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Abstract

Predicting the occurrence and spatial patternsiofall induced flash floods is still a challenge.
Instant genesis and typically smaller areal cowerad the flash floods are the major
impediments to their forecasting. Analysis of therphometric parameters provides useful
insight on hydrological response of the drainagsifsato high intensity rainfall events. This
information is valuable for understanding the fléislod potential of the drainage basins and for
evading the destructions caused by the hazard. Mer@ise eighteen morphometric parameters
that influence the runoff volume, flow velocity, amundation depth scenario of a flash flood.
The analysis has been carried out for simulatiregréhative flash flood susceptibility of thirteen
watersheds (B1 to B13) of variable sizes in sowdteza Bangladesh. The morphometric
parameters were derived from Digital Elevation Mo@EM) using Geographic Information
System (GIS). The evaluated basin parameters iaclacea (A), perimeter (P), length (Lb),
stream order (Su), stream number (Nu), stream tefigt), stream frequency (Fs), drainage
density (Dd), texture ratio (Rt), bifurcation rat{®b), basin relief (Hr), relief ratio (Rr),
ruggedness number (Rn), time of concentration (ifdjfration number (If), and form factor
(F). Two relative flash flood susceptibility sceioarwere generated: (i) general watershed level,
and (ii) more precise pixel level status. The wslted level comparison reveals that B4 and B6

watersheds constituting 72.61% of the total area ‘mery high’ susceptible, whereas the
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susceptibility of the other watersheds has beendas ‘high’ [B5 (6.95%)], ‘moderate’ [B8 and
B13 (8.63%)], ‘low’ [B2, B10, B11l (4.64%)], and ‘we low’ [B1, B3, B7, B9, and B12
(7.18%)]. The derived watershed susceptibility mas subsequently integrated with two spatial
analysis algorithms i.e., topographic wetness inda¥I) and topographic position index (TPI)
through overlay analysis. The integration helpedrderstand the combined role of the general
watershed morphometry and the in situ topographyé&ermining flash flood susceptibility of
each spot (30m x 30m) within all the selected vgteds. The quantitative analysis and
characterization of the watersheds from the petageof flash flood hazard in this investigation
is expected to be useful for implementing the sgeeific mitigation measures and alleviating

the effects of the hydrological hazard in the stacsa.

Keywords: basin; drainage; flash floods; morphometry; Bangtdxd Remote sensing; GIS

1. Introduction

Flash floods are among the world’s deadliest natuazards, accounting for 85% of flooding,
having the highest mortality rate with more tha@0®, lives lost annually (www.wmo.int).
Bangladesh is one of the most flood prone countrighe world experiencing almost all types
of flooding. Having a long history of the hydrometelogical disasters, the country has
witnessed a huge clustering of the extreme flooentssin close space and time. The most
devastating flood events of 1953, 1954, 1955, 199H2, 1963, 1966, 1968, 1969, 1970,
1971,1974, 1976, 1984, 1987, 1988, 1997, 1998, 2004, 2007 and 2012 are examples of the
series from the 20 and beginning of the 2century (Khalil, 1990; Dewan et al., 2003;
Choudhury and Haqu@016; Philip et al., 2019). The impact of the mestent monsoon flood

in 2019 has also been widespread, effecting 2.liomipeople in 24 districts and killing 104



51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

people (BRCS, 2019; www.dhakatribune.com). On araye floods inundate 20.5% area of the
country annually to as high as about 70% duringeéneme flood event, primarily because of
the low-lying topography and location of the coyrdt the confluence of three major rivers i.e.,
Ganges, Brahmaputra and Meghna (Mirza, 2002). Tdwdplains of these rivers constitute
about 80% area of the country; however, more tl@# 6f the catchment area of these rivers is
outside Bangladesh (Brammer, 1990).

