0 . 7 6

- 0 . 1 2
- 0 . 9 6

0 . 8 8

- 0 . 1 6
- 0 . 8 5

0 . 9 5

- 0 . 2 3
- 0 . 5 8

0 . 9 5

- 0 . 3 4
- 0 . 3 0

0 . 7 8

- 0 . 4 9
- 0 . 1 6

- 0 . 6 3
0 . 0 3

- 0 . 0 5
- 0 . 8 5

0 . 4 1

- 0 . 0 7
- 1 . 0 2

0 . 6 2

- 0 . 1 0
- 1 . 1 2

0 . 8 1

- 0 . 1 4
- 1 . 0 5

0 . 9 1

- 0 . 1 9
- 0 . 9 0

0 . 9 7

- 0 . 2 6
- 0 . 6 4

0 . 9 8

- 0 . 3 8
- 0 . 3 6

0 . 8 0

- 0 . 5 3
- 0 . 0 4

— 0 . 6 8  
0 . 2 0

- 0 . 0 5
- 0 . 8 5

0 . 4 3

- 0 . 0 7
- 1 . 1 1

0 . 6 4

- 0 . 1 0
- 1 . 1 8

0 . 8 2

- 0 . 1 5
- 1 . 0 8

0 . 9 3

- 0 . 2 0
- 0 . 9 5

0 . 9 8

- 0 . 2 8
- 0 . 6 9

0 . 9 1

- 0 . 3 9
- 0 . 4 5

0 . 7 8

- 0 . 5 4
- 0 . 1 4

- 0 . 6 9
0 . 1 7

- 0 . 0 7
- 0 . 8 5

0 . 3 0

- 0 . 0 8
- 1 . 0 4

0 . 5 8

- 0 . 1 1
- 1 . 1 3

0 . 7 6

- 0 . 1 4
- 1 . 1 1

0 . 8 4

- 0 . 2 1
- 0 . 9 6

0 . 9 2

- 0 . 3 0
- 0 . 7 4

0 . 8 8

- 0 . 4 0
- 0 . 5 0

0 . 7 6

- 0 . 5 0
- 0 . 2 3

- 0 . 6 9
0 . 0 1

- 0 . 0 7
- 0 . 7 9

0 . 1 0

- 0 . 0 9
- 0 . 9 2

0 . 4 5

- 0 . 1 1
- 1 . 0 4

0 . 6 3

- 0 . 1 4
- 1 . 1 7

0 . 7 3

- 0 . 2 0
- 1 . 0 6

0 . 8 4

- 0 . 2 9
- 0 . 8 3

0 . 8 5

- 0 . 4 0
- 0 . 6 1

0 . 7 3

- 0 . 5 4
- 0 . 4 3

- 0 . 6 9
- 0 . 2 1

- 0 . 0 5
- 0 . 8 6
- 0 . 0 7

- 0  . 0 8  
- 0 . 9 3  

0 . 2 9

- 0 . 0 9
- 1 . 0 7

0 . 4 8

- 0 . 1 2
- 1 . 2 0

0 . 5 8

- 0 . 2 0
- 1 . 1 7

0 . 7 5

- 0 . 2 9
- 0 . 9 9

0 . 8 2

- 0 . 4 1
- 0 . 8 1

0 . 7 1

- 0 . 5 4
- 0 . 6 0

- 0 . 7 0
- 0 . 4 2

- 0 . 0 4
- 0 . 8 1
- 0 . 1 0

- 0 . 0 6
- 0 . 9 0

0 . 1 7

- 0 . 0 9
- 1 . 0 3

0 . 3 9

- 0 . 1 2
- 1 . 1 9

0 . 4 8

- 0 . 1 9
- 1 . 1 8

0 . 6 8

- 0 . 2 8
- 1 . 0 9

0 . 8 1

- 0 . 4 0
- 0 . 9 1

0 . 6 9

- 0 . 5 2
- 0 . 6 7

— 0 . 6 8  
- 0 . 4 1

- 0 . 0 3  
- 0 . 8 7  
- 0  . 0 5

- 0 . 0 5
- 0 . 9 4

0 . 1 9

- 0 . 0 8
- 1 . 0 9

0 . 3 8

- 0 . 1 1
- 1 . 2 5

0 . 4 7

- 0 . 1 8
- 1 . 2 1

0 . 6 7

- 0 . 2 6
- 1 . 0 7

0 . 7 4

- 0 . 3 8
- 0 . 8 3

0 . 6 7

- 0 . 5 2
- 0 . 6 1

- 0 . 6 7
- 0 . 3 2

- 0 . 0 4
- 0 . 7 5

0 . 0 5

- 0 . 0 4
- 0 . 9 4

0 . 2 6

- 0 . 0 7
- 1 . 0 1

0 . 4 9

- 0  . 1 1  
- 1 . 1 8  

0 . 5 2

- 0 . 1 7
- 1 . 1 9

0 . 6 8

- 0 . 2 5
- 1 . 0 9

0 . 7 6

- 0 . 3 6  
— 0 . 8 8  

0 . 6 7

- 0 . 4 9
- 0 . 6 0

- 0 . 6 2
- 0 . 2 8

- 0 . 0 3
- 0 . 6 5

0 . 0 4

- 0 . 0 3
- 0 . 7 9

0 . 3 4

- 0 . 0 7
- 1 . 0 1

0 . 5 5

- 0 . 1 1
- 1 . 1 1

0 . 6 5

- 0 . 1 7
- 1 . 1 4

0 . 7 7

- 0 . 2 4
- 1 . 0 4

0 . 8 0

- 0 . 3 2  
- 0 . 8 0  

0 . 6 7

- 0 . 4 5  - 0 . 5 7  
- 0 . 5 6  - 0 . 2 8
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- 0 . 0 3
- 0 . 6 1

