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The phenomenally high electron mobility that can be achieved in GaAs-based heterostructures has 

led to the development of Ai-type Heterostructure Field Effect Transistors (HFETs) with enhanced 

power handling capabilities and high-frequency perfomiance. Performance of p-channel HFETs is 

substantially lower, essentially because of the lower hole mobility as compared to that of electrons. 

The latter has almost completely prevented their use, despite the intrinsic advantages of 

complementary circuits.

An investigation to enhance the perfomiance of p-type FETs for power applications by means of 

selective doping and wavefunction engineering was pertbmied, both theoretically as well as 

experimentally. A self-consistent multiband ‘k-dot-p’ effective mass model was set up to provide 

detailed bandstructure information, this model was then used in conjunction with an RPA 

scattering model to provide estimates for the hole mobility. The experimental mobilities obtained 

for a set of 60Â channel-delta-doped InGaAs-AlGaAs QWs show an improvement in the mobility 

by a factor 2.5 when moving the impurity plane from the centre of the QW toward its interface, in 

qualitative agreement with the theoretical predictions. This verifies the capabilities of such a model 

to optimise p-type performance, as well as illustrates the possible gain in device performance by 

careful design of the structure.

A related investigation in this thesis concerns the elementary question o f how to connect a 

wavefunction across an interface between two different materials, which has long been a major 

cause of controversy in effective mass theory. Insight in this problem was not provided until the 

derivation of an ‘exact’ envelope function theory, and it was shown that the resulting boundary 

conditions for [001] growth differ considerably from the conventional ones. In this thesis, the 

extension to arbitrary growth directions is provided in the form of a set of boundary condition 

rules that is to replace the traditional symmetrisation procedure.
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The motives and incentives behind the work performed during this Ph.D. are outlined in this 

chapter. As the title suggests, the ultimate goal was to investigate the possibilities to enhance the 

performance of p-type Field Effect Transistors (FETs), as «-channel FETs currently outperform 

their p-channel counterparts by a significant margin. A considerable amount of woric was 

performed in setting up a theoretical model to analyse heterostructure designs for their suitability 

in FET devices.

This chapter starts with the bandstructure concept in bulk and compositionally varying 

semiconductors. It shown that the quantum confinement associated with a heterostructure causes 

the momentum along the growth direction to take discrete values, resulting in the formation of 

multiple bands. For the electron case, these bands exhibit a parabolic dependence on the in-plane 

momentum, whereas it is shown that the valence bands exhibit a strong non-parabolic and 

anisotropic behaviour because of the interaction between the heavy and light hole bands. The latter 

means that the valence bands are susceptible to tailoring, for example by choosing a particular 

growth direction or the application of strain.

Next, the relevance of bandstructure infomiation for device optimisation is highlighted. A short 

introduction to the link between an experimentally verifiable quantity such as the carrier mobility 

and the bandstructure is presented. Here, an effective mass is introduced which is directly related 

to the curvature of the energy bands, and it is shown that a high curvature (or low mass) enhances 

the perfomiance of electro- and electro-optical devices such as field-effect transistors or lasers.

Section 1.2 contains a brief introduction to the chosen bandstructure model, along with a short 

discussion on the boundary condition problem intrinsic to this particular model. As the subject of 

research concerns the optimisation of device layers which contain carriers as well as doping, the 

embedding of this bandstructure model in a Poisson solver is discussed. Such a combination, often 

referred to as a self-consistent Poisson-Schrodinger solver, can provide information about subband 

populations, wavefunctions and corresponding bandstructure. Using a fixed library of material 

parameters such as effective masses and dielectric constants, these calculations only require user 

information about the composition of the various layers to perform a simulation, without the need 

of additional fitting parameters.



The bandstructure concept in semiconductors and its relevance for devices

The bottleneck for p-type FET operation is discussed and is shown to be the low hole mobility in 

GaAs. The need for improvements of p-channel FETs is highlighted by discussing relevant 

applications which specifically require the presence of p-channel FETs. The latter is substantiated 

by showing a relevant implementation in the form of a (simplified) circuit diagram. Current state- 

of-the-art hole mobilities in GaAs-based heterostructures are presented which were obtained via a 

literature survey. This chapter then ends with a breakdown of the topics that are dealt with in the 

subsequent in-depth chapters.

1.1 * Tlie bandstrnclore concept in sem koiidoctors and its  

relevance for devices

Electrons (and holes) in a crystal lattice exhibit a discrete energy spectrum. This is a direct result 

of the symmetry of the electron’s surrounding charge distribution. As the electron and hole 

energies depend on the velocity of the particle, or to be more exact the momentum /dc, the energy at 

which an electron can exist takes the form of a set of energy bands E(k). Knowledge of these 

bands, or the bandstructure, is of key importance when it comes to explaining electrical and optical 

properties of solids. An important bandstructure feature is the occurrence of energy gaps, which 

are energy zones without any allowed states. The origin of these energy gaps can easily be 

understood by looking at a one-dimensional Kronig-Penney model [Kit8 6 ]. Such a model shows 

that the two-standing wave solutions around a gap pile up the electrons at different regions, which 

explains their difference in energy.

The presence of an energy gap is characteristic of any semiconductor material and plays an 

important part in explaining the fundamental differences in electrical properties between 

conductors, semiconductors and metals. Similarly, the poor optical performance of a material like 

silicon is directly related to the fact that it has an indirect band gap, i.e. the energy extrema in the 

energy gap are not at the same /:-point. This is in contrast to a material as for example GaAs 

which has a direct gap, and is routinely used for optical devices. On a more quantitative level one 

finds that various semiconductor material or device properties (for example transport mobility, 

cyclotron resonance or laser gain) are intimately related to the curvature of the bands around the 

band gap.

In the next paragraphs the general form of the band structure in bulk and compositionally varying 

structures is discussed. Furthermore, the need for bandstructure information to perform theoretical 

device calculations, either to make predictions about their electrical or optical properties, is

10



The bandstructure concept in semiconductors and its relevance for devices

outlined As an illustration, some qualitative relations are given between bandstructure features 

and particular electrical or optical properties that are desirable from a device point o f view.

1.1.1 - The bandstructure concept, application to bulk crystals

Although the majority of this thesis is concerned with compositionally varying structures, it is 

instructive to gain some insight in the bandstructure of bulk semiconductors first. An important 

feature in such a periodic array of atoms, or lattice, is the existence of a certain number of 

symmetry operations. Such a lattice can be uniquely described by defining a basis (a primitive 

cell) along with a set of lattice translation vectors that transform the lattice into itself. Fig. 1.1 

shows a Zinc-Blende lattice with its primitive (Wigner-Seitz) cell. Unlike simple cubic structures, 

the primitive cell in a zinc-blende lattice contains two atoms, one of each species. When viewing 

fig. 1 .1  one has to remember that the atoms that are lying on the circumference of the primitive cell 

have to be ‘shared’ with adjacent cells. Alternatively, the primitive cell can be displaced from the 

chosen point of origin and this confirms that its volume contains two atoms.

a

F i g . l . l  : A Z in c-B len de  la ttic e  w ith  its  p r im itiv e  cell. The la ttice  
can be seen  a s  a  d o u b le  f c c - la tt ic e  w h ere , in the ca se  o f  G aA s, 
bo th  G a  an d  A s s it on th e ir  ow n  se p a ra te  fc c - la tt ic e .  
M o n o a to m ic  S i has the sam e c ry s ta l s tru c tu re  bu t th is is  u sually  
re ferre d  to  a s  the d ia m o n d  s tru c tu re  b e ca u se  o f  the a d d itio n a l  
(in versio n ) sym m etry .

A so-called reciprocal lattice is introduced which is the set of all the vectors K  for which a plane 

wave has the same periodicity as the primitive cell. Bloch’s theorem states that one only needs 

to solve the wavefunction within a primitive cell and that the area in A-space that needs to be 

evaluated can be restricted to the so-called (first) Brillouin zone. This can easily be understood by 

realising that moving from A: to a position out of the Brillouin zone by adding a reciprocal lattice 

vector K  is equivalent to imposing a modulation with the same periodicity as the Wigner-Seitz cell 

on the primitive cell solution. Such a modulation is obviously equivalent to moving to a new 

solution at the original value of the momentum. At this point, it is worthwhile to point out that the 

Bloch theorem is a direct result of the presence of translational symmetry in a periodic structure 

only. Translation symmetry is however not the only symmetry present. A more detailed discussion 

on symmetry, especially on the use of the additional symmetries to further simplify the 

bandstructure problem, follows in chapter 2 .

11



The bandstructure concept in semiconductors and its relevance for devices

Fig. 1.2 shows the calculated bandstructure of GaAs. The various labels correspond to

certain translational symmetry points in the Brillouin zone. The indices denote the rotational 

symmetries for the particular band at that point in /:-space. The number of outer shell electrons in 

GaAs is exactly that required to fill all bands up to the lowest bands labelled F 7 5 . The latter triple 

degenerate combination of bands will be designated as the valence band. Also shown in fig. 1.2 is 

that the next band (F 7), the conduction band, is separated from the valence band by an energy gap. 

The latter is characteristic of any semiconductor.

Î
I
è )

0

8  ^  
LU - 6

- 1 2

r ,

-

X UK

F ig .1.2 : C a lcu la te d  b a n d s tru c tu re  o f  hulk 
G aA s (C h e7 6 J . The p o in ts  F,LA e tc . 
c o rre sp o n d  to  cer ta in  sym m etry  p o in ts  in 
the B rillo u in  zo n e  a s  sh ow n  in the righ t  
d ia g ra m  [C o r 6 9 ] .  The la b e llin g  o f  the  
ba n d s a t the F -p o in t w a s c h a n g ed  to  a g ree  
w ith  the la b e llin g  a s  u sed  th rou gh ou t this 
report.

To see why a full knowledge of the bandstructure is generally not required, one has to realise that 

all electrical and optical activity is ultimately driven by the presence of electrons and holes. At 

finite temperatures and subject to any impurities present, a certain number of electrons (holes) are 

able to occupy the conduction (valence) band, given by Femii-Dirac statistics. From a device point 

of view, the electron and hole population can be controlled by intentionally doping the 

semiconductor with donors or acceptors and produce devices like diodes, transistors (BJTs), field 

effect transistors (FETs) or semiconductor lasers. Two observations can now be made:

• The zone edge momentum vector corresponding to the %-point (fig. 1.2) corresponds to k=2n/a 

[SzeSl] where a is the lattice constant of the specific material. For typical III-V materials one 

thus obtains that the zone edge momentum is of the magnitude of l . M I n  contrast, even a 

very high carrier density of 4-10'^ cm'^ in bulk (well beyond the onset of tunnelling in abrupt 

p-n diodes [Sze6 6 ]) corresponds to a Femii-vector of only 0.05A^ (a similar argument applies 

for two-dimensional structures).

12



The bandstructure concept in semiconductors and its relevance for devices

•  The spread in energy due to thermal activation, i.e. the transition region which separates the 

occupied and empty states, is of the order khT. The latter is only 26 meV at room temperature.

As a result, the only states expected to be occupied are those near the band gap (i.e. the T-point for 

GaAs). The conduction and valence bands in bulk can as a first approximation be described by 

parabolas near the band edge, in which the curvature is determined by a material constant m*. This 

so-called effective mass will prove to be an essential factor in explaining the electrical properties, 

the lower electron mass of GaAs as compared to Si being the reason for the superior electrical 

properties of the former material. This subject will be treated in more detail in the next section and 

chapter 4.

1.1.2 - Application to heterostructures

Nowadays MBE and related technologies allow the growth of compositionally varying structures 

with monolayer accuracy. Relevant material systems include the binary Sii^Ge*, and the 

quaternaries (Al,In)^Gai-xAs, Inx(Ga,Al)i.xAs or AllnAsP. This report is mainly limited to the 

quaternary (Al.Inj^Gai.^As and, to a lesser extend, In^^Gai-xAs on InP. The model that is going to 

be introduced in subsequent chapters can however equally well be applied to other material 

systems.

(a) (b)
AIGoAs

■g

AIGoAs

GoAs

GoAsAIGoAs

F ig .1.3 : B a n d  d ia g ra m s o f  (a ) a  quan tum  w ell, (h) a  h e tero ju n ction .

The fact that the energy gap is a material dependent quantity enables the fabrication of quantum 

wells or heterojunctions in which the electrons (holes) experience a confining potential (fig. 1.3) 

(see for example [Din74,Bas88,Wei91,Sin93]). This confinement forces the momentum in the 

growth direction to take discrete values causing the formation of multiple confined states. One way 

of looking at this is by imagining these multiple bands to be cross-sections of the original bulk 

band at the various quantised momenta (fig. 1.4).

13



The bandstructure concept in semiconductors and its relevance for devices

This simplified picture of the origin and the form of these multiple bands in a heterostructure 

works really well for the conduction band. As mentioned in the previous section, the shape of the 

energy bands in bulk can be approximated by a parabola. From this it follows that the cross 

sections, corresponding to the multiple subbands in a heterostructure, essentially have the same 

parabolic dependence. For the valence band the situation is a bit more complicated due to the fact 

that this band consists of three separate bands, giving rise to quantised states associated with the 

heavy, light and split-off hole band. The interaction between these states causes these bands to be 

highly non-parabolic and often anisotropic (fig. 1.5).

F i g . l .4 : C onfin em en t ca u ses the m om entum  in the g ro w th  d ire c tio n  to  take  
d isc re te  v a lu es  (k^i, kj2,---) w hich  resu lts  in the fo rm a tio n  o f  m u ltip le  bands.

-20

in
-60

-0.030 -0.015 0.000 0.015 0.030

F ig .l .5  .B a n d stru ctu re  d ia g ra m  f o r  
the f i r s t  th ree  co n fin ed  s ta te s  in a  
80A  A lo jsG a o  tvA s-G o A s Q W  grow n  
alo n g  [0 0 1 ] .  F u ll lin e: inclu d in g  
h e a v y llig h t h o le  in tera c tio n ; d o tte d :  
d ia g o n a l a p p ro x im a tio n  (no  
in tera c tio n ). The in tera c tio n  
b e tw e en  the h ea vy  a n d  ligh t hole  
b a n d s ca u se  the b a n d s  to  b e  h igh ly  
n o n -iso tro p ic  a s  w e ll a s  non- 
p a ra b o iic .

[10]

Although these interactions generally have a negative effect on device performance as they tend to 

enhance the in-plane effective mass (see next section), it also means that the valence bands are 

much more susceptible to tailoring. In //-type structures the effective mass is essentially set by the 

particular choice of material whereas in p-type the effective mass can be influenced considerably 

by hcterostructure design, choice of growth direction or the introduction of strain.

14



The bandstructure concept in semiconductors and its relevance for devices

1.1.3 - The relation between electrical/optical properties and the

bandstructure

In the previous section, it was illustrated that the energy versus momentum relation for holes is 

susceptible to tailoring. At this point it is worthwhile to point out which particular bandstructure 

and wavefunction characteristics affect the electrical or optical properties of semiconductor 

heterostructures. As this woric is mainly concerned with electrical properties, specific attention is 

paid to scattering. Here, a qualitative picture of the relation between the above mentioned 

bandstructural features and ionised impurity scattering is given. The assessment of the importance 

of scattering for p-type field-effect-transistor operation is contained in section 1.3.

Fig. 1.6 shows the classical and quasi-classical picture of an electron being scattered from a 

charged impurity. Obviously, the magnitude of the deflection depends on the distance (or better: 

the impact parameter b )  at which the electron passes the impurity. So, knowledge of the form and 

position of the wavefunction with respect to the position of the impurities can directly provide 

qualitative information about the scattering rate and the average drift velocity of the carriers under 

the influence of an electric field. It explains the high performance of Field Effect Transistors 

utilising modulation-doping to separate the carriers from the impurities [Dae91]

F ig .1 .6  : C la ss ic a l p ic tu re  o f  (R u th erford ) 
sca tte r in g  o f  an e lec tro n  o f  a  p o s i t iv e ly  c h a rg e d  
im pu rity . The sc a tte r in g  a n g le  is  d e te rm in e d  b y  
the sq u a re  o f  the e le c tro n  s  m om entum  a n d  the  
im p a c t p a ra m e te r  b . The la tte r  is  the c lo se s t  
d ista n ce  a t w hich the e lec tro n  w o u ld  p a s s  i f  th ere  
w a s no e le c tro s ta tic  in tera c tio n  fR id93J . In se t : 
ex tension  to the q u a n tu m -m ech a n ica l case . 
O b v io u sly , the sc a tte r in g  tim e in c re a se s  w hen  
m ovin g  im p u ritie s  f r o m  a  p o s it io n  w ith  m axim um  
o v er la p  (a) to a  p o s itio n  (b ) w ith  less o v er la p . A 
fu r th e r  im p ro vem en t in m o b ili ty  is  e x p ec te d  in a  
m o d u la tion  d o p e d  s tru c tu re  ( c).

When evaluating scattering rates, an important quantity is the number of available states that can 

take part in the scattering process. The more available states, the higher the scattering rate. 

Scattering in a degenerate system at low temperatures can only take place at the Fermi energy, and 

the number of states that can participate is essentially governed by the curvature of the particular
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band(s) at that (Fermi) energy. This connection between curvature and the number of states that 

can participate in the scattering process is graphically illustrated in fig. 1.7.

The most common parameter to quantify this curvature is through the effective mass m*. The 

energy dispersion of the conduction and bulk valence bands is in good approximation given by 

E (k) =  /  2 m *, where the effective mass m* depends on the material system as well as the

band under consideration. In this case, the number of states that can participate is independent of 

energy. The above parabolic approximation breaks down in the case of strong band mixing such as 

present in the valence bands in heterostructures. Here the effective mass is a function of eneigy 

and has to be numerically evaluated at the Fermi energy by using the definition [Zaw82]

1 1 dE

E,m *{E) r k  dk

Obviously, (1.1) reduces to m*(E)-m* for parabolic bands.

( 1. 1)

F ig. 1 .7  : S ca tte r in g  p ro c e s se s  in a 
d e g en era te  sy s te m  a t low  tem p era tu re  o n ly  
take p la c e  a ro u n d  the F erm i leve l. A llo w in g  
a  certa in  th erm a l b ro a d en in g  (A E ) aro u n d  
Ef, one o b ta in s  th a t the n u m b er o f  a v a ila b le  
s ta te s  (p ro p o r tio n a l to  the sh a d ed  p ro je c tio n  
in k -sp a ce  on the x /y -p la n e ) th a t can take  
p a r t  in a tra n s itio n  is g iven  b y  the s lo p e  
(m ass) o f  the e n e rg y  b a n d  a ro u n d  Ef.

From fig. 1.7 it follows that a higher curvature, or lower mass, leads to a smaller number of states 

that can participate in a scattering event. A low mass is therefore desirable for effective charge 

transport. However, the effective mass does not just affect the speed of the carriers via the 

scattering rate. Fig. 1.8 shows a schematic of the distribution of carriers in A:-space under the 

influence of an external electric field. Such a displacement of the Fermi-circle with respect to the 

F-point yields a net momentum and net current. The displaced Fermi-contour may be maintained 

in a steady state, such that the acceleration of the carriers in the presence of an electric field is 

compensated for by scattering losses. As the mean increment in velocity in an electric field 

between two scattering events is given by qExIni, one finds that the velocity of the carriers has an 

additional factor which originates from the fact that a light particle accelerates faster than a 

heavy particle under the application of an identical force.
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=ermi

F=qE

F ig .1 .8  : C o lle c tiv e  m o tio n  o f  c a rr ie r s  in an e le c tr ic  f ie ld .  A t ze ro  
f ie ld  the F erm i le v e l has its  cen tre  a t  the  F -po in t (k = 0 ). In th is  
ca se , th ere  a re  a s  m any c a rr ie rs  tra v e llin g  in the + x  d ire c tio n  a s  in 
the o p p o s ite  -x d irec tio n  so  tha t th ere  is  no net cu rren t. U n d er  the  
in fluence o f  an ex tern a l fo r c e  the co n to u r is  d isp la c e d  in a  s te a d y  
s ta te  w h ere  the m a g n itu d e  o f  the d isp la ce m en t is  g o v e rn e d  b y  the  
sc a tte r in g  tim e i  [K itS ô J .

Summarising, the transport velocity of carriers in an elèctric field is expected to be proportional to 

(m*y^. In reality the effects of screening have to be included in the evaluation. As screening 

reduces the scattering and becomes more effective at higher mass, one finds a dependency of (m* 

with y= 1 . , 2  for the steady state carrier velocity.
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1' !
e ,

Ih ,
hh,

hh,

Conduction
bond

▼ Valence

F ig .1 .9  :{a) A llo w e d  o p tic a l tra n s itio n s  in a f ic t i tio u s  d ire c t han d g a p  se m ic o n d u c to r  Q W . The 
C j-^hh2, e z ^ h h ,  an d  ez-^ lh j tra n s itio n s  a re  p ro h ib ite d  due to p a r i ty  c o n s id e ra tio n s  [W ei911  
(b ) I llu s tra tio n  o f  'v e r tic a l’ tra n s itio n s in k -sp a ce  fro m  a  sin g le  co n d u c tio n  to  a  s in g le  va len ce  
band. O ne has sum  o v e r  a ll v e r tic a l k -tra n sitio n s to  o b ta in  the em ission  [Z o r9 3 ] .

The influence of the bandstructure and wavefunctions on the optical properties of a semiconductor 

heterostructure will now briefly be discussed. Emission (or absorption) of a photon occurs when 

an electron makes a transition from a certain band to a lower (higher) lying band. The bands 

considered are generally the conduction and highest heavy hole band. Fig. 1.9a shows the allowed 

optical transitions in a flat band QW structure, which highlights the fact that these transitions are 

only allowed between states with the same parity. Such an optical transition in a semiconductor is 

vertical, i.e. occurs between states with the same k  vector (fig. 1.9b). The intensity of emission at a 

certain wavelength is then given by the combination of the number of states that can participate in 

a transition at that wavelength and their population. Obviously, if there are no electrons present in 

the conduction band then there will be no emission possible. This population is determined by the 

position of the (quasi-)Fermi level(s) which is a function of the current-injection.
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Laser emission principally occurs across the F-point Any emission at a higher energy can 

therefore essentially be considered as the loss of an electron which now will not contribute to the 

emission process at the wavelength of interest. One would therefore like to minimise the number of 

states at energies that do not participate in the emission at the particular wavelength. This again 

involves tailoring the density of states and effective mass. Bandstructure engineering can therefore 

offer a reduction in threshold current. A lower density of states can be achieved by using for 

example strained structures [Sin93] or choosing non-conventional growth directions 

[Bat89,Men92]. The quest for a density of states in which losses via emission at non-relevant 

wavelengths are minimised also explains the move from 3D laser structures towards 2D, with a 

push to go to ever lower dimensions [Wei91,Zor93]. At this point, the connection between 

wavelength, threshold-current and bandstructure has been established. Furthermore, it was shown 

that the parity of the wavefunctions detemiines whether an optical transition is allowed or 

forbidden. However, the wavefunctions influence optical transitions in more ways than just 

through parity. Symmetry on atomic scale of the wavefunctions involved in a transition governs 

the polarisation of the emitted photons. Wavefunction engineering can be used here to tailor the 

polarisation to the specific needs. One example is the use of [31 l]-substrates to produce Vertical 

Cavity SEmiconductor Lasers (VCSELs) that exhibit a clamped polarisation direction [Tat97], in 

contrast to [ 0 0 1  )-grown equivalents which exhibit random and even bi-stable polarisation 

properties.

1.2 - ModeUiag semiconductor iieterostructores

The use of bandstructure calculations to optimise or analyse semiconductor heterostructures has 

been pointed out. The theoretical model chosen in this work to perform these bandstructure 

calculations is described in this section, along with a summary of some alternative approaches and 

a discussion on why this particular model was favoured. Further, a brief introduction to the 

boundary condition problem intrinsic to this type of bandstructure model is given.

The previous paragraph already qualitatively described the relation between the bandstructure and 

electrical as well as optical properties. Some of the techniques that can be used to quantitatively 

test bandstructure calculations are presented in this section and examples from the literature are 

given. This section ends with an outline of how bandstructural data can be used to obtain 

quantitative results for carrier densities and mobilities by combining a bandstructure model with a 

scattering model. These experimentally verifiable quantities are of high importance when designing 

transport devices, and are the subject of experimental study in this work.
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1.2.1 - The effective mass model

There are various models to calculate wavefunctions and eigenvalues in semiconductor structures. 

Obviously, any model is intimately related to the Schrodinger equation, which in its original many

body form is too complicated to solve. Rewriting the original Schrôdinger equation as a one- 

electron problem by making several approximations, one finds that the various bulk crystal models 

vary essentially only in the choice of trial functions. Examples of trial functions [Ash76] are 

expansions in plane waves (PW), orthogonalised plane waves (OPW) or linear combinations of 

atomic orbitals (Tight binding or LCAO). Such models are however computationally demanding 

and introducing compositionally varying structures is only thought to make the calculations more 

complex. One is therefore inclined to abandon the ‘ab initio’ route and choose a method that relies 

on a certain number of parameters which can be obtained by experiments. At this point it is 

worthwhile to re-iterate that one is essentially only interested in a small region in /:-space as 

generally only a fraction of the Brillouin zone is filled with electrons or holes, and this allows an 

efficient parametrisation.

Effective mass theory has proved to be a very convenient and successful method to explain the 

electrical and optical properties of heterostructures. Conduction band eigenvalues and 

wavefunctions are simply obtained by solving a single differential equation. The situation for the 

valence band is slightly more complicated due to the fact that this band consists of three separate 

bands, being the heavy, light and split-off bands. As a result, one finds that valence bands 

modelling in the effective mass approximation consists of solving a system of coupled differential 

equations of order four or higher. It proves that this still provides an enormous simplification over 

exact models, yet giving results that are in good agreement with more elaborate approaches 

[Sch85a,Sch85b]. Furthermore, the method relies on just a limited number of parameters which 

are reasonably well known, its results are easy to interpret, it allows for a straightforward 

extension to strained layer structures and can, using a straightforward algebraic transformation, be 

applied to different growth directions.

1.2.2 - The boundary condition problem

Effective mass theory, although proven to work extremely well, has long been the subject of debate 

concerning its application to compositionally varying structures (a review on this topic is 

contained in [Bur92]). The question of how to connect a wavefunction across an interface between 

two different materials has always been a major cause of controversy as the original derivation
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[Lut55] is strictly not valid near an interface. As a result, this derivation can not supply the 

applicable ‘boundary condition’ which therefore has to be obtained using quantum mechanical or 

other heuristic arguments.

As discussed in the previous section, the conduction band effective mass equation is a single 

differential equation. The boundary condition problem manifests itself in the kinetic energy 

contribution to the effective mass equation, containing a combination of a double differential 

operator and a (position dependent) effective mass. The question is which ‘operator ordering’ to 

use, or rather where to put the operators with respect to this mass. Several choices can be excluded 

by basic quantum mechanical arguments but a unique solution can not be obtained just using 

simple reasoning. Yet, a sort of general consensus was reached for the conduction band model 

involving symmetrising that particular Hamiltonian element [Mor84].

The valence band boundary condition problem is however much more complicated, one now has to 

solve a set of coupled differential equations with multiple occurrences of combinations of 

operators (single or double differential) and effective mass parameters. Despite the controversy 

over the ‘ad hoc’ solution to the conduction band case, the same symmetrisation procedure was 

commonly used for the valence band Hamiltonian [Men92].

Insight in the boundary condition problem was not rigorously provided until the development of an 

‘exact’ envelope function theory [Bur87,Bur92]. Applied to the valence band case, the boundary 

conditions obtained for [0 0 1 ]-growth using this model showed considerable differences to those 

obtained using the symmetrisation procedure [For93].

The investigation in the boundary condition as contained in this woric was driven by interest in 

using non-[0 0 1 ] growth direction for both electrical as well as optical devices (see chapter 6  as 

well as the conclusions and recommendations). A substantial part of this thesis concerns the 

derivation of the ‘new’ boundary conditions for non- [ 0 0 1  ] growth directions and this is one of the 

major achievements contained in this work. It resulted in the publication of two theoretical papers, 

the first outlining a general approach to deriving such boundary conditions for any growth 

direction [Sta97] and the second providing a set of analytic rules, again applicable to any growth 

direction, that replace the conventional symmetrisation rule [Dal98]. It was shown that the use of 

these new boundary conditions has a substantial effect on the calculated bandstructure.
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1.2.3 - Self-consistent calculations

In the literature, the majority of valence band calculations concern calculations on flat band 

quantum wells without charge, i.e. without ionised acceptors/donors or occupied states in the 

2DHG. The underlying reason is that inclusion of charge complicates matters considerably in that 

one now has to simultaneously satisfy the Hamiltonian and Poisson’s equation [Ste84,Har89]. 

This is straightforward to see as the Hamiltonian’s eigenstates are determined by the confining 

potential which in turn is affected by the eigenvalues (or rather, their position with respect to the 

Fermi energy) through Poisson’s equation. The solution to the problem is to use a so-called self- 

consistent procedure in which an iterative approach is used to obtain such a simultaneous solution 

o f both equations. Starting with a trial confining potential function, one makes subsequent changes 

and improvements in the potential (typically requiring 50 iterations or more) such that the charge 

distribution as given by Poisson’s equation matches that as given by the Hamiltonian. The exact 

implementation will be discussed in chapter 5.

1.2.4 - Testing the bandstructure model and employing it to improve

semiconductor devices

Using the above theoretical model, one can obtain infomiation about the subband populations, the 

wavefunctions and corresponding bandstructure for a given heterostructure. The next step is to test 

its predictions and to use the model to improve electro- or electro-optical devices. Some of the 

techniques that can be used to put bandstructure theory to the test will now be discussed. In 

addition, some devices of which the development and operation rely on bandstructure and 

wavefunction engineering will be highlighted.

Optical techniques provide a powerful means to test bandstructure calculations. Standard Photo- 

Luminescence (PL), or its more sensitive variant PL-E, can give information about the 

quantisation energies of the various confined states. Here, electron to heavy hole transitions can be 

distinguished from electron to light hole transitions via a polarisation experiment [Rei90]. Such 

experiments also show that QW-structures grown on [110] directions exhibit anisotropic optical 

properties [Ger91j. The latter is caused by heavy, light and split-off hole mixing at the T-point 

and well understood theoretically [NoJ92,NoJ93,KaJ95]. This effect is present in all but the high- 

symmetry directions [(X)l] and [111] and provides a means to test theoretical calculations of the 

symmetry features of the hole eigenstates for various growth directions [Hen95,Tsi95,Win96].
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Information about the density of states of the various bands, including occurrences of van Hove 

singularities [Kem96], can be obtained from the intensity of the peaks in the luminescence data 

[She95a]. The ultimate optical experiment to test bandstructure calculations was performed by 

Kash et al. [Kas94]. It was shown that the valence band dispersion of GaAs-AlGaAs QWs, 

including warping, can be measured with milli-electronvolt accuracy by using a rather complex 

Photo-Luminescence experiment and analysis technique. Its results were shown to be in excellent 

agreement with effective mass theory. The application of bandstructure calculations to enhance 

optical devices has to date led to a push to investigate non-conventional growth directions. For 

example, theoretical predictions show that lower-threshold currents can be achieved in [1 1 1 ]- 

structures as compared to conventional [001]-grown lasers [Bat89,Men92]. Vertical cavity 

semiconductor laser structures (VCSELs) grown on [311] utilise optical anisotropy to control and 

stabilise the polarisation of the laser beam [Tat97]. Finally, the quantum cascade laser as 

developed by AT&T-Bell is probably the best illustration of the use of wavefunction engineering 

in an optical device [Fai94].

Magneto-electric measurements can also give infomiation about the bandstructure. Cyclotron 

resonance can be used to measure m* at the Femii energy so that, by measuring at various carrier 

densities, one can obtain data about the band cun/ature at different energies [Liu8 8 ]. 

Measurements on p-type stmctures have qualitatively confirmed the theoretical predictions of the 

variation of the effective mass as a function of growth direction [Col95,Col96]. Magneto- 

tunnelling experiments on double barrier structures can be used to map out the bandstructure 

[Hay94].

Standard magneto-transport measurement techniques such as Hall, van der Pauw or Shubnikov-de 

Haas measurements do not measure variables that can directly be related to the bandstructure. The 

outcome of such experiments are quantities like carrier density and quantum- or transport- 

mobility that can only be obtained by combining the bandstructure model with a scattering model. 

Work on Aî-type heterostructures has revealed that theoretical quantum mobilities (as measured in 

a Shubnikov-de Haas experiment) are in good quantitative agreement with experimental results 

[Hai96] whereas theoretical transport mobilities (Hall, van der Pauw) of the lowest subband 

generally differ from experimental results by a factor two [Mas91,Gon94,Hai97].

This work will mainly be restricted to the measurement, analysis and simulation of van der Pauw 

experiments. The main reasons for this is that the mobility in the p-type structures of interest is 

generally too low to give Shubnikov-de Haas oscillations at reasonable magnetic fields.
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Furthermore, it is shown in the next section that the relatively poor performance of p-type FETs is 

strongly linked to the low hole mobility in G a As-related compounds. As this thesis is mainly 

concerned with the optimisation of high density FETs, it follows that an investigation into methods 

to enhance the transport mobility at room temperature is required. Despite the expected 

discrepancy in absolute values between the theoretical and experimental values for the transport 

mobility, such a combination of a bandstructure and scattering model can provide relatively 

accurate predictions of the transport mobility when comparing between structures. It can therefore 

give predictions of the distance between carriers and impurities and so provide a qualitative view 

of the shape of the wavefunction. Furthemiore, it can give vital insight in the scattering processes 

present (intra- or interband) and, by virtue of the latter, hint at multiple subband population.

The model adopted in this work is a fully self-consistent effective mass model which implicitly 

includes the interactions between the heavy, light and split-off hole bands when modelling [0 0 1 ] 

structures. Other growth directions such as [110] and [111] are dealt with using a four band 

model. Its results have proved to agree with literature results, both for dispersion relations 

[And85,Iko92,Men92] as well as for wavefunction composition [And87] and corresponding 

optical properties [Noj93]. The combination of such an effective mass model in conjunction with 

an RPA scattering model (sec chapter 4) has so far, to the author’s knowledge, only been applied 

to the electron case in two-dimensional structures. The results obtained here are also in good 

agreement with results published in the literature [Hai95,Hai96,Hai97].

i.3   ̂Field effect transistors '

To be able to evaluate the use of the previously described theoretical model to optimise FET- 

pert'ormance, and p-type FETs in particular, one has to establish what mechanism limits FET- 

operation. In this section, basic FET operation is described and some of the parameters that are 

used in the literature to depict the effectiveness of a FET are presented. Via a simple FET-model 

and a literature survey, the bottle-neck in p-channel FETs is evaluated and the current state-of-the- 

art in high frequency operation is presented. This section concludes with an explanation of why 

there is a need for the intrinsically slower (as compared to /z-type) p-type FETs.
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1.3.1 - Introduction

Field effect transistors (FETs) come in a variety of types and have a possibly even larger set of 

acronyms to classify them. All FETs are essentially similar in their operation that a (large) current 

running across two terminals (so-called source and drain terminals) can be controlled by applying 

a voltage to a third terminal (the gate) which is electronically insulated from the conducting 

channel. As a result, they are characterised by a high input impedance as compared to bipolar 

transistors which are controlled by a gate current rather than a gate voltage.

The difference between the various FET structures is essentially the way the gate is isolated from 

the current-carrying channel. To name a few [Str90],

•  JFET : Junction FET, gate is isolated via a reverse-biased p-n-junction

•  MES FET : Metal-Semiconductor FET, via a Schottky barrier

•  MISFET : Metal Insulator FET, via an insulating layer.

• MOSFET : Metal-Oxide-FET. This is a subtype of M ISFET implemented on Silicon, in which

the gate is separated from the active channel by the material’s native oxide.

The advent of MBE technology and demand for FETs with high-frequency operation and increased

power handling capabilities brought the development of the HFET (Heterostructure FET). Other 

acronyms that are being used for this type of device include HEM T (High Electron Mobility 

Transistor), MODFET (M odulation Doped FET) and HIGFET (Heterostructure Insulated Gate 

FET) to name but a few. An HFET is essentially a subtype of a M ESFET in which the 

phenomenally high mobility (combined with a high density) that can be achieved in a 

heterostructure, employing two-dimensional electron (hole) transport, is utilised to improve 

performance. F ig .l.10 shows a schematic of such a HFET.
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An important characteristic is the threshold voltage which is the minimum gate voltage required 

to induce carriers in the channel. A distinction is made between devices that conduct even at zero 

gate bias (‘normally-on’ or ‘depletion m ode’) and devices that require a bias to induce carriers and 

consequently become conductive (‘normally-ofP or ‘enhancement-mode’). A final point to be made 

is that this thesis is mainly concerned with heterostructures to be used in depletion mode devices. 

However, the bandstructure model, the scattering model and the many ideas and principles 

described in this thesis can equally well be used for enhancement mode devices.

1.3.2 - Basic FET operation, bottleneck for high-speed p-FETs

The gate in a FE T  structure can essentially be pictured as a parallel capacitor which, by varying 

the voltage, can either accumulate or deplete carriers in the underlying semiconductor and 

consequently raise or lower the conductivity. For example; setting Vgs (the gate voltage w it. the 

source) below the threshold voltage V, in a p-type structure, so making the gate voltage more 

negative than the source by more than the threshold voltage, causes the accumulation o f holes in 

the channel. This results in a rise in conductivity, as reflected in the typical output characteristic 

shown in fig. 1 . 1 1

In the simplest capacitor model, the carrier density (either holes or electrons) per unit area under 

the gate is given by [Wei91]

2 0 -  . ( 1 -2 )eL ,W ,

where Cg is the capacitance o f the gate contact, Lg is the gate length and Wg is the gate width. As a 

result, the current flowing through the conducting channel is given by

y
K - V . )  (1.3)

where v is the transport velocity of the current-carrying particle. This velocity is o f course 

dependent on the applied electric field and is related to the transport m obility p  by

v =  \xE (1.4)

However, the velocity reaches a maximum at the so-called critical field Ec above which the 

velocity is given by the saturation drift velocity and no longer increases with increasing field via

(1.4). The reason for this is that at high electric fields the carriers are accelerated to such energies 

that that loss mechanisms like phonon emission (/i-type Si), intervalley scattering (n-type GaAs) or 

impact ionisation (p-type Si/GaAs) counters any attempt to increase the velocity further by
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increasing the electric field [SzeSl]. For electrons in GaAs, v/=10^ cm /s and Ec=2.10^ V/cm, for 

holes v/=6.10^ cm/s and £^=6.10'* V/cm [Fre96]. From these values it follows that sub-micron 

electron devices in GaAs are essentially limited by a material constant (the energy separation 

between the F  and L valley E^-r) whereas hole devices are limited by the low-field mobility p  

which, via various scattering mechanisms, depends on layer design. Although the latter is generally 

true, in some QW  structures a small correlation has been seen between the low-field mobility and 

the saturation velocity [Rob96] which has been attributed to the influence o f the doping profile on 

the well shape [Wat98].

To evaluate the efficiency o f FETs in terms o f material properties, the following characteristics are 

being used in the literature:

•  Intrinsic transconductance gm

This quantity reflects the effectiveness by which the gate modulates the current in the 

conducting channel. It is defined and given by [Wei91]

a / " '-  ^ ^
o =  —— =  C

dv  *

V
(1.5)

gs J

In addition, there is also the so-called extrinsic transconductance which includes the parasitic 

resistance effects between the source-gate contacts. Although the latter is a better reflection of 

the effectiveness o f the device, the intrinsic transconductance is a better measure o f the quality 

o f the conducting channel. Both are however closely related.

Unity gain cut-off frequency ifr)

This is defined as the frequency at which the short circuit current gain decreases to unity. It is 

given by [Fen96],

/  = - £ î ! _  =  J -
^  2 %C; 2 jc j

(1.6)

Both the transconductance and cut-off frequency depend linearly on the transit time v/L^ o f the 

electrons o r holes under the gate, which explains industry’s efforts to push gate lengths to smaller 

dimensions. Alternatively, one also expects to be able to enhance performance by increasing the 

carrier’s drift velocity. The high electron mobility combined with a high density that can be 

achieved in two-dimensional structures have resulted in high-frequency /i-type GaAs-based FETs 

with unity gain frequencies above 100 GHz or power FETs capable o f handling over 5W  with
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more than lOdB gain at frequencies of 12 GHz (see [Suz96] for an overview of state of the art 

GaAs-based heterostructures).
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The performance of p-channel FETs is substantially lower than their «-channel counterparts of 

equal gate lengths. /V-channel devices are mainly limited by unwanted parasitic capacitance effects 

and the fundamental limit set by the saturation velocity. In contrast, p-type devices operate in the 

mobility limited regime [Abr97] which, combined with the fact that the valence bands are much 

more susceptible to band structure tailoring, provides the scope to significantly improve their 

performance by wavefunction and bandstructure engineering. It has been shown that the hole 

properties of GaAs-based FETs can be enhanced by using a strained InGaAs channel due to 

strain-induced splitting of the valence bands [Jaf87]. Recently, it was shown that the indium 

concentration in pseudomorphic InGaAs on GaAs could be raised above 30%, achieving state of 

the art room temperature transconductances and mobilities [Kud96,Kud97] (see fig. 1.12). The 

need for p-type FETs will now be outlined in the following discussion on complementary circuits.

1.3.3 - Complementary circuits

The poor performance of p-type GaAs-based FETs has almost completely prevented their use in 

complementary circuits, as such a combination of n- and p-type FETs would be limited by the 

poorer p-type device. At this point, one could ask why one would want to use the intrinsically
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slower p-type FETs altogether. To answer this, one only has to return to fig. 1.11 where it can be 

seen that there are some fundamental differences in output characteristics between n- and p-type 

FETs with respect to the direction of the current flow and the effect of the gate on the magnitude. 

Combining both type structures can provide unique circuit features which make the integration of 

p-type devices essential in several key areas. Two of these areas are discussed below.

• VLSI (Very Large Scale Integration)

Power consumption becomes a key issue when designing electronic circuits that contain several 

hundred thousand logic gates. Various low-power logic families have been developed that only use 

n-channel devices (for example DCFL) but, in addition to various other intrinsic limitations or 

problems, are inferior in terms of power consumption to complementary logic [Hai89].

The inverter as pictured in fig. 1.13 is a good illustration of why complementary logic is so power 

efficient When the input voltage (V,„) is low, the bottom (enhancement) /i-type FET is non

conducting so that there is no current flow through the FETs. In this situation, the output voltage 

{Voui) is high as it is pulled up to the supply voltage since the top p-type FET is a in a low-resistive 

state. A similar situation holds for when is high, in which case the top p-type FET is non

conducting and Vout is pulled down to the ground level as the Ai-type FET is now in a low resistive 

state. The important conclusion to be drawn is that the circuit does not dissipate any power in a 

static state, the only power dissipation occurs during a switching cycle.

v:In
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To put all of this in context. Motorola has recently started fabricating GaAs-based HFET 

integrated circuits which employ a range of circuit technologies including complementary logic 

[Abr93,Ber95,Abr97]. Using a 150Â Ino.oAso.gAs channel, their p-type devices exhibit/ ,  =10GHz
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for a 0.5^m gate length. Typically, the complementary logic is used for the lower-frequency high- 

integration part of the device, other logic families taking care of the high-frequency processes.

•  High power FETs

A consequence of the poor mobility in p-type devices is that such a device can not deliver large 

amounts of power, as the current through the device is given by the carrier density multiplied by 

the mobility. Applications that would benefit from an improved p-FET performance include power 

amplifiers with a circuit diagram similar to fig. 1.13, delivering relatively large currents rather than 

just a logic level. Design of such a power HFET involves maximising the carrier density without 

serious degradation of the mobility.

The latter device is the main motivation for the research described in this thesis. As electrostatics 

impose a maximum carrier density that can be obtained using modulation doping (see [Hir84]), 

doping of the active heterostructure layer becomes essential to achieve very high densities. Such 

doped-channel devices are expected to exhibit a high drain current capability, a large breakdown 

voltage and a high transconductance [Hon96]. Wavefunction engineering techniques are then used 

in such channel-doped structures to minimise the degradation of the mobility. Although only 

ionised impurity scattering and depletion-mode devices with doped channels are considered in this 

thesis, the techniques presented here are generally applicable. Similar techniques to control the 

shape and position of the wavefunction can be used to enhance the transport characteristics when 

other scattering mechanisms are dominant, such as interface roughness scattering in for example 

SiGe heterostructures.

1.4  ̂Overview o f this thesis

Following this introduction, chapter 2 starts by introducing the theory behind bandstructure 

calculations in semiconductors. The bandstructure is of course given by Schrddinger’s equation 

which is however too complicated to be solved directly. A substantial amount of space is devoted 

to the derivation of the chosen bandstructure model, a so-called effective mass or hp  (‘k-dot-p’) 

model, as this model will be very important in the analysis of the experimental data. Consecutive 

simplifications are introduced in the general Schrodinger equation to lower its complexity by 

reducing it to a one-electron Hamiltonian. A brief introduction to the use of group theory in Zinc- 

Blende structures is provided. Group theory is then employed to obtain the symmetries of the 

various eigenfunctions at the band edge, which subsequently allows the construction of the final
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effective mass model. The Pikus-Bir formalism to account for strain in such an effective mass 

model is also presented here, and the effects o f  strain on the bandstructure are discussed.

Chapter 3 discusses the elementary question o f how to connect wavefunctions across an interface 

in a compositionally varying structure. Insight in this problem was not rigorously provided until 

recently, and subsequent investigations on [0 0 1 ] revealed marked differences between calculations 

using the conventional boundary conditions and those using the latter framework. Despite this, it 

was found that the traditional boundary conditions were still being used in the literature as there 

was no concise frameworic to extend the boundary condition evaluation to non-[0 0 1 ] growth 

directions. The latter will be dealt with in the results chapter, as significant new insight in this 

problem was obtained during this Ph.D.

The last theoretical chapter (chapter 4) concerns carrier transport in heavily doped structures. An 

introduction to ionised impurity scattering is given using the easy to interpret Thomas-Fermi 

approximation, after which a more elaborate Random Phase Approximation (RPA) model is 

introduced. The latter scattering model, which connects wavefunction and bandstructure to the 

experimentally verifiable carrier mobility, can provide theoretical predictions for the device 

performance o f ionised impurity scattering limited structures. Its evaluation is slightly more 

complicated in the valence band than in the conduction band case, due to the presence o f strong 

non-parabolicity and band mixing effects. The former is highlighted in a discussion on the 

definition o f the effective mass parameter, the latter leads to an extra angular dependent factor in 

the equation for the scattering rate. The latter factor simply reduces to unity in the electron case. 

Although electron mobility calculations using this framework have been presented in the literature, 

its application to p-type structures is thought to be the first o f its kind.

Chapter 5 concerns the numerical implementation of Poisson’s equation and the effective mass 

Hamiltonian. Section 5.1 starts with a discussion on self-consistent methods to find a simultaneous 

solution to both Poisson’s equation and the Hamiltonian. Numerical implementation o f Poisson’s 

equation is shown to be relatively straightforward, in sharp contrast to the valence band effective 

mass model. Solving for valence band eigenvalues and wavefunctions consists o f finding the 

solutions o f a set of coupled differential equations, which proves to be time consuming when dealt 

with using standard numerical routines. A different approach was therefore chosen to solve the 

Hamiltonian, which utilises an expansion method. Here, the solutions are expected to converge to 

the exact solutions with increasing number o f expansion states. Particular attention is paid to 

convergence speed and advantages and drawbacks of such a method. Section 5.2 contains a
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summary o f all the experimental parameters that are required in the Hamiltonian, Poisson’s 

equation and the scattering model, such as effective masses and deformation potentials. A 

param eter o f specific importance is the band line-up of the conduction and valence bands in a 

compositionally varying structure, for which analytic expressions are given in terms o f the band 

gap and offset-ratios.