Flash floods, although affecting relatively lesaeza (5-20%), result in substantial loss of human
lives, property, and livelihoods especially in theuntainous parts of the country (Kamal, 2018).
In a recent flash flood of August 2014, around hdllion people were affected, including 0.5
million displaced, and thousands of hectares gbstost (ACAPS, 2014). This was immediately
followed by another flash flood in June 2015, hgtisoutheastern parts of the country; Cox’s
Bazar, Bandarban, and Chittagong districts wererséy affected by this flash flood in which 22
persons were killed and 1.8 million people effec(etCTT, 2015). Another high intensity
rainfall triggered flash flood was experienced dgrApril 2017; the breaching of embankments
from this event resulted in inundation of extensivepland mainly in six northern districts and
effected more than 4.6 million people (Tarannuml180 A heavy downpour in June 2018
recorded over 300 mm of rain in just 48 hours @g®tg hundreds of Rohingya refugee shelters
in the Cox’s Bazar district (www.floodlist.com).

Flash floods are mostly of convective origin, ocog locally in watersheds of less than
1000 knf with complex orography and short response time$eof hours or minutes; thus,
allowing minimum possibilities for the predictioMérchi et al., 2010; Destro et al., 2018).
Usually taking place in ungauged watersheds, fllagius are the least documented phenomenon

of the hydrometeorology (Gaume et al., 2009). Whderential rainfall remains the main reason
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behind the occurrence of the flash floods, watetsherphometry is an important factor
influencing the intensity of the hazard. Charagiag the morphometric properties of the
catchments provide a valuable insight about thgdrdlogical response (e.g., flash flood) to
rainfall events (Borga et al., 2008).

The classic works of Horton, 1932 and 1945, Smil®50; Strahler 1952, Miller, 1953 and
Schumm, 1956 have long been used as a guide fbrstudies. In the recent years, quantitative
analysis of the morphometric properties [linierear and relief] of the basin through the
application of mathematical measures has been wigekformed for multiple purposes
especially for assessing flood hazard potentialthe drainage basins (e.g., Mesa, 2006;
Angillieri, 2008; Ozdemir and Bird, 2009; Romshob &., 2012; Bhatt and Ahmed, 2014,
Abuzied et al., 2016; Farhan et al., 2015; Fen&d.eP017; Bhat, 2019, Adnan et al., 2019).
Remote sensing data products and Geographic Infanmm&ystem (GIS) have often been
integral part of the studies performing spatialeasment of various natural hazards and other
processes operating on the earth (Alam et al., ,220Bb; Ahmed et al., 202(Hreely available
the digital elevation models (DEMs) such as ShuRledar Topography Mission (SRTM),
Advanced Spaceborne Thermal Emission and Refle®adiometer (ASTER) and Advanced
Land Observing Satellite (ALOS) in combination wi@lS have been particularly used for
drainage basin morphometric analysis (e.g., Redd/.£2004; Romshoo et al., 2012; Altaf et
al., 2013; Bhatt and Ahmed 2014; Farhan et al.52@dnan et al., 2019; Bhat et al., 2019,
Meraj et al., 2019).

Quantitative morphometric analysis of the selediadins in the present study is particularly
important because the basins are ungauged and ithdeek of information on their past

hydrological behavior. Accordingly, with the combthuse of digital elevation data (SRTM)
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and GIS, this study attempts to evaluate eightdenhdrge, flow velocity, and inundation

influencing morphometric parameters i.e., area p&yjmeter (P), length (Lb), stream order (Su),
stream number (Nu), stream length (Lu), streamukeeqy (Fs), drainage density (Dd), texture
ratio (Rt), bifurcation ratio (Rb), basin reliefjirelief ratio (Rr), ruggedness number (Rn), time
of concentration (Tc), infiltration number (If), o factor (F), topographic wetness index (TWI)
and topographic position index (TPI) for assessimgflash flood susceptibility of the selected

watersheds/basins.

2. Study area
The area of interest is located between 20700 21°600" N and 92°0®" — 92°3%0" E in the
southeastern Bangladesh. (Fig 1). The total ar¢leo$elected site is 3170 km?, spread over the
parts of multipleUpazilas in three districts i.e., Cox’s Bazar [Chakaria,x@oBazar-S, Ramu,
Ukhia and Teknaf] Bandarban [Alikadam, Naikhongahlaad Lama], and relatively small part
of Chittagong [Banshkhali]. The area is composed®ivatersheds/basins (B1, B2,..B13) with
sizes ranging from16.8 km? (B11) to 1525.4 km2 (B4 being a coastal area elevation
stretches from 0 to 889 meters above mean sea [Elel eastern segment of the study area
encompasses high mountainous, with steep slopesighdr drainage density (see Fig 2 for
general geomorphic properties of the area). Surg@cdogy of the region consists of beach and
dune sand (Coastal sediments), valley alluviumaotidivium, Dihing and Dupi Tila Formation,
Dihing Formation (Pleistocene and Pliocene), Tiggandstone (Neogene), Boka Bil Formation
(Neogene) and Bhuban Formation (Miocene) (GSB, 19%98e geomorphic signatures are
evocative of NW-SE trending geological structurestmlling the watercourses e.g., the trunk
channel in the watershed B4 of the study area.f&&im the area exhibits a specific spatial

