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A bstract

The natural evolution of tuberculosis in the absence of any medical interventions and 

its evolution in populations where control measures are implemented, are studied using 

various mathematical techniques and especially those of stochastic models.

In developed countries the numbers of tuberculosis cases increased and then de

clined, even before the introduction of elective therapy. Although now curable, tuber

culosis remains endemic in developing countries and among infectious diseases it is the 

leading cause of death worldwide. Serious questions have been raised with respect to 

the efficacy of the control measures currently available and the reasons for their fail

ure to control the spread of tuberculosis in some areas. This thesis investigates the 

spread of tuberculosis in the absence and in the presence of medical interventions and 

addresses questions about the endemicity of the disease and the efficacy of the controls, 

via stochastic models describing the dynamics of the infection.

In particular, the probability of extinction of the disease, the time until extinction, 

the size of an individual epidemic, and the distributions of the numbers of infected 

and infectious individuals are considered. Special attention is given to epidemiological 

indices, such as prevalence, risk of infection, incidence, and mortality, which are used by 

public health authorities to assess the severity of an epidemic. Approximating methods, 

including the use of deterministic models, are investigated and their results are compared 

with those from numerical simulations of the stochastic models being studied. The effect 

of chemotherapy in controlling an epidemic is assessed by the percentage reduction in 

the epidemiological indices for various levels of detection and cure rates. The effect of 

BCG vaccination is studied separately for various coverage and protective levels.
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Chapter 1

Introduction

In the 18th century tuberculosis was promoted to the rank of “captain of all these men 

of death” . Major epidemics arose in Europe and North America in the 17th century and 

then declined throughout the 19th century, even before the introduction of chemotherapy 

(Bloom & Murray 1992). When elective therapy became available, in the late 1940’s, 

tuberculosis (TB) began to fade from existence in most developed countries (Bloom & 

Murray 1992). Nevertheless, TB epidemics still remain at tragic levels in many de

veloping countries, despite effective control programs (Dye, Scheele, Dolin, Pathania & 

Raviglione 1999). In addition, a resurgence of TB has been witnessed in developed coun

tries since 1985 (Enarson & Rouillon 1998). The “captain” still keeps his place as the 

leading cause of death among infectious diseases worldwide (Bloom & Murray 1992). 

Various explanations have been proposed for this “rise and fall and rise” of TB, but the 

causes have not been completely determined.

Are subsequent outbreaks of TB going to follow in developed countries and when? 

Is the epidemic wave in developing countries on its way up or down? W hat is the impact 

of control measures and what can ensure their success? Answers to epidemiological 

questions like these are hidden within the characteristics and dynamics of Mycobacterium 

tuberculosis (the causative agent of TB) and the current state of tuberculosis infections. 

Answers to such questions can be extracted if the appropriate techniques are developed. 

Mathematical modelling is one of the techniques that have substantially contributed to 

the understanding of observed epidemiological trends and predictions for future trends 

for other infectious diseases (see, e.g., Bailey 1975, Anderson & May 1991).

The first effective modelling of TB was that of Waaler, Geser & Andersen (1962)
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and subsequent modellers have mainly been concerned with deterministic and simula

tion models (see, e.g., ReVelle, Feldmann & Lynn 1969, Blower, McLean, Porco, Small, 

Hopewell, Sanchez & Moss 1995, Vynnycky 1996, Brewer, Heymann, Colditz, Wilson, 

Auerbach, Kane & Fineberg 1996, Dye, Garnett, Sleeman & Williams 1998, Aparicio, 

Capurro &: Castillo-Chavez 2001). Stochastic models, in contrast to deterministic ones, 

allow for statistical fluctuations and, in many respects, the probabiUty element is essen

tial in the study of epidemic phenomena. In this thesis we consider stochastic models 

that describe the natural evolution of TB and the evolution after the introduction of a 

control policy. The structure of this thesis is as follows.

Tuberculosis and epidemic modelling:

Chapter 2 discusses the basic concepts and principles of the epidemiology of TB. A brief 

review of the literature concerned with epidemic modelling is given in Chapter 3.

M odels for the natural evolution of TB:

In Chapter 4 we present a simple closed model for the natural evolution of TB; this is a 

three-class model for a population with constant size. A similar model for a population 

with varying size is studied in Chapter 5; here we allow for immigration of susceptibles 

and death (both natural and caused by TB). In Chapter 6 we present a more detailed 

model (called Zeus) which accounts for some subtle features of TB (such as reinfection of 

individuals with an old infection), which for simplicity were not included in the previous 

two models.

Models for the effects of chemotherapy and vaccination:

Model Zeus (Chapter 6) is extended to allow for the fact that some of the TB cases 

receive treatm ent and then further extended to allow for the possibility of vaccination of 

newborns. In Chapter 7 we present the model for treatment, called Clio. By comparing 

numerical results from models Zeus and Clio (Chapters 6 and 7), we assess the effec

tiveness of chemotherapy and the levels of detection and cure rates necessary to achieve 

certain levels of reduction in the severity of TB epidemics. In Chapter 8 we present the 

model for treatm ent and vaccination, called E r a t o N u m e r i c a l  results are compared

 ̂The names of the models Zeus, Clio, and Erato reflect their relationship and the purpose for their 
development. In Greek mythology, Zeus was the supreme deity, considered as the “father” of all gods. 
Clio and Erato were two of the nine Muses, daughters of Zeus. Model Zeus (for the natural evolution of 
TB) was developed with a view to extending it to models that account for medical treatment (such as 
Clio and Erato), so that model Zeus can be considered as the ‘parent’ model of Clio and Erato.

15



with results from Chapter 7 in order to assess the additional effectiveness of the vaccine 

(over and above tha t of chemotherapy).

Discussion:

In Chapter 9 we conclude with a summary of the main results presented in this thesis 

and discuss possible modifications and extensions.
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Chapter 2

Tuberculosis

2.1 H istory

Tuberculosis (TB) has a very long history, since its occurrence has been traced back 

to 4000 BC, through Egyptian mummies and Stone Age skeletons. Nevertheless, major 

epidemics did not arise in Europe until the early 1600’s and somewhat later in North 

America. The incidence of TB increased to pandemic proportions in the following cen

turies and TB was referred to as “phthisis” , “consumption” , the “white death” , and the 

“white plague” .

Even until the second half of 19th century, TB was attributed to causes such as 

heredity, evil spirits, and demons. In 1882 Robert Koch announced that TB is caused 

by the bacillus Mycobacterium tuberculosis. This discovery contributed to the decline of 

the incidence of TB, which was witnessed in most developed countries, from at least the 

beginning of this century, although effective therapy had not been introduced then. Seg

regation of the infectious people in sanatoria, higher standards of hygiene, higher living 

standards, and better nutrition are some of the possible explanations for this decline. 

In the later half of the 20th century, the introduction of chemotherapy accelerated this 

decline in most industrial countries and it was hoped this would be the end of TB,

However, celebrations proved to be premature. In many developing countries, 

there has been virtually no decline in the incidence of TB, which remains a t tragic 

levels. And even in developed countries there has been a resurgence of TB since 1985, 

attributed mainly to the rise of the HIV/AIDS epidemic, the emergence of multidrug- 

resistant TB, immigration, increased poverty, homelessness, unsanitary living conditions.
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poor nutrition, and substance misuse. In the rise of the new millennium, TB remains a 

problem worldwide: the World Health Organisation (WHO) estimates that about one 

third of the world population is infected with TB and approximately 2-3 million people 

die of TB annually.

References: Blower et al. (1995), Cohen & Durham (1995), Dye et al. (1999), Kanai 

(1990), LaScolea & Rangoonwala (1996), May (1995), Murray, Styblo & Rouillon (1993).

2.2 Diagnosis

The diagnostic tools used for the detection of tuberculous infection and disease also 

provide a means for the classification of those who have been infected, according to the 

degree of infectivity, stage of the disease, and site of the infection. The most important 

diagnostic tools are the following:

Tuberculin Skin Test (intradermal injection of tuberculin tha t causes an induration in 

48-72 hours); it is neither 100% sensitive (which means that there are false “negative” 

reactions) nor 100% specific (false “positive” reactions). It does not distinguish between 

recent and remote infection or between infection and disease. False “positive” reactions 

may be caused by the presence of other mycobacteria and former BCG vaccination. 

Chest Radiography (x-ray); it is high in sensitivity, but low in specificity. It needs ex

perienced x-ray interpreters, because several pulmonary diseases may have radiographic 

abnormalities similar to those of TB and pulmonary TB may result in almost any kind 

of radiographic abnormality. Also, most persons with severe immunosuppression present 

with atypical radiographic findings.

Sputum Microscopy] this is the most im portant tool to detect highly infectious TB 

cases, because the patients whose sputum contains sufiicient bacilli to be detected by 

microscopy are the most infectious. These are referred to as smear-positive and they 

make up approximately half of the TB cases. However, smear examination does not 

exclude TB infection or infectiousness and a positive test may be caused by organisms 

other than M. tuberculosis.

Sputum Culture] cultures take 4-6 weeks to give results, but they allow the identifi

cation of the organisms and drug susceptibility tests to be done. Patients who are 

smear-negative and culture-positive are 9 /10th less infectious than those who are smear- 

positive.
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References: American Thoracic Society (1990), Cohen, Harriman & Madsen (1995), 

De Cock, Binkin, Zuber, Tappero & Castro (1996), LaScolea h  Rangoonwala (1996), 

Murray et al. (1993), Pan American Health Organization (1986), Styblo (1991).

2.3 Transmission, infection, and developm ent of disease

Tubercle bacilli include several members of the genus Mycobacterium, including M. tu

berculosis, M. bovis, M. africanum, and M. microti. TB is most commonly caused 

by M. tuberculosis. The second most frequent source of infection is raw milk containing 

M. bovis from cows infected with this bacillus, which causes a disease clinically similar to 

TB. Other means of infection are very rare. The most common site of TB is pulmonary, 

but almost any organ can be infected; these cases are referred to as extra-pulmonary 

TB, in contrast to pulmonary TB.

The most im portant route of transmission of TB is through inhalation of infected 

droplet nuclei. These nuclei are created by a person suSering from infectious pulmonary 

TB through forced exhalations, such as coughing, sneezing, yelling, singing, and loud 

talking. The very smallest of them may remain airborne for several hours (so that a 

room may remain infectious for a while, even in the absence of the infectious person) 

and when inhaled, infection may become established.

There are several factors tha t influence whether or not tuberculous infection 

occurs relating to the host (nutritional status, immune competence, presence of other 

diseases), the organism (virulence of strain, concentrations of M. tuberculosis in droplet 

nuclei, size and number of aerosolised droplets), the environment (crowding, unclean 

living conditions, fresh air ventilation), the contact with the source patient (duration 

and closeness), and the source patient (site of TB, positive or negative sputum smear, 

TB medication status). For example, smear-negative patients are far less infectious than 

smear-positive and non-pulmonary TB patients are virtually non-infectious.

Apart from all these factors, the host’s defence system is the ultim ate determinant 

for the establishment of infection and its further development. When a person inhales 

droplet nuclei containing tubercle bacilli, only the very smallest of them can penetrate 

into the respiratory system and implant on the alveolar surface. If tha t happens, alve

olar macrophages (one of the most critical kind of cells in the human defence system 

against pathogens) ingest the tubercle bacilli and can kill or remove them, in which
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case infection does not occur. However, if the microbiocidal capacity of macrophages 

is exceeded (depending on the number and virulence of the tubercle bacilli and char

acteristics of the alveolar macrophages) then the surviving organisms will multiply and 

estabhsh tuberculous infection.

When the infection occurs, the immunological defences are stimulated, but they 

only become effective after 3-8 weeks. In the mean time, the host has no specific defence 

against M. tuberculosis; the bacilli proliferate and, transported within the macrophages, 

they enter into the bloodstream; then they can be seeded throughout the body, creating 

potential sites for extra-pulmonary tuberculosis development.

The stimulation of the defence system initiates a series of responses which result 

in the formation of granulomas, a type of histological pattern, that contain any viable 

organisms. The tubercle bacilli can survive within these granulomas indefinitely, but 

they can not proliferate.

This favourable result occurs at the expense of local host tissue; the granuloma 

formation results in tissue necrosis, fibrosis, encapsulation, and scar formation. Caseous 

sites of necrotic tissue (so named because of their “cheesy” consistency) are produced. 

At that point, the host is asymptomatic and the infection is latent. The tuberculin skin 

test is usually positive and a chest x-ray may show some abnormalities (for example, the 

granulomas or the caseous sites). For the majority of those infected, there is no further 

development; they never develop disease and are immune to tubercle bacilli, usually for 

life.

The crucial point is whether or not caseous necrosis undergoes liquefaction, be

cause tha t will determine whether or not the infection develops to disease. If liquefaction 

does occur, the liquefied material is expelled and a cavity forms. Caseous M. tuberculosis 

becomes widespread and the tubercle bacilli multiply. Patients with cavitary tuberculosis 

typically exhibit coughing and systematic symptoms and the infectiousness of the host is 

increased. The relation between the stage of the disease and the extent of infectiousness 

is still not clear. Some pointers for assessing the infectiousness of a TB patient are the 

presence or absence of cavities on x-ray, radiological extent of the disease, bacteriological 

status, and cough frequency.

Risk of developing disease (after infection). The risk varies with age, with a 

peak at the very young and the very old ages; it is higher for men than women and

20



higher for non-whites than whites. It is enhanced by immunosuppression, malnutrition, 

alcoholism, etc. It is estimated tha t approximately 80-90% of those infected will never 

develop disease; of the remaining, half will develop disease in the first few years (primary 

TB) and half much later (secondary TB) even several decades after infection.

Reactivation vs. Reinfection. There is a strong controversy about secondary TB. 

The first theory maintains that tubercle bacilli cannot survive forever, immunity wanes, 

and inhalation of tubercle bacilli by persons who have been infected, say five years 

previously, increases the risk of development of TB after this reinfection. According to a 

second theory, tubercle bacilli can remain alive within their host during his/her lifetime 

and at any time they may start multiplying and cause the development of disease; 

immunity can remain intact, protecting the host against reinfection, usually for life. 

The tru th  probably lies between the two theories. In areas with low risk of infection, 

secondary TB is mostly due to reactivation of an old infection, while in areas with high 

risk of infection it is mainly due to reinfection.

TB and H IV  infection. When a person is infected with both HIV and TB, the 

development of TB follows the same pattern, but more rapidly. HIV infection increases 

the risk of developing disease after infection; between 5% and 10% of persons co-infected 

with M. tuberculosis and HIV will develop TB each year, compared with less than 0.2% 

of persons infected with M. tuberculosis but not HIV. Those with both TB and HIV 

have shorter incubation and infectious periods, higher mortality rate, they are more 

susceptible to reinfection and reinfection with multidrug-resistant TB. Also, they are 

more likely to develop extra-pulmonary TB, than TB patients who are HIV negative.

The fate of TB patients without treatment. After the onset of disease, about 

10-15% of smear negative patients will become smear positive. Approximately 10% of 

all TB patients 0-14 years old and 50% of all patients older than 15 are smear positive. 

A patient remains infectious for two years, on the average. 50-60% of patients (60-70% 

for smear-positive, 40-50% for smear-negative) will die within the first five years. The 

majority of those who remain alive eight years after diagnosis have quiescent TB (they 

are naturally cured, but they may relapse later) and the remaining are chronic excretors 

of tubercle bacilli (sporadically infectious and ill). There is a 30% chance of spontaneous 

cure, but among those who recover 4.4% relapse each year for the first five years and 

1.6% annually for the second five years.
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References: Clancy (1990), De Cock et al. (1996), Dolin, Raviglione & Kochi (1994), 

Grzybowski & Enarson (1978), Kanai (1990), LaScolea & Rangoonwala (1996), Murray 

et al. (1993), Pan American Health Organization (1986), Shekleton (1995), Styblo (1991).

2.4 Sym ptom s

In most cases, the clinical presentation of TB involves only a gradual development of 

insidious and vague symptoms. The most common symptoms are cough, hemoptysis, 

sputum  production, fatigue, anorexia, chilly sensations, night sweats, low grade fever, 

chest pain, and dyspnoea. These symptoms may or may not be present and with vari

able severity. There are patients who are truly asymptomatic. Others may have only 

nonspecific symptoms (such as anorexia, fatigue, weight loss) which are often attributed 

to overwork or emotional stress. Also, the symptoms may be attributed to other diseases 

(such as infiuenza, pneumonia, asthma, lung cancer). Actually, several studies have re

ported tha t the percentage of missed diagnoses is about 40-50% at the time of hospital 

admission and about 5% of cases are only discovered by autopsy. The presentation of 

TB in HIV patients is usually atypical, with symptoms such as malaise and weight loss, 

which are also seen as part of the HIV infection. In extra-pulmonary TB the symptoms 

are related to the organ system affected and there may be nonspecific symptoms, as well.

References: American Thoracic Society (1990), Cohen et al. (1995), Crofton, Horne & 

Miller (1992), LaScolea & Rangoonwala (1996), Stead & D utt (1988).

2.5 Treatment

The first anti-tubercular drug. Streptomycin, was discovered in 1944, by Selman Waks- 

man. Since then, a number of anti-TB drugs have been developed, among which Iso- 

niazid. Rifampin, Pyrazinamide, and Ethambutol are the most frequently used. Their 

main effect is that they reduce bacteria counts, cough frequency, and excretion of tu

bercle bacilli, thus rendering the patient much less infectious. Therefore, the benefits of 

chemotherapy are not only direct (for the patient treated), but also indirect (reduced 

transmission of the disease).

Indeed, high cure rates have been achieved with regimens consisting of the drugs 

aforementioned. Under ideal conditions of 100% compliance, 80-90% of smear-positive
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cases will have converted to smear-negative after two months of treatm ent and the re

maining in the following two months. Even among patients who discontinue chemother

apy at two months, only 40% will be smear-positive (or dead) after two years. The 

indirect benefits of chemotherapy were clearly depicted by the rapid decline of the inci

dence of TB in most developed countries between 1950 and 1985.

However, despite these potential high cure rates, most chemotherapy programs 

in developing countries failed to achieve the WHO target of 85% cure rate. The primary 

reason for this is failure to ensure patients’ compliance (due to financial constraints, for 

instance). Nevertheless, cure rates of 80-90% have been achieved (for instance in Malawi, 

Mozambique, Tanzania, and China) w ith intensive control programs, tha t provided for 

close supervision of treatm ent, bacteriological examinations, etc. It is, therefore, or

ganisational/administrative, as well as technical, factors that are the most important 

determinants for the success of a control program.

Multidrug-resistant TB. Soon after the introduction of chemotherapy, it was dis

covered tha t drug-resistant organisms would begin to appear in the sputum  by the fourth 

week of therapy. Even from the 1960’s there are studies reporting tha t the frequency of 

Isoniazid-resistant bacilli was 1.5% in Canada in 1964 and 13.6% in Taiwan in 1963 (and 

rose to 27% by 1968). Combination therapy with at least two drugs was then introduced, 

as the “miracle solution” , but again TB proved to be an ingenious opponent; strains of 

M. tuberculosis were becoming resistant to multiple drugs, as a result of a sequence of 

strains resistant to individual drugs. For instance, a strain resistant to drug A, say, 

infects a person who is then treated with drugs A and B. Basically, this is monotherapy, 

likely to cause resistance to drug B. The result is resistance to both drugs.

In general, the possible ways of drug-resistance development are: (a) a drug- 

sensitive patient develops drug-resistance during treatm ent with regimens that are poorly 

conceived or poorly complied with, (b) drug-resistant patients infect susceptibles (not 

previously infected) who become drug-resistant, (c) there is exogenous reinfection with 

a new multidrug-resistant strain of TB, during or after therapy for drug-sensitive TB.

Several studies indicate that there is an increasing trend in the prevalence of 

multidrug-resistant TB; for instance in the United States it increased from 2% to 9% 

in the last 30 years. Moreover, there is a concern tha t the HIV epidemic is likely to 

increase the risk of developing drug resistance.
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Currently, the basic regimens are for six months and include four drugs. For TB 

and HIV infected patients, extra-pulmonary TB patients, the elderly, and infants the 

therapy is often extended to at least nine months. If multidrug-resistant TB is suspected 

or proved the regimen includes at least five drugs.

References: Chan & Yew (1998), China Tuberculosis Control Collaboration (1996), 

Clancy (1990), Dye et al. (1998), Grzybowski & Enarson (1978), Kanai (1990), Kochi, 

Vareldzis & Styblo (1993), LaScolea & Rangoonwala (1996), Murray et al. (1993), Mur

ray, DeJonghe, Chum, Nyangulu, Salomao & Styblo (1991), Pan American Health Orga

nization (1986), Small, Shafer, Hopewell, Singh, Murphy, Desmond, Sierra & Schoolnik 

(1993), Stead h  D utt (1988), World Health Organization (1993).

2.6 The BCG vaccine and preventive therapy

The purpose of the BCG (bacille Calmette-Guérin) vaccine is to prevent the development 

of disease after infection. Its protection lasts for 10-15 years and it is not clear, yet, 

whether revaccination has any significant effect. W ith pulmonary TB, the efiicacy of 

BCG varies from 0% to 80%. Several factors account for this large variation and for 

particular ages or countries the variation is smaller (for instance 40-70% for children 

0-14 years old if given at birth and 20-30% in India). It is suggested that it should be 

given at birth  or as early in age as possible. There are still questions about vaccination 

at older ages, as well as about people who are vaccinated and then infected with HIV. 

But for advanced HIV and AIDS patients it is contra-indicated, because of the high 

risk of disseminated BCG infection. In most developed countries BCG is not routinely 

recommended, except in specific situations, due to the variation of its efiicacy and its 

invalidation of the tuberculin skin test.

Preventive therapy (also referred as chemoprophylaxis) is used in preventing the 

establishment of infection and the development of infection to disease. In general, mass 

chemoprophylaxis is not recommended, but only indicated for specific situations (such 

as suckling babies of infectious mothers, close contacts of TB patients, HIV/AIDS pa

tients, and newly infected persons who have not developed disease). Several other factors 

may determine the applicability of chemoprophylaxis (for instance, age, degree of ex

posure to TB, presence of other infections and/or diseases) and still there are many 

questions regarding its applicability and effectiveness. Reductions by 60-90% of the risk
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to develop disease have been reported and the protective effect may last for several years. 

Chemoprophylaxis is also effective in reducing TB incidence in HIV-infected individuals, 

especially those with a positive tubercuhn skin test.

References: De Cock et al, (1996), Horne (1990), LaScolea h  Rangoonwala (1996), 

Murray et al. (1993), Pan American Health Organization (1986), Smith & Fine (1998), 

Styblo (1991).

2.7 Current epidemiology of TB

TB Incidence (number of new TB cases reported during a year per 100,000 general 

population): The global incidence of TB remains at tragic levels, as it is estimated that 

about 7.5-8 million new TB cases occur per year worldwide. Particularly in developing 

countries, about 120-260 cases are notified per 100,000 population annually (Dye et al. 

1999, Murray et al. 1993).

Annual Risk of TB infection (percentage of population that is infected or reinfected 

during a year): The annual risk of infection in developing countries is between 0.5% 

and 2.5%; in the absence of HIV, it is stable or decreasing by 1-2% per year (a rate 

slightly less than the population growth in these countries). HIV infection is believed 

to increase the risk of infection. In Eastern Europe and the former USSR the risk was 

about 0.05-0.35% in 1994 and in developed countries less than 0.1%. It is estimated 

that an undiagnosed and untreated TB patient infects about 10-14 susceptibles each 

year and is infectious for almost two years; a smear-positive case infects 2-5 persons 

(2-3 in developed countries and 4-5 in developing countries) before his/her detection. 