0 . 0 1

- 0 . 0 2
- 0 . 7 9

0 . 2 9

- 0 . 0 6
- 0 . 9 9

0 . 5 2

- 0 . 1 0
- 1 . 0 4

0 . 7 1

- 0 . 1 5
- 1 . 0 1

0 . 8 2

- 0 . 2 2
- 0 . 9 6

0 . 8 2

- 0 . 2 8
- 0 . 7 6

0 . 6 8

- 0 . 4 1
- 0 . 4 7

- 0 . 5 3
- 0 . 2 4

- 0 . 0 2
- 0 . 6 0
- 0 . 1 0

- 0 . 0 3
- 0 . 7 3

0 . 2 3

- 0 . 0 6
- 0 . 8 3

0 . 5 3

- 0 . 1 0
- 0 . 9 3

0 . 6 9

- 0 . 1 4
- 0 . 9 2

0 . 8 1

- 0 . 1 9
- 0 . 8 8

0 . 8 2

- 0 . 2 5
- 0 . 7 6

0 . 6 7

- 0 . 3 6
- 0 . 5 2

- 0 . 4 8
- 0 . 3 9

- 0 . 0 2
- 0 . 4 9
- 0 . 0 5

- 0 . 0 4  
— 0 . 6 8  

0 . 2 0

- 0 . 0 6  
- 0  . 6 8  

0 . 4 5

- 0 . 0 7
- 0 . 7 3

0 . 6 9

- 0 . 1 2
- 0 . 8 3

0 . 7 9

- 0 . 1 4
- 0 . 8 7

0 . 8 0

- 0 . 2 2
- 0 . 7 7

0 . 6 6

- 0 . 3 2
- 0 . 6 3

- 0 . 4 2
- 0 . 3 7

- 0 . 0 3
- 0 . 4 6
- 0 . 0 1

- 0 . 0 5
- 0 . 6 0

0 . 2 3

- 0 . 0 6
- 0 . 5 5

0 . 5 1

— 0 . 0 6  
- 0 . 6 7  

0 . 6 7

- 0 . 0 8
- 0 . 7 6

0 . 7 4

- 0 . 1 4
- 0 . 8 7

0 . 7 6

- 0 . 1 9
- 0 . 8 2

0 . 6 4

- 0 . 2 8
- 0 . 6 7

- 0 . 3 6
- 0 . 4 0

- 0 . 0 4
- 0 . 3 2

0 . 0 4

- 0 . 0 4
- 0 . 4 6

0 . 2 9

- 0 . 0 6
- 0 . 4 1

0 . 5 1

- 0 . 0 7
- 0 . 5 9

0 . 6 6

- 0 . 1 0
- 0 . 7 2

0 . 7 3

- 0 . 1 3
- 0 . 7 8

0 . 7 6

- 0 . 1 7
- 0 . 7 3

0 . 6 1

- 0 . 2 3
- 0 . 5 5

- 0 . 2 8
- 0 . 2 9

- 0 . 0 3
- 0 . 1 9
- 0 . 0 1

- 0 . 0 3
- 0 . 2 8

0 . 1 4

- 0 . 0 5
- 0 . 2 7

0 . 3 8

- 0 . 0 7
- 0 . 4 4

0 . 6 1

- 0 . 0 8
- 0 . 5 6

0 . 7 0

- 0 . 1 2
- 0 . 6 9

0 . 7 0

- 0 . 1 4
- 0 . 7 0

0 . 5 9

- 0 . 1 8
- 0 . 4 9

- 0 . 1 9
- 0 . 2 5

- 0 . 0 3
- 0 . 0 3
- 0 . 1 4