pattern; the southern watersheds receive relativiglger mean annual rainfall than the northern
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watersheds (Fig. 2e). The area is often experigntlie flash floods and consequent losses
especially during the monsoon season; the moshresents have been those of 2015 and 2018.
It important to note that in addition to the natp@pulation, there are 209,847 Rohingya refugee
families with a population of 909,774 (UNHCR, 2018jnporarily settled in the watershed B9,
B10, B11, and B13 (since August, 2017), who nowobee the prey of the flash floods (e.g., in
2018). The refugees are living in makeshift tarpa@nd bamboo shelters spread over the
multiple clusters in Ukhia and Teknidpazilas of the Cox’s Bazar district. Given the occurrence
of varied natural hazards including cyclones, lédds and floods (Ahmed et al., 2018; Alam et
al., 2019) and social, economic and demographiditons, the refugees seem to be the most at-

risk community in the study area.

3. Materialsand methods

Quantitative analysis of the morphometric paranseteas long been used to understand the
nature and origin of the drainage basins (Hortof51®mith, 1950; Strahler 1952, Miller, 1953
and Schumm, 1956). The morphometric characteristwssiderably impact the hydrological
behavior of the catchments; consequently, numbgr@fious investigations have been carried
out in relation to the flood hazard. Drainage basorphometry can play a substantial role in the
occurrence and intensity of the flash floods (F)g GQver the period of time, morphometric
parameters have been widely used for understanthi@gelationship; however, there is no
defined or standard set of the morphometric pararsethat may be used for flash flood
susceptibility analysis (Adnan et al., 2019). Insinof the previous studies, the results obtained
through the process of morphometric analysis terfwetgeneralized, where discharge generating
potential or response to rainfall events is pr@dctelatively between the various watersheds

without the identification of hazard-hotspots. Tdeiverables of such studies are of limited use
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from the perspective of flood hazard mitigationr Bt reason, the present study adopted a two-
step approach to assess the flash flood suscétibfl the study area. The™istep aims to
understand relative flood hazard scenario of théemsheds by deriving the values of each
selected morphometric parameter through the apicaf different mathematical procedures
(Table 1, serial no.1 to 16). For a consistent canispn, the derived values of the chosen
morphometric parameters corresponding to each sfedrwere subsequently converted to new
common evaluation scale of 1-5; on this scale thedf susceptibility increases from 1 to 5.
According to the nature of a particular parameter of — relationship with the flood
susceptibility), a new value was assigned to eafarpeter of all the watersheds. Finally, a
cumulative value was used to project the flashdlsosceptibility of each watershed in the form
of a map. The ¥ step was the integration of final flood suscefitibimap with two other
wetness and surface flow sensitive topographicrmpeatars (Table 1). The two-step approach
provided the opportunity to: (i) identify compaxegiflood hazard of different watersheds and (ii)
pinpointing the exact spots within the watershedspldying higher levels of flash flood
susceptibility. The process involved the conversball the data layers into raster format, with
consistent projection (WGS 1984, UTM Zone 46 N) aed size (30m x 30m). The use of

SRTM digital elevation model (30m) and GIS has beerlamental aspect of this analysis.
4. Resultsand discussion
4.1 Morphometric parameters

The basic morphometric characteristics includingaafA), perimeter (P) length (Lb), and
elevation (m) of the delineated watersheds areepted in the Table 2; and the quantitative
analysis of the other parameters and their flasbdflconnotations are discussed under the

respective headings.
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4.1.1 Sream order (Su)

The classification of the streams according to nemudf stream segmentsS(12", 3¢ ...) and
type of confluence fLwith 1% 2" with 2'Y, 3 with 39...) is a measure of stream ordering
(Strahler, 1957). Su is a fundamental indicatothef size of a drainage basin and discharge
capacity. In this analysis watershed B4 and B6 hhgehighest order of streams (VI), whereas
the watersheds including B1, B3, B11, B12, and Bi& with Il as the highest order stream
(Table 3 and 4). High stream order of B4 and Bffesents presence of larger streams in the
catchments fed by multiple small streams, thusrathe potential of high water discharge and

depending on the relief conditions high flow vetws as well.