Next is the results chapter (chapter 6 ). The derivation of non-(001] Hamiltonians in this thesis is 

unique in the sense that it is not based on the customary fully group-theoretical approach which, 

due to the nature o f its derivation, is incapable o f supplying information about the boundary 

conditions. As a result, new theoretical insight into the boundary condition problem for non-[(X)l] 

growth was obtained. Analytic rules valid for all growth directions that are to replace the 

conventional symmetrisation rules for the operator ordering are given, which are regarded as m e  

o f the key findings in this work.

The second part o f this chapter concerns the application of the theoretical model to calculate the 

carrier mobility in semiconductor heterostructures. First, the model is applied to «-channel 

structures, where the theoretical values for the carrier mobility are com pared to both theoretical 

results published in the literature as well as experimental values. It is shown that a scaling factor 

o f order 2 has to be introduced to bring theory and experiment into agreement, independent on tiie 

design o f the structure or even the material system used. Thus, it proves that such a model can 

even provide reasonably accurate absolute predictions, simply by accepting the presence o f such a 

scaling factor.

The attention is then moved to p-type structures. A set o f 8 -doped 60Â Ino.15Gao.8 5As-Alo3 3 Gao.6 7As 

hole structures was designed to test the scope of wavefunction engineering to optimise the hole 

mobility in high density heterostructures. The effects of diffusion and segregation on the 

theoretical hole mobility is evaluated, after which a comparison between the ionised impurity 

scattering limited theoretical mobilities and the experimental hole mobilities is presented. After all 

numerical effort involved in such a calculation, it is disappointing to find that a scaling factor of 

approximately 8 is required to bring theory and experiment into agreement. Although the presence 

of such a scaling factor was expected from the «-type evaluation, it would have been more 

satisfactory to find a similar scaling factor to that obtained for electron mobility calculations.

The results chapter then ends with a discussion on the origin o f this scaling factor. A literature 

survey provided evidence that the scaling factor in the electron mobility calculations is caused by
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electron-electron interaction. It is then postulated that the presence o f the large scaling factor in the 

hole mobility evaluation is most likely not solely caused by hole-hole interactions, but by a 

combination of the latter and the occurrence of quantum confinement effects in the screening 

charge distribution. A first attempt to include these quantum confinement effects reveal an 

improvement in the overall agreement between theory and experiment and a new scaling factor of 

4.5 that is in better agreement with the electron result

Finally, the main achievements and conclusions o f this work are discussed in chapter 7, as well as 

suggestions for further work for a broad range of subjects and fields.
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The use of bandstructure calculations to predict or even enhance device perfonuance was outlined 

in the previous chapter. It was shown that the low hole mobility in GaAs-related compounds is the 

limiting factor in p-type FETs. The mobility was proved to be strongly dependent on the effective 

mass which in turn is directly linked to the E(k) dispersion of the appropriate band. The position of 

the wavefunctions with respect to doping impurities was also found to be an important factor when 

evaluating the mobility in heavily doped structures. All this proves that bandstructure and 

wavefunction engineering can be a powerful means to enhance performance.

This chapter starts with a section on bandstructure calculations in solids. The general approach to 

perform these calculations in bulk materials is introduced, without any a priori constraint on 

whether one is dealing with a semiconductor, conductor or an insulator. Several approximations 

are introduced that render the original Schrodinger equation into a more manageable equivalent, 

which is unfortunately still found to be extremely difficult to solve numerically.

The next section explains how group theory can be used to obtain information about the 

degeneracy and symmetry properties of the bulk zone-centre (i.e. at the F -point) wavefunctions. A 

short introduction to group theory is included, but the majority of the section is devoted to the 

direct application of this theory to Zinc-Blende structures. Explicit forms of the valence band 

zone-centre solutions are given where the effects of spin-orbit coupling have been taken into 

account. These zone-centre wavefunctions will prove to be important in the derivation of the 

valence band effective mass model that is going to be introduced in section 2.3.

The actual derivation of the effective mass model is performed in several stages. Starting with the 

simplest valence band effective mass model that is applicable to bulk only, consecutive 

enhancements are made. The generalisation to compositionally varying structures is performed, the 

effects of choosing a non-conventional growth direction and the inclusion of strain are discussed. 

Although this chapter contains an extensive review of effective mass theory, the intrinsic problem 

of how to connect a wavefunction across an interface in a compositionally varying structure is, 

because of its complexity, dealt with separately in the next chapter. The subsequent use of this 

bandstructure model alongside a scattering model to calculate transport mobilities will be the 

subject of chapter 4.
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2 .1 'Bandstructure caioilations in sotfds -

Any bandstructure model has to be linked to the Schrddinger equation. The original Schnddinger 

equation is unfortunately far too complicated to solve directly, so that various simplifications and 

approximations need to be introduced to obtain a more manageable system. This section can be 

seen as a preparation for the sections 2.2 and 2.3 where respectively the general form of the 

valence band orbitals is derived and a bandstructure model is set up that is going to be used 

throughout this thesis. This section presents the customary approximations that are required to 

obtain a one-electron Schrodinger equation, introduces spin-orbit coupling and discusses the 

implications of the Bloch theorem.

2.1.1 - The one-electron Schrodinger equation

The energy levels of the electronic states of atoms, molecules and solids (involving n electrons) are 

given by the time-independent Schrodinger equation,

 =  (2.1)

where r, is the three dimensional coordinate of the /-th electron. The electrons in the completely 

filled inner shells are expected to be tightly bound to the nucleus and these electrons will therefore 

be little affected by outside forces. As a result, ions consisting of a nucleus and its surrounding 

inner shells can be introduced, which limits the many-body problem to only the outer-shell 

electrons. Making the additional assumption of having a perfect lattice and neglecting any lattice 

oscillations, the Hamiltonian takes the form [Bas75,Hae91]

(2.2)
2m„ ' 4 7 t e „ « | r , - ^  - r ^ ]

k in etic  io n -p o ten tia l e le c tro n -e le c tro n
en erg y  in tera c tio n

where / and j  sum over all outer-sheU electrons, R  runs over all lattice sites and Z is the electronic 

charge of the ion.

The Hamiltonian (2.2) has an explicit dependency on the coordinates of all outer-shell electrons 

involved which renders it completely unsolvable. Instead, one would like to write the electron- 

electron interaction as a simple potential function, i.e. a potential that only depends on the 

coordinate of the particular electron under consideration, so that one would obtain a one-electron 

Sclirddinger equation of tiie fumi
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2m .
■V,^+ ( / (£ ,) (2.3)

The easiest way to obtain a Hamiltonian of this form is to adopt the Hartree method [Ash76] in 

which the many electron wavefunction is written as a product of single electron wavefunctions 

\ |/ (7 ; i ,r j , . . . , / ;„ )= V |(> ,)V j( r j> .. .-V |/„ ( r„ )  (2.4)

One then obtains for the potential U(r) (see, e.g. fig.2.1)

U(r) = -
47te,

V — L - + (2.5)

F ig  2.1 : E xam ple  o f  a  p o te n tia l fu n ctio n  U (r). 
Show n is  a  s o -c a lle d  p se u d o p o te n tia l f o r  S i, i.e. 
an em p ir ic a l p o te n tia l in w hich  the th ree  
a d ju s ta b le  p a ra m e te rs  (B ru 6 4 f la e 8 6 J  w ere  
chosen  such tha t som e fe a tu re s  o f  the  
co rre sp o n d in g  en erg y  b a n d s a g re e  (to  som e  
ex ten t) w ith  the exp erim en ta l resu lt. N o te  that 
the fo u r  c o rn e rs  a s  w e ll a s  the cen tra l p e a k  
c o rre sp o n d  to a  la tt ic e  po in t.

Using this approximation, each electron is effectively put in a static coulomb field associated with 

a given ion arrangement and electron density n(r). There are however two main objections against 

such an approach :

• The wavefunction as given by (2.4) does not satisfy the Pauli-principle, it does not implicitly 

prohibit two electrons from being in the same state. This can be solved by employing the 

Hartree-Fock method in which the electron wavefunction is written as a Slater determinant

• The electrons are completely uncorrelated in this approach. As Coulomb repulsion will try to 

keep two electrons apart, the present approach is expected to overestimate the electron energy.

Including these effects in an exact way would introduce non-local potential terms and would render 

the approach again into a many-body problem. However, both effects can be included by adding 

an extra potential term, the so-called exchange and correlation potential Uxc(r) for which a 

parametrised form is available for both the conduction [Hed71] and valence band [Bob96]. The 

equation as given in (2.3) is therefore the starting point of the bandstructure model that is going to 

be introduced in a later section.
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2.1.2 - Spin-orbit interaction

The fact that an electron carries spin has completely been ignored in the previous discussion. The 

electron spin interacts with its own angular momentum and this gives rise to a correction, or rather 

an additional potential term in the Hamiltonian, that has to be taken into account to obtain the 

correct electron energies. The interaction can be qualitatively understood by looking at a classical 

system in which a spinning electron moves around a charged nucleus [Gas74]. As the nucleus is 

moving in the electron rest frame, it follows that the electron is enclosed by a current flow and 

therefore sees an external magnetic field (fig.2.2).

F ig . 2 .2  : C la ss ic a l p ic tu re  o f  sp in -o rb it  
in tera c tio n  a s  seen  fro m  the e le c tro n ’s re s t  

fra m e . H ere , the ion m o ves  a ro u n d  the  
e le c tro n  w ith  v e lo c ity  v, th e re b y  g en era tin g  a  
m a g n e tic  f i e ld  B,o„ tha t in te ra c ts  w ith  the  
e lec tro n  spin .

etectron

'ion

This magnetic field interacts with the spin of the electron (or more precisely its magnetic moment), 

giving rise to an energy perturbation proportional to ■ S (v x  E)-S ( p x V U ) -  S . The

correct form of the spin-orbit interaction is given by [E1154]

where S is the spin operator. It will prove advantageous to write the spin-orbit interaction Ĥ o in 

the following form, assuming that the potential U is spherically symmetric U(r)=U(lij),

H.. =
1

2mlc^ [ r  dr J
(2.7)

in which L is the angular momentum operator. As the spin-orbit coupling is considered a 

perturbation, the used assumption can be thought of as the zero-th order correction [Lut55] or 

tight-binding limit [Kan56],
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2 .1 3  - Application to bulk: the Bloch theorem

Although this thesis is mainly concerned with bandstructure calculations in compositionally 

varying structures, it will prove useful to have a look at the bulk case first. One can then apply the 

Bloch theorem that states that the eigenfunctions o f (2.3) obey [Kit86]

\ \ f( r  + R ) = (r)  (2.8)

As a logical consequence o f (2.8) one finds that the probability density given by |y(r)(^ follows

the underlying Brillouin zones, something which one intuitively would have expected. An 

alternative way o f formulating Bloch’s theorem is to say that any eigenfunction can be written as 

=  (2.9)

Rewriting the one-electron Schrddinger equation including spin-orbit interaction (2.3,2.6) in terms 

of the cell-periodic functions U n t(r), {r + R) = ( r ) , one obtains

^ +  (/(> ) + — 4 - y [ v t / X  (p  +  m ) ] o + — *• p  
y2m „ 4m „ c >- 'J - y

L  J  I  -J
•P (2.10)

E_  -

V 2/Mo y

The A:-dependent factor in the spin-orbit term will be neglected in this work as the crystal 

momentum hk is much smaller then the atomic momentum p.

The advantage o f (2.10) over (2.3) is that u„k(r) only has to be solved within just one Wigner-Seitz 

primitive cell, in contrast to \j/(r) which has to be solved for the whole crystal. The application of 

the Bloch theorem has added two more elements to the Hamiltonian, the so-called k-p  ( ‘k-dot-p’) 

term as well as a plain energy term with the usual lê dependence. Even without actually solving for 

the eigenvalues, one can make some interesting observations. Ignoring the ^-dependence in //*, one 

finds parabolic energy bands with energy

E . ( k ) = ^ + E l  (2.11)
irriQ

i.e. one obtains the familiar empty lattice results. A closer look reveals that the above result also 

applies when one treats the A-dependent part as a perturbation and uses for Unk(r) the solutions of 

the unperturbed problem {H q 4- )m^ = . From these observations it follows

that
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•  The occurrence of electrons with effective mass m '«m o as well as the occurrence of negative 

hole mass is solely governed by the k p interaction.

•  This k p interaction causes the wavefunctions at finite k to deviate from the band edge solutions

Uno(r).

At this point it is discouraging to find that, even after having made a considerable number of 

approximations, the bulk one-electron Schrôdinger equation is still extremely difficult to solve. 

This is basically due to the complex form of the potential term. Several methods have been 

suggested to solve (2.10) [Ash?6] which differ essentially in the choice of trial functions (the basis 

functions). There are now however two possible ways to continue, either solve (2.10) from first 

principles { ‘ab initio') or choose a method that relies on experimental parameters. As the method 

eventually will be employed to solve for compositionally varying structures in which the 

computational problem is expected to be even more complex than for the bulk case, one is inclined 

to abandon the ab-initio route and decide for a method that relies on material constants. For both 

cases, group theory can substantially simplify the problem, in the first case by reducing the 

numerical work necessary and the second case by reducing the number of constants. Symmetry 

and group theory will be discussed in the next section.

2.2 Symmetry considerations

The presence of symmetry in a physical problem is expected to reduce the complexity. In the case 

where one is interested in solving for the cell-periodic functions u„jc(r) as described in the previous 

section, one expects that symmetry will put constraints on the general form of these cell-periodic 

functions. Identification of symmetry operations and the analysis of the effects on the particular 

physical problem is generally done within a very abstract and mathematical framework that is 

denoted by group theory. Although the underlying mathematics of group theory are very extensive, 

actual application of this theory to a physical problem is rather straightforward. In this section, a 

brief introduction to group theory is given, with the emphasis on the application to systems 

containing the symmetry of a Zinc-Blendc lattice. Explicit forms for the zone-centre wavefunctions 

are obtained, first without and later including spin-orbit coupling.
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2.2.1 - Group theory and its im plications

Group theory is an extremely powerful method to obtain information like degeneracy o f eigeiüevels 

and the general form of eigenfunctions by looking at the symmetry o f the problem involved. That 

such a link exist is not too surprising as the wavefunctions in a perfectly ordered material are not 

expected to be o f arbitrary shape. Group theory is set up in such a way that this sort of 

information can be retrieved by just using character tables and symmetry groups (which will both 

be treated later on) without actually needing to solve the Hamiltonian.

This section is mainly concerned with outlining the fundamentals o f  group theory and linking it to 

the physical problem of solving the Hamiltonian for eigenvalues and wavefunctions. It is 

emphasised that this section does not contain a complete review o f group theory but is rather more 

focused on its application. More information about the specific use o f  group theory in electron 

band calculations can for example be found in [Cor69,Bas75,Alt94].

Starting with the definition o f a group, a group 6  is defined as a set o f  elements ... where

•  any product is itself an element o f 6

•  (AB)C=A(BC), i.e. the elements are associative

•  contains the identity element E, AE=EA

•  for any element there is an inverse which is also an element of 6 .

An example o f a group is the set o f transformations which leave the crystal lattice invariant 

Following [Cor69], a transformation is denoted by T  and its effect on a vector r is given by

r' = [ R ( T ) \ t ( T ) ] r  o r  sh o r th a n d  t  = T r  (2.12)

where r and r' describe the same coordinate but in a different reference frame. Here, the new 

coordinate is obtained by a rotation R(T) followed by a translation t(T), Some examples o f a 

rotation, or point operation, R(T) are :

-Cni : a proper rotation through In h i  in the right hand sense about the /-axis

- E  : identity operation

- a  : a reflection

- I  : an inversion

Every rotation R(T) is partnered by an operator P(T). When followed by a scalar function yfr), 

P(T) performs the coordinate change given by R (T ) '\  An example o f such an operator is : ‘replace 

(x,y,2) by (-x ,y ,z)\ In a rather more mathematical notation.
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p ( T ) f i n = m

or (2.13)

P ( T ) f ( T r )  = f ( r ) .

The question now is to establish the set o f symmetry operations that leave the eigenvalue equation

(2.2) or its one-electron equivalent (2.3) invariant. Obviously, the potential U(r) in the SchrOdinger 

equation obeys U ({R (T)lt(T))j: )=U(r) if  T  is chosen such that it leaves the crystal invariant, and 

so do the other Hamiltonian elements. The group of the Schrôdinger equation is therefore the space 

group o f the crystal, i.e. the symmetry transformations that leave the lattice invariant also leave the 

Hamiltonian invariant,

H (T r )  =  H ( r )  (2.14)

The Bloch theorem (2.9) that was introduced in sub-section 2.1.3 which states that every bulk 

wavefunction in a periodic structure can be written as a cell-periodic function u„jc multiplied by a 

plane wave is a direct consequence o f the presence o f translation symmetry. Translations 

symmetry is however not the only symmetry present in common crystalline structures but merely 

forms a subgroup o f the total symmetry group 6 .  In addition, the point group Go which contains 

all the remaining transformations {R(T)fQ} is also a subgroup o f 6 .

The consequences o f the additional symmetry operations contained in Go are now investigated. 

Obviously, the presence o f rotational or inversion symmetry puts constraints on the general form 

of the cell-periodic structure. To obtain these constraints, a link between abstract group theory and 

the physical problem of solving the Hamiltonian for eigenfunctions and eigenvalues has to be 

made. First, this involves a more detailed look on the group theory without explicitly dealing with 

a particular problem (being an eigenvalue problem or otherwise). Secondly, an examination into 

the effects o f the presence o f a symmetry transformation on the physical problem has to be made, 

and finally both need to be connected.

The group concept was introduced in the previous paragraphs, and the elements o f the (sub)groups 

were visualised in terms o f rotations and translations. It now proves convenient to woik in a more 

abstract way and represent these group elements by matrices which, naturally, have to satisfy all 

group postulates. It is straightforward to see that there exists an infinite number o f representations 

as there is no constraint on the order of the matrices that one can choose. However, all these 

representations can be constructed from a number o f basis (so-called irreducible) representations. 

These irreducible representations consist o f a set of matrices F(T), one for each transformation, of 

the lowest possible order. As T(T) is only uniquely determined within a similarity transformation,

40



Symmetry considerations

one would like to avoid working with an explicit form o f the matrices. Instead, an invariant 

quantity called the character o f T, which is the trace o f the matrix T(T) and defined by

%(T) =  , is used throughout group theory.
i

Returning to the physical problem o f solving the Hamiltonian, it can be shown that the

Hamiltonian H  and transformation operator P(T) conunute when T  corresponds to a symmetry

transformation o f the lattice. From this it follows that

H(.r) = E  ^ , ( r )
=> //(r){/>(70(t),(r)} = £ { /> (D (l) ,(r )}

which says that when (j)„ is an eigenfunction a t energy E, then P(T) ())« is also an eigenfunction  

with the same eigenvalue, a very important observation. Now consider an /-fold degenerate level 

of the Schrôdinger equation, H(r)^n(L)=E^n(r)y / i=l . . / ,  for which the set ())« forms a set o f linearly 

independent eigenfunctions corresponding to this eigenvalue. It then follows that P(T) <}>„ must be a 

linear combination o f this set so that one can write

/ ’(r )i|> ,(r )  =  £ r { r ) „ „ ( i ) „ a ; )  ( 2 . 1 6 )
m=l

In words, (})« transforms under an operation P(T) as the row o f T(T). This suggests that a set o f  

basis functions fo r  a l-degenerate level fo rm s a set o f  basis functions fo r  an l-degenerate 

representation o f  this subgroup o f  the Schrodinger equation. The proof consists in showing that 

all group postulates are satisfied. But this means that a subgroup F o f order / corresponds to an 

/-degenerate energy level. The connection between group theory and the eigenvalue problem has 

now been made.

The latter observation has huge implications. Given a system, being a molecule or a crystal, it is 

not difficult to obtain its symmetry group. Group theory in turn, by various routines with which 

this work does not concern itself, can supply the appropriate character table. Using only this table 

and the symmetiy operations, one can extract elementary information about the degeneracy o f the 

various eigenlevels as well as the symmetry properties o f the eigenfunctions. The latter can be 

obtained using the projection operator which projects any function onto the group F

p ' ' = - Z % X n f ( T )  (2.17)
8 T

where T  runs over all transformations, /r is the number o f basisfunctions in F  and g  is the total 

number o f symmetry operations.
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2.2.2 -Application to Zinc-blende

The previous discussion showed the connection between abstract group theory and the eigenvalue 

problem in periodic structures. The theory will now be applied to obtain information about the 

symmetry of the eigenstates of the band edge (i.e. at the T-point) solutions for the bulk-problem

(2.3) in which the potential U (r )  has the symmetry of the Zinc-Blende lattice. There are 24 

symmetry operations divided into 5 classes (T;, T2 , T/z, Tjs, Tzj), which respectively contain the 

identity transformation (E), rotations over jt/2 followed by inversion (C /) , rotations over n 

followed by inversion (IC 4), rotations over n  followed again by inversion ( IC 2) and rotations over 

2ti/3 (Cj). The symmetry operations corresponding to the classes Ti, Fis and F i2 are given in table 

2.1 [Bas66].

Class Elements P(T)

E E (x,y,z)

Class Elements P(T)

IC 2 IC2xy (-y,-x,z)

IC2XZ (-z,y,-x)

IC2yz (x,-z,-y)

IC2x.-y (y,x,z)

I C 2X.-Z (z,y,x)

lC2y,-z (x,z,y)

Class Elements I P(T)

IC4 : IC4Z ' 1 (y,-x,-z)

IC4Z 1 (-y.x,-z)

: IC4. ' Î (-x,z,-y)

IC4. j (-X,-Z,y)

IC4,' : (-z,-y,x)

' IC4y I (z,-y,-x)

T able  2.1 a ,h ,c  : S ym m etry  o p e ra tio n s  c o rre sp o n d in g  t o T j  , 
r ;.5 a n d  F,2 . The co lu m n P (T ) g iv e s  the co o rd in a te  
tran sform ation  o f  a  p o in t (x ,y ,z) w h ere  the o rig in  is  se t  to a  
la ttice  p o in t (i.e. G a  o r  site ).

The character table corresponding to the zinc-blende lattice is given in table 2.2. Re-iterating that 

the characters are simply the trace of the transformation matrix that describes the effect of a lattice 

transformation on the eigenfunctions, it follows directly that the degeneracy of a level 

corresponding to a particular symmetry group can directly be obtained from %(E) in the character 

table (printed in italic). For example, the eigcnlevel corresponding to F js is threefold degenerate.

E 3C l 6IC2 6IC4 8C3

Fi I 1 1 1 1

F: 1 1 -1 -1 1

F i2 2 2 0 0 -1

F is 3 -1 1 -1 0

Fis 3 -1 -1 1 0

T able  2 .2  : C h a ra c te r  ta b le  
co rresp o n d in g  to  a  Z in c-b len d e  la ttice  
[B a s66 ].
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The customary method to establish the symmetry of the eigenfunctions of a particular level is by 

projecting a set of trial functions onto the appropriate group using (2.17), the lattice symmetry 

operations, and the character table. Alternatively, one can use the explicit form of the irreducible 

matrix representations to generate these symmetry properties via (2.16). These explicit matrix 

representations are however generally not provided, but the forms for Zinc-Blende can for example 

be found in [Bas75]. The latter method will now be used to obtain the symmetries and to explain 

and clarify the underlying physics.

The irreducible representations of F js for the transformations IC2xy and /C 2« are given by

" 0 - 1 O' ' 0 0 - n

r , 5 ( / Q ^ )  = - 1 0 0 0 1 0 etc (2.18)

. 0 0 K . - 1 0 o>

It is easy to see that three functions that transform as x,y and z satisfy (2.16) and (2.18). Further 

investigation also reveals that the atomic orbitals dxy and also possess the F  is symmetry. 

Similarly, as the irreducible representations of F 12 are given by

r n ( / Q ' )  =
-1  0 

0  1

■ i  - i s

- ' S
- 2  2 .

etc (2.19)

it follows that the lowest orbitals that transform as Fyj are of the form and

{iz^ - x^ -  y^^14?), corresponding to the (^-orbitals % and .

F ig .2 3  : B ondin g  fu n ctio n  in Z in c-B len d e . A p r im it iv e  ce ll  
con ta in s the cen tre  (G a ) a to m  a n d  1 /4 -th  o f  each  su rro u n d in g  (A s) 
atom . In an an ti-b o n d in g  p i  fu n c tio n  the sig n  o f  the su rro u n d in g  A s  
w a vefu n ction s is  in verted .

43



Symmetry considerations

Although the previously derived atomic orbitals form a basis of the various point groups of a zinc- 

blende lattice, one might ask how the previous atomic orbital picture ties in with such a 

complicated lattice. Since a primitive cell contains not one but two atoms (i.e. one Ga and one As), 

a single atomic orbital is not a proper description of the zone-centre wavefunction. One can 

however form ‘bonding’ (+) and ‘anti-bonding’ (-) orbitals [E1154,Kan66] (see fig.2.3) which have 

the same transformation properties.

At this point it is useful to put the previous findings in context by looking at the implications when 

setting up a bandstructure model. Following a tight-binding approach, one can choose to develop 

the cell-periodic functions Uni r̂) in a set of atomic orbitals. Simply limiting the expansion to the s-, 

p- and (f-orbitals without using group theory would mean that the model would have to minimise 

the energy of a linear set of nine orbitals. Group theory however proves that, without losing any 

accuracy, the trial functions can be limited to the following orbitals when evaluating the 

eigenstates at the F -point:

Fi

r,5 : p \ p ' , d ’\ c f

r,2 : ( T , d

where d  holds the d ^ ^ _ ^ 2  and orbitals and d’ holds d^ dyz dxy. Fig.2.4 gives a graphical

picture of the symmetry properties of these orbitals.

Fig.2.4 : Lowest atomic orbitals that 
correspond to the symmetries F, (s), F/5  

(Pxyjt dxy.yzzx) and Y 12 (dj^.^jt2.r2).
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As was shown in fig. 1.2 in chapter 1, the valence band states o f GaAs (as well as all other HI V 

materials) correspond to the Fis symmetry. Since the tight-binding approximation is expected to be 

valid for such a closely bound state, the valence band states will be approximated by  pure p* 

states. From now, the three valence band eigenfunctions will therefore be denoted by |X), |F) and 

|Z>.

2.2.3 - Inclusion o f spin-orbit coupling

The transformation properties o f  the zone-centre eigenfunctions without spin-orbit interaction were 

derived in the previous section. It turns out that the inclusion o f this spin-orbit interaction is rather 

straightforward and does not have to be done in the abstract group-theoretical approach by using 

so-called ‘double-groups’ (including an additional spin group) such as done in [Dre55b]. Instead, 

operator methods are going to be used to set up linear combinations o f the previously derived |%), 

|y), |Z) states to form eigenfunctions o f the Schrôdinger Hamiltonian with spin-orbit coupling. One 

way o f doing this is by diagonalising //«, in matrix form [Kan56]. There is however a much faster 

procedure [Sin93] which utilises the fact that spin-orbit interaction in the case o f a spherically 

symmetric potential U(r) is proportional to L S (2.7). Since the \X) ,|F), |Z) functions are already 

eigenfunctions o f and and since the total angular momentum operator 7  satisfies

it follows that for the solutions to be eigenfunctions o f //,<>, it is sufficient for them to be 

eigenfunctions o f This observation will turn out to be very im portant later on when it proves 

beneficial to orientate the spin along different crystallographic axis. This renders a diagonalisation 

procedure into a time-consuming and laborious problem. As J  by itself can not classify the states 

uniquely, one can introduce a new commuting observable which is chosen to be 7« » the angular 

momentum operator for a particular direction a .

The linear combination o f p-orbitals that forms an eigenfunction o f the band edge Hamiltonian 

including spin-orbit interaction will from now on be denoted by

■f^mj)=\x,X + X2Y + X, Z) ' t+\x^X  +%,y + %«Z)i (2.21)

where mj is the quantum number corresponding to and Xi..6 are to be determined constants. The 

freedom to choose a particular quantisation direction will be explored next, and analytical 

expressions for the |/,my) states will be given in sub-section 2.2.5.
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2.2.4 - Choosing a preferred quantisation direction for the angular
momentum

A \I,mj ) state such as given in equation (2.21) corresponds to a valence band eigenfunction at the 

r-po in t. Restricting these states to the heavy (7=3/2, /n/=±3/2), light (7=3/2, m /=±l/2) and split-ofif 

(7=1/2, /n/=±l/2) holes gives a total o f six states. Q early , choosing a  particular basis set 17,my) that 

corresponds to a particular choice o f quantisation axis would not, when using this set in a 

bandstructure model, affect characteristics like accuracy o r completeness. Re iterating that a set 

|7,m; ) at present is only known to correspond to the band edge solutions {k=Q), one can ask the 

question if the freedom in the quantisation direction a  can be utilised to m ake these states resemble 

the exact wavefunctions as closely as possible in the case where JW?. The latter would obviously 

be o f great benefit as it would reduce the numerical problem. It turns out the set can be chosen 

such that it forms the exact wavefunctions even at finite momentum. This can be done quite simply 

by choosing the quantisation axis for the angular momentum along the sam e direction as that of 

the direction o f the momentum one is interested in. O r stated differently, when m a ilin g  out E(Jc) 

with k parallel to the direction a ,  it is easiest to work with a basis set in which the angular 

momentum (and spin) are orientated along the same direction a .  This can easily be proved for the 

case where the momentum is chosen along the z-direction, k.-(0 ,0 Jc2)\ o ther directions can be 

checked in the same way.

For this case, it is straightforward to prove that the k p  interaction term Hk.p commutes with Jooi

\f^k p » *̂ 001 ] k - p , L , + S , ]
P z  ^ x p , - y p ,  +  S , \  (2.22)

=  0

As a result, it follows that the basis states obtained by orientating the angular momentum along a  

are not just eigenfunctions o f the band edge Hamiltonian but are also eigenfunctions for the finite-/: 

case as long as the momentum is restricted to the direction a .

2.2.5 - Explicit form of the zone centre wavefunctions

In the tight binding approximation the valence band states are o f the form 

\ x )  = R { r ) x , \ y )  = R { r ) y , \ z )  = R { r ) z . Rewriting these states as spherical harmonics Yun, it is

easy to prove using the operators Lz,L^,L. [Gas74] that operating the angular momentum operators 

Lx,yj on the valence band states has the following effect
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X =  0 X =  - f Z X =  zT

Y =  zZ Y =  0 Y =  -zX (2.23)

Z =  - i ¥ Z =  fX Z =  0

Sim ilaily, it can be shown that

Î T
5 /

i
2

= l T i  = — zT ’
2 2

T
2

X =  — -

2

(2.24)

Using (2.23) and (2.24) and orientating the angular momentum J  along the z-dinection, the 

following set |/,my) o f band edge eigenfunctions is obtained for the Hamiltonian including spin- 

orbit interaction.

1-4)
i ' + i )  = - ; | ^ [ ( X + < T ) i - 2 z T ]

14)

(2.25)

As mentioned earlier, the |3/2,±3/2) states correspond to the heavy, |3 /2 ,± l/2 ) to the light and 

|l /2 ,± l/2 )  to the split off holes. It is important to note that the above set is not uniquely defined as 

each element can be multiplied with a phase factor a + /p  o f unit length without changing any of 

the physics. One therefore finds different sets in the literature; compare the above set to, for 

example, [Lut55]. This issue will be discussed in a subsequent section.

At this point, the choice of orientating the angular momentum J  along the z-direction is rather 

arbitrary as a different ‘preferred’ direction could just as well have been chosen. It will prove 

advantageous to choose J  along the growth direction when setting up a bandstructure model for 

compositionally varying structures as will be done in the following section. The above set will 

therefore be of importance when looking at [100]-growth only. Adopting a Cartesian reference 

frame with unit vectors a=(aj,0 2 ,0 3 ), b=(bi,b 2 ,b3 ), £=(C],C2 ,C3 ), the general form o f the set \J,m) in 

which the angular momentum is orientated along the vector c was presented in [Dal98] and has the 

form
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^  » + ^ )  =  ; ^ |  («1 +  ib ^ )x  +  (û2 +  ib i  )y  +  (û3 +  ) z )  T

| , + | )  =  ; ^ k , X + C 2 y  +  C 3 Z ) î - ; ~ | ( û . + / ô J X + ( û 2 + / ^ ) î ^  +  ( û 3 + i ^ ) 2 ) j '  (2.26)

^  =  - ^ | c i X  +  C27 +  C3 z ) t - ^ | ( f l ,  + ( û 2  +  (ûf3 + « ^ 3 ) ^ ) '^

The corresponding \I-mj)  states can be constructed using the Kram ers operator [Kan56] on their 

positive counterparts. Using the general form defined in (2.21), one obtains that the negative 

counterparts are given by '

I / . - « , )  =  \ x \ ^  +  x 7  +  x \ z ) ' t - \ x \ x - ^ x \ y  +  x l 2 ) i  (2.27)

F or the standard reference frame, i.e. inserting the vectors a=(100), 6=(010) and £=(001), these 

equations reduce to the set (2.25). Explicit forms for the case where the quantisation axis is 

orientated along (110) o r (111) can for example be found in [Lau71,Sta97].

At this point, its worthwhile to summarise what has been achieved in this chapter. So far :

•  a one-electron Schrôdinger equation operating on cell-periodic functions has been

obtained that will be the starting point o f the derivation o f the bandstructure model in the next 

section.

•  knowledge o f the degeneracies and symmetries o f the various band edge levels has been 

acquired when excluding spin-orbit coupling.

•  inclusion o f spin-orbit coupling has been shown to only consist o f fonriing linear combinations 

o f the eigenfunctions o f each level.

•  an explicit representation o f the valence band states at the band edge {k -0 )  has b e a i derived 

including spin-orbit splitting.

•  the freedom to choose a preferred direction for the angular momentum in this representation has 

been shown to be a powerful means to optimise the set when looking at finite momentum.

Using this information, the next section deals with the derivation and underlying motivations of 

setting up a bandstructure model within the so-called effective mass (or k-p) framework.

' It was chosen to include a sign change to comply with most of the current literature.
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2 .3  > The k'p approacb ,

The Schrodinger equation and its one-electron equivalent that are the starting point of any 

bandstructure model were presented in the first chapter. As outlined in the previous section, 

bandstructure calculations are numerically very demanding even in the simplest case when dealing 

with bulk material. As this thesis is concerned with compositionally varying structures, which is 

expected to make the physical problem even more difficult, a method that partially relies on 

material constants rather than a first principles method was chosen. Effective mass theory, also 

often referred to as k-p (‘k-dot-p’) theory, provides such a method. The latter approach 

significantly simplifies the physical problem and provides an easy interpretation, of course at the 

cost of requiring some input in the form of physical parameters.

The method was pioneered by Kane who used it to calculate the valence bands in bulk germanium 

and silicon [Kan56] as well as the conduction and valence bands in Indium Antimonide [Kan57]. 

Although this model is only applicable to bulk materials, it proves to be a useful tool to understand 

the physics behind the processes that shape the bandstructure. As it is much simpler than its more 

elaborate counterpart the Luttinger-Kohn [Lut55] model (which is also applicable to 

compositionally varying structures) and since the latter model reduces to the Kane model in the 

bulk case, this review of k-p theory will start with the Kane model.

Starting with the simplest bulk model, various improvements are introduced and the transition to 

compositionally varying structures is discussed. Special attention is paid to the use of this model to 

non-conventional growth directions such as [110] or [111]. Finally, section 2.4 deals with the 

inclusion of strain effects which is essential when modelling non-lattice matched compounds like 

InGaAs on GaAs.

Although this section covers k-p theory in extensive detail, the intrinsic problem of how to connect 

wavefunctions across an interface in a compositionally varying structure will not be discussed 

here. Because of its complexity, it was chosen to address the latter subject separately in chapter 3.
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2.3.1 - The Kane model

The Kane model [Kan56,Kan57] that is introduced in this section is in many aspects the basis of 

the effective mass model that is introduced later. Although it is only applicable to bulk structures, 

it is based on the same ideas and principles as its more elaborate counterpart that is capable of 

modelling compositionally varying structures. Because of the explicit restriction to bulk materials, 

the mathematics involved in deriving the Kane model are rather straightforward. As a result, the 

model proves a very instructive tool to obtain a physical picture of the origin of the effective mass 

parameters as well as the limitations of the model itself.

A s  seen in the discussion of the one-electron Schrôdinger equation, the shape of the conduction and 

valence bands near the T-point is governed by the hp  term in the Hamiltonian. This term also 

causes the cell-periodic functions Unk(r) to exhibit a /^-dependency. The following observations can 

now be made:

I. The combination of all zone-centre solutions Uno form a complete set, i.e. every possible 

solution Unk corresponding to finite momentum k  can be expanded in this set [Lut55].

II. As we are mostly interested in the region near the band edge, typically just a fraction of the 

Brillouin zone being filled with electrons or holes, Hk.p can be treated as a perturbation of the 

zone centre Hamiltonian (Hk.p«Ho) [Dre55a].

I I I .The bands of interest, being the lowest conduction band (Fi-symmetry) and the topmost valence 

bands (F  15-symmetry) are typically well separated in energy from all other bands (fig.2.5a)

(a)

15

15

F ig . 2 .5  : (a )  S ch em a tic  p ic tu re  d ep ic tin g  the re la tiv e ly  la rg e  se p a ra tio n  b e tw een  the c o n d u c tio n /va len ce  
b a n d s a n d  a ll o th er b a n d s a t the T -poin t. (b ) The b a n d s e x p lic itly  in c lu d ed  in the K a n e  ex p a n sio n  to  
m o d e l the conduction  b a n d  (ligh t) o r  va len ce  b a n d  (d a rk ) f o r  the v a r io u s  sc h e m es  p re se n t in the  
lite ra tu re . The nu m eral d e n o te s  the nu m ber o f  b a n d s in c lu d ed  (in c lu d in g  sp in  d e g en era cy ).
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The Kane model now proceeds by expanding the cell-periodic functions in just a limited set of 

zone-centre wavefunctions close in energy to the band under investigation and then uses 

perturbation theory to account for the effects of the not included, so-called remote, bands. The 

latter is expected to be a good approximation as perturbation theory states that the energy shift 

induced by a remote level scales as 1/AE where AE is the energy separation between the 

interacting levels. The influence of the remote levels is therefore expected to be relatively small. In 

contrast, any levels in the vieinity of the band under investigation need to be explicitly included in 

the expansion as perturbation methods are not expected to accurately account for them.

The question is now what should be regarded as a remote level and what not. Q early, this would 

depend on whether one is interested in the conduction or valence band, the choice of 

semiconductor, the physical property under investigation and the accuracy required. For a system 

with a relatively large band gap like G a As one can, when solving for the conduction band, to a 

good approximation limit the expansion to just this band (a 1-band model, fig.2.5b) and treat all 

other bands as a perturbation. The situation is slightly more complicated when modelling the 

valence bands as it consists of more than one band. Here, the expansion needs to explicitly include 

the heavy and light hole bands (a 4-band model) to obtain results with a reasonable accuracy for 

G a As-related compounds. The spin-orbit valence bands do not necessarily have to be included in 

the expansion due to the relatively large spin-orbit splitting in this compound. Some examples of 

the number of bands required to model the various material systems with reasonable accuracy are 

given in fig.2.6b.

Conduction txind 
1 b a n d 8  b a n d

Large bcrx! gap màeilcÉs Snrdtbondgcp
Nof>pciabo8c8y Judies

(Gô iAjGor̂ inGQAsl

Valenœband: 
4  b a n d

(GoAs.A)GaAîl

6  b a n d

14 b a n d

F ig 2 .6  : E x a m p le s  o f  the  n u m ber o f  
b a n d s re q u ire d  f o r  m o d e llin g  va rio u s  
m a te r ia l sy s tem s .

(hGoAiaGe)

8  b a n d

Smcibondgap
NofrporobDliciydiJdes
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Note that these examples are just guidelines and that models o f higher order than that suggested 

for a particular material system can be found in the literature. Furthermore, some applications 

specifically require a high order model, such as optical anisotropy studies in GaAs QW s which 

require at least a 6-band model [KaJ95].

To clarify the method, especially with respect to the use o f symmetry, the approach as taken in 

[Bas88] is followed. Here, a model is set up that as a first approximation neglects the presence of 

the remote bands. It is now assumed that the following limited expansion in zone-centre ik=Q) 

solutions is sufficient to ‘describe’ u„j^r) in the case o f finite momentum A,

(2.28)

The physical problem to calculate the bandstructure has thus been reduced to finding the 

appropriate values o f the eight constants ci.^. The above expansion has to be an eigenfunction of 

the original Hamiltonian //* (2.10) so that the constants are obtained by solving HiMnk-Eu„k for a 

particular value o f the momentum k. Using that each element Uno is an eigenstate o f Ho+Hso and

taking the inner products with respectively ( /5 Î |,  {3I2,+112\, ..... . the following Hamiltonian in

matrix form can be obtained

/ /  =

-1
Phk^ Phk^ - ^ P h k j

2 1,2h^k
2 m ‘r

0

Phk_ 0 0 0

0 0 A . * ’* ;
IrtiQ

J f m .

0 - ^ P h k , 0

0 0 0

0 0 0 0 Phk_

0 0 0 - ^ P h k ,

0 - J f m .

0 0 0

0 0 0

0 0 0

Phk_ - ^ P h k ,

0
e e
2 m l

0

0
2m l

0

0 0
2m 0 y

(2.29)
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Here, the zero-point of energy is chosen at the top of the valence bands, A is the spin-orbit splitting 

and k± is defined as = { k ^ ± k y ^ l 4 2 .  The Hamiltonian contains only one adjustable 

parameter which is the momentum matrix element P  defined by

nir nir

In words: P  is the volume integral over a primitive cell of the product of a conduction band state 

|5) and a momentum operator working on a valence band orbital. From symmetry arguments it 

follows that these are the only non-zero momentum matrix elements (fig.2.7).

d  
dz

F ig .2 .7 : The inn er p ro d u c t (5'1/;̂ |Z) is  the in teg ra l o v e r  sp a c e  o f  an s -o r b ita l  (left)  
m u ltip lie d  b y  d /d z  o f  a  p r o r b i ta l  (righ t). This in teg ra l (a s  w e ll a s  a n d  (5'|py|y)j
is  n o n -zero  s in ce  it is even in x, y  a n d  z. In co n tra st to th is, a ll  in n er p ro d u c ts  in vo lv in g  
rw'o p -o rb ita ls  a n d  a d ifferen tia l a re  ze ro  a s the to ta l fu n c tio n  is o d d  in a t lea s t one  
co o rd in a te .

The original eigenfunction problem has now been reduced to finding the eigenvalues of an by /i 

matrix, n here being eight It follows directly from the fact that (2.29) is not a diagonal matrix at 

non-zero momentum k that the k-p interaction causes the wavefunctions away from the band edge 

to be a mixture of the original band edge 5 - and p-type zone-centre solutions. Returning to the 

eigenvalues, one obtains for the dispersion at small k [Kan57],

'hh

2  1.2P^k
= E , + - ------4-

2m,

2m ,

h^k^ 2 P ^ e  

2m . 3 Eo

2_  1

(2.31)

2 , 2

= -A-k
2 1.2r k

2m, s (e , + a )
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Isotropic solutions are found, i.e. the energies are only a function o f the length o f k  and not o f its 

direction, as well as a dispersionless heavy hole band. Both features do not agree with the 

experimental results for 111-V materials. This indicates that the remote bands can not be neglected.

The previous results show why it was chosen to introduce the Kane model by looking at an 8-band 

instead o f a simpler 4- or 6-band model. Obviously, the only interaction between the bands present 

is the interaction between the conduction and the valence bands so that both lower order models 

would have given trivial empty lattice results. Or stated differently; the k-p term does not cause the 

p-orbitals to interact with themselves, so that any deviations from empty-lattice results are solely 

due to interactions with other bands. However, it turns out that 8-band and higher models have 

intrinsic problems in the form of so-called spurious solutions [Sch85b]. These are unphysical 

solutions that arise due to the fact that the Hamiltonian matrix (2.29) gives four (spin degenerate) 

solutions, whereas there are only three physical ones as the conduction and light hole band are 

joined in the complex plane. It was therefore chosen to treat the conduction and valence bands 

separately in this work. As a result, the conduction band will be considered a remote state when 

modelling the valence bands, and vice versa.

2.3.2 - The inclusion of rem ote bands

The previous discussion showed that an expansion in just the heavy, light and split-off hole states 

plus the conduction band, thereby totally neglecting the remote bands, is insufficient to accurately 

model the valence bands in 111-V materials. As the expansion will be limited even further to either 

just the conduction band or just the valence bands, it is obvious that the remote states will further 

increase in importance and have to be accounted for.

Because of their large energy separation, it is however expected that these remote bands can be 

accounted for by using a perturbation method, denoted as LOwdin renormalisation [Ldw51]. 

Following this paper, the resulting additional perturbation terms in the Hamiltonian are now 

derived up to order two for this specific case.

The band edge solutions Uno are divided into two classes, a set (a) close in energy to the eneigy 

region o f interest and a remote set (b) which is well separated in energy. The first set (a) will be 

explicitly included in the expansion, whereas the second set (b) will only be included via a 

perturbation method. The combined set (a) + (b) form a complete orthonormal set so that an 

arbitrary wavefunction can be expanded in this set as
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\>*J) = Y ,C , \ t ) + % C ^ \ \ l )  (2.32)
/=1 =̂1

the summation over I being the summation over r  closely spaced levels and the summation over p  

being the summation over the remote bands. This expansion is now used to solve the perturbed

problem including the k-p interaction energy p .  Inserting (2.32) in the eigenvalue
m

equation

[ / / „ + / / „  + / / . , , ] f e c , | / > + X c J ^ l ) l  =  4 È ‘’/ I '> + É cJ h > | (2.33)
L f=l J I M=1 J

and taking the inner product with (m\ and (v| where m  corresponds to an element from the near set 

(a) and v  corresponds to the remote set (b), one obtains

 ̂ (2 Td'i
E c , [ ( £ , - £ ) 5 , . + { v | / / J u )]  +  X c , < v K | 0  = 0
H I

The above relations were derived by using the orthonormality relations as well as the fact that the 

expansion states are band edge solutions at energies £ / and E^l. Near the band edge, at small k, tiie 

second equation o f (2.34) can be approximated by

(2.35)

which inserted into the first equation o f (2.34) results in the following relation between the 

expansion constants o f the near set only,

A

=  0 (2.36)S c / ( £ ,  - £ ) 5 , „
I V ^\

Such a transition from an expansion in just |/), totally neglecting the remote bands, to an expansion 

in the same limited set, but where the effects o f the remote bands have been included by 

perturbation theory, modifies the Hamiltonian operating on the basis |/) by adding an extra term 

given by
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H tà̂ fdin
ml r  £-£v

“  2m 0 V E- E .

E -E .

p I P v,

(2.37)

Win \t E - E „

where the summation over v  runs over all remote bands. The Einstein convention has been used 

that any index occurring both as a low er as well as a higher index should be interpreted as the sum 

over all allowed values o f that index. Furthermore, the general momentum m atrix element 

P/wv“=('n|palv> has been defined which replaces the earlier momentum matrix element P  (2.30) that 

was restricted to just the interaction between a valence band p-orbital and a conduction band s- 

orbital. Whence, the Hamiltonian in matrix form for an expansion in the limited «-dimensional set 

10 limited to just  one level (i.e. working with an explicit expansion in Just F ; o r F 7 5), including all 

other bands by perturbation techniques, takes the form

C2 C2
=  E (2.38)

where the indices m,l have respectively been replaced by the more common J J \  W hereas there was 

only one adjustable param eter P  in the previous Hamiltonian (2.29), the presence o f tire 

momentum matrix elements and in (2.38) suggests that the inclusion o f the remote states 

will induce additional parameters. The same approach as used in section 2.1 can be followed 

where simple symmetry arguments along with an explicit knowledge o f the various orbitals were 

used to obtain the non-zero matrix elements and adjustable parameters. This approach will be 

used, with some severe limitations on the number o f participating remote states v, in the results 

chapter (chapter 6 ) when discussing the boundary condition problem. O ther parametrisation 

approaches however exist which prove to be more convenient in the multi-band case. The question 

o f how to parametrise this Hamiltonian is postponed until sub-section 2.3.4. Instead, the previous 

model is now going to be extended to the case o f compositionally varying structures.
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2 .3 3  - The Luttinger-Kohn envelope model

Luttinger and Kohn developed a k-p model [Lut55] which resembles the Kane model but does not 

have the restriction to be only applicable to uniform structures. At the time o f its derivation, it was 

meant for theoretical calculations o f impurity states and analysis o f  cyclotron resonance in bulk 

materials, but the general way it treats the potential term allows it to be used for compositionally 

varying samples as well. Here, the original derivation, which is completely performed in A:-space, 

is not going to be repeated as it is very abstract and tends to hide the physics. Such a 

mathematically rigorous derivation is not required in this work, yet it is worth to point out that the 

approach that is going to be followed here does not provide any information about the presence of 

some o f the restrictions to the use o f this model in structures with abrupt potentials. One therefore 

has to resort to such a /:-space derivation when looking at for example the boundary conditions 

(see chapter 3).