Again, all the numbers above may vary depending on age, sex, and other factors (Bloom 

& Murray 1992, Murray et al. 1993, Murray et al. 1991, Raviglione, Rieder, Styblo, 

Khomenko, Esteves & Kochi 1994, Styblo 1991).

TB prevalence (number of registered TB cases per 100,000 general population): In 

1997 the global prevalence was around 277 cases per 100,000 population. The percentage 

of smear-positive cases among all TB cases is about 10% for those 0-14 years old and 

about 50% for those older than 15. Smear-positive TB is rare in children; about 80% of 

smear-positive cases occur between the ages 15-59 (Dye et al. 1999, Murray et al. 1993, 

Styblo 1991).

Prevalence of TB infection (proportion of infected individuals in a given popula
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tion): In 1997 approximately 32% of the world’s population was infected with M. tuber

culosis. In developed countries 20% of those infected were less than 50 years old, while 

in developing countries the same percentage is about 75% (Cohen 1995, Dye et al. 1999).

Mortality Rate (number of deaths from TB in a given population): Despite the 

implementation of chemotherapy programs, TB continues to exact a terrible toll. In 

1997 an estimated 1.87 million people died of TB. About 10-20% of these deaths were 

in children. The developing world bears the heaviest burden accounting for 98% of TB 

deaths (Cohen 1995, Dye et al. 1999, Murray et al. 1993).

TB Fatality (Lethality) Rate (number o f TB  deaths per 100 cases of TB): W ithout 

treatment, approximately 50-60% of TB patients will die (60-70% of smear-positive and 

40-50% of all other TB cases). In 1997 the global case fatality rate was estimated 

to be 23%, but more than 50% in some African countries. In the pre-chemotherapy 

era, the average time from diagnosis to death (over all age groups) was 13-14 months, 

ranging from 18 months for those 15-44 years old and down to 3 months for those 

older than 65. W ith good chemotherapy programs case fatality can be reduced to 10- 

15% (China Tuberculosis Control Collaboration 1996, Dye et al. 1999, Grzybowski & 

Enarson 1978, Murray et al. 1993, Styblo 1991).

26



Chapter 3

R eview  of epidem ic m odelling

3.1 The roots of m athem atical m odelling of epidemics

“We share the world with the smallest living things: bacteria and viruses...

A hundred million virus particles could live very comfortably in an area the 

size of the period at the end of this sentence. This planet in many respects, is 

ruled not by the macrobes, but by the microbes — which have a far greater 

power to kill.” (LaScolea & Rangoonwala 1996).

These powerful “planet-mates” of ours cause the major epidemics that have scourged 

our planet for thousands of years and accounted for tremendous numbers of human lives 

lost. It is therefore not surprising that these formidable epidemics attracted the interest 

of many scholars and scientists of various disciplines, from the very early years.

Records of epidemics date back to the ancient Greeks (e.g. the “Epidemics” by 

Hippocrates, 458-377 BC) and medical statistics to the 17th Century (e.g. J. Grant, 

1620-1674 and W. Rethy 1623-1687) (Bailey 1975, Anderson & May 1991). In 1760 

Daniel Bernoulli used a mathematical method to evaluate the effectiveness of variolation 

(a technique of inoculation) against smallpox, with a view to influencing public health 

policy (Bailey 1975, Dietz & Schenzle 1985). More mathematical studies were developed 

in the 19th century that used patterns of cases to examine the spread of diseases (e.g. 

J. Snow, 1855 and W. Budd, 1873) and investigated the use of curve-fitting to data on 

various diseases (e.g. W. Farr, 1840; J. Brownlee, 1906) (Bailey 1975).

Progress in biomedical sciences lead to the modern scientific achievements of the 

20th century in this field and enhanced the flourishing of medical statistics as well as
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of the mathematical theory of epidemics. Prom the beginning of this century there was 

a definite upsurge in epidemic modelling. Hamer (1906) and Ross (1908) were the first 

who formulated mathematically certain hypotheses about the mechanisms of infectious 

diseases. Hamer, in particular, was the first who considered that the course of an epi

demic must depend on the number of susceptibles and infectives. Soper (1929) worked 

on the ideas of Hamer and Ross and deduced im portant results about the periodicity of 

some epidemics.

3.2 The Kermack-McKendrick and Reed-Frost models

McKendrick (1926) published the first purely stochastic model of epidemics. He assumed 

that an individual is infectious from the moment he receives infection until he recovers 

or dies or is isolated and that the probability of one new infection occurring in a short 

interval is proportional to the length of the interval and the numbers of susceptible and 

infectious individuals.

Kermack & McKendrick (1927) developed deterministic models, whose structure 

forms the basis of the general stochastic models one of the now classical epidemic models. 

They considered a population divided into three classes, those who are susceptible to 

the disease, those who are infectious, and those who have recovered or been removed (so 

that they are considered as non-infectious and immune). The population is subject to 

homogeneous mixing, which means tha t the contact rate is the same for each individual 

(and thus, at any instant each susceptible has the same probability of being infected and 

each infective has the same chance of infecting any susceptible).

The number of new infections in a very short time interval is proportional to the 

length of the interval and the current numbers of susceptible and infectious individuals, 

X{t)  and y ( t) ,  respectively. The latent period is assumed negligible and the infectious 

period is exponentially distributed. They considered both variable and constant infection 

and removal rates. In the case of constant rates, the probability of one new infection 

occurring in the interval [t, t+dt] is P X  (t)Y {t)dt+o(dt) and the probability of a recovery 

or a removal in the same interval is jY { t )d t  +  o{dt).

One of the most im portant results deduced in this paper is the celebrated Thresh

old Theorem. According to this theorem, no epidemic can occur unless the density of 

susceptibles exceeds the threshold value p /n  (where n is the total population size and
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p = j /P ) .  A similar result is deduced for the general case entailing variable inactivity 

and recovery rates.

Around 1928 L. J. Reed and W. H. Frost developed a different kind of probabilistic 

model, which was illustrated for teaching purposes, but was not published until much 

later; also, Greenwood (1931) developed a slightly different variation of this model (see, 

e.g., Bailey 1975, Chapter 14). The Reed-Frost model (also referred as the chain-binomial 

model) assumes that the latent and the incubation periods can be regarded as constant 

and the infectious period is reduced to a single point. Starting with one infective (or with 

several simultaneously infective persons) the process will continue in a series of stages, 

separated by intervals equal to the latent period. At each stage, the susceptibles will 

yield a number of new cases at the next stage, which under certain conditions, will be 

distributed in a binomial series, depending on the numbers of susceptibles and infectives 

at the previous stage. We thus have a chain of binomial distributions.

3.3 M odels for macroparasitic infections and other popu

lation processes

The models described in the previous section have the common characteristic that the 

population is divided into several classes (such as susceptibles, infectives, immune and/or 

removed) but there is no distinction as to the severity of the infection (i.e. the abundance 

of the parasite within the host); an individual simply either has or does not have the 

disease. This formulation is generally adequate for microparasites (viruses, bacteria, and 

protozoa) but not for macroparasites (helminths and arthropods). The former multiply 

within the host at high rates, but the latter generally do not have direct reproduction 

within the host and they accumulate only via reinfection. The factors characterising 

the development of the infection within a host (such as transmissibility of the infection, 

presence and severity of symptoms, immunity of the host) depend on the number of 

parasites harboured in the host. Therefore, models for macroparasitic infections take 

into account the distribution of parasites among hosts (see, e.g., Bailey 1975, Dietz &: 

Schenzle 1985, Anderson & May 1991).

Another characteristic of the models for microparasitic infections is that after a 

successful contact between an infective and a susceptible, the number of susceptibles 

is decreased by one, and tha t of infectives is increased by one. This is not always the
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case for other population processes, such as the predator-prey processes, where after a 

“successful” contact the number of prey decreases by one, but the number of predators 

remains the same (see, e.g., Bailey 1964, Hitchcock 1986).

M. tuberculosis is a microparasite and hence the following review concentrates on 

the literature for microparasitic infections.

3.4 Developm ent of epidemic modelling

During the last five decades variants of the Kermack-McKendrick and Reed-Frost models 

have been developed and many new results have been published. Most of the relevant 

work up to 1974 is covered in Bailey (1975). Here we can find a detailed description of the 

most im portant epidemic models, including discussion of probabilistic analyses of these 

models, simulation studies, estimation of parameters, and applications to household 

data. Recent reviews of the relevant literature and theory have also been published (see, 

e.g., Lefevre 1990, Dietz & Schenzle 1985, Isham 1993, Mollison, Isham & Grenfell 1994, 

Daley Sz Gani 1999, Renshaw 1993, Anderson Sz May 1991).

The Kermack-McKendrick model is concerned with diseases of the SIR type, 

which entails a closed, homogeneously mixing population divided into three classes: 

susceptible to the infection (S), infected and infectious (I), and removed, recovered, or 

dead (R). Other formats are:

• the SI model: the population is divided into two classes, susceptible (S) and infectives 

(I), and the only possible transitions are infections (S —>■ I)

• the SIS model: again there are only susceptibles and infectives, but after infection 

immunity may wane, so tha t an infective may become susceptible. Hence, the possible 

transitions are infections (S -4 I) and loss of immunity (I -> S).

• the SIRS model: the population is divided into three classes, susceptibles (S), infec

tives (I), and removed or recovered (R). The possible transitions are infections (S —> I), 

removals or recovery (I —>■ R) and loss of immunity after recovery (R —)■ S).

Several other types of epidemics have been examined and described by models 

whose structure is based on tha t of the Kermack-McKendrick model. Some of these are 

the following:

Recurrent epidemics; Soper (1929) was the first to investigate the periodicity of recurrent 

outbreaks of measles. Other researchers followed and Bartlett, in a series of papers and
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his books (see, e.g., B artlett 1956, 1957, 1960a, 19606), made a considerable contribution 

by the formulation and study of stochastic models, primarily concerned with measles and 

smallpox.

Carrier models; these involve the presence of carriers, i.e. individuals who are infected 

and infectious but appear outwardly healthy (see, e.g., Downton 1967).

Competition between epidemics; here there are two types of infectious agents and hence 

two types of infectious individuals, who may recover or be removed, forming two classes 

of “removals” . Susceptibles can be infected by either type of infection (see, e.g., Kendall 

& Saunders 1983).

Multistate models; the underlying mechanisms of some diseases are too complicated to 

be described with three or four classes of individuals. The available control measures for 

these diseases resulted in models involving a large number of states. Most of these models 

are deterministic or simulation models (e.g. Blower, Small & Hopewell 1996, Brewer 

et al. 1996).

Most of these types of models can be further classified according to whether or 

not they entail immigration into and/or migration out of the population; some models 

account for recruitment of susceptibles and/or infectives, deaths due to natural causes 

and due to the disease, and the total population size may be constant or variable (see, 

e.g., Bartlett 19606, Lefèvre 1990, Jacquez & O’Neill 1991, Isham 1993).

Advances made in stochastic processes in the 1940’s enhanced the use of more 

advanced (mathematically) techniques and formulations: branching process formulations 

(e.g. Bartoszynski 1967), coupling methods (e.g. Ball 1995), point processes (e.g. Lefèvre 

1990), modelling on random graphs (e.g. Barbour & Mollison 1990), and many others. 

There is also a growing interest in the development of methods of statistical inference 

for the analysis of infectious disease data (e.g. Becker 1989).

Approximating stochastic systems and asymptotic approximations have also been 

used and proved a very helpful tool in the study of stochastic models. For instance. 

Tan & Hsu (1989) developed an approximating system by assuming the number of 

susceptibles to be a deterministic function of time (under the assumption that this 

number is always large) and keeping all the other probabilistic elements of the model. 

Kurtz (1970, 1971, 1981) proved tha t certain stochastic systems can be approximated 

by Gaussian diffusion processes, if the initial numbers of susceptibles and infectives are
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large.

The variability of parameters and stages of the models is a problem that has re

ceived a lot of attention and prompted the development of more variants of the Kermack- 

McKendrick and the Reed-Frost models (see, e.g., Lefèvre 1990, Mollison 1995, Mollison 

et al. 1994). Some of the problems considered are: the existence of several types of 

infectives (with difierent distributions for the period of infectiousness), the variabihty in 

susceptibility and/or infectiousness, variable transition rates, and several stages of the 

infectious and/or incubation period. One of the basic assumptions of the first stochastic 

models of epidemics was tha t of the homogeneous mixing, i.e. tha t a t any given instant, 

any susceptible has the same probability of being infected by each infective. In reality, 

this is not always the case, both because of diflFerences between individuals (e.g. dif

ferences in susceptibihty and behavioural difierences) and because of heterogeneity of 

mixing (due to the geographical distribution of cases, for instance). Several attem pts 

have been made in order to deal with this problem, for example the development of 

spatial and multi-population models (see, e.g., Bailey 1975, Lefèvre 1990).

3.5 Important statistics in epidemic theory

One of the im portant statistics in epidemic theory is the final size of an epidemic, i.e. the 

total number of individuals infected during the epidemic, not counting the initial infec

tives (or equivalently, for closed populations, the total number of susceptibles uninfected 

at the end of the epidemic). Both the exact distribution and the asymptotic behaviour 

of the total size have been investigated. For instance, Kermack & McKendrick’s (1927) 

deterministic treatm ent deduced the Threshold Theorem and from that the approximate 

result that when the density of susceptibles exceeds the threshold value, then the size of 

the epidemic will be twice the excess, and thus, at the end of the epidemic, the density 

of susceptibles will be just as far below the threshold density, as initially it was above it. 

Fundamental results were published later (see, e.g.. W hittle 1955, Kendall 1956) about 

the J-shaped and U-shaped form of the probability distribution of the ultim ate number 

of individuals infected during the epidemic, together with recursive techniques to obtain 

this distribution. Ridler-Rowe (1967) worked on a model involving immigration of new 

susceptibles and new infectives and deduced results for the probability of extinction of 

the infectives (and hence of the infection) and the mean time until extinction. See also
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Daniels (1967), Sellke (1983), Abramov (1994), Ball (1983).

Another statistic of interest is the maximum number of infectives present at any 

time during an epidemic. Kendall (1956) in his deterministic treatm ent of the Kermack- 

McKendrick model derived exact solutions of the equations for the ultim ate number of 

infectives and removals and from these deduced the maximum number of infectives, over 

the course of the epidemic. Asymptotic results for the distribution of this maximum 

have also been obtained (see, e.g., Daniels 1974, Abramov 1994).

Mention should also be made of the basic reproduction ratio (usually denoted by 

71q). This is effectively defined as the number of cases generated by one infective over 

the period of infectiousness, when this infective is introduced into a large population of 

susceptibles (see, e.g., Diekmann h  Heesterbeek 2000, Jacquez & O’Neill 1991). Formally 

7^0 can be calculated from the following definition by Diekmann & Heesterbeek (2000) 

(see also Heesterbeek 1992, Diekmann, Heesterbeek & Metz 1990):

D efin itio n  3.1 Assume that the infected individuals could be in a finite (say k) number 

of different states and the number of individuals in each state is X\,X 2 , ■■ ■ , State 

transitions occur according to a rate matrix S and death occurs according to a diagonal 

rate matrix D. Let T be the matrix whose ( i , j)  element is the rate at which an infected 

individual with state j  produces secondary cases with state i. Then the vector x  =  

( x i , . . .  ,Xk) satisfies the differential equation

^  =  {T +  S -D )x ,

and TZq is the dominant eigenvalue of the matrix K =  —T(S — D)~^ (dominant in the 

sense that TZq > |A| for any other eigenvalue X of K).

The progress of the epidemic and the endemic steady state of the system (and 

whether this state is achieved) depend on TZq and other parameters. For instance, for 

the general stochastic model described in Section 3.2, with infection and removal rates 

P and 7 , respectively, the basic reproduction ratio is T̂ o =  n /p , where n is the total 

population size and p =  7 //?. If TZq is greater than one, then with a deterministic model 

there will always be an epidemic (i.e. a major outbreak), while with a stochastic model 

the probability of an epidemic is 1 — (l/7^o)°^, where a  is the initial number of infec

tives (Kermack & McKendrick 1927, W hittle 1955). Nevertheless, things become more 

complicated in other complex models, for example, when the population is divided into
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subpopulations or when the period of infectiousness comprises several different stages 

(see, e.g., Mollison et al. 1994).

3.6 M athem atical modelling of tuberculosis

The first model for TB was developed by Waaler, Geser, and Andersen in 1962. This 

is a deterministic three-class model involving susceptibles, infectious, and non-infectious 

cases subject to homogeneous mixing, recruitment of susceptibles, natural death, and 

excess death caused by TB. Non-infectious cases may become infectious (as the disease 

progresses) and infectious cases may heal and become non-infectious. The number of 

new infections occurring in a short interval is assumed to be proportional only to the 

length of the interval and the number of infectious cases. Waaler and Piot carried out 

extensive and remarkable research on various epidemiological aspects of TB and the 

effectiveness and cost-benefits of control measures mainly using simulation models (see, 

e.g., Waaler & Piot 1969, Waaler & Piot 1970).

Another breakthrough in TB modelling came through the models developed by 

ReVelle, Lynn, and Feldmann in the late 1960’s. The assumption tha t the rate of spread 

of TB infection depends on the numbers of both the susceptible and the infectious 

individuals was introduced and the effects of BCG vaccination, chemoprophylaxis, and 

chemotherapy were incorporated in a deterministic multi-state model (see, e.g., ReVelle 

et al. 1969).

The structure of this model and tha t of Waaler, Geser, and Andersen influenced 

the development of subsequent models for TB, although several other issues have been 

considered in the recent literature. For instance, the variability of epidemiological factors 

(such as the infection, recovery, and relapse rates) by age has been considered by several 

authors (see, e.g., Rusu 1973a, Schulzer, Radhamani, Grzybowski, Mak & Fitzgerald 

1994, Vynnycky 1996, Vynnycky & Fine 1997, Dye et al. 1998); the technique employed 

in these cases is that of dividing the population into specific age-groups as well as clinical 

states. Other authors have considered the variability of the epidemiological factors in 

time (e.g. Trefny & Hejdova 1982) and the effect of clustering (i.e. populations divided 

into clusters of close contacts, such as the home, the work place, and/or the school — 

see, e.g., Aparicio et al. (2001)).

The effect of the available control measurements (BCG vaccination, chemopro
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phylaxis, and chemotherapy) has attracted the interest of many authors (see, e.g., 

Vynnycky 1996, Vynnycky & Fine 1997, Blower et al. 1996, Castillo-Chavez & Feng 1997, 

Dye et al. 1998, Goh & Fam 1981, Azuma 1975, Joesoef, Remington & Tjiptoherijanto 

1989, Chorba & Sanders 1971, Trefny & Hejdova 1982). Also, the eflFect of multidrug- 

resistance (e.g. Blower et al. 1996, Castillo-Chavez & Feng 1997) and of the HIV infection 

(e.g. Schulzer et al. 1994, Brewer et al. 1996) have been examined.

All of these models are deterministic, hybrid (mixed deterministic-stochastic), 

or simulation models (e.g. Blower et al. 1996, Schulzer et al. 1994, Chorba & Sanders 

1971, Brewer et al. 1996). Operational models have been developed, especially for the 

study of the cost-eflFectiveness of the various control measures (see, e.g., Rusu 19736, 

Joesoef et al. 1989, Chorba &: Sanders 1971). Also, statistical models have been studied 

for parameter estimation (see, e.g., Vynnycky 1996, Vynnycky &: Fine 1997, Schulzer, 

Enarson, Grzybowski, Hong, Kim & Lin 1987).

Finally, mention should also be made of models for the spread of bovine TB 

(caused by M. hovis) in animal populations (see, e.g., Barlow 1993, Bentil & Murray 

1993).
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Chapter 4

The first model: 

a sim ple closed m odel for TB

4.1 Introduction

We start modelling TB by considering first only the natural evolution of the disease. 

Infectivity and immunity are the most im portant determinants for the spread of TB 

within a population. Therefore, as a first approach, we consider a fixed population of size 

n  subject to homogeneous mixing. The assumption of homogeneous mixing implies that 

the contact rate is the same for each individual, so tha t at any instant each susceptible 

has the same probability of being infected and each infective has the same chance of 

infecting any susceptible. The population is divided into three classes:

(a) those who are susceptible to TB (they are neither infectious nor immune)

(b) those who have developed clinical disease and are infectious

(c) those who have been infected, but are not clinically diseased (either because the 

infection is still latent, or because they developed TB in the past and recovered sponta

neously); they are non-infectious and immune (temporarily or permanently).

Individuals in each of the above classes will be referred to as susceptibles, infec

tious cases (or infectives), and inactive cases, respectively (for simplicity of terminology, 

sometimes we will abuse the adjectives susceptible and inactive as nouns). The sizes of 

these classes at time t will be denoted by X{t),  Y{t), Z{t), respectively.

As was explained in Chapter 2, the duration of the latent period for TB can be 

very short or very long — less than one year and up to several decades or even lifelong
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(Shekleton 1995). Therefore we assume that it is possible to have transitions from the 

susceptible to both  the infectious and the inactive classes. The rates of these transitions 

are proportional to the number of susceptibles and the number of infectives. The possible 

transitions and their rates are illustrated in Figure 4.1.

Figure 4.1: The first model for the spread of tuberculosis

In particular, we assume tha t c is the rate at which each individual in the popula

tion contacts others so that c X { t) /n  is the rate at which each infective in the population 

contacts susceptibles, assuming homogeneous mixing. Now, if q is the probability of 

transmission per contact between a susceptible and an infective, then the probability 

that an infective will infect a susceptible in the interval [t, t -I- dt] is qcX (t)d t/n  -I- o(dt). 

If a  =  gc, then the probability of one new infection occurring in the interval [t, t -f dt\ 

is a X { i)Y { t)d t /n  -f o{dt). Let 1 — p denote the probability tha t the infected will 

develop disease soon (and the latent period is negligible). Then the probability of 

a transition from the susceptible to the infectious class in the interval [t,t -f dt] is 

(1 — p)aX { t)Y { t)d t/n  -I- o{dt) while the probability of a transition from the suscepti

ble to the inactive class in the same interval is p a X [ t)Y ( t)d t /n  -f- o(dt).

Those who are inactive may develop disease at some point and become infectious 

either because of reactivation of an old infection or because of relapse after recovery. 

The reactivation and relapse rates are not necessarily exactly the same, but as a first 

approximation we will assume that they are equal; let /? denote this common rate. Then 

transitions from the inactive to the infectious class occur at a rate (3Z. An infectious 

individual may recover spontaneously and become inactive. The per capita recovery rate 

is 7 , which means that transitions from the infectious to the inactive class occur at a 

rate 'yY . Therefore the transitions from state (%, Y, Z)  that can occur in the interval
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[t, t +  dt] and the respective probabilities are:

a
p[{x, y, Z) (X - 1 ,  y  + 1 , Z)] =  (1 -  p ) - X Y d t  +  o{dt)

n
a

p [(x , y, z) (Jï - 1, y, z  + 1)] =  p ^ X Y d t  +  o{dt)

p [(x , y, z) (X, y  - 1, z  + 1)] = j Y d t  + o{dt)

p [(x , y, z) (X, y  + 1, z  - 1)] =  iszd t  +  o{dt).