4.1. 2 Sream number (Nu)

Stream number is the count of streams of differkers in a given drainage basin or a
watershed (Strahler, 1957). The watersheds havigiy stream numbers usually cause high
runoff and rapid peak flow during rain storm evetitan the basins with low Nu (Bhat el al.,

2019). The stream number was found to be highé&4(lin watershed B4 (Table 5, Fig 4)

followed by B6, B5, and B8 with 950, 260 and 215pectively. All the remaining watersheds

show Nu of less than 200 with lowest being thathef B11 watershed (25), suggesting least
runoff capacity.

4.1.3 Stream length (Lu)

Lu refers to the length of streams of differenteyadin a basin. Stream length is one of the
important characteristics of surface runoff; largeris an insinuation of less infiltration and high
runoff producing ability of a drainage basin (Steah1952). Lu and Nu are positively related
i.e., watersheds with high Lu have high Nu valuevali and are thus proxy representatives of

each other. As expected from the size of the wageksB4 revealed highest (1943.93) Lu,

8
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followed by B6 (954.64), B8 (302.73), and B5 witB0203. Similar to the pattern of the Nu, rest

of the watersheds have Lu lower than 200 (TabledbFg 4).

4.1.4 Stream Frequency (Fs)

The count of stream segments of all orders perarea is referred to as stream frequency. High
Fs implies high runoff delivery, which is genera#lyfunction of impermeable surface material,
sparse vegetation cover, and high relief (PattahBaker, 1976; Reddy et al., 2004). The Fs of
the watersheds ranges from 0.80 as lowest for theerahed B9 to 2.33 as highest for the
watershed B5 (Table 5, Fig 4); remaining watershiedsal the intermediate values of the stream
frequency.

4.1.5 Drainage Density (Dd)

The spacing between the channels is called asatyaidensity (Horton, 1932). Dd is calculated
as the total length of channels of all orders per area divided by the area of a drainage basin.
High drainage density is an important indicatothaggh runoff volumes and rapid flood peaks
(Horton, 1932; Patton, 1988; Pallard et al.2009yhHDd is often associated with impermeable
soils, sparse vegetation, and mountainous terhaithis analysis drainage density was found to
be highest in watershed B5 with a value of 2.5Dbl@®, Fig 4), thus is likely to produce high
runoff; whereas, the Dd values for other waterstiadges from 1.07 (B3) to 1.37 (B7).

4.1.6 Textureratio (Rt)

Representing the ratio between total number ofasteeand perimeter of a basin, the texture
ratio (Rt) is a function of lithology, slope, clitea vegetation, and soil type and is classified int
four types i.e., coarse (< 4 per km), intermed{dt€l0 per km), fine (10-15 per km), and very

fine (> 15 per km) (Smith, 1950). The Rt for thetevahed B4 and B6 reveal intermediate values
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of 7.48 and 5.62 respectively, thus suggestingdrigiuick peak discharge generation potential
(Table 5, Fig 4). The remaining watersheds expoessser texture with lowest being that of

watershed 12 with 1.02.

4.1.7 Bifurcation ratio (Rb)

Rb is a dimensionless measure representing threlatween the number of stream segments of
any order (Nu) and the next higher order (Nu+1)isTis a very important parameter that
expresses the degree of ramification of the dransgwork (Mesa, 2006). Bifurcation ratio is
usually minimum in flat or rolling drainage basiasd higher in mountainous or dissected
drainage basins (Horton, 1945). Here, the meandafion ratio of the watershed B4 has been
observed to be highest (6.09), followed by the B8] B6 with 4.9 and 4.39 correspondingly.
The watershed B1 exhibited a minimum Rb value 67 (Table 5, Fig 4). The high Rluggests

a basin having high runoff generation potentialhwitlatively minimum lag for triggering the

flash flooding during torrential rains (Chorley B961oward, 1990).