It was proved in [Lut55] that any wavefunction in a compositionally varying structure can be 

written as

V(r) = S ^ /( i : ) “,o(£) (2-39)
j

where Fj are so-called envelope functions which vary slowly on atomic scale. The zone centre 

solutions Up guarantee completeness on atomic scale whereas the envelope functions guarantee 

completeness on a larger scale. This expansion looks very similar to the expansion used in the 

Kane model, the only difference being that the combination o f the constants q  and the Bloch- 

exponential have been replaced by the more general Fj(r). This expansion is now going to be 

used to describe a wavefunction in a compositionally varying structure. Returning to the general 

Hamiltonian (2.3), and using the expansion (2.39), one now has to solve

2 too
V^+U(r) 'ZF(r)Uj,(r) = E'^F(i)Uj^(r) (2.40)

j j

One has to realise that the potential U(r) as well as the zone-centre expansion states ujo(r) now not 

only have a microscopic but also a macroscopic dependence as one allows for compositional 

changes. Assuming that the system under investigation consists o f a number o f stacked layers with 

different composition, this has the effect that the potential U(r) exhibits abrupt changes near each 

interface.
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e  # #•  • • © © © ©

F ig .2 .8  .'I llu s tra tio n  o f  the  
p e r io d ic  p o te n tia l U (r )  in a  
c o m p o s itio n a lly  va ry in g  
stru c tu re  w ith  re g io n s  o f  
co m p o s itio n  ‘A ’ a n d  ‘B ‘. The  
in se t sh o w s the tru e  (a lth ough  
f ic ti tio u s )  fo r m  o f  the  p o te n tia l  
U (r) n ea r  an in terfa ce . A ssum ing  
th a t the m ic ro sco p ic  fo r m  o fU (r )  
ch a n g es lit t le  w hen  changin g  
c o m p o s itio n , the p o te n tia l  can be  
a p p ro x im a te d  b y  U (r )+ V (r)  
w h ere  U (r) is  n o w  the p o ten tia l  
o f  bu lk  ‘A ’ a n d  V (r) is  a  
p ie c e w is e  c o n sta n t m odu la tion .

Following the original paper, an electrostatic potential V (r)  is introduced to describe the variation 

in potential as one moves from one region of a certain composition to one with a different 

composition. A simplified picture is given in fig.2.8 where it is assumed that the change in 

composition only changes the base level of the potential and not the microscopic form. As a result, 

one effectively assumes to be woricing with the sa m e  material composition throughout the sample 

as the invariance in the microscopic form of the potential U  implies that the zone-centre cell- 

periodic functions ujo are identical throughout the whole structure. This approximation is dealt 

with in more detail in chapter 3.

Assuming that a compositionally varying structure can be described solely by using such a 

macroscopic potential V (r)  that is acting on the electrons or holes, equation (2.40) transforms into

Im,
(2.41)

where the zone centre cell-periodic wavefunctions Uno form the solutions when V(r)=0. The 

potential can therefore be thought of as a position dependent perturbation. The resulting effective 

mass equations for the compositionally varying case can now be obtained in a similar way as in 

the derivation of the Kane model. The summation over the zone-centre cell-periodic functions Ujo is 

again divided into two classes, a near set that will be explicitly included in the expansion and a 

remote set that will be included via perturbation techniques (section 2.3.2). Using that the envelope 

functions vary slowly on atomic scale, taking the inner product with the various cell-periodic 

functions and eliminating the smaller contributions in favour of dominant ones, one obtains 

[Lut55]
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Fj.Q:) =  E F j.(r )

(2.42)

Strong similarities are observed between the Kane (2.38) and the above Luttinger-Kohn model 

(2.42). The latter differential system for modelling compositionally varying structures can simply 

be obtained from the bulk Kane equations by making the following replacements :

•  changing the momenta Mi to the quantum-mechanical operators p,.

•  replacing the expansion coefficients cy by position dependent envelope functions Fj.

•  adding a position dependent potential V(r) on the diagonal.

Although these two models look very similar, these transitions make the problem o f finding the 

eigenvalues considerably more complicated for the Luttinger-Kohn model as compared to the Kane 

model. In the latter case, finding the eigenvalues merely consists o f finding the roots o f a 

determ inant In the former case however, one is dealing with a system o f coupled differential 

equations, i.e. a set o f differentials which have to be satisfied simultaneously.

2.3.4 - Parametrised form of the Luttinger H am iltonian

The Hamiltonian that has been derived in the previous discussion is not o f m uch use due to the fact 

that neither the inner products nor the energies of the remote bands Ev are all known with 

sufficient accuracy. However, lattice and orbital symmetry can, similariy to the approach taken in 

the Kane model in the case where the remote states were completely ignored, be used to reduce the 

equations into a parametrised form with just a limited num ber o f constants. These constants can 

then be fitted by experim ent

For the conduction band, an expansion in just F j is thought to be sufficient as this band is well 

separated in energy from all other bands,

(2.43)

SO that one finds that one has to solve a single differential equation with the relevant Hamiltonian,
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f f  — I ^
2mo m l

P s ^ P v s

E - &

=S
2 , 2r k

2m ,
i . f  1

|2 \

m 0 V

(2.44)

where the directions x,y  and z  have been taken as equal. An effective mass m  has been introduced 

which is given by

r  I, . . i i 2 \ - ‘

m  = m . (2.45)

The fact that no cross-terms like kjcy appear in (2.44) follows from the fact that an f-state is 

spherically symmetric. Therefore, any product o f the form <5|3/9jclv)(v|9/3y|5) is zero since 

(5|9/3z| is odd in x  and even in y, whereas |9/9y|5) is even in x  and odd in y. So, for a 

compositionally varying structure in which the composition has just a z-dependency, one finds the 

well-known effective mass equation

A ' a '  . A"
F .(2 ) =  £ F . ( z) (2.46)

2m* dz^  ' ' 2m*

The valence band problem is more complicated due to the fact that it consists o f a set o f closely 

spaced bands which have to be explicitly included in the expansion. One therefore ends up with a 

set o f coupled differential equations in which one intuitively expects to have more adjustable 

parameters as compared to the conduction band case. Again, the valence band Hamiltonian //y , 

where j j ” run over the heavy, light and split-off bands, can be simplified considerably by forcing it 

to be invariant under all lattice symmetry operations and subsequently replacing the remaining 

unknowns by constants which can be fitted by experiment.

turning to the valence band case, a parametrised form of the matrix Hjf for an explicit expansion 

in the set |X), |f )  and |Z) is evaluated. According to (2.42), this matrix contains elements o f the 

form kaJĉ . where a  and p run over jc,y,z. At this point, one would like to impose restrictions on the 

possible values o f a  and p to reduce the complexity o f the matrix and the number o f constants 

involved. From symmetry^ considerations it then follows that the most general Hamiltonian for this 

expansion is o f the form [Dre55a]

 ̂The general parametrised form (2.47) was actually derived for the diamond symmetry rather than for 
Zinc-Blende. The loss of some of the symmeUy operations when looking at Zinc-Blende would introduce 
an extra parameter in the Hamiltonian but since its effect is very small, it is normally neglected [Bro85].
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D  =

L k]  + M ( k ]  + k ] ) Nk,k^

Nk..k. L k l  + M ( k ^ + k ^ )

N k X N k ,k ,

m , k ,  

m , k ,
.2 , w / 1 . 2L k i + M { k i + k ‘ )}

(2.47)

in which

L  =

M  =

N  =

2m

h

2mr 0 V 

2

E - K .
(2.48)

( x | p » ( v | p , | y )  

m l ^  £ - £ „

The Hamiltonian given in (2.42) has now been rewritten in a parametrised form which only 

contains three adjustable parameters; L, M  and N. It is however customary to replace these 

parameters by the Luttinger parameters, which are defined as [Lut55]

2mr

2m,

2m,

-7, = - | ( £  + 2M)

y , = - U L - M )
o

■y = - ^ N

(2.49)

At this point one has to realise that the desired form of the Hamiltonian has not yet been obtained, 

as it was shown in sub-section 2.2.3 that the states |%), |y) and |Z) are not eigenstates of the spin- 

orbit term and are thus not the most convenient set for an expansion. The above Hamiltonian has 

therefore to be rewritten for an expansion in [f.mj) such as given by for example (2.25) in which 

the spin and angular momentum have been orientated along [00\ ]. Such a basis transformation is a 

trivial exercise so that, using an expansion

=  ^ l | 2 ’+ 2 ) + ^ 2 | 2 ’+ 2 ) ' + ' ^ 3 | 2  “ 2 )  +  ^ 4 | f  “ 2 ) + ^ 5 | 2 ’+ 2 ) + ^ 6 | 2 ’“ 2 )  ( ^ ^ O )

one ends up with the following Hamiltonian

H  =

R  0 1 5 / V 2 ■JlR

0 - R  \ V 2 Ô ■Jjs

P - Q  - S  \ -V Ï 5 *

P + Q  j s '  1^/2

P  + A 0

P  + A

(2.51)

with elements
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P = ' i , { k l + k l + k ] )

Q = y i { k l ^ k l - 2 k ] )
I - !  \  (2.52)

S =  2 S { k , - i k ^ y c ^
[001]

R =  j 3 { y ^ { k l  +  k l ) + 2 i y , k , k , ]

Only the upper diagonal in the Hamiltonian has been indicated as the remaining elements follow 

hnm the requirement that the Hamiltonian must be Hermitian. Furthermore, the macroscopic 

potential V(r) associated with the band line-up in compositionally varying structures has been 

omitted from the diagonal elements and a factor -h^/2mo has beai absorbed in each term. The 

boxed area contains the Hamiltonian elements when limiting the interactions to just the heavy and 

light hole states, i.e. using a 4-band model.

It is important to note that the Hamiltonian (2.51) is really only valid for the specific choice of 

basis states (2.25) and resulting elements (2.52). To illustrate, when comparing the above 

Hamiltonian to the one presented in [Edw94] that is based on a different set, one can see various 

sign differences in the Hamiltonian elements. Or stated differently, there is no unitary 

transformation that can account for phase differences in the basis set without altering flie 

Hamiltonian slightly. Various forms o f P,Q Ji,S  with different phase conventions can be found in 

the literature, but the 6-band Hamiltonian as given above is only valid when using (2.52). At this 

point, it suffices to note that the 4-band Hamiltonian does not require a specific knowledge o f the 

phase o f the |/,m;)-set and is valid for all possible phase choices. The influence o f the phase will be 

discussed in detail in chapter 6.

The above Hamiltonian and specific elements will be used to model [001]-grown structures. For 

the compositionally varying case, the momentum elements Mz should then be interpreted as the 

operator /^ i  3/3z, whereas kx and ky remain normal vector components or better quantum numbers 

which originate from the plane wave form exp[i(kxX+kyy)J o f the wavefunction perpendicular to 

the growth direction.

2.3.5 - Non-[001] growth directions

The Hamiltonian that will be employed to model structures grown on [001] has been presented in 

the previous sub-section. As we have made no particular steps or approximations that restrict this 

Hamiltonian to just one particular growth direction, one might be surprised that it has been
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specified to be used for this growth direction only. In effect, there is no restriction o f this kind so 

that the Hamiltonian (2.51,2.52) could be used for, say, growth on (311) substrates. Performing a 

coordinate transformation in which the ^-vectors are replaced by (k^.,kyyk^.^  with 2 ’

parallel to the growth direction would only change the framework that is now to be inteipreted 

as the operator Æididz and kx' and ky> as vector components. This way, a similar system of 

coupled differential equations as for the [001] case can be obtained, yet now applicable for the 

case where the composition varies when moving along 2 ’. The problem associated with such an 

approach is however that the resulting equation is rather messy, or rather ill-conditioned, and 

needs to be ‘cleaned up’ by a unitary transformation to render it into a form in which it is usable. 

This comes as no surprise as the set was designed to be a set o f eigenfunctions o f Ho, Hgo 

and Hk.p for the case where the momentum k was limited to just the direction [001]. One therefore 

can not expect this Hamiltonian in matrix form to take a diagonal form when deviating from this 

preferred direction. The solution to this problem is however straightforward as a general form for 

the set \J,m) was given in 2.2.5 where it was also shown that the most convenient quantisation axis 

for the angular momentum was that o f the same direction in /:-space one is interested in. Despite 

the convenient implementation, one can still find articles in the literature that start from a [001] 

Hamiltonian and then make a number o f unitary transformations to obtain a Hamiltonian that can 

be employed to model a completely different growth direction [Gol95]. Such a method generally 

does not provide the easiest Hamiltonian and is considered to only obscure matters. The only type 

o f unitary transformation that is considered worthwhile is that described in sub-section (2.3.6) 

where it is shown that a 6-band Hamiltonian can be written into two 3x3 Hamiltonians, thereby 

significantly reducing the numerical problem. As the latter is best performed using a starting 

Hamiltonian that utilises an expansion in the appropriate |/,/ny)-set for that particular growth 

direction, the approach as taken by Goldoni [Gol95] is not recommended.

Using the general form of the basis set \J,m^ (2.26,2.27), it can be proved that the Hamiltonian 

(2.51) is in fact valid for all growth directions [Dal98]. Using this basis, the elements o f this 

Hamiltonian for growth on for example (110) and (111) are now given by

p  = ' i , { k ] + k i + k ] )

Q - [ \ y , - ( { y .  + | 7 3 ) f

S = 2 S { y , k ^ - y ^ i k , ) k ,

R  = ^ i k l  ~ ( y i + y i ) k l  - ^ ( y 2  - Y s K '  - Z f Y j M ,]

[ 1 1 0 ]
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[111]

P  = y , [ k ] + k ] - ¥ k ] )

Q =-y3(kl+ky) + 2y^kl 

V6
(2.54)

S  = — — + ; ^ ( 2 Y 2 + Y 3 X ^ ^ “ * ^ K  

(Y2 -Y sX ^^  + - ^ ( y 2 + 2 y ^ ) ( k ^ - i k ^ )R  = -
2 V 6

Comparing these Hamiltonian elements to those presented in for example [Men91,Iko92] reveals 

small phase differences in the various elements. As discussed in 2.2.5, these differences are due to 

phase differences in flie \J,rrij) expansion states. Again the same restriction as in the [001] case 

applies that the 6-band Hamiltonian (2.51), unlike the 4-band Hamiltonian, is only valid for the 

above sets P ,Q Ji,S  that were specifically derived using the same basis as that used in the 

derivation o f  the Hamiltonian. As stated before, this will be dealt with in more detail in chapter 6.

2.3.6 - A unitary transformation to render the Ham iltonian in block-

diagonal form

The Hamiltonian as presented in (2.51), although perfectly adequate to model any semiconductor 

structure, is not the most convenient choice as it can be reduced to a much simpler block diagonal 

form by means o f a basis rotation. This will render the 6x6 Hamiltonian into two 3x3 

Hamiltonians, thereby significantly reducing the numerical problem. One possible choice o f this 

transformation is given by [Bro85,Foi93]

-a" a  ^

l“2> p p- I f ’+ i )
1̂ 3) p p- I2 ” 2)
1“.} a* a I2 “ 2)

P - P '

I P -P*J J2 “ t),

or u'=Uu (2.55)

where the basis states are rotated within the heavy hole, light hole or split-off bands only. Using 

1 +  ia  = p = (2.56)

one then obtains that the Hamiltonian for any growth direction in the case o f zero in-plane 

momentum can be written as [For93]
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H =

?  +  G  R T i S  V 2 / ? ± - ^ 5
V2

0
^ / 2 Q T i ^ iP - Q T i C  V2(2=F/J-5  

P + A ±iC

(2.57)

The Hamiltonian matrix element C has been introduced because o f its relevance later on when 

discussing the boundary conditions. At this point, it suffices to set this element to zero.

If one makes the (gentle) approximation that Y 2 ** Y 3 Üie light hole <=> spin-orbit interaction

term, a  and p can be chosen such that (2.57) is even valid for non-zero in-plane momentum in the 

case o f [001]-growth. This unitary transformation is actually exact when limiting the expansion to 

four bands for this particular growth direction, i.e. when reducing a 4x4 to two 2x2 Hamiltonians.

2.3.7-Luttinger’s theory of invariants

Using a group theoretical approach, Luttinger found an analytical expression for a four band 

Hamiltonian in matrix form in terms o f /:-vectors and angular momentum matrices. Without 

magnetic field, this Hamiltonian takes the form.

/ /  =  - - [ (y . + 5 / 2 y , ) k ^ - 2 y , { k U l + l c l J l + k U l )

- 4 y , [ k , k y { j j , } + k ^ k , { j ^ j , } + k , k , { j , j ,

(2.58)

where {xy}=xy+yx and Jx.y^ are the angular momentum matrices corresponding to spin 3/2. This 

expression for the Hamiltonian is o f particular value when setting up an effective mass model for 

non-[001] structures, as the latter only involves performing the appropriate coordinate 

transformation on momentum vectors and angular momentum matrices.

The reason why it was decided to follow a different approach in this woik is simply that the 

‘theory o f invariants’ has the disadvantage of not giving a lot o f insight into the physical problem. 

Furthermore, in its present form it is restricted to deriving the Hamiltonian matrix elements o f 4- 

band models only. In principle, this does not prevent the use o f (2.58) to set up a higher order 

model, as (2.51) reveals that the extra matrix elements present in a 6-band model are directly 

related to the elements o f the 4-band model. However, this link could obviously not have been 

made had one not performed the \J,rrij) derivation. In addition, there is the restriction that the
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Hamiltonian (2.51) was derived using an explicit form for the set \J,m^ and that this 6-band 

Hamiltonian is strictly only valid for elements P,QJR^ that correspond to the same phase choice.

It turns out that ‘The theory of invariants’ can still be of great use, even when looking at effective 

mass models of order higher than four (see chapter 6). However, one has to acknowledge that the 

group theoretical result lacks some of the flexibilities of the approach used in this thesis.

2 A  * Extension to strained

Most of the earlier work on III-V materials concerned structures grown using the AlGaAs/GaAs 

material system. As GaAs and AlAs are (almost) lattice matched, it proves to be relatively easy to 

grow good quality, dislocation free, heterostructures using this ternary. However, advances in 

growth procedures now also allow pseudomorphic growth of a variety of materials with different 

lattice parameters such as InGaAs on GaAs. In this type of growth, all layers adopt the in-plane 

lattice parameter of the underlying substrate while keeping the formation of defects to a minimum. 

Although more difficult to manufacture from a growth point of view, it turns out that strain 

introduces a number of interesting effects which can be used to enhance electrical as well as 

optical device performance. Strain can for example be used to lower the hole effective mass 

[Jaf87] to improve transport properties [Kud97], or to lower the laser threshold current [Ahn94]. 

Furthermore, strained Zinc-Blende structures can exhibit a piezo-electric field due to the lack of 

inversion symmetry [Smi86j. The presence of such an internal electric field can significantly affect 

the wavefunctions and carrier distribution. As a result, it can be seen as a means to tailor the 

electron or hole distribution [Lu94,Hit95].

Obviously, one would like to include strain effects in the previously presented effective mass 

models. It turns out that the extension of the earlier presented effective mass equations to strained 

structures is relatively straightforward and that the effects of strain can be accommodated by 

simply adding some new strain terms in the Hamiltonian. The derivation of these additional terms 

is in many respects identical to the derivation of the original unstrained effective mass model. To 

be able to derive these terms, one first needs to establish how strain affects the periodic lattice, and 

this will be the subject of the introductory paragraphs. The actual derivation and explicit form of 

the strain terms will be presented in sub-section 2.4.2.
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2.4.1 - Introduction

This discussion about strain starts with an evaluation of the effects of strain on the periodic array 

of atoms. This chapter is only concerned with pseudomorphic growth of strained layers. In this 

case, it is assumed that there are negligible dislocations and that the lattice constant of the strained 

layer parallel to the interface takes that of the underlying substrate. InGaAs grown on a GaAs 

substrate will be compressively strained as InGaAs has a larger lattice constant than GaAs. In 

contrast, In^Gai ^As grown on InP can either be compressively or tensile strained depending on die 

indium concentration of the InGaAs layer. Such in-plane distortion of the atomic lattice is however 

not the only distortion that will occur (fig.2.9).

(a) (b )

#

F ig .2 .9  : G ro w th  o f  a  la y e r  w ith  a bu lk  la ttice  co n sta n t d ifferen t fr o m  the su b stra te  in d u ces  
c o m p ress ive  (a ) o r  ten sile  (b ) stra in . F o r p seu d o m o rp h ic  la yers , the in -p la n e  la ttic e  co n sta n t  
m a tch es the la ttic e  co n sta n t o f  the su b stra te . The resu ltin g  ch a n g e  in vo lu m e o f  a  p r im itiv e  
c e ll is  p a r t ia lly  c o m p e n sa te d  b y  an o p p o s ite  chan ge  o f  the la tt ic e  c o n sta n t p e rp e n d ic u la r  to  
the su b stra te .

Some of the basic notations and approaches to the strained layer problem are now introduced. 

First, the strain tensor E«p is defined as :

a , ' =  (l +  e )a , or  a ° ' =  a “ + £ e ^ a f  (2.63)

where a, is the lattice vector in the direction i in the unstrained and a /  in the strained case. This 

strain tensor represents the three-dimensional lattice deformation. It is important to note that die 

symbol e is frequently used in the literature to describe strain instead of e which has a slightly 

different definition,

f w h e n [ L = v
 ̂ , (2.64)

w h e n [ L ^ v

In addition to the strain tensor, there is another tensor called the stress tensor To  ̂ which denotes 

the force in the direction a  acting on a plane with the normal in the direction p (fig.2.10). 

Obviously, the introduction of strain, i.e. displacing the atoms from their preferred positions, will 

introduce stress. Hooke’s law states that the stress is proportional to the strain so that, using 

symmetry arguments, one finds the following relation for zinc-blende materials [Sin93]
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rc„ C n \

c„ C,2 ^yy
r . 1̂2 Q2 c„

T . C« ^yz

c «

V ^44 >

(2.65)

which shows that strain and stress are related via three elastic constants {C nCn,C 4 4 )- All other 

elements in the matrix are zero.

zy

X

Fig.2.10: Examples o f some stress elements. 
The vectors denote the direction of the force 
and the starting point shows the plane on 
which this force is acting.

As mentioned earlier, the lattice parameter parallel to the interface of the strained layer Qh takes 

the lattice spacing of the underlying substrate Os in the case of pseudomorphic growth, so that

e „ =  ‘ - l  = e (2.66)

Assuming no shear, one only has to work out the effect on the lattice constant perpendicular to the 

interface. As a plane with the normal parallel to the substrate is free to move, the position of the 

next plane of atoms will be such that there is no stress in any direction on this plane, 

i.e. = 0 . Using (2.65) it is then straightforward to show that the strain tensor takes

the following elements for [001] growth.

[001]
= - ■

1
. 001O (2.67)

o '" ' = Çn_
2C 12
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where o  is the Poisson ratio which describes the ratio of the lattice deformation in the direction 

parallel and perpendicular to the substrate. The procedure for different growth directions is 

essentially the same but, as it involves a change in coordinate frame, is rather laborious. Results 

for other growth directions, as well as a well-documented outline of the procedure itself can for 

example be found in [Hin90].

An explicit form of the three-dimensional displacement of atoms under strain has been presented in 

terms of the elastic constants for the case of pseudomorphic growth. The corresponding effects m  

the bandstructure will be the next subject of discussion.

2.4.2 - The Pikus-Bir strain Hamiltonian

Previously, it was shown that the equilibrium positions of the atoms change under strain and as a 

result one expects these lattice changes to affect the bandstructure. As typical strain values (or 

dimensional changes) are only of the order of 1%, the changes in energy are expected to be 

relatively small. Furthermore, the microscopic form of the wavefunctions and the electron 

distribution in the strained case are anticipated to resemble the imstrained results. As a result, the 

effects of strain on the bandstructure are expected to be sufficiently small that they can be 

accounted for using perturbation theory.

The explicit form for this strain Hamiltonian was derived by Pikus and Bir [Pik74]. In contrast to 

the k-p derivation, it is less straightforward to write the strain effects in terms of a perturbation 

potential as even an infinitesimal amount of strain will cause the position of an ion to have a large 

shift when looking at relatively widely separated ions (fig.2.11). Or stated differently, unlike the 

k-p case there is no obvious small potential term that can account for the differences between the 

strained (Ut) and imstrained potential (t/o).

u n s t r a i n e d  : F ig .2 .1 1  : S ch em a tic  p ic tu r e  o f  the  
effec ts  o f  s tra in  on the p e r io d ic  
p o te n tia l.

s t r a i n e d  :
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The approach suggested by Pikus and Bir starts by introducing a coordinate transformation 

to give the wavefunctions and periodic potentials in the strained case the same 

periodicity as those in the unstrained case

r* =  (l +  e )  r (2.68)

This transformation is directly related to the lattice distortion in terms o f basis vectors (2.63). 

Obviously, the unprimed coordinate is the only real physical coordinate, but such a procedure 

provides a means to obtain an approximate description o f the periodic potential and cell-periodic 

wavefunctions in the strained case. To lowest order,

= : / . ( / )  (Z 69)

< o ( [ l+ | j £ )  =H .o(£)

In addition to this primed coordinate, primed operators are introduced which are equivalent to their 

unprimed partners apart from the fact that they are now working on r’ rather than r. Retaining 

only the terms to first order in e from now onwards, the primed momentum operator is related to 

its unprimed counterpart by

p  = y V  =  ( l - e ) £ '  (2.70)

The underlying reason for the introduction of these operators that act on r' is that one ultimately 

wants to write the original Hamiltonian in terms o f the coordinate r' after which its potential and 

zone-centre solutions can be approximated by (2.69). The relevance o f these operators can be 

stressed by remaiking that these primed operators are the only operators o f relevance after having 

performed a coordinate transformation. As p =  M , it foUows that a coordinate change will affect 

the momentum k  similarly to (2.70). Such was to be expected as the coordinate change can be 

regarded as a purely mathematical operation and that a physical quantity like a plane wave 

should therefore retain exactly the same form. In this woric, it was chosen not to introduce the 

primed momentum k ’ as one is ultimately interested in calculating E(k) in the strained system and 

not E(k!) (note that [Bir74] not only chooses to introduce k! but also defines k  and k' differently 

from (2.70)).

Using that the wavefunction takes the following form in the primed reference f i ^ e

« ! * ( £ ) « - + (2-71)

one obtains that the original bulk strained Hamiltonian (top line) takes the following expression to 

lowest order in e in terms o f primed coordinates (bottom line) :

70



Extension to strained materials

2m
+  U , ( r ) u L (r )e ikr

2mo mo + [ /4 l+ e k ) l

(2.72)

Rewriting this Hamiltonian, sim ilar to (2.10), in terms o f just the cell-periodic functions gives

h k p  n^ic^ p 'E p '  hejcp' 
+  — —  + ------------ — — -----

2mo mo 2mo m.
t^ e ( [ l+ e ] !^ )  « : . ( [ l + £ k ) = £ « : . ( I l + e ] î ^ )

(2.73)

Re-iterating that the potential and the cell-periodic functions in (2.73) have the same periodicity as 

in the unstrained case, the same expansion in zone-centre |/,my) states as outlined in section 2.3 can 

be performed which is the basis o f the effective mass approach. A comparison o f the various 

Hamiltonian elements reveals that first three elements in the Hamiltonian (2.73) are identical to 

those present in the unstrained Hamiltonian (2.10), the first being the kinetic energy and the last 

two being due to the k p  interaction. Thus, the important observation can be m ade that the 

transition from an unstrained to a strained system simply involves adding the fourth and fifth term 

to the Hamiltonian as well as any first order changes in the potential as com pared to Uo.

From here onwards, the procedure is exactly the same as performed in the discussion o f the k p  

model. Again, the effective mass approach is adopted and the cell-periodic functions are 

expanded in |%), |f )  and |2). The following parametrised strain Hamiltonian for an expansion in 

\X), \Y) and |Z) is obtained

D  =
IExx m xy

m yx f e^+m(e„+e„ )
nE tlE xy

(2.74)

However, rather than using /,m and n to parametrise this strain Hamiltonian, it is customary to use 

the deformation potentials a,b and d  which render the [001] strain Hamiltonian in an easy form. 

These deformation potentials are defined as 

/ + 2m
a  =

b  =

3
l - m

(2.75)
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Rewriting (2.74) into a \J,m ^ basis plus inserting the various strain components such as given in 

(2.67) for [001], the strain Hamiltonian takes the following form for the growth directions [001] 

[Hin90], [110] and [111] [Hen95]

r 1

0

X

0

0

X

X

0
1AE H— 5 

* 2

0

0

X

4 £ , - i s

(2.76)

where

[100]

A E,

5

X

[110]

[111] Ô

X

Cn

=  0

A E, =  

5 

X

^ Cll - C i2 +  6C44^

Cji + Cj2 + 2C44

U b  +  S d )
Cji + Cj2 + 2C44

AE, =  4a-
4 C4 4

Ci, +  2 C j2 +  4 C'44

=  2^l3d-
Cji + 2 C j2

Cii + 2 Cj2 +  4 C4 4

=  0

(2.77)

(2.78)

(2.79)

From this, three different strain effects can be seen:

•  The energy gap changes under strain, generally widening for compressive strain and narrowing 

for tensile strain.

•  The heavy hole and light hole band edges are separated under strain. In a compressively 

strained QW, the light hole bands are shifted away in energy from the lowest heavy hole level. 

For tensile strain the opposite is the case. Here, the light hole bands move towards the first
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heavy hole level and can even cause them to cross, thereby forcing the first confined level to be 

a light hole state.

•  Strain induces additional mixing between the heavy and light hole states in [110] structures, 

even at zero in-plane momentum.

A t this point, the link between strain and the Hamiltonian is complete. Although the above 

discussion is restricted to just the interaction between the heavy and light hole bands, the presented 

Hamiltonian (2.76) can straightforwardly be extended to a 6-band model. As the parametrised 

Hamiltonians for the k-p (2.51) and strain interaction (2.74) show the same symmetry properties, 

the additional strain Hamiltonian elements required for such an extension are again directly related 

to the matrix elements present in a 4-band model.

Furthermore, the Hamiltonian (2.76) and its elements for the growth directions [001] and [111] 

now give a mathematical justification for the use o f strain to enhance transport o r  optical 

properties. As shown in chapter 1, the interaction between heavy and light hole states causes the 

valence bands to be highly non-parabolic and generally increases the hole mass. Such interaction is 

obviously determined by the presence of non-zero off-diagonal elements R  and S in the 

Hamiltonian (2.55). However as such a Hamiltonian represents a set o f coupled equations, it is 

straightforward to see that the strength o f this interaction is not just determined by the absolute 

values o f these off-diagonal elements. Rather, the quantities o f interest are R/AE o r S/AE where AE 

represents the energy difference between the heavy and light hole solutions. The interactions 

between the heavy and light hole bands are therefore expected to reduce when applying 

compressive strain for [001] and [111] growth. In contrast, strain causes additional interactions in

[110] structures which are expected to reduce performance.

2.4.3 - Piezo-electric fields

The strain contribution to the effective mass equations was presented in the previous sub-section 

2.4.2. It was shown that changes in the periodicity o f the lattice affect the bandstructure as the 

corresponding change in the periodicity o f the wavefunctions affect the associated momentum. 

This obviously affects the outcome of the kinetic energy term in the Schrôdinger equation, thereby 

modifying the dispersion. Although the change in dispersion will also affect the corresponding 

wavefunctions, the primarily affected quantity is the energy. To illustrate, zone-centre 

wavefunctions in a QW  are expected to change very little, as the energy shifts due to strain AEg, Ô 

and X (2.76) are generally much smaller than the well potential. Any change in wavefunctions
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under strain at relatively large values of the momentum especially with respect to heavy/light 

hole composition, is entirely caused by the energy shift 5 between the heavy and light hole levels 

and its effect on the h p  interaction. However, in addition to the interaction of strain through the 

momentum, there is another mechanism by which strain directly affects the wavefunctions through 

changes in the periodic potential Ut (2.73) as compared to the unstrained potential Uo. This is the 

piezo-electric effect

As seen in chapter 1, the Zinc-Blende lattice consists of two elements which each occupy their own 

fcc-lattice. Such a lattice does not have inversion symmetry so that the transformation 

(%,y,z) -(% ,y,z) does not transform the lattice into itself. As a result, one can not simply

assume the electronic properties of two structures which are grown on a different face (see 

fig.2.12a) to be identical. And indeed, strain combined with a lack of inversion symmetry can 

cause the formation of macroscopic piezo-electric fields, which are caused by non-symmetric 

charge accumulation around the individual lattice elements (see fig.2.12b).

F ig .2 .1 2  : O r ig in  a n d  
su b stra te  d e p en d en ce  o f  
the p ie z o -e le c tr ic  effect.
(a ) D efin itio n  o f  the A - a n d  
B -fa ce  in G aA s. (b ) 
D isp la c em en t o f  the  
v a rio u s  a to m s un der  
co m p ress ive  s tra in  a n d  the  
a cco m p a n y in g  ch a rg e  
tra n sfer  in the ca se  o f  
g ro w th  a lo n g  (111).

( a ) (b)

Dsplacemenl Lnder 
cornpressi\e strcin

A-foce (Ga) 
B-face (As)

Electric field

The piezo-electric field in a Zinc-Blende structure is given by [Smi86]

(2.80)

Here, the subscript ; denotes the direction of the field {i=x,y,z\  ei4  is the piezo-electric constant 

[Sin93] and is (due to the restriction on j  and k ) an off-diagonal strain component The 

polarisation parallel to the growth direction is strongest in a strained layer for growth along the

[111] direction and zero for the other high symmetry directions [001] and [110] [Sun94,Car95]. 

The latter can easily be checked by using the explicit forms for the strain elements Ejk as presented 

in [Hin90].
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The piezo-electric field is o f the order o f 2.5 10^ V/cm for Ino^Gao.gAs grown on GaAs for the 

growth direction [111] [Sun94,Car95]. As the latter corresponds to a 250 meV shift in potential 

energy across a 100Â QW , it is obvious that such a field can have a serious effect on the 

wavefunctions and carrier distribution. As a result, it can be seen as a means to tailor the electron 

and/or hole distribution [Lu94,Hit95].

The latter ends this section on strain in semiconductors. It is worthwhile to re-iterate w hat has been 

achieved here :

•  The necessary definitions to describe the effects o f strain on the lattice have been presented as 

well as the physical inteipretation.

•  It was shown that the effects o f strain can be included in the previously derived effective mass 

m odel by introducing strain elements in the one-electron Hamiltonian.

•  A parametrised method similar to that employed in the derivation o f the k-p model o f section 

2.2 was presented, and analytic forms o f the strain Hamiltonian matrix elements were given for 

growth on [001], [110] and [111].

The aim of this chapter was to set up a bandstructure model capable o f modelling compositionally 

varying structures. Starting with the simplest (Kane) approach, successive improvements were 

introduced and the extension o f this model to compositionally varying structures was discussed. 

However, its full aim has not been achieved as the elementary question o f how to connect a 

waveftinction across an interface in a compositionally varying structures has not yet been 

introduced. Rather than to introduce an ad-hoc approach, it was decided to treat this problem in 

detail in the next chapter, both because o f its importance in certain material systems as well as to 

establish a clear insight into effective mass theory in terms o f a tight-binding (orbital) approach.
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The previous chapter contains a broad overview of effective mass theory in terms of its 

development, derivation and interpretation. There, effective mass equations for the conduction and 

valence band were presented for the bulk case as well as for the case in which the electrons or 

holes experience a macroscopic varying potential. Although this potential was specifically 

introduced to account for spatial changes in the composition, the presented differential equations 

prove to have an intrinsic problem when applied to compositionally varying structures in which the 

mass parameters are position dependent This is the so-called boundary condition problem.

So far in this thesis, as well as in the majority of the literature, the bulk description has 

conveniently been used to establish the effective mass equations, where necessary swapping 

vectors for operators to extend the model to compositionally varying structures. The ordering of 

the vectors in the bulk case is clearly unimportant as one is effectively woridng with scalars. 

However, the ordering becomes of crucial importance in compositionally varying structures where 

one is solving a set of differential equations with position dependent parameters. To illustrate, the 

ordering of the differentials as presented in the previous chapter can give complex energies which 

is clearly unphysical. At this point, one could have the impression that this is just a mathematical 

problem rather than a physical one, but it is not. One is essentially interested in solving the 

fundamental problem of how to connect an envelope function across an interface between two 

materials with different mass parameters.

This chapter concentrates solely on the boundary condition problem. The first section establishes 

the connection between operator ordering and envelope functions. The traditional approach to 

overcome non-real eigenvalues is illustrated using the one-band conduction band Hamiltonian. 

Various objections to this approach are discussed, highlighting the need for a more fundamental 

approach. The second section discusses Burt’s ‘exact envelope function theory’ [Bur87,Bur92] 

and presents the results obtained by Foreman [For93] for the boundary conditions for growth 

along [001].

This chapter can be seen as an introduction to the the results chapter (chapter 6) in which the 

discussion on the boundary conditions will continue. There, a formalism to extend the Burt- 

Foreman framework to non-[001] growth directions is presented, as well as a set of analytic 

boundary condition rules that arc to replace the conventional symmetrisation rule. The relevance of
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adopting these ‘new ’ boundary conditions is also highlighted in chapter 6, where it is shown that 

the choice o f boundary conditions can have a strong effect on the dispersion o r on the outcome of 

mobility calculations in highly doped p-type materials such as InGaAs-InP.

3.1 - Introduction

The question o f how to connect the envelope function across an interface between two materials 

with different m ass param eters, o r the boundary condition problem, has been a m ajor cause of 

controversy in effective mass theory . Its existence originates from the fact that the effective mass 

equation for compositionally varying structures carries a combination o f differential operators as 

well as positionally dependent mass parameters. Q early , the position o f these parameters with 

respect to the operators (the operator ordering) is expected to influence the theoretical dispersion 

relations. Worse, particular choices o f ordering can even lead to unphysical results.

To illustrate the latter, as well as to connect the operator ordering to the continuity o f the aivelope 

functions, the effective mass model for the conduction band within the 1-band approximation is 

examined first. In this approximation, the conduction band effective m ass equation takes the form 

(2.50)

A" a "

2m* dz  2 m
F , ( z ) = £ F . ( z )  (3.1)

In the present form, a position dependent mass in the kinetic energy term causes the Hamiltonian to 

become non-Hermitian at the interfaces. This is clearly a violation since the solutions are required 

to have real energies. In addition, it violates the requirement o f current conservation (see [Gas74] 

for the definition o f the current flux). Obviously, the order o f the differential operators with 

respect to m* should be replaced by a more physical combination.

Investigations into what operator ordering to use is however not ju st a mathematical problem, but 

corresponds (as mentioned earlier) to the fundamental question o f how to connect the envelope 

functions across an interface. These boundary conditions are directly linked to the Hamiltonian 

and can be obtained by integrating it over an infinitesimal interval across an interface. To clarify 

this, the effects on the continuity o f the envelope function F(z) are evaluated for three (at this point 

arbitrary) choices o f operator ordering denoted by (a),(b) and (c).
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in dz'(a) — —

(b)
dz m oz

^F(z)]cont inuous  
m yaz J

^  I “ V  F(z) I continuous 
d z y m  J

F(z) and continuous
dz

F( z) continuous, discontinuous 
dz

F (z) aW  discontinuous
dz

Fig. 3.1 is a graphical illustration of the effects of these particular choices for the operator 

ordering on the continuity of the envelope function.

interface
F ig .3 .1  : V ariou s sch em es to  con n ect an en ve lo p e  fu n c tio n  F (z) a c ro s s  an in terface , (a )  
B oth  F  a n d  d F /d z con tin uou s; (h) F  continuous, dF/dz d isco n tin u o u s; (c ) bo th  F  a n d  
dFldz discon tin u ou s.

At this point, one has to realise that there are an infinite number of choices possible for the 

ordering as one could for example split up the mass term and write the kinetic energy in the form 

(m* f  -d !̂dz -̂(m* f , a+ p= -7 . Clearly, one is looking for a choice which renders the Hamiltonian in 

a Hermitian form and satisfies the requirement for current conservation. However, the question is 

if such an heuristic approach can give sufficient restrictions to obtain unambiguous boundary 

conditions. Furthermore, as each operator ordering corresponds to a specific boundary condition, 

one has to investigate the physical interpretation of the corresponding continuity requirement of the 

envelope functions.

3.2 - The conventional approach

As seen in the previous section, the conduction band effective mass equation for compositionally 

varying structures is not Hermitian in its presence form, nor conforms to the requirement of 

current conservation. Both physical objections can be overcome by replacing the kinetic energy 

operator by its symmetrised form

d :  d (
2m* dz^ dz

d
dz

(3.2)
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which corresponds to the example denoted by (b) in the previous section. Integrating this 

symmetrised form of the kinetic energy across an interface, the familiar boundary condition of

continuity of (l/m *)F ,(z) is obtained.

Interface

F ig .3 .2  : P lo t  o f  a  f ic t i t io u s  p e r io d ic  |5> 
zon e  c en tre  w a vefu n c tio n  a n d  an en ve lo p e  
fu n c tio n  n e a r  an in terface .

Envelope function
Zone c e n tre  
w avefunction

Material 2Material 1

Although at first sight this might seem a logical approach to circumvent the problems at the 

boundary, one can question the validity of the procedure. There are at least three possible 

objections to it :

• At this point there is absolutely no theoretical evidence that the symmetrisation procedure of

(3.2) is the correct one as there are still an infinite number of choices possible [Mor84].

•  The integration over the interface used to obtain the boundary conditions is not expected to be 

valid, since the X:-space derivation of the effective mass equations [Lut55] assumed the 

potential V to be ‘smooth’ and a discrete jump at an interface can hardly be regarded as 

smooth.

• The kink in the envelope functions at the interface introduced by this boundary condition can 

not literally be present. Since the wavefunction is given by vg = F^(r) |S) this would give an 

infinite second derivative and therefore infinite energy at the interface unless |S) is zero at this 

interface (fig.3.2). The latter is however completely unrealistic.

The last point is disastrous from a conceptual and physical point of view. Despite this controversy 

and lack of knowledge, the same symmetrisation procedure was commonly used to make the 

valence band Hamiltonian Hermitian. The procedure is however even more questionable in the 

latter case, as such a valence band Hamiltonian features a number of matrix elements that contain 

a combination of first and second order differentials [see for example (2.51)]. Adding to the 

controversy, the requirement of real eigenvalues does not necessarily mean that each element by 

itself has to be Hermitian.
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Despite this, effective mass theory seemed to woric extremely well so that the boundary condition 

problem was considered more a fundamental than a practical problem. As the initial material 

systems o f interest such as AlGaAs-GaAs feature a fa idy  constant set o f mass parameters, a 

particular choice o f operator ordering is not expected to have a large effect on the theoretical 

dispersion relations. However, this is less obvious for InGaAs-InP o r emeiiging material systems 

such as CdTe-compounds, which feature considerable changes in mass param eters. As a result, an 

in depth investigation o f the origin o f the boundary conditions was long overdue. Although various 

attempts to solve this problem were made, insight in the problem o f how to connect envelope 

functions across an interface was not provided until the development o f an ‘exact’ envelope 

function theory by Burt [Bur87,Bur92]. The next section presents (some) o f the results obtained in 

that work.

3.3 - Exact envelope function theory

The effective mass equations in chapter 2 were essentially derived for bulk structures only. As a 

result, no specific arrangements were made to allow for changes in effective m ass parameters. It is 

therefore no surprise that only general arguments (such as the requirement that the Hamiltonian 

m ust be Hermitian) have so far been employed to obtain the correct operator ordering, as the 

original derivation o f the effective mass equations by itself can not supply such information. 

However, as it was shown that these arguments cannot provide unambiguous boundary conditions, 

not even in the relatively simple conduction band case, it is clear that a m ore fundamental 

approach is needed.

Obviously, a derivation o f the effective mass equations which specifically allows for changes in 

the composition and mass parameters is required. Such an approach was first provided by the 

development o f an exact envelope function theory by Burt [Bur87,Bur92]. The thorough treatment 

of the problem in both papers is rather mathematical and too extensive to be repeated, but as 

suggested by him self [Bur96,unpublished] there is an alternative and less general approach to 

show the principles involved.

Starting again from the expansion (2.39)

=  (l ) (3-2)
j

one would now like to explicitly allow for changes in the mass param eters as well as link these to 

the microscopic structure o f the semiconductor materials. One now makes an assumption involving
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the origin of the effective mass parameters. From the bulk Lriwdin-perturbation term (2.37) it 

follows that any change in mass parameters , either being m* or yj, yz, yj, when crossing an 

interface that separates material 1 from material 2 can either be caused by

•  differences in the form of the band edge orbitals Ujo(r) in both materials, i.e. differences in the 

momentum matrix elements.

•  differences in the energies Ej at which the various bands are located.

Following Burt’s suggestion, the restriction is made that only the energies of the band edge states 

change when going from material 1 to material 2 and not the orbitals itself. A compositionally 

varying structure will from now on be described by position dependent band energies Ej but 

invariant cell-periodic functions up. The important thing to note is that, in contrast to the approach 

taken in the previous chapter, one does not now implicitly assume all bands to be equally 

influenced by a change in composition. Obviously, the final equations will still feature a 

compositionally varying term such as V(r) that describes the energy as a function of position of the 

band under consideration (either being the conduction or valence bands). However, changes in the 

mass parameters will now explicitly be allowed through variations in energies of the remote bands 

(fig.3.3).

¥
E

0)
C

GaAsInAsLU GaAs
-18

-20

Position [Arb.units]

F ig .3 .3  : B a n d  lin e-u p  o f  the lo w es t V -po in t s ta te s  in a G aA s-In A s Q W  (exclud ing  
stra in , d a ta  fro m  [W a l8 9 d .a n 8 2 J , a rb itra ry  ze ro -p o in t o f  o rig in ). The s o lid  lin e  
c o rre sp o n d s  to  the conduction  han d  an d  w o u ld  h ave  m o d e lle d  f o r  the p ie c e w ise  
co n sta n t e le c tro s ta tic  p o te n tia l V (r) that w a s  in tro d u ced  in the p re v io u s  ch a p ter .
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Using the above approximation, the derivation o f the effective mass equations (2.33-2.38) is now 

repeated where particular attention is paid to the operator ordering. Inserting the expansion (3.2) in 

the general Hamiltonian and using that the cell-periodic wavefunctions ujo correspond to the bulk 

eigenfunctions at energies Ej, one obtains

J -  »o ^ 0

were Ej(r) is position dependent as one now specifically allows for compositional changes. Again 

the assumption is made that the expansion can be divided into two classes, a dominant set |/) 

consisting o f F ; o r Fyj orbitals, /= l..r ,  which requires explicit treatment and a remote set |p), 

p = l . . j ,  which can be included using perturbation theory. Taking the inner product with 

respectively a dominant and a remote state gives.

E , ( r ) - E -
2m,0 J

2t72 ^
V f,. V fr = 0

(3.4)

mr*0 n' ^0 f

where, as a result o f the approximation that the orbitals are identical throughout the structure (but 

not their energies), the momentum elements P/ji (=(«ji o|p|w/o))» Ppp' and p̂ J■ do not have a

position dependence. Note that the inner product pir is zero because o f symmetry considerations as 

the explicit expansion in \l) (the dominant states) is restricted to just F ; o r Fyj in this work (1-band 

conduction band, 4- o r 6-band valence band model). Now, using that the remote states are 

relatively far separated in energy from the energy region o f interest, it follows that Ê -̂E is the 

dominant term in the second equation o f (3.4). Neglecting the kinetic energy term as well as the 

term proportional to as F̂ «̂F| results in the approximation

m , ^ E ^ ( r ) - E
(3.5)

Inserting this in the expression for the dominant states, the following system of coupled differential 

equations is obtained

E , ( r ) - ^ - E  
2m.