The total population size is n  =  X (t) +  Y{t)  +  Z(t), which is constant in time.

Therefore, the number of inactive cases can be completely determined by the num

bers of susceptibles and infectives and we have a two-dimensional stochastic process

{ ( x ( ( ) ,y { t) ) , i> o } .

4.2 The determ inistic m odel

For the corresponding deterministic model, let x (t),y (t), and z{t) denote the number 

of susceptibles, infectives, and inactive cases, respectively, at time t. The differential 

equations for T, ?/, z are:

dx a  
*

^  -  p ) - x y  -  j y  + I3z (4.1)
at n
dz a  _
— =  p - x y  +  72/ -  /?z,
Uit Th

where x, y, and z are non-negative continuous variables. Initially there are xq suscepti

bles, 2/0 infectives, and zq inactive cases, where ccq, 2/0, 0̂ are non-negative integers such 

that 0 < yo-hZQ < n  and a;o +  2/0 +  0̂ =  Since z{t) = n — x{t) — 2/(t), the system (4.1) 

reduces to
dx a
-TT =  xy
dt n  (4.2)
u/U ol
—  =  (1 -  p ) - x y  -  ^ x - { ^  + 7 )2 / +  /?n.
Ct% Tt

The function Md{(f)i,4>2',t) = exp{0i^ +  of the deterministic proportions

xjri and y/n^ corresponds to the moment generating function of the random variables 

X /n , y /n  when the variables X , Y  take the values a;, 2/, respectively, with probability 

one. Then satisfies the following differential equation:

^  ( m ,  -  ^ )  -  (/3 +  T-) +  [(1 -  p) -  a^ i]  (4.3)

with initial condition Md(0 i , ^ 2;O) =  e x p { ^ i^  +  (f>2 ^ } -
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The equilibrium of the determ inistic model

The first of equations (4.2) shows that x{t) is a non-increasing function of t. As long 

as 2/ is not zero the value of x{t) will be decreasing until it becomes zero. If y{t) is 

zero at some point t, then the second equation of (4,2) shows that the derivative of y 

will be positive (since x{t) is always strictly less than n). Hence y will increase to some 

positive value and then x  will begin decreasing once more. Intuitively, this shows that 

the only possible equilibrium value for x  is zero. Formally, solving the system (4.2) 

with dx /d t = dy /d t  =  0, it follows tha t the system (4.2) admits two possible equilibria 

V* =  {0,(3n/{(3 +  7 ) )  and v** =  (M,0). Since x(0) = xq < n  and x(t)  is a non-increasing 

function of t, v** is not a possible equihbrium for the system (4.2) with initial condition 

x(0) <  n and thus v* is the only possible equilibrium.

In order to study the stability of v*, write the system (4.2) in the form

where v(t) =  (a;(t), y{t)) for t >  0 and F  is a mapping from into with coordinates 

fi{x ,y ),  Î =  1, 2, defined by

f i { ^ ,y )  =  ~ - x y  n

f 2 {x, y) = — — — xy -  (3 x - { ^ - \ -  7)2 / +  Pn. 
n

Let DF{v*) be the Jacobian matrix of F  at the point v*, i.e. the matrix whose {i, j )  

element is d fi{v* )/d j  for î =  1,2 and j  =  x^y. Then

D F(v*) =
-(/3  +  t )

If both eigenvalues of Z?F’(v*) have negative real parts, then v* is uniformly asymptot

ically stable (see, e.g., Reinhard 1986, Chapters 2, 3). The eigenvalues of DF{v*) are 

Ai =  —a/?/(/? -j- 7 ) and A2 =  — (/? +  7 ), which are both strictly negative (if both a  and 

P are positive) and hence v* =  {0,Pn/{P  +  7 )) is stable.

4.3 The stochastic model

4.3 .1  T h e p robab ility  generating  fu nction

Assume tha t initially there are xq susceptibles, 2/0 infectives, and zq inactive cases, where 

3:0,2/0, 0̂ are non-negative integers such tha t 0 <  2/0 4- zo and XQ + yo + zq = n. The
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only possible transitions to and from the class of susceptibles X  are infections, which 

each decreases the size of X  by one. Therefore the number of susceptibles can only 

decrease from its initial value, xq  ̂ and hence X (t)  < xq for all t >  0 and the state space 

S  of the process { (X (t) ,y (t))}  is

«S =  {(r, s) G Z^. : 0 <  r  <  xq, 0 <  s <  n, 0 <  r  +  s <  n} ,

where Zîj? denotes the set of all the vectors ( z i , . . .  , Xm) with non-negative integer entries, 

such tha t rcf =  0, 1, . . .  for alH  =  1, . . .  , m.

Let Prs{t) be the probability that there are r  susceptibles and s infectives in the 

population at time t. Then the Prs{t) satisfy the equations

=  7 ( s  +  l)p r ,s + l +  — r  -  S l ) p r , s - l

+  ^ ^ - ^ ( r  +  l ) ( s - l ) P r + i , , - i  (4-4)

+  +  l)spr+i,5 -  ^ r s  +  /?n -  /?r +  ( 7  -  /? ) s j  Prs,

for (r, s) G <S, and Prs{t) = 0 for all other values of (r, s). The initial conditions are 

Pxoyo(O) =  1 and Prs(O) =  0 for any other (r,s) ^  (rro,2/o)-

The joint probability generating function (PGF) of X  {t) and Y {t) is defined as

V { x , y ] t ) = E  ^  prs{t)x'"y\
(r,s)e5

Using (4.4) it can be shown that V {x ,y ; t)  satisfies the differential equation

d V  d V  d V
—  = 0n(y  -  l )V  -  0x{y -  l ) - ^  -  (y -  l ) (0y  +  t ) - ^

+  - y [ ( i  -  p)y + p -  x]-
(4.5)

n d x d y ’

with initial condition V{x,y',0) = x^^y^^.

The PGF can be written in the form
XQ

V{x, y; t) =  ^  a^Vr(î/; 4 ,  (4.6)
r=0

where
n—r

f r i v ’, t) = '^y"Prs{t):  r  =  0 ,1 , . . .  , æo, (4.7)
s=0

a method suggested by Gani (1965) and Siskind (1965). The functions fr  are defined

only for r  =  0, 1, . . .  ,xo, since Prait) = 0 whenever r  >  xq, and hence / r  =  0 for any
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r  > Xq. Substituting (4.6) in (4.5) and equating the coefficients of the following 

equations are deduced:

^  =  /)(%/ -  l)(î^ -  0 / r  -  [{y -  ^){Pv +  7 ) +  ^ y r  ^

+  - y [ ( l  -  p)y + p]{r +
(4.8)

n  dy

for r  =  0, 1,..., xo and / r  =  0 for r  =  rco +  1,..., n.

Theoretically speaking it is possible to solve these equations recursively. Gani 

(1965) and Siskind (1965) suggested this approach for the SIR model. Siskind solved the 

set of equations for the /r ,  while Gani solved the respective equations for the Laplace 

transforms of fr .  In both cases the algebra required was quite cumbersome and the 

results that Gani and Siskind deduced for the probabilities Prs{t) involve highly com

plicated formulae. In order to get some insight into the feasibility of these recursive 

solutions for the model presented in this chapter, we consider a simple case of a popula

tion with two susceptibles and one infectious case at time t =  0 (zo = 2̂  yo = I, z q  =  0, 

and n =  3). According to (4.8), /a =  0 and /g satisfies a first-order partial differential 

equation whose solution is f 2 {v\t) = P 2o(^) + P 2i(^)y, where

P2o(^) =  [exp { -  (1 -h Co) (3t) -  exp { - (1 4 -  ci) !5t}]
1 (4.9)

P2 i{t) = [coexp{ -  (1 +  Co) -  Cl exp{ -  (1 -I- ci) /dt}],

and Co =  D -I- \ / ^ ,  c\ — D — \ /Ë , =  ( 7  — /? 4- 2o:/3)/(2^), and E  = + ^1(3 >  0.

Since d f 2 {y’, t ) /d y  = P2 i(t), equation (4.8) for r  =  1 gives

^  =  2/3{y -  l ) / i  -  [ ( î / -  l ) (^ 2/ +  7 ) +  f^/] ^  +  y 2/[ ( l ~  p)v 3- p]p2 i{t)- (4.10)

The method of separation of variables, applied to both (4.10) and to its equivalent 

for the Laplace transform of / i ,  does not prove to be very effective in obtaining a solution. 

Substituting for f i  from (4.7) and equating the coefficients of y^ in (4.10), we obtain 

a system of three differential equations with four unknowns, the pio(^), Pii(^), P i2(^), 

P2 i{ t)’ Substituting for P2 i{t) from (4.9), the system will also include expressions of t. 

It is clear tha t this recursive technique will be difficult to implement in practice, with 

a population of even a moderate size, and so we have not continued further with this 

approach.
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A similar approach for solving (4.5) was suggested by Dietz (1967). For this, 

write the PG F in the form

V {x,y;t)  = ^  {x -  l y  f j{y ,t) ,
7=0

(4.11)

where the functions f j  are to be determined. Substituting (4.11) in (4.5) and equating 

the coefficients of (a;—1)-̂  , a system of differential equations for the / j ’s is obtained, which 

can be solved iteratively. Again the amount of algebra required makes this methodology 

difficult to implement in practice.

Also the method of separation of variables is not applicable for equation (4.5); 

the time dependence can be separated, but not that of x  and since the variables X  (t) 

and Y (t) are not independent.

4.3 .2  T he m om en t generating  fu n ction  and th e  m om en ts o f  X  and Y

Let U{t) = X { t ) /n  and V{t) = Y { t) /n  denote the proportions of susceptibles and 

infectives, respectively, in the population at time t. From the differential equation for 

the PGF, it is easily shown tha t the moment generating function (MGF), M p(^i, 02; t) =  

E[exp{0i?7(t) +  (j>2 V{t)}]^ for the proportions U and V  satisfies the equation

dMp
dt

= pn  -  l )  (m p  -
dMp
501

+  n (4.12)

n n n 501502*

Substituting the series expansions for the exponentials in (4.12) and keeping only 

the terms of order n°, we obtain the same differential equation (4.3) that is satisfied 

by the MGF for the deterministic proportions. Including the terms of order n~^ in the 

expansion of equation (4.12), we obtain:

5M„ /  ^̂ 2A )

(/? +  7)02 +  ( ^ - 7 ) ^
5M ,pn

+  a (1 -/9 ) 02 -  01 +

502

(02 — 0l)^ 
2n

(4.13)

pn
501502 ’

from which a normal approximation to the distribution of U, V  (and of A , Y  as well) 

can be deduced. For, a bivariate Gaussian distribution with mean ^ =  (^1,^2) and
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covariance matrix S  =  (crÿ), i , j  =  1,2, has moment generating function of the form

Mpn{(f>l,(f>2 ;t) =  exp +  (j)2̂ 2 +  ^ W lO -11 +  2(̂ 1 <;620-12 +  j • (4.14)

Substituting (4,14) in both sides of (4.13) and equating the coefficients of ^ i, 4>2, the 

following system for the approximate moments of X  and Y  is deduced:

=  -  ^{c^XY +CLh 7%

= (3n — I3^xx — W  + 'y)f^Y H—  ----- — {o-xY +  f^xf^Y)at n

— =  i f J - X C r x Y f ^ Y C t X x )  + — { ( ^XYf J>Xf J>Y)CLu Th Th

=  — Pcrxx — (^ +  l)(^XY  H— (fJ>YCtXY +  A^xo’yy) (4.15)at n
o:(l ~  p) f , \

H   [ p x c r X Y  +  P y CTXX — (^ X Y  ~  P X P Y )

= (3{n -  fix )  - { ( 3 -  'y)pY -  WcrxY ~  2{l3 +  j )a Y Ydt
2 c k ( l  —  p )  . . q : ( 1  —  p )  . ,

H----------------{pYC^XY +  Px (̂ y y ) H---------------[crXY 4- Px Py ),n n

where p x ,  PY and a x x i  ^ y y  are the means and variances of X ,  Y ,  respectively, and 

a x Y  is the covariance of X , Y.

The system (4.15) can also be deduced directly from the corresponding system 

for the exact first and second moments of X  and Y ,  by using the appropriate moment 

relationships for the bivariate normal distribution. The exact moments are obtained from 

the difierential equation for the MGF, or tha t for the PGF, or from the forward equations 

for the expectations of X ,  Y ,  X^, Y^, and X Y .  The equations for the means are the 

same as in (4.15). The equations for the variances and the covariance of X  and Y  (given 

in the Appendix, equation (A.l)) involve third order moments of X  and Y .  Hence the 

system of equations for the first and second moments involves higher-order moments (a 

result of the non-linearity of the transition rates), so that it is an open system and cannot 

be solved. Assuming normality, the third moments of X  and Y  can be expressed in terms 

of the first and second moments, thus yielding the closed system (4.15). Alternatively, 

the system (4.15) can be deduced from the cumulant-generating function by setting all 

the cumulants of order greater than two to be zero.

Further approximations can be obtained by incorporating cumulants of order 

greater than two. For instance, replacing Mp{(pi,^2 ',t) by exp{X((^i, ^ 2; 4}; (where 

^ ( ^ 1,^ 2; 4  is the cumulant-generating function) in (4.12), expanding both sides of the
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resulting equation in powers of <f>i and and equating coefficients, yields an open 

system of equations for the cumulants (the system for the cumulants of order up to m  

includes cumulants of order m + 1). If we assume that all the cumulants of order greater 

than m  are zero, then we get a closed system. In this case it is preferable to work with 

the cumulant-generating function, since tha t gives directly a system for the cumulants 

and the order of the approximation (i.e. the highest order of the cumulants included 

in the system) can be changed easily (see, e.g., Matis & Kiffe 2000 and references). 

Other approximation techniques, such as the saddlepoint approximation (see, e.g., Ren

shaw 1998, 2001) and the linear approximation (see, e.g., Herbert 1998 and Sections 5.4 

and 6.3.8) have also been developed. In this chapter only the normal approximation has 

been investigated and its results are compared with results from simulations and from 

the deterministic model in Section 4.4.

The idea for the normal approximation follows from a suggestion of W hittle 

(1957) and its validity has been established for a more general class of Markov processes 

(see, e.g., Kurtz 1970, 1971, 1981) by limiting results showing tha t such processes can 

be approximated by Gaussian diflFusion processes as the total population size tends to 

infinity appropriately. The relevant theorem is as follows:

T h e o re m  4.1 (Kurtz 1970, Theorem 3.1, and Kurtz 1971, Theorem 3.1) Let X //(t) 

with =  1 ,2 ,. . .  he a one-parameter family of continuous time Markov chains with 

state space Eyv C  Z* and let Y ^{t)  =  N~^'X.j\[{t). I f  are the infinitesimal rates of 

X/v, we assume that there exists a continuous function /  : x Z* —)■ R that satisfies

9x,x+h =  ,

for all positive integers N , x. E and increments h  =  ( h i , . . .  ,hk) E Z*. Define the 

functions F  and gij : R* —>• R for i , j  = l , 2 , . . .  , k  by

=  X ] h / ( v ,h )
h

9 i jM  = ' ^ h i h j f { v , h ) ,  
h

for v 6  R*. Let G{v) be the matrix whose {i,j) element is gij{v). Suppose that there 

exists an open set E  C  R* such that

(a) there exists a constant M  such that

|F (v i)  — E (v 2)| <  M |v i — V2I, for all v i, V2 in  E
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(b) sup V  |h |/ ( v ,h )  <  00
v 6 E  ^

(c) lim sup |h |/ ( v ,h )  =  0

(d) the solution Z(t, z q )  of the deterministic initial value problem:

{ f  =  F (Z ), Z(0) =  z „ } , 

is such that Z(t,zo) G E  for a ll t  < T  and lim/^_^oo ^ X //(0 )  =  z q .  

Then for every e > 0

1
=  0 .lim P

N —̂ oo
sup
t< T

— X]\f{t) — Z{t, Z q ) > e

Let

Zat(«) =  i x w ( t )  -  ^Xyf(O) -  f  F(V{s))ds  

and Wyv(^) =  y/NZp^{t). I f  G{v) is bounded and uniformly continuous in E  and

lim sup Y ]  |h p /(v ,  h) =  0,

then, as N  oc, converges weakly to the diffusion process W (f) with charac

teristic function

E[exp{z0W(t)}] =  exp I  y ]  Oidj gij{Z{s, zo))di > .

Kurtz (1981) defines N  as “a parameter which has the same order of magnitude 

as the total population size” . For the model considered in this chapter, N  can be taken 

equal to the actual population size n. It then follows from this theorem that for large 

populations (and as long as the initial numbers X q scale with N  so tha t the proportions 

Vo =  Xo/iV are kept fixed) the process can be approximated by a Gaussian difi’usion 

process about its expected value.

For our model the increments h  € are

- 1 - 1 0 0
hi =

1
, h2 =

0
, hg =

- 1
, h4 =

1
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The functions /  : x —>■ R and F  : R^ ^  R^ axe defined by

a ( l  — p)v\V2 i = 1

1 X apviV2 i = 2
/ (v ,h i)  =  <

JV2 i = 3

/5(1 — V1 —V2 ) i = 4

F(y) =
—aviV2

a ( l  -  p)viV2 -  Pvi 7)^2 +  (3

for V =  (vi, V2). It can easily be proved that the conditions of K urtz’s theorem hold and 

hence the process can be approximated by a Gaussian diffusion process as n  tends to 

infinity.

4 .3 .3  T h e  e q u i l ib r iu m  s ta t e  o f  th e  p ro c e s s

The process described by (4.4) is a continuous time Markov chain with finite state space 

«S =  {(r, s )  6 Z^ : 0 <  r  <  xq, 0 <  s <  n, 0 <  r  +  5 < n} .

The state space S  can be partitioned into the sets Do, D i , . . .  , D xq where 

Dr =  {(r, s )  G 5  : 0 <  s <  n — r} , for r  =  0 , 1, . . .  , xq.

All the states within each of the sets Dq, D i, . . .  , D xq communicate with each 

other and hence each of the sets Dq, D i , . . .  , D xq is an irreducible class. There is a 

positive probability for transitions from Dj. to Dr> for any r  =  1, . . .  , xq and r' < r, but 

there cannot be any transitions from any Dr to any Dj.> with r' > r. This means that the 

classes D i , . . .  ,Dxo are open, while Dq is closed. Hence if the chain reaches one of the 

states in Dq then it will remain within Dq. From Markov chain theory it is known that 

open irreducible classes are transient, while finite closed irreducible classes are positive 

recurrent (see, e.g., Wolff 1989, Chapters 3, 4). Therefore Dq is positive recurrent and 

D i , . . .  , Dxo are transient. The irreducible classes of S  are illustrated in Figure 4.2.

Let W {t)  = {X{t) ,Y{t))  and =  P[W (t) =  ;|W (0 ) =  i], for i , j  in S  and 

t >  0. For finite-state Markov chains the pointwise limits limf_^oo Pij (t) always exist and 

they are equal to zero if j  is transient. Therefore

lim Pij{t) =  0 if j  ^  Dq
t —>oo

j^Do
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D X Q •^10 —1 Di D r

Dr = {(r-t s) Ç: Z \  : 0 <  5 <  n  — r} , for r  =  0 , 1, . . .  , xq

Figure 4.2: The irreducible classes of «S

which means tha t the chain will ultimately be absorbed in D q and there will be no 

susceptibles in the population.

Intuitively this result should be expected since there is no replenishment of the 

susceptible population. As long as there exists at least one infective in the population, 

he may infect any existing susceptibles and thus reduce that population. If at some 

point there are no infectives in the population then there will be n — X  (t) > 0  inactive 

cases (since X{t)  is always strictly less than n); the system will remain in this state until 

a latent or recovered individual develops disease. Then there will be one infective who 

may infect any existing susceptibles and the population of susceptibles may be reduced 

again.

Therefore ultimately all the susceptibles will get infected and the population 

will consist of infectious and inactive cases only. After the last susceptible has been 

infected, there will still be transitions between the infectious and the inactive class (due 

to recovery, relapse and reactivation), so that the numbers of infectious and inactive 

cases will still vary with time. At that point the number of infectives can be described 

by a birth and death process, which will reach an equilibrium state, depending on the 

parameters of the process.

The limiting distribution can be deduced in terms of the dominant eigenvalue of 

the infinitesimal matrix, Q, of the process (since for Markov processes with finite state 

space, «S, the m atrix P{t) = {P ij{ t) , i , j  6  <S} can be expressed as P{t) =  e^*), or from 

the difierential equation (4.5) for the probability generating function. Let

Qrs = lira Prs{t) and Q{x,y) = y ^  qrsX t—̂oo
r,a

Taking the limits as t —>• oo and setting y = 1 and dQ /d t  =  0 in (4.5) gives:

q2q  -,a
0 =  —(1 — x) 

n dxdy y=i r = l  s = l
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Equating the coefficients of we find that:

n —r

=  for all r  =  1 ,2 , . . .  ,rco5
3=1

and hence

Qrs =  0, for any r  >  0 and s > 0. (4.16)

Taking the limits as t —>• oo in (4.4) and setting s =  0, equation (4.4) reduces to

0 =  79ri -  Pi'n -  r)qro, for r  >  0.

Use of (4.16) leads to

Qro = 0, for any r  >  0. (4.17)

If Xg is the random variable whose distribution is defined by

P[Xe =  r] =  ^lhnP[X(t) =  r], 

and similarly for and Zg, then combining (4.16) and (4.17) we deduce that

n

1 =  ^  Çra =  ^  90s =  =  0], (4.18)
(r,s)e5 s=0

which shows tha t the population of susceptibles will ultimately be exhausted with prob

ability one and hence

xo n -r
^9rs =  0.

r= Is= 0

Since Ye = n, from (4.18) also follows tha t the probability of ultimate 

extinction of TB, P[Yg =  Zg =  0], is zero. The limiting distribution of the number 

of infectives is easily obtained from the probability generating function; using (4.16) 

and (4.17), Q(x^y) becomes a function of y only:

xo n—r n

Qi^^y) = = '^ y " q o s  = Qiy)^
r= l s=0 s=0

Therefore the derivatives of Q with respect to x  are zero and (4.5) reduces to a 

homogeneous first-order partial difierential equation, whose solution is
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This is the probability generating function of the binomial distribution with parameters 

n  and /3/(/? +  7 ), so tha t the distribution of the number of infectives at equilibrium is

QOa   I _ I / . An 5 for S  —  0, 1, . . • ,71,

with mean and variance

E M  =  #  V a rM  =
/? +  7  (/? +  7 )^ ’

Also, since E[Zg] = n — E[Xg] — E[T^], it follows that E[Zg] =  771/ +  7 ).

It is possible though that the size of the susceptible population becomes zero 

before the process of infectives reaches this equilibrium state. Then the distribution of 

the numbers of infectives and inactive cases may still vary in time. Supposing this is 

true, let T  be the time that the number of susceptibles becomes zero and write the time 

point t as t =  T  +  r  (so tha t r  counts the time after T).

The mean and variance of %, the covariance of X  and V, and their derivatives 

are zero after T. Hence the system for the first and second moments of X  and Y  reduces 

to a system for the mean and variance of Y  only, whose solution is

E [y (T  +  t ) ]  =  +  m g e -W + T l''

V ar[y(T  +  r)] =  +  [/3n - { 0  + (4,19)

+ _  (/3 - 7 )mg
° (/? +  7 )^ +  7

,-2(/3+7)t

where m§ =  E[y(T)] and vg =  Var[y(T)]. The mean and variance of Z  and the co- 

variance of y ,  Z  after time T  are obtained from (4.19), since Z{t) — n — Y{t), for 

t > T .