4.1.8 Basinrelief (Hr)

Basin relief is the difference in elevation betwedle lowest and highest points in a basin
(Schumm 1956). Basin relief is an important inddcatf denudation, landform evolution, and
runoff of a watershed (Patton, 1988). Hiso explains the gradient of the streams, slope
steepness and precipitous discharge delivery (Maael Schumm 1961). The watershed B4
(889), B6 (629), B8 (384) and B13 (244) have thghhbasin relief value connoting higher

probability of the flash floods than other waterdh&ith Hr of less than 100 (Table 5 and Fig 4).

4.1.9 Relief Ratio (Rr)

10
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Rr is a ratio of basin relief or total relief torfmmntal distance along the longest dimension ef th

basin parallel to the principal drainage line (Sainu 1956). Relief ratio allows comparisons of

relative relief in basins regardless of differendesscale of topography (Costa, 1987). Rr

provides an idea about the flow velocity, slopepteess, and erosion status of a drainage basin.

The Rr of the watersheds varies from 21.98 (highlestB13 to 3.34 (lowest) for B7 (Table 5

and Fig 4). The high Rr indicates reduced lag tisuglden peak discharge, and high probability

of flash flooding (Patton, 1988).

4.1. 10 Ruggedness number (Rn)

Ruggedness number is the dimensionless productaniatje density and relief (Costa, 1987).
Rn is high in the basins with steep long slopegpriag erosion, quick peak flows and flash
floods (Patton and Baker, 1976). A ruggedness <ehnw flat topography; a value of 1-2
indicates undulating topography, and extreme valued) indicate ‘badland’ topography (Adnan
et al., 2019). Watershed B4 has a highest ruggsdmesber of 1.125 and the number is less

than one in all other watersheds (see Table 5 and)F

4.1. 11 Time of concentration (Tc)

Time parameters such as time of concentrationtitte to peak, and the lag time are important

considerations in flood hydrology (McCuen et al984). The time of concentration is the

maximum time required for water to travel from thest distant point of the watershed to outlet.

Tc is a fundamental parameter to calculate the pigsdharge potential of a watershed. With

11
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inverse relationship, the larger values of the mply lower probability of sudden peak flows.

The Tc of the watershed B4 and B6 has been caécukd 57 and 31 respectively (Table 5 and

Fig 5). For all other watersheds Tc is less thafcaulated after Kirpich, 1940).

4.1.12 Infiltration number (If)

The infiltration number is a function of the;@nd K. It is an important parameter to understand

infiltration potential of a watershed. Higher thelower will be the infiltration and the higher

runoff (Bhatt and Ahmed, 2014). The ik lowest in watershed B9 with a value of 0.96,

suggesting relatively minimum infiltration, wheretae value is highest (5.84) for the watershed

B5 (see Table 5 and Fig 5).

4.1.13 Formfactor (Fy)

Form factors is expressed as a ratio between e @frthe basin and the square of the basin
length (Horton, 1932). Form factor is a parametguredict the flow intensity of a watershed; the
high R values indicate high discharge of short duratiod gice versa (Gregory and Walling,
1973). The watershed B11 is having the highest fiaetor value of 0.645, followed by the B8

an B3 with 0.500 and 0.426 respectively (Table & kg 5).

4.1.14 Topographic Wetness Index (TWI)

TWI is used to calculate topographic control onnest and runoff (Schmid and Persson, 2003;
Sgrensen et al., 2006, Wu et al., 2016). Runoféggion can be modelled using the topographic

wetness index; the part of a catchment where thimess index exceeds some threshold is

12
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assumed to be saturated (Woods and Sivapalan, .19B&)index allows the delineation of a
portion of the watersheds potentially exposed ¢odl inundation or flash flooding (Risi et al.,
2018). In this analysis TWI values range form lwhere 1 represents least likelihood of
inundation and 9 highest. Although, all the watetdshshare a substantial area with high TWI
values, the maximum of the area with high TWI valueere observed in the watershed B4, B6,

B7 and B8.