Ff H------
rrir

Y 'y  PryPyr  y
^  "EJr)-E ^ Fp =0 (3.6)

The second part o f the above equation can be seen as the Ldwdin interaction term and is very 

sim ilar to (2.37) apart from the fact that it is now carrying operators rather than vectors. To be 

able to compare the above equation to the original effective mass, it is rewritten as
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D fjj
 P Vi 9%c

+  2 , ( r ) 6 j , ' F^,(r) =  £ F . . ( r )

(3.7)
“ nP

The im portant difference to (2.42) is that an exact^ and unambiguous operator ordering has been 

obtained  Q early , one has to keep track o f the operator ordering during the param etrisation o f the 

effective mass model to be able to derive the correct boundary conditions. Simply lumping the 

contributions o f all remote bands on the mass parameters together (to obtain m o r yy.j) and 

neglecting the operator ordering as done in (2.44,2.47) cannot provide the correct boundary 

conditions as there are just not sufficient basic quantum mechanical constraints to subsequently 

provide unambiguous operator ordering.

For an expansion in a single band, i.e. for the conduction band case, using the ordered form (3.7) 

results in the same ordering as one would have obtained by using the conventional symmetrisation 

rule (3.2). The derivation o f the boundary conditions for the valence band are however more 

difficult to obtain, and will be discussed in the next section.

This chapter then ends with some concluding remarks about the effects o f the employed 

approximations in the derivation (3.2-3.7) and comments about more recent approaches towards 

the boundary condition problem.

3.4 - Explicit form of the boundary conditions on [001]

The correct boundary conditions for growth along the [001] direction were derived by Foreman 

[For93]. When working with the ordered form of the Ldwdin interaction (3.7), one finds that it is 

convenient to replace the previously used Luttinger param eters, which were chosen to relate 

directly to the effective masses involved, by a new set o f three param eters which explicitly identify 

the contribution corresponding to remote bands o f a specific symmetry Fy, F /j  o r Fy2 (neglecting 

the small contribution o f F 2j)  [For93]. Using the tight-binding picture as done in subsection 2.2.2 

where the atomic orbitals upto d  corresponding to the various symmetry groups were presented, it 

is straightforward to show that the only non-zero contributions to the band param eters L M J^  in 

the parametrised Hamiltonian (2.47) are o f the form

 ̂Of course, in our derivation there is also the assumption that any wavefunction can be written as a 
product of a zone-centre solution and an envelope function without any constraints.
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a = o / 3 " < o ) i i ( % H V ( ^ v - £ )

It =  ( l / 3 m o ) S |( ^ |p , lv ) |7 ( £ v  -  E)  (3.8)
V

5 = ( l / 6 m „ ) i | ( x | p » | 7 ( £ v - £ )

Each of these interactions will generate terms in the Hamiltonian with a specific ordering of the 

differential parameters with respect to the band parameters. Identifying the contribution to the 

Luttinger parameters 7/, 7 2 , 7j, one finds

71 =  - l  +  2 a  +  4ti +4Ô

72 = 0 - 7 1 + 2 5  (3.9) 

7 3 = 0  +71 - 5

One can now proceed as done in (2.47-2.52) and derive the ordered Hamiltonian elements for a 

specific growth direction using the appropriate angular momentum basis for growth on [001]. 

Integrating this ordered Hamiltonian across a boundary, one then obtains the boundary condition 

of continuity of F and DF where D is given by [For93]

(1) (3)

0  j i k + { a ' (yi+2y2 ) ^  V3'̂ _(o -6]n - V 3 * + [ ^ ( o - 2 i ^Y2

0 0 (y I "^Yz)^ \  0
- J ^ i k + ( a - 5 )  - 2V2Y2 V3^*+j^j(a- 6 )  + j j i J  0 V Yl ^  i -  J i - ô )  |

0 >/3Â:_[ |̂(a- 6 )  + -|nj - 2 V2 Y2 ; -/*+((J-n-5); ""

(3.10)

The above (correct) boundary condition matrix differs considerably from what one would have 

obtained had one used the conventional symmetrisation procedure. This boundary condition matrix 

exhibits

1) a considerable asymmetry with respect to the diagonal, something one would not have found 

using a symmetrisation procedure.

2) reduced coupling between the heavy hole band and the light/split-off hole bands as these 

interactions do not feature the dominant contribution from the remote states with s-type 

symmetry (o)

3) a new coupling term, coupling both light hole states as well as the split-off-hole states.
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The boundary condition problem

As a result, significant changes in the dispersion relations or related quantities like subband 

effective masses are expected when adopting the new boundary conditions. For example, it was 

shown in [For93] that, using the conventional symmetrised boundary conditions, the calculated 

zone-centre effective mass for the second subband in an Ino^GaogAs/GaAs QW can have triple the 

value of that obtained using the new boundary conditions (fig.3.4). Furthermore, it was shown in 

[Men94] that 4- and 6-bands calculations which do not implicitly include the conduction band 

improve significantly when adopting the new boundary conditions when compared to an 8-band 

model (where the higher 5-orbitals are explicitly included) (fig.3.5). The latter results clearly show 

that the new boundary conditions are more physical than the old ones, as one does not expect :

• the effective mass to be so sensitive with respect to well width

• the valence band dispersion to display large variations when comparing the various (4-, 6-, 8- 

band) models. Obviously, one expects the accuracy to increase when including more bands in 

the expansion but with a gentle convergence.
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At this point, the need for implementing the new boundary conditions has been established as it 

was shown that valence band effective models that do not explicitly include the interaction with the 

conduction band states (such as the 4- and 6-band models that are used throughout this thesis) are 

very sensitive to the choice o f boundary conditions. Despite the numerical evidence and new 

theoretical insight in the origin o f the boundary conditions, it was found that the symmetric 

boundary conditions were still being used in the literature when looking at non-[001] growth as the 

exact envelope function theory had so far only been applied to [001]. This was addressed in two 

papers [Sta97,Dal98], in which the first one provides the boundary conditions for [110] growth 

and the second one extends the formalism to arbitrary growth directions. These theoretical results 

will be discussed in detail in the next chapter. The relevance o f using the correct operator ordering 

will be highlighted again in chapter 6 where dispersion relations are presented for non-[001] 

growth directions for the various boundary conditions, along with its effects on theoretical hole 

mobility calculations.

3.5 - Concluding remarks

One m ay ask if the approach taken in section 3.3 is truly the final word on the boundary condition 

problem. Here, a rather severe approximation o f invariance o f the cell-periodic wavefunctions was 

used to obtain the final effective mass equations. Furthermore, the new boundary conditions again 

result in a kink in the wavefunction at the interface which, as explained in section 3.2, was exactly 

one o f the reasons to question the traditional approach.

However, section 3.3 only contains a simplified derivation o f B urt’s exact envelope theory, whose 

strength lies in the complete circumvention of the boundary condition problem by using a set of 

envelope functions and derivatives that are constant even at an abrupt interface. The 

(mathematically rigorous) approach takes the change in each zone-centre wavefunction in 

consideration although the basis functions remain the same. So in this approach the momentum 

matrix elements are truly invariant, a feature that was exploited in the derivation presented here. 

The actual derivation by Burt indicated that the effects o f a change in zone-centre wavefunctions 

are only o f small importance. Furthermore, the kink in the envelope functions was shown to result 

from the effective mass approach of eliminating small envelope functions in favour o f the 

dominant ones (3.4,3.5) and, more importantly, was shown to approximate a rapid change in the 

derivative in the region o f the interface as obtained using the exact theory.
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Despite the satisfactory results o f the latter model, more sophisticated approaches have followed in 

the literature [For96] where the effects o f position dependent m aterial properties are taken into 

account in even more detail. The latter approach generates new interface effects and even the loss 

o f continuity o f the envelope functions at an interface. At this point, one has to ask if  such a  new 

m odel is actually called for. There are various arguments that can be m ade against this :

•  Effective mass theory is generally considered a engineering method, i.e. a relatively 

straightforward model to gain insight One could argue that the latter extension, simply due to 

the loss o f continuity o f the envelope functions at an interface, turns the whole model into a 

cumbersome mathematical exercise.

•  Forem an’s derivation already had to neglect the interaction with the P 2 5  bands as there are 

simply not enough param eter constants available (yi.yz.yj) to uniquely determine the individual 

contributions.

•  Those parameters, as well as band-offsets and other param eters, are only known with limited 

accuracy. Realising that the old effective mass theory worked extremely well o r that the 85:15 

offset rule in AlGaAs managed to survive for a decade [Wei91], it is questionable if any 

improvement beyond Burt’s approach is worthwhile at this p o in t

In conclusion, the exact envelope function theory by B urt’s is considered in this thesis to be the 

basic framework to describe electrons and holes in compositionally varying structures. As 

mentioned in section 3.4, the effects o f choosing particular boundary conditions on the theoretical 

dispersion relations will be shown in the Results chapter (chapter 6).
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Chapter 4 ; Carrier transport in heavily doped
structures

The previous two theory chapters only concerned themselves with bandstructure theory. A general 

effective mass bandstructure model was set up in chapter 2 whereas chapter 3 dealt specifically 

with the extension to compositionally varying structures. Although several techniques were 

mentioned in the introductory chapter to measure the bandstructure directly, the ultimate aim in 

this thesis is to use the derived bandstructure model to optimise p-type semiconductor structures 

for use in power FET-applications.

Although some qualitative conclusions about the expected (electrical or optical) performance can 

be drawn by comparing different bandstructure diagrams (see chapter 1), one would ultimately 

want to be able to make quantitative predictions about the carrier mobility. To realise this, the 

derived bandstructure model has to be extended with a scattering model. The latter is the main 

subject of this chapter.

Various scattering mechanisms exist. To name a few [Rid93] :

•  Phonon scattering, i.e. scattering due to thermal vibrations of the crystal lattice. Divided into 

-optical and

-acoustic phonon scattering.

•  Alloy scattering, due to fluctuations in the composition in a ternary compound

• Interface roughness scattering

• Impurity scattering 

- o f  neutral impurities 

- o f  charged impurities

each which requires a different scattering model. This thesis is concerned with highly channel- 

doped structures such that ionised impurity scattering is expected to be the only relevant scattering 

mechanism at low temperatures (77 Kelvin). At higher temperatures, optical phonon scattering is 

expected to contribute to the scattering processes. However, ionised impurity scattering is the only 

scattering mechanism that is going to treated in detail in this work, as it is expected to be the 

dominant mechanism even at room temperature.



Carrier transport in heavily doped structures

This chapter is set up  as follows. The following section contains an introduction to scattering. 

Here, scattering is described in terms o f momentum vectors, scattering angles, and momentum 

loss. The effect o f scattering on the mobility is qualitatively explained, as well as the effect of 

screening. Section 4.2 describes the Thomas-Fermi scattering model which is extended to the more 

sophisticated RPA  (Random Phase Approximation) in section 4.3. The role o f band mixing is 

examined (4.4) and the explicit forms o f the relevant equations o f the scattering model are 

presented for structures with one (4.5) o r multiple (4.6) occupied subbands. This chapter then ends 

with a discussion on the definition o f the effective mass param eter in the scattering model and its 

relation to the bandstructure. The latter is important as the two main existing definitions give 

different results when applied to non-parabolic bands o f which the valence bands are an extreme 

example. A simple model to account for non-parabolicity effects in the conduction band is 

introduced and its relevance is highlighted for highly doped n-channel InGaAs-InP structures.

4.1 - Introduction

Quantum mechanics states that electrons in a perfect periodic lattice can move without any 

electrical resistance. Such behaviour, known as ballistic transport, is in contrast to what m e  

intuitively would expect as the moving electron has to pass ions and other electrons on its passage. 

A perfect periodic potential does not cause electrons to scatter, all resistivity is solely due to 

deviations o f the potential from being ideal, for example due to lattice vibrations or the presence of 

ionised impurities (more examples were given in the previous section).

Elastic scattering processes (such as ionised impurity scattering) can only involve states at the 

Fermi-energy in degenerate systems at low temperatures. F ig.4.1a schematically shows the effect 

on the momentum when an electron moving in the x-direction under the influence o f an electric 

field Ex is scattered from its initial state with momentum /: in the first subband to a final state with 

momentum k! in the second subband. In the process, some o f its momentum (i.e. kinetic energy) is 

converted to potential energy. In addition, the momentum o f interest (i.e. parallel to the electric 

field) is further reduced due to the angular deflection. The momentum loss q  associated with such 

an event is given by

^  =  [/:^ +  k ' ^ - l k k ' c o s { a ^ ^  (4.1)

where a  is the angle over which the electron is scattered (see fig.4.1b). So far this section has only 

mentioned interband scattering, but scattering generally mainly occurs within the band itself (intra

band scattering). A schematic picture of this is given in fig.4.1c.
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Scattering obviously affects the collective motion of carriers under the influence of an external 

force such as an electric field. As illustrated in chapter 1, an electric field will cause the Fermi- 

contour to shift parallel to the direction of the field, resulting in a net momentum and current. The 

displaced Fermi-contour may be maintained in a steady state, governed by the scattering time i  as 

the mean increment in velocity between two scattering events is given by qEzIm . By calculating 

this scattering time, one can thus determine the response of a system. More specifically, such an 

approach would provide theoretical insight in the conductivity and carrier mobility in a 

semiconductor structure. The carrier mobility is the main parameter of interest in this woiic, as it 

was shown in chapter 1 that the relatively low hole mobility in GaAs is the reason for the poor 

performance of p-type FETs.

(a)

ky
y

k[l - cos(a)]

F ig .4 .1  : (a ) A 3 -d im en s io n a l rep resen ta tio n  o f  an in terb a n d  sc a tte r in g  p ro c e ss .
(h) S ch em a tic  v ie w  o f  the m om entum  lo ss  q  w ith  re sp e c t to the in itia l (k) a n d  f in a l  (k ’) 
m om entum  a n d  an g le  o f  d e flec ta n ce . (c ) A s (h) bu t n ow  f o r  an in tra -b a n d  sc a tte r in g  
p ro c e ss . H ig h lig h ted  is  the m om entum  lo ss  a lon g  k due to  the tra n sitio n .

Although ionised impurity scattering can conveniently be pictured as a Rutherford scattering 

process (fig. 1.6), considerable complications arise from the fact that the electron is moving in 

surrounding ‘sea’ of particles. As a result, the scattering process is complicated as one is really 

looking at a many-body process. Obviously, the impurity does not only interact with the particle 

under observation, but also with its surroundings. The latter gives rise to screening (as will be 

discussed in the next section) which needs to be specifically included in the evaluation, as 

neglecting it would result in a significant overestimation of the scattering. Screening clearly plays 

an essential role in ionised impurity scattering and will be included using the Random-Phase- 

Approximation (RPA) which has proved to be very successful in the literature 

[Fle90,Hai95,Hai96,Hai97]. There are however various ways to account for screening, the 

simplest way being so-called Thomas-Fermi approximation (TFA) which, although not very 

accurate, gives a good insight in the screening mechanism. The next section will now introduce the
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physics behind scieening by looking at the relatively simple TFA. Section 4.3 will then extend this 

model to the more accurate RPA.

4.2 - Ionised impurity scattering in the Thomas-Fermi approximation

As discussed in the previous seetion, the presence of an ionised impurity in an otherwise perfect 

crystal introduces a potential fluctuation which can cause the electrons to scatter. This 

electrostatic potential fluctuation is equal to the Coulomb potential of the impurity itself and 

the accompanying screening potential (((>3 which can be seen as a response of the system to the 

introduction of the charged impurity. The latter potential literally screens the impurity from the 

passing electrons (hence its name) thereby dramatically reducing the scattering rate.

(a)

m m

F ig .4 .2  : Illu s tra tio n  o f  the effect o f  a  rem o te  im p u rity  on the p o te n tia l f e l t  b y  a  p a ss in g  e lec tro n .

Fig 4.2 schematically shows the effect of a remote impurity on the potential felt by a passing 

electron. Obviously, the electrons in the channel will be Coulomb attracted so that one expects a 

higher electron density near the impurity as compared to elsewhere in the channel. The latter is the 

screening charge. To first order, the wavefunctions in the QW do not change but only the 

eigenvalues of the quantised levels, /= /..« , so that the induced charge is given by [Ste67]

P w  ('•//. z) = £  A£, (r„ ) 1/ (z)| '
(4.2)

where the summation over i runs over all occupied subbands with corresponding envelope function 

f,(z). Here, the coordinate ru represents the in-plane vector (x,y,0) whereas the coordinate z is 

orientated perpendicular to the QW interface. The expectation value of the total potential 

fluctuation ^  as experienced by an electron has been defined by
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=  J ‘fe /i(z ) //(z )< K r „ ,z )  (4.3)

For i= j\  (4.3) represents the energy shift in the quantised level i at the in-plane coordinate ru due to 

the presence o f the impurity. The problem is now that the total potential fluctuation ^(ru,z) is not 

just given by the impurity potential but also includes the contribution o f the induced charge that 

one is trying to calculate. As a result, one one has to solve a rather complex Poisson equation in 

Fourier space [Yok86] to obtain the true (total) potential fluctuation,

Various solution methods and approximations have been proposed to solve (4.4), ranging from ftill 

self-consistent solutions [Yok86] to severe approximations with respect to the wavefunctions 

involved [Lee83a]. However, a much more elegant solution to the problem exists. Fermi’s Golden 

rule (see for example [Sin93]) states that the scattering rate for a transition \njc)-^\n! Jc'), where 

n,n' denote the band number and kjc' the momentum, is detemiined by the inner product

|(¥  n'k' )| - As a result, there is no need to know the exact form o f this potential as only its

projection on the initial and final eigenstates is required. Concentrating on the projections on the 

envelope functions (4.3), the original (Fourier transformed) Poisson’s equation (4.4) transforms 

into a simple linear relation between the true (total) potential and the potential due to just the 

ionised impurities. This is known as linear response theory [Mah90]. The Fourier transformed 

projections o f the potential can then be expressed as

^w (9) = (?) (4.5)
m,m'

where the indices n,n’ /n ,m ’ run over the various quantised states. The screening is thus accounted 

for by a dielectric response matrix At this point, one has to appreciate the strength of the

solution method. The total potential is expected to be fairly complicated due to the screening, yet 

the relevant physical quantities can be obtained by solving a simple matrix equation. Limiting the 

discussion to the TFA, i.e. a long wavelength limit q=0  in the screening elements, it is 

straightforward to show that the static dielectric response matrix takes the form

e = 5 . . . .  + -  5 . . . 8 )  (4.6)

where 0  is the Heaviside step function and Ef„ is the Fermi energy o f the m-th subband. As noted 

earlier, this approach is not particularly accurate [Hai96]. The next section will therefore discuss a 

more advanced approach.
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4.3 - The Random  Phase Approxim ation

A more accurate dielectric response matrix than in the TFA can be obtained in the Random Phase 

Approximation (RPA) [Mah90]. Its derivation is rather complex, so that this thesis will limit itself 

to simply accepting the resulting dielectric response matrix. Fortunately, this dielectric matrix has 

many similarities to that obtained in the TFA and even reduces to the latter in some cases. The 

RPA dielectric response matrix is given by [Flc90,Gon94]

= + -  77~̂ /wi',mm’(<7)riw(<7) (4*7)
q

where, defining ±  ,

l - R e { [ l - ( 2 < : ^ „ / 9 y ]  1 m  = m' (4.8)

Ji/ 2  j  n i

o cc u p ie d

The only differences between the results for the two fi-ameworks are that the two delta-functions in 

the TFA dielectric response matrix have been replaced by a new fimction Fnn’jnm'(q)y as well as 

that the Heaviside stepfunction has been replaced by the electron density correlation fimction IT. 

The similarities are even more striking when one realises that Fnn’ntm' reduces to a diagonal matrix 

in the case o f a symmetrical structure which elements would have been retained in TFA framewoik 

had one not made the long-wavelength approximation. Furthermore, the density correlation 

fimction IT reduces to 1 in the case where the momentum transfer q  is smaller than both 2kfm and 

/:+, something which is always satisfied for a system containing just one occupied band.

Note that the electron density correlation fimction has only been presented for the case where 

both bands m /n ' are occupied. In practice, one has to truncate the dielectric response matrix at 

some point to obtain a workable system. In this woik, it was chosen to limit the sum over the 

indices n, n ’ ,m and m' to just the occupied bands. Although scattering at low temperatures will 

only occur between occupied bands, one has to keep in mind that the empty bands will still affect 

the mobility via their influence on the dielectric response matrix. Their influence is however 

expected to be relatively small [Hai95].

A full description o f the interaction potential, given by the impurity and the screening, has been 

obtained. One can therefore now set up a scattering model, and this will be the subject o f section
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4.5. However, before such a model can be set up, some comments about the application the 

dielectric response matrix to Fermi’s Golden Rule have to be made.

4.4 - Ehrenreich’s overlap function

Section 4.2 explained the framework that was chosen to include screening in the scattering 

potential. A dielectric response matrix was set up whose derivation utilised the fact that the exact 

form of the total scattering potential (|) is not required to calculate scattering rates, but only its 

projection on the initial and final wavefunctions. The latter follows, as mentioned, directly from 

Fermi’s Golden Rule. The consequent discussion only involved the projections o f the total 

scattering potential on the envelope functions, which were directly related to the projection o f the 

impurity potential via (4.5).

At this point, one has completely ignored the fact that the initial and final wavefunctions are not 

simply given by the envelope functions /„. The latter only describe the slowly varying part, on an 

atomic scale, o f the wavefunction. The true wavefunction in the effective mass approximation is 

given by y  (r) =  where are zone-centre solution o f the original SchrOdinger

Hamiltonian. Here, the summation over i runs over all bands explicitly used in the effective mass 

expansion. The question is now if (and if yes, how) the presence o f the zone-centre solutions affect 

the scattering rates. Or alternatively, how is the projection o f the potential on the envelope 

functions related to the quantity o f interest which is the projection on the initial and final 

wavefunctions ?

The situation is straightforward for the conduction band case. Using a 1-band model to describe 

the conduction band in a compositionally varying structure with growth direction along z, tiie

wavefunction is given by y  ^  (r) =  / /  , where |5) is a rapidly varying function on

atomic scale with the same transformation properties as an atomic f-orbital. One thus obtains,

=  i^ » .(9 )

The requirement q= k'-k  arises from the plane wave form o f the envelope functions perpendicular 

to the growth direction in combination with the requirement o f momentum conservation. The 

overlap function |(5|5)|^ reduces to unity as the initial and final cell-periodic function are identical

\ls\sf
. q  = k ' - k  (4.9)
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(both given by |5>), so that the initial and final cell-periodic functions do not appear in the final 

expression.

However, the situation is more complicated in the valence band case as the hole eigenfunctions 

away from the band edge are no longer pure heavy, light or split-off holes, but form a mixture of 

the three. As a result, one does not expect the cell-periodic solutions corresponding to two different 

momentum vectors to be identical. Extending the approach as followed in (4.9), one introduces

|{ V  nk |(|)|V  nk' }| =  1^ nn' | ' ^nk ,n ',k '

1/ , \P
^n k ,n 'k ' -  ) |

where G is a multiplicative function that was first introduced by Ehrenreich [Ehr57]. This overlap 

function contains all the effects imposed by the cell-periodic part o f the wavefunction. The 

implementation and interpretation is straightforward. As expected, G  reduces to unity for 

scattering between identical cell-periodic states. Scattering between states with orthogonal cell- 

periodic states is prohibited, as reflected in 0= 0 .

Analytic expressions for Gnk.n't in the case o f  a bulk semiconductor can be found in [W il71] where 

it was found that the overlap function takes the form [ l+ 3 c o /(a )J I4  for a heavy hole intraband 

transition, where a  is the angle between the initial and final momentum vector. A significant 

deviation from unity is seen, which highlights the need for the explicit inclusion o f the overlap 

function. Its effect on scattering rates is re-examined in chapter 6 where numerical results o f G  

will be presented for a variety o f QW structures.

4.5 - Calculating scattering rates

At this point, the total framework has been set out to evaluate the relevant scattering rates using 

Fermi’s Golden rule. From a mathematical point o f view it is most convenient to restrict the 

approach to delta-doped structures, i.e. where the impurities are essentially contained within one 

atomic layer, as it leads to the simplest form of equation. Since it also offers a relatively easy 

interpretation compared to bulk doping, all experimental structures that are discussed in chapter 6 

employ 6-doping. Using equation (4.5) in which the total potential fluctuation is written in terms of 

a dielectric response matrix and the definition o f Ehrenreich’s overlap function (4.10), one obtains 

directly from Fermi’s Golden rule that the scattering rate per unit angle for a transition 

\njc)->\n’Jc') in a delta-doped structure is given by (see [Hai96] although the overlap factor is set 

to one in that article)
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r _  (e) = Z  W) j 'k A (z ) / ,( z )g - 'l - 'i r  . ( t . f  ) (4.11)

where riD is the number o f ionised donors in the 5-plane located at z,. The total scattering rate for a 

given transition is obtained by integrating (4.11) over all angles. One can then define the quantum 

and transport lifetime for a transition n to n' as

- ^ =  J r„ (a )< ia  , ; ^ = J r „ . ( a ) [ l - c o s ( a ) ] d a  (4.12)
^  nri -n  ^  nn' _%

These definitions only differ in the sense that the transport lifetime contains a scaling factor 

[l-co s(a )J  within the integral. The interpretation of the above scattering times is straightforward. 

The quantum lifetime reflects the true mean time between scattering events o f all possible angles. 

This lifetime is o f relevance in for example a Shubnikov-de Haas experiment where any scattering 

event will disturb the cyclotron motion o f the carrier. In contrast, one does not expect all scattering 

events to carry the same weight when evaluating the electrical resistivity (or mobility) o f a 

structure such as done when performing a Hall- or van der Pauw measurement Qearly, an intra

band scattering event over a small angle will have negligible effect on the current flow as both the 

initial as the final state will have their momentum essentially parallel to each other. The latter is 

the reason for the presence o f the scaling factor, as the momentum loss along the direction o f  

original m otion  is given by k r[ I-co s(a )]  (see fig.4.1 c).

Ionised impurity scattering in n-type 5-doped two-dimensional systems has previously been 

considered by Masselink and Thobel [Mas91,Tho93]. There, the evaluation was restricted to just a 

single occupied subband. It can be shown that the equations presented in this thesis reduce to those 

o f Masselink and Thobel when making the same restriction. In the situation where there are no 

inter-band scattering processes, the transport scattering time x=T;y^ then directly determines the 

carrier transport mobility via

p r
\ i = —  (4.13)

m

(and similariy for the quantum mobility). This one-band scattering model with its simple 

conversion to carrier mobility is essentially the description that will be used to evaluate the 

experimental results for the hole mobility in a set of single occupied subband InGaAs-AlGaAs 

QWs in chapter 6 in this thesis. However, the actual model that has been implemented is the multi

band model as described in the previous sections. It was used to gain insight in the mechanisms 

limiting the mobility in a set o f channel doped «-type devices that were previously studied by 

J.Roberts [Rob96,Rob98] at the IRC. This evaluation led to useful insight in inter-subband 

scattering which was consequently used in the optimisation o f the p-type structures grown
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specifically for this study. The next section deals with the question o f how to combine several 

inter- and intra-scattering times between various occupied subbands to a mobility that is measured 

experimentally in a magneto-transport m easurem ent

4.6 - Scattering between multiple occupied bands

When the system under investigation contains more than one occupied subband, one has to solve 

the Boltzmann transport equation to correctly account for all the inter- and intraband transitions to 

obtain the transport lifetime x ^ o f  the individual levels. Siggia and Kwok showed that the 

Boltzmann transport equation can be written as a set o f  coupled linear equations [Sig70]

= 1  (4.14)
/l'=l

where

K ... =
X __ m^nXnn nt*n * mm

f̂n'

f̂n

 ̂ 1 1 ^

nn' ^n n ' J

(4.15)
n ^ n '

For a system with just two occupied subbands, one obtains the following transport lifetimes.

- f  _  ^22 - ^ 1 2
I , —

^2 =

^ 1 1 ^ 2 2  ^ 1 2 ^ 2 1  ( A  1A\

~  ^ \2^ 2\

At this point, it is useful to point out two interesting limits,

•  As expected, one obtains for a system with two identical bands that the transport lifetime of 

each band is half o f what one would have obtained when one had neglected interband scattering

•  For the case where the second subband is just about to get populated, kj2=0, the transport 

lifetime of the first subband is given by

1 1 1
-  = — + 7 T  (4.17)
‘' 1  ‘' 1 1  *'12

as scattering to the second subband involves a loss o f all momentum.

After solving (4.14), the corresponding mobilities for each subband can be obtained from the 

subband carrier lifetimes using the generalisation o f (4.13), 

ex ;
[ ^ i= — r  (4.18)

m
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These individual mobilities and their population can then be combined to obtain the Hall-density 

and Hall-mobility, i.e. the values one would measure in a Hall-measuremenL F or a system with 

occupied levels ( i= l..n )  with densities /i, and mobilities one obtains [Pet58]

< « Y

  (4.19)

1=1 i=l

assuming that the Hall-factor (rn) equals unity. The latter is a good approximation for degenerate 

structures at low  temperatures.

4.7 - Com ments on the definition o f the effective mass

The effective mass rn was defined in equation (1.1) in chapter 1. This is how ever not the only way 

to define an effective mass, and as a result there are various definitions present in the literature 

which are referred to with a variety o f names. For example, there is the ‘carrier concentration 

m ass’ [Pet90], ‘optical m ass’ [Bla87], effective density of states mass [Bla87], as well as those 

more appropriate to describe carrier transport which are the momentum (rn ) and acceleration 

m ass (A/*) [Zaw82,Rot92] to which this work will limit itself. There is considerable ambiguity in 

the literature about which mass one should use when modelling carrier transport. This is probably 

due to the fact that both definitions give the same mass when applied to an isotropic parabolic 

band. However, as pointed out by for example [Bla87], considerable differences are found \\hen 

applied to non-parabolic bands o f which the hole bands form an extreme example. Despite this, 

various authors have tried to extend the transport equations beyond the parabolic approximation to 

the case o f warped bands, yet without agreeing on the fundamental choice o f mass to use in such 

an approach (compare [Tak85] to [Ye87]). An important point to make is that m ost o f the authors 

that choose to use the acceleration mass completely gloss over the intrinsic problem that this 

definition of mass results in infinite o r even negative mass points when applied to the valence 

bands or when applied to the conduction band when looking at relatively large momentum 

[Tya91]. Obviously, this casts serious doubt on whether the acceleration m ass is the proper 

definition to use in the scattering model of section 4.5. The physical interpretation o f both 

definitions is now briefly discussed.
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The equation o f m otion o f an electron with momentum k under the influence o f an external force F  

is given by [G as74^ot92]

F  =  h —  (4.20)
d t

Turning to the classical picture, the motion o f a localised wavepacket m ade up o f wavefunctions 

near this particular wavevector (or momentum) k is now considered. Such a wavepacket travels 

with a velocity given by the group velocity, where (O is the frequency associated with a 

waveftmction o f eneigy E  [Gas74,Zaw82d^ot92],

v = —  = - V , £
~ d k  ft

=  \ f i k  
m

where the E(k) dispersion is assumed to be spherical. A ‘momentum m ass’ which relates 

momentum to velocity was introduced

which corresponds to the definition used in (1.1). This is one possible definition o f the effective 

mass, but one could alternatively have defined a mass by relating force to acceleration,

where an acceleration mass has been introduced which is now given by

1 d^E  

ft^ d k ‘

At this point it is important to note that both definitions are physically correct. Therefore, the 

question is not which o f the definitions is wrong, but which one is applicable in the previously 

derived scattering model.

As illustrated in fig. 1.7, the mass in equation (4.11) reflects the total num ber o f states that can 

particupate in the scattering process and is thus related to the density o f states at the Fermi energy. 

The same holds for the dielectric response matrices (4.6,4.7) as outlined in the TFA approach. 

Both occurrences o f rn clearly correspond to the momentum mass (1.1,4.22) as the density of 

states is inverse proportional to the slope o f the E(k) dispersion. The problem of choosing the 

correct definition o f the effective mass really only applies to equation (4.13) and its generalisation 

to the multiband case (4.18). This section now concentrates at establishing the appropriate 

definition o f mass in the equations governing the conversion o f scattering tim e to carrier mobility.

99

M -  = - ^ - ^  (4.24)



Carrier transport in heavily doped structures

XL

F ig .4 .3  : E n erg y  vs . m om entum  p lo t  o f  a  s im p le  
band . A lso  sh ow n  a re  the co rre sp o n d in g  
v e lo c ity  a s  w e ll  a s  the  a c c e le ra tio n  m a ss  a t 
each  p o in t  in k -sp a c e  (a f te r  [T ya 9 1 J ).

Fig.4.3 illustrates the motion of an electron in a simple band. Consider a single electron at 

momentum k = 0  in an otherwise empty band. On application of an external force F, the electron is 

accelerated towards the right according to (4.20), as indicated by the arrows. Near the F -point, the 

velocity increases linearly with k  and the electron behaves as a free particle with mass M *. At 

higher momentum (i.e. approaching the point indicated by P) the lattice begins to interfere with its 

motion, slowing down the acceleration and consequently increasing the acceleration mass. Beyond 

point P  the electron actually experiences a strong retarding force such that an increase in 

momentum actually decreases the velocity, as described by a negative acceleration mass. So far 

there are no physical problems, the description in terms of an acceleration mass M* is correct

However, problems arise when applying this mass to the previously introduced scattering model. 

Here, an ensemble of electrons confined within a Femii-circle is modelled. As scattering can only 

take place at the Fermi-level, the whole group of carriers was described by the dynamics at the 

Fermi-energy only. The latter is exactly the cause of the problem. Consider a Fermi-contour that 

coincides with the inflection point P  in fig.4.3. As these Fermi-electrons have an infinite 

acceleration mass, the application of field will not increase their velocity. By simply looking at the 

Fermi-contour only, one could now make the incorrect conclusion that the system would not 

exhibit a current flow under the application of an external electric field. The situation is even 

worse in the case where the Fermi-circle lies in the region between P  and Q, i.e. beyond the 

inflection point. An application of an external field would actually reduce the speed of the Fermi-
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contour electrons, yet the conclusion that the application of an external field would lead to an anti- 

cument is clearly unphysical. Yet, as mentioned earlier, the description itself is correct

F ig .4 .4  : I llu s tra tio n  o f  the c o lle c tiv e  
m otion  o f  c a rr ie r s  u n der the in fluence o f  

|( an ex tern a l fo r c e  F. The sy s te m  d isp la y e d  
in (a ) ex h ib its  no net cu rren t f lo w , a s  
th ere  a re  a s  m a n y  c a rr ie rs  m ovin g  
p a r a lle l  to  the  + k  a x is  a s  th ere  a re  
m ovin g  in the o p p o s ite  d ire c tio n . The  
a p p lic a tio n  o f  an e le c tr ic  f i e ld  w ill  
h o w e v er  ch a n g e  the e lec tro n  d is tr ib u tio n  
a s  d isp la y e d  in (b ) , resu ltin g  in a  p o s it iv e  
f lu x  p a r a lle l  to  the fo rc e .

The solution lies in the fact that one is in fact modelling an ensemble of carriers, as illustrated in 

fig.4.4. Point to note is that an external force not only changes the velocity of the carriers but also 

changes the distribution over /c-space such as shown previously in fig. 1.8. So, the velocity of the 

carrier at Fermi-contour with a velocity parallel to F might reduce, yet there will still be increase 

in current. The latter is illustrated in fig.4.4b which shows that the application of a field over a 

certain period of time effectively moves an electron from -kp (so moving in a direction opposite to 

the field) to a position near +kp (i.e. moving along the field direction), thereby clearly inducing a 

flux in the direction of the force. Re-iterating, the relevant quantity is therefore not the acceleration 

but the velocity at the Fermi-energy as the current will be driven by an excess amount of carriers 

near the section of the Fermi-contour parallel to the direction of the field. Because of this, it is 

obvious that the momentum mass at the Femii-contour (relating momentum to velocity) is the 

quantity of interest

So, at this point the relevant choice of mass to model the collective motion of carriers in a 

semiconductor has been established. As implied in the first paragraph of this section, there is 

considerable controversy in the literature about this subject, a subject so elementary that one 

would have thought that this would have been clearly settled by now. This section now ends with 

some of the very few comments that can be found in the literature about this subject. The 

momentum mass (4.22) is described by [Wet96] as the ‘relevant definition of effective mass for 

most optical and transport related experiments’. This definition of mass is described by [Rot92] as
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‘useful for mobility calculations’, quoting [Zaw82]. The last author seems to be the only one to 

m ake a (very) strong statement about this subject: it is the momentum effective m ass that

should be regarded as the basic quan tity ... common use o f M * ... in semiconductors with parabolic 

band structures should be regarded as accidental.’ Other papers that correctly identify m include 

[Lee83b,Tak85,Che97]. Finally, an important comment to make is that one could in principle use 

M* to model an ensemble o f electrons, yet that one then has to sum over the acceleration o f all 

carriers and not just those at the Fermi-contour (see for example L ei’s force-balance equation as 

presented in [Wen94], this approach however exceeds the scope o f this thesis).

4.8 - Non-parabolicity effects in the conduction band

The previous section confirmed the validity o f the effective mass definition (1.1,4.22). As shown in 

chapter 1, the valence bands feature considerable non-parabolic effects as well as waiping, so that 

the m ass at the Fermi-energy is expected to deviate considerably from the band edge m ass m o. By 

numerically evaluating the effective mass using a six-band model to describe the valence bands, 

non-parabolicity effects as well as warping are implicitly included in the analysis. However, as 

mentioned in sub-section 2.3.4, a simple 1-band model will be used for the conduction band so that 

non-parabolicity effects are not implicitly included here. Although the dispersion relation is 

expected to closely resemble a parabola, the electron mass (or curvature) at the Fermi-energy will 

deviate significantly from that at the band edge for relatively highly doped samples. This will 

directly affect both the population o f the various levels as well as the scattering times.

Various descriptions and results have been presented in the literature to describe non-parabolicity 

effects in the conduction band [Ros84,Pfe96]. All methods involve solving a multi band k-p model 

and consequently parametrising the obtained E(k) curves and/or mass. It was chosen to follow the 

(bulk) approach o f Pfeffer [Pfe96] in which an effective two-level formula is introduced to 

describe the energy dependence o f the in-plane effective mass

(4.25)

containing a single parameter E/nd which is the so-called fundamental band gap. Here, the energy E  

is measured from the band edge, i.e. is the band edge effective m ass. F o r use in 

heterostructures, this work will neglect any quantisation effects on the effective mass [Eke87] and 

simply measure E from the band edge o f the first quantised level. As a result o f this
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approximation, one obtains that the effective masses at the Fermi energy of all subbands are 

identical in a system with more than one degenerate band.

In the case where the interactions between the conduction and remote bands are limited to just tfre 

heavy and light hole bands, one obtains that the fundamental band gap is simply given by the 

energy gap [Ros84]. This is a reasonable approximation for small band gap materials because of 

the relative large separation in energy between the conduction band and the excluded bands as 

compared to the energy gap, i.e. the interaction with the heavy and light hole bands is expected to 

be dominant. However, for larger-gap semiconductors one has to implicitly include the interactions 

with the higher lying conduction bands to obtain an accurate description of the non-parabolicity. 

The latter is demonstrated by Pfeffer who, using a 14-band k p model, obtained Efnj=OM eV for 

GaAs which is considerably lower than its band gap. For InGaAs on InP, Efnd is set to 0.7 eV 

which corresponds to the result obtained by [Wet96] for energies around 160 meV up the band.
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momentum k [Â'^]

The ionised scattering model is now complete. A full description of scattering and screening was 

presented and linked to the dispersion relation via the effective mass. The next chapter will discuss 

the numerical interpretation of both the k-p as well as the scattering model.

103



Chapters : Implementation of thWtheoretical 
models

The previous chapters outlined the models that will be employed in this work to analyse the 

transport properties of two dimensional electron and hole gases. Chapters 2 and 3 introduced the 

bandstructure model that will be used to calculate the eigenvalues of the various subbands, the 

corresponding wavefunctions, carrier densities and the effective masses at the Fermi-energies for a 

given heterostructure. This information is then subsequently used in the scattering model of 

chapter 4 to calculate the theoretical carrier mobility.

This chapter now deals with the implementation of those theoretical models. It is divided into two 

sections. Section 5.1 deals with the numerical implementation of the equations, describing and 

evaluating the chosen solutions methods. Section 5.2 then presents the necessary material 

parameters that are required in the above models. Examples include mass parameters, dielectric 

constants and deformation potentials. A specifically important parameter is the line-up of the 

conduction and valence band in a compositionally varying structure. Numerical values of the 

relevant material parameters and analytic expressions for the band line-up are presented for the 

material systems AlxGai.^As, Al^Ini.xAs, In^Gai-xAs and InP. The combination of the 

implementation contained in section 5.1 and the material parameters finally results in a workable 

model that will be utilised in chapter 6 to calculate dispersion relations and evaluate scattering 

times in two-dimensional electron and hole gas ses.

5J  ̂Numerical implemcntatioti

As mentioned in the introductory chapter, the fact that one is solving for a structure that contains 

charge leads to the additional complexity that both the Hamiltonian and Poisson’s equation have to 

be solved simultaneously. Such a solution can be obtained by using a self-consistent procedure 

where, starting with an initial guess for the confining potential, subsequent changes in this 

potential are made until it has converged to the form in which it simultaneously satisfies both 

equations. A routine that performs the latter is often referred to as a Self-Consistent Poisson- 

Schrddinger (SCPS) solver.
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The self-consistent approach is the starting point o f this section, and is outlined in the general 

overview (§5.1.1). The internal representation o f compositionally varying structures is also 

discussed here because o f its large impact. It was chosen to describe continuous functions such as 

potentials, envelope functions and doping profiles at a finite num ber o f  discrete mesh points. Such 

a discretisation renders the differential equations such as found in Poisson 's equation and the 

Hamiltonian into finite difference form. As a result, both take the form o f  a m atrix equation.

Subsequently, the exact implementation of Poisson’s equation (§5.1.2) and the effective mass 

equations (§5.1.3) are presented. Explicit forms o f the matrix equations are given. As speed proves 

to be o f crucial importance, it was chosen to solve the Hamiltonian in a time-saving expansion 

method whose advantages and implementation will be discussed in detail. Sub-section 5.1.4 then 

briefly discusses the implementation o f Fermi-Dirac statistics, required to convert Fermi-energy 

and dispersion relations to a carrier density. Section 5.1 ends with a short discussion on the 

implementation o f the scattering model, which is far less complicated than the Poison-SchrOdinger 

solver.

5.1.1 - General overview

The effective mass equations that can supply information like dispersion relations, eigenvalues and 

wavefunctions in a heterostructure were respectively given in (2.46) for the electron case and 

(2.51,2.57) for the valence band case. Both Hamiltonians contain the confinement potential V(r) 

(see subsection 2.3.3) that describes the variation of the potential energy as a function o f position 

of the band under investigation (being either the conduction o r valence band). As this is a function 

of material composition, it enables the fabrication o f QWs and heterqjunctions such as outlined in 

chapter 1.

The first observation is that chargeless structures are relatively easy to solve. W ithout charge, the 

confinement potential basically reduces to a simple material dependent function that describes the 

variation o f the potential energy between the layers o f different composition due to the differences 

in crystal structure (see fig.5.1a, o r fig.3.3). Expressions for the band line-up will be presented in 

§5.2.2. As a result, the confinement potential is locally flat (ergo the name ‘flat band’ structures) 

and the eigenlevels and dispersion are obtained simply by solving the effective mass equations for 

the confinement as described by those analytic expressions for the band line-up.
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(a) v(z)
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(b)

F ig 5 .1 :  (a ) S ch em a tic  p ic tu r e  o f  the con fin em en t 
AIGoAs p o te n tia l V (z) in a  c h a rg e le s s  Q W  stru ctu re  co n sistin g  o f  

a  G a A s w e ll sa n d w ich ed  b e tw e en  A lG a A s b a rr ie rs , (b) 
N o w  f o r  the ca se  w h ere  the cen tre  o f  the Q W  co n ta in s a  
b -d o p e d  la y e r  (i.e . the im p u r itie s  a re  c o n ta in e d  in a  
s in g le  m o n o la yer). The p o te n tia l  V n o w  c o n ta in s  an  
e le c tro s ta tic  p a r t  due to  th e  p re se n c e  o f  the im p u ritie s  
a s  w e ll a s  the p re se n c e  o f  (C o u lo m b  a ttra c te d )  c a rrie rs .

The situation is however more complicated in structures that contain charge, as pictured in 

fig.5.1b. The confinement potential is now no longer given by just the band line-up but contains an 

electrostatic component due to the presence of the impurities and carriers, among other 

contributions that were absent in the case where there was no charge. The total confinement 

potential is given by a number of terms [Ste84,Har89] (neglecting the image charge contribution 

as it is expected to be small [Ste84])

V(z) = -g())(z) + VXz) + l̂ (̂z) (5.1)

where

• ^(z) is the electrostatic potential due to the presence of charge, given by Poisson’s equation.

• Vh(z) describes the variation of the potential energy as a function o f material composition. It 

describes the effects of the changes in the surrounding lattice and electron configuration when 

moving from one layer to another with a different material composition.

•  Vxf(z) is the local exchange and correlation potential which is a many-body correction to the 

one-electron Schrodinger equation for high-density systems (see sub-section 2.2.1).

In a chargeless structure, Vh(z) was the only contribution to the quantisation potential. In contrast, 

the confinement is now given by three different contributions. Allowing the structure to have 

charge doesn’t just complicate the problem by the fact that one now also has to solve for the 

electrostatic and exchange/correlation components, but it has a rather larger impact. As mentioned 

above, the Schrddinger equation, or its simplification being the effective mass equations, requires 

knowledge of the confining potential before one can start solving for eigenvalues, electron/hole 

distributions and densities. As these quantities in turn affect the confining potential through (j)(z) 

and Vxc(z). it follows that the particular equations cannot simply be solved individually but that 

one has to find a solution that simultaneously satisfies the Poisson as well as the Schrodinger 

equation!
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FigJ.2: Flow chart of the self- 
consistent procedure that is used 
to obtain a simultaneously solution 
to both the Poisson and 
Schrodinger equation. Here.f is 
a so-called relaxation factor 
(0<fr<l) which limits the feedback 
in the iterative process, thereby 
improving the stability of the 
routine.

Such a simultaneous solution can be obtained by using a self-consistent approach in which 

successively better solutions o f both equations are obtained in an iterative approach. Fig.5.2 s1k)w s  

the corresponding flowchart of such a process. Starting with an initial guess for the confinement 

potential V(z) including its electrostatic and exchange-correlation component (5.1), the 

Hamiltonian is solved for the electron/hole eigenfunctions, distributions and densities. The next 

step involves solving Poisson’s equation to obtain the true electrostatic contribution t^(z) 

corresponding to these densities and distributions, which defines a new confinement potential 

yPoisson^̂ y If both confinement potentials were equal, one would have obtained a simultaneous 

solutions o f both equations, but generally this is not the case. One then proceeds by constructing a 

confinement potential which is expected to be closer to the exact solution.

(5.2)

where fr is a so-called relaxation factor {0<fr<l, typically a few percent). The above procedure is 

then repeated using this new guess for the confinement potential. After a number o f iterations, it is 

expected that the solution will have converged to a point where it satisfies both the Poisson and the 

Schrodinger equation (within a very small margin o f error, depending on the num ber o f iterations, 

the feedback as detennined by the relaxation factor, and speed o f the convergence).
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Although the flowchart given in flg.5.2 correctly depicts the principles behind the self-consistent 

procedure, the actual process is slightly more complicated As discussed above, the feedback is 

limited quite severely by means of a relaxation factor when constructing the new confinement 

potential of the next iteration. This is a typical feature of any self-consistent routine as such a 

process is intrinsically unstable in practice, especially in the early iterations as the potential at that 

stage normally deviates quite severely from the true solution. Rather than use a fixed value for this 

relaxation factor, it is allowed to vary from iteration to iteration to speed up convergence. As a 

consequence, the progress of the iterative procedure has to be closely monitored to protect the 

process from becoming unstable, something that will not be expanded on here.