After the extinction of the susceptible population, the process of infectives can 

be described by a birth  and death process with b irth  and death rates, respectively.

p in  -  s). , V , s =  0, 1, . . . , 71 — 1 
As =   ̂ f^s= <

otherwise

7 S s =  1, 2, . . .  , 71

0 otherwise.

If Ps{t ) =  P[y(T -1- r )  =  s] is the probability tha t there are s infectives at
n

time T -f r  then the probability generating function, G{y;r) = ^^y^ P s ir ) ,  satisfies the
s=0

equation

—  =  Pn{y -  1)G +  [7 +  (/5 -  7 )2/ ~  ^ 2/^ ] -^ -  (4.20)
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This equation can also be deduced from the differential equation (4.5) for the 

probability generating function, by setting &Pldx = 0 and V {x^y \T  +  r )  =  G{y\r). 

The solution of (4.20) is of the form

<^(y; T) =  ^  -  1)  ̂ (î/ +
j=o \

where the coefficients Cj are determined by solving the initial conditions G(i/; 0) =

Differentiating (4.20) with respect to y  and taking the values îoi y = 1, the differ

ential equation for E [y (T -f r ) ]  is obtained, whose solution is given in (4.19). Similarly, 

the expression in (4.19) for the variance of Y (T  -f r )  can be deduced.

4 .3 .4  T h e tim e  u n til th e  ex tin c tio n  o f  su scep tib les

The distribution of the time, T, until the extinction of the susceptibles is given by
n

P[T <  t] =  ?[%(() =  0] =  Y ,p a s ( t)  = P(0, l ; t ) ,  (4.21)
a=0

and, in principle at least, this can be determined using an iterative scheme, as discussed

in Section 4.3.1. Another possible way to derive the distribution of T  is by considering

the times between successive infections. Let r i  be the time until the first infection and

Tr the time between the (r — l) th  and the r th  infection, for r  =  2 ,3 , . . .  , rcQ. Then

xo
T  = f ^ r r ,

r = l

and the distribution of T  can be deduced from tha t of r^. However it is not straight

forward to determine the distribution of 7 ,̂ because this depends on the number of 

infectives present during the interval vy, which may change during the interval.

To this end, we consider the embedded random walk: the successive states of the 

process are described by the points (r, s) on the plane, where r  =  0 , . . .  , xo, 5 =  0 , . . .  , n, 

and 0 <  r  -f s <  n. The transition probabilities are:

Oirs

P [ ( r , a ) - * - ( r - l , s ) ]  =  ^ ^ ^
(4.22)

P[(r, s) -> (r, s -  1)] =  —
OLrs

Œt
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where

Cù
ars = —rs  +  75 +  P{n — r — s), 

n

for r  =  0 ,1 , . . .  ,rco, s =  0 ,1 , . . .  ,n,  and 0 <  r  +  s <  n. The process starts from 

the point (xq, yo) and ends at some point (0, 5), 5 =  0 , . . .  ,n.  The line r  =  0 is an 

absorbing barrier. Prom (4.22) it follows that the time from the epoch when the process 

enters the point (r, s) until the first transition out of (r, s) is exponentially distributed 

with parameter ars', the probability tha t this first step from (r, 5) is an infection is 

an~^rs/ars-

Let Euv denote the expected number of steps until absorption for a random walk 

starting from {u, v). Then Ey,y is equal to +  1 if the first step is “infection that

leads to disease” , E^-i^y +  1 if the first step is “infection followed by non-zero latent 

period” , and Ey,,v-i 4-1 or E^^v^i +  1 if the first step is “recovery” or “development of 

disease” , respectively. Therefore, using (4.22), Ey,y can be written as 

n  a{l  -  p)uv ^  , apuv ^
■̂ uv — —1.Ü+1 “r

Tiâ uv Tia îy (4 23)
, n  . P ( n - u - v ) ^

H H---------------------^U.v+l +  t,Oty,y a-uxj

with initial condition Eoy = 0, for any value of v. The simplest case is when there is just 

one susceptible left. Setting n =  1, (4.23) reduces to

Ely — ——Ei^y^i 4- — -------------- ^Ei^y^i 4" 1, for u =  0 ,1 , . . .  , n — 1. (4.24)
a\y Oily

The general solution of the homogeneous equation corresponding to (4.24) is

E g ' ^  = Ai<i>'[ + A 2r2,

where

1 4- y / 1  -  A€{v )Ô{v ) 1 -  y / l -  4c(u)(5(u)
=  W)   = - 2ÏW ---------- ’

A i, A 2 are constants, S{v) =  tu/ojiv , e(u) =  f3{n — 1 — u)/ai„,  and 1 — 4e{v)S{v) > 0 for 

any u >  0. Now, if ^0 is a solution of (4.24), then its general solution is

^ Iv  =  00 +  -^101 +  -^202-

The values of the constants Ai, A2 are determined by the initial condition, jEJiq, which 

is unknown. One possibility is to obtain approximations to the general solutions Eiy by
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using numerical results to approximate the value of J^io, but solution by this approach 

will not be pursued further here. Equations similar to (4.23) can be deduced for the 

expected time until absorption and the probability generating function for the number 

of steps until absorption, but similar problems in determining solutions arise.

4.4 Num erical Results

In this section results are presented for an epidemic in a population of size n =  1000 

starting with the introduction of ten infective cases at time t =  0, so tha t xq = 990 and 

2/0 =  10. The values of the parameters were chosen to be representative of those for TB 

(see references in Sections 2.3 and 2.7):

a  =  10 13 = 0.0022
(4.25)

p =  0.9725 7  =  0.066.

The values of the deterministic z, ?/, z  and the stochastic means of X , V, Z  

as obtained from the normal approximation and from 10000 simulations are shown, as 

functions of time, in Figures 4.3, 4.4, and 4.5. Table 4.1 shows the respective values 

for X  and Y  for the first 15 years, while Figures 4.7 and 4.8 show the values of X[t)  

and y ( t )  from an individual realisation of the stochastic model. The distribution of 

the time until the extinction of susceptibles was also calculated from the simulations 

(Figure 4.6). The results for the deterministic model and the normal approximation 

were obtained by solving numerically the systems (4.1) and (4.15), respectively. Details 

for the implementation of the simulations can be found in the Appendix (Section A. 1.2).

The results for the X  means are presented in Figure 4.3. The three curves are 

for the deterministic z, the mean of X  based on the simulations, and the mean of X  

from the normal approximation. Initially the three curves are almost the same. During 

the interval between 5 and 20 years the deterministic z  decreases more rapidly and falls 

below the values of the stochastic means. TB spreads quickly among the susceptibles 

and by time 2 =  50 both the deterministic z  and the stochastic means have become zero. 

In the single realization presented in Figure 4.7 the value of X{t)  became zero during 

the 27th year.

The distribution of T, the time tha t the last susceptible gets infected, is given by 

Frit) = P[T <  2] =  P[X(2) =  0].
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Figure 4.3: The deterministic x(t) and the stochastic means of X  (t) as obtained from the normal 
approximation and from simulations. The parameter values are as shown in (4.25) and n = 1000, 
Xo = 990, yo = 10. Time is measured in years.
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Figure 4.4: The deterministic y(t) and the stochastic means of Y (t) as obtained from the normal 
approximation and from simulations. The parameter values are as shown in (4.25) and n = 1000, 
Xo = 990, yo = 10. Time is measured in years.
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—  determ inistic 
 norm al approxim aticn

T im e f

Figure 4.5: The deterministic z{t) and the stochastic means of Z{t) as obtained from the normal 
approximation and from simulations. The parameter values are as shown in (4.25) and n = 1000, 
Xq = 990, yo = 10. Time is measured in years.

10 20 30 40 50 600

Figure 4.6: Estimates of the distribution of the time T until the extinction of susceptibles. The 
parameter values are as shown in (4.25) and n — 1000, xq =  990, yo =  10. Time is measured in 
years.
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% 500

15 20 25 30 35 40 45 50

Figure 4.7: The value of % (f ) as obtained from an individual realisation of the stochastic model. 
The parameter values are as shown in (4.25) and n =  1000, xq =  990, yo = 10. Time is measured 
in years.

Y ( l )

M ean a t equilibrium

Figure 4.8: The value of F  (t) as obtained from an individual realisation of the stochastic model. 
The parameter values are as shown in (4.25) and n = 1000, xq =  990, yo = 10. Time is measured 
in years.
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Year X En[A] Es[X] y En[Y] E.[Y]
1 886.0 886.2 886.2 12.2 12.2 12.2
2 774.3 775.0 774.7 14.7 14.7 14.8
3 659.1 661.2 660.6 17.4 17.4 17.5
4 546.1 550.5 549.5 20.1 20.0 20.1
5 440.7 448.1 446.6 22.7 22.5 22.6
6 347.3 357.4 355.8 24.9 24.7 24.8
7 268.1 280.3 278.9 26.9 26.6 26.6
8 203.1 216.8 215.5 28.4 28.1 28.2
9 151.8 165.8 164.8 29.7 29.3 29.4
10 112.1 125.7 125.0 30.6 30.3 30.3
11 82.2 94.6 94.2 31.3 31.0 31.0
12 59.9 70.9 70.7 31.8 31.5 31.5
13 43.5 52.9 52.9 32.2 31.9 31.9
14 31.4 39.4 39.5 32.4 32.2 32.2
15 22.7 29.2 29.4 32.6 32.4 32.4

Table 4.1: The deterministic x, y and the stochastic means of X, T as obtained from the normal 
approximation (E„[X], E„[y]) and from simulations (E,[%], Eg[yj). The parameter values are 
as shown in (4.25) and n = 1000, xq =  990, yo = 10.

The results for Fr{t) as obtained from the simulations are presented in Figure 4.6. After 

20 years the probability P[T <  t] increases very rapidly and by time t =  62 it becomes 

equal to one. At tha t point there were no susceptibles remaining uninfected in any of 

the 10000 simulations.

Figure 4.4 shows the results for the Y  means. Initially the three curves are almost 

identical. In the interval between 5 and 25 years the value of the deterministic y deviates 

slightly from those of the stochastic means, which remain very close. By time t = 50, the 

three values are almost equal to the equilibrium mean = 32.3 (which is equal

to the deterministic equilibrium). From the single realisation presented in Figure 4.8 it 

can be observed tha t the value of Y {t) increases rapidly during the first 7 years and then 

fiuctuates around the equilibrium mean /3n(/? +  7 )“ .̂

The results for the Z  means (Figure 4.5) are deduced from those for the X  and 

the Y  means. Initially the deterministic z deviates from the means of Z. After t — 20 

the three curves remain very close and by time t = bO they are around the deterministic 

equilibrium level 'yn{P +  7 )”  ̂ =  967.7.
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Chapter 5

The second model: 

a sim ple open m odel for TB

5.1 Introduction

This model is an extension of the model presented in the previous chapter. The popu

lation is divided into three classes: susceptibles, infectives, and inactive cases. The sizes 

of these classes are X {t), Y {t), Z{t), respectively. The transitions between the classes 

and the relevant rates of these transitions are as in the first model: infections occur at 

a rate a X Y /n  (where n  is the initial total population size); p is the probability that an 

infection is followed by a non-zero latent period; the common reactivation and relapse 

rate is /3; and 7  is the per capita recovery rate.

The difference here is that we also have immigration of new susceptibles (at a 

constant rate 6), death from normal causes (at a rate p  per capita), and excess death of 

the infectives from TB (at a rate 6  per capita). The total population size is iV(0) =  n  

initially and N {t) = X {t)-\-Y {t)  -f Z{t) at time t (not constant in time). At some points 

the special case b = pn  will be studied. The possible transitions and their rates are 

illustrated in Figure 5.1.

5.2 The D eterm inistic M odel

For the corresponding deterministic model, let a;(t), j/(t), and z{t) denote the number of 

susceptibles, infectives, and inactives, respectively, at time t. The differential equations

57



fiX

p z

fiZ

Figure 5.1: The second model for the spread of tuberculosis

for X, y, % are

dx a  .
—  =  xy  — /ix +  0
at n

%  =  (1 -  p ) - x y  - { 'y  + p + 5)y + ^ z  at n
a  / ̂  X— =  p - x y  +  72/ -  (/5 +  p)z.dt> Tit

(5.1)

Here x^ y, and z are non-negative continuous variables. The initial conditions are a;(0) =  

Xq, y{0 ) =  yo, z(0) =  zq, with (xo,yo,^o) G Sq where

<̂ 0 =  {(a;, y, z) G : 1 <  a; <  n -  1, T 4- y +  z =  n}. (5.2)

The infected individuals can be in two diSerent states, infectious Y  and non- 

infectious Z . Therefore, following the notation in Definition 3.1, the basic reproduction 

ratio, 7̂ 0, is the dominant eigenvalue of the matrix K =  —T(S — D)“ ,̂ where

S =  

and hence

- 7  ^ p Ô 0
T =

a ( l  -  p) 0

7 - P 0 p ap  0

TZq = a- P - h { l - p ) p
(5.3)

{/3 + p){'Y Ô + p) -  /3 j'

The total population size is N {t) = x{t) + y{t) +  z{t). By adding the equations 

of system (5.1) the difierential equation for N {t) is deduced

dN{t)
dt

= b -  pN {t) -  Sy(t). (5.4)

W ith integration, (5.4) gives

N {t) =  — +  ~  — Se~^^ f  e^^y(s)ds,
P \  P j  Jo
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for t >  0. From this equation it follows th a t iV(t), and hence x{t), y{t)^ and z{t) as well, 

are always bounded above by n if 6 <  /in and by 6//i if 6 >  fin. If 6 =  /in then, in the 

absence of excess death due to TB, the population size remains constant in time and 

N {t) = n. This is the case applying, a t least approximately, in many populations, so for 

the rest of this section we will assume th a t b = fin (for simplicity of notation, sometimes 

the term b will still be used), so tha t whatever fluctuations in the population size are 

observed are caused by the excess TB death rate.

Solving the system (5.1) with d x /d t =  d y /d t =  d z/d t =  0, it follows that the 

system (5.1) admits two possible equilibria, 6 i =  (n ,0,0) and 02 =  (xe j,2/e2?^03)1 where

n(/?  +  //)(7  +  (i +  /i) - ^ 7
=  â  /3 +  (1 -p )m --------

 ̂ 1
2/02- (5.5c)7  +  64- / /  -  —  — Xe2n

The two points e i and 02 are equal if and only if 72-0 =  1.

F easib ility  o f  e i and 0 2

If iVg is the total population size at equilibrium, then (5.4) gives

0 =  6 — fiNe — Sy^,

which, for Ng = Xe + ye + Ze, can be w ritten as

6 =  fiXe + {fJ> + S)ye +  fiZg. (5.6)

It can easily be proved that both 01 and 02 satisfy (5.6). Since 6 =  /in, from (5.6) 

it follows tha t iVg, and hence Xg, 2/e, and Zg as well, are bounded above by n. In addition, 

these numbers must be non-negative. Therefore, we will call a critical point {xg^yg^Zg) 

feasible iîO < Xg^yg,Zg < n .

Clearly 0 1  is feasible. That is not always the case for 0 2 . From (5.5a), it follows

that Xc2 is always well-deflned and positive if the parameter values (a, 7 , 6, /i, /?, and

I — p) are not zero. Also Xej < n if T̂ o > 1, and then y^2 >  0. From (5.5b), it results

that 6̂2 <  Ti if

Xe, >  (5.7)
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Finally, from (5.5c), it follows that, when >  0, is non-negative if

7  +  J +  /i -  — — — Xe2 > 0 , 
n

and, substituting from (5.5b), tha t z ^2 <  n  if

a/5 n 62
< 1.

(5.8)

(5.9)

After some calculations it can be shown tha t the conditions (5.7)-(5.9) hold for 

any set of positive parameters (a, /5, 7 , 6, p, 1 — p) and therefore 62 is feasible if and 

only if 7^0 ^  1-

S ta b ility  o f  e i and 6 2

The system (5.1) can be written in the form

where v(t) =  (x{t)^y(t)^z(t)) for t > 0  and .F is a mapping from 

coordinates f i{ x ,y ,z ) ,  i =  1,2,3 given by

Ct
f i { x , y , z ) =  x y - p x  + b

n

f 2 {x ,y ,z )  = -  — xy  -  { j + Ô + p)y + /3z

(5.10) 

into E^ with

n
ap

/ 3(a:, y, z) = — xy  4- 7 y -  (,9 +  p)z. 
n

Let V* be an equihbrium point of (5.10), so tha t =  0. Let D T{v*) be the

Jacobian m atrix of T  at the point v*, i.e. the matrix whose (i, j )  element is d fi{ \* )ld j^  

for i = 1,2,3 and j  =  x ,y ,z .  If all eigenvalues of DT{v*) have negative real parts, 

then V *  is uniformly asymptotically stable (see, e.g., Reinhard 1986, Chapters 2, 3). For 

V *  = 01, the Jacobian matrix of T  a t e i is

—p —a  0

D T {e i)  = 0 a ( l  -  p) -  (7 +  6 +  p) ^

0 a p  +  7  -(/5  +  p)

One can easily compute the eigenvalues of DJ^{ei) and prove tha t if 7 ^  >  1 then at 

least one of them is positive, but if TZq < 1 then they are all negative (where IZq is as 

defined in (5.3)). Therefore 6 i is stable if TZq < 1 and unstable if 72̂  >  1. In order to 

study the stability of 02, we will use the following criterion:
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T h e o re m  5.1 (Routh-Hurwitz criterion)

Suppose that the vector 'v(t) =  (v i( i ) , . . .  ,Vm{t)) defined in R!p for t > 0 satisfies the 

system

(5.11)

where T  is a mapping from  Rip into with coordinates /i(v ) =  f i { v i , . . .  , Vm) = dvi/dt 

for  Î =  1 , . . .  ,m . Suppose that v* is an equilibrium point of (5.11), so that JF(v*) =  0. 

Let D T(v*) be the Jacobian matrix of T  at the point v*, i.e. the matrix whose {i,j) 

element is d f i ( \* ) /d v j for i , j  =  1 , . . .  ,m . Let Pv*{r) = de t(D ^(v*) — r l )  denote the 

characteristic polynomial o f D P(v*)

Pv* (r)  =  a o T ^  +  + ------ h a ^ - i r  +  a m ,

and define a matrix H  as follows

• • • Û!2m-1

OL2m-2

H

a i « 3 « 5

« 0 OL2 0 4

0 Q i 0=3

0 a o Ot2

0 0 a i

0 0 « 0

0 0 0

0 0 0 Qr

where a o ,a i , . . .  , am are the coefficients of Py* (r) and am+j — 0 for j  = 1 , . . .  ,m  — I. 

I f  ao > 0 then all the eigenvalues of D P (v*) have negative real parts i f  and only i f  all 

the principal minors of H  are strictly positive.

For V* =  e2 the Jacobian matrix of P  at e 2 is

P P ( e 2) =

_6_
Xea — ̂ X

(1 “  -  (7 +  +  /i)

^ ^ e a + 7

0
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with characteristic polynomial +  a i r^  +  Œ2 T +  0 : 3 ) ,  where ao =  1 and

a i = /3 + j - \ - ô  + 2 fi + —---- — — — Xb2
X^2 ^

Q2 =  -  +  2 (1  -  p)fi] +  [ - p ' y  +  (/9 +  / i ) (7  +  +  /Li)] +  — (/? +  7  +  <5 +  2 /i)
7 i LCez

«3 =  +  (/0 +  /i)(7 +  (5 +  /i)j -  ^(/5 +  (1 -  p)/i)/iXe2-

The m atrix H  in this case is

a i  as 0

H  = CkQ Ci2 0

0 a i  as

and its principal minors are D i = a i, D 2 = a \a 2 — as , and D 3 =  aaZ?2. After some 

calculations it can be shown that if T̂ q >  1 and all the parameters (a, /S, 7 , (5, /i, p, 

1 — p) are positive then D i, D 2 , D 3 are positive and hence every eigenvalue of D P {€2 ) 

has negative real part, which implies th a t 02 is stable.

Summarising the results above, the system (5.1) admits two equilibria, the disease- 

free equilibrium 0% and an endemic equilibrium 02. If 7 ^  <  1 then only 01 is feasible 

and it is asymptotically stable, so that the epidemic eventually dies out. If T̂ q > 1 then 

both 01 and 02 are feasible, but 01 is unstable and 02 stable, so the epidemic settles 

down at an endemic level.

It should be noted that this study was carried out with the assumption that all 

the parameters of the model (namely, a , /?, 7 , (5, p, p, and 1—p) are non-zero. The reason 

for making this assumption is the fact tha t for each of the quantities whose signs needed 

to be strictly positive or negative (for instance, the principal minors of i î ) ,  a different 

subset of the set of parameters (a, /?, 7 , S, p, p, and 1 — p) must have strictly positive 

entries. In order to avoid complicated assumptions and, instead, have an assumption 

that applies throughout the whole study of this model (both the deterministic and the 

stochastic) we exclude the possibility of having any of the parameters equal to zero. 

Simpler special cases of this model resulting by setting some parameters equal to zero 

(such as the SIR model, for /? =  J =  p =  p =  0), can be investigated separately or 

by taking the limits of the full solutions as the respective parameters tend to zero, and 

some special cases have already been extensively studied in the literature (see, e.g., 

Bailey 1975, Lefèvre 1990).
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5.3 The Stochastic M odel

5.3 .1  T h e tran sien t behaviour

Let Prsv{t) be the probability that there are r  susceptibles, s infectives, and v inactive 

cases in the system at time t > 0 .  Initially there are xq susceptibles, yo infectives, and 

zq inactive cases, where {xo,yo,zo) e  «Sq as defined in (5.2), so tha t PxoyozoW = 1 and 

Prsu(O) =  0 for any (r, s,v) 7̂  (â o, yo, ;^o). The diflferential equation for the probabilities 

Pravit) is

dprsv {t)
dt — ^ [(u  +  l)P r ,a —l,v + l  "^Prsv] d" T [(^  "b l)Pr,a4-l,w —1 ^Prsv]

+  ~ ( 1  — +  1 ) (5  — l ) P r + l , s - l ,v  +  —p { r  +  l ) s p r + l , s ,u - l

Ot
~'^sP rsv  "h ^(Pr—l,s,u  P tsv) "h P i i X  "b l)P r + l,s ,v  I^Prsv)

(5.12)

+  ( / i  +  <5)((s +  l)p r ,s+ l,t ;  — SPrsv)  +  p ( ( ^  +  ^)P r,s ,v+ l ~  ’̂ Prav)-,

for (r, s, u) G and Prsv{^) =  0 otherwise. The probability generating function, defined 

as V {x^y^z;t) = satisfies the equation

dV  dV  dV
—  = b { x -  l)V  -  p{x -  1)—  +  [j{z -  y) +  (/i +  (5)(1 -  y)] —

dV  a  d^V
+  [/3{y - z )  + p ( l - z ) ] —  + - y [ ( l  -  p)y + pz -  x]-

(5.13)

d z  n  d x d y ’

with initial condition P(a;,y, z ;0) =

From (5.13) a system of difierential equations for the first and second moments 

of X , y ,  and Z  can be deduced; the equations for the means are the following:

dm x OL, , \ ,
=  {o^XY +  mxTriY) — p m x  +  o

d t  Tt

=  - ( 1  -  p ) { g x y  +  m x m Y )  -  ( 7  +  /i +  <5)my +  /?mz (5.14)
a t  71

=  -p((TxY +  mxruY) +  'yrriY -  (/? +  p)mz,
d t  Tit

where m w {t) is the expected value of W (t), for W  =  X, Y, Z, and axY {t)  is the covari

ance of X {t)  and Y {t). The equations for the variances and covariances are given in the 

Appendix (Section A.2.1).