- 0 . 0 3
- 0 . 0 4

0 . 0 4

- 0 . 0 5
- 0 . 1 4

0 . 3 4

- 0 . 0 7
- 0 . 3 1

0 . 5 7

- 0 . 0 8
- 0 . 4 8

0 . 6 7

- 0 . 1 0
- 0 . 6 4

0 . 6 8

- 0 . 1 2
- 0 . 6 2

b . 5 6

- 0 . 1 3
- 0 . 5 0

- 0 . 1 1
- 0 . 3 0

- 0 . 0 2
0 . 0 6

- 0 . 1 6

- 0 . 0 3
0 . 0 6
0 . 1 1

- 0 . 0 5
- 0 . 0 5

0 . 3 3

- 0 . 0 6
- 0 . 2 1

0 . 5 4

- 0 . 0 7
- 0 . 3 6

0 . 6 3

- 0 . 0 8
- 0 . 5 3

0 . 6 4

- 0 . 0 9
- 0 . 5 6

0 . 5 2

- 0 . 0 8
- 0 . 4 9

- 0 . 0 4
- 0 . 3 6

- 0 . 0 1
0 . 1 2

- 0 . 1 1

- 0 . 0 3
0 . 1 3
0 . 1 1

- 0 . 0 5
0 . 0 5
0 . 3 0

- 0 . 0 5
- 0 . 0 8

0 . 4 9

— 0 . 0 6  
- 0 . 2 7  

0 . 5 7

- 0 . 0 6
- 0 . 4 3

0 . 5 9

— 0 . 0 6  
- 0 . 4 1  

0 . 4 8

- 0 . 0 4
- 0 . 4 6

0 . 0 0
- 0 . 3 2

- 0 . 0 2
0 . 1 6

- 0 . 2 0

- 0 . 0 3
0 . 1 8

- 0 . 0 5

- 0 . 0 4
0 . 1 3
0 . 1 8

- 0 . 0 4
- 0 . 0 1

0 . 3 9

- 0 . 0 3
- 0 . 2 1

0 . 5 1

- 0 . 0 4
- 0 . 3 4

0 . 5 3

- 0 . 0 3
- 0 . 3 1

0 . 4 3

- 0 . 0 1
- 0 . 3 7

0 . 0 3
- 0 . 3 3

- 0 . 0 3
0 . 1 7

- 0 . 2 2

- 0 . 0 3
0 . 2 0

- 0 . 0 8

- 0 . 0 3
0 . 1 5
0 . 0 9

- 0 . 0 2
0 . 0 2
0 . 3 3

- 0  . 0 3  
- 0 . 1 8  

0 . 4 3

- 0 . 0 3
- 0 . 1 5

0 . 4 4

- 0 . 0 2
- 0 . 2 1

0 . 3 6

0 . 0 0
- 0 . 2 8

0 . 0 5
- 0 . 2 4

- 0 . 0 3  
0 . 1 0  

- 0  . 0 9

- 0 . 0 3
0 . 1 0
0 . 0 0

- 0 . 0 3
0 . 0 7
0 . 1 0

- 0 . 0 2
0 . 0 0
0 . 2 2

- 0 . 0 2
- 0 . 0 8

0 . 2 9

- 0 . 0 2
- 0 . 1 1

0 . 3 1

- 0 . 0 2
- 0 . 1 4

0 . 2 8

- 0 . 0 1
- 0 . 1 5

0 . 0 3
- 0 . 1 3
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Appendix X(ii)