Band edge

A

0 - 0 - 0 - 0 00-0 0 0 - 0-0 0 - 0- ^

6-doped plane

F ig J .3  : The confin ing p o te n tia l a n d  en ve lo p e  fu n c tio n s  in a  d o p e d  a n d  g ra d e d  In G a A s  
Q W  sa n d w ich ed  b y  A lInA s b a rr ie rs . The re leva n t q u a n titie s  a re  d e sc r ib e d  b y  th e ir  
va lu es a t a  nu m ber o f  d isc re te  m esh p o in ts . b -D o p e d  la y e rs  a re  d e sc r ib e d  b y  a  la y e r  o f  
sm a ll bu t f in ite  w id th , typ ic a lly  5Â  w ide. (F o r illu s tra tiv e  p u rp o se s , the n u m b er o f  m esh  
p o in ts  has been  red u c e d  su b sta n tia lly )

An important aspect of the total implementation is the framework chosen to represent a 

compositionally varying structure, especially with respect to quantities like the confinement 

potential, envelope functions and doping distribution. As will be shown, the particular 

representation chosen has a large effect on how Poisson’s and the effective mass equations are 

solved. This issue completes this general section on the implementation of the Poisson-Schrddinger 

solver.

The most flexible way to represent continuous functions is by introducing a mesh and discretising 

the particular quantities at the various mesh points (fig.5.3). By automatically adding mesh-points
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in regions with high band curvature (i.e. high density), a typical structure is typically described by 

a non-uniform mesh o f the order o f  one thousand points. In such a discrete model, any derivative is 

replaced by its finite difference form.

dx'̂

^  k,y[i-l]-(h,+h,)y[i]+h,y[i + l]
.(')

where y [ i j  is the discrete value o f the quantity y  at the z-th mesh point and hi is the difference 

between adjacent mesh points; hi=x[i+J]-x[iJ. The adoption o f a discrete mesh transfomis any 

differential equation (such as Poisson's and the effective mass equations) into a matrix equation. 

The next sections will deal with their specific implementation.

At this point, it has to be mentioned that the basic framework o f the program , consisting o f the 

Poisson solver combined with the implementation o f a single band effective mass equation, was 

designed by M .C.Hellon at Philips Redhill. It was then subsequently subjected to improvements 

and changes by the author’s supervisor. However, severe changes in the convei^gence routine were 

made by the author as comparison o f its results with those obtained by Stem  and Das Sarma 

[Ste84] revealed differences o f the order o f several meV. Exchange and correlation was included, 

as well as strain, and the model was extended to include new material systems. Stringent 

monitoring was introduced in the Poisson equation to avoid the (occasional) occurrence o f iterative 

steps that would result in a divergent iterative series, as well as to speed up the iterative process. 

Finally, the program was extended to render it capable o f solving the valence band Hamiltonian. 

The latter resulted in a considerable increase in program size, approximately doubling the size of 

the original program.

5.1.2 - Solving Poisson’s equation

As mentioned in the previous section, the presence o f electronic charge in a semiconductor 

heterostm cture affects the confinement potential through the associated electrostatic potential 

which is given by Poisson’s equation (assuming that the dielectric constant is identical throughout 

the structure)

= P . ( z ) - p , ( z ) - p , ( z )  (54)

-  P tot (^)
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p.(z) = (5.5)

where p /z ) ,  p/,('z), pi(z) respectively are the electron, hole and ionised impurity charge density. 

The assumption is made that the regions sufficiently far away from the heterostructure can be 

treated as if they were bulk, so that the electron density distribution is split up into a quantum and 

bulk region :

z „ S 2 ^ z ,

p “ ( z )  Z < Z o , Z > Z ,

where the summation over i runs over all populated electron subbands with density /i, and a iv e lq »  

function Fi(z). The coordinates zo and zj define the ‘quantum region’ and are set manually. A 

sim ilar split-up such as (5.5) is made for the hole density. All densities, either electron, hole or 

ionised doping densities, follow from the position o f the quantised states o r doping levels with 

respect to the Fermi level as given by Fermi-Dirac statistics [Har89].

Using the finite difference form o f a second order differential as presented in (5.3), it is easy to see 

that Poisson’s equation (5.4) takes the following matrix form.

/ /  \ f • /  ^

• 4̂ ,-1 •

• -  hi )  hi • 4), = • • {hi +  /z,+j ) / 2  • • P , (5.6)

4),'+i •

V > V I • / V >

or A <j) = p, in which A is a tridiagonial matrix and B  is diagonal, (|), and p, respectively denote 

the electrostatic potential and charge density at the /-th mesh point. However, rather than solve

(5.6) directly, a slightly different approach is employed (for stability reasons) which uses two 

Newtonian-like interpolation schemes, one for the initial and a faster but more critical one for the 

final iterations. The electrostatic potential (j) is thus solved in an iterative approach using standard 

Numerical Algorithm Group (NAG) routines.

It has to be pointed out that Poisson’s equation (5.4) by itself does not uniquely determine the 

potential, but only when supplied with two boundary conditions. A simple boundary condition 

follows from the assumption that the substrate remains charge neutral. This effectively pins the 

Fermi level at mid gap at a semiconductor-substrate interface when using a semi-insulating (SI) 

substrate. The other boundary condition follows from an experimental observation o f Fermi-level 

pinning at the air-semiconductor surface. This boundary conditions turn out to be dependent on the 

type o f material under consideration, and will therefore be discussed and evaluated later on in 

section 5.2.4 when explicitly dealing with the various parameters and material constants.
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5.1.3 - Solving the effective m ass Ham iltonians

The effective mass equations for the conduction band (2.46) and valence band (2.51,2.57) were 

presented in chapter 2. It was shown that the conduction band effective m ass model takes the form 

o f the single differential equation, in contrast to that o f the valence band which consists o f a set of 

coupled differential equations. The latter significantly complicates the problem of obtaining the 

eigenvalues and wavefunctions as compared to the relatively simple conduction band problem. 

Despite this additional complication, the solution method chosen in this w oik to solve the hole- 

equations are based on the conduction band approach as originally implemented by M.C.Hellon. 

This section now starts with a brief explanation of the implementation o f the conduction band 

model. Various alternative approaches are described, along with their drawbacks. The attention is 

then shifted towards the valence band case, where its numerical complexity is highlighted.

The conduction band effective mass equation is straightforward to solve for a flat band structure. 

In this case the solutions in each individual layer can be written down immediately (either 

consisting o f exponentials or cosine/sines functions). The problem then merely consist of matching 

these solutions at each interface. For a flat band quantum well, the problem reduces to finding the 

solutions o f a simple trigonometric equation [Gas74]. The situation is more complicated in the 

case o f non-flat band structure, for which several solution methods have been proposed in the 

literature. By splitting up the structure into small sections and treating each section as being flat, 

the solution in each section can again be written down directly. The solutions in adjacent sections 

can then be linked via a 2x2 transfer matrix [Wel91]. The combined transfer matrices describe the 

evolution o f the envelope functions over the heterostructure and can be used to obtain the various 

quantised states, replacing the trigonometric equation corresponding to a simple QW. However, as 

generally several sections are required to realistically represent a continuously varying potential, 

the eigenvalues and eigenfunctions can no longer be obtained analytically. An alternative approach 

is to use a variational method to obtain an approximate form o f the envelope functions such as 

suggested by Fang and Howard [Fan66]. This method however has the drawback that the choice 

o f trial functions depends on the particular problem, so that a different set is needed for each type 

o f heterostructure. As mentioned earlier, it was chosen to use a discrete mesh to describe the 

(compositionally varying) structures and its corresponding envelope functions. Obviously, such a 

discrete model imposes no restrictions on the form of the confinement potential o r envelope 

functions. In finite difference form, the kinetic energy operator in the conduction band effective 

mass equation takes the form (see fig.5.4)
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a 1 9 F (z )

dz rn dz

i+l
(5.7)- >    ;---------- ^ ----------------------

z(i) (^,-1

where the subscripts +/- denote the mass directly left or right of the /-th mesh point. Away from 

any interface, the above equation reduces to the form given in (5.3). In a similar approach to that 

described in section 5.1.2, the conduction mass equation is then written in matrix form. It is easy 

to see from (5.7) that the Hamiltonian takes the form of a simple tridiagonal matrix which is

(again) solved using NAG-routines.

: Interface
m m

1-2 1 - 1 14-1 1 + 2

F ig. 5 .4  : D e fin itio n s  u sed  in the f in i te  
d ifferen ce  fo rm u la e . S p ec if ic  c a re  h a s  to  be  
taken w hen w ritin g  d e r iv a tiv e s  in f in i te  
d ifferen ce  fo rm  a ro u n d  an in terfa ce , a ssu m ed  
to  he a t  the i-th  m esh  p o in t.

mesh point

So far, there are few numerical problems. Both Poisson’s as well as the conduction band effective 

mass equation transform into relatively simple tri diagonal matrix form which do not require 

extensive computer power to be solved. As will be shown, this is in sharp contrast to the valence 

band effective mass equations which will now be discussed.

Again, various solution methods have been proposed in the literature to solve the valence band 

effective mass Hamiltonian to obtain the hole eigenvalues, envelope functions and dispersion. As 

for the conduction band case, the problem is relatively easy to solve when applied to flat band 

structures as the general solution in each layer can again be written down directly. Matching this 

general solution, now consisting of heavy- and light- (and for 6-band models the split-off) hole 

contributions, the problem for a finite quantum well reduces to finding the roots of an 8x8 (4 band 

model, [And87]) or 12x12 determinant (6-band model, [Edw94]). Variational methods, with their 

drawbacks, are probably the easiest solution method for non-flat band structures and have been 

used in the literature to solve the heterojunction problem [Bro85,Gol95]. Brute force numerical 

approaches, which can handle arbitrary confining potentials, represent the other side of the scale in 

terms of required computational power, in which the set of N coupled differential equations of 

order 2 is either solved directly, or written as a set of IN  coupled differential equations of order 1.
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As for the conduction band problem, a discrete mesh is employed to describe the compositionally 

varying structure and its confinement potential. As this thesis is concerned with modelling device 

structures, i.e. structures with charge, one has to remember that the Hamiltonian is not the only 

equation that has to be solved but that Poisson’s equation needs to be satisfied simultaneously. As 

a result, speed is of crucial importance.

The solution method chosen in this work has successfully been used by Ando [And85] and is a 

combination of the brute force and expansion method. In this approach, the valence band 

Hamiltonian is solved in the so-called diagonal approximation in which all off-diagonal elements 

are set to zero*. As a result, the set of differential equations decouples and reduces to three single 

differential equations (one each for the heavy, light and split-off bands) which closely resemble the 

electron problem. As this is a Sturm-Liouville problem [Kre88], it follows that all three sets form 

a complete set so that any envelope function can be expanded in such a set.

' 4banJ

/  \

t b ' .  C
or  F^*"^ =

F r V / /

\ < n < N hh

\ < m < N  I

1 < / < N „
(5.8)

where and F/" respectively are the heavy, light and split-off solutions for the envelope

functions in the diagonal approximation. Using such an expansion, one then has to solve for the 

expansion coefficients rather than directly for the envelope functions (see for example the 

appendix in [Sin93]). Inserting the 6 band expansion (5.8) into the Hamiltonian (2.57), one 

obtains

hh

hh

(5.9)

Re iterating, are the solutions of - E F ^*', and similariy for F^ and F,^ . By using

the standard technique of taking the inner product with F„̂ * in the first, F^  ̂ in the second and F/" 

in the third differential equation, (5.9) can be transformed in a matrix equation of order 

Nhh-^ îh+Nso. Rather than give the full matrix , this section will limit itself to just the matrix

* Note that the results corresponds to the band edge solutions, i.e. zero in-plane momentum (kj^ky=0), in 
the case of [001] and [111] growth.
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elements caused by the first row/second column element of (boxed in the above equation, or 

see fig.5.5). All other Hamiltonian matrix elements can, with a bit of effort, be obtained in a 

similar manner. The particular matrix elements m are given by

=  (/=•;*(z)|V 3{r,(z)(* .^  + k l ) - 2 i y , ( z ) k , k , - 2 { k ,

^ layer

layer=l

dz
C ( z )

layer

(5.10)

n=l..N^ m=l..N^ : 1=1..N„

F ig J .5 :  S ch em a tic  o f  the H am ilton ian  
in m a tr ix  fo rm . H ig h lig h ted  a re  the  

e lem en ts d e sc r ib e d  in the text.

7\

The actual implementation in FORTRAN of the whole routine is rather straightforward. Having 

obtained the envelope functions in the diagonal approximation, one numerically evaluates the 

various inner products of which two examples are as shown in the above equation. One finds that 

11 of such inner products need to be considered to be able to model (001], [ 110] and [111] growth, 

corresponding to various bracketed operators and ordering. Having obtained these, the band 

energies E(k±) can be obtained at any in-plane momentum k± by solving the matrix equation 

depicted in fig.5.5 of order Nhh+I îh+N .̂

At this point, one might ask if the above method really offers any speed advantage over the much 

simpler brute force methods. The answer is that it does, and quite considerably. Simply writing the 

6-band Hamiltonian in its block-diagonal form (2.57) as a matrix equation, similar to the approach 

taken when discussing Poisson’s equation, would have rendered the problem into finding the 

eigenvalues of two 3N \3N  matrices, where N is the number of mesh points (typically 500 or more)

114



Numerical implementation

The order o f the matrix follows directly from the fact that one is solving for the discrete values of 

the heavy, light and split-off envelope functions at all N  mesh points. As the double differentials of 

again all three functions (heavy, light and split off) are involved, it follows from the finite 

difference form o f the derivatives (5.3) that as much as 9 non-zero elements can be found in each 

row. In contrast, the problem reduces to finding the eigenvalues o f three tridiagonal NxN  matrices 

for the diagonal approximation to obtain the expansion states. After having obtained these 

expansion states and the various inner products, E(k±) can be evaluated at any in-plane momentum 

kj. by solving a matrix equation o f the order o f just 30..45 (using 10 o r 15 expansion states) 

whereas the brute force method would have to go through the same computationally demanding 

procedure for each value o f the in-plane momentum. Generally a significant num ber o f points of 

the dispersion E(k±) is required, for example to perform Fermi-Dirac statistics (§5.1.5), so that the 

effectiveness o f the approach to speed up the calculation is obvious.

5.1.4 - Guide and evaluation of the Hamiltonian expansion method

The expansion method used to solve the valence band effective mass equation is evaluated in this 

section. It proves that one can optimise the convergence by introducing infinite potential barriers, 

thereby actively controlling the form of the higher lying expansion states. The fastest conveigence 

is obviously achieved when the expansion states resemble the real physical solution as much as 

possible. The introduction o f these potential barriers is sim ilar to the split-up o f the structure into a 

‘bulk’ and ‘quantum ’ region such as introduced in §5.1.2 when discussing the implementation of 

Poisson’s equation. It will now be shown that the expansion method is a very powerful method, 

generally requiring only a limited number o f expansion states, when following some simple 

guidelines about the placement o f the artificial infinite barriers.

In theory, the expansion method as specified in the previous section is complete in the sense that it 

could directly be applied to any problem. There is however the practical problem that a typical 

quantum well does not support more than just a couple o f bound states, which are typically 

insufficient to reach convergence. One could o f course simply proceed by adding some of the 

unconfined states above the band edge in the expansion. But, as they are expected to have little in 

common with the bound solutions, it is unlikely that they will behave as ideal expansion states. As 

suggested by Ando [And85], the solution is to extend the num ber o f bound states by introducing 

infinite barriers at a distance L from the heterostructure (fig.5.6), respectably at coordinates zo and 

z/.
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Infinite barriers F ig J .6  : In fin ite  b a r r ie r s  a re  
in tro d u ce d  a t  a  d is ta n c e  L  f r o m  the  
in ter fa ce (s), r e sp e c t iv e ly  a t  the  
co o rd in a te s  zq a n d  Zj, to  o p tim ise  the  
expan sion  m eth o d . The p re se n c e  o f  
such b a r r ie r s  tra n sfo rm s the h ig h er  
ly ing  f r e e  s ta te s  in to  b o u n d  s ta te s  
w hich  can  then b e  (e ffic ien tly ) u sed  in 
the ex p a n sio n  p ro c e d u re .

Obviously, these barriers are only introduced to speed up convergence and should not affect the 

final E(k) energies. One then finds that there is a trade-off between speed of converge and 

influence of these barriers on the final results :

•  A relatively high separation length guarantees that the initial problem will not be affected by 

the introduction of the infinite barriers, but convergence will be slow. As mentioned earlier, the 

higher lying expansion states are simply too different from the confined solution that one is 

trying to calculate.

•  A short separation length will guarantee fast convergence but will at the same time affect the 

resulting eigenvalues.

As a result, these barriers should be placed rather carefully. Fig.5.7 shows the effect of adding 

such barriers on the eigenvalues as a function of separation length L. Several interesting 

observations can be made. The quantisation energy (i.e. at k±=0) of the light hole states is clearly 

much more strongly affected than that of the heavy hole states at the same separation length. This 

was to be expected as the light hole, due to its lower mass, penetrates the barriers further than the 

heavy holes and thus interacts more strongly with tlie infinite barriers. Increasing the momentum to 

kx=0.03À adds to the interaction for both heavy hole states, in contrast to the light hole level which 

displays a reduction in interaction. Both effects are attributed to band mixing. The eigenstates are 

clearly no longer pure heavy or light hole states at this distance from the band edge. As a result, 

the heavy hole states acquire some light hole characteristics with a corresponding increase in 

interaction, and similariy for the light hole bands which acquire some heavy hole characteristics. 

Summarising, the influence of the infinite barriers can be neglected when put at least 40 Â from an 

interface.
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F i g 5 .7  : Sh ift in e ig e n v a lu e s  in 
the f i r s t  th ree  q u a n tis e d  s ta te s  in 
a  100À  A lo jG a o  yA s-G aA s Q W  a s  
in d u ce d  b y  a d d in g  in fin ite  
b a rr ie r s  a t a  d is ta n c e  L  fro m  the  
in ter fa ces  (4  b a n d  m o d el).

Separation length L

Fig.5.8 shows the influence of the separation length L on the convergence speed of the calculated 

dispersion corresponding to a 100Â AlojGaojAs-GaAs QW. Comparing (a) in which L=JOOÀ to 

(b) where L=50À reveals that a smaller separation length speeds up the convergence considerably, 

especially in the higher levels. A quantitative idea of the number of expansion states needed to 

accurately model p-type quantum well structures can be obtained from fig.5.9 where the deviation 

in Fermi energy, as compared to the fully converged value, is plotted versus the number of 

expansion states. The structure under investigation is the same QW as described above. Results 

are plotted for two hole densities, 5.10" and 10*̂  cm'^, and two temperatures As expected, an 

increase in density or temperature requires an implicit inclusion of more expansion states to 

achieve convergence, caused by the resulting occupation of regions with relatively high momentum 

k. However, the general result is that typically 10 expansion states are sufficient to achieve full 

convergence in QW structures.
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F ig  5 .8 :  E (k) d ia g ra m s  f o r  the th ree  lo w e s t q u a n tis e d  s ta te s  in a  100À  A lo jG a o jA s -G a A s  Q W  c a lc u la te d  
u sin g  a  6 -b a n d  m o d e l, r e sp e c t iv e ly  o b ta in e d  w ith  a  se p a ra tio n  len g th  o f  1 0 0  Â  ( to p )  a n d S O A  (b o tto m ). The 
n u m b er o f  ex p a n sio n  s ta te s  w a s  in c re a se d  f r o m  5  p e r  b a n d  (h e a v y , lig h t a n d  sp lit-o f f )  to  1 5  in s te p s  o f  tw o .
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No. of expansion states

For heterojunctions, the optimisation of the convergence by introducing infinite barriers is slightly 

more complicated because of two reasons. First, one cannot so easily identify where to put the 

infinite barrier in the lower band gap material. Secondly, the envelope functions corresponding to 

finite k in such a triangular shaped potential deviate more from the band edge solutions which form 

the expansion states. Fig.5.10 shows the deviation in Fermi energy, as compared to the fully 

converged value, versus the number of expansion states for an AlojGaojAs-GaAs heterojunction. 

One observes that more expansion states are required, when compared to the quantum well case as 

presented in fig.5.9, to obtain results with the same accuracy. Again, an increase in density or 

temperature has a negative influence on the convergence. Although the expansion method exhibits 

a slower convergence when applied to a heterojunction than compared to a QW, the number of 

expansion states can still be kept within reasonable limits by correctly choosing the position of the 

barriers.

F ig .5 .1 0 : A s f ig .5 .9  bu t now  f o r  
an A lo jG ao  yA s-G oA s  
hetero ju n c tio n . In fin ite  b a rr ie rs  
a re  p la c e d  a t 50 Â  a n d  250À  
a w a y  fro m  the in terface , 
re sp e c tiv e ly  in the A lG a A s  
b a rr ie r  a n d  the G aA s.
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Summarising the above results, it follows that fast convergence can be obtained by introducing 

infinite barriers around the region o f in terest Convergence is typically achieved within 10 

expansion states for each band when applied to a QW  structure, by placing the barriers at 50Â 

from the interfaces. At such a spacing, the introduction o f the barriers will not adversely affect the 

dispersion. For a heterojunction, convergence typically requires 15 expansion states, provided tiie 

barriers are placed at 50Â from the interface in the barrier material and at 250Â from the 

interfaces in the low er band gap material.

The fast convergence is in contrast to that observed by Ando who used the same expansion method 

[And85] to calculate the cyclotron effective mass in an AlGaAs-GaAs heterojunction. His 

observation that at least one hundred expansion states are necessary to achieve convergence can be 

explained by his choice for the position o f the infinite barriers, which are set at a relatively large 

distance from the heterojunction (respectively 2(X)Â into the barrier material and 15(X)Â into tiie 

GaAs). As discussed, this results in a set o f expansion states that differ considerably from the true 

eigenfunctions and these states have therefore only a limited effect in such an expansion. 

Furthermore, the cyclotron effective mass is probably more sensitive to the num ber o f expansion 

states as it is determined by the band structure curvature at the Fermi energy whereas the hole 

density is proportional to the area under the Fermi-energy contour.

5.1.5 - Ferm i-Dirac statistics on hole bands

So far, Fermi-Dirac (FD) statistics have not entered the discussion about the implementation o f the 

self-consistent model presented in this thesis. Although the previous section already presented 

some results that require the application of Fermi-Dirac statistics to hole bands (see fig.5.9 and 

fig .5 .10), some comments about the exact implementation o f FD-statistics will now be made.

For a two-dimensional electron gas in which the dispersion relation takes a simple parabolic form, 

the electron density at a temperature T  is given by an analytic formula.

ffi kT
1 +  exp

kT / J
(5.11)

where the summation over m runs over the various quantised levels at energy and Ef is the 

Fermi energy. Unfortunately, due to the valence band warping there is no equivalent analytic 

formula for the hole density. As a result, the Fermi-integral has to be performed numerically, i.e. 

one has to evaluate
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p = j « r ~ ' ( £ )
dE

1 +  exp
Ep — E 

kT

(5.12)

where is the two dimensional hole density of states (DOS). As outlined in section 5.1,

valence band calculations are relatively demanding, which was exactly the reason for the 

implementation of the expansion method of sub-section 5.1.3. Although a considerable reduction 

over exact models was achieved, a full evaluation over ik-space of the FD-integral (5.12) in each 

iteration would render the self-consistent procedure into a time-consuming and impractical routine. 

A simple method to increase the speed is to evaluate the DOS only every couple of iterations. 

Justification for this follows from the expectation that the form of the dispersion relations (thus the 

DOS) changes little per iteration, as the change in quantisation energies of various subbands are 

typically of the order of 0.1 meV after the initial iterations. Yet, even when evaluating the FD- 

integral every 5 iterations such as done in this work, some approximations to (5.12) have to be 

made, as follows.

+50

0.08

0.06

*<  0.04 +10 
. o

0.02

0.02 0.04 0.06 0.08

F ig .5 .1 1 : E n e rg y  c o n to u rs  f o r  the lo w es t  
q u a n tised  (h e a v y ) h o le  s ta te  in a  f la t  b a n d  
100À A lo jG a o 7A s-G a A s Q W . The 
re sp e c tiv e  e n e rg ie s  a re  + 1 . + 2 , + 3 , +5. 
+ 1 0 , + 2 5  a n d  + 5 0  m eV  a b o v e  the b a n d  
e d g e  m in im um  w hich  is  a t  7 .19  m eV  
a b o v e  the G a A s b a n d  ed g e .

K  [A-']

First, a limited number of energy contours for the various hole bands are calculated (fig.5.11), 

exploiting any symmetries present in the E(k) diagrams. From this, a discrete density of states 

function is derived (fig.5.12) which is then integrated by using that the contribution to the integral 

of each segment is given by an analytical formula similar to (5.11). At this point, one is able to 

evaluate the hole density as a function of Fermi-energy and temperature in waiped bands 

(fig.5.13).
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The scattering model that will be used to convert the obtained carrier densities and envelope 

functions into experimentally verifiable quantities like carrier mobility and Hall density will now 

be discussed.

5.1.5 - The scattering model

The implementation of the scattering model of chapter 4 is much more straightforward than the 

self-consistent model of the previous sections. The implementation is outlined in the flow chart of 

fig.5.14 which shows that the process simply consists of evaluating the scattering times per unit 

angle of the various allowed transitions at a number of scattering angles, after which the total 

(transport or quantum) scattering rate can be evaluated by integrating over all angles. Note that
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only scattering over an angle within the range [0,7t] has to be evaluated, as the scattering rate 

corresponding to a deflection - a  is equal to that over an angle a.

To minimise the numerical effort involved, (again) several time-saving techniques were 

implemented, such as making full use of the symmetry of the dielectric response matrix, evaluation 

of allowed transitions only and a dynamic allocation of points in the curve containing the 

scattering rate as a function of angle (see fig.5.15).
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At this point, a fairly extensive insight in the numerical problems involved with performing self- 

consistent valence band calculations has been presented, along with details of the implanentation 

of Poisson’s equation, the effective mass equations and the Fermi-Dirac integral. In addition, the 

implementation of the ionised impurity scattering model has been presented here. Section 5.2 will 

now present the required material parameters to actually use the outlined models.

5 J Î  * E x ^ r J t a e i t t a i

This section presents all the necessary material constants that were introduced in the theoretical 

models of chapter 2 to 4. The section is split up in three sub-divisions which respectively deal with 

the various material constants such as band gaps, mass parameters and deformation potentials 

(§5.2.1), the band line-up between adjacent heterostructure layers with different material 

composition (§5.2.2) and parametrised forms of many-body corrections such as exchange and 

correlation (§5.2.3). This chapter then ends with sub-section 5.2.4 which discusses the interaction 

of the semiconductor with the outside world via its air-semiconductor interface. Here, surface 

pinning effects are discussed which force the Fermi-energy to take a fixed value at such an 

interface. The latter is of vital importance for Poisson’s equation, as it provides the remaining 

boundary condition as discussed in §5.1.2.

5.2.1 - Material constants

A summary of the material parameters that are used in the self-consistent Poisson-SchrOdinger 

solver and the ionised impurity scattering model are presented here. Table 5.1 shows the specific 

material parameters for the binaries GaAs, AlAs, InAs and InP. A ternary like In^Gai-^As can be 

seen as a mixture between the two binaries GaAs and InAs and, as a result, the material constants 

for such a ternary are obtained by linear interpolation between the two values. An exception is the 

unstrained band gap E /  for which a linear interpolation is a rather crude approximation. 

Expressions for the band gap of Al*Gai.xAs, In^Gai.xAs and In^Ali.^As as function of the 

composition x are therefore presented in (5.13). It should be noted that considerable differences 

can be found between some of the experimental values quoted here and those used by other 

authors. This is mainly due to the fact that it is (especially) difficult to obtain accurate results for 

the higher Luttinger parameters ( 7 2  and yj) as well as the deformation potentials a,b and d, and 

that various techniques (experimental or theoretical) can give widely different results (see for 

example fZol96] for a list of experimental values for the deformation potential a).
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GaAs AlAs InAs InP

a [A] 5.6533 5.6611 6.0584 5.8687

E /  (T=OK) [eV] 1.51914 3.13 0.4180 1.4236

m*(T) [mo] 0.0667 0.15 0.0239 0.0765

yi 6.85 3.45 20.4 4.95

Ï2 2.10 0.68 8.3 1.65

Yi 2.90 1.29 9.1 2.35

Cji [I0^‘ Dyn/cm] 11.879* 12.02 8.329 10.11

C j2 [10^^ Dynlcm] 5.376* 5.70 4.526 5.61

C 44 [10^^ Dynlcm] 5.95 5.89 3.959 4.56

Ci4 [Cim^] -0.16* -0.23* -0.05* -0.04*

a [eV/A] -9.77* -6.0 -6.4

b [eV/A] -1.7* -1.8 -2.0

d fe V lA ] -5.4 -3.6 -5.0

A f e V ] 0.341 0.281 0.38 0.11

UO) 13.18 10.06 15.15 12.5

T a b le  5 .1  : M a te r ia l  
p a r a m e te r s  f o r  G a A s , 
A lA s , In A s  a n d  In P . A l l  
p a r a m e te r s  a r e  f r o m  
[ L a n 8 2 ]  o r  [L a n 8 7 ]  
a p a r t  f r o m  th e  e n tr ie s  
m a rk e d  #  w h ich  w e re  
ta k en  f r o m  [S in 9 3 J  o r  
th e  o n e s  m a rk e d  $  
w h ich  a r e  f r o m  
[C h a 9 2 ] .

As mentioned above, linear interpolation between the results for the various binaries does not 

provide accurate results for the band gap in a ternary. Thus, the following values for the 

unstrained band gap at 300K are used [Dat91 ],

El{Al,Ga,. ,As)  

E ]{A lM _ ,A s )

:1.420 + 1.087x + 0.438;ĉ  
I 1.905+ 0.10%+ 0.16%' 
[0.37+ 1.91%+ 0.74%̂  

1.8 + 0.4%

X  < 0.43 
jc > 0.43 
X  < 0.68 
X  > 0.68

(5.13)

E°{lnfia,_^As) = 1.424 -  0.7%+ 0.4%'

The temperature dependence o f the band gap o f all m aterials is set to the temperature dependence 

o f GaAs, such that the unstrained band gap at a temperature T  is given by

(5.14)
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5.2.2 - Band line-ups

When modelling compositionally varying structures, it is important to know how the conduction 

and valence bands line up with each other. The line-up of the band under consideration determines 

the effective potential energy Vh(2 ) which via (5.1) provides the confinement potential V(z) 

required in the effective mass equations.

The band line-up is usually expressed in terms of the band offsets IsEc and AEy (or their ratio 

Q=AEJAE^) which may be related, as a first approximation, to the differences in work functions 

(similar to the approach taken when evaluating an ideal Schottky barrier [SzeSl]) and the band 

gaps of the materials involved. However, more detailed investigations reveal that the offsets are 

considerably influenced by the occurrence of charge redistribution across the interfaces as a result 

of the differences in the adjacent electron configurations fWal86]. The latter, combined with the 

relatively insensitivity of the lower quantised levels with respect to the offset, explains the 

significant differences between the presently accepted and early values for the offsets in for 

example the Al^Gai-^As/GaAs system [Cha74,Din74].

c o n d u c t i o n

F ig J . 16 : D efin itio n  o f  the va rio u s  
sy m b o ls  u sed  in the b a n d  offset 
eq u a tion s. The b a n d  d ia g ra m  d e p ic ts  
a  co m p ress ive ly  s tra in ed  Q W  
stru ctu re  in w hich  the h eavy  a n d  ligh t 
hole  b a n d s have been  sp lit  up v ia  AEg 
a n d b  a s  d e fin ed  in the P ik u s-B ir  
stra in  H am ilton ian  o f  ch a p ter 2. 
Show n a re  th ree  d e fin itio n s f o r  the  
b a n d  g a p : Eg^ is  the u n stra in ed  b a n d  
g a p , E /*  the true b a n d  g a p  a n d  
the d ifferen ce  betw^een the conduction  
b a n d  a n d  the a v e ra g e  en erg y  o f  the  
h ea vy , ligh t a n d  s p l i t-o f f  b a n d  
(re p re se n te d  b y  a d o tte d  lin e). A ll  
th ree  d e fin itio n s a re  u sed  in the  
lite ra tu re  to  d e sc r ib e  the va len ce  
b a n d  o ffset (thus sp ec ify in g  e ith er  
AEy, AEhh o r  AE^y).

AE,

hh ov

AE,AE,

spllt-off

126



Experimental parameters

As outlined in section 2.5.2, strain causes the heavy and light hole bands to split. As a result, a 

variety o f  band gaps can be defined in a strained structure such as (see fig.5.16)

•  The unstrained band gap E /

•  The actual band gap that is given by the energy difference between the conduction and heavy 

hole band in a compressively strained structure {E ^  in a tensile strained structure)

•  The average band gap E^^ given by the energy difference between the conduction band and the 

average energy o f the heavy, light and split-off band.

This ambiguity results in many different ways to describe the offsets. In this work wiU employ the 

following results (again, see fig.5.16 for the various definitions).

AlGaAs-GaAs:

InGaAs-GaAs

InGaAs-InP :

AE, =0.62A£“ 
AE, =0.38AE"

= 0.66 AE“
<hh

‘hh

AE,

A E .

= 0.34AE

= 0.36AE; 
= 0.64AE;

[Bry93]

[Am92]

[Lee90]

(5.15)

Using the energy gaps, spin-orbit splitting and deformation potentials given in table 5.1, the band 

line-up o f all relevant bands (conduction, heavy, light and split-off hole) have been uniquely 

defined via (5.15) and the Pikus-Bir Hamiltonian (2.76).

5.2.3 - Many body effects: the exchange and correlation potential

As discussed in §2.1.1, the one-electron Schrodinger equation that is the starting point o f the 

derivation o f the effective mass model o f section 2.3 contains a many-body correction which is the 

exchange and correlation potential. It originates from the fact that both the Pauli-principle and the 

Coulomb repulsion tend to keep all electrons as far apart as possible, therby lowering the potential 

energy. For the conduction band, a simple analytic parametrisation was given by Hedin and 

Lundqvist [Hed71,Ste84]

K r(^ )  =  - 1-H 0.7734-^ In 
21 n a n

a y (5.16)

where
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vl/3a  =(4/9tc)
1-1/3

47te„E (5.17)
a =

m*e^

R y .
2 (4 jcE (,e ,» )

Here, a and Ry* are the effective Bohr radius and effective Rydberg. F or GaAs, they respectively 

take the values 104Â and 5.3 meV. Inclusion o f exchange and correlation results in a potential 

correction o f typically 40 meV at an electron density o f 10** m'^. As the effect o f the exchange and 

correlation correction is much smaller for holes [Bob96], it is neglected in this woric

5.2.4 - Surface pinning

As Poisson’s equation (5.4) only operates on the second derivative o f the potential, this only 

supplies a unique potential function within two boundary conditions. Such a boundary condition 

consists o f specifying either the absolute value o r the derivative o f the potential at a given po in t 

One boundary condition was already presented in 5.1.2 where it was postulated that the substrate 

remains in a charge neutral state. Effectively, it is assumed that the surface impurities on the 

growth side o f the substrate completely shield this substrate from the rest o f the heterostructure. 

Thus, the potential at this semiconductor-substrate interface is pinned at charge equilibrium. The 

remaining boundary condition will now be discussed.

It is well known that the surface-air interface exhibits surface states that effectively pin the 

potential at a fixed level. The position o f such a pinning level could in principle be determined by 

comparing self-consistent electrostatic calculations for the carrier density with the corresponding 

experimental results, but there is an alternative (and more sensitive) technique in which 

information about the pinning potential is obtained from a photoreflectance experim ent In such an 

experim ent as suggested by [Hoo89], the electric field present in the (intrinsic) top layer in a 

[s-i-n*] o r [s-i-p""] structure (s denotes the surface) is measured from which the pinning potential 

can be deduced. A good review o f the technique as well as a summary o f the various experimental 

results can be found in for example [She95b]. The surface pinning potentials that will be used in 

this work are now presented.
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For /i-type structures, the pinning potential at an [001] GaAs-Air interface is assumed to be pinned 

at mid gap [Yin92]. Although a similar result was quoted for p-type structures in this paper, more 

recent research showed a reduced surface state density (i.e. less effective pinning behaviour) and 

the presence of two pinning levels at respectively 0.25V and 0.50V above the valence band 

[Yan94], i.e. well below mid gap as compared to the n-type case. A possible explanation for the 

different pinning behaviour and reduced surface state density of n- and p-type GaAs comes from 

an STM study by Pashley [Pas93] concerning the formation of donor kink sites. Returning to the 

implementation of Poisson’s equation and the boundary condition in particular, in this work the 

potential is assumed to be pinned at mid gap in an «-type structure and 0.3V above the valence 

band in a p-type structure. Fig.5.17 shows a graphical picture of the boundary condition 

implementation.

AJr GoAs cap-loyer Substrate

AIGoAs
(n-type)

GaAs

F ig J .1 7  : In o rd e r  to b e  a b le  
to  so lv e  P o is so n 's  equ a tion , 
tw o  b o u n d a ry  co n d itio n s h a ve  
to  b e  su p p lied . The f ir s t  is 
o b ta in e d  b y  assu m in g  the  
su b s tra te  to  be  c h a rg e  neu tra l. 
The se c o n d  f o l lo w s  fro m  the  
e x p er im en ta l o b serva tio n  th a t 
the  su rfa ce  p o te n tia l is  p in n e d  
m id g a p  f o r  n -typ e  a n d  a ro u n d
0 .3  V a b o v e  the G a A s v a len ce  
b a n d  f o r  p - ty p e  stru c tu res .

With this information, the electrostatic potential has been uniquely defined through Poisson’s 

equation. Using this, the implementation of the various equations as presented in section 5.1, 

material constants, band-line ups and parametrised form of the many-body correction, the total 

framework of finding the wavefunctions and dispersion in a compositionally varying structure 

including charge has been presented, along with that to obtain the theoretical carrier mobility. The 

next chapter will now present band structure calculations and theoretical mobilities for a selection 

of n- and p-type structures.

129



Chapter 6 : Results

A significant proportion of this thesis has so far been devoted to the outline, derivation, 

implementation and discussion of a valence band effective mass model. Chapter 2 contained the 

essentials of the derivation of this model, whereas chapter 3 concentrated on the intrinsic boundary 

condition problem. The reason for the extensive coverage is the fact that substantial advances were 

made during this Ph.D. in the boundary condition problem for growth on non-conventional growth 

directions. This led to two publications on this matter [Sta97,Dal98] of which the results will now 

be presented in the first section of this chapter. Here, a formalism is introduced that provides the 

correct boundary conditions for arbitrary growth directions via relatively simple analytic 

expressions for the operator ordering. Furthermore, the relevance of using the correct boundary 

conditions is highlighted, especially when calculating a theoretical momentum effective mass for 

use in a scattering model.

Section 6.2 focuses on the use of the valence band effective mass model to calculate the eigenstates 

in heterostructures. Numerical results for the dispersion E(k) as a function of growth direction are 

presented, along with the effects of the spin-orbit interaction, strain, and spin-splitting such as 

observed in non-symmetric structures. Qualitative results about their respective influence on the 

transport properties are given.

Theoretical electron mobility calculations for a range of GaAs-AlGaAs and InGaAs-InAlAs-InP 

QWs are presented in section 6.3. These results are compared with others presented in the 

literature, both to confirm the validity of the model and to gain insight into the accuracy of the 

RPA scattering model. It is shown that a scaling factor of approximately 2 is needed to bring the 

theoretical and experimental electron transport mobilities into agreement, confirming similar 

findings in the literature. As it is found that this factor is fairly independent of sample structure or 

even material system, it is thus established that the RPA approach can give reasonably accurate 

absolute values for the mobility by simply accepting the presence of such a scaling factor, whose 

origin will be discussed later on. Also in this section, special attention is paid to the effects of 

interband scattering. It is shown that the over-estimation of the electron transport mobility in 

graded QW structures in a previous evaluation by Roberts [Rob96,Rob98] is due to the failure to 

include this scattering process. The improvement in mobility obtained in his work is shown to be 

severely limited by the latter process.
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The final section in this chapter contains an evaluation of hole transport in two-dimensional 

semiconductor structures. The previously obtained insight into the effects of strain and spin- 

splitting on the valence band dispersion, combined with the relevance of interband scattering, was 

utilised to design a set of channel doped p-type Ino.15Gao.g5 As-AlojsGao^?As QW structures to 

evaluate the possibilities and scope of wavefiinction engineering to enhance the hole transport 

mobility. It is shown that the RPA approach can provide reasonably accurate relative predictions 

for p-type structures when comparing between various doping schemes, but unfortunately provides 

absolute values of the hole mobilities that are generally a factor 8  too high in comparison with 

experimental results. As for the electron case, a scaling factor is introduced to bring the 

experimental and theoretical mobilities in agreement, but it is disappointing to find a scaling factor 

that is so much larger than that introduced for n-type calculations. This chapter then finishes with 

a discussion on the origin of this scaling factor. Whereas the scaling factor in n-type materials is 

attributed to electron-electron interaction, it is postulated that the larger fraction of the hole scaling 

factor is most likely caused by the over-estimation of the screening in the RFA model due to 

quantum confinement effects in the screening states. A first approach to account for this in the 

scattering model leads to a new scaling factor of 4.5 which is in better agreement with the electron 

factor, as well as an overal improvement between experimental and theoretical results.

 ̂Boundary conditions for arbitrary growth dircdlotis

It was shown in chapter 3 that the ‘new’ (Burt-Foreman) boundary conditions improve the 

consistency and behaviour of the k-p model, and that adopting these boundary conditions can have 

a significant influence on the resulting bandstructure. Nevertheless, it was found that the (old) 

symmetric boundary conditions were still being used when looking at non-[0 0 1 ] growth as only 

these boundary conditions had been published in the literature. The underlying reason why little 

effort was made to extend the formalism to non-[OOI] growth was in the author’s opinion probably 

due to (at least) three reasons,

• The mathematics involved in Burt’s review paper tends to swamp any physical insight

• Neither Foreman [For93] nor Meney [Men94] present any information about how the boundary 

conditions for [0 0 1 ] were obtained.

• A general under-estimation of the need to adopt the new boundary conditions when evaluating 

experimental quantities of interest such as electrical or optical properties in technologically 

relevant material systems. Foreman chose InGaAs-GaAs to illustrate the effects but limited the 

discussion to the band edge masses which only exhibit significant changes in the second heavy
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hole level. Meney provided full E(k) dispersions but these unfortunately only showed 

significant changes in the InGaAsSb-AlGaSb system for the chosen (relatively large) well 

width o f 100Â. The influence o f the boundary conditions on the dispersion however increases 

dramatically with decreasing well width, as will be shown later in this chapter.

Thus, there was a clear need for a comprehensive framework to derive the new boundary 

conditions for non-[001] growth. This subject was addressed in two papers. In the first paper 

[Sta97], a framewoik was presented to set up an effective mass Hamiltonian in a sim ilar way as 

done in the bulk approach (2.47-2.50) with end result (2.51) for growth on [001], but now 

including information about the operator ordering. As such an approach is not limited to ju st [001] 

as shown in §2.3.5, it enabled the derivation o f the boundary conditions for [110] which were 

subsequently also presented there. It was shown that the effects o f adopting the new boundary 

conditions for the commonly used material system Inoj3 Gao.4 7 As/InP were dramatic for this 

particular growth direction. Although this approach can be repeated for any growth direction, the 

procedure can be rather tedious and requires an explicit knowledge o f the angular momentum basis 

set for the growth direction under consideration. In the second paper [Dal98], a m ore satisfactory 

approach was presented in which a set of analytic rules provides the correct operator ordering for 

any growth direction. The above work on the boundary condition problem was performed in 

collaboration with Dr.Paul N.Stavrinou at the IRC for Semiconductor M aterials in Oxford, 

presently at the IRC for Semiconductor M aterials at Imperial College.

6.1.1 - Framework to extend the Burt-Foreman form alism  to non-[001]

Using the insight into effective m ass theory obtained in chapter 2, a fiam ework to derive the 

boundary conditions for any growth direction is presented here. At this point, it is important to 

point out that the orbital-picture o f effective mass theory proved essential in this w o it. Only 

because o f the acquired knowledge o f the symmetry properties o f the various zone-centre solutions 

and the explicit derivation o f the effective mass Hamiltonians using a tight-binding view, thereby 

explicitly avoiding Luttinger’s ‘Theoiy o f invariants’ (§2.3.7), was it possible to contribute to and 

eventually solve the boundary condition problem within B urt’s framework for non-[001] growth. 

W ith hindsight, it is therefore that the theory chapter had a strong focus on group theory, 

symmetry properties and zone-centre solutions for the case where spin and momentum were 

orientated along non-conventional directions. This obtained insight in effective m ass theory in 

terms of orbitals and inner products is now going to be used to solve the boundary condition 

problem.
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It was shown in c h u te r  2 that the valence band effective m ass Hamiltonian in the compositionally 

varying case essentially only differs from that for bulk in the sense that one is now woridng with 

operators k rather than momentum vectors As a result, almost the whole o f chapter 2 dealt with 

the bulk case only, making the substitution k ^ k  whenever necessary. Chapter 3 showed that 

such an approach cannot provide the correct boundary conditions, as all information about the 

operator ordering is lost when parametrising the Hamiltonian (2.38). However, the solution is 

obvious as the boundary conditions can simply be obtained by parametrising the Hamiltonian, but 

taking the correctly ordered  form as its origin : [identical to (3.7)]

Hjj.

A ' .  ,  A 'T r iA lk X ïIflk }
E - E ,

As the bulk unordered Hamiltonian over an |%), |y) and jZ) basis (2.47) was the starting point of 

all Hamiltonians for all growth direction, a similar but ordered equivalent is going to be set up. 

Thus, the effect o f adopting the ordered Lôwdin interaction term on the individual terms in each 

element o f the Hamiltonian over this basis |%), |y) and |Z) needs to be evaluated.

The element H ^2 =  is taken as an example, all other elements can be obtained in a

similar approach. As this particular term is proportional to kjcy in the bulk case, the evaluation of

(6.1) can be restricted to just the contributions proportional to k^ky o r kyk^ Following Foreman

[For93], the individual contributions o f the remote states o f symmetry F ;, F ; 5  and T n , thereby 

neglecting the small contribution o f F 2j  , are evaluated. It then follows from fig.6.1 that the (Mily 

non-zero contributions to this Hamiltonian matrix element are

15  ;  ( x |a /a % |v X v |a /^ y ) .  

e - e .

r  ( x |a /^ X v |a / a % |y )  -

'  £ - £ v

I.

(6.2)

Using the parameters as defined in (3.8), the following parametrised form o f this ordered 

Hamiltonian element is obtained,

//i2  =  +  ^kyT^x +  ^^y^K  )  (6.3)

The other elements are derived in a similar way, and the following Hamiltonian over an |%), |y) and 

|Z) basis is found [Sta97]
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/ /  =
2mn

k^Ak^ +  kyBky +  kfik^

k , c j i , + k , c X

K C ,k ,  + k ,C ^ k ,

k ,A k ,+ i c ,B k .+ K B k .
k fiik ^  + k / 2 j i .

where

A = 1 -  6a —126 Cj = -6a  + 66 
B  =  \  —6 k C2 = -6k

k y C ,k ,+ ic f i j [ y
k ,A k , +  k^B k^+kyB ky j

(6.4)

(6.5)

r. 0 >  -0 r, 0 >  -0

-0

=0

Fig.6.1 : Schematic of the various inner products (%|pj,|v) and (%|py|v). The z-coordinate corresponding to 
the quantisation direction is taken perpendicular to the paper, the in-plane coordinates x and y are 
respectively taken as the horizontal and vertical direction.