The system of difierential equations for the first and second moments of X , Y,

Z  involves third order moments and hence it is open and cannot be solved. One way of

overcoming this problem is to express the third order moments in terms of the first and
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second moments. For example, if (X, Y, Z )' has a multivariate normal distribution, then

E [X YZ] = E[X]E[Y]E[Z] +  E[X]Cov[y, Z] +  E[y]Cov[X, Z] +  E[Z]Cov[X, y], (5.15)

with similar expressions for E[X^y], E[Xy^] etc. Substituting for the third order mo

ments from these expressions, makes the system for the first and second moments closed 

and hence it can be solved. Distributions other than the normal can also be used, for 

instance the Negative Binomial (see, e.g., Herbert 1998, Herbert & Isham 2000). In 

addition, it has been observed that there may be situations where it is unreasonable to 

assume that the vector (X, y, Z)' has a multivariate normal distribution, and yet the 

moments of X, y, Z  can be very well approximated by those of a multivariate normal 

using the formulae Uke (5.15) (see, e.g., Herbert 1998). When the actual distribution is 

not known, one way of assessing which type of approximation is more appropriate is via 

simulations of the stochastic model; for instance, if the distribution has a single spike 

at the mean, then the normal approximation could be more appropriate, while if the 

distribution is highly skewed then the negative binomial might be a more appropriate 

choice.

The validity of the normal approximation can be established by K urtz’s theory 

(see Theorem 4.1). If the excess death rate Ô due to TB is zero then the mean population 

size remains constant and equal to n. Therefore if 6  has a small positive value then there 

will be only small fluctuations of the total population size N {t) around n  (at least in 

the relatively short term) and hence we can assume tha t n  and N {t) will be of the same 

order of magnitude. In this case the param eter N  in K urtz’s notation can be taken as 

the initial total population size n.

W ith the notation in Theorem 4.1, the function F  : —)■ is defined by

■F’(V) =
—aViV 2 + fi — fiVi

a ( i  — p)V\V2 ~  (7 +

otpV\V2 +  7 V2 — (/? +  /i)l^ .

where V  =  (Fi, V3). It can easily be proved that the conditions of K urtz’s theorem 

hold and hence the process can be approximated by a Gaussian diflTusion process if n  is 

large.

Prom system (5.14) the diSerential equation for the expected value of the
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total population size at time t  is deduced

= b — firriN — Sm y = fJ-in — itin) — SuiY: (5.16)

which shows that initially the population decreases, since mjv(O) =  n. W ith integra

tion, (5.16) gives

TriN{t) =  n — ôe f  my{w)e^ ‘̂ dw. 
Jo

This means tha t m ^ (t)  <  n, for t >  0, and therefore (t), m y{t), and m z{t)  are 

always less than or equal to n, too.

5.3 .2  T he equ ilibrium  sta te  o f  th e  process

The process described in this chapter is a Markov process in continuous time with 

countable state space S  = Z^. Let A  denote the subset of S  tha t contains the states of 

the form (re, 0,0) for re >  0, and V  the remaining set of states

X = { ( r , 0 , 0) e z » }

V  = S  -  A  = [{x ,y ,z )  e  Z+ ; (y ,z)  f  (0 , 0)}.

It can easily be seen tha t all states in A  communicate with each other, all states 

in V  communicate with each other, but there can be no transitions from the set A  to the 

set T>- once the chain reaches one of the states in A  there are no infected individuals in 

the population and hence there cannot be any more infections and the chain will remain 

within the set A . On the other hand there is always a positive probability for transitions 

from V  to A. Therefore the sets A  and V  form two irreducible classes, the former is a 

closed absorbing class and the latter is an open and hence transient class.

The fact that a subset of the state space S  is absorbing does not in general mean 

that the chain will be absorbed in this subset. Nevertheless we will show that this is 

the case for this process using the theorems of Reuter (1961), who is concerned with 

a particular class of Markov processes which he calls competition processes. These are 

processes in continuous time with a countable set of states S  =  Z^, having the property 

tha t jum ps from a state (m, n) G S  always lead to one of the following adjacent states: 

(m ±  1, n), (w, n  ±  1), (m — 1, n  +  1), (m +  1, n  -  1). The boundaries m  = 0 and n  =  0 

of the positive (m, n)-quadrant cannot be crossed, and all the states (m, 0) and (0 , n)
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are absorbing. For such a process, Reuter gives sufficient conditions for the chain to be 

absorbed and, if tha t happens with probability one, conditions for the expected time 

until absorption to be finite.

In the following we define a class of Markov processes with state space for 

m  > 2 and absorbing states (rc, 0 , . . .  , 0) and Theorem 5.3 gives an extended form of 

R euter’s results for these processes.

D efin itio n  5.2 Consider a time-homogeneous Markov process >  0}, with con

tinuous time parameter t  and state space S  = { (x i,X 2 , . . .  ,Xm) E Zlf}, for m > 2 . For 

X , y G «S define the transition matrix P{t) = {p(x, y ; t ) ,x ,y  6  5}, where

p (x ,y ;t)  =  P[X(t) =  y |X (0) =  x].

The transition rates are g(x, y) = p '(x ,  y;0), subject to the conditions

Ç(x,y) >  0 f o r x ^ y  

0 <  -q (x ,  x) =  g(x) =  ^  g(x, y) <  oo.

Define the matrix Q = { g (x ,y ) ,x ,y  E *$}. A t least one such matrix exists; i f  

there is exactly one, the matrix Q is called regular (thus regularity means that the matrix 

Q defines the process uniquely -  see also Reuter 1961, Wolff 1989). For x  =  ( x i , . . .  , Xm) 

and y  =  (t/i,. . .  , Vm) S , the g(x, y) are defined as follows:

Oi(x) 2/ y  =  x  +  6i i = l , . . . , m

di{x) i f y  = x - e i  z =  l , . . . , m

eij(x) i / y  =  x - e i + 6j  i , j  = l , . . . , m , j ^ i

0 any other y x,

9(x, y) =  ^

where e% is the vector of Z!j? whose i-th coordinate is equal to one and all the other 

coordinates are zero. The functions ai, d{, are such that aj(x) >  0, d%(x) >  0, 

e*j(x) >  0, for all i , j  = 1 , . . .  ,m  with j  ^  i and x  E S , and they are equal to zero if  

X f  S . Finally the q{x,x) are defined by

m  m

-q { x ,x )  = q{x) = ^ [ o i ( x )  +di(x)] + ^ ^ e ÿ ( x ) , x  €  S.
t=l i=l
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Since there are no states with negative coordinates, we must also have

d i(0 ,X 2 ,X 3 ,... ,Xm) =  eij(0,a:2,X 3,... ,Xm) =  0 V; 1

0 ,  X^i  . . .  ,  Xfn)  =  C2j{ x i, 0 ,  X 3 , . . .  ,  X m )  —  0  ^  2
(5.17)

dm{^l ,X2:X3, . . .  , 0) =  Cmjixi, X2 , X3 , . . . , 0) =  0 Vj ^

for all x \ ,X 2 , . . .  ,Xm = 0 ,1 ,----  Therefore jumps from the state x  =  ( x i , . . .  , Xm) G S

always lead to one of the adjacent states x ± e j ,  x  —Cj +  e j, for i , j  = l , . . . , m  and j  ^  i, 

hut the boundaries x i =  0, X2 =  0, . . .  , Xm — 0 cannot be crossed.

Assume that the states ( x i ,0 , . . .  ,0) are absorbing, so that O j(x i,0 ,. . .  ,0) =  0, 

d i{ x i ,0 , . . .  ,0) = 0 ,  e ÿ (x i,0 ,. . .  ,0) = 0 ,  for all x i  e  Z+, i , j  = 1 , . . .  ,m , and j  i, 

but
m m

^ a i ( x )  > 0 and ^ d i ( x )  >  0, 
i=l i=l

whenever x  e T> = S  — A , where

A = { ( x , 0 , . . .  , 0 ) ^ 1 .^ }

"D = S  A  = {(2̂ 1? X2 , , Xmî) G Z_|_ : (x2, • • • 5 Xm) ^  (0? • • • 5 0)}*

Finally, for every k = 1,2, . . .  define

Ak — {(2̂ 15 ) Xm) ^  7) I Xi “f* * • • ~l“ Xm ~  k}
m

rjfc =  m a x ^ O i( x )

Theorem  5.3 Consider a Markov process as defined in Definition 5.2. The following 

three statements hold:

(a) A sufficient condition for regularity is

2̂ \r k  rkrk -i . . .  r 2 /

(b) For a regular process let 7r(x, y) =  limt-^oop{x, y; t) for  x, y € «S. Then 7 t ( x ,  y) =  1 

i f  jc = y G A ,  7r(x, y) = 0  i f  y  G T>, and a* =  Yly  7c(x, y) is the probability that 

some absorbing state is reached from x. g V .  Also, = 1 for all jc g V  if
00

5 ,  =  V  =  00.
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(c) I f  in statement (b) =  1 for all x  € D, let r* be the mean time to reach A ,

starting at - xE V .  Then r* <  oo for a l l x ^ V  if
1 ooo 1 . ^1̂ 2 • - -rk- i

<  OO.

The proof of this theorem is almost identical to Reuter’s proof (see Reuter 1961) 

so we present only a brief outline here. To prove statement (a) we use the following 

criterion (see, e.g., Wolff 1989, Chapter 4):

(A) Q = {g(x,y}} is regular if, for each A >  0, the equations

Aiüx =  ^ g ( x ,y ) w y ,  
y

where 0 <  lüx <  1, have only the trivial solution {wx =  0, for all x}.

Suppose that a non-trivial solution {wx} exists with 0 <  lUx <  1. For k = 1, 2 , . . .  

let Wk be the maximum of Wx over all x  =  ( x i , . . .  , Xm) such that x i Xm =

k  and (x2, . . .  , Xm) ^  (0 ,. . .  ,0). Then, it can be shown tha t if 5 i =  oo the series 

— Wfc) diverges and hence Wk tends to infinity as A; —>■ oo, which contradicts 

the initial assumption th a t 0 < tUx <  1 for all x. Hence lUx =  0 and the process is 

regular.

To prove (b) we will use the following criterion (see Reuter (1961) for a proof):

(B) Suppose Q is regular. Then Y ly  7r(x, y) =  1 for all x, i f  there exist Ux > 0 

such that Ux —>• oo as X —>■ oo and

^ g ( x ,y ) u y  <  0, fo r  all x. (5.18)
y

Define Uq = 0,U i =  1, and C/&+1 =  Uk+{siS2 . . .  Sk)/{rir2 .. - rk), for A: =  1 ,2 ,----

Clearly, Uk >  0 for all A; =  0 ,1 , . . .  From the assumption tha t S 2 =  00, it follows that 

lim^-^oo Uk = 00. Finally, it can be shown that the sequence {ux} with u^ = 

for X =  ( x i , . . .  , Xm) E S  satisfies (5.18). Therefore, from criterion (B) it follows that 

X)y 7t(x, y) =  1 for all x.

For statement (c) we use the following criterion (see Reuter (1961) for a proof):

(C) Suppose that Q is regular. Let A  and V  denote the sets of absorbing and

non-absorbing states, respectively. Let Tx be the expected time to reach A , starting from  

the state x. I f  there exist finite Uy > 0  such that

^ 9 (x ,y)uy +  1 <  0, fo r  all-K in  V , (5.19)
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then Tx <  lix <  oo for all x  in V .

Let {Vjfc} be the sequence defined by

Vk =
L  _  A

T1T2 . . . Tt [ V^l
+  - ^  +

S1S2
+

T1T2 . - .Tfc-l
S\S2 ’ --Sk

for A; =  2 ,3 , . . .  and V\ =  (si/ri)(V o — 1 /s i). Since < 00, the sequence

TiT2 . . . Tfc-i
ajfe =  — +  +Si S1S2

+
S1S2 ••■Sk

is bounded. Hence, we can choose Vq finite and positive but suSiciently large, such that

Vt >  0 for any k  =  1 ,2 ,___ Now, let {u%} be the sequence defined by u* =  Uk for

X =  ( x i , . . .  , Xm) e V ,  k = xi-\ \-Xm and Uk+i =  C/)b +  V* for A; =  0 ,1 , Choosing

Uq > 0, it can be shown tha t {u%} satisfies (5.19) and thus Tx <  00 for all x  E D.

Criterion (C) also provides a means to find upper bounds for the expected time 

until absorption, which we summarise in the following lemma.

L em m a 5.4 Consider a Markov process as defined in Definition 5.2. Let ak he the 

sequence

T1T2 . . . Tk—\_ 1 , r i
Oik — -----1--------Si S1S2 S1S2 • • • Sk

for A; > 2,

with «1 =  1 /s i. I f

tiT 2 . . .  rk - 1

Si k—2
< 00,

then there exists M  >  0 such that 0 < ak < M  < 0 0  for all k > 1. Choose Uq > 0  and 

Vq > M  > 0 and define

S1S2 Sk
Vk = { V o - ak ) ,  A; >  1,

TiT2 . . .Vk

and Uk+i = Vk-\-Uk, for k > 0 . Then the expected time until absorption, r^, starting from

the state x  = ( x i , . . .  , Xm), with (x2, . . .  , Xm) 7̂  (0 ,. . .  ,0) and x i H h Xm =  A: > 1 is

bounded above by Uk • <Uk>

For the process described in this chapter, the functions aj,dj,Cij  are:

ai{x , y , z ) =  b 6 1 2 (2 ;, =  a ( l  -  p )xy /

a2 {x,y,  z) =  0 6 1 3 (2 ;, y, z) =  a p x y /n

oz{x,y,  z) =  0 6 2 1 (2 ;, y  ̂z) =  0

di (x , y , z ) =  px 6 2 3 (2 ;, y ,  z ) = i y

d2 {x,y, z) =  (/i +  S)y 6 3 1 (2 ;, y ,  z) =  0

d3 {x,y,  z) — f l Z 6 3 2 (2 ;, y^z) =  !3z,
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for (x , y , z )  E «S =  Z^, which satisfy the conditions (5.17). Also it should be noted 

tha t the states (a;,0, 0) are not absorbing; but the set A  =  {(rr,0, 0) : x  = 0, 1, . . . }  

is absorbing, in the sense tha t once (%/,z) becomes (0, 0) then the infection dies out 

and the population of susceptibles grows as a simple birth-and-death process. The 

device of “freezing” the states (r, 0, 0) can be adopted in this case, since the evolution 

of the process after the extinction of the infection does not affect the evolution before 

the extinction. Therefore, we will assume tha t a i(x , 0,0) =  d i(z ,0 ,0) =  0, for any 

rc =  0, 1, . . .  and thus the states (rc, 0, 0) are absorbing.

Under these assumptions (and using the notation in Definition 5.2) one easily 

computes tha t = b and s* =  for k > 1 .  Hence from the statements (a), (b), and

(c) of Theorem 5.3 it follows that:

* j,iv
&=3  ̂ ^

and hence the process is regular.
oo .

•  %  =  = o o ,

hence, if X (t) is the vector {X{t ) ,Y{ t ) ,Z{ t ) )  and

7t ( x , y) =  lim p (x ,y ; t) = lim P[X(t) =  y |X (0) =  x], x ,y  in 5 ,
t—>oo t —>oo

then 7t ( x , y) =  0 for all y  in V.  Also, if a* =  X)y y) with x E D is the 

probability that the chain will be absorbed in A  starting a t x  E D, then a* =  1 

for all X E D.

{b/y,)^

A=1
therefore the mean time T% to reach A,  starting at x  E X>, is finite for all x  E X>.

The upper bounds for the average extinction time deduced from Lemma 5.4 for some 

specific sets of param eter values and initial conditions will be presented in Section 5.3.6.

Results for the limiting distribution of {X{t )^Y{t) ,Z{t ))  can also be obtained 

from the differential equation (5.13) for the probability generating function V.  Define

Qrsv =  l im  P r s v { t ) ^  foc (r, s, u) E 5
I —fC X )

and

Q { x , y , z ) =  ^  x^y^z'^qrsv (5.20)
(r,s,u)€5
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Setting d Q ld t =  0 and x =  1, (5.13) becomes

dQ
, 9 y .

dxdy

+  \P(y -  z) + /i( i -  z)]
x= l

1=1

dQ
dz X = 1

0  =  Yl{z - y )  +  {fi +  <5)(1 -  y)]

+  ^ y [( i -  p)y - \ - p z - l ]  

and substituting for the derivatives of Q from (5.20) this gives 

0 =  [j(z -  y) + {fjt + 6 ) { 1  -  y)] ^  sy ‘̂ ~'^z^qrsv
r,s,v

+ W y  -  4  + -  z)] X) + ^y[(l -  p )y  + -  l] ^  r s y ‘‘~'^Z^qrsv
r,a,v r,s,v

Equating the coefficients of y^ and z^ we obtain systems of equations from which we 

deduce successively that
oo

qrsv = 0  for all V >  0, s >  0
r=0oo (5.21)
X I  QrOv =  0 for all >  0.
r=0

If Ye is the random variable whose distribution is given by

P[Ye =  s] =  ^lim P [y (t) =  5], for s =  0 ,1 ,2 , . . .  ,

and similarly for Xe and Zg, then (5.21) implies tha t Ye cannot have any finite positive 

value with probability one. This, along with the results from Theorem 5.3, implies that

and

P[yg =  s] =  0 for all s >  0,

P[Ye =  0] =  P[Ye = Ze = 0] = l

(5.22)

(5.23)

Equations (5.22) and (5.23) imply tha t Q{x,  %/, z) is a function of x  only. Hence its 

derivatives with respect to y and z  are zero and equation (5.13) reduces to a homogeneous 

first-order partial difierential equation whose solution is

Q{x) =

which is the probability generating function of the Poisson distribution with mean n =  

b/fj.. Thus

_ e - ^ r f  _
QrOO — , for T  — 0, 1 , .. .ri

Qrsv — fi for (s,v) f  (0,0).
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Summaxising, the results obtained so far are

7 t ( x ,  y) =  lim P[X(t) =  y |X (0) =  x ]  =  0, for all y  in D
t-^oo

ttx =  ^  7t(x , y) =  1, for all X in D (5.24)
ye^

0 y e V

^  y = (r,0,0)eA
where A  = {(r, 0, 0) : r  =  0, 1, . . .  } and V  = S  — A . The probability of extinction of the 

disease is one and the expected time until extinction is finite.

Finally let denote the mean of We, for We = Xe,Ye, Ze, Ne = Xe + Ye + Ze. 

From equation (5.16) it follows that the must satisfy the equation

b =  ixm% +  ôm y  =  +  (â  +  (i)my +  ^im%, (5.25)

which is exactly the equation (5.6) that the deterministic Xg, ye, Ze satisfy. Also (5.23) 

implies tha t m y  =  m^z ~  0 and therefore (5.25) gives =  m y  = n.

5.3 .3  T h e d eterm in istic  values and th e  sto ch astic  m eans

The study presented so far shows tha t there is a difference between the behaviour of the 

stochastic model and tha t of its deterministic counterpart. For the deterministic model 

the disease dies out only if TZq < 1 (and otherwise stabilises at an endemic equilibrium), 

while for the stochastic model it always dies out with probability one. This difference 

has been observed in other models as well, for instance in B artlett (1956) and Stirzaker 

(1975) for the open SI model and in Jacquez & Simon (1993) for the closed SIS and the 

open SI models.

Since the deterministic model can be viewed as an approximation to the stochastic 

(the system for the moments of X, Y, and Z  reduces to the deterministic system (5.1) 

if the random variables X , Y , Z  take the values x, y, z  with probability one), at least 

in this sense no fundamental differences between their behaviours is to be expected. 

Nevertheless there is a basic difference (at least mathematically) between the two models 

that can cause such fundamental differences.

The deterministic model is described by the system (5.1) in which the functions 

x{t), y{t), and z{t) are continuous functions. But in real life these numbers are discrete
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since they represent the numbers of susceptibles, infectives, and inactives, respectively. 

The stochastic model does account for this discreteness; it is described by the diflFerential 

equations for the transition probabilities and in this case the stochastic variables

X{t),  y ( t) ,  and Z(t)  can take only integer values. The relation between a stochastic 

model and its deterministic counterpart has been explored in the literature of epidemic 

modelling where it has been shown tha t the stochastic elements introduced into the 

description of epidemiological processes (by accounting for the fact tha t humans exist 

in integer units and not as fractions) can afiect the behaviour of the process in various 

ways (see, e.g., B artlett 1957, B artlett 1960a, Anderson & May 1991, Section 6.5).

W ith respect to the equihbrium state of the process for the deterministic model if 

there exists even a small fraction of infectivity in the population (for example if y{t) has 

a positive value less than one) then this can cause a new infection and thus prevent the 

infection from extinction. W ith the stochastic formulation though that can not happen; 

if the number of infectives is equal to one at some point t, then it will either remain equal 

to one or decrease to zero or increase to two. There is always a positive probability that 

it will decrease to zero and Theorem 5.3 proves that eventually this will happen with 

probability one and in finite time. The same holds for the number of inactive cases, Z{t),  

and hence ultimately the vector {Y{t), Z{t))  becomes equal to (0,0), which means that 

the infection dies out for any set of positive parameters. But for the deterministic model 

this happens only for certain sets of parameters (that satisfy TZq < 1) and otherwise the 

epidemic settles down at an endemic equilibrium.

This behaviour of the deterministic model is shown in Figure 5.2. The sys

tem (5.1) for the deterministic x{t), y{t), and z{i) was solved numerically for two sets 

of positive parameters, the first one with TZq =  0.591 <  1 and the second one with 

77o =  5.914 >  1. The values used in the second case are representative for TB:

a  =  10 p =  0.9725

13 = 0.0022 7  =  0.066
(5.26)

p. =  0.02 Ô =  0.13

b =  pn,

while the values used in the first case are the same as in (5.26) except for a  which 

was taken equal to 1. For the same sets of parameters, the means of % (t), Y (t), and 

Z{t) as obtained from the normal approximation and from 10000 simulations are also
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Figure 5.2: (a), (b), (c) The means of X,  Y, and Z,  respectively, with IZq = 5.914. The 
parameter values are as shown in (5.26). (d), (e), (f) The means of X,  Y,  and Z, respectively, 
with TZq = 0.591. The parameter values are as shown in (5.26), except that a  =  1. In each 
graph there are three curves, one for the deterministic value, one for the mean from the normal 
approximation, and one for the mean from simulations. The initial conditions are n =  1000, 
Xo =  990, yo =  10, Zq =  0. Time t is measured in years.
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presented in Figure 5.2 (details of the implementation of the simulations can be found 

in the Appendix, Section A.2.2). For all these cases the initial conditions are n = 1000, 

x q  = 990,2/0 =  10, z q  = 0. In all cases the three curves (for the deterministic, the normal 

approximation, and the simulations) are very close, and in some cases they can hardly 

be distinguished.