The FFT Residual Geoid Heights for Area B - Case H Only

$1 4)2 X1 A(|) AX

2 . 5 5 0 0 0 0 3 . 6 3 3 3 3 0 1 0 1 . 6 1 6 6 7 0  1 0 2 . , 4 3 3 3 3 0 0 . 0 5 0 0 0 0 0 . 0 5 0 0 0 0

0 . 2 5 0 . 3 0 0 . 3 3 0 . 3 6 0 . 4 0 0 . 4 3 0 . 4 1 0 . 3 8 0 . 3 3
0 . 2 8 0 . 2 2 0 . 1 8 0 . 1 5 0 . 1 3 0 . 1 0 0 . 0 8 0 . 0 5

0 . 3 1 0 . 3 7 0 . 4 0 0 . 4 4 0 . 4 9 0 . 5 1 0 . 5 1 0 . 4 6 0 . 4 0
0 . 3 3 0 . 2 6 0 . 2 0 0 . 1 6 0 . 1 4 0 . 1 2 0 . 0 9 0 . 0 6

0 . 3 4 0 . 4 1 0 . 4 4 0 . 4 9 0 . 5 0 0 . 5 1 0 . 5 0 0 . 5 0 0 . 4 3
0 . 3 5 0 . 2 7 0 . 2 1 0 . 1 6 0 . 1 4 0 . 1 2 0 . 1 0 0 . 0 7

0 . 3 5 0 . 4 3 0 . 4 6 0 . 5 0 0 . 5 0 0 . 5 1 0 . 5 1 0 . 5 1 0 . 4 4
0 . 3 6 0 . 2 8 0 . 2 1 0 . 1 7 0 . 1 4 0 . 1 2 0 . 1 0 0 . 0 7

0 . 3 4 0 . 4 1 0 . 4 4 0 . 4 8 0 . 5 1 0 . 5 1 0 . 5 0 0 . 4 7 0 . 4 2
0 . 3 5 0 . 2 8 0 . 2 2 0 . 1 7 0 . 1 5 0 . 1 3 0 . 1 0 0 . 0 7

0 . 3 0 0 . 3 7 0 . 4 0 0 . 4 3 0 . 4 5 0 . 4 5 0 . 4 3 0 . 3 9 0 . 3 6
0 . 3 2 0 . 2 6 0 . 2 0 0 . 1 7 0 . 1 5 0 . 1 3 0 . 1 1 0 . 0 8

0 . 2 5 0 . 3 1 0 . 3 4 0 . 3 5 0 . 3 4 0 . 3 0 0 . 2 5 0 . 2 2 0 . 2 1
0 . 2 2 0 . 1 8 0 . 1 5 0 . 1 4 0 . 1 4 0 . 1 3 0 . 1 2 0 . 0 9

0 . 1 9 0 . 2 3 0 . 2 5 0 . 2 2 0 . 0 5 - 0 . 0 3 - 0 . 0 6 - 0 . 0 6 - 0 . 0 5
- 0 . 0 4 0 . 0 0 0 . 0 5 0 . 0 9 0 . 1 3 0 . 1 3 0 . 1 2 0 . 0 9

0 . 1 3 0 . 1 5 0 . 1 6 0 . 1 2 - 0 . 0 5 - 0 . 1 6 - 0 . 1 6 - 0 . 1 6 - 0 . 1 5

- 0 . 1 2 - 0 . 0 7 0 . 0 0 0 . 0 6 0 . 1 0 0 . 1 2 0 . 1 2 0 . 0 9

0 . 0 7 0 . 0 9 0 . 0 9 0 . 0 6 - 0 . 0 7 - 0 . 1 5 - 0 . 1 6 - 0 . 1 6 - 0 . 1 7

- 0 . 1 3 - 0 . 0 8 - 0 . 0 3 0 . 0 4 0 . 0 9 0 . 1 1 0 . 1 1 0 . 0 9

0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 2 - 0 . 0 4 - 0 . 1 2 - 0 . 1 5 - 0 . 1 6 - 0 . 1 5