At this point, a concise formalism has been provided to set up an ordered Hamiltonian for any 

growth direction. By replacing the bulk parametrised Hamiltonian over an \Y) and |Z) basis 

(2.38) by the properly ordered version as given above, the k-p formalism has been extended such 

that it is now valid not just in bulk but also at an interface. Using the ordered Hamiltonian (6.4), 

one can now, identically to the approach shown in chapter 2, set up an effective m ass Hamiltonian 

for an angular momentum basis \I,m^ (2.26) for any growth direction. Using this approach, the 

boundary conditions for a 4-band [110] effective mass model were derived and presented in 

[Sta97]. Similar results to those found by Foreman when looking at [G01]-growth were obtained 

such as reduced interface coupling between the heavy and light hole states as well as a new 

interface term coupling both light-hole states. Explicit forms for the boundary conditions will be 

presented in §6.1.4. Numerical results for the dispersion as a function o f the choice o f boundary 

conditions for a variety o f material systems will be given in section 6.2.
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6.1.2 - Analytic rules to obtain the Burt-Foreman boundary conditions

A general approach to obtain the boundary conditions for any growth direction was presented in 

the previous discussion. It was shown that the ordered Hamiltonian over an (X), |y) and |Z) basis 

(6.4) is a natural starting point and that, along with an appropriate coordinate transformation, the 

problem merely consists of recasting the Hamiltonian into the more usual angular momentum basis 

|y,m;) for the desired growth orientation. However, this procedure can rapidly become laborious, 

needs to be performed for every growth direction individually and therefore prevents general 

observations with respect to the interface coupling. A more satisfactory approach would be to 

work from ««ordered bulk-like Hamiltonians, which are readily available in the literature 

[Iko92,Men92] or easily obtained from the theory of invariants [Lut56] and, where necessary, to 

replace terms by the ordered form prescribed from the exact theory. Essentially, one would like to 

have a set of rules to set up a properly ordered Hamiltonian, much like the (now shown to be 

incorrect) symmetrisation rule that used to be employed before the development of the exact 

envelope function theory.

It was shown in [Dal98] that, with the aid of the general |7,/«y)-basis, a set of analytic rules can be 

found that provide the correct operator ordering within Burt’s framework for each possible growth 

direction. One obtains, again regardless of growth direction, that the overall fonn of a 6-band 

effective mass Hamiltonian with operator ordering takes the form (boxed are the elements 

corresponding to a 4-band model)
/

H —

1 P + (2 R 0 1 SJyPl 4 i r

P - Q 0 C 1 4 ÏQ n # 3
P - Q -^2 j j l Q

P + Q 1 -ylÏR^

P + A - 0 C

F + A

(6.6)

where the subscripts on S terms are introduced to distinguish elements that have a specific 

operator ordering. Note that if the ordering is neglected, e.g. as in the bulk descriptions often used 

in the literature, then 5y, ^ 2 , and S4 will all reduce to a single term S.

An important new feature of the above Hamiltonian is a new element C that couples both light hole 

bands as well as both split-off hole bands. This element was already introduced in the block 

diagonal Hamiltonian (2.57). Its presence is solely due to the inclusion of the operator ordering 

and is therefore expected to be only non-zero at an interface. Further, phase terms of unit length, H
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and 0 ,  have been introduced in order to accommodate any differences in phase o f existing 

sets used in the literature compared to the set given in (2.26,2.27), an issue that will be returned to 

in section 6.1.3; for the present set both II  and 0  would be equal to 1. Complying with the latter 

and ignoring any ordering, the above Hamiltonian o f course reduces to the previously g ivai bulk 

Hamiltonian (2.51).

The relevance o f the above Hamiltonian, and its bulk counterpart, should be noted, and was 

partially highlighted in §2.3.7. There, it was outlined that the convenient group theoretical ‘Theory 

o f invariants’ can only provide 4x4 Hamiltonians, but as all the elements o f a 6x6 model are 

related to the latter, in principle it does not prevent the use o f this theory when setting up the 

higher order model.

The rules for the appropriate operator ordering in the various elements in the effective mass 

Hamiltonian are now presented. As mentioned earlier, the derivation o f the above Hamiltonian and 

these rules was only possible because o f the orbital approach developed by the author, 

accumulated into the general basis set (2.26). The necessary linear algebra involved with the basis 

transformation to |/,my) [Dal98] was performed with the aid o f M ATHEM ATICA (see appendices 

A1,A2,A3). As the algebra is straightforward but cumbersome, this section will restrict itself to 

just presenting the results obtained. Identical to the approach taken in 2.3.5, a new orthonormal 

coordinate system (x’ (with z’ parallel to the growth direction) is introduced in the 

Hamiltonian over an |%), |y) and |Z) basis (6.4), after which basis transformation to the 

appropriate |/,/n;)-set is performed. Thus, the general Hamiltonian (6.6) is obtained with the 

following operator ordering rules:

•  P  and Q are symmetrised with respect to the operator k^,.

•  All terms in Si involving i,l are to be symmetrised.

•  Any terms in Si containing a single operator k̂ . , i.e. with a unordered form such as 

k̂ < ( f a  +  g n + h b )  w here/,g and h are constant coefficients, should be ordered as follows;

/ ~ g _ f  ^ _  , /  +
V

s . :  - ^ 5 ]

s . :

(6.7)

3 6 6
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All terms in are symmetrised with respect to the operator and do not contain any 

combination o f a  and .

•  The term C , which is only non-zero at an interface, always takes the form;

—(h/ Wq ŷ k̂ , — iky  )|̂ (o —71—5 )k^. — (o — 7C — 5 ) j (6.8)

Summarising, two significant results have been obtained. First is the occurrence o f an element C 

that couples the light hole bands as well as the split-off bands. This element always takes the same 

form, independent o f growth direction. Second, a strong asymmetry in the a-coefficient for the S- 

elements is observed. Integrating across a boundary, it follows that coupling between heavy and 

light hole states never includes the dominant contribution from remote states with s-symmetry 

(F ;), which is in contrast to the result one would have obtained if  the norm al symmetrisation 

procedure had been used. As a result, significant changes in the calculated E(k) diagram s for all 

growth directions are expected when adopting the new boundary conditions, such as shown for

[110] in [Sta97].

6.1.3 : Influence o f the phase of the |/,wy)-basis on the general form  of

the Hamiltonian

This section explains how, with the introduction o f the two phase terms n  and 0 ,  existing 

Hamiltonians which are not derived from the set (2.26,2.27) may be recast into the general form

(6.6). The appearance o f different Hamiltonians in the literature basically stems from the 

differences in the basis set used to derive them. Although two commuting observables have been 

chosen and a particular projection axis has been specified, the states o f  (2.26,2.27) are by no 

means unique in the sense that each may be multiplied by a unit length factor o f without

changing any o f the physics. Typically, using a |/,m;) basis corresponding to a different phase 

convention becomes apparent in the off-diagonal elements o f the Hamiltonian which then differ by 

some (complex) phase term from the general form of the Hamiltonian used in this work. To 

illustrate, there are at least two general forms o f 4-band Hamiltonians in the literature which 

exhibit phase differences in the off-diagonal elements, compare for example 

[Men92,She95,Hen96] to [Iko92for93]. The phase convention in this work corresponds to the 

latter notation. The following section now demonstrates that it is possible to account fo r the phase 

o f the |/,/ny) set by introducing two phase factors FI and 0 .
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Consider the unitary transfonnation where is a diagonal m atrix with elements

[Dal98],

Uij =  8 ijUi, M =  (l, e x p [ /a ], exppp} exp[/(a  +  p )}  e x p [ ta ],exp[/p]) (6.9)

and Ôÿ is the Kronecker delta. As a result o f the transformation the following elements in the 

Hamiltonian are multiplied by a phase factor

5 i,2 ^ e x p [ /a ]5 i ,2
R  ^ e x p [ ,p ] «

S3 4  -»exp[i(p-a)]S3 „
C - » e x p [ / ( p - a ) ] C

To demonstrate how this unitary transfonnation can be used to account for the choice in \J,mj) 

states in (6.6), a simple 4-band Hamiltonian without C-element is considered first (i.e. only the top 

two transformations are o f relevance). It follows from (6.10) that one can m ultiply all the 5  as well 

as R elements in such a 4-band Hamiltonian with a phase factor without changing the eigenvalues. 

Effectively one is now woridng with new off-diagonal elements, = e x p ( /a )5 a n d  

=  e x p ( /p ) /? , which are based on a different |/,my) set as compared to the original matrix 

elements.

The latter is now extended to a full 6-band model with C-elements. Again, and R ^  represent 

‘arbitrary’ off-diagonal elements which correspond to a yet unknown phase and set (for 

example, they could have been obtained directly from the theory o f invariance [Lut56]). As the 

C-element is not invariant in the transformation (6.10) one finds that a phase factor 

0  =  ex p [ /(p  -  a ) ]  has to be introduced to account for any difference in basis states. Similarly as

8 3 , 4  transform differently from although they were all defined to reduce to the same element

neglecting any ordering, another phase factor H  has to be introduced which is placed in the

Hamiltonian elements containing 8 3 ,4 . Using (6.10), one obtains.

n . 2 M . » p [ , ( 6 - 2 . ) l  (6 J I )
ex p [ia j

Both factors can be obtained by comparing the chosen R and S to the expressions one would have 

obtained when using the set (2.26,2.27). As the latter set will always give a real and positive o k l

138



Boundary conditions for arbitrary growth directions

component in R  and a real and positive component in S  (this can be checked by evaluating

(3l2,-i-3l2\H \3l2;tll2)), this leads to the following expressions for II  and ©

(6.12)
0  =  Sign{P)

where r° .̂ is the normalised ck^, coefficient in R and is the nonnalised <sk .̂kj. coefficient in 

S. Here, the factor Sign(P) was introduced to eliminate the effects o f an overall sign change in the 

Hamiltonian often performed to obtain positive hole energies. To illustrate, the next section will 

now use the presented analytic rules to derive the appropriate boundary conditions for growth on 

[111].

6.1.4 - Explicit form for the boundary conditions for growth along [111]

Two frameworks to derive boundary conditions for arbitrary growth directions were presented in 

the previous sections, the first using implicit knowledge o f |/,/ny) set and the second using a set of 

analytic rules. Following [Dal98], the second (ultimately more appealing) framework will now be 

used to obtain the boundary conditions for growth along [111].

Using the ‘Theory o f invariants’ [Lut56], taking the axes along (1,1,-2), (-1,1,0) and (1,1,1) and 

dropping the primes from now onwards, the following unordered Hamiltonian elements for growth 

along the [111] direction are obtained.

P  =  - \ l ^ ( k ] + k ] + k ] )

6  =
^  ̂ (6.13)

P  =  ~ ( y 2  + 2 Y 3 > -  + ^ ( Ï 2  - Y s M .

where k^kx±ky. Both the R and S elements feature terms linear in . In these elements, a,7c,ô are 

substituted for the Luttinger parameters after which the ordered replacements can be obtained 

using the m les o f §6.1.2,. Explicitly,
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5 i : (3 a  - 2n)k^ + k , ( n + 3 8 )

*̂ 2 • (rt + 3Ô + iĉ  (3 a  — 2ji )
S^i ( a  +  2 5 )^ j  +  ^ j ( 2 a  —7C+ 5 )  (6.14)

^ 4  : ( 2 a  —u  +  5  (o  +  26  )

R: ( 2 7 ü - 3 ô > t , + i t , ( 2 7 t - 3 0 )

To obtain the phase terms, a closer look at the bulk equations (6.13) reveals that the sign o f P  is 

negative, R  contains a component —^V3aA^ and S  a component , so that working

from (6.12) this implies.

% /% (?) = - 1  

r : = - l

s°  =  - i

leading to n  = + 1  and 0  = -i (6.15)

Including the C term completes the transformation o f the Hamiltonian. The boundary conditions 

are now obtained by integrating across an interface, resulting in the requirement o f continuity o f F  

and OF  where F  is a 6-component vector containing the envelopes and f i  is given by

(yi -2 y 3 ) i •^t(ic+38) 0 -^ik+(27c-3ô)

-^ ^ (3a-27c) (Yi +2/3)1 2k . ( p - n - b ) -2V^3& ^J2k.(2a-n +6)

(Yi+2/3)1 - |t(3cj-27t) ^J2k+(2a-n+d)

0 y iL (& -3 5 ) -^t^(K +35) (y, -2 /3 )1 ;^«-(2"-38) ^ ^ ( tc+35)

^*.(30-2)1) ->/2it.(a+25) Y ii —2/l(o’ —k  —6)

-V2)^(a+2S) - it (3 c J -2 7 t) —2 k jp  —7t —5) Y ii

(6.16)

As expected, the boundary condition matrix does not feature o-term s in the first and fourth row, 

i.e. the heavy hole bands do not couple with the light o r split-off hole bands via the remote states 

o f symmetry Ty. As a result, along with the additional coupling that originates from the C-teim, 

the boundary condition matrix shows profound differences from that which would have been 

obtained had one worked from a symmetrised Hamiltonian [Iko92,Men92]. A t this point, the 

theoretical discussion on the boundary conditions ends. This results chapter will now continue with 

presenting numerical results for both the dispersion and mobilities.
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• Bandstructure caicniatioiif ,

This section presents numerical results obtained with the valence band effective mass model 

derived in chapter 2. A selection of band dispersion diagrams E{k) is given to illustrate the various 

mechanisms that shape or alter the band structure. Starting with flat band QW structures, 

dispersion relations are shown for a variety of growth directions, where it is shown that growth on

[111] substrates can lead to a reduction in the density of states and thereby significant enhance 

electrical and optical device properties as discussed in chapter 1. Furthermore, the effects of strain 

on the dispersion are discussed, as well as the occurrence of spin-splitting in non-symmetric 

systems. The boundary conditions briefly re-appear when their influence of the dispersion is 

highlighted.

Unless stated otherwise, all calculations are performed using a 6-band Hamiltonian for the growth 

direction [001] and a 4-band HamiUonian for all other ([110] and [111]) growth directions. The 

new boundary conditions are employed throughout this report, unless clearly indicated. All 

material parameters used are those presented in section 5.2. The various external parameters that 

control the effective mass solver are chosen such that they have no influence on the final 

dispersion. Specifically, a mesh size of sufficient density is used to eliminate any influence of the 

discretisation procedure, the number of expansion states is set to at least 15 per band to guarantee 

convergence, and the infinite barriers are placed at least 50Â away from any interface to minimise 

interference with the confined states. Finally, all self-consistent calculations are performed using 

an explicit Fermi-Dirac integration.

6.2.1 - A comparision between results obtained using the new and 

conventional boundary conditions

This section evaluates the effect of the boundary conditions on the bandstructure. Fig.6.2 and 6.3 

show the calculated in-plane dispersion for growth on [110] for the technologically relevant 

material system Ino5 3 2 Gao.4 6 8As/InP. Here, differences between the results obtained using the exact 

and conventional symmetrised boundary conditions are dramatic even at fairly low in-plane 

momentum. As expected, the effect is more pronounced in smaller wells as the interface obviously 

stronger affects the eigenvalues in the case of enhanced penetration into the barrier regions. Fig.6.4 

and 6.5 show similar diagrams for growth on [001], respectively using the InGaAs-InP material 

system and Aloj^GaoeiAs/GaAs system. Unsurprisingly, the boundary conditions are shown to
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have a far larger influence on the dispersion in a material system with a relatively large mismatch 

in terms of effective mass parameters such as InGaAs/InP as compared to GaAs-based structures. 

Furthermore, the growth direction [110] is shown to be more sensitive to the choice of boundary 

conditions as compared to [001].
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It follows from the above results that it is essential to use the exact boundary conditions when 

modelling material systems with a relatively large mismatch in material constants, especially for 

smaller well widths and when looking at the growth direction [110]. Fig.6.6 illustrates the effect in 

[001] InGaAs containing 15% Indium, as this material composition coincides with the 

experimental structures that are going to be evaluated later on in this chapter. The well width used 

in this diagram is smaller than that of the experimental structures to allow comparison between the
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above material systems. Although only small deviations are observed in this dispersion diagram, 

the influence on the effective mass can still considerable as presented in fig.6.7.

F ig .6 .6 : A s  a b o v e , now  f o r  an In G a A s Q W  
conta in in g  15%  Indium .
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Density [10^^ cm,-2i

Failure to use the correct boundary conditions can lead to a 10% error in the effective mass at the 

Fermi level at densities above 3*10'^ cm'^ thus leading to errors in the mobility, assuming that 

poc(m*)'^, of about 20%. Such a deviation is half the error induced when excluding the spin-orbit 

bands in the effective mass model.

Summarising, the boundary conditions are not of critical importance when looking at In^Gai ^As 

on GaAs as the difference in the dispersion between that obtained using the conventional and new 

boundary conditions is only of the order of a few meV at the relatively small well width of 40Â, 

and this difference is expected to be even smaller in wider QW structures. The boundary 

conditions are expected to have even less influence in the ternary Al*Gai.*As. However, the 

boundary condition problem is of vital importance for the technologically relevant InGaAs-InP 

compound or emerging systems such as CdTe.
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6.2.2 - Influence of the growth direction on the dispersion

Currently, heterostructures grown along non-conventional growth directions have been attracting 

considerable interest as it has been shown that changing the orientation can significantly affect the 

resulting bandstructure [Dco92,Men92]. This is illustrated in fig.6.8 in which bandstructure 

calculations are presented for the growth directions [001], [110] and [111]. It is shown that a 

change in growth direction affects the dispersion dramatically. It can even result in a change in the 

order o f the heavy and light hole bands, as illustrated by the change o f the second quantised state 

from a heavy hole state in a [001] structure to a light hole state in [110] and [111] grown 

structures.

As outlined in §1.2.4 when discussing current areas o f research and practical use o f bandstructure 

engineering for devices, it follows directly from the contour plots that [111] exhibits a reduced 

density o f states which make it attractive for use in low-threshold lasers. Similarly, the anisotropic 

contour plot o f [110] in which clear differences between the [01] and [10] direction can be seen, 

suggests that [110] possesses anisotropic optical properties that can be employed to produce 

Vertical Cavity Semiconductor Lasers (VCSELs) that feature stable and controllable polarisation 

properties. When looking at transport properties, the reduced density o f states in [111] and 

corresponding lower effective mass is again evidence of a possible superior performance when 

com pared to [001] structures.

Although non-[001] growth directions will briefly re-appear in the next sub-section when 

presenting the effects o f strain on the dispersion, especially when discussing the occurrence of 

internal piezo-electric fields, this thesis will from now on mainly concern itself with growth along 

[001] as all experimental work that will be discussed later on is based on [001] structures. The 

conclusions and recommendations section will briefly outline some suggestions for further work 

non-[001].
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6.2.3 - The influence of strain

It was shown in §2.4.2 that strain affects the bandstructure via three effects: it widens (reduces) 

the band gap for compressively (tensile) strained structures, splits up the heavy and light hole band 

and introduces extra heavy<=>light hole coupling in [110] structures. In this section, the effect of 

strain on the dispersion is studied, especially with respect to its influence via the induced splitting 

of the heavy and light hole band edge. As outlined in chapter 1, the interaction between the heavy 

and light hole bands causes the valence bands to be highly non-parabolic and non-iso tropic. As a 

result, moving the light holes away from the lowest heavy hole states is expected to reduce the 

effective mass and enhance the electrical and optical properties.

Fig.6.9 shows the quantisation energy, i.e. at zero in-plane momentum, of the lowest quantised 

states in the InGaAs-AlGaAs system (N.B. hole energies are taken as positive). Increasing the 

indium composition in the QW results in a linear shift of the light hole levels away from the lowest 

heavy hole level at low Indium composition. Such was expected from the Bir-Pikus Hamiltonian 

(2.76,2.77). The quantisation energy of the LH levels however no longer increases with higher 

Indium composition as the spin-orbit bands (located at 380 meV above the heavy hole band edge 

in InAs (see table 5.1 and fig.5.16) starts to interact and effectively starts to push down the light 

hole levels. However, the split up of the heavy and light hole level is fairly monotonie up to 20% 

Indium. Similar results are obtained for the InGaAs-lnP system (fig.6.10).
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The next subject to investigate is the effect of strain on the dispersion. Fig.6.12 shows the valence 

band dispersion for the lowest three quantised states in a series of InGaAs-AlGaAs QWs with 

varying indium composition. Again, it is shown that the light hole level Ihi is pushed away from 

the lowest heavy hole level (hhi) with increasing strain, passing the second heavy hole level at an 

indium composition between 5 and 10%. Concentrating on the hh| level, it is clear that the 

curvature of this level increases (thus the mass decreases) with increasing indium composition. 

This effect on the Fermi-level effective mass is highlighted in fig.6.11. It is obvious that the strain 

can be utilised to lower the mass and thereby significantly enhance the device properties. It is 

therefore no surprise that the highest reported p-type mobilities in the literature were achieved in 

structures that contain a high indium composition (see fig. 1.12).
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So far, only strain effects in [001] structures have been dealt with. As outlined in §2.4.3, strain 

can induce internal piezo-electric fields whose effect on the confinement potential and envelope 

functions will now be illustrated. The inset in fig.6.13 shows the envelope functions of the lowest 

quantised states in a 60Â Ino.15Gao.8 5As-Aloj3Gao.6 7 As QW grown on a [ 111]B substrate (located to 

the right of the QW). As a result of the piezo-electric field, the QW is skewed and the hhi state 

takes up an asymmetric position with respect to the centre of the QW. The use of such internal 

fields to optimise device properties is illustrated in the main figure, which pictures the band 

diagram of a similar QW but which now includes a 5-doped plane (A^ac=2-10*  ̂ cm'^). As shown, 

the field effectively pulls the envelope functions away from the impurities, resulting in an expected 

increase in carrier mobility in structures that are limited by ionised impurity scattering. At this 

point, it has to be remariced that the use of piezo-electric fields in [Hit95] is ftindamentally 

different from that depicted here, as piezo-electric fields were utilised in that work to reduce 

interface scattering rather than ionised impurity scattering. The main object was therefore not to 

achieve maximum separation between carriers and impurities, but to achieve a symmetric 

confinement potential to avoid the envelope functions from piling up at an interface.
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6.2.4 - Spin splitting in non-symmetric structures

Section 6.2 now finishes with a brief discussion of the effects of spin-splitting on the dispersion 

relations and hole mobilities. All E (k )  bands presented so far in this thesis were double degenerate 

and contained both a spin-up and -down component. As outlined in [And85.Bas88], the use of 

non-symmetric structures results in spin-splitting which lifts this spln-degeneracy. The former 

showed the presence of significant spin-splitting effects in AlGaAs-GaAs heterojunctions, both on 

the dispersion and the effective masses. An investigation into the magnitude of the spin-splitting in 

graded QW structures is required to analyse the scope of wavefiinction engineering in p-type 

structures through the use of graded QW channels.
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Although the presence of spin-splitting results in a lower (i.e. desirable) mass for the band labelled 

spin-down in fig.6.15, the spin-up band increases considerably in mass. This is illustrated in 

fig.6.16 where results for both masses are shown for two graded structures. Spin-splitting is 

therefore expected to negatively affect the transport properties as the band with the heavier mass 

would accommodate the majority of the carriers. At tliis point, is has to be noted that fig.6.15 and 

6.16 correspond to the fiat band case and can therefore only be used as a guideline to evaluate the 

effect of spin-splitting on the effective masses in a doped structure. The presence of charge will 

obviously affect the dispersion and effective masses through the confinement potential, so that the 

exact effect of spin-splitting has to be evaluated for each doping density and distribution 

individually. However, the first indication is that the use of non-symmetric structures (either 

through grading or internal electric- or piezo-electric fields) has an adverse effect on the transport 

properties of p-type structures.

150



Electron mobility calculations

O  » I3i«(̂ ron niobilify eaieuiations
'i' vv v-3̂ ss<Xv'-̂  ■••> ,•• , v  •’vS'

The previous section showed some numerical results obtained with the valence band effective mass 

model. The ultimate aim of this thesis is to use that model to simulate and optimise the electrical 

properties of p-type heterostructures by combining the effective mass model with the RPA 

scattering model of chapter 4. As no results are available in the literature to test the latter 

combination for p-type structures (the calculations presented later on in this chapter are thought to 

be the first of their kind), this thesis will now briefly discuss the results of the model when applied 

to Ai-type systems. The reason for this is threefold

•  Electron mobility calculations using the formalisms of this thesis have been presented in the 

literature, offering a possibility to check the model employed in this work.

• Earlier work performed at the IRC revealed significant differences between experimental and 

theoretical carrier mobilities in a set of /i-type structures. It is hoped that the more advanced 

model of this work can reveal the reason for this discrepancy

• Electron mobility calculations are relatively straightfonvard to interpret and can be used to gain 

elementary insight in the intra- and inter-band scattering processes. This knowledge was 

subsequently used to design a set a p-type structures.

These three issues will be treated in the same order as presented above. Starting with a comparison 

between the theoretical calculations performed by Hal et al. [Hai95,Hai96,Hai97] and those 

obtained in this work, the emphasis then shifts towards interpretation of experimental data. 

Experimental results obtained by Roberts et al. [Rob96,Rob98] are compared to theoretical 

calculations, where the relevance of interband scattering is highlighted for wavefunction 

engineered structures.

6.3.1 - Comparison with results published in the literature

The papers by Hai et al. [Hal95,Hai96,Hai97] provide detailed information about the RPA 

formalism and give extensive numerical results for the ionised impurity limited mobility in delta 

doped structures. This sub-section presents a number of calculations of electron mobilities that are 

directly comparable to the results published by Hai. Some small differences between both sets of 

results can be found, which are attributed to differences in the implementation of non-parabolicity 

effects. This work only considers non-parabolicity effects for the in-plane direction, in contrast to 

the approach taken by Hai who also includes non-parabolicity effects on the quantisation energies
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via [Eke87]. A Fermi-energy of respectively 25.53 and 4.11 meV was quoted in [Hai96] for the 

two occupied subbands in 5-doped GaAs with a background acceptor concentration of lO"* cm*̂  

and total electron density of 10‘̂  cm'". Similar results could be obtained by manually setting the in

plane and perpendicular electron effective mass to O.OSmo, thereby excluding any non-parabolicity 

effects (£y>ur->°°), giving Fenmi energies of 25.65 and 3.84 meV. This choice of mass parameters 

was then subsequently used in all electron calculations.
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Fig.6.17 to 6.20 show some results o f the application o f the RPA model o f this w ork to /i-type 

systems. All results presented here agree closely (within 10%) to those obtained by Hai et al. From 

this, the conclusion can be made that the implementation o f the scattering model is correct. The 

scattering model will now be employed to analyse the experimental Hall mobility o f a set o f /i-type 

structures in which wavefunction engineering techniques were used to enhance their transport 

properties.

6.3.2 - Comparison with experim ental data.

In his thesis, J.Roberts [Rob96,Rob98] presents experimental carrier (Hall) mobilities and 

densities for three types o f  structures. These structures consist o f  :

I. centre 6-doped GaAs QW s with well widths o f 100 ,50  and 25Â (Layer structure: 1(X)Â GaAs 

cap layer, 2000Â AlojsGao^vAs, GaAs QW, 2000Â Aloj3Gao.6 7As, 1000Â GaAs, [CX)1] 

substrate)

II. 100Â doped GaAs QW s with a various doping schemes; uniformly doped (UD), centre 6-doped 

(CÔ) and edge 6-doped (E6). Layer structure sim ilar to (I)

III.Edge 6-doped 100Â InjGai.xAs-Alo.4 8 lnoj>2 As-InP QW  structures with a various channel 

compositions. Again three structures were investigated, having channels which were (a) 

uniform (x=0.53), (b) 3-step graded (3x33Â of composition x=0.25/0.53/0.80) and (c) 5-step 

graded (5x20Â o f composition x=0.20/0.33/0.53/0.67/0.80), between 2000Â AlInAs barriers 

with a 100Â InAs cap layer.

Tables 6,1 to 6.3 show the experimental and theoretical results obtained for the samples described 

above. All parameters required in the self-consistent and mobility calculations were presented in 

chapter 5. The effective mass rn given in all tables corresponds to the effective m ass at the Fermi- 

level using the non-parabolicity expression and fundamental band gaps presented in section 4.8. 

Although the growth conditions were set up to keep the donor concentration No constant within 

each set, the experimental carrier concentration was generally found to vary considerably within 

such a set. This was attributed to differences in donor incorporation. The impurity concentration 

used in the theoretical models was therefore adjusted to agree with the experimental result. The 

dielectric constant Zr was set to that o f the channel layer.
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WeU
width

A

Parameters Theoretical Experimental P.
m* Nd «7 "2 1^2 M, '*//

Ph
100 0.084 5.12 4.12 2358 0.50 1081 2291 4.5 1220 1.88
50 0.084 4.64 4.10 1779 1779 4.1 990 1.80
25 0.078 3.12 2.56 1489 1489 2.6 400 3.72

Table 6.1: Theoretical and experimental carrier densities and mobilities for the set o f centre 
b-doped GaAs QWs as described in detail in (I). The columns nj^ and \li2  respectively contain 
the theoretical carrier density and mobility o f the first and second subband. The column p t  
contains the theoretical value for the mobility that one would measure in a Hall experiment at 
carrier density nn. The last columns states the ratio o f the theoretical prediction and the 
experimentally observed (Hall) mobility.

Doping
dist’n

Parameters Theoretical Experimental P,
m* Nd "y 1*1 ^ 2 P2 "// Mh

Ph
UD 0.081 4.06 3.14 2528 0.32 869 2472 3.3 970 2.54
CÔ 0.080 3.60 3.02 2338 2338 3.0 1030 2.27

EÔ 0.079 3.44 2.84 3605 3605 2.8 1100 3.28

doping distribution (UD=uniformly doped, Cb=centre doped, Eb=edge doped).

Well
comp’n

Parameters Theoretical Experimental Pt
m* Nd Mj «2 P2 Pt '»// Ph

Ph
uniform 0.072 7.56 5.60 2685 1.55 3600 2933 7.0 1300 2.25
3 step 0.065 5.92 4.00 3357 1.53 2910 3246 5.5 1590 2.04
5 step 0.062 4.52 3.33 4387 0.81 2198 4149 4.0 2630 1.58
Table 6.3: Similar to table 6.1, now for a set oflnOoAs-AlInAs on InP QWs with varying well 
composition, specified under (111) (uniform=53% In, 3 step=graded QW consisting o f 3 layers 
with increasing ln%, 5 step=similar to 3 step)

The first observation is that the theoretical calculations tend to over-estimate the Hall mobility by 

a factor o f approximately two. The slightly higher deviations observed in the 25Â centre 6-doped 

QW  of (I) is attributed to the effect of interface roughness scattering. The deviation in the edge- 

doped structure o f (II) will be discussed below. The slightly lower deviation in the 5 step InP 

structure (III) is attributed to the fact that the form of the envelope functions in this structure, and 

therefore the mobility, was found to be very sensitive to the deformation potential a o f which there 

is considerable uncertainty (see chapter 5).

The fact that the discrepancy between theory and experiment is fairly constant, even wiien 

comparing different samples structures o r even different material systems, is a very important 

observation. As a direct result o f this, the calculations do not just provide the correct trend but can 

even provide fairly accurate absolute predictions by simply rescaling the theoretical results by a
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factor 2. This scaling factor will be used in the theoretical electron mobility calculations below. Its 

origin will be addressed later in this work when comparing the theoretical and experimental 

mobilities of a set of p-type structures.
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Fig.6.21 is very illustrative when addressing the scope and objects of wavefunction engineering to 

enhance carrier mobility. Here, the theoretical Hall mobility is plotted as a function of doping 

position for the channel 6-doped QWs of set (II). One intuitively expects the mobility to increase 

when moving the impurity plane away from the centre of the well, where it has maximum overlap 

with the envelope function of the first subband, towards the interface. The latter is clearly 

observed for the flat band case (dotted line) for which an improvement in mobility of a factor 5.7 

is predicted. However, this is clearly too simple an approximation as the electrons (or envelope 

functions) are Coulomb attracted to the impurities so that their distribution is expected to follow 

the impurities rather than remain symmetric with respect to the centre of the QW as predicted in 

the flat band approximation. Nevertheless, these flat band results suggest that a significant gain 

could be achieved by using a combination of 0-doping and wavefunction engineering techniques, 

where one uses a graded QW to compensate for the Coulomb interaction. The latter was exactly 

the underlying reason for the application of a graded channel in the InP structures of set (III).

Returning to fig.6.21, theoretical predictions for the mobility using full self-consistent calculations 

are also presented in this graph. A smaller but still considerable improvement in the ionised 

impurity limited mobility of a factor 1.9 is calculated when moving the impurity plane from the 

centre to the edge of the channel at an electron density of 3- lO’̂  cm'^. Yet, this improvement is not 

observed in the experimental data which hardly shows any improvement in mobility when moving 

the impurities away from the carriers, unlike similar measurements by [Mas91]. The explanation
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follows from the calculations at a slightly higher electron density of 3.3-10‘̂  cm'^. Here, it is found 

that the second subband becomes populated as the impurity plane moves within 20Â of the 

interface, resulting in the occurrence of interband scattering. The calculated mobility at this carrier 

density agrees very well with the experimental data. Population of the second subband was not 

taken into account in table 6.2 and explains the poor agreement between the experimental and 

theoretical values for the edge doped structure. Although the original calculation indicated that the 

second subband was located at 7.6 meV above the Fermi level, the small shift necessary (about 

8% of the spacing between the first and second subband) to bring this subband below the Fermi- 

level can easily be explained by the omission of non-parabolicity effects on the perpendicular 

(confinement) mass. Note that interband scattering from ei to e% (and vice versa) is prohibited in a 

symmetric single 5-doped system such as the centre-Ô-doped structure of (II). The latter explains 

why there is little difference in mobility between the cenüe-5-doped case when comparing between 

the densities 3-10*^ cm'^ (1 band populated) and 4-10’̂  cm'^ (2 bands populated) when there is 

considerable difference between the mobility of the corresponding edge-ô-doped structures.

Fig.6.22 presents the results for the lnxGai.xAs-Alo.4 8 lnoi2 As-lnP QW structures (III) and shows 

carrier mobility versus carrier density for the various channel compositions: uniform, 3-step and 

5-step. As noted, the differences between the theoretical and experimental value of the 5-step 

structure is thought to be caused by the uncertainty in the deformation potential a. The important 

observation to make is that the theoretical model does not predict significant differences between 

the 3- and 5-step structure. The observed improvement in mobility is thus thought to be caused by 

the accompanying reduction in impurity concentration and occupancy of the second subband, not 

by any improvements in wavefunction engineering.

Fig.6.22: Theoretical and 
experimental Hall mobility vs. 
carrier density for the set of InP 
samples (III). Results are presented 
for the structure with a uniform 
channel as well for the graded 
structures, (theoretical results are 
again scaled by a factor 2)
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The failure of the single band Thobel model [Tho93] for the InP-based structures is obvious, as 

Roberts et al. presented theoretical predictions based on this model, that were a factor of at least 

15 higher than experimentally observed, in sharp contrast to the values presented here which are 

out by just a factor 2. The theoretical investigation of the earlier work failed to include

1) Interband scattering processes

2) Reduction in Fermi-velocity due the reduction in Fermi momentum through the occupation of a 

second subband

3) Non-parabolicity effects

Intraband scattering = 3.6 10 '̂  s

^2-^2 = 1.0 10'*̂  s

Interband scattering T T = 3.2 10 '̂  s

= 1.3 10 '̂  s

T able  6 .4  : In d iv id u a l sc a tte r in g  tim es  
c o rre sp o n d in g  to  the 3 -s te p  In P  stru ctu re  
o f  (III). P a ra m e te rs  u sed  in the  
ca lcu la tio n  a re  id en tic a l to  th o se  u sed  to  
g e n e ra te  ta b le  6 .3 .

The effect of the omission of the interband scattering processes can be illustrated by comparing the 

individual transition times for the various transitions in the 3-step InP structure (see table 6.4). It 

is shown that the interband scattering times are comparable to the intraband scattering time of the 

first subband, and are thus expected to strongly affect the transport mobility of this band. 

Neglecting the interband scattering would result in the transport mobilities p;^=9720 cm^/Vs and 

P2^=2668 cm^/Vs of the two individual subbands, giving a Hall mobility |X//=9050 cm^/Vs, which 

is a factor 2.8 higher than obtained in the proper calculation. The omission of non-parabolicity 

effects accounts for another factor of between 1.48 and 2.2 difference between the two 

calculations, assuming |ioc(m‘)̂  with t^ 1...2. Both corrections account for the majority of the 

differences found between the predictions of this work and Roberts’ model.

6.̂ 4 • Hieoredcai and experimental hoiÊ Mobilities

The previous section concerned scattering in /i-type systems. There, it was shown that the RPA 

formalism can provide reasonably accurate absolute values of the mobility when introducing a 

scaling factor of 2. Despite the fact that the presence of such an ad hoc factor is rather 

unsatisfactory considering the large amount of computational work involved in the band structure 

and scattering calculations, it is clear that the combination of SCPS solver and scattering model 

provides a powerful means to investigate and optimise the performance of n-type structures. This
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section will now extend the latter woiic to p-type structures, as the ultimate aim o f this thesis is to 

investigate the possibility to use wavefunction engineering techniques to optimise the hole 

transport properties o f GaAs-based heterostructures. Obviously, a similar model for hole transport 

would be an essential tool to investigate the latter.

The ionised impurity scattering model that was presented in chapter 4 will be compared to 

experimental data obtained for a set o f p-type structures. The exact composition o f structures will 

be described in §6.4.1 where all the insight obtained in this chapter, either band structure 

considerations or concerning scattering, is used to design a set o f structures to evaluate the scope 

o f wavefunction engineering to optimise o f the electrical properties o f two-dimensional hole gases. 

Experimental values for the hole mobility and density are given in §6.4.2 where it is shown that 

varying the doping distribution can significantly affect the ionised impurity limited mobility as well 

as change its temperature dependence.

The next sub-section starts with a numerical evaluation of Ehrenreich’s overlap function. It is 

shown that this multiplicative factor can have a large influence on theoretical hole mobility 

calculations. Results for various QW structures and compositions are presented, which are shown 

to deviate from the bulk results that can be found in the literature.

Before actually presenting theoretical hole mobilities, the effects o f diffusion and segregation cm 

the hole mobility are presented. It is shown that segregation can significantly affect structures with 

non-symmetric doping distribution. The latter will be taken into account when comparing 

theoretical and experimental hole mobilities such as is done in §6.4.5.

As mentioned earlier, ionised impurity scattering calculations in two-dimensional p-type structures 

using the RPA framework are thought to be the first o f their kind. As in the /i-type case, it is found 

that reasonable agreement between theory and experiment can be obtained by introducing a scaling 

factor, which is unfortunately found to be much larger than for electron mobility calculations. TTie 

origin of the scaling factor is discussed in §6.4.7. Although the electron scaling factor can be 

explained by electron-electron interaction, it is shown that the origin o f hole scaling factor is most 

likely not solely caused by hole-hole interaction but by a combination o f the latter and quantisation 

effects in the screening charge distribution. Accounting for these quantisation effects can be done 

by using an appropriate effective mass in the dielectric response matrix o f the screening m odel 

The first indications are that this would result in a new scaling factor that is now in better 

agreement with the electron result
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6.4.1 - Design o f a set o f p-type heterostructures

All the techniques presented in the previous section and all the insight gained in impurity scattering 

can now be used to design a set o f p-type heterostructures to explore the scope o f wavefunction 

engineering to enhance the hole mobility, as well as to test the scattering model for the application 

to hole systems. As one specifically wants to investigate ionised impurity scattering, the 

investigation will be limited to partially or fully doped channel structures only, to ensure that 

ionised impurity scattering is the dominant scattering mechanism. It was chosen to use 0-doping 

because o f the easy theoretical interpretation (section 4.5) as well as the relatively large head room 

to affect the scattering while limiting the allowed doping region to just the channel.

As spin-splitting in asymmetric heterostructures is expected to negatively affect the electrical 

performance (see §6.2.4), the use o f graded structures is avoided at the present time. The 

magnitude o f spin-splitting effects was carefully evaluated in the structures containing an 

asymmetric doping distribution, moving to symmetrical doping distributions once the results o f the 

first set confirmed that the growth o f p-type structures was under control. The latter specifically 

concerns the accurate growth o f the 5-doped planes, as evidence for segregation would have meant 

that the growth o f inverted structures (i.e. with the impurities located between QW and substrate) 

would have to be avoided; the resulting presence o f impurities in the channel would have made ttie 

theoretical investigation very difficult

It was chosen to use strained InGaAs channels as it was pointed out earlier in this chapter (§6.2.3) 

that the presence o f strain can significantly enhance the transport properties. Since this woric 

focuses on the electrical properties and consequently wants to avoid any growth related problems, 

it was chosen to use a lower In-composition than that used in current state-of-the-art hole 

structures such as by Kudo [Kud97] which contain 35% Indium. As high-quality Aloj3Gao^?As as 

well as Ino.15Gao.8 5As was routinely obtained at the IRC, the latter two material compositions were 

selected to be used in the experimental structures o f this work. To minimise the effect o f the air- 

semiconductor and semiconductor-substrate interface (see §5.2.4), relatively wide AlGaAs barrier 

layers (2 0 0 0 Â) were employed.

The following comment is possibly the most important. It was shown in the previous section that 

interband scattering can completely compensate for any gain in mobility associated with the 

reduced overlap between the carrier distribution and the impurities when moving a 5-doped plane 

through the channel towards the interface. From this, it follows that the occupancy o f a second
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subband has to avoided at all costs to obtain a usable system to evaluate the effects o f  the doping 

distribution on the hole mobility. The latter implies the use o f relatively high barriers as well as 

narrow QWs. As 60Â to 80Â wide InGaAs hole structures are routinely used in high performance 

p-type structures [Hsu95,Kud96,Kud97], it was estimated that interface scattering would not be of 

significant importance when using a 60Â well width, such as in the samples that will be 

investigated in this work.

Two sets o f p-type 60Â Ino.15Gao.g5 As-Alo3 3 Gao.6 7 As QWs, all on undoped GaAs [001] substrates, 

were grown by MBE. The exact composition o f both sets o f samples, denoted by (A) and (B), is 

given by :

(A) The first set consists o f a 1000 Â buffer layer o f GaAs grown at 580®C, followed by 2000Â  

Alo3 3 Gao.6?As over which the temperature was gradually lowered to 510°C, a 60Â  

Ino.15Gao.8 5As QW containing a Be-delta-doped plane, 2000Â Alo3 sGao.6 7 As over which the 

temperature was increased to 580°C, capped by 100Â GaAs. Six samples were grown, delta- 

doped at 2.0 and 3.5-10*^ cm'  ̂at the centre o f the QW, at 15Â from the top QW interface, and 

at 5Â from the top QW interface (see table 6.5). The composition o f the structures was 

checked by high-resolution X-ray diffraction and proved to be very close to that specified, 

verifying the accurate calibration of the MBE machine.

Sample no. b-Doping conc. 
[ 1 0 ^̂  cm'^J

Doping position

U11042 2 . 0 Centre

U11043 3.5 Centre

U11044 3.5 3/4

U11045 2 . 0 3/4

U11047 2 . 0 Edge

U11048 3.5 Edge

Table 6.5 : Doping concentration and 
position o f the b-doped plane for the set (A). 
Three different positions for the impurity 
plane were used, all inside the QW channel. 
Centre: centre o f the well at 30Â from both 
interfaces, 3 /4 :15Â from the top interface! 
45A from the bottom, Edge: 5Â from the top 
interface/55Â from the bottom.

(B) The second set consists of two InxGa1.xAs-Alo3 3 Gao.6 7 As samples that are similar to those 

above apart from the fact that they have four 6 -doped planes. The structure was set up to 

contain a symmetric confinement potential to avoid the lifting o f Kramer’s degeneracy, as well 

as to counteract the Coulomb interaction and provide a relatively large separation between 

carriers and impurities. Two o f the 6 -doped planed were placed in the well at 5Â from the top 

and bottom interfaces, the first sample doped at 1.2 (U 1 1080) and the second at 1.7-10*^ cm'^

160



Theoretical and experimental hole mobilities

(U 11081). The two other 6-doped planes were placed in the barriers at 30Â from the top and 

bottom interfaces, respectively doped at 0.65 and 0.80-10*^ cm'^. These doping densities were 

chosen to supply lO'^ carriers cm'^ to the QW, the rest o f the carriers are expected to be lost to 

the surface and substrate via surface and substrate pinning. By introducing the latter impurity 

planes, it was hoped to achieved a greater range o f carrier mobilities which would offer 

enhanced means to verify the scattering model. An effort to slightly tailor the QW  such that it 

would consist o f a parabolic confinement potential with an Indium composition o f around 12% 

to around 18% at its centre proved unsuccessful. Careful monitoring o f the growth run, as 

well as X-ray diffraction, revealed little variation o f the In% over the QW  and an average 

composition o f about 13%, being less than the average that was hoped for (15%).

From this point, the majority o f the discussion will specifically concern the previously described 

structures, unless specifically stated. Experimental hole mobilities will now be presented for those 

structures.

6.4.2 - Experimental hole m obilities

Hall measurements were performed on the previously described p-type 60Â Ino.15Gao.8 5As- 

Aloj3 Gao.6 7 As QW s using a commercial Hall-apparatus, a Biorad HL5200. Because o f the 

simplicity of the measurement procedure, this work will not expand on the latter. A good 

description o f the Hall measurement technique and experimental set-up can be found in [Jas97].

All measurements were performed in the van der Pauw geometry. Because o f the perpendicular 

cleavage planes in [001], such measurements generally do not require any complex processing to 

form the appropriate geometry and contacts. Square shaped structures o f approximately 3x3 mm^ 

were manually cleaved, after which InZn contacts were attached at the four com ers using a simple 

soldering iron under a microscope. The samples where then subsequently annealed for 3 minutes at 

400°C in a forming gas environment (10%H2/90%N2). Good quality contacts were obtained for 

the samples with reasonably high carrier density (>2- lO'^ cm'^) for which two-terminal resistances 

R o f typically less than lOOkfl, and as low as 4 0 k fl (U11081), were m easured at room 

temperature. These values are however not to be interpreted as being twice the contact resistance 

Rc as they include the resistance o f the semiconductor structure itself. The experimental sheet 

resistivity p , was found to be comparable to the latter two-terminal resistances, and it is thus 

estimated that the contact resistances were o f the order o f a few k f l  o r less. As a 4-probe 

measurement technique such as a Hall measurement is essentially immune to the presence of 

contact resistances, no measurement problems were expected. At low tem peratures (T=77K), the
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contacts on these high density structures showed a slightly less ideal behaviour. Resistivities o f up 

to 230kfl between contacts were measured for some samples (U 11043) which was now more than 

three times the experimental sheet resistivity at that temperature, showing evidence o f higher 

contact resistances. Limited asymmetric behaviour when reversing the polarity provided evidence 

that the contacts showed m inor Schottky-effects, yet accurate experimental data (accurate within a 

few percent) for the Hall density and mobility could be obtained by performing several 

measurements at various current settings. Sample U 11081 again proved to possess the best 

characteristics, showing perfect ohm ic behaviour at 77K with resistances less than 21kf2 at a sheet 

resistivity o f about 9 k fl/o . The latter proves that InZn can provide good quality contacts for 

highly doped structures, even at low  temperature.

In contrast, it proved virtually impossible to perform measurements with reasonable accuracy 

(±20%) on the low density structures U11042, U11045 and U11047 when using InZn contacts. 

The centre-doped structure (U 11042) showed the best perfonnance and indicated that the Hall 

mobility was o f the order o f 65±5 cm^/Vs at a Hall density o f 3.9-10*^ o n  ,̂ corresponding to a 

sheet resistivity around 240kO /o at room temperature. O f the latter three quantities, only the sheet 

resistivity could accurately be obtained at lower temperatures, showing a value o f 155kO/o 

around 170K after having decreased monotonously when compared to the room temperature value. 

The poor electrical characteristics were attributed to poor contact quality, illustrated by the fact 

that two-terminal resistivities o f around IM O  at 150K and 2M O at 77K were measured for 

U 11042 which were accompanied by non-ohmic behaviour.

The low density structures were therefore processed at UCL and contacted with Au/Zn/Au. 