W hat is most surprising from these results is the fact tha t when TZq > I the 

stochastic means of y ( t)  and Z{t)  (both from the normal approximation and from the 

simulations) do not tend to zero, but seem to stabilise at a level tha t is quite close to the 

deterministic equilibrium. At first this result seems odd since the limit of the probability 

of extinction of TB as time tends to infinity is equal to one.

For the solutions of the system for the means under the normal assumption, it is 

not so unreasonable tha t they exhibit a behaviour tha t is closer to the behaviour of the 

deterministic model than that predicted for the stochastic model; according to K urtz’s 

theory (see Theorem 4,1), when the initial population size n  is large the deterministic 

model provides a good approximation to the stochastic model. Despite the fact that 

the discreteness of X ,  Y, Z  (accounted for in the stochastic model but not in the 

deterministic), as explained above, may give rise to various differences between the two 

models, its effects are in a way diminished in the solution of the system of differential 

equations for the moments, because the means are continuous functions. If at some point 

the mean of Y  (t) has a positive value less than one, this means that there is positive 

probability tha t the value of Y  {t) is positive and thus there could still be new infections.

Also it should be noted tha t for a general random variable Y{t)  which has a 

limiting distribution with mean E[y], this need not necessarily be the same as the limit, 

limt_).oo E[y(^)], of the expected value of Y{t)^ since the lim and E operators are not 

always interchangeable. One example of this is the birth  and death process with birth 

and death rates A and // per capita, respectively, with X = ^.  For this model it has 

been proved (see, e.g., Cox & Miller 1965, Section 4.3) that if N{t)  is the size of the 

population at time t then

lim P[AT(t) =  0] =  1,t—¥00

and hence the expected value of this limiting distribution is zero, but

^Ihn E[AT(t)] =  E[AT(0)],
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Figure 5.3: The value of Y  (t) as obtained from an individual realisation of the stochastic model. 
The initial conditions are n = 1000, Xq = 990, yo = 10, and zq = 0. The parameter values are as 
shown in (5.26). Time is measured in years.

and tha t is why, as Cox & Miller (1965) comment, when X = fi the equation for the 

expected value of N{t)  “does not give a good idea of the behaviour of individual re

alisations” . Thus the fact that the values of E [F (t)] do not seem to tend to zero as t 

increases (which is what we observe from the simulations for large t) does not prove that 

the expected value of the limiting distribution of Y {t) is not zero.

In addition, there is another argument that explains why the stochastic means 

do not seem to tend to zero. Figure 5.3 shows the results for Y {t) from an individual 

realisation of an epidemic in a population of initial size n  =  1000 starting at t = 0  

with Xq = 990, yo =  10, zq = 0 (the results were obtained from numerical simulation, 

using the parameter values shown in (5.26)). The value of Y{t)  fluctuates around the 

deterministic endemic equilibrium y^2 and it does not exhibit any decreasing tendency 

to justify the fact tha t ultimately it will become zero (as predicted theoretically by the 

analysis in the previous section). Around t  =  820, Y  flnally becomes equal to zero, 

but the value of Z  is positive at that point. Soon afterwards an inactive case becomes 

infectious and the value of Y  increases to positive values once more and continues to 

fluctuate around j/ej until t = 1000 when the simulation terminates.

This phenomenon is quite common in many stochastic processes and not only 

those for epidemics (see, e.g., Oppenheim, Shuler &: Weiss 1977 for chemical reactions,
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Hitchcock 1986 for predator-prey processes): ultim ate extinction of a class of the popu

lation is certain, but the process exhibits an apparent stationarity and it does not seem 

to die out over any reasonable length of time.

One well-known and extensively studied example of this phenomenon is the open 

SI model (see, e.g., B artlett 1956, Stirzaker 1975, Ridler-Rowe 1967). In a series of 

papers B artlett (1956, 1957,1960a) studied this model and tried to explain the sustained 

oscillations th a t the number of infectives exhibit, despite the fact that it was proven 

that extinction of the infection is certain. It has been proposed (see, e.g., Pollett & 

Stewart 1994) tha t the explanation for this apparent stationarity is tha t the underlying 

process has a quasi-stationary (or limiting-conditional) distribution. This may well be 

the case for the model presented in this chapter, and we discuss this possibility in the 

following sections.

5 .3 .4  Q u a s i - s ta t io n a r y  d is t r ib u t io n s

In the literature there are several forms and definitions for quasi-stationary distributions 

and hmiting-conditional distributions. We will focus our discussion on the following 

distributions.

D efin itio n  5.5 Let {K {t) ,t > 0 }  he a Markov process in continuous time with denu- 

merable state space S . Let A  denote the set of absorbing states and V  the remaining set 

of states where V  is an irreducible class. Suppose that the probability of ultimate absorp

tion in A  is 1  and the expected time until absorption is finite for any initial conditions. 

Finally let P i j ( t )  = P[X(t) =  j|X (0 ) =  i] for i^ j in S  and P(t) =  { p i j { t ) }  be the matrix 

of transition probabilities.

A distribution m  =  {mj^j  G V) over V  is a quasi-stationary distribution (QSD) 

if, whenever P[X(0) =  j] =  m j for j  in V ,

P[X(t) =  i |X ( t)  ^  A\ = m j, j  in V , t  >  0,

which means that i f  the initial distribution of the process is m  then the distribution of 

X (t) conditioned on non-absorption by t is m .

A distribution u  =  {uj , j  Ç.V) over T> is called a limiting-conditional distribution 

(LCD) if

^hm P[X(t) =  ;|X (0 ) =  i ,X{t )  ^ A ]  = Uj, i , j  in V.  (5.27)
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m  -  logpij(t) =  -A , i , j  in V.  (5.29)

A distribution v  =  {vj , j  G T>) over V  is called a doubly limiting-conditional 

distribution (DLCD) if

lim lim P[X(t) =  j|X (0 ) =  i ,X ( i  +  a) ^  .A] =  Uj, i^ j in V . (5.28)
S  ■’̂ O O

Kingman (1963) proved that to each irreducible class V  there corresponds a 

number A >  0, called the decay parameter of such tha t

1
t—¥QO

If A >  0 then (5.29) implies tha t P i j { t )  =  as t  oo which means tha t the

probabilities pij(t) decrease exponentially to zero and A is the common rate of decrease.

Using the decay param eter A, an irreducible class T> can be classified as A- 

recurrent or A-transient according as Pii(t)e^*dt diverges or converges for all i in 

V . Further, a A-recurrent class is called A-positive recurrent if limt_^ooPÿ(^)e^^ >  0 for 

all z, j  in V  and A-null recurrent otherwise. Kingman (1963) showed that A-transience 

and A-positivity are “solidarity” properties, so that either all or none of the transition 

probabilities exhibit the behaviour of the specified type.

Therefore apart from the standard classification of the states (as positive recur

rent, null recurrent, or transient) according to the limit behaviour of the probabilities 

Pÿ(t), there is a further classification according to the behaviour of pÿ(t)e^*, where A is 

the common rate of decrease of the probabilities P i j { t )  to zero. Hence even a transient 

class may be A-positive recurrent. Moreover there is a relationship between A-positive 

recurrence and existence of QSD’s and LCD’s similar to the relationship between positive 

recurrence and stationary distributions.

T h e o re m  5.6 (Kingman 1963, Theorem 4) JfT^ is a X-recurrent class then there exist 

vectors x  =  (xj, jf G X>), y  =  {yj , j  G V)  unique (up to constant multiples) such that:

' ^ P i j { t ) x j  = e~^*Xi, i e  V  
je v

^  ViPijit) = j  G V ,
iev

which means that i f P i { t )  is the restriction ofP{t )  to the class V  then x  and y  are the 

right and left eigenvectors, respectively, o f P i { t )  corresponding to the eigenvalue e~^^:
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P i( t)x  =  e and y 'P i( t)  =  e TAe class V  is X-positive recurrent i f  and only i f

H k£V ^kVk < oo and then

Prom this theorem it follows that (see, e.g., Vere-Jones 1969, Flaspohler 1974) if P  

is A-positive recurrent then the limits in (5.27) and (5.28) (LCD and DLCD, respectively) 

exist, are independent of the initial state %, and are given by

.lim P[X(t) =  j|X (0 ) =  i, X{t )  t A ]  = ^ -----. i , j  in V
l^ k e v  Vk

lim lim P[X(i) =  i|X (0 ) =  z ,X (t + s ) ^ A ]  =  , i j  in V,
t^o o  a-foo i^jfcGP ^kV k

where x and y are the unique eigenvectors defined by Theorem 5.6 and the limit (5.27) 

is equal to zero if ZIaep Vk —

Nair & Pollett (1993) proved tha t a proper distribution y  over D is a QSD on 

V  if and only if y  is a left eigenvector for P i( t)  corresponding to an eigenvalue e~^* 

for some fj, > 0. This result combined with Theorem 5.6 proves the existence of QSD’s 

for A-recurrent classes. Therefore A-recurrence implies the existence of a QSD and A- 

positive recurrence the existence of LCD and DLCD. Nevertheless, in contrast to the 

theory for stationary distributions, if a class is not A-positive recurrent the limiting- 

conditional distribution may still exist (see, e.g., Seneta 1966). Similar conditions for 

the existence of LCD’s can be stated tha t depend on the reversed process or on the 

infinitesimal parameters qij of the process (see, e.g., Flaspohler 1974, Pollett 1988).

Also, the relationship between the eigenvectors of the P i  m atrix and those of the 

Q i m atrix (the restriction of the g-matrix to the class V )  has been investigated since for 

practical purposes the g-matrix is easier to manipulate. If the P  m atrix of the process is 

the minimal transition function^ (which is the case for regular processes) then any non

negative left eigenvector of P i  corresponding to an eigenvalue is a left eigenvector

^The matrix P{t) =  {p i j { t ) , i , j  € 5 }  is the minimal transition function (see, e.g., Reuter 1957) if the 
probabilities pij (t) are the minimal solution to the backward Kolmogorov equations

Pi j i t )  =  ^ Q i k P k j { t ) ,  t > 0 ,

and Pij (0) =  Qij. The minimal transition function also satisfies the forward Kolmogorov equations

Piji^) =  '^Pik{t)qkj,  t >  0 . 
k&S
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of Qi with the eigenvalue —fi for /i >  0 (Vere-Jones 1969). If in addition the minimal 

transition function P(t) is honest (i.e. YljesPiji^) =  1, for all i e  5 , t > 0) and y  is a 

convergent left eigenvector of Qi for the eigenvalue — satisfying

UiQiA — P 2/ii
xGX> iev

then y  is a left eigenvector for Pi(t) corresponding to the eigenvalue (Pollett & 

Vere-Jones 1992).

Another interesting point tha t should be made is about the extremal character 

of the decay param eter A. Vere-Jones (1969) showed tha t if the m atrix P is strictly 

stochastic, the non-absorbing states form an irreducible class V  with decay param eter A 

and the equations

ViPijit) = Vj€~^\  t >  0, j  e V
iep

hold for some non-negative, non-zero eigenvector v  =  (vj , j  € V)  then 0 <  /i <  A.

For Markov processes with finite state spaces there exist unique positive left and 

right eigenvectors for this extremal eigenvalue and therefore there is only one QSD

which is the LCD (see Darroch & Seneta 1965, 1967). If the state space is infinite then 

QSD’s may or may not exist, there may be more than one QSD and even if QSD’s do 

exist an LCD may not exist.

The existence of LCD’s was established for branching processes by Yaglom (1947), 

for random walks by Seneta (1966) and Fakes (1973) and for birth  and death processes 

by Good (1968) and van Doom (1991). Unfortunately for multidimensional processes 

with infinite state spaces there have not been many significant advances and even for the 

open SI model mentioned above the proof for the existence of QSD’s and LCD’s remains 

an open problem.

The existence of limiting-conditional distributions results in the apparent sta

tionarity that these processes exhibit before absorption. Ultimately the process will be 

absorbed in the absorbing class ^4, which is the set {(a;, 0, 0) : x  =  0, 1, 2, . . .  } in our 

case. But since the distribution of the process conditioned on non-absorption,

P[X(t) =  j|X (0 ) =  i,X (t)  i J e V  = S - A ,  (5.30)

has a stationary (hmiting, as t oo) distribution, it may go through this stationary 

phase before it gets absorbed in A', the process will remain there for some time and then
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eventually will be absorbed. “Eventually” may be a very long time (as the numerical re

sults in Figure 5.2 suggest) so it makes sense to study the conditional distribution (5.30). 

Let P ^ (t) be the probability of extinction of TB, tha t is

oo
Px(^) =  P [^ (4  =  Z{t) = 0 ]  = y^PaOo(t), t  >  0.

x=0

The distribution of the process conditioned on non-absorption is given by

=  P m t ) , Y ( t ) , Z ( t ) )  =  {x,y, z) \{Y{t) ,Z{t ))  /  (0,0)] =

for (x^y,z)  in V  and Qxyzit) = 0 otherwise, where V  =  {{x,y , z )  G : (y,z)  ^  (0,0)}. 

If we define c(v ,w ) the coefiicient of Pw{t) in the equation (5.12) for dpy,{t)/dt (where 

Pv{t) = Pxyz{t) for V =  (x^y^z) G <S), then the equation (5.12) can be w ritten as

dpvjt) 
dt

Prom this equation it follows tha t

dq^f{t) 
dt

where

=  ^  c(v, w)pw (t), V G V.

=  w)gw(^) +  Qv{t)Q{t), V G D, (5.31)

Q{t) =  {n +  S)Y^  Qxioit) +  9iOi(^), t > 0.
x=0 x=0

The limiting-conditional distribution can be deduced by solving equation (5.31) 

with the left-hand side set equal to zero. The last term in (5.31) makes the equation non

linear so that an analytical solution for the g^yz’s can not easily be deduced from (5.31). 

A computational procedure for evaluating the limiting-conditional distributions is de

scribed by Pollett & Stewart (1994). This method, which is an ‘iterative version’ of 

Arnoldi’s algorithm (see Pollett & Stewart 1994 for references), is based on the idea of 

truncating the g-matrix (restricted to the non-absorbing states) to an m x m matrix 

and constructing a sequence of vectors {a:^}, such tha t a;^ is the left eigenvector of 

the truncated m atrix corresponding to the eigenvalue with maximum real part. Then 

the quasi-stationary distribution can be estimated by taking successively larger trunca

tions until the difference in the normalised eigenvectors is as small as desired. Pollett 

& Stewart (1994) describe a method for calculating the eigenvectors a;^ and illustrate 

their algorithm with reference to the open SI model studied by Ridler-Rowe (1967).
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5 .3 .5  T h e m arginal d istr ib u tion s

The marginal distributions of X , F , and Z  have been calculated from numerical simu

lations of the stochastic model (details of the implementation of the simulations can be 

found in the Appendix, Section A.2.2). Figure 5.4 shows the marginal distributions of 

X  and Z  with n = xq = n  — t/o and the parameter values shown in (5.26),

for which H q =  5.914.

The probability mass distribution soon splits into two distributions: one has 

mass distributed around the stochastic equilibrium {m% = n, =  0, m® =  0, which 

corresponds to the extinction of TB) and the other has mass distributed around an 

endemic level, which is close to the deterministic endemic equilibrium. During the first 

two years the distribution of Z  is basically unimodal with one peak between the stochastic 

equilibrium 0 and the deterministic equilibrium =  37.86. As time increases this peak 

moves closer to and becomes smaller, with a second peak developing at z =  0. 

By time t =  15 the distribution has become bimodal, with a very high peak around 

the deterministic equilibrium. After t =  40 the mass around z^^ starts decreasing and 

“moves” towards the point z = 0  (the peak around Ze  ̂ becomes more fiat, more mass 

appears between the points z =  0 and z =  Zgj, and the probability at z =  0 increases). 

The simulation was carried out up to time t  = 500 (results not shown here) and at that 

point the peak around Zgj is almost fiat and the probabihty P[Z(500) =  0] is 0.5.

The same observations can be made from the distribution of X  (here we show 

the results up to time t =  500). The distribution is again bimodal, with one mode 

around the stochastic equilibrium a: =  50 and one around an endemic level close to the 

deterministic equilibrium x^z = 8.45. Slowly in time the mode around Xgj reduces in 

size and the mode around a; =  50 increases, showing the tendency towards extinction.

Figure 5.5 shows the marginal distribution of Z  for two other cases with (a) 

n = bO, yo = I, Xq = n  — yo and the parameter values shown in (5.26) except a  = 20, 

for which TZq = 11.828 and (b) n = bO, yo = b, xq = n — yo and the param eter values 

shown in (5.26), for which 77q =  5.914. Comparing the first of these with tha t for the 

distribution of Z  in Figure 5.4 shows the efiect of increasing the value of 77q. Again 

during the first 2-3 years the distribution is unimodal with one peak between z =  0 and 

z =  Zc2 =  41.71. However, this mode moves more quickly towards z =  Zĝ  than when 

a  =  10 (Figure 5.4) and during the first 20 years the distribution remains unimodal with
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Figure 5.4; The marginal distributions of X  and Z.  The initial conditions are n =  50, yo =  
l ,  xo =  n — yo. The parameter values are as shown in (5.26), for which TZq =  5.914. The 
deterministic endemic equilibrium is 0 2  =  (8.45,0.49,37.86). Time is measured in years.

83



(a) (b)

F igure 5.5: The marginal distribution of Z  with n = 50, xq =  n — yo and (a) yo =  1 and 
parameter values as in (5.26) except a  =  20, for which TZq =  11.828. The deterministic en
demic equilibrium in this case is 6 2  =  (4.23,0.54,41.71). (b) yo =  5 and parameter values 
as in (5.26), for which TZq =  5.914. The deterministic endemic equilibrium for this case is 
6 2  =  (8.45,0.49,37.86). Time is measured in years.

one peak around At time t = 100 the distribution of Z  is bimodal (one mode around 

z = 0  and one around z = Ze2 )i but the splitting into these two modes tcikes longer time 

(than when a  = 10), less mass appears around z = 0  and more around z = Ze2 -

The same efiFect was observed by increasing the initial number of infectives present 

at the beginning of the epidemic (Figures 5.4.b and 5.5.b), although to a greater extreme. 

With yo =  5, in the beginning all the probability mass is centred around z  =  Zej (forming 

a mode around Zeg which is much bigger in size than when yo =  1). As time increases this 

mode reduces in size and more mass appears between the points z = 0 and z = Ze2 - Still 

though, even up to time t = 100 the distribution of Z  is unimodal and the probability 

P[Z(100) =  0] is almost equal to zero.

Therefore it seems that if the process starts with more infected individuals then 

it is more likely that the infection will persist for a long time. Intuitively, if it starts 

with the introduction of a very small number of infectious cases then the infection may 

die out before this number increases. For instance if the epidemic begins with only one 

infectious case, this one infective may die before infecting any susceptibles. Clearly, the 

larger the yo , the less likely it is that all of these yo infectives will die before infecting 

any susceptibles and hence the mass around the stochastic equilibrium (corresponding 

to extinction) will be more when yo — I than when yo =  5.

Finally, Figure 5.6 shows the marginal distribution of Y  for two cases with n = 

1000 and n = 100 (in both cases yo = I, xo = n — yo and the parameter values are as
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Figure 5.6: The marginal distribution of Y  with (a) n = 1000 and (b) n = 100. In both cases 
yo = 1, Xq = n -  yo, and the parameter values are as in (5.26), for which TIq = 5.914. The deter
ministic endemic equilibrium is (a) 02 = (169.09,9.83,757.20) cuid (b) 02 = (16.91,0.98,75.72). 
Time is measured in years.

in (5.26)). W ith n = 1000 the distribution is bimodal, with one mode around y  = 0 and 

one around y = = 9.83. W ith n =  100 the distribution seems to be unimodal since

the deterministic equilibrium is very close to zero {y^^ = 0.98). It is clear though from 

this figure how the initial size of the population afiFects the modes of the distribution: 

the probability P[Y(<) =  0] is not only much smaller with the larger value of n, but it 

even seems to decrease as time increases (which means that it is not only that we cannot 

observe any tendency towards extinction, but rather the opposite: a tendency towards 

the endemic equilibrium is observed, and extinction becomes less likely).

Summarising, these results suggest that the marginal distributions of X, Y , and 

Z  are bimodal. The probability mass distribution splits into two parts, one centred 

aromid the stochastic equilibrium and the other around an endemic level close to the 

deterministic equilibrium. As n, TZq, or the initial number of infected individuals in

creases, the mass around the stochastic equilibrium decreases and the mass around the 

deterministic equilibrium increases. With small values of n, TZq, and yo, the mode 

around the deterministic equilibrium reduces in size as time increases until the distribu

tion becomes essentially unimodal (with one mode around the stochastic equilibrium) 

which shows the ultimate extinction of the infection (similar observations for the form 

of the marginal distributions have been made for the open SI and the closed SIS model 

(Jacquez & Simon 1993) and the open and closed SIS model in discrete time (Allen & 

Burgin 2000)). The simulations have to be carried out for a very long time in order to 

demonstrate this behaviour so that our results here are given only for very small values
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of n. It appears tha t the time until extinction can be very long and also that it is more 

likely to be long for large values of n  and TZq. The following section presents some more 

information about how long the extinction time can be.

5.3 .6  T h e tim e  un til ex tin c tio n  and th e  size  o f th e  ep idem ic

Lemma 5.4 provides an upper bound for the expected time until extinction (which is 

finite, as shown in Section 5.3.2). Using the notation of the lemma for our process r* =  6 

and Sk = fJ>k for A; >  1. Therefore the sequence ak defined by

1 , r i
Oik — -----1----------1"Si S1S2

+ r’iT’2 . . .  f ’k — 1 

S 1 S 2  . • • -Sfc
k > 2 ,

and a i  =  1/ s i  is

Oik = l t (6/p )" A; >  1.
U=1 VI

Since S 3 < 0 0 ,  where

k= 2

^1̂ 2 • • * ^k— 1 
S1S2 ■••Sk

we can choose Uq = 0 and Vq =  and define the sequences

k

Uk =  Uk-i +  Vk-i

E
V = 1

(6/p)"
VI

k >  1 

k > l .

Then the expected time, r(a;, y, z), until extinction starting from the non-absorbing state 

( r ,y ,z )  with x + 2/ 4- =  A; > 1 is T(x^y,z) < Uk  ̂ Some numerical results for these upper 

bounds are given later in this section.

Lower bounds for the expected extinction time can be deduced from Lemma 5 

of Ridler-Rowe (1967) which provides lower bounds for the mean absorption time for 

Markov processes with state space S  =  { (ari,... , z ^ )  G Z^} where all the states with 

Xfn = 0 are absorbing. This lemma can be modified to account for processes with 

absorbing states (zi, 0, . . .  0):

L em m a 5.7 Consider a Markov process in continuous time with state space S  = 17^ 

for m  > 2. Let q^y he the infinitesimal parameters of the process with g%y > 0 for all 

X ^  y  and 0 <  —q^x = Qx = Sy^éx 9xy < 00. Let A  =  {(xi, 0, . . .  , 0) G 5} 6e the set
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of absorbing states and "D = S  — A  the remaining set of states. Assume that the process 

almost surely reaches A  from any initial state. Let r (y )  be the mean absorption time 

starting at y  and define x  = X2 + X 3 ~\ \-Xm for  x  =  (xi, 2:2, • .. , Xm) E S .  I f

Qxy =  0, whenever ÿ  <  x  — 1 

Q v  — s u p  ^  ] Qxy-)
(5.32)

^xy,

then

* 1
t ( x )  >  75-, for all X  6

i=i

The proof is similar to Ridler-Rowe's proof, so we will present only an outline 

here. Let Pxy{t) denote the transition probabilities of the process and p ^ { t )  the n-step 

transition probabilities in the Feller minimal process (see Reuter 1957). Define (f>x.y{̂ ) 

and (f>̂ y(6 ) to be the Laplace transforms of Pxy{t) and Pxy(^)? respectively. Then it is 

known (see Reuter 1957) that ^^y (^) =  0 for all ^ >  0 and x, y  in 5  and

[e +  9x)<^xy^(^) =  <̂ xy +  X !  9xz<^zy(^), X, y  € 5 , 0 >  0 , n  >  0 ,
z^x

(where 6 xy is the Kronecker delta) and for a regular process (f>xy{&) t  ^xy(^) as n  —)■ oo. 