- 0 . 1 2 - 0 . 0 7 - 0  . 0 3 0 . 03 0 . 0 9 0 . 1 0 0 . 1 1 0 . 0 9

0 . 0 1 0 . 0 1 0 . 0 1 0 . 0 2 0 . 0 0 - 0 . 0 4 - 0 . 0 8 - 0 . 0 9 - 0 . 0 9
- 0 . 0 8 - 0 . 0 5 - 0 . 0 1 0 . 0 3 0 . 0 9 0 . 1 1 0 . 1 2 0 . 1 0

0 . 0 1 0 . 0 2 0 . 0 1 0 . 0 2 0 . 0 2 0 . 0 0 - 0 . 0 2 - 0 . 0 3 - 0 . 0 4

- 0 . 0 4 - 0 . 0 2 0 . 0 1 0 . 0 5 0 . 1 0 0 . 1 2 0 . 1 2 0 . 1 0

0 . 0 2 0 . 0 3 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 3 0 . 0 2 0 . 0 1 0 . 0 1
0 . 0 1 0 . 0 3 0 . 0 4 0 . 0 7 0 . 1 3 0 . 1 4 0 . 1 3 0 . 1 1

0 . 0 3 0 . 0 4 0 . 0 4 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 4 0 . 0 4 0 . 0 5

0 . 0 6 0 . 0 8 0 . 0 9 0 . 1 2 0 . 1 5 0 . 1 5 0 . 1 4 0 . 1 1

0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 4 0 . 0 4 0 . 0 4 0 . 0 4 0 . 0 5 0 . 0 6
0 . 0 8 0 . 1 0 0 . 1 2 0 . 1 4 0 . 1 6 0 . 1 6 0 . 1 5 0 . 1 2
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0 . 0 3 0 . 0 5 0 . 0 5 0 . 0 5 0 . 0 4 0 . 0 3 0 . 0 3 0 . 0 4 0 . 0 6
0 . 0 8 0 . 1 0 0 . 1 3 0 . 1 6 0 . 1 7 0 . 1 7 0 . 1 6 0 . 1 2

0 . 0 3 0 . 0 4 0 . 0 4 0 . 0 5 0 . 0 3 0 . 0 2 0 . 0 2 0 . 0 3 0 . 0 5

0 . 0 7 0 . 1 0 0 . 1 3 0 . 1 7 0 . 1 9 0 . 1 9 0 . 1 6 0 . 1 1

0 . 0 2 0 . 0 4 0 . 0 4 0 . 0 3 0 . 0 0 - 0 . 0 2 0 . 0 0 0 . 0 1 0 . 0 4

0 . 0 6 0 : 0 9 0 . 1 3 0 . 1 7 0 . 2 0 0 . 1 9 0 . 1 6 0 . 1 2

0 . 0 2 0 . 0 3 0 . 0 3 0 . 0 2 0 . 0 0 - 0 . 0 2 0 . 0 0 0 . 0 1 0 . 0 3

0 . 0 5 0 . 0 9 0 . 1 2 0 . 1 6 0 . 1 7 0 . 1 8 0 . 1 7 0 . 1 2

0 . 0 1 0 . 0 2 0 . 0 2 0 . 0 0 - 0 . 0 1 - 0 . 0 2 0 . 0 0 0 . 0 2 0 . 0 4

0 . 0 6 0 . 0 8 0 . 1 1 0 . 1 3 0 . 1 5 0 . 1 6 0 . 1 4 0 . 1 0

0 . 0 0 0 . 0 1 0 . 0 0 - 0 . 0 1 - 0 . 0 3 - 0 . 0 3 - 0 . 0 1 0 . 0 1 0 . 0 3

0 . 0 5 0 . 0 7 0 . 0 9 0 . 1 1 0 . 1 3 0 . 1 3 0 . 1 2 0 . 0 9

- 0 . 0 2 - 0 . 0 1 - 0 . 0 1 - 0 . 0 3 - 0 . 0 4 - 0 . 0 4 - 0 . 0 2 0 . 0 0 0 . 0 2
0 . 0 3 0 . 0 5 0 . 0 6 0 . 0 8 0 . 0 8 0 . 0 9 0 . 0 8 0 . 0 6
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Appendix X(iii)

The FFT Residual Geoid Heights for Area C - Case H  Only

1>1 4)2 ^1 A(|) A X

1 . 2 5 0 0 0 0  1 . 8 3 3 3 3 0 1 0 3 . 2 5 0 0 0 0  1 0 4 . 2 4 3 3 3 3 0 . 0 8 3 3 3 0  0 . 0 8 3 3 3 0