4.1.15 Topographic Position Index (TPI)

TPl compares the elevation of each cell in a DEMthhe mean elevation of a specified
neighborhood around that cell (Weiss, 2001). RasitPI values indicate that the central point
is located higher than its average surroundingslewtegative values indicate a position lower
than the average; TPI is increasingly used to nreasopographic slope positions and to
automate landform classifications (Reu et al., 2088&re, we make use of TPI to identify ridges,
peaks, flat areas and topographic depressions.diga threshold of -8.10 to 9.59, we identify
the areas where probability of waterlogging istredédy high. In general, the steep mountainous
parts of the watershed B4, B6 and B8 have leaginpiat to cause topographic inundation than

the low relief areas of the other watersheds.

4.2  Flash flood susceptibility mapping

On the basis of cumulative value derived throughatiopted methodology, this analysis reveals
that B4 and B6 have the high discharge generatotgntial and are most susceptible to flash
floods than the remaining watersheds. The watesslaee spread over 1525.4 km? (B4) and
774.9 km2 (B6), which collectively constitutes 726 of the total area (Fig 6a). The
morphometric parameters such as stream number @theam length (Su), texture ratio (Rt)

mean bifurcation ratio (Rb), basin relief (Hr),ieélratio (Rr) and ruggedness number (Rn) with

13
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values of 1934, 950 (Nu), 1943.93, 954.64 (Lu)875.62 (Rt), 6.09, 4.39 (Rb), 889, 629 (Hr),
9.19, 12.21 (Rr), and 1.125, 0.725 (Rn) for theensited B4 and B6 respectively have been
decisive in determining their ‘very high’ flash #id susceptibility. The watershed B5 reveals
‘high’ susceptibility (6.95%), followed by B8, an®13 with ‘moderate’ levels of the
susceptibility (8.63%). Watershed B2, B10, B11 bxhiow’ (4.64%); while as, the remaining
watersheds that include B1l, B3, B7, B9 and B12 esprcomparatively least ‘very low’
susceptible (7.18%) to the flash floods (Fig 6a).

Combining the watershed level susceptibility scen@fig 6a) with in situ TWI and TPI results
(Fig 6b, c) through the procedure of weighted asednalysis in GIS allowed to precisely depict
the flash flood susceptibility of each spot (30x3@ixel) in all the watersheds (Fig 7). The
detailed quantification of the area under variolasH flood susceptibility classes in each
watershed is presented in Fig 8.

In general, all the communities in the study aneaexposed to the varying degree of flash
flood hazard; but those in the high susceptibiines of different watersheds have higher
probability of being effected. Coincidentally, largoart of the high susceptibility areas in these
watersheds is uninhabited and pose limited threatept the western parts of Chakaria and
Cox’s Bazar-S. However, given the vulnerabilityttas such as high population density and
fragile nature of the makeshift settlement (Fig. e Rohingya refugees even if located in
largely low susceptible watersheds (B9, B10, Bhtl B13) seem to be at higher risk of the flash
floods. Because of the relatively less rugged iteremd low elevation of the hills in these
watersheds, the Rohingya refugee settlements miapenampacted by the high velocity flows

but the likelihood of getting inundated during flteesh floods is relatively high.
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5 Conclusion

Each year rainfall induced flash floods cause hlage of life and property across the globe.
Recognizing the flash flood potential of the drg@abasins is important for reducing the
associated damages. In this study, multiple morgteenparameters effecting runoff volume,
flow velocity, and water depth were evaluated foderstanding the flash flood susceptibility of
thirteen watersheds in SE Bangladesh. The morphmrgarameters were derived from the
digital elevation model using GIS. The results edwbat watershed B4 and B6 would be more
responsive to high intensity rainfall events andynggnerate larger and instant discharge,
suggesting that the watersheds are more susceptblBash floods than the remaining
watersheds considered for this analysis. In additm general watershed scale morphometric
characteristics, consideration of the local toppgia effects helped to precisely map the flash
flood susceptibility in all watersheds, which algescribes the uniqueness of this study.
However, vertical accuracy of the basic data setlu®., 30m SRTM DEM (RMSE = 8.28m) is
a major concern here that restricts practical appbn of the produced results at a scale
demanding finer details. Moreover, validation loé tderived flood hazard scenarios remained
unperformed because of the insufficient historieabrd of the flash floods. It is also pertinent to
point out that flash flood hazard is not entirelfuaction of morphometric conditions; therefore,
the scenarios may change owing to the influencetloér factors such as land use/cover and
flood management practices in each watersheds gdddlic structures along the channels.
Furthermore, the factors like soil saturation aetirés load, though not within the scope of the
present analysis are important factors that intteetischarge, flow velocity and severity of the
flash floods. Despite the limitations and uncetias of the data and adopted methods, the
deliverables of this study hold substantial valuwe finderstanding flood hydrology and
developing the flood mitigation policy for the syuarea.
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Table 1 Morphometric parameters selected for the preseaiysis

S
No.
1

2

3

10

11

12

13

14

15

Parameter

Basin area (A)
km?