Let the absorbing states be classed as one state, say A.  Define

V'n(^) =  0  0  _|_ ^ >  Oj n =  1, 2, . . .  ,

and V’o(^) =  1/^ for 0 >  0. Clearly < tpx{0) for any 0 >  0, x  6  «S and

any 6  > 0̂  k > 0 .  We will show tha t < ipx{0) for any x  in 5

and A; >  0. For A  suppose that <^xx(^) — V^x( )̂ for some A: >  0 and let x  =  n  >  0. 

Then

( e + 9x) <^xi H«) = <  E  (5.33)
y^x yji:x

^  ^  QxylpnW ^  QxytpnW (5.34)
y :ÿ < x  ^ y:ÿ>x,y9^x

tpnW 9x  +  ^ 7 ^  Qxy
y  y < x

<  1 p n { 0 ) { 9 +  Qx),

where the inequality (5.34) follows from the fact tha t the sequence ijjn is a decreasing 

function of n  and ^„_i(0) =  ij}n{6 ){l +  OjQn) for n  >  1. Therefore <l>̂ ĵ (9) < ^x(^) for
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any X in «S, A; >  0, 0 >  0. Letting k oo  ̂ follows tha t (pxA{^) ^  V^x( )̂ for all x  G 5 . 

Prom Reuter (1961) we know that

and hence for all x  *4.

Lemma 5.7 can be modified to give a tighter bound for r(x ). If ||x ||i  denotes the

li norm on defined by ||x ||i =  |a:i| +  \x2 \ H 1- \xm\ and the conditions (5.32) are

substituted by

9xy =  0, whenever ||y ||i  <  ||x ||i -  1

Qi; =  sup <
x: X i=u

then

T(x) > ^  for all X .4 with q^A = 0- (5.35)
1=1

The proof is similar to the proof for Lemma 5.7 and is omitted here. The states 

X ^  A  with QxA 0 have to be excluded in this case because for these states the 

inequality (5.33) does not necessarily hold.

For our process

Qy =  sup {{fi +  S)y +  fiz] = ifi + ô)v, u =  1, 2, . . .
y+ z= u

Q'^=  sup {fjLx-\-(fi-\-S)y-^ fiz} = {/jL-\-ô)v, u =  1, 2 , . . .  .
x + y + z = v

Therefore if the process begins from the state (rr, y^z) E S  then the mean time r{x, y, z) 

until extinction is bounded below by

1 1
£ i  =  — —7 ^ - ,  ÎOT [x ,y ,z )  E S  w i t h y z  > l

«

 ̂ x + y + z  ^

Ù2 =  — — 7 V  T ,  for (a;, y , z ) E S  with y + z > 2 ,
fjL +  O I

t= l

where £ i,  £2 are the two lower bounds from Lemma 5.7 and (5.35), respectively.
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In it ia l  p o p u la tio n  size Low er b o u n d  £2 U p p e r  b o u n d
10 19.5 1.245 10^
25 25.4 1.503 10^̂
50 29.9 5.293-1021
100 34.6 1.358-10^3

Table 5.1: Bounds for the expected extinction time. £2 is the bound from inequality (5.35), for 
processes starting with yo+zo > 2. The upper bound (obtained from Lemma 5.4) is for processes 
with Vq+ Zq > 1. Both bounds were calculated with the parameter veilues shown in (5.26).

yo +  0̂ 1 2 5 10 20 100 200 1000
6.67 10.00 15.22 19.53 23.98 34.58 39.19 49.90

Table 5.2: The lower bound £1 from Lemma 5.7 for the expected extinction time (for processes 
starting with yQ + zq> 1) and for /x =  0.022, 5 =  0.139.

Tables 5.1 and 5.2 show the values of these lower bounds and the upper bound 

from Lemma 5.4 for several initial conditions using the param eter values shown in (5.26). 

Unfortunately the intervals defined by the lower and upper bounds are very wide because 

these bounds account for extreme cases. For instance the lower bound £1 is essentially 

the expected extinction time for a death process that starts at level +  zq and has 

death rate Qy = {fi + 6 )v when the size of the population is v. Therefore £1 basically 

counts only the time until all initial infectives and inactives have died assuming that no 

other event occurs. It has to be noted though tha t both lower bounds tend to infinity 

as the initial sizes y + z  or x  + y + z  tend to infinity.

P rocesses startin g  w ith  one in fectiou s and zero in active  cases

First we consider only epidemics that begin with the introduction of one infectious case 

into a wholly susceptible population, so that the initial conditions are xq — n — l, yo = I, 

Zq = 0. In order to determine the effect of n  and IZq, the process was simulated for the 

following values of n  and a: n  = 50,100,200,400 and a  =  2,3,4 (recall from (5.3) that 

7 ^  is a multiple of a , so tha t by increasing a , the value of TZq increases proportionately). 

The other parameter values are as shown in (5.26). The simulations were repeated 10'̂  

times and term inated at a time point large enough such that the epidemic had died out 

by tha t point in all 10“̂ runs. Also, the size of the epidemic (defined as the total number 

of susceptibles infected from time t  = 0 until the epidemic dies out) was calculated from
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Figure 5.7: The distribution of the extinction time, T ,  for processes that start with one infectious 
case: i/o =  1 and xq =  n — 1. The parameter values are as shown in (5.26) except for a , which has 
the value indicated in each graph. With these values and a  equal to 2, 3, and 4, the value of 7Zq 
is 1.183, 1.774, and 2.366, respectively. Time is measured in years, (a), (b), (c) The cumulative 
distribution, P[T  <  t], with a  =  2 ,3 ,4 , respectively. In each graph there are four curves one for 
each of the following values of n: 50, 100, 200, and 400. (d), (e), (f) Histograms of T  for the 
three cases: a  =  2, n =  50; a  =  2, n =  400; and a  =  4, n =  50. 10  ̂ simulation runs of the 
stochastic model were carried out for a time long enough such that all runs ended with extinction 
of the infection, thus yielding a sample of size 10'* from the distribution of T.  These 10'* values 
are plotted here in a histogram, where the width of each box is equal to 1 (year) and the height 
is equal to the number of simulation runs in which the epidemic died out during that year, so 
that roughly these graphs show the distribution of T  as P[( — 1 <  T  < t], counting t  in years.
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n =  50 n =  100 n =  200 n = 400
Min: 2.079 10-'' 5.069 10“'* 3.563 10“'* 6.659 10“'*
Qi: 6.81510+^ 7.056 10+^ 6.989 10+^ 7.000 10+^
Q2: 1.418-10+^ 1.517 10+2 1.546 10+2 1.552 10+2

a = 2 Mean: 1.77110+^ 2.058 10+2 2.402 10+2 2.856 10+2
Qz: 2.45310+^ 2.812 10+2 3.12710+2 3.264 10+2
Max: 1.44110+^ 1.70110+^ 2.462 10+^ 3.928 10+^
SD: 1.53110+^ 1.959 10+2 2.649 10+2 3.870 10+2
Corr: 8.52110-^ 8.809 10“ ^ 9.004 10“ ^ 9.287 10“ ^
Min: 2.363 10-^ 7.713 10“'* 4.233 10“'* 1.543 10“'*
Qi: 9.62710+^ 9.675 10+^ 9.697 10+^ 1.022 10+2
Q2: 1.91610+2 2.133 10+2 2.290 10+2 2.486 10+2

a = 3 Mean: 2.45910+2 3.453 10+2 6.827 10+2 3.497 10+^
Qz: 3.33410+2 4.70710+2 8.867 10+2 4.258 10+^
Max: 3.142-10+® 4.54110+^ 1.071 10+^ 6.266 10+'̂
SD: 2.179 10+2 3.783 10+2 1.004 10+^ 6.474 10+®
Corr: 9.153 10-^ 9.546 10“ ^ 9.857 10“ ^ 9.988 10“ ^
Min: 9.474 10“'* 1.040 10“^ 4.815-10“'* 1.074 10“^
Qv. 1.122 10+2 1.242 10+2 1.239-10+2 1.280 10+2
Q2: 2.279 10+2 3.349 10+2 6.771-10+2 1.819 10+'̂

a  =  4 Mean: 3.029 10+2 6.00710+2 2.597-10+^ 9.976 10+'‘
Q3 : 4.15110+2 8.390 10+2 3.672-10+^ 1.402 10+®
Max: 2.423 10+^ 6.322 10+^ 4.261-10+^ 1.540 10+®
SD: 2.725 10+2 6.936 10+2 3.978-10+^ 1.612 10+®
Corr: 9.430 10“ ^ 9.823 10“ ^ 9.984-10“ ^ 9.999 10“ ^

Table 5.3; Summary statistics of the extinction time for processes that begin with one infectious 
case (j/o = 1, Zq = 0). The parameter values are as shown in (5.26) except for a  which has the 
value indicated in the table. With these values and a  equal to 2, 3, and 4, the value of Tto is equal 
to 1.183, 1.774, and 2.366, respectively. Time is measured in yeeurs. Qi, Q2 , Q3 are the first, 
second, and third quartiles, respectively. “Corr” is the correlation coefficient for the extinction 
time and the size of the epidemic.

the simulations (details of the implementation of the simulations can be found in the 

Appendix, Section A.2.2).

Table 5.3 shows summary statistics for the extinction time T  and the distribution 

of T  is shown in Figure 5.7. As n  and/or TZq increase, the probabilities P [T  <t]  decrease 

for each t >  0, more so if both TZq and n increase. For instance with a  = 2 and n =  50 

more than 80% of the simulation runs ended with extinction a t time t  = 300, while 

with a  =  4 and n = 400 this proportion is less than 45%. Also the mean and standard 

deviation, the first, second, and third quartiles, and the maximum of T  increase. For 

large values of n, the increase (as a  increases) is more significant than for small values 

of n  and similarly for large values of a  the moments increase more (as n  increases) than 

they do for small values of a .

The statistics in Table 5.3 and the graphs in Figure 5.7 also show tha t the distri

bution of T  is highly skewed to the right, with a very high peak a t the very beginning
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n = 50 n = 100 n = 200 n = 400

a  =  2

Min:
Qi:
<32 :
Mean:
<33:
Max:
SD:

0.0
3.0

10.0
25.5
33.0 

449.0
38.0

0.0
3.0

11.0
45.0
48.0 

699.0
78.9

0.0
3.0

11.0
82.7
62.0

2203.0
178.8

0.0
3.0

11.0
166.4
69.0

5421.0
444.7

a =  3

Min:
Qi:
Q2-.
Mean:
Qr-
Max:
SD:

0.0
5.0

22.0
54.9
77.0

1304.0
78.3

0.0
5.0

26.0
151.5
199.0

2954.0
256.3

0.0
5.0

30.0
725.8
853.0

16560.0
1400.1

0.0
5.0

36.0
9846.2

11700.0
188600.0
19348.8

a  =  4

Min:
Qi:
Qa:
Mean:
Qs:
Max:
SD:

0.0
7.0

40.0
87.8

126.0
1043.0
117.3

0.0
8.0

112.0
411.8
596.0 

5430.0
620.0

0.0
8.0

752.0
4710.1
6688.0

84620.0
7769.8

0.0
8.0

76190.0
425900.3
598000.0

6591000.0
689720.6

Table 5.4: Summary statistics of the size of the epidemic for processes that begin with one 
infectious case (t/o =  1, 2 o =  0). The parameter values are as shown in (5.26) except for a  which 
has the value indicated in the Table. With these values and a  equal to 2, 3, and 4, the value of 
TZq is equal to 1.183, 1.774, and 2.366, respectively. Time is measured in years. Q i, Q 2 , Q3  are 
the first, second, and third quartiles, respectively.

(a) (b)

CO ^4  _ ^  ,

Size of the epidemic Time urtil extmdion

Figure 5.8: (a) Histogram of the size of the epidemic, (b) Scatter plot of the size of the epidemic 
against the extinction time T.  In both cases the parameter values are as in (5.26) except ct =  2 
{IZq =  1.183). The initial conditions axe n =  50 and yo =  1, xq =  n -  1. Time is measured in 
years. 10  ̂ simulation runs of the stochastic model were carried out for a time long enough such 
that all runs ended with extinction of the infection. Hence the R  =  lO'̂  runs yielded a sample 
of size R  from the distribution of T  and a sample of size R  from the distribution of the size of 
the epidemic. In (a) the R  values of the size are plotted in a histogram, where the width of each 
box is equal to 50. In (b) each circle represents one of the R  pairs (xj, a,), where x̂ , Sj are the 
extinction time and the size of the epidemic, respectively, in the i-th simulation run.
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(first 1-2 years). As n  and/or TIq increase, the distribution becomes less skewed, the 

peak in the beginning reduces in size and the tail of the distribution becomes longer and 

has more mass.

The same trend was observed for the size of the epidemic. Table 5.4 shows 

summary statistics for the size and Figure 5.8 shows the distribution of the size and a 

scatter plot of the size against the extinction time for the case with a  = 2 and n  =  50. 

The other cases were qualitatively the same and are not shown here. The distribution 

of the size is highly skewed to the right. As n  and/or 7 ^  increase, the distribution 

becomes less skewed and it is more likely tha t the size of the epidemic will be large. The 

scatter plot in Figure 5.8 and the correlation coeflB.cient of the size and the extinction 

time (Table 5.4) show that there is a very strong positive correlation between the two 

variables.

P ro cesses  startin g  w ith  m ore th an  one in fected  ind iv idu al

In this part we consider epidemics that begin with more than one infected individual, so 

that 2/0 +  %o >  1- The process was simulated for the following three cases: a; =  2 and n 

=  50; a  =  2 and n  =  100; a  = 4 and n = 50. For each of these three cases, four different 

sets of initial conditions were used:

2/0 =  10% of n  and zq = 0

2/0 =  20% of n  and zo =  0
(5.36)

2/0 =  0 and zq = 10% of n

2/0 =  0 and zq =  20% of n.

For each of these twelve combinations of parameter values and initial conditions, 

the simulations were repeated R  =  10  ̂times and terminated a t a time point large enough 

such tha t the epidemic had died out in all runs. From each individual run, the extinction 

time and the size of the epidemic were obtained, thus yielding a sample r  =  { r i , . . .  , t r} 

from the distribution of the extinction time T  and a sample s = { s i , . . .  , from the 

distribution of the size of the epidemic. These two samples were used to calculate the 

statistics of T  and those of the size, shown in Table 5.5. Also their distribution was 

calculated and is shown in Figures 5.9 and 5.10 for some of the cases (the other cases 

were qualitatively the same and are not presented here).

As 2/0 or Zq increase the statistics (mean and standard deviation, quartiles, min-
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Figure 5.9: The distribution of the extinction time T  for processes with yo + zq > 1. The 
parameter values are as shown in (5.26) except a = 2 {IZq = 1.183). Time is measured in years,
(a), (b) The cumulative distribution, P[T  < (], of T  with n = 50 and n = 100, respectively. In 
each graph there are four curves, one for each of the sets of initial conditions shown in (5.36).
(c), (d) Histograms of T  with {yo,zo) =  (5,0) and {yo,zo) =  (0 ,5), respectively. In both cases 
n =  50. In these histograms the width of each box is equal to 1 (year) and the height of each 
box is equal to the number of simulation runs in which the epidemic died out during that year, 
so that roughly these graphs show the distribution of T  as P[t -  1 <  7” < i], counting t in years.

imum and maximum) of T  increase and the probability P[T  < t] decreases, more so 

when yo increases than when zq increases. In particular, the moments when yo is 10% 

(or 20%) of n and %o — 0 are higher than the moments with yo = 0 and zq equal to 10% 

(or 20%) of n and similarly the probability P[T  < t] is smaller.

Comparing Figures 5.7 and 5.9, it can be observed that the distribution of T  is 

less skewed when yo +  zo > 1. In this case there is no peak at t =  1 and the tail of the 

distribution is longer and has more mass. This difference between the cases with yo =  1 

and yo -b zo > 1 is more evident as yo increases than as zq increases (for instance, with 

yo =  5 the distribution is less skewed than with zo =  5).

These results agree with the results in Section 5.3.5 for the effect of increasing
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a  =  2, n =  50
(yo, zo) =  (5,0) (yo,zo) =  (10,0) (yo,zo) =  (0,5) (yo,zo) =  (0,10)

T Size r Size r Size r Size
Min: 17.4 1.0 82.7 10.0 9.8 0.0 17.0 0.0
Qi' 196.5 36.0 216.9 47.0 77.5 0.0 120.0 0.0
02: 266.3 54.0 284.9 64.0 120.7 0.0 179.9 4.0
Mean: 300.3 66.4 319.7 76.8 159.0 11.5 217.0 20.4
03: 365.9 84.0 382.2 93.0 199.3 7.0 273.2 26.0
Max: 1415.0 419.0 1821.0 504.0 1217.0 297.0 1616.0 455.0
SD: 148.7 45.6 148.8 43.6 124.1 28.4 139.0 35.6
Corr: 0.8247 0.8202 0.8119 0.8208

O' =  2, n =  100
(yo,zo) = (10,0) (yo,zo) =  (20,0) (yo,zo) = (0,10) (yo,zo) =  (0,20)

T Size T Size r Size r Size
Min: 87.8 11.0 108.9 49.0 29.6 0.0 52.4 0.0
01: 281.0 97.0 293.7 117.0 121.7 0.0 181.3 4.0
02: 370.3 141.5 383.6 158.0 182.7 4.0 263.2 26.0
Mean: 421.3 169.3 435.7 189.6 242.0 38.5 320.5 65.4
03: 507.0 211.0 521.7 230.0 298.3 36.0 403.0 90.0
Max: 1932.0 1007.0 1971.0 1016.0 2919.0 1266.0 2068.0 1058.0
SD: 202.9 104.5 202.9 104.6 186.2 80.6 200.0 95.2
Corr: 0.8599 0.8676 0.8810 0.8759

a  =  4, n =  50
(yo,zo) =  (5,0) (yo,zo) =  (10,0) (yo.zo) =  (0,5) (yo,zo) =  (0,10)

r Size r Size T Size T Size
Min: 54.8 6.0 97.9 26.0 7.3 0.0 20.5 0.0
01: 259.0 70.0 261.9 71.0 79.0 0.0 127.6 0.0
02: 370.4 121.0 368.6 118.0 129.3 0.0 209.5 10.0
Mean: 451.1 159.1 446.4 157.7 212.9 39.2 301.9 67.1
03: 561.7 207.0 552.0 201.0 251.7 24.0 388.2 95.0
Max: 2555.0 1106.0 2932.0 1362.0 2606.0 1111.0 2392.0 1015.0
SD: 274.9 125.7 266.9 122.0 224.7 90.5 259.6 112.1
Corr: 0.9367 0.9359 0.9350 0.9392

Table 5.5: Summary statistics of the extinction time, T, and the size of the epidemic for 
processes with yo + zo > 1. The parameter values are as shown in (5.26) except for a  which has 
the value indicated in the table. With these values and a equal to 2 and 4, the value of TZq is 
1.183 and 2.366, respectively. Time is measured in years. Qi is the %-th quartile, for i = 1,2,3. 
“Corr” is the correlation coefficient between the two variables.

yo on the marginal distributions of X , Y, and Z  and the explanation for this effect is 

the same as for the marginal distributions. If the epidemic starts with a small number 

of infectives the infection may die out before this number increases. The greater the 

value of yo, the less likely it is tha t all of these yo infectives will die within a year, 

and hence the minimum of T  is larger, the probabilities P [T  < t] are smaller, and the 

histogram of T  does not have the peak a t t  =  1 tha t it has in the cases with yo =  1- The 

more infectious cases are present when the epidemic starts, the more likely it is that the 

infection will persist and it will take a longer time until it dies out. The same holds if 

there are many inactive cases in the beginning but the effect is not so strong because
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Figure 5.10: Histograms for the size of the epidemic with (a) (yo, zo) =  (5,0) and (b) (yo,zo) = 
(0,5). In both cases n = 50, a  = 2 (7^ =  1.183), and the other parameter values are as shown 
in (5.26). In these histograms the width of each box is equal to 50.

the inactive cases cannot infect any susceptibles and spread the infection (for instance, 

starting w ith ten inactive cases boosts the persistence of the infection more than starting 

with five inactives, but still not as much as starting with ten infectious cases).

Increasing yo or zq had the same efiect on the size of the epidemic. As yo or zq 

increases the moments and the minimum and maximum value of the size increase and its 

distribution becomes much less skewed, although with a longer tail. This result should 

be expected since for epidemics tha t begin with a large number of infected individuals it 

is more likely tha t they will last long and therefore more susceptibles will be infected. It 

has to be noted though that the efiect of increasing z q  as described above is not always 

the same if we compare cases with {yo, zo) = (1, 0) with cases (j/o, zo) =  (0, m), for some 

positive integer m. For instance the distribution of the size when (yo, ^o) =  (0,5) is 

shghtly more skewed than when (yo,zo) =  (1,0) and also its statistics are smaller. This 

result a t first may seem odd, but it is probably due to the fact tha t with a  = 2 the value 

of TZo is ju st above one (1.183) so that the dynamics of the infection are not that strong 

and the epidemic dies out in some simulation runs before any of these 5 inactive cases 

become infectious (or before they infect any susceptibles, if they do become infectious).

5 .3 .7  D iscu ssion  and conclusions

When TZo < 1 the dynamics of the infection are weak and the infection dies out regardless 

of the population size for both the deterministic and the stochastic models. When 7 ^  > 1 

the dynamics of the infection are stronger and the deterministic model always stabilises
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at an endemic equilibrium. For the stochastic model though things are different; the 

infection eventually dies out with probability one but it may take a very long time for 

this event to occur.

If the population size is small or %o is not much larger than one then the disease 

dies out in a relatively short time. If the population size is large and is much greater 

than one, then after the initial phase of almost exponential growth of the number of 

infected individuals, the marginal distributions of X , Y, and Z  split into two distribu

tions, one centred around the stochastic equilibrium and the other around an endemic 

level which is close to the deterministic endemic equilibrium. The larger the initial pop

ulation size and/or 7 ^  the more mass appears around the endemic level. In these cases 

the process exhibits a quasi-stationary behaviour centred around the conditional means 

which are close to the deterministic endemic equilibrium. The simulations show tha t the 

process settles down there for some time. Nevertheless this is a temporary phenomenon 

and the infection eventually dies out. This can be observed in Figure 5.4 where the 

mode around the endemic level reduces (and the mode around the disease-free equilib

rium increases) in size as time increases and the distribution tends to become unimodal. 

Unfortunately, from the perspective of demonstration via simulation, “eventually” may 

be a very long time and some simulations cannot show that. The larger the initial size 

of the population, the greater the possibility that this quasi-stationary behaviour will 

appear and last a long time.