Because o f the particular van der Pauw  geometry with narrow contact channels, the measured 

resistivities were still high (1.4M Q at p^300kQ /D ) but now showed perfect ohmic behaviour. 

Low temperature measurements were however still d ifficu lt M easurements at 77K  regularly 

showed incorrect signs o f the Hall-voltage at the application o f a magnetic field, as well as two- 

terminal resistances o f up to 2M O  while the measurements indicated a reduced internal sheet 

resistivity o f pf=200kQ/o. It was therefore concluded that the Au/Zn/Au contact resistances were 

o f the order o f 0 .5M O  at liquid nitrogen temperature, explaining the poor data quality that was 

obtained for these low density structures. It should be noted that all the mentioned data that was 

taken while experiencing such high ohmic resistances should be regarded with care, as the Biorad 

manual states an up upper lim it o f IM Q  between terminals to guarantee reliable measurements.

162



Theoretical and experimental hole mobilities

Despite these problems, it proved possible to measure the low density structure as it was found 

that faint illumination of the Au/Zn/Au structures for a duration o f a few seconds while at 77K  

greatly reduced the contact resistances o f  subsequent 77K measurements in a dark environment 

This is a common technique to improvement contact resistances, associated with the formation of 

electron-hole pairs at those (locally damaged) contact regions and a resulting contact- 

semiconductor barrier lowering due to charge transfer effects. To illustrate, U11042 showed a 

reduction in two-terminal resistance to just 450kfi. The question is now whether this is just a 

contact effect or that the illumination has significantly affected the carrier density. The latter is 

thought to be not the case, as persistent photo-conductivity effects usually generate just 10^°-10" 

carriers cm'  ̂ [Lac88] while the carrier densities involved in these experiments are almost an order 

of magnitude higher. This is further backed by the observation that the measured sheet resistivity 

(140 kD/o) is in agreement with the trend and absolute value o f the earlier mmtioned un

illuminated measurements in the InZn-contacted structure around 170K. All 77K measurements of 

U 1 1042, U 1 1045 and U 1 1047 were subsequently performed in the dark, typically several minutes 

after faint illumination for a couple o f seconds at that temperature. The experimental data 

corresponding to the samples o f both sets (A) and (B) are given in table 6.6.

Room temperature T=77K

Sample no. « 2 D  [10‘  ̂cm'^J \l [cm^/Vs] « 2 D  cm ^J \L [cm^/VsJ

U11042 0.4110.1 5215 0.8610.1 (t) 6416 (t )

U11043 2.3010.1 4913 2.6010.1 4112

U11044 2.4610.1 5013 2.7510.05 4711

U11045 0.7210.2 6811 1.2710.05 (t ) 85110 (t )

U11047 0.5710.2 6914 1.1910.1 (t) 14315 (t )

U11048 2.2010.15 6814 2.6610.05 10411

U11080 2.7110.1 9013 3.1310.05 19512

U11081 4.010.15 8513 4.3510.05 16212

Table 6.6 : Experimental values for the Hall density and mobility. All measurements 
were performed in the dark. The data marked (f) was obtained after faint illumination 
of the structure for a few seconds while at 77K.

Fig.6.23 shows a graphic plot o f the experimental hole mobilities at room temperatures and 77K  

for the centre, 3/4 and edge S-doped structures at Nac=3.5-10^^ cm' .̂ The corresponding Hall 

densities are within 14% of the average o f the measured hole density «20=2.5-10‘̂  cm' .̂ A clear 

improvement in the mobility is observed at 77K when moving the 5-doped plane from the centre, 

where its overlap with the hole distribution is strongest, to the edge o f the QW. The small
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improvement in mobility associated with moving the impurity plane over just 25% of the well 

width from the centre to 15Â from the interface (denoted with 3/4) is attributed to the Coulomb 

interaction between carriers and impurities. Unlike the edge-doped case where the doping is 

positioned next to a potential barrier, the envelope functions are relatively free to follow the 

impurity plane in the 3/4 structure, resulting in only a marginal improvement
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Similar observations can be made in the 300K data, but the improvement in mobility when moving 

the impurities towards the edge of the QW is now considerably less than at 77K. This is caused by 

thermal effects such as phonon scattering and the thermal occupation of higher lying subbands. 

The presence of these various thermal effects can clearly be demonstrated by comparing the 

absolute values of the mobility at 77K and 300K. The edge-doped structure features a decrease in 

mobility when increasing the temperature, due to the inevitable inclusion of phonon scattering and 

the possibility of interband scattering in such an asymmetric structure at elevated temperatures. In 

contrast, the centre doped structure actually experiences an increase in mobility, something one 

would not have expected. The explanation follows from the fact that the second subband of the 

centre-doped structure is thought to posses a higher mobility as compared to the first subband due 

to its smaller overlap with the impurities. Thus, thennal excitation actually improves the mobility 

due to a charge transfer to a subband with superior electrical properties, partially because of the 

fact that interband scattering between the first and second subband is prohibited in such a 

symmetric 6-doped structure. The behaviour of the intermediate 3/4-doped structure is found to be 

inbetween both results. Similar behaviour is found for the low density single 6-doped structures, 

although higher error margins, relatively large variations in density, as well as the fact that these 

systems are no longer degenerate at 300K make the interpretation slightly more difficult
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Finally, an upper limit for the phonon scattering times at 300K can be obtained by  assuming that 

the mobility o f the edge-doped structure is solely determined by phonon scattering. This value can 

then be used to estimate the upper limit for the mobility a t 77K imposed by  this scattering 

mechanism, by assuming the mobility to be inverse proportional to the phonon density. This 

density is proportional to expi-MùplksT), where /aùp «36meV is the optical phonon energy. Using 

the low er limit for the phonon limited mobility at 300K o f 68 cm^/Vs, it follows that phonon 

scattering cannot significantly affect the mobility at 77K as a low er lim it o f well over 3000 cm^/Vs 

is obtained. The 77K experimental data wiU therefore directly be compared to the theoretical 

ionised impurity limited hole mobility calculations.

Before presenting such hole mobility calculations, the effect o f Ehrenreich’s overlap function 

which is specific to hole transport calculations will be examined. Then, the effects o f segregation 

and diffusion on the theoretical hole mobilities will be presented after which a comparison between 

the theoretical hole predictions and the above experimental results will be given (§6.4.5).

6.4.3 - Numerical results for Ehrenreich’s overlap function

Theoretical values for the electron mobility were presented in section 6.3. As discussed in chapter 

4, electron and hole transport calculations are essentially identical apart from the occurrence o f an 

additional angular dependent function G (a)  in the hole calculations which describes the effects of 

scattering from an initial state to a final state with a different cell-periodic composition (section 

4.4). As explained, this factor reduces to unity within a one-band effective m ass approximation 

such as for the conduction band. Here, both the initial as final cell-periodic functions are identical 

and given by a function with the same symmetry properties as an atomic f-orbital. Although 

analytical forms o f Ehrenreich’s overlap function for the valence bands have been provided for 

bulk [Wil71], no reference could be found for the two dimensional case. As it will prove that no 

obvious simple expression exists for the overlap function for the compositionally varying case, 

approximation schemes that simply involve a rescaling factor such as used by  [LeeS3b] are 

difficult to justify for compositionally varying structures. The overlap function will therefore be 

evaluated numerically in the hole mobility calculations in this work. Because o f the complicating 

factor that the true envelope function composition following from a block-diagonalised 6-band 

model (§2.3.6) can only be obtained by taking the inverse o f the unitary transformation o f the 

envelope functions, it was chosen to perform the evaluation within the 4-band approximation.
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Fig.6.24 shows the numerical results for bulk GaAs. To obtain this result, a slab of 1000Â GaAs 

was evaluated while setting the number of expansion states to 1 as there would be only one heavy 

and one light hole level at each value of the momentum k , in contrast to the multiple confined 

states in heterostructures. Good agreement is obtained with the analytical functions in [Wil71].
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Fig.6.25 shows numerical values for the overlap function as a function of scattering angle for 

various QW structures. All trends can easily be explained by the fact that the eigenstates at finite 

momentum are no longer pure heavy hole or light hole states but form a mixture of the two. This 

process of band mixing is obviously stronger at larger values of the in-plane momentum. The latter 

explains the relatively small deviation from unity for the GaAs-QW at in-plane momentum 

X://=O.OlA, as the initial and final eigenstates at this small value of the momentum are essentially 

still identical with an almost pure heavy hole character. At higher in-plane momentum, the large 

mixing of heavy and light hole properties results in large differences between the initial and final 

cell-periodic functions, thus leading to an overlap function that deviates significantly from unity. 

Illustrative is the overlap function for the GaAs well at A//=0.03À, where it can be seen that the 

initial and final cell-periodic functions that are separated by 90° in /t-space are almost 

perpendicular. Other interesting obser/ations arc that both the inclusion of strain as well as the
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reduction in well width push the overlap function towards unity. Again, this was to be expected 

from band m ixing considerations.

Exclusion o f the overlap factor from the evaluation can result in a significantly low er theoretical 

hole m obility than obtained in the proper evaluation. It is estimated from respectively the solid 

curves at k=0.03k'^ and it=0.05Â*‘ in fig.6.25 that the the overiap-factor affects the theoretical 

hole transport mobility in a 60Â Ino.15Gao.g5 As-AlojsGao^?As QW  by 30% at a hole density of 

1.4* 10^  ̂cm'^ and as m uch as a factor 2 at a density o f 4-10*^ c m '\

6.4.5 - Diffusion and segregation effects

Before absolute values for the theoretical transport mobility o f the previously described p-type 

structures are given, appropriate error bars on their values have to be determined. As die 

numerical errors induced in the calculation are expected to be small (and very difficult to 

evaluate), this section will solely concentrate on the effects on diffusion and segregation, i.e. the 

influences o f the presence o f small deviations in the doping distribution from that specified for the 

growth run.

Fig.6.26 shows the effect o f diffusion o f the impurity 8 -doped plane on the theoretical mobility for 

the centre and edge 5-plane structures o f set (A) at a doping density o f 3 .5-lO'^ cm'^. Because of 

numerical reasons, delta-doped planes are generally given a finite width o f 4Â in the SCPS 

calculations. Diffusion effects were simulated by using the corresponding results for the envelope 

functions and then calculating the mobility for various impurity distributions (truely 5-shaped or 

broadened), as the envelope functions are expected to be fairly insensitive to the exact form o f the 

doping layer. AH resulting mobilities were normalised to the value obtained for the case where 

diffusion is absent. A Gaussian broadening profile was assumed in the mobility calculations with 

corresponding standard deviation o . A more frequently used param eter to describe broadening 

effects is the Full Width Half M aximum (FW HM ) which is directly related to the standard 

deviation via FWHM=2.355g  [Sch96].

Only small effects on the mobility are observed (fig.6.26). The effect is stronger for the centre- 

doped than the edge-doped structure as diffusion in the former case corresponds to an effective 

shift away from the peak o f the hole distribution o f all the carriers, in contrast to the latter where 

broadening results in half o f the impurities moving away and half actually moving closer to the 

peak in the hole distribution function. Values for the width o f diffusion broadened delta-peaks can
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be obtained from [Sch96] where a rapid reduction in standard deviation as a function of decreasing 

growth temperature is presented for growth of Be in GaAs, o(660°Q =20.3Â  and o(580®C)=7.1Â. 

As the InGaAs regions were grown at 510°C, diffusion is not expected to significantly influence 

the results.
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Fig. 6.27 shows the effects of segregation on the hole mobility of both the centre-, edge and 

quadruple 8-doped structures described in 6.4.2, again for a doping density of 3.5- lO'^ cm  ̂ for the 

samples of set (A) and 4.4-10’̂  cm'^ for the 4-8-plane structure of (B). Segregation is 

fundamentally different from diffusion by the fact that it has a preferential direction, namely 

towards the surface. For simplicity, its effects were evaluated by comparing the theoretical 

mobilities for various slightly shifted positions of the 8-impurity planes, respectively at 0, 2, 4, 6 

and 8Â from their intended positions, again simulated by 4Â wide ‘delta’-distributions. This model 

provides an upper limit to the effect of segregation since in practice not all the impurity atoms will 

move away from the plane. The main difference between this evaluation and the previous one is 

that SCPS calculations had to be performed for each separate shift in the impurity planes, as it is 

incorrect to assume that such a uni-directional shift will not affect the envelope functions.
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In contrast to the results found for diffusion, segregation is expected to significantly affect the 

mobilities as a segregation length o f 4Â  results in an increase in mobility by 37% in the edge- 

doped structure at a doping density o f 3.5-10*^ cm'^ and a decrease in mobility o f 6% in the 

quadruple 6-doped structure at 4.4-10*^ cm .̂ These consideration will have to be taken into 

account when comparing the experimental and theoretical hole mobilities.

6.4.6 - Comparison between theoretical and experim ental hole m obilities

Theoretical calculations for the expected hole mobility in the structures described in §6.4.1 and 

analysed in §6.4.2 will now be presented. The rescaling factor that was shown to be o f the order 2 

for electron mobility calculations (§6.3.2) is an interesting subject o f  research, the results 

presented here will give the first indications about its necessity and value for hole mobility 

calculations.

Fig.6.28 shows a comparison between theoretical predictions for the ionised impurity scattering 

limited mobility as well as the experimental 77K hole mobility. The calculations were not 

performed at absolute zero, as required ideally in a framework where scattering processes are 

limited to the Fermi-contour only, but at 20K due to numerical reasons. The latter is however not 

expected to significantly affect the results. All calculations are self-consistent, featuring a proper 

Fermi-Dirac analysis over the waiped hole bands. The effective mass at the Fermi energy that is 

required in the scattering model is numerically evaluated using (1.1). All other parameters used 

were supplied in chapter 5.

After performing all the numerical work described in chapter 5, it is disappointing to find that an 

overall scaling factor o f approximately 8 is required to obtain a reasonable agreement between 

experiment and theory. Although the need for such a rescaling factor was to be expected, it would 

have been much more satisfactory if this factor had been closer (or even equal) to the scaling 

factor obtained from the electron mobility analysis o f section 6.3. The particular factor 8 was 

obtained by comparing the theoretical and experimental results, concentrating on the centre and 

3/4 single 6-doped structures as it was shown that those were least affected by segregation effects; 

the latter is expected to be the reason for the higher than expected experimental hole mobilities for 

the edge-doped structures. The differences between the theoretical and experimental results for set

(B) can easily be explained by
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assuming slightly higher segregation effects, which would consequently result in a higher

scaling factor when comparing the theoretical and experimental mobilities

intrinsic errors in the above scaling factor concept, as no insight in the origin of this factor has

been presented y e t The scaling factor could for example be carrier density dependent

the approximation that Ehrenreich’s overlap function is calculated within a 4-band

approximation which could affect the calculations at higher density.

A deviation in the confinement potential from symmetric, either due to a residual effect of the 

effort to grade the QW so as to possess a dish-shape, segregation effects in the 5-doped planes 

or incorrect accounting for surface/substrate carrier losses in the design (i.e. incorrectly 

specified impurity densities of the outer two 5-doped planes that were specifically designed to 

‘shield’ the QW from the surface and substrate). All these effects particularly affect high 

density structures designed to be symmetric, as such a small variation can make the system 

unstable and force the hole distribution to ‘tip-over’ at these high carrier distributions. This 

would result in a hole distribution much closer to one of the channel impurity planes than 

would be the case in a symmetric structure.

250 Centre 5-doped 
3/4 5-doped 
Edge 5-doped

^  200 

J .  150

Set(B)

Î  Set (A)

_Q
O 100

0 1 2 3 4

Density [10^^ cm '^

F ig .6 .2 8  : T h eo re tica l a n d  ex p er im en ta l h o le  m o b ilitie s  f o r  the sa m p le s  (A) a n d  (B). The 
th e o re tic a l m o b ilitie s  have  been  r e sc a le d  b y  a f a c to r  8.

Summarising, reasonably accurate absolute predictions can be made for ionised impurity 

scattering limited p-type hcterestructures when accepting a scaling factor of approximately 8. The 

next section will now discuss tiie origin and value of Uiis factor.
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6.4.7 - Origin and explanation of the presence o f the scaling factor

A t this point, one might argue that the discrepancy between the experimental and theoretical 

mobility could be caused by the failure to included other scattering mechanisms, so that the 

presence o f this (large) scaling factor is simply an artefact o f the restriction to ionised impurity 

scattering only. However, fig.6.28 shows that the RPA scattering model correctly predicts the 

relative improvement in mobility when moving the delta-doped plane from the centre to the edge of 

the QW . As a result, the introduction o f an extra scattering time corresponding to all the 

un-included scattering processes can never bring the theoretical and experimental results into 

agreement via M atthiessen’s rule, as the latter would level the theoretical prediction for the relative 

improvement between the centre- and edge-doped structures. This is an im portant observation, it 

states that the occurrence o f this scaling factor can only be explained by the presence o f  too strong 

approximations in the implementation o f the Boltzmann transport equation o r in the scattering 

formalism.

A possible explanation for the requirement o f a scaling factor 2 in electron mobility calculations 

follows from the work by Appel [App61] who states that the presence o f electron-electron 

scattering in a system under the influence o f an external electric field modifies the Boltzmann 

distribution, therby actively changing the conductivity. In terms o f fig. 1.8 which explained the 

collective motion o f carriers via a shift o f the Fermi-contour, the presence o f electron-electron 

interaction results in an overall smaller equilibrium displacement o f this Fermi contour than that 

would have been obtained when neglecting e-e interactions. The exact deviation is too elaborate to 

be evaluated here, so that this section restricts itself to just quoting the calculated ratio between the 

conductivity with and without e-e interaction, which was given as 0.58:1 for an ionised impurity 

limited bulk semiconductor. Adopting the latter results in a scaling factor o f 1.72 which is very 

close to the factor 2 used in section 6.3.

Turning to the valence band case, it is very difficult to evaluate the above scaling resulting from 

the effects o f hole-hole interaction on the Boltzmann distribution in warped valence bands. 

Although it is possible that the rather large deviation o f a factor 8 could be caused by hole-hole 

interaction effects, it seems unlikely that it would result in such a large deviation.

Assuming that hole-hole interaction can only partially account for the large scaling factor, this 

section now proposes an alternative explanation for the difference between theoretical and 

experimental hole mobilities. Here, the error analysis is now limited to the ionised impurity
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scattering model itself. As scattering is well understood theoretically and detennined directly from 

Fermi’s Golden rule (see chapter 4), it follows that the most likely cause for the differences 

between theory and experiment is an over-estimation o f the screening effects as accounted for 

within the RPA. It is now postulated that the RPA formalism breaks down at such high (up to 

OAmo) effective masses at the Fermi energy.

Pscreening

W

Fig.629 : Schematic o f the 
screening charge density
pscreening SUTTOUnding O
negatively charged 
impurity located in a p- 
type QW channel. The 
density is plotted as a 
function o f the in-plane 
position. W denotes a 
quantitative length scale 
for the particular 
distribution.

Fig.6.29 shows a schematic picture of the screening charge around a negatively charged impurity 

where a parameter W  describing the width of the charge distribution has been introduced. A very 

important observation is that the total screening charge is equal to that o f the impurity (thus +e). 

This follows from the simple argument that if the charges did not cancel each other, more charge 

would be attracted until a state o f charge neutrality was reached [Mah90]. It is now proposed that 

the width o f the screening charge distribution in the RPA model is so narrow that quantum 

confinement effects start to play a role, something which is explicitly excluded from the RPA 

evaluation.

A qualitative value for the width can be found by using the following argument As seen in section 

4.3, the one band RPA dielectric response matrix is essentially the same as that obtained in the 

easy to interpret TFA. Using the TFA result, one obtains that the projection on the envelope 

functions o f the total scattering potential, thus that due to the presence o f the ionised impurity (j)'" 

and o f the screening charge, is given in Fourier space by [see (4.6)]

1
- 1

l + f -  4) (9) S q )
m*e^

(6.17)
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Its relation to ionised impurity scattering is given by Fermi’s Golden rule from which follows that

the transition rate is proportional to |(|)(ty)] [see (4.9)]. Rather than stay with the Fourier space

description, it proves useful to return to real space. It is then straightforward to see that Fermi’s 

Golden rule does nothing more than select that particular component of the perturbation potential 

with the repetition period exp(iqr,/), where rn is the in plane coordinate and ^ is the momentum 

transfer in the scattering process k-^ k\ The relation to the screening width W  is now as follows. 

Equation (6.17) predicts that the screening is very efficient at low values of q. This is consistent 

with the picture that a wave exp(iqr,/) with a long wavelength compared with the charge 

distribution will simply pass this charge without noticing (see fig.6.30) as it will not be able to 

resolve the separation between impurity and screening charge and only see a total charge of zero. 

Obviously, a wave with wavelength compatible to the charge distribution will pick up the 

individual screening and impurity component and thus scatter.

F ig .6 .3 0  : I llu s tra tio n  o f  the effect o f  
the  screen in g  ch a rg e  d is tr ib u tio n  
w id th  W  on the sc a tte r in g  o f  a  p la n e  
w a v e  w ith  w a velen g th  X. (A ): A s  the  
to ta l screen in g  ch a rg e  is  eq u a l to  the  
c h a rg e  o f  the im pu rity , it fo l lo w s  that 
the p la n e  w a ve  w ith  X>W d o es  not 
sc a tte r , a s  it d o e s  n o t se e  the 
se p a ra tio n  b e tw een  im p u rity  a n d  
sc reen in g  ch a rg e  a n d  thus e ffec tive ly  
s e e s  a  ze ro  to ta l ch arge . (B ): A s  X 
b e co m es c o m p a ra b le  to W, the p la n e  
w a v e  s ta r ts  to se e  the ch arge  
f lu c tu a tio n  a n d  sc a tte r s  a s  a  resu lt.

Impurlly.

Screening charge

^  ■ V

Using the latter, one can now obtain a qualitative value for the distribution width W. The 

momentum transfer q at which the perturbation potential of the impurity is screened such that the 

scattering rate is only half of what one would have obtained without accounting for screening is 

given by q'^=('^2-1 )-S. Using a typical effective mass for the structures of sets (A) and (B) of 

0.3mo, one obtains a corresponding momentum transfer vector ^0 .20Â *‘ and, using that the 

periodicity of such a plane wave is given by W=2nlq, a screening charge distribution width of 

31Â. The latter corresponds to an average screening charge density of 1.3-10*^ cm'^. Clearly, 

quantisation effects will play a large role at these narrow distribution widths, illustrated in fig 

6.31, leading to a broader distribution and so accounting for the over-estimation of the RPA

173



Theoretical and experimental hole mobilities

scattering model for p-type. structures. In contrast, the same analysis reveals a screening charge 

distribution width of 136Â in n-type GaAs which explains the absence of these quantisation effects 

in electron systems.

(A) m (B)

F ig .6 .3 1  : S ch em a tic  p ic tu re  o f  
the effec t o f  quan tum  
con fin em en t on the sc reen in g  
ch a rg e  d istr ib u tio n . (A ) D e p ic ts  
a ‘sp ik e d ’ d is tr ib u tio n  th a t  
fo l lo w s  fro m  a  bu lk  a p p ro a ch , 
w h ile  (B) sh o w s a  d is tr ib u tio n  
co rresp o n d in g  to  / y / ’ o f  a  
q u a n tised  s ta te .

A rather crude but convenient matter to simulate such wider distributions in hole-systems is by 

setting the screening mass of (4.6,4.7) to a lower value. Re-iterating, this only affects the 

distribution and not the amount of the screening charge. Setting the distribution width to a constant 

realistic value, thereby fixing the screening mass, would result in a mass dependency of the hole 

mobility at low temperature of p°<̂ rrC as outlined in chapter 1. Such a mass dependency was 

actually observed by Fritz et al. [Fri86] at 76K  in a set of Ino^Gao.gAs-OaAs QWs for hole 

densities above /i:j= 1.5-10“ cm'^, and provides some confirmation that the screening mass 

becomes a constant at values above rri=0. X̂ nio [Fri86] of the Fermi level effective mass.

>
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Finally, fig.6.32 provides a comparison between the theoretical hole mobility and experimental 

data sim ilar to fig.6.28 but now using a (rather arbitrary) fixed screening m ass o f 0.14wo» rather 

than to set this screening mass to the effective mass at the Fermi-energy for each particular 

structure. Slightly better overall agreement between theory and experiment is obtained, especially 

with respect to the trend in the structures o f set (6 ). Here, a scaling factor o f 4.5 was used which 

is in better agreement with that found in electron mobility calculations and the corresponding 

explanation in terms o f electron-electron (hole-hole) scattering.

This chapter now ends with the conclusion that a powerful framework has been set up  to predict 

the hole mobility in ionised impurity limited structures. Good agreement between theory and 

experiment was obtained for a set o f channel 5-doped p-type Ino.15Gao.g5 As-AlojaGao^?As QW s 

when introducing an overall scaling factor, whose value was explained in terms o f quantum 

confinement effects in the screening charge density and hole-hole interaction. The following and 

final chapter o f this thesis will now outline possible subjects o f further research based on the 

foundations laid in this work.
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Performance of p-channel HFETs is substantially lower than their /i-type counterparts, essentially 

because of the lower hole mobility as compared to that of electrons. The poor performance of 

p-channel devices has almost completely prevented their use, despite the intrinsic advantages of 

complementary circuits. An investigation to enhance the performance of p-type FETs for power 

applications by means of selective doping and wavefunction engineering was performed, both 

theoretically as well as experimentally.

A fuh-self-consistent valence band model that specifically includes valence band warping in the 

evaluation of the Fermi-Dirac integral was set up. It was shown that such numerically intensive 

calculations are within reach of middle-range computers, such as a Sun Sparc 20, when using 

various mild approximations. The most import one of those approximations is to use an expansion 

method to solve the system of coupled differential equations of the Hamiltonian, which showed fast 

convergence and good agreement with exact calculations.

A substantial amount of work was devoted to the fundamentals of effective mass theory. The 

resulting orbital (or tight-binding) picture of k-p theory resulted into an alternative approach to 

derive effective mass Hamiltonians for non-[001] growth, compared to the conventional group- 

theoretical ‘theory of invariants’. Here, a general \J,m^ basis set to set up effective mass 

Hamiltonians for arbitrary growth directions was derived.

As a result of the above approach, significant contributions to the elementary question of how to 

connect envelope functions across an interface in compositionally varying structures were 

presented. This work accumulated in a general form for a 6-band Hamiltonian with a 

corresponding set of boundary condition rules that are to replace the conventional symmetrisation 

rule, both valid for arbitrary growth directions. It was shown that the adoption of the new 

boundary conditions only has marginal affects when evaluating GaAs-based structures, but is 

crucial for the technologically relevant InP system, especially when looking at [ 110] structures.

Furthermore, an ionised impurity scattering model within the RPA formalism was set up. 

Literature results have shown that electron mobility calculations within this formalism require a
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scaling factor o f order 2  to bring the experimental and theoretical results within agreement, 

independent o f the heterostructure design. It was shown here that this factor is also independent of 

m aterial system, so that it was concluded that the RPA formalism can give reasonably accurate 

absolute values for the mobility, simply by accepting the presence o f such a scaling factor.

It was shown that interband transitions in non-symmetric structures with multiple occupied bands 

can have a large effect on the electron mobility. From this, it was deduced that wavefunction 

engineering is only effective in systems with a single occupied subband, as optimisation o f the first 

subband generally results in a reduced performance o f higher lying states.

Turning to p-type systems, the scope o f wavefunction engineering techniques to enhance the hole 

mobility in highly (channel) doped systems was investigated. It was shown that the use o f graded 

QW  structures has to be avoided, as the resulting spin-splitting o f the valence bands would have a 

negative effect on the hole mobility. Selective doping however offers significant gain in mobility. 

Experimental measurements on a set o f channel 0-doped p-type Ino.15Gao.8 5 As-Aloj3Gao.6 7As QWs 

revealed enhancements in the hole mobility o f a factor 2.5 at a carrier density around 2 .5 1 0 '^  cm'^ 

when moving the impurity plane away from the centre o f the well to the QW  interface.

Hole mobility calculations were presented using the same RPA formalism as used in the «-type 

calculations, believed to be the first o f their kind. Additional complexity when compared to the 

electron case arises from the fact that the hole bands exhibit considerable band mixing effects, i.e. 

do not stay pure heavy o f light hole like at finite momentum. This results in an additional angle 

dependent factor in the scattering equations, Ehrenreich’s overlap function, for which numerical 

values were presented. Significant changes in the angular dependence were found when comparing 

the two-dimensional results to the bulk case. For the latter, good agreement with the results 

published in the literature was obtained.

As for the electron case, reasonable accurate predictions for the absolute value o f the hole mobility 

could be obtained by introducing a scaling factor. After all numerical work involved, it is 

disappointing to find that this factor is now of the order 8  as compared to the earlier mentioned 

factor 2  in electron mobility calculations. It was proposed that the electron mobility scaling factor 

is caused by electron-electron scattering effects. Such an explanation had not earlier been proposed 

as papers published in the literature that explicitly deal with the RPA tend to accept this factor 

without giving any explanation o f its origin. In contrast, it was postulated that the hole mobility 

scaling factor is not solely caused by hole-hole interaction, but by a combination o f the latter and
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quantum confinement effects on the screening charge distribution. A first effort to account the 

quantum confinement effects resulted in a slightly better overall agreement between theory and 

experiment, especially with respect to the trend in the mobility for the second set o f samples. 

Further, it resulted in a new scaling factor of 4.5, which is in better agreement with that found in 

electron mobility calculations and the corresponding explanation in terms of electron-electron 

(hole-hole) scattering.

S a i æ i e s t t o n s  f o r  f u t u r e  w o r k

Using the results obtained in this wodc and the frameworks set out, a solid basis for the theoretical 

analysis of electron and hole systems has been presented. The first results show that a considerable 

gain in the electrical properties can be obtained by selective doping or wavefunction engineering 

techniques. The next step is now to actually design and produce such high-performance devices. It 

was shown that the «-type InP-based graded channel structures evaluated by Roberts et al. at the 

IRC were severely limited by the occupation of the second subband and resulting interband 

scattering. It would be worthwhile to re-design these structures so that they have only one 

occupied subband, and then test the true scope of the use of such graded channels to enhance the 

mobility.

It was shown that such graded structures have to be avoided in hole systems because of the 

adverse effect of the resulting spin-splitting on the hole mobility. An alternative to using graded 

structures is to switch to a growth direction such as [ 111 ] in which strained QWs exhibits a strong 

internal piezo-electric field. Rather than utilise this field to minimise interface roughness scattering 

as in [Hit95], it would be interesting to use it to minimise ionised impurity scattering in p-type 

structures.

However, it was shown to be able to significantly enhance the mobility by selective doping only. 

As state-of-the-art hole mobilities require a high indium composition, only a comparison between 

various doping schemes at elevated indium content can truly establish the scope to enhance the 

transport mobility in highly-doped structures such as for power PET applications.

Wavefunction engineering could be useful for SiGe heterostructures for a slightly different reason. 

Here, the back interface exhibits a much rougher structure than the interface closer to the 

substrate. Wavefunction engineering could be used to pull away the carriers from this rough 

interface much like it was used to separate the carriers from the impurities in this work.
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Suggestions for future work

Optimisation o f  optical devices has only briefly been discussed in this thesis. Again, the theoretical 

models developed here can be o f great value. Theoretical calculations o f the expected optical 

anisotropy in [110] grown vertical cavity structures (not shown in this thesis) proved to be in 

excellent agreement with those performed by Nojima [Noj93]. Photo-Luminescence studies could 

greatly benefit from such calculations, offering enhanced means to interpretation o f (polarisation 

dependent) PL-data.

A part from the immediate practical application of the outcome o f this thesis, there are several 

other subjects and fields that are would benefit from additional work.

Although it was shown in the literature that the new boundary conditions are more physical than 

those obtained using the conventional symmetrisation procedure, there is no solid experimental 

proof o f their validity. Mapping out the bandstnicture o f an InP-based (preferable [110]) 

orientated) narrow well QW  using the Photoluminescence technique o f [Kas94] could resolve this. 

The boundary conditions have a significant effect on whether o r not the higher lying subbands 

exhibit a van H oof singularity in their density o f states. As these singularities have a strong effect 

on PL-spectra, theoretical modelling o f these singularities combined with a PL-study [Kem96] 

could also provide some evidence o f the correcmess o f the new boundary conditions, as could 

cyclotron resonance measurements. Finally, a careful comparison between laser gain calculations 

sim ilar to [Men92] for InP systems and experimental data, could possible also help to resolve the 

matter.

Theoretical rather than experimental evidence o f the correctness o f the boundary conditions could 

for example be obtained by comparing calculated results for the bandstnicture using an effective 

mass model to those obtained in an alternative model that is not affected by the boundary 

conditions problem, such a ab-initio o r pseudo-potential calculations. Some work is currently 

undertaken by the author and RN .Stavrinou, in collaboration with the University o f Durham.

Although the electron scaling factor could be explained in terms o f electron-electron interaction, as 

theoretical evaluations for the bulk case reveal a scaling factor close to that observed here, there is 

a lack o f theoretical insight in two-dimensional electron structures and hole systems in general. 

Additional justification for the presence o f such a scaling factor, as well as theoretical estimates, 

would greatly enhance the appeal for RPA electron and hole m obility calculations.
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A l  ̂Using Mâtfiéni^ücntn obtain expitcit fom s jkn* tW %@n̂ 66nW

wav^functions ,

The development of the k-p model for arbitrary growth directions, especially to establish the 

relation between the Hamiltonian and the zone-centre wavefimctions, has relied heavily on the use 

o f the mathematical package Mathematica, This software package proved essential for the 

derivation (and consequent publication) of the [110] boundary conditions [Sta97] and subsequent 

development of an analytic set of rules to replace the previously used symmetrisation procedure 

[Dal98]. This appendix will now outline how such a mathematics package can be utilised to obtain 

explicit forms for the zone-centre wavefunctions I7,wy). The approach taken here will restrict itself 

to obtaining the solution for just a single growth direction, rather than derive the general solution 

(2.26) in terms of arbitrary orthogonal basis vectors.

In the following program, a six-element vector (a,b.c,d,ef) has been defined which denotes the 

general linear combination of p-orbitals

IJ,nij^ = (aX + b Y  4- c Z )T  -h(dX +  eY +  yZ)\L (A l.l)

similar to that used in chapter 2. T ie  program starts by defining the action of the momentum 

(Ljc,yj) and spin operators (Sx.yj) on this general solution. After this, the coordinate transformation 

{x'=[ l  ,I,-2JN6, y  =f- l , I  ,0JN2, z ’ =[J ,1 ,JjNS)  is performed on the angular momentum 

operators, to obtain the action of L-S and the angular momentum operator J  along [111] on this 

general solution, where the spin has been orientated along [111]. Finally, the appropriate constants

a.../corresponding to the state \1I2,+1I2) are calculated. Note that such a state corresponds to a 

simultaneous solution of L-S \J,nij)=-\J.m) and J m  \J,mj)=I/2 The former equation is

equivalent to the requirement that 7=7/2, using (2.20) and the fact that f\J,mj)=J(J+J)[f,mj) 

(A=l).

"##### Define action of the operators lx..z, sx..z #####";
l x [ { x _ , y _ , z _ , x x _ , y y _ , z z _ ) ] : = {  0 , - 1  z ,  I  y ,  0 , - 1  z z ,  I  y y}
l y [ { x _ , y _ , z _ , x x _ , y y _ , z z _ ) ] : = {  I  z ,  0 , - 1  x ,  I  z z ,  0 , - 1  x x )
I z [ { x _ , y _ , z _ , x x _ , y y _ , z z _ } ] : = { - !  y ,  I  x ,  0 , - 1  y y ,  I  x x ,  0)

s x [ { x _ , y _ , z _ , x x _ , y y _ , z z _ ) ] : =  { x x ,  y y ,  z z ,  x ,  y ,  z } / 2
s y [ { x _ , y _ , z _ , x x _ , y y _ , z z _ } ] : = I  { - x x , - y y , - z z , x ,  y ,  z } / 2
s z  [ { x _ , y _ , , z „ , x x „ , y y _ ,  z z _ )  ] := { x ,  y , z ,  - x x ,  - y y ,  - z z )  / 2
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"########## Perform coordinate transformation ##########";
1 x 2 [ { x _ , y _ , z _ , x x _ , y y _ , z z _ ) ] : = 1 / S q r t [ 6 ] ( l x [ ( x , y , z , x x , y y , z z } ]

+ l y [ ( x , y , z , x x , y y , z z ) ]
- 2  I z [ ( x , y , z , x x , y y , z z ) ] ) 

l y 2 [ { x _ , y _ , z _ , x x _ , y y _ , z z _ ) ] : = 1 / S q r t [2]  ( - l x [ { x , y , z , x x , y y , z z ) ]
+ l y [ { x , y , z , x x , y y , z z ) ] ) 

l z 2 [ { x _ , y _ , z _ , x x _ , y y _ , z z _ ) ] : = 1 / S q r t [3]  ( l x [ { x , y , z , x x , y y , z z ) ]
+ l y [ ( x , y , z , x x , y y , z z ) ]
+ l z [ { x , y , z , x x , y y , z z ) ] )

"#################### Calculate L.S ####################";
I s [ { x _ , y _ , z _ , x x _ , y y _ , z z _ ) ] : = (  1 x 2 [ s x [ ( x , y , z , x x , y y , z z ) ] ]

+ l y 2 [ s y [ ( x , y , z , x x , y y , z z ) ] ]
+ l z 2 [ s z [ { x , y , z , x x , y y , z z ) ] ]  ) ;

"############ Calculate J along [111] ###################";
j l l l [ { x _ , y _ , z _ , x x _ , y y _ , z z _ ) ] : = l z 2 [ { x , y , z , x x , y y , z z ) ]+

s z [ { x , y , z , x x , y y , z z } ] ;

"### Calc, simultaneous eigenfunction of Jill and L.S ###”;
S o l v e [ j l l l [ { a , b , c , d , G , f } ] = = 1 / 2  { a , b , c , d , e , f } &&

I s [ { a , b , c , d , e , f } ] = = - 1  { a , b , c , d , e , f } , { a , b , c , d , g , f } ] ;

S i m p l i f y [%] ;
C a n c G l [%]

Output

f  f  f
{ { a  - >  -  ( ------------- ) ,  b  - >  - ( -------------- ) ,  c  - >  - ( --------------- ) ,

S q r t [ 2 ]  S q r t [ 2 ]  S q r t [ 2 ]

1 - ( ( 1  + I  S q r t [ 3 ] ) f )
d  - >  -  ( I  + S q r t [ 3 ] )  f ,  g - > ----------------------------------------- )}

2 2

Normalising the latter by multiplying each element by (V2)/3 gives as a final result

(A 1 .2 )

which agrees with the general solution (2.26) for the particular choice o f axis and growth 

direction.

A1 - Obtaliiing eJfecH ve luass HamlUonlans a«<t WuWary coiMJttton®

After having obtained a set of basis functions, the zone-centre solutions, one can derive the 

corresponding effective mass Hamiltonian by evaluating the inner product {m\H\n) where m,n run 

over all the elements of the basis set. Again, Mathematica can be of great help as the mathematics 

tend to become very laborious when deviating from the high-symmetry directions, especially when 

one wants to retain the operator ordering to subsequently derive the boundary conditions. The next 

example shov/s how this task was implemented in Mathematica. Some repetitive statements were
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cut out for clarity. The particular growth direction under consideration is [110]. The constants 

s ,p ,d  respectively denote the mass parameters a,7t and 5.

"Define the inner products <a|H|b>, a,beX,Y,Z 
two momentum vectors are defined, {kx,ky,kz} and (lx,ly,Iz), where k 
Is to be Interpreted as the operator BEFORE and 1 as the operator 
AFTER the mass-parameters (s,p,d)

XHX:=kx(-l+6s+12d)Ix + ky(-l+6p)ly + kz(-l+6p)lz;
XHY:=6 kx(s-d)ly + 6 ky p Ix;
XHZ:=6 kx(s-d)Iz + 6 kz p Ix;
YHX:=6 ky(s-d)lx + 6 kx p ly;
YHY:=ky(~l+6s+12d)ly + kx(-l+6p)lx + kz(-l+6p)lz;
YHZ:=6 ky(s-d)lz + 6 kz p ly;
ZHX;=6 kz(s-d)lx + 6 kx p Iz;
ZHY:=6 kz(s-d)ly + 6 ky p Iz;
ZHZ:=kz(-l+6s+12d)Iz + kx(-l+6p)lx + ky(-l+6p)ly;
"Perform the coordinate tranformatIon, new vectors along 
kl=[0,0,-l], k2=[-l,l,0] and k3=[l,l,0]

kx:= -1/Sqrt[2] k2 +1/Sqrt[2] k3
ky:= 1/Sqrt[2] k2 +1/Sqrt[2] k3
k z :=-kl
lx:= -1/Sqrt[2] 12 +1/Sqrt[2] 13
ly:= 1/Sqrt[2] 12 +1/Sqrt[2] 13
I z : = - 11

"Define heavy hole state J«3/2, mj=+3/2";
|3/2,+3/2> = al + bl + cl + dl X. + el Y. + fl Z.

al
bl
cl
dl
el
fl

= 1 / 2 ;
=-I/2;
= 1/2 Sqrt[2]; 
= 0  

=  0 
=  0

"Define light hole state J=3/2 mj =+1/2";
a2
b2
c2
d2
e2
f2

= I/ Sqrt[3];
= 1/ Sqrt[3];
= 0 ;
= -1/ (2 Sqrt[3]); 
=+1/ (2 Sqrt[3]); 
= I/Sqrt[6];

(The light hole state with and the heavy hole state with
mj*-3/2 are defined in a eimilar way}
"############ Calculate Heunlltonlsm elements ##########";
"Calculate Hhh =<3/2,3/2|H|3/2,3/2>"
Hhh=Conjugate[al] (al XHX + bl XHY + cl XHZ) +

Conjugate[bl] (al YHX + bl YHY + cl YHZ) +
Conjugateicl] (al ZHX + bl ZHY + cl ZHZ);

Apart[%];
%/.k2 ll->kl 12;
Cancel[%]
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L = C o n j u g a t e [ a l ] (a 2 XHX + b2 XHY + c 2 XHZ) +
C o n j u g a t e [ b l ] (a 2 YHX + b2 YHY + c 2 YHZ) +
C o n j u g a t e i c l ] (a 2 ZHX + b2 ZHY + c 2 ZHZ) +
C o n j u g a t e [ d l ] (d2 XHX + e 2 XHY + f 2 XHZ) +
C o n j u g a t e [ e l ] (d2 YHX + e 2 YHY + f 2 YHZ) +
C o n j u g a t e [ f l ] (d2 ZHX + e 2 ZHY + f 2 ZHZ) 7

A p a r t [%];
% / . k 2  l l - > k l  1 2 7  

C a n c e l [%]

{The other matrix elementa in a 4-band Hemiltonian are calculated in a 
aimilarl way}

"### Set up Hamiltonian matrix using calc.elements ####";
ham={ { H h h , L , M , D I l ) , { L L 2 , H l h , D I 2 , M M }

, { M M 2 , D I 3 , H l h , L L ) , { D I4 , M M3 , L L 3 , Hhh} } ;

"############ Calculate Boundeory Conditions ########### 
replace kz,lz-> d/dz and retain only terms of the form 
form kx d/dz (s,p,d), ky d/dz (s,p,d) or d/dz (s,p,d) d/dz";

A p a r t [%];
% / . k l  l l - >  0 
% / . k 2  1 2 - >  0 
% / . k l  1 2 - >  0 
% / . k 2  l l - >  0 
% / . k l  1 3 - >  0 
% / . k 2  1 3 - >  0 
% / . k 3  1 3 - >  d _ d z  
% / . k 3  l l - >  I  K1 
% / . k 3  1 2 - >  I  K2 
C a n c e l [%];
A p a r t [%]

Output

Hhh -<3/2,3/2|H|3/2,3/2>
(-2 kl 11 + 12 d kl 11 - 2 k2 12 + 3 d k2 12 - 

2 k3 13 + 9 d k3 13 + 6 kl 11 p + 12 k2 12 p +
6 k3 13 p + 6 kl 11 s + 6 k2 12 s) / 2

L -<3/2,3/2|H|3/2,l/2>
S q r t  [3] (-3 d k3 12 + 2 I d kl 13 - d k2 13 -

2 I k3 11 p + 2 k2 13 p - 2 I kl 13 s - 2 k2 13 s)
(Similar output for other Hamiltonian elementa}

Boundary condition, continuity of :
((3^(l/2)*(-3*d + 2*p)*(d_dz))/2,

2 * (Kl + I*K2)*(d + p) - 2*I*(-I*K1 + K2)*s,
((-2 + 7*d + 10*p + 8 * s ) * (d_dz))/2,
3^(1/2)*(2*d*Kl + I*d*K2 - 2*I*K2*p - 2*Kl*s +

2*I*K2*s)}, {0,
(3"(l/2)*(-3*d + 2*p)*(d_dz))/2,
3"(1/2)*(3*I*d*K2 + 2*Kl*p),
((-2 + 9*d + 6*p)*(d_dz))/2}}

This matrix is identical o f that published in [Sta97]. Obviously, the whole approach can be 

extended to a 6 band model.
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A3 - Derivation of the boundary condition rnW

The derivation of the boundary condition rules for arbitrary growth directions (§6.1.2) is 

considered to be much more complicated than the derivation of the boundary conditions for one 

specific growth direction such as shown in appendix A2. Again, the derivation relied heavily on 

the use of Mathematica to perform the derivation. In contrast to the latter simulation, it proved 

impossible to set up a single routine that would give explicit forms of the final rules directly. 

Instead, several calculations that were all limited to a specific element of the Hamiltonian, a single 

mass parameter or both, were performed. The combination of all these calculations was then used 

to piece together the final analytical boundary condition rules. One of such calculations is shown 

below, which examines the presence of combinations of the mass parameter a  and the momentum 

operator along the growth direction {ks or /j, where the former is located BEFORE a  and the latter 

AFTER a).