Perimeter (P) km

Basin length (L)
km

Stream order ($

Mathematical expression Reference

A = the entire area from drainage divide to outlet =~ Schumm,

point 1956
P = the perimeter is the t@ath of the drainage  Schumm,
basin boundary 1956

Ly = the basin length corresponds to the maximum Schumm,
length of the basin measured parallel to the main 1956
drainage line

Hierarchical = classification of streams basedren  Strahler, 1952
number and type of tributary junctions

Stream number Ny =N1+ N2+ ...+Nn Strahler, 1952
(Nu)

Streamlength () Lu=L1+L2+..+Ln Strahler, 1952
Stream frequency Fs = NwA Horton, 1945

(Fs)

Drainage density
(Do)

Texture ratio (Rt)
Bifurcation ratio
(Ro)

Basin relief (B

Relief ratio (R

Ruggedness
number (R)

Time of
concentration (J)

Infiltration
number ()

where, Nu = total number of stream segments of all
orders, and = basin area.
Dd = LwA Horton, 1945
where,Lu = total length of all the ordered streams,
andA = area of the basin.
Rt = Nu/P Smith, 1950
where, Nu = total number of stream in a given hasin
and P = perimeter of the basin
Rp = NwNu+l Horton, 1945
where, Nu number of streams of any given order,
Nu+1 the number in the next higher order
H; = Hmax — Hmin (m) Schumm,
whereHmax is the highest anHmin the lowest point 1956
of the basin
R-=Hr/L Schumm,
R is the dimensionless height—length ratio between 1956
the basin reliefR) and the basin length.
Rn = Dd x (Br/1000) Melton, 1957
where,
Br = basin relief
Dd = drainage density
T=Gk(L/ S Kirpich, 1940
where, G = Constant (G=0.0078)
k = Kirpich adjustment factor
L = Longest watercourse length in the watershed
S = Average slope of the watercourse
It = K x Dy Faniran, 1968
where, Eis stream frequency the angddrainage
density




16 Form factor (F) F =A/L2 Horton, 1932

Basir Area (ki) 2 (K Nng T ’ Elevation (m)
(A) (Ly) Min (h Max_(H)
17 Topographic TWI = In (a/tarp), Beven and
| here. ais t I ; w irkby.
(TwWl) local upslope area draining through a certain poént

unit contour length, which is equal to a certaiid gell
width, andp is the local slope

18 Topographic TPL = M, — ZM_ Guisan et al.,
Position Index ‘ L n 1999; Weiss,
(TPI) where, M = elevation of the model point under 2001

evaluation, M = elevation of grid, r= the total
number of surrounding points employed in the
evaluation.

Table 2 Basic morphometric attributes of the selected vehieals



Bl 26.€ 27.5 12.C 1 98

B2 92.4 48.7 15.5 1 97

B3 28.C 32.¢ 8.1 1 47

B4 1525.¢ 258.% 96.7 0 88¢

B5 22C4 85.2 25.¢ 0 10¢

B6 774.¢ 169.( 51.t 0 62¢

B7 93.C 71.t 22.L 0 75

B8 233.¢ 93.t 21.€ 0 384

B9 61.¢ 48.t 17.Z 0 75

B1C 38 33.C 11.2 0 73

B11 16.¢ 20.¢ 5.1 1 7C

B12 18.1 25.¢ 8.C 0 57

B13 40 35.t 11.1 0 244
Table 3 Stream order (Su) and Stream number (Nu) of thensfaeds