0 . 0 3
- 0 . 0 3

0 . 0 2
- 0 . 0 5

0 . 0 2
- 0 . 0 5

0 . 0 1
- 0 . 0 4

0 . 0 0 - 0 . 0 1 - 0 . 0 2 - 0 . 0 2 - 0 . 0 2

0 . 0 2
- 0 . 0 7

0 . 0 2
- 0 . 0 9

0 . 0 2
- 0 . 0 8

0 . 0 1
- 0 . 0 6

0 . 0 0 - 0 . 0 2 - 0 . 0 3 - 0 . 0 5 - 0 . 0 5

0 . 0 2
- 0 . 1 3

0 . 0 1
- 0 . 1 2

- 0 . 0 1
- 0 . 1 0

- 0 . 0 2
- 0 . 0 7

- 0 . 0 3 - 0 . 0 6 - 0 . 0 8 - 0 . 1 0 - 0 . 1 2

0 . 0 1
- 0 . 1 7

- 0 . 0 1
- 0 . 1 6

- 0 . 0 3
- 0 . 1 0

— 0 . 0 6  
- 0 . 0 7

- 0 . 1 2 - 0 . 1 2 - 0 . 1 1 - 0 . 1 5 - 0 . 2 0

0 . 0 1
- 0 . 1 6

- 0 . 0 1
- 0 . 1 5

- 0 . 0 4
- 0 . 1 3

- 0 . 0 9
- 0 . 0 8

- 0 . 1 5 - 0 . 1 6 - 0 . 2 0 - 0 . 1 6 - 0 . 1 6

0 . 0 0
- 0 . 1 4

- 0 . 0 2
- 0 . 1 4

- 0 . 0 3
- 0 . 1 3

- 0 . 0 9
- 0 . 0 9

- 0 . 1 5 - 0 . 1 6 - 0 . 1 5 - 0 . 1 4 - 0 . 1 3

- 0 . 0 1
- 0 . 1 3

- 0 . 0 2
- 0 . 1 2

- 0 . 0 3
- 0 . 1 0

- 0 . 0 6
- 0 . 0 8

- 0 . 1 1 - 0 . 1 3 - 0 . 1 2 - 0 . 1 2 - 0 . 1 2

0 . 0 0
- 0 . 1 0

- 0 . 0 2
- 0 . 0 9

- 0 . 0 3
- 0 . 0 8

- 0 . 0 5
- 0 . 0 6

- 0 . 0 8 - 0 . 0 9 - 0 . 0 9 - 0  . 0 9 - 0 . 1 0
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Appendix Y

The absolute differences between Nlsc Nppj, with respect to 
Nops/iev for the Federal Territory GPS Network

GPS Code 
Station

Latitude Longitude Orthometric
Height

Cm)

^GPS/lev - ^LSC

(m)

^GPS/lev - ^FFT

(m)
GU02 3.24170 101.64860 89.71 -0.84 -0.83
GU03 3.24170 101.67640 68.89 -0.73 -0.72
GU04 3.24440 101.70560 168.48 -0.65 -0.65
GU05 3.24440 101.72780 69.89 -0.85 -0.86
GU06 3.23890 101.75280 114.78 -0.72 -0.73

GU08 3.22360 101.65560 54.48 -0.78 -0.76

GU09 3.22220 101.67780 48.36 -0.63 -0.62

GUIO 3.22220 101.69720 48.75 -0.61 -0.63
G U ll 3.22220 101.72500 59.41 -0.65 -0.67
GU12 3.22220 101.75000 58.82 -0.65 -0.64
GU13 3.19440 101.62360 81.13 -0.66 -0.68
GU14 3.19860 101.65140 45.75 -0.68 -0.70
GU16 3.19860 101.69580 40.63 -0.68 -0.66
GUI? 3.20000 101.72780 47.77 -0.65 -0.64
GU18 3.20560 101.75140 84.49 -0.65 -0.62
GU19 3.17080 101.61670 45.66 -0.75 -0.77
GU20 3.16670 101.65140 77.09 -0.77 -0.75
GU21 3.17360 101.67640 47.21 -0.70 -0.72
GU22 3.17080 101.70420 37.12 -0.72 -0.72
GU23 3.16810 101.72500 34.05 -0.68 -0.69
GU24 3.17640 10.74580 66.66 -0.70 -0.70
GU26 3.14170 101.64860 64.36 -0.73 -0.72
GU27 3.14440 101.67640 92.27 -0.62 -0.62
GU29 3.13890 101.73470 43.13 -0.67 -0.65
GU30 3.14580 101.75560 50.90 -0.68 -0.68
GU31 3.11810 101.62220 43.81 -0.76 -0.75
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GPS Code 
Station