"Define the inner products <a|H|b>, a,b=X,Y,Z";
XHX: = k x ( - u + 6 s + 1 2 d ) I x + k y ( - u + 6 p ) l y + k z ( - u + 6 p ) I z ;
X H Y : = k x ( 6 s - 6 d ) l y + k y ( 6 p ) I x ;
XHZ: = k x ( 6 s - 6 d ) I z + k z ( 6 p ) I x ;
Y H X : = k y ( 6 s - 6 d ) l x + k x ( 6 p ) l y ;
Y H Y : = k y ( - u + 6 s + 1 2 d ) l y + k x ( - u + 6 p ) I x + k z ( - u + 6 p ) I z ;
Y H Z : = k y ( 6 s - 6 d ) I z + k z ( 6 p ) l y ,
ZHX: = k z ( 6 s - 6 d ) I x + k x ( 6 p ) I z  
Z H Y : = k z ( 6 s - 6 d ) l y + k y ( 6 p ) I z  
ZHZ: = k z ( - u + 6 s + 1 2 d ) I z + k x ( - u + 6 p ) I x + k y ( - u + 6 p ) l y ;

"For the moment, the evaluation is restricted to the sigma (s) elements 
only"

U = 0 ;
P=0; 
d = 0  ;

" P e r f o r m  c o o r d i n a t e  t r a n f o r m a t i o n ,  new v e c t o r s  a l o n g  
k l = [ a l , a 2 , a 3 ] , k 2 = [ b l , b 2 , b 3 ]  and  k 3 = [ c l , c 2 , c 3 ] ";

k x :  = a l k l + b l k2 + c l k3
ky  : = a 2 k l +b2 k2 + c2 k3
k z  : = a3 k l +b3 k2 + c3 k3

l X :  = a l 11 + b l 12 + c l 13
l y :  = a 2 11 +b2 12 + c2 13
I z  : = a3 11 +b3 12 + c3 13

"Define heavy hole state J=3/2, mj=+l/2 
|3/2,+l/2> = al + bl + cl + dl X. + el Y. + fl Z 
s designates complex conjugate";

w a O s : = a l - I  b l ;  
w b 0 s : = a 2 - I  b 2 ; 
w c O s : = a 3 - I  b 3 ; 
w d O s : =0  ; 
w e O s : =0  ; 
w f  Os : =0 ;
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similarly, J«3/2, mj»-l/2";
wa2
wb2
w c2
wd2
w g2
w f 2

= - a l + I  b l  
= —a 2 + I  b 2  
= - a 3 + I  b3  
= -2  c l ;  
= -2  c 2 ;  
= -2  c 3 ;

"Calculate <3/2,3/2|H|3/2,-l/2> excluding normfactor"
i p = ( w a O s  (wa2 XHX + wb2 XHY + w c2  XHZ) +

wbOs (wa2 YHX + wb2 YHY + w c2  YHZ) +
wcOs  (wa2 ZHX + wb2 ZHY + w c2  ZHZ) +
wdOs (wd2 XHX + we2  XHY + w f 2  XHZ) +
weOs  (wd2 YHX + we2  YHY + w f 2  YHZ) +
w f O s  (wd2 ZHX + we2  ZHY + w f 2  ZHZ) ) ;

"As one is interested in the boundary conditions, only the elements 
that contain the operator along (111) need to be retained"

Expand[%];
%/.kl"2->0;
%/.k2"2->0;
%/.kl k2->0,
%/.kl ll->0 
%/.kl 12->0 
%/.k2 ll->0 
%/.k2 12->0 
%/.ll'"2->0;
% / . 1 2 " 2 - > 0 ;
%/.ll 12->0;
Simplify[%]

Output

6 (I al cl + I a2 c2 + I a3 c3 + bl cl + b2 c2 + b3 c3)
2 2 2 

( I  al k3 11 + I  a2 k3 11 + I a3 k3 11 + al bl k3 11 +
2

a2 b2 k3 11 + a3 b3 k3 11 + I al bl k3 12 + bl k3 12 +
2 2

I a2 b2 k3 12 + b2 k3 12 + I a3 b3 k3 12 + b3 k3 12 +
2 2 2 

I  al kl 13 + I  a2 kl 13 + I  a3 kl 13 + al bl kl 13 +
2

a2 b2 kl 13 + a3 b3 kl 13 + I al bl k2 13 + bl k2 13 +
2 2

I a2 b2 k2 13 + b2 k2 13 + I a3 b3 k2 13 + b3 k2 13 +
I al cl k3 13 + bl cl k3 13 + I  a2 c2 k3 13 + b2 c2 k3 13 +
I a3 c3 k3 13 + b3 c3 k3 13) s

The outcome o f the above evaluation seems a rather complicated expression at first sight, but a

closer look at the first part o f the equation between brackets (in bold) reveals that the whole 

expression reduces to zero when using a orthogonal reference frame in which a'£j=M-£ =0. From 

this, the im portant conclusion can be drawn that the off-diagonal Hamiltonian element denoted by 

R in (6 .6 ) does not contain any combination o f a  and the momentum operator acting along the 

growth direction. Sim ilar calculations were performed for all other Hamiltonian elements.
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A general method to derive the operator ordering and boundary conditions within the framework o f  the 
recently developed exact envelope-function theory is presented. An ordered form o f  the familar Luttinger- 
Kohn Hamiltonian is derived which can be regarded as the natural starting point for calculations involving  
heterostructures, such that transforming with an appropriate angular momentum basis, the derived ordering 
provides an unambiguous prescription for the boundary conditions across the interface. A s an exam ple, specific 
expressions are derived for structures with confinement along the [110] direction where the resulting boundary 
conditions are found to differ significantly from those currently used in the literature. The effect on the 
calculated in-plane dispersions is examined for two material systems, where it is found the greatest differences 
occur in system s with a large difference in Luttinger parameters. Typically, the results show that em ploying the 
traditional boundary conditions tends to exaggerate any negative curvature o f  the valence bands near the zone  
center. [80163-1829(97)06724-6]

Effective-mass theory is a powerful and convenient 
method for obtaining valence-band descriptions of hetero- 
structures. In such an approach, the wave function is ex
panded in a number of zone-center solutions of the original 
bulk Hamiltonian close to the energy region of interest, each 
multiplied by a so-called envelope fu n c tio n .R a th e r  than 
solving for the wave function itself, one now solves for these 
envelope functions. The question of how these envelopes 
connect across a boundary has now been settled by the de
velopment of an exact envelope-function theory.^ Based on 
this work, boundary conditions were derived specifically for 
structures confined along [0 0 1 ], and found to differ from 
those conventionally used. Moreover it was shown that ap
plication of these boundary conditions can result in signifi
cant changes to the band structure.''’̂  Following Burt’s ap
proach, we present a starting valence-band Hamiltonian 
applicable to heterostructures from which boundary condi
tions for any growth direction can be obtained. As an ex
ample, boundary conditions for [ 1 1 0 ] confinement are de
rived, and found to differ considerably from those currently 
used in the literature.

Ignoring linear k terms, the valence-band maximum in 
bulk GaAs and related materials occurs at the F-point, i.e., 
k=0. Neglecting spin-orbit splitting, the symmetry of the 
zone-center valence-band wave functions is described by 
bonding p  functions in the tight-binding picture, and corre
sponds to the symmetry F 1 5 . As usual, these valence-band 
zone-center wave functions are denoted by |%), |y ) , and 
|Z ) .  One then assumes that an expansion using just these 
states, and accounting for the excluded (remote) states by 
perturbation theory, is sufficient to describe the valence 
bands at nonzero k. Treating the expansion in such a way 
modifies the Hamiltonian by adding an extra interaction

term, the so-called Lowdin interaction.^ During the develop
ment of the exact envelope-function thewy, Burt showed that 
for heterostructures this interaction should be replaced by a 
version in which the differential operators k  have a specific 
ordering

a,p= x,y,z \  V B By  j

(1)

where the indices j  and j '  run over the expansion states 
1%), |y ) ,  and |Z )  while v refers to the remote states. In the 
notation adopted by Foreman, the interactions between the 
remote states and the p-type valence-band states may be de
scribed using the following quantities which identify the in
dividual contributions of the remote states of symmetry 
F J , F i5 , and F 12 (neglecting the small contribution of 
r  25)'

(7 = ( l /3 m o )2  \ W P x \ v ) \ V i B y - B ) ,

r,5
7T=(l/3m o)2  \ W P y \ v ) \ ^ / ( e v - B ) , (2)

12

^ = ( 1 /6 /wo) 2  K ^ |P x k )P /(fiK -e),

where e is the valence-band energy in the absence of spin- 
orbit splitting. These expressions may be visualised by con
sidering a tight-binding view. The lowest atomic wbitals
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compatible with F , and F 12 (respectively, s  and dx2 -y2 and 
d2 z2 -r2) are even functions with respect to y, and z; 
therefore the only nonzero inner products are of the form 
{X\p^ \  v) .  In contrast, the lowest F ,5  states to make a con

tribution are d^y, dy^, and , as a result the only non- zero 
inner products are of the form {X\py\v).

For each layer, an effective-mass Hamiltonian over |X), 
|y ), and |Z) bases can be written as

H=
2 mo

k x A k x + k y B k y  +  k z B k z  k x C \ k y ~ k y C i k x

kyCikx-kx^iky kyAky + k^Bix + kxBkj,

kzCikx-kxCikz kjCiky-kyCikz

kxC\kz kzCi^x 

kyCikx-hCiky  

kzAkz+kxB kx+kyBky.
(3)

where

i4 = l -6 o r - 1 2 ^ ,  B = 1-67T,

C i =  6 ^ - 6 c r ,  C 2 = 6 7 t.

The diagonal potential-energy term, describing the band 
edges, has been omitted for clarity. It is important to note 
that the ordering of the differential operators above follows 
naturally from Eq. (1) and the symmetry properties of the 
zinc-blende lattice. For a homogenous structure, Eq. (3) op
erates on plane-wave envelope functions. The differential op
erators then reduce to components of the Bloch wave vector 
ki^ki ,  and the ordering of the terms becomes redundant, 
such that the contributions from the different symmetries are 
often lumped together into one constant. In this case, Eq. (3) 
can take the form of the familiar Luttinger-Kohn (LK) 
Hamiltonian* for the same basis. [Note: If the contribution of 
F 25 had been included, then Eq. (3) would reduce exactly to 
the LK Hamiltonian.] In heterostructures, it is customary to 
start with the LK Hamiltonian, which correctly describes the 
bulk band structure of the constituent layers, and then intro
duce the operators. Clearly, with the off-diagonal terms rep
resented by one constant, the specific ordering as observed in 
Eq. (3) is not immediately apparent. As we see later, this 
ordering is crucial when the question of boundary conditions 
arises and replaces the need to symmetrize the Hamiltonian.

When looking at [001] structures, it is customary to 
choose kx and ky perpendicular to the growth direction, leav
ing kx to act along the confinement direction. For different 
confinement directions one would like to introduce a new 
reference frame ( k x >  , k y >  , k z > )  with a similar orientation as in 
the [0 0 1 ] case, i.e., the z' component being parallel to the 
confinement direction. Along [110], the new axes are respec
tively taken along (001), ( 110), and (110). It is important to 
note that by nature of its derivation, Eq. (3) is valid for any 
growth condition, and one can simply replace the old opera
tors in terms of their projections in the new frame. Therefore, 
Eq. (3) is the natural starting point for calculations involving 
heterostructures.

Including the effects of spin-orbit interaction merely con
sists of forming a new basis consisting of linear combina
tions of the 1%), |y), and |Z) states which are eigenfunctions 
of the spin-orbit operator. Such a basis can be found by 
recognizing that eigenfunctions of the spin-orbit operator are 
also eigenfunctions of J^, with J  representing the total angu

lar momentum. Since J  does not uniquely classify the states, 
one can introduce a new commuting observable which we 
choose to be its projection Jx> along the desired confinement 
direction z '. As usual, the states will be labeled l/,w^), 
where nij  is the quantum number corresponding to 7^/. Re
orienting the spin-up and -down states along the growth di
rection, we find the following set describing the heavy 
=  ± 3/2) and light hole (Jz> = ±  1/2) states at the F point for 
[ 1 1 0 ]-oriented heterostructures.

| | ,  + f)=(i/2)|(X-y)î> + (l/V2)|Zî), 

l l ,+ î> = (/7N /3 ) |(x+ y ) î) - ( i /Æ ) |(z -y ) i>

+ (<7Vë)|zi>,

l l . - î> = - ( i /> /3 ) i a + i ') i> - 0 7 V ï2 ) i ( x - j ') î )  

+ (1/V6)|ZÎ).

|& .- D = ( i /2 ) |( x - y ) n + ( ,7 \^ ) |z n .

(4)

Such a set is not uniquely defined, as each state can be mul
tiplied by a phase factor of unit length. The above basis set 
differs slightly from that previously reported for this 
orientation? and was chosen to facilitate comparisons with 
previous work on [ 1 1 0 ] structures.*

The wave function is now written in terms of the basis 
functions (4), each multiplied by an envelope function

W = f \ \ h + i ) + f 2 \ h + i ) + f 3 \ h - j ) + f 4 \ h - l ) '
(5)

Following Burt’s approach, the basis sets in Eq. (4) are taken 
to be the same throughout the heterostructure, regardless of 
composition. Using the above expansion, the new reference 
frame k' and Eq. (3), the effective-mass Hamiltonian for 
[ 1 1 0 ] confinement, takes the form

H = -

where

P + Q L_ M 0  ■

L l P - Q C M

2 mo c+ P - Q - L \
0 - L  + P+Q.

+ Eyiz')h

(6a)
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Q= ( -  \  Jik], -  i^z' yi^z') + i (  y-ik\>-kz' ra^zO»

A/= -  ( a/3/2)[( 72+ + K ' i y i - r 3 )^z']

+ ^ { y 2k l r - 2 iy,k,,ky,),  (6 b)

L + -  — y[îkyf[k^,{2tô) + {2(T—lTT+ S)icji] 

± i2 y l3 k A k z 'M  + { ( r -S ) k , , l

C = 2 (kyi + ikx')[f^z'(f^~'^~ 7T—
The hole energy is taken as negative, Ey{z') refers to the 
bulk heavy- and light-hole valence-band profiles, and I is the 
identity matrix. Band parameters for each layer can be found 
from the more commonly known Luttinger parameters 
through the relationships

yi = — 1 + 2cr+47r+4^, 

y2 =(T—Tr- 2̂ 0 , 

y  ̂= (T+TT-0 ,

(7)

As the operators and ky> are oriented parallel to the in
terface, they have been replaced by the in-plane wave-vector 
components kĵ > and ky, . In contrast, k̂ ,̂  acting along the 
confinement direction, is left as a differential operator, i.e., 
k2 , = —i(dldz').

The boundary conditions are now obtained by integrating 
Eq. (6 ) across a boundary. Recalling that only the terms of 
the form k ^ , f ( z ' )  survive, we find the requirement of conti
nuity of F  and DF across an interface, where F is a four 
component vector containing the envelopes and D is given 
by

D =

  d i d z '
nihh

h

n d l d z z '

0

 d! d z  '
mih

n d l d z '

n d l d z ' 0

n d l d z '

  d j d z '
Îh

  d j d z '
ruhh

8 a)

where

rt = -(>/3/2)(y2-r3)»

c =  - 2 i k x , - i k y , ) { ( T -  S -  7t), 

l i  =  2 y l 3 ( T r ) k x , - i 3 y j 3 { S ) k y , ,

~ 2  V3((r— S ) k x > ~ i  V3(2cr—27t+ 0 ) k y , ,

(8 b)

—  =  ̂ y , - 2 7 2 - 2 7 3
1 / 1 3

— = ( r , +  2 r 2 + 2 r 3 | .

-10
(0, ky)

-30

% -50 .

-70

-90
0.08 0 .04  0 .0 0  0 .04  0 .08

k„(A-')

FIG. 1. In-plane dispersion o f the two highest valence subbands 
for an Ino5 3 Gao4 7 As/InP QW o f width 40 A with confinement along 
the [110] direction. Solid lines show the calculation performed us
ing boundary conditions obtained from the ordered Hamiltonian, 
i.e., Eq. (8) in the present work. Also shown (dotted lines) are the 
results obtained using boundary conditions found from a symme
trized Hamiltonian.

Prior to the development of the exact envelope-function 
theory, it was necessary to symmetrize a Hamiltonian before 
performing the integration.® However, the Hamiltonian in 
Eq. (6 ), with its operator ordering found naturally within the 
framework of the exact envelope-function theory, shows a 
strong asymmetry with respect to k ’̂ • It is therefore hardly 
surprising that, when comparing Eq. (8 ) to that obtained 
from a symmetrized Hamiltonian for this growth direction,® 
we see profound differences. The coupling of heavy- and 
light-hole bands of the same spin is now only through the 
interaction with the remote p and d states, while the tradi
tional boundary conditions also include the larger interaction 
with the remote s states. Additionally we also note that the 
two light-hole bands are now coupled. These observations 
are somewhat familiar to those found in the case of [(X)l] 
structures under an equivalent comparison.'*

To evaluate the influence of the new boundary conditions, 
calculations were performed on two fiat-band quantum-well 
(QW) structures. The equations were solved in an exact man
ner using a transfer-matrix method with the energy solutions 
coinciding with the complex zeros of an 8 X8  determinant. 
In-plane dispersion diagrams E(k) for the valence band of
(110) QW structures were studied for two lattice-matched 
materials systems, namely, GaAs/Al^Gai _;tAs and 
Ino.53Gao.47As/InP. For each structure, we applied both the 
new boundary conditions described here in Eq. (8 ) and those 
found from a symmetrized Hamiltonian (cf. Eq. (20) in Ref. 
8 ). Examining only the highest two or three subbands, we 
found some well width dependence with the largest differ
ences typically occurring as the well width reduced. The 
magnitude of the differences was certainly smaller in the 
GaAs/Al.^GaiAs system, where the Luttinger parameters 
in the well and barrier materials are quite similar. This can be
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expected since the coupling of the bands via the boundary 
conditions is governed by the change in a, tt, and Ô rather 
than their absolute values. These results are largely consis
tent with previous studies for the (100) direction. In Figure 
1 we show the E(k) diagram for a 40-Â Ino.53Gao.47As/InP 
QW. For this system, where the change in or, tt, and S across 
an interface is large, we see considerable differences in the 
calculated dispersion. An interesting feature, found using the 
new boundary conditions, is the saddle point predicted for 
the second subband hh2  at the zone center); this is in contrast 
with the negative electronlike curvature predicted using the 
symmetrized conditions. While no such occurrences were 
found in similar GaAs QW’s or wider In̂ ^Ga; -j^As/InP 
QW’s we did note that the symmetrized boundary conditions 
routinely over estimated any negative curvature at the zone 
centre.

In summary, the operator ordering for a Luttinger-Kohn- 
type valence-band Hamiltonian in a |X), |y), and |Z) basis 
has been presented. The nature of the ordering, which is

derived within the framework of the exact envelope-function 
theory, has significant consequences on the boundary condi
tions that arise in heterostructure calculations. Starting fi-om 
this Hamiltonian, specific expressions were derived for het
erostructures with confinement along the (1 1 0 ) direction. 
The subsequent boundary conditions show the usual cou
pling between heavy-hole and light-hole (LH) bands across 
an interface should not involve the large interactions from 
remote bands of s symmetry. In addition to this we note the 
appearance of a term coupling LH states of opposite spin. 
Both of these features represent a significant departure from 
the previously adopted boundary conditions for this direc
tion.
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A bstract. Working from the recently developed exact envelope-function theory, the 
question of how the envelope functions connect across a boundary is addressed  
for arbitrary growth directions. Using angular momentum basis functions that are 
expressed  in terms of the desired growth orientation, a general form for a six-band 
Hamiltonian is presented. A se t of general rules has been  obtained which describe  
how unordered bulk elem ents can be replaced to conform to the ordering 
determined from the exact theory, thereby avoiding the u se  of ad hoc 
symmetrization procedures. One important result of this study is that the reduced 
interface coupling between the heavy-hole state and light/split-off-hole state found 
previously for [100] and [110] orientation is a general property valid for all growth 
directions.

1. Introduction

Effective mass theory is a powerful and convenient 
method for obtaining information about the electronic 
bandstructure of solids, and has been particularly suc
cessful for predicting electronic and optical properties 
of semiconductor heterostructures [1,2]. Currently 
heterostructures designed for confinement along lower- 
symmetry directions have been attracting considerable 
interest with effective mass calculations demonstrating 
that changing the orientation can significantly affect the 
resulting bandstructure [3-5].

Despite the success of effective mass theory, insight 
into how to connect envelope functions across an 
interface was not rigorously provided until the development 
of an exact envelope-function theory by Burt [6,7] 
(a good overview of the use of effective mass theory 
in heterostructures, in particular addressing the subject 
of boundary conditions, is contained in the review [7]). 
The strength of the exact theory is that it employs the

§ Present address: Imperial Coliegef.

same expansion states throughout the structure thereby 
circumventing the boundary problem. Imposing the 
traditional effective mass approximations, i.e. abrupt 
junctions and eliminating smaller envelope functions by 
perturbation methods, the theory describes unambiguously 
the operator ordering in the Hamiltonian which leads 
directly to the connection rules at the boundary. More 
recently an alternative approach, which allows different 
expansion states in each layer, has been proposed by 
Foreman [8 ]. As a result new interface terms are introduced 
in the boundary conditions. Nevertheless the underlying 
operator ordering, which is the subject of the present work, 
is closely related to that obtained from Burt’s approach.

With the operator ordering now specified, this prompted 
a re-examination of the widely used multi-band effective 
mass Hamiltoninians which without a clear derivation 
of the ordering had previously been handled using a 
rather ad hoc symmetrization procedure. Initial studies 
focused on heterostructures oriented on the technologically 
relevant (0 0 1 ) face and demonstrated significant differences 
in the resulting bandstructure [9,10]. More recent 
work, now looking at structures confined along [ 1 1 0 ],

0268-1242 /98 /010011  +07$ 19.50 ©  1998 lOP Publishing Ltd 11
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demonstrated dramatic differences particularly for the 
higher-lying subbands near the zone centre [11]. This 
raises the question as to the effect the new approach will 
have for other orientations, which to date still use the 
symmetrization procedure for the operator ordering and 
hence boundary conditions. In a previous report [11] we 
presented a valence band Hamiltonian written in the X, Y 
and Z basis (excluding spin) in which the operator ordering 
was derived following Burt’s approach. Along with an 
appropriate coordinate transformation, this may be recast 
into the more usual angular momentum basis \ J, mj) for the 
desired growth orientation. However, this procedure can 
rapidly become laborious, needs to be performed for every 
growth direction individually and therefore prevents general 
observations with respect to the interface coupling. A more 
satisfactory approach would be to work from wn ordered 
bulklike Hamiltonians, which are readily available in the 
literature [5,12] or easily obtained from the theory of 
invariants [13], and where necessary replace terms by 
the ordered form prescribed from the exact theory. This 
is the aim of the present paper where, upon defining a 
general form for a valence band Hamiltonian in the \ J, mj) 
basis applicable to any growth direction, we present rules 
governing the replacement of unordered terms by their 
ordered form.

The paper is organized as follows. In section 2 we 
outline the specific formulation of the envelope-function 
theory used in this work. Section 3 introduces the 
expressions for the zone-centre heavy-, light-hole and spin- 
orbit split-off states expressed in terms of vectors chosen 
for the particular growth direction. These are then used to 
construct the form of a general six-band Hamiltonian which 
suitably describes the valence band in heterostructures for 
any growth direction. In section 4 we summarize the 
operator ordering rules found which are specific to the 
elements of the general Hamiltonian which are essentially 
the key findings of the present work. Sections 5 and 6  detail 
the method used to derive the zone-centre expansion states 
and the ordering rules, while in section 7 we address how 
different forms of Hamiltonians, currently existing in the 
literature, may be accommodated within the present work. 
In section 8  we consolidate the results of the present work 
by generating, as an example, expressions relevant to the
[111] growth direction. Finally a summary of the work is 
given in section 9.

2. Effective m ass theory and operator ordering

The successful envelope-function theory formulation 
widely used in heterostructure calculations [ 1 ] largely 
follows from the early work on the effective mass theory, 
first described in detail by Luttinger and Kohn [2]. 
Generally the small linear A:-terms that arise in the bulk 
description are neglected resulting in the valence maximum 
occuring at the zone-centre (F-point), i.e. fc =  0. With 
spin-orbit interaction also neglected, the symmetry of 
the zone-centre (T ,5 ) valence band wavefunctions can be 
described by bonding p functions in the tight-binding 
approximation, denoted by |X), |T) and |Z). In the 
effective mass approximation one then assumes that an

expansion using just these states, accounting for the 
excluded (remote) states by perturbation theory [14], is 
sufficient to describe the valence bands at non-zero k.

Adopting Foreman’s notation, the coupling with the 
remote states is split up into the individual contributions 
of each symmetry type (neglecting F 2 5 ) [9],

r,
<7 =  ( l/3 m o )^ l(X |p .li ') lV { e .-« )

V

r,5
7T = (l/3mo) ^  |(X|p,.|v)|V(£v -  g) 

r ,2

5 =  ( l / 6 m o ) ^ | ( X | p , | v ) l V ( ^ , - e )  ( 1)
V

where e is the energy of the valence band edge and the 
summation over v runs over all remote states at energy 
of given symmetry. These constants replace the traditional 
Luttinger parameters which were defined to give quantities 
directly related to the heavy, light and split-off masses in a 
bulk semiconductor. Identifying the contributions of each 
symmetry type in the Luttinger parameters, one finds

Y\ =  — 1 +  2cr -f 4;r +  4 ( 7

Y2 =<7 -  Jt -h 28

X3 =  (7 +  TT -  6. (2)

Working in Burt’s framework [6,7], the traditional effective 
mass Hamiltonian in each layer over an |X), IT) and |Z) 
basis has to be replaced by a version with specific operator 
ordering [ 1 1 ],

kxAkx ky Bky -I- k̂  Bk^
D =

IrriQ
kyC\kx kxC2 \̂

\  ̂ k̂ Ciicx -  kxC2kz 
C 1 ky  — ky  C2kx kxC\icz  — k-zC 2k  x

kyAky kxBkx kzBkz kyC\kz, — k^C2ky
kzC\ky -  kyC2kz kz^^z + kxBkx + kyBky

where

A =  1 — 6(7 — 125 Cl =  65 — 6(7

B =  \ — 6n C2 =

(3)

(4)

In (3), icj is to be interpreted as the differential operator 
(l/i)V ) and the ordering in each element has followed 
naturally from working within the framework of the exact 
theory. To include the effects of spin-orbit coupling, the 
most convenient approach is to form a new basis \J,rrij), 
comprising linear combinations of |X), IT) and |Z) that are 
eigenfunctions of the spin-orbit operator

|7, mj) =  IX)X -t- Xiy +  X3Z) t  + 1X4% +  X^y +  X6%) i
(5)

where J and nij represent the total angular momentum 
and its projection along a particular and as-yet undefined 
axis. For each layer, the set \J,mj)  represents the exact 
heavy-hole, light-hole and split-off-hole eigenstates at the 
band edge. The wavefunction in a heterostructure is then
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written as a linear combination of this set with each element 
multiplied by a so-called envelope function

I'A) =  +  +  +
+  ̂ 5 l 5 * + ^6 l | , (6 )

The corresponding effective mass Hamiltonian in matrix 
form, including information about the ordering, can now 
simply be constructed from (3)-(6) by realizing that the 
individual elements of such a Hamiltonian are given by

=  Yj^[J .mj )„\ i )D ,j { j \ \J ,mj )„)  (7)
iJ

where i, j  run over X, Y and Z while m, n run 
over the expansion states explicitly noted in (6). In 
the following section, expressions for \J,nij )  written in 
terms of orientation vectors are presented which enable the 
construction of a general form of the Hamiltonian.

3. General form for the effective m ass 
Hamiltonian

To account for arbitrary substrate orientations, we introduce 
a transformation matrix T, whose elements are related to 
the orientation vectors describing the principal directions 
of the structure. For example, a new coordinate frame r '  is 
obtained through a proper rotation of the standard Cartesian 
coordinate system r,  i.e. r '  =  Tr or.

% \  /a\ Ü2 fl3
y'  \ =  l b \  b i  bi

. z ' /  Vci C2 C3

(8 )

The row elements of T may be viewed as vectors a, b, c 
which form an orthonormal right-handed set with c pointing 
along the growth (confinement) direction. Thus in general, 
the matrix T describes how all relevant operators transform 
under a rotation of the axis. From the introduction of T we 
can express a general \ J ,mj )  basis in terms of orientation 
vector elements. Specifically,

| | ,  + | )  =  — +  \ b \ ) X  +  { a 2  +  i b 2 ) Y -| -(fl3 +  i ^ 3 ) Z )  f  
y/2 
2

— ÿ=|(ûi +  ^ b \ ) X  -|- («2 +  i^2)T 4- («3 +  \bT,)Z) I  
v6

1
2 ’ -^2 ' “  —

l i ,  + ? )  =  — e \c \ X  +  C 2 Y  +  C 3 Z )  t

l i ,  + 5 )  =  — C 2 Y  +  C 3 Z )  t

1
x/3'

— ÿ = | ( û i  +  i ^ i ) ^  +  ( « 2  +  1^ 2 ) T  -j-  ( « 3  +  i ^ 3 ) Z )  i  . 
v3

(9)
The derivation of these expressions is explained fully in 
section 6. The corresponding \ J , - m j )  states can be 
constructed using the Kramers operator [15] on the positive 
counterparts in (9) with a change in the overall sign. So 
written in terms of (5) we would find,

1; .  -m ,) =  ix :% + x ;y + x ;z ) t  _ ix;% -bx;y+x;z>  : .

( 10)
The matrix elements for the effective mass Hamiltonian 
are found using (5), (7), (9) and (10). Clearly their exact

form will depend on the particular growth direction chosen; 
nevertheless it is possible to derive a general form for 
this Hamiltonian. Thus regardless of growth direction, the 
overall form of a six-band effective mass Hamiltonian for 
each layer can be expressed as.

H =

(  P + Q  -S x

P - Q

\

(r)C

P - Q

0 ,̂/V2
- R V2g

- S 2 ■JlQ

P + Q -y /2 R ^

f+A -«c
f+ A  }

( 1 1 )
Only the upper diagonal is indicated as the lower-diagonal 
elements follow from the requirement that the Hamiltonian 
must be Hermitian. As already noted, the spin-orbit 
operator will always be diagonal for the basis used, hence 
in (11) A represents the spin-orbit splitting energy for the 
layer. The subscripts on 5-terms are used to distinguish 
elements that have a specific operator ordering which, along 
with the operator ordering of the P-, Q- and /(-terms, will 
be dealt with in the following section. Note however that 
if the ordering is neglected, e.g. as in the bulk descriptions 
often used in the literature, then S\, S2, and 5 4  will all 
reduce to a single term 5. Finally, phase terms of unit 
length, n  and ©, have been introduced in (11) in order to 
accommodate any differences in phase of existing |7, m,) 
sets used in the literature compared to the set given in (9) 
and (10); for the present set both H and © would be equal to 
1. The explicit form and origin of these terms is discussed 
in detail later on in section 7.

4. General rules for operator ordering

We now turn to the operator ordering for each of the 
elements in (11). Recall that since we are considering 
heterostructures, with the growth (confinement) direction 
taken along z', it is only the placement of the operator k̂ ' 
with respect to the position dependent mass parameters that 
is important for the boundary conditions. The operators 
acting in the plane simply reduce to components of the 
Bloch wavevector, kx'{y') k ’̂if). In principle the
ordering for a particular growth direction can be found 
in a straightforward, albeit lengthy, manner through the 
application of (7). However in keeping with a general 
approach, it is also possible to obtain rules applicable to 
any direction that describe how to transform an unordered 
bulklike element into an element with the correct operator 
ordering. The attraction of this approach is that unordered 
elements for a particular growth direction can be found 
either from existing work in the literature [5,12] or may 
be easily calculated using Luttinger’s theory of invariants 
[13].

We now present the general rules governing the 
operator ordering of the elements of the Hamiltonian (11). 
The rules were obtained by exploiting the linear nature of 
the transformation (7) and the structure of D in (3); the 
details of the procedure are outlined in section 6. We 
obtained the following results.
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P and Q are symmetrized with respect to the operator
kr'.

• All terms in S-, involving are to be symmetrized.
• Any terms in 5, containing a single operator k̂ ', i.e. 

with a unordered form such as k y { f a  +  gjr +  hS) where 
/ ,  g and h are constant coefficients, should be ordered as 
follows:

52: — „  +  — S j k ,  

( f o  -

( 12)

• All terms in R are symmetrized with respect to the 
operator k̂ ' and do not contain any combination of a  and
Lj.

• The term C, which is only non-zero at an interface, 
always takes the form

—(h/mo){kx' —i/:)')[(<? —^  — )̂kz' —kz'{a —n — 6)]. (13)

We have frequently referred to ‘symmetrized’ in the above 
rules: by this we mean application of the traditional
symmetrization procedure for the k̂ ' operator that has 
previously been adopted [1]. In fact as the above rules 
demonstrate there are two principle differences that arise 
from working within the exact theory, the ordering for 5, 
terms which are linear in L'  and the introduction of the 
C element. A particularly significant result from (12) is 
in the strong asymmetry of the sigma coefficient for the 
5] and S2 elements. Integrating across an interface, it 
follows that coupling between heavy- and light-hole states 
never includes the large contribution from remote states 
with s-type symmetry, which is in contrast to the result 
obtained if a symmetrization procedure is used for these 
elements. Previous work had found this to be the case for 
[100] and [110] structures [9,11]: what the present work 
confirms is this is in fact a general feature for all growth 
directions.

Although we will demonstrate the application of the 
above rules in full in section 8 where we will derive an 
ordered [111] Hamiltonian working from unordered matrix 
elements, we will now give a brief illustration to familiarize 
the reader with the concept of the rules (12) and (13). 
At this point it is useful to recall the work by Foreman 
where he presented an ordered Hamiltonian for the growth 
direction [100] [9]. This Hamiltonian was obtained by

evaluating all elements individually using (7) and 
an explicit knowledge of the basis states \J,nij)  for this 
growth direction. We will now reproduce his result for the 
element 5i using the appropriate rule in (12). Neglecting 
any ordering, this element is written as

5| =  V3{kx-\ky)yikz =  ^ /3 ik x- \k y ) [ a+ n - 8 ]k z .  (14)

We find that / ,  g and h are given by f  =  g =  - h  =  /̂3\ 
inserting this in the top rule of (12), we obtain

5, =  V3{kx -  ik,)[{a -  8)kz +  Lin ) ]  (15)

which agrees with the result obtained by Foreman (see 
equation (5b) in [9]).

5. Derivation of the \ s ta tes

To clarify the derivation of the \J,nij)  basis shown in (9) 
it is useful to recall the requirement that such a set should 
fulfil, namely that the spin-orbit operator should always be 
diagonal in the basis. In other words, such a set represents 
the eigenfunctions of the spin-orbit operator. The approach 
taken to derive and label the set in (9) is to recognize 
that eigenfunctions of the spin-orbit operator are also 
eigenfunctions of where J  represents the total angular 
momentum operator. Since this observable is insufficient to 
uniquely specify the states, one has the freedom to choose 
another (commuting) observable which we choose to be 
7;', the projection of J  along the growth axis. As a 
consequence, the states will be labelled \ J, mj)  and we will 
align the spin along z' [1,11]. The choice of operators is 
a natural choice since the A: • p  term in the effective mass 
formalism commutes with for k̂ - =  ky' =  0, thus for this 
basis the Hamiltonian is well conditioned (diagonal or close 
to diagonal) at the band edge. Furthermore, this choice is 
compatible with Luttinger’s theory of invariants [13] when 
both the fc-vectors and angular momentum matrices are 
transformed under T.

Specifically, working from the most general linear 
combination of X, Y and Z states, i.e. equation (5), we 
have to find the coefficients which simultaneously satisfy

(16)

where -f 2L • S  -j- and Ĵ ’ =  L̂ ' -I- Sy. To find
expressions for the |3/2, 4-3/2) state, the equations above 
would reduce to

(Tz' +  S^')\h +1) =  3 / 2 I5 , 4-|). (17)

Note that although the state has been written explicitly, it 
is understood the coefficients are still to be determined. To 
proceed, L' is transformed to the original reference frame, 
L' =  TL,  so that the first equation in (17) transforms into

2[ia-L)]Sx' +  ib-L)Sy' +  i c - L ) S z ' ] \ l l )  =  | | , | ) .  (18)
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For the state in question, it is possible to reduce the number 
of unknown coefficients from the outset by realizing that a 
state with angular momentum of 3/2 cannot be built up out 
of / =  1 orbitals combined with a spin-down spinor, i.e. 
we set |3 /2 , + 3 /2 ) =  a^X  ̂ + « 2 /  t  + “ 3 ^  t- Using the 
relations (and similarly for the other elements)

L ,|X ) = 0  L , |y ) = i |Z )  U z )  =  - \ \Y)

s.. t = i i  (19)
we obtain six equations for the coefficients, conveniently 
expressed in vector form as

1C X a  =  a

(a  -I- ib) X a  =  0 (20)

where a  =  (or,,« 2 , (X3 ). For |3 /2 ,-j-3/2) the second 
equation of (2 0 ) does not give additional restrictions as 
it reduces to the first equation in (20). Since a, b and c 
form a right-handed orthonormal set it follows that the only 
coefficients that can satisfy (2 0 ), excluding an overall phase 
factor, correspond to those presented in (9). The other states 
listed in (9) are derived along the same manner.

6. Derivation of the ordering rules

We will now outline the procedure followed to derive the 
ordering rules. As mentioned earlier, the approach we take 
is to refer to correct ordering expressions with respect to 
unordered bulklike elements. It follows from the linear 
nature of (7) that a conversion from a Hamiltonian without 
operator ordering to an ordered Hamiltonian within Burt’s 
framework will redistribute the a - ,  t t -  and (5-terms as

{ f ( T + g 7 T - \ - h 8 ) k , ’\hulk
— [(/lO^ +  giTT -b h\S)k;^' -j- k z ' i f i o  -j- giTT +  h iS ) ]  (21 )

where / i  -b /% =  / ,  gi -b g2 =  ^ and /ii -b /t2 =  b are the 
coefficients of the remote terms for a particular Hamiltonian 
element obtained using (7). Not shown explicitly in (21) 
is a reference to in-plane Bloch components kx> and ky' 
which are simply multiplicative constants for the total 
expression. A quantity is then defined, the degree of 
asymmetry, which describes the difference between the 
occurrence of an element before and after the operator 
For example, the degree of asymmetry in a  h  f\ -  f i .  
We then look to find a relationship between the degree of 
asymmetry for each of the three symmetries of the remote 
states. Referring back to (3), we note that the distribution 
of TT and (5 in the off-diagonal elements is similar to that 
of cr, the only difference being the reverse ordering of 
terms containing t t  and the difference in sign of the terms 
containing 8. These two differences have essentially the 
same effect regarding the comparative degree of asymmetry 
between the terms. The diagonal terms D\\,  D22 and D 33 

only give rise to a symmetrical contribution with respect to 
k̂ ', therefore the degree of asymmetry is determined by the 
off-diagonal terms only. As a result we find that the degree 
of asymmetry in t t  and 8  is identical to that of a ,  only of 
opposite sign. Explicitly,

f\ -  f i  =  g i -  g\ =  h2 — h\. (22)

It is important to note that we have only transformed the 
momentum vector k  and not the basis states |X), |K) and 
|Z). Rotating these basis states would change the degree 
of asymmetry in the individual elements of D (3) and 
the above discussion. Naturally one expects to obtain the 
same final result for the Hamiltonian if one works with 
rotated basis states and consequently transforms D. This is 
straightforward to prove and confirms that the result for the 
degree of asymmetry as given by (21) and (22) is a general 
property of the Hamiltonian.

Relating the degree of asymmetry from the other terms 
with respect to that for the (j-term proves convenient since 
coefficients involving a  and L- in (11) written in the general 
\ J , m j )  basis (9) are found to be independent  of reference 
frame, unlike t t -  and 6-terms which depend on a particular 
growth direction [16].

Consider the spin-up heavy-hole related elements, i.e. 
the first row of the Hamiltonian in (11). Evaluating 
(7) using \J,rnj)m =  |3 /2 ,-b3 /2 ) as given in (9) plus 
the general expression (5) for \J,mj)„ and concentrating 
only on the coupling with the remote bands with s-type 
symmetry (a),  we obtain (working in atomic units).

=  -  ^( f l i  -  \bi)ix\kx(rkx + + X3kxcrk,)

- ^ ( « 2  -  'ib2)(X\kycrkx +  Xikyf^h -b X3^(^k,) 

- ^ ( f l 3  -  \bi)ix\kzcykx +  XiK^fky -b X3kzcrkz). (23)

Transforming the left-hand k^' operator under a general 
rotation of the axis (5) and considering only those 
components associated with k^'O (only these will give a 
non-zero contribution when integrating across a boundary), 
we find

- ( 3 / y / 2 ) ( a  -  \b) • cLja(x\kx +  XiK  +  X^K) =  0 (24)

which is due to the fact that o , b and c form an orthonormal 
set. This is a very important result as this demonstrates 
that only the combination of a k ^ ’ can be present in this 
row of the Hamiltonian. It implies that for the boundary 
conditions there is no interband coupling via the remote 
bands of s symmetry. From this result which defines the 
degree of asymmetry for the or-coefficient, combined with 
(21) and (22), we can set gz -  g i =  h2 ~ h\ = f  which 
leads to the rule in (12) governing the correct ordering of 5i 
terms. The expression for 5| terms is actually the general  
rule for all the elements involving a single k^' operator in the 
top row of (11). For particular elements, where |7, my)„ is 
specified, the derivation proceeds along in the same manner. 
When considering the R term then in addition to (24) we 
also find that no combination ak^’ occurs, i.e. /  =  0, which 
shows the ordering for R is symmetric with respect to k̂ ’ or 
the degree of asymmetry is zero. The other rules for S2 , Sy 
and S4 are evaluated in a similar manner. The procedure to 
obtain the expression for C follows in the same way only 
here the t t -  and 6-terms must also be considered.
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7. The phase of the \ J ,  my) basis

In this section we show how, with the introduction of two 
phase terms, n  and 0 ,  existing Hamiltonians which are 
not derived from the set (9) may be recast into the general 
form (11). The appearance of different Hamiltonians in 
the literature stems from the basis set used to derive them. 
Although we have chosen two commuting observables and 
set the particular projection axis involved, the |7, mj) states 
as presented in (9) and (10) are by no means unique 
in that they may be multiplied by factor of unit length 
( //+ iv )  without changing any of the physics. Typically, the 
consequence of using a |7, m y )  basis that differs in phase 
from (9) is apparent in the off-diagonal elements which 
differ by some (complex) phase term. For example there 
are at least two general forms of four-band Hamiltonians 
in the literature where the off-diagonal elements differ in 
phase (compare [3-5] and [9,12]); for the present work we 
have chosen the phases of (9) and (10) to correspond to the 
latter notation. As we now go on to show, and demonstrate 
in the following section, it is possible to account for the 
phase of the \ J, m, ) set.

Consider the unitary transformation H' =  U^HU, where 
U is a diagonal matrix with elements

Uij =  SjjUi

u =  exp[ia], exp[i/S], exp[i(a -j- ^)], exp[ia], exp[i^])
(25)

and 8ij is the Kronecker delta. As a result of the 
transformation the following elements in the Hamiltonian 
are multiplied by a phase factor:

5i.2 exp[ia]5i,2 

R exp[i/8 ]^

factor n  which is placed in the Hamiltonian elements 
containing 5 3 .4 . Using (26), one obtains

5 3 . 4  -> exp[i( ) 6  — a ) ] 5 3 . 4  

C exp[i()0 -  a)]C. (26)

To demonstrate how this unitary transformation was used 
to account for the choice in | J, my ) states in (11), we 
will first look at a four-band Hamiltonian without a C- 
element (i.e. only the top two transformations in (26) are of 
relevance). It follows from (26) that we can multiply all the 
R- and S-elements with a phase factor without changing the 
eigenvalues. Effectively one is now working with new off- 
diagonal elements, S^w =  exp(io!)5 and R„eu) =  exp(i)3)/?, 
which are based on a different |7, m y )  set as compared to 
(9) and (10).

We will now extend this to a full six-band model with 
C-elements. Again, S„ew and R„euj represent ‘arbitrary’ off- 
diagonal elements which correspond to an as-yet unknown 
phase and |7, m y )  set (for example, they could have been 
obtained directly from the theory of invariants [13]). As the 
C-element is not invariant in the transformation (25) we see 
that we have to introduce a phase factor © =  exp[i()3 -  a)] 
to account for any difference in basis states. Similarly as
S3 , 4  transform differently from S| 2 , although they were 
all defined to reduce to the same element neglecting ahy 
ordering, we see that we have to introduce another phase

n = exp[i(/3 -  0 ?)] 
exp[ia]

=  ex p [i(/3 -2 a)]. (27)

Both factors can be obtained by comparing the chosen R 
and S to the expressions one would have obtained when 
using the set (9). As the latter set will always give a 
real and positive akj,  component in R and a real and 
positive ak '̂k '̂ component in S which can be checked 
by evaluating (3 /2 ,- |-3 /2 |// |3 /2 , ± 1 /2 ), we arrive at the 
following expressions for fl and 0

n  =  - « y * ) 'C ,s ig n ( f )

0  =  -j;,,/r;,^ ,sign(f ) (28)

where r", ,̂ is the normalized ak^, coefficient in R and ŝ .̂ , is 
the normalized crk̂ 'k̂ - coefficient in S. We have introduced 
the factor sign(P) to eliminate the effects of an overall 
sign change in the Hamiltonian often performed to obtain 
positive hole energies.

8. Application to [111]

To demonstrate the application of the rules presented in 
section 4, we consider the case for growth along the [111] 
direction. As a first step, we look to obtain the un ordered 
bulklike elements for a four-band Hamiltonian, as the other 
elements can be expressed in terms of these. Luttinger’s 
theory of invariants [13] provides us with a straightforward 
way to obtain the four-band Hamiltonian elements, this 
Hamiltonian is given by (atomic units)

H = -|(x, ± |)^)P + + t^J )̂

+2K3(^;ĉ .v{«J;cJ)} +  }) (29)

where J.t.y.z are the angular momentum matrices (we 
employ the same definitions as used in the original article) 
and { J , J y }  =  J / J y  +  J y J , .  The new axes are taken 
along (1 ,1 ,-2 ) ,  ( - 1 ,1 ,0 )  and (1,1,1). Performing a 
coordinate transformation on both the operators and the 
angular momentum matrices (dropping the primes from 
now on), we find the following unordered Hamiltonian 
elements.

Q = -  2t;)

s  = -  Y3 )kl -  *
V3

(2X2 +  Yi)k-kz

's/s -y s/ô ^R = -----^ ( X 2  ±  2X3) ^ _  +  —  (X2 -  X 3 ) M z
o 3

(30)

where k ±  =  k ^  ±  \ k y .  In both the R- and S-elements there 
are terms linear in k̂ ; for these parts we substitute a,  n
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Table 1.

(yi -  2 ya)^
— k+{3a — 27t )
-^\kA27T-3S)  

0
• ^ / c+ ( 3ct — 27t  )

\  — (27t — 38)

+ 36)

(yi + 2ya)^ 

2/c+(rr -  n -  8) 

Ÿik-{2n-38)  

-IsflYzYz 
— \/2/c+((t + 26)

i/c^(27r-36 )

2 /f_ (a — TT — 8 )

(yi + 2ya)
— -^k+(7T + 36) 

—\p2k^{n  + 2 6 ) 

-2 ^ X 3 ^

^ \k i.(2 jT  — 36) 

j ^ k j 3 n - 2 n )  

(Xi -  2 y s ) ^

- j ^ k  (;r + 36) 

-2\/2y3^
\[2 kir{2 cs — TT + 6)

^i/f.(27T  - 3 6 )  

XI6•^i/(+(2jr — 36)

— -^k^(3cj—2n) —2/ĉ .(or — TT — 6 )

— •^i/c+(27T — 36) \ 

\ /2 /(„  (2fT — TT +  6)

- 2 V2 w i
■^kt.{7ï + 36)

—2 k̂  ((7 —IX — 6 )

xi6

and 6 for the Luttinger parameters and then using (12) we 
find the ordered replacements. Explicitly,

5] : (3cr — 111)ki +  kz Ĵi +  36)

52 : (t t  +  36 ) k i  +  k i  (3cr — 2rr )

Sy : (cr +  26)L +  kz,{2u -  n +  8)

; (2cr — ;r +  6)^j +  ^,(cr +  26)

R : (271- 3 8 ) L  +  Ls 2tt- 3 8 ) .  (31)

To evaluate the phase terms, we return to the bulk 
equations (30). We find that the sign of P is negative, 
the component - \ \ / 3 a k l  in R and —\/3iakxkz in 5, so 
that working from (28) this implies,

sign(P) =  - 1

C  =  - I  
4  =  -•

n = +1 0  =  - i . (32)

Including the C-term completes the transformation of the 
Hamiltonian. For the boundary conditions, we find the 
requirement of continuity of F  and Q F  where F  is a six- 
component vector containing the envelopes and is given 
by the matrix in table 1.

As expected, we see that the boundary condition matrix 
does not feature cr-terms in the first and fourth row, i.e. 
the heavy-hole bands do not couple with the light- or 
split-off-hole bands via the remote states of symmetry 
T]. As a result, along with the additional coupling 
that originates from the C-term, the boundary condition 
matrix shows profound differences from that which would 
have been obtained had one worked from a symmetrized 
Hamiltonian [5].

9. Conclusions

In summary, we have presented analytical rules to 
construct six-band effective mass Hamiltonians with 
operator ordering for any growth direction, conforming to 
Burt’s exact envelope-function theory framework. These 
rules completely circumvent the need to construct such 
a Hamiltonian from first principles using an appropriate

\J, mj )  basis for the growth direction under consideration 
and can be directly applied to a bulk (unordered) 
Hamiltonian. As a result, we have proved that the reduced 
interface coupling for the heavy-hole bands as observed 
for [100] and [110] is a general property for all growth 
directions. Moreover, we were able to show that the 
additional coupling between the light-hole states as well 
as the split-off-hole states, which is not present in the 
symmetric boundary conditions (the C-term), has the same 
form for all growth directions.
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