Basir I I ] v \ VI Total
Bl 20 11 7 0 0 0 38
B2 73 37 26 6 0 0 142
B3 24 11 5 0 0 0 40
B4 111¢ 537 26& 14 4 1 193¢
B5 17:¢ 73 10 3 1 0 26C
B6 61z 29¢ 29 7 2 1 95C
B7 78 36 7 1 0 0 12z
B8 173 29 10 2 1 0 21¢%
B9 39 8 2 1 0 0 5C
B1C 35 17 1 0 0 0 53
B11 15 9 1 0 0 0 25
B12 17 8 1 0 0 0 26
B13 35 23 1 0 0 0 59
Basir I Il i v Vi Total
Bl 13.7¢ 7.1 9 0 0 29.8¢




B2 58.9¢ 32.9¢ 21.3¢ 4.3¢ 0 0 117.6:

B3 14.9: 11.2 3.97 0 0 0 30.0¢

B4 980.7°  495.4:  230.1 118.7°  62.4: 56.3¢ 1943.9:

BS o 138.7¢ 63.71 2 99.¢ gld = fl\.bz 0] 2380.0: R

B6 8 4§7.2c  2§6.3:5 11566 §E55: L EE 269t 5 9546 L

B 2 6&7¢ 335¢ ¢ 4%  SHE2 & 2% 8 1g7A g
o e et T - — = = e I

€8 £ 1Basc E8or & 49% cHoe g 2D S5 3w ¢

5 °F R O 3T 10 %0 B o= S 205 2 £

S0 £23%% B4« ZZ10&E SZug B 2D ESEBE

B1C 24.41 15.2: 9.07 0 0 0 48.71

B11 11.¢ 6.57 2.3¢ 0 0 0 20.8¢

B12 15.5¢ 4.9¢ 3.4¢ 0 0 0 24

B13 23.9¢ 17.2: 3.7 0 0 0 44.8;

Table 4 Stream length of all the orders (Su) in each whtsts



Bl

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

38

142

40

1934

260

950

122

215

50

53

25

26

59

29.88

117.62

30.09

1943.93

280.03

954.64

127.43

302.73

75.33

48.71

20.85

24

44.87

1.42

1.53

1.42

1.26

2.33

1.22

131

0.92

0.80

1.36

1.48

1.43

1.47

1.12

1.27

1.07

1.27

2.51

1.23

1.37

1.29

121

1.25

1.24

1.32

1.12

1.38

291

1.21

7.48

3.05

5.62

1.70

2.29

1.03

1.56

1.22

1.02

1.66

0.67 97
1.54 96
0.87 46
6.09 889
3.19 108
4.39 629
2.86 75
3.17 384
2.17 75
3.81 73
2.13 69
2.02 57
4.9 244

8.083

6.19

5.67

9.19

4.18

12.21

3.34

17.77

4.33

6.51

13.5

7.12

21.98

0.097

0.104

0.033

1.125

0.381

0.725

0.086

0.443

0.082

0.082

0.080

0.027

0.256

57

12.591 0.184

14.94 0.384

10 51 1.0.426

1.60 0.163

25.84 0.167

3150 0.292

28.79 0.185

11.18 0.500

20 96 0.0.206

12 .7 10.310

5 83 1.0.645

9 1.88282

7.64 1 0.323

Table 5 Derived values of all the morphometric parametersefch watershed
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Fig 1 a. Location of the study area in Bangladdshspatial extent of the site in relation to
neighbouring sub-districts, and c. shaded reliefsshg the selected watersheds, drainage divide,
major streams and pour point of each watersheds.
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Fig 2 General physical characteristics of thedetéwatersheds; a. digital elevation model
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2018 flash flood.




sof Peak discharge
[T — Favourable morphometric conditions

= Unfavourable morphometric conditions

Peak rainfall

80

S
o

(s2awn)) a81eyds1g

Rainfall (mm)

40

10
Time elapsed (hours)

Fig 3 Hydrograph illustrating the general effectiohinage basin morphometry on peak
discharge; RL: rising limb, FL: falling limb.
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Fig 5 Morphometric parameters; time of concentrafibc), infiltration number (If), and form
factor (F).
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Fig. 9 Google Earth images showing the enormoud teansformation in the B9 watershed of
the study area as result of Rohingya refugee infilam Myanmar; the inset on the 2017 image
shows the zoomed view of a part of the Kutupaleiggee camp.
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