Latitude Longitude Orthometric
Heights

(m)

^GPS/lev - ^LSC

(m)

^GPS/lev - ^FFT

(m)
GU32 3.11810 101.64440 49.30 -0.76 -0.75
GU33 3.12280 101.67360 37.01 -0.70 -0.70
GU34 3.11940 101.70970 33.39 -0.67 -0.69
GU35 3.11390 101.72780 53.03 -0.62 -0.63
GU36 3.10830 101.74860 105.20 -0.70 -0.70
GU37 3.09440 101.62360 40.04 -0.61 -0.62

GU38 3.09440 101.64860 20.87 -0.69 -0.69

GU39 3.09030 101.68330 48.16 -0.69 -0.68

GU40 3.10560 101.70690 35.34 -0.66 -0.65
GU41 3.09720 101.72780 77.93 -0.61 -0.61
GU42 3.08330 101.75140 70.62 -0.62 -0.60

GU43 3.05140 101.62220 31.03 -0.61 -0.60
GU44 3.06110 101.64860 18.54 -0.74 -0.74
GU45 3.06810 101.67920 43.12 -0.67 -0.69
GU46 3.06940 101.69860 62.79 -0.74 -0.72
GU47 3.06530 101.71390 62.52 -0.66 -0.67
GU48 3.06110 101.74720 69.78 -0.65 -0.64
GU49 3 .02220 101.61110 11.96 -0.71 -0.72
GU52 3.03330 101.70690 45.61 -0.72 -0.71
GU53 3.03330 101.72780 41.37 -0.73 -0.73
GU54 3.03750 101.74860 60.41 -0.73 -0.72
GK02 3.09580 101.63890 22.05 -0.69 -0.70
GK03 3.13060 101.70690 55.41 -0.71 -0.69
GK04 3.17360 101.69310 66.88 -0.79 -0.78
GK05 3.14030 101.62220 42.88 -0.68 -0.69
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Appendix Z

The absolute differences between Nlsc N p ^  with respect to 
Ncps/iev ^nd NppT at 5 GPS Control Points

GPS Code 
Station

Latitude Longitude Qrthometric
Height

(m)

^GPS/lev - ^LSC

(m)

^GPS/lev - ^FFT

(m)

GP49 1.36980 104.26740 58.72 -1.54 -1.50

GP50 1.54750 103.39540 3.97 -1.37 -1.36

GP51 1.62610 103.19990 58.72 -1.87 -1.89

GP53 1.63400 103.66680 35.53 , -1,92 -1.89

GP61 1.80430 103.89720 24.00 -1.85 -1.85
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Appendix AA

A Summary of relative differences between and

NGPSAev for the Federal Territory GPS Network

Mean Distance 
(Km)

No. of Baselines AN
Mean (in ppm)

1.8 38 21.3

2.4 142 15.5

6.6 201 8.5

8.5 214 6.7

11.6 204 5.3

13.7 185 4.6

16.8 144 4.4

18.7 80 3.9

21.1 49 3.9

23.6 24 3.2

26.9 7 3.0

28.4 2 2.8
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Appendix AB

A Summary of the Relative Differences Between Nlsc» N f f t  
W ith Respect to N ops/ieveiiing for 5 GPS Control Points

From To Distance
(km)

ANlsc

(ppm)
ANpFT

(ppm)
A N o s U89B-MM

(ppm)

1 2 98.9 1.72 1.42 3.13
1 3 122.0 2.70 3.20 4.02
1 4 72.9 5.21 5.35 4.25
1 5 63.5 4.89 5.52 2.52
2 3 23.4 21.25 22.63 34.16
2 4 30.7 17.37 16.74 2.33
2 5 62.7 7.66 7.82 2.39
3 4 51.9 0.96 0.96 15.41
3 5 80.0 0.25 0.50 8.13
4 5 30.5 2.20 1.26 4.71
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