For instance. Figure 5.3 shows the results for Y{t)  from an individual realisation 

of the stochastic model with n = 1000 and yo = 10, zq =  0. For 800 years the value of Y  

fluctuates around the deterministic endemic equilibrium (î/ea ~  10) and does not show 

any tendency to become zero. Around t = 830, flnally Y  becomes zero, but Z  is positive 

at tha t point and hence Y  starts increasing again and continues to fluctuate around yea 

up to t =  1000 when the simulation was terminated.

This also explains why the mean of Y {t) remains positive for flnite t (and does 

not tend to zero, as for the case with TZq = 5.914 in Figure 5.2). The expected value 

of Y {t) is a weighted average of the results with and without extinction and hence the 

mean of Y (t) tends to zero as the probability of extinction increases. As was explained 

above, for large values of n  it is likely tha t the Y  {t) will remain a t the quasi-stationary 

level for a long time. Therefore during this time the probability of extinction increases
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Figure 5.11: The stochastic means E[y(i)] and E[y(t)|(y(s),Z(s)) (0,0),s < t] (as obtained
from numerical simulations) and the deterministic y{i). The parameter values are as shown 
in (5.26) except a  = 2 {TZq = 1.183). The initial conditions are n =  100, yo = 1, zq = 0. Time is 
measured in years.

very slowly and the mean of Y  (t) remains around the endemic level.

For instance, in the results shown in Figure 5.2 with TZq =  5.914, there was no 

simulation tha t ended with y  =  Z =  0 and the expected value of Y  (t) remained very 

close to ys2 • In contrast, we present the results from another simulation with n  =  100 and 

TZq = 1.183 (Figure 5.11) where we also calculated the expected value of y ( t )  conditioned 

on non-extinction of TB by time t. The proportion of simulations in which the infection 

died out soon is very small so tha t the conditional and unconditional means are very close 

initially. As the probability of extinction increases (see Figure 5.7, the curve for a  =  2, 

n = 100), the difference between the conditional and unconditional means increases: 

the conditional mean gets closer to the deterministic and the unconditional falls more 

and more below these two values, tending to zero. Therefore we have this seeming 

contradiction tha t the mean of Y  {t) remains positive over long periods (and sometimes 

does not even seem to tend to zero, as in Figure 5.2) although the expected value of the 

limiting distribution of Y  is zero.

The same analysis holds for the number of inactive cases and this probably makes 

the time until the extinction of the disease even longer (than if, for instance, there were 

no class of inactive cases in the population) because the disease dies out only when 

both Y{t)  and Z{t) become zero. But each of the events { y  (t) =  0} and {Z{t) =  0} 

is quite unlikely to occur, at any particular time point t. Actually in some realisations
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(for instance the one shown in Figure 5.3) the value of Y (t) became zero at some point, 

fluctuated between the values 0 and 1 for a while, but Z(t)  had a positive value during 

this period and finally Y (t) started increasing and “ended” up (when the simulation was 

terminated) fluctuating around the deterministic j/c2 •

Finally, it should also be mentioned that according to Anderson &; May (1991), 

the presence of the latent (inactive) class makes the extinction of the disease less likely. 

Because it acts like a “reservoir” of the infection (latents are not infectious but they may 

become infectious; also there is no excess death for the inactive class) thus boosting the 

persistence of the infection.

In conclusion, when TZq < 1 the disease dies out, but when 7 ^  >  1 it tends to 

stabilise at an endemic equilibrium; in the deterministic formulation it always does but 

in the stochastic only when the population is large and even then this is a temporary 

phenomenon. The stochastic fluctuations will eventually interrupt this quasi-stationarity 

and extinguish the infection. If the population size is small the infection may die out even 

without exhibiting this quasi-stationary behaviour. Nevertheless, the numerical results 

presented in this chapter suggest tha t the time until extinction of the infection may be 

very long, especially for large values of n  and TZq, and hence for any practical purposes it 

is only the endemic steady state that will be observed. For further research it might be 

interesting to modify this model by introducing immigration of infected individuals, so 

that the whole state space will become a single irreducible class of recurrent states and 

then the endemic steady state observed may become a genuine equilibrium distribution.

5.4 Linear Approximation

5.4 .1  Form ulation  and an a ly tica l resu lts

The first epidemic models that appeared in the hterature were relatively simple and 

could be studied analytically quite extensively (see, e.g., Bailey 1975). In time modellers 

have turned to more complicated models resulting in quite complicated stochastic models 

that are not manageable and hence analytical results cannot easily be deduced.

One of the elements of epidemic models tha t makes them so complicated and not 

“solvable” is the non-hnear term that is used in most cases for the rate a t which new 

infections occur (defined as a fraction of the product of the number of susceptibles and the
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number of infectives). Obviously this non-linearity makes the model more complicated 

mathematically. For instance if all the rates (at which the various events occur) were 

linear, the differential equation for the probability generating function would be of first 

order and the system for the moments would be closed (with the non-linear terms they 

are always open, containing higher order moments, and cannot be solved).

One of the methods tha t have been used in order to make the stochastic models 

simpler is the linear approximation: one of the variables in the non-linear terms is taken 

as deterministic and the resulting model is linear (see, e.g.. Tan & Hsu 1989, Isham 

1991, Herbert 1998). Depending on the structure of the original stochastic model and 

the purposes of the approximation, more than one variable can be taken as deterministic 

and not only those involved in the non-linear terms. It is expected tha t the resulting 

linear model will give rehable approximations if the values of the variables that are 

taken as deterministic are large enough, since it has been shown tha t in these cases the 

deterministic values approximate the stochastic means quite well (see, e.g., Bailey 1975, 

Chapter 5).

One of the main advantages of this method is tha t it makes the stochastic model 

simpler and more manageable, while keeping the structure of the original model (for 

instance, without reducing the number of variables involved or changing the rates). 

Of course this happens with the cost of “losing” some of the randomness of the original 

stochastic model, which means losing aU the information for the variation of the variables 

that are taken as deterministic. This can further affect the information for the remaining 

stochastic variables as well. However, a model of this short still accounts for more 

variation than for instance the corresponding deterministic model.

Overall there are indications that this approach can be helpful at least in some 

cases (for instance approximating the moments). In the remaining part of this section 

we present a linear model that approximates the stochastic model studied in this chapter 

and at the end we discuss the advantages and disadvantages of this approach. The linear 

approximation is used again for the model presented in the following chapter and some 

further remarks can be found in the corresponding Section 6.3.8.
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The transient behaviour

Consider the model defined in Section 5.1 (Figure 5.1) and assume tha t X  and Z  evolve 

deterministicaUy. The number of infectious cases, is a random variable for t  > 0.

Note tha t the numerical results presented in the previous sections indicate that the sizes 

of both X  and Z  are quite large in general, so tha t the model discussed in this section 

may be a good approximation to the original stochastic model.

Define Py(t) = ’P[Yi(t) =  y] for t >  0 and y =  0 ,1 ,------ The Py{t) satisfy the

differential equations

 ̂ =  [(1 “  -  1 ) +  (7 +  /i +  (5)(y +  l)pj+i(t)

for y = 0 ,1 , . . .  and pi{t) = 0 for any other y. Initially there are xq susceptibles, yoy'
J. ((\\ _  1 —infectives, and zq inactive cases, so that (0) =  1 and pj(0) =  0 for any y ^  yo. The 

probability generating function Vt(d]t) =  satisfies the equation

=  Pz{t){6 -  l)V i  +  1̂ (1 — p)—x{t)6 -  ( 7  +  p +  (5) j  {9 — 1 ) - ^ ,  (5.38)

with initial condition Vi{6;0) =  6^^.

Prom (5.38) the following equations for the mean and variance of Yi are deduced:

— L i l i l  =  1̂ (1 — p )—a;(t) — (7 +  p 4- ^)j E[l^(t)] +  /)z(t) (5.39)

+ [(1 -  p )% { t)  +  7  +  A* +  <5] m i t ) ]  (5.40)

+  2 1̂ (1 — p)—x(t) — (7 +  p  +  (5) j  Var[Y£(t)],

whose solutions are given by

E[y^(t)] =  yoe^^^^ + f  Pz{w)e~^^^^dw (5.41)
Jo

Var[l^(t)] =  f  dw^ (5.42)
Jo

where

F{t) =  (1 — p)— /  x{w)dw -  (7 +  /i +  <5)t 
n Jo

h{t) = Pz{t) +  1̂ (1 — p)—x{t) +  7  +  p +  (jj E[l^(t)].
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The equation (5.39) for the mean of Yi is the same as the equation for the deter

ministic y (system (5.1)). Since the solution for E[l^(t)] depends also on the values of 

the deterministic x{t) and z{t) (equations (5.39) and (5.41)), the value of the mean o îY i  

from the linear approximation is the same as the value of the deterministic y. Numerical 

results for the moments of Yi are shown at the end of this section.

E q u ilib riu m

Define Xg, Zg the values of rc(t), z(t) a t equilibrium

Xe =  lim x{t), Zg =  lim z(t),t-¥00 t—>00

and y^g the random variable defined by the limiting distribution of Yi{t)

hm P[y^(t) = y] = P[l^g — y] — Qyi

for y =  0 ,1 ,----  Let Vie(6) be the probability generating function of Ygg, defined by

'PieW = Taking the limits as t tends to infinity in (5.38), it follows tha t V^e

satisfies the equation

0 — PZf-Vie +  [(1 ~  p)—XeO — (7 +  /i +  (5)j de

whose solution is given by

Pte(G) = Qi +  (1 — Qi)e
(5.43)

where

Q i =  , '  / and K = (5.44)7 -t-d-|-/i -  a ( l  -  p)a;g/n a ( l - p ) a ; g / n

If Zg =  0 then % ( ^ )  =  1 for any 0, hence for 0 =  0 as well. Therefore Qq = I and =  0 

for any y ^  0. If Zg 0 then equation (5.43) gives the probability generating function of 

the negative binomial distribution with parameters K, and p^g =  1/Q i (where the K, and 

Qi are non-negative because Xe and Zg axe non-negative and from the second equation 

of (5.1) at equilibrium it follows that 7 -f-<5-|-p — o:(l — p)xg/n >  0; also Qi >  1 so that 

0 <  I)* Thus the limiting distribution of Yi{t) is given by

1 -p^e)*', y =  0 , l , . . . .  (5.45)
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The limiting distribution (5.45) can. also be deduced directly from the equation (5.37), 

taking the limits as t  oo. Finally, from the mean and variance of the negative binomial 

distribution it follows tha t

V.K.I -  CW, -1)8. -  ^, IV-
In Section 5.2 it was shown tha t the deterministic model has two equihbria ei =  

(n ,0, 0) and 62 =  (2:6252/625^62)5 given by (5.5a)-(5.5c). If %o <  1 then ei is stable and 

02 infeasible; if 7 ^  >  1 then e i is unstable and 62 stable. From (5.5c) it follows that

7  +  (5 +  / i - a ( l  -  p)x^^ /n  ’ 

which also gives the limit of E[}^(t)] as t  tends to infinity, since the value of E[l^(t)] is 

equal to the deterministic y{t). The right hand sides of (5.46) and (5.48) are the same if 

Xe = 2:62 =  6̂2 • Therefore the mean of the limiting distribution and the limit of

the mean of E[l^] are the same as the deterministic equihbrium ygi equal to 0 if TZq < 1 

and positive if TZq > 1. Finally, the probability of extinction of the disease is given by

1, if Zg =  0
1 (5.49)

7^ ’ if /  0,
I  QÎ

where the Qi and /C are as defined in (5.44).

5.4 .2  N u m erica l resu lts

In Section 5,3.1 the system of differential equations (5.14) was deduced for the means of 

%, y ,  Z. This system involves second order moments and similarly the system for the 

variances and covariances involves third order moments. Therefore the system for the 

first and second moments is open and cannot be solved. This is a problem encountered 

in most epidemic models, resulting from the non-linear term X Y  for the rate at which 

new infections occur.

One way of overcoming this problem is to express the higher order moments in 

terms of the first and second moments (see, e.g., Isham 1991, Herbert 1998 for moment 

closure methods). For instance, if (%, Y, Z)' has a multivariate normal distribution then

E [XYZ] =  E[X]E[y]E[Z] + E[X]Cov[y, Z] -k E[y]Cov[X, Z] -f- E[Z]Cov[X, Y], (5.50)
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with similar expressions for E[X^y], E[Xy^] etc. Substituting for the third order mo

ments from these expressions, makes the system for the first and second moments closed 

and hence it can be solved a t least numerically (see Section 5.3.1 for the validity of 

the normal approximation). The idea of using the normal distribution to approximate 

the distribution of { X ,Y ,Z ) '  is based on a suggestion by W hittle (1957). Distributions 

other than the normal can also be used (for instance the Negative Binomial, see, e.g., 

Herbert 1998, Herbert & Isham 2000). Moreover it has been observed that there may be 

situations where it is unreasonable to assume that the vector (%, Y, Z)' has a multivari

ate normal distribution, but the moments of X , Y, Z  can be very well approximated by 

those of a multivariate normal using the formulae like (5.50) (see, e.g., Herbert 1998).

The linear approximation is another way to overcome this problem since it makes 

the stochastic model linear and hence the resulting system for the moments is closed (see, 

e.g.. Tan & Hsu 1989 and Isham 1991 for applications of the linear approximation). In 

this section we present numerical results from both the linear and the normal approxima

tion and compare them with results from the simulations. For the linear approximation, 

the system of equations (5.1) and (5.40) was solved numerically, since the mean of Y  

from the linear approximation is simply the deterministic y. For the normal approxima

tion the third order moments were expressed in terms of the first and second moments 

and the resulting system was solved numerically.

For the results discussed in this section, we used the parameter values shown 

in (5.26), n  =  500 and n = 1000, and for each of these two values of n  the following sets 

of initial conditions:

yo =  1% of n, zq = Q
(5.51a)

yo =  1% of n, Zq =  1% of n

yo =  10% of n, zo =  0
(5.51b)

yo =  10% of n, Zq =  10% of n.

Also the case with n  =  500 and yo =  10% of z q = 0  was examined with other sets of 

param eter values: (a) the values shown in (5.26) except a  =  8 and (b) the values shown 

in (5.26) except ^  =  0.0012. Figures 5.12 and 5.13 show the means of X , Y, Z  and the 

standard deviation of Y for the cases with n  =  500, z q  =  0, and (a) yo =  1% of n, (b) 

yo =  10% of n, respectively. For the other cases the results were qualitatively similar (as
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Figure 5.12: Results from the linear model, the normal approximation, and numerical simula
tions for (a), (b), (c) the mean of X , V, Z, respectively, and (d) the standard deviation of Y. In 
each graph there are three curves, one for each of the methods mentioned above (linear, normal, 
simulation). The parameter values are as in (5.26). The initial conditions are n = 500, yo = 5, 
Zq =  0. Time t is measured in years.

it will be explained later) and are not shown. The three analyses were carried out up to 

time t = 300 so that the results discussed here are for the time interval It =  [1,300].

For the means the three analyses seem to agree quite well and in some cases the 

three curves can be hardly distinguished. In most cases, though, the linear approxima

tion gives slightly different results, while there is closer agreement between the normal 

approximation and the simulations.

For the standard deviations there were two kinds of behaviour observed:

(i) in the cases with initial conditions (5.51a) (and for both n  =  500 and n  = 1000) the 

standard deviation from the simulations was quite a bit larger than tha t from the linear 

and the normal approximations, throughout the interval It- All three curves have a peak 

during the first 10-20 years, and after t =  40 they settle down.

(ii) in the cases with initial conditions (5.51b) (and for both n  =  500 and n  = 1000) the
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Figure 5.13: Results from the linear model, the normal approximation, and numerical simula
tions for (a), (b), (c) the mean of X ,  V, Z, respectively, and (d) the standard deviation of Y. 
The parameter values are as in (5.26) and n =  500, yo = 50, zq = 0. Time t is measured in years.

behaviour is the same as for the cases with (5.51a), but in the beginning the standard 

deviation from the simulations is very much larger than that from the normal and linear 

approximations. The peak in the beginning (for all three curves) appears at an earlier 

time point (the first 5-10 years) and they settle down earlier (after t =  25).

It has to be noted though, tha t for each value of n  the value of the standard deviation 

to which the curves finally settled down was the same with all initial conditions (5.51a) 

and (5.51b) (for instance with n =  500 and all four sets of initial conditions, the standard 

deviation from the simulations was around 7 at t =  300 and around 2.5 from the normal 

and the linear approximations).

The large standard deviation from the simulations (compared to tha t from the 

other two methods) in the beginning can be explained from the difference between the 

initial value yo and the final value ye (at t  = 300) of Y .  For instance with n  =  500 the 

value of the endemic equilibrium 2/e (i.e. the deterministic equilibrium 2/ea and the mean
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of the quasi-stationaxy distribution of y )  is j/g =  4.9. W ith j/o =  5 ( l % o f n  =  500) 

in the beginning of the epidemic the value of the stochastic Y  slightly increases (to a 

maximum around y ~  6) from its initial value yo and then drops to yg =  4.9. W ith 

yo =  50 (10% of n) the stochastic Y  drops steeply to yg, but the difference from yo =  50 

to yg =  4.9 is already quite large (and larger than the difference between the maximum 

y % 6 and yg =  4.9 for the case with yo =  5). Therefore there will be more variation 

(between realisations) in the actual value of Y  during the interval tha t it drops to yg 

and the time it takes to “cover” this difference and hence a greater standard deviation 

during the beginning of the epidemic. Similarly for the cases with n  =  1000, for which 

the value of yg is around 9.8.

Nevertheless this variation cannot be “measured” in full by the linear approxi

mation because in the linear model only the Y  variable is stochastic, so tha t some of the 

randomness of the full stochastic model (which is reflected in the value of the standard 

deviation of Y) is not accounted for in the hnear model, resulting in smaller standard 

deviation for Y .  Also, the normal approximation seems to fail in these situations, since 

clearly it does not account for this variation in the value of Y  (in the beginning of the 

epidemic) and agrees more with the linear approximation than with the simulations.

After the first 50 years, the value of the standard deviation has settled down in 

all cases. Its value is underestimated by the normal and the linear approximations until 

the end of the interval It- For the linear approximation this can be expected since, as 

was explained above, the linear model does not account for all the randomness of the 

stochastic model, and that will be reflected in the variation of Y  (the only stochastic 

variable in the linear model) as well. For the normal approximation, it was expected that 

it would agree more with the simulations than with the linear approximation, but this is 

not the case here. One possible explanation for this is the fact tha t for the assumption 

for normality to be valid, it is not only n tha t has to be large, but also the proportions 

A /n , y/n, Z /n .  The proportions Y /n  were around 1% in all cases examined here.

5 .4 .3  D iscu ssion  and conclusions

The results presented in this section suggest tha t the method of linearising a model 

like the one presented in this chapter can be helpful in deducing analytical as well as 

numerical results. For the numerical results, it appears tha t in some situations the
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linear approximation can give equally good estimates of the moments, as the normal 

approximation or even the numerical simulations. However, there is the disadvantage of 

a loss of information for the variation of the variables tha t are taken as deterministic, 

which can further affect the variation of the remaining stochastic variables (for instance, 

in the numerical results presented here, the linear model underestimates the standard 

deviation of the stochastic variable).

Also, care needs to be taken as to whether and how the analytical results from 

the linear model can be extended to the stochastic one. For example, for this model 

with the linear formulation, the epidemic ultimately dies out with probability one only 

when 7 ^  <  1, but when %o >  1 the probability of ultimate extinction is % < 1 (see 

equation (5.49)). On the other hand, with the stochastic formulation the epidemic always 

dies out with probability one. For the simple underlying model discussed in this chapter, 

this substantial qualitative difference may not be so significant for any practical purposes, 

because in most cases of interest for TB, it is not the actual stochastic equilibrium 

(extinction) that will be observed, but the endemic quasi-stationary distribution; and 

there the two models agree. Nevertheless, in other situations differences like this may be 

significant and one should be cautious in interpreting the results from the linear model.

The linear approximation is used again for the model presented in the following 

chapter. Further remarks about the advantages and disadvantages of this method and 

the merits of each approximation can be found in the corresponding Section 6.3.8.
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Chapter 6

M odel Zeus: 

a detailed m odel for TB

6.1 Introduction

The two models presented in Chapters 4 and 5 have accounted for the most important 

determinants of the spread of tuberculosis within a population and they provide a means 

of understanding the very basic intrinsic dynamics of the infection. Nevertheless there are 

some further interesting features of TB that, for simphcity, were not taken into account 

(for instance the possibility of reinfection of individuals with an old latent infection) 

which we are going to investigate in this chapter.

Also, our ultim ate goal is to study the effects of the various control measures 

currently available (vaccination, chemoprophylaxis, and chemotherapy). W ith this goal 

in mind the model presented in Chapter 5 will now be modified to account for some fea

tures of TB that previously were either omitted or simplified. For instance in Chapter 5 

we assumed tha t the population is divided into three classes: susceptibles, infectives, 

and inactives. Chemoprophylaxis is recommended only for those with a latent infection 

and close contacts of infectious cases. Since homogeneous mixing is assumed we will 

assume tha t chemoprophylaxis is used only for latents and therefore these individuals 

must be in a separate class in the model from the other inactive cases.

An interesting question from a public-health point of view is with respect to the 

effect of treating non-infectious cases (which constitute about half of the TB cases -  see 

Chapter 2). In order to answer this question the number of non-infectious cases must
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Figure 6.1: A detailed model for TB: Model Zeus

be known.

Therefore now we consider a population subject to homogeneous mixing and 

divided into five classes:

(a) uninfected: individuals who have never been infected with TB

(b) latents: individuals who have been infected (at least once) but the infection has 

remained latent (they are non-infectious and healthy)

(c) infectious TB cases: individuals who have developed chnical disease and are infectious 

(smear-positive TB cases)

(d) non-infectious cases: individuals who have developed chnical disease but they are 

not infectious (this class includes all the smear-negative TB cases: patients with non- 

pulmonary TB and those with smear-negative pulmonary TB)

(e) recovered: individuals who have developed chnical TB and recovered spontaneously 

without treatm ent

The sizes of these classes a t time t will be denoted by X (t), Z { t ) , Y (t), W (t), U{t), 

respectively, and the size of the population by N{t)  =  A’(t) +  y  {t) - \-Z{t)-hW  {t) +  U{t) 

(for simphcity these classes will be sometimes referred to as the X  class, the Z  class, 

and so on). The initial sizes of the five classes are %(0) =  xq, y(0) =  yo, Z(0) =  zq, 

W (0) =  wq, 17(0) =  uo, and N{0) = xq yo + zq wq uq = n, where 1 <  xq <  n — 1, 

yo >  0, %o ^  0, Wo >  0, uo >  0, and n > 2 .  Occasionally we will use the notation X (t) 

and X for the vectors {X{t) ,Y{t) ,  Z (t) ,W {t) ,U {t))  and ( x ,y ,z ,w ,u ) ,  respectively.

If at time t  there are X{t )  uninfected and Y{t )  infectious cases in the popu
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lation then the probability of one new infection occurring in the interval [t, t  dt] is 

a X { t )Y { t )d t /n  +  o{dt) where a  is the efiective contact rate (as was explained in Sec

tion 4.1). Among those who get infected a proportion p  develop clinical TB within a 

year after infection (primary TB) and the remaining proportion, 1 — p, become latents; 

those who develop TB are infectious or non-infectious with probabilities q\ and 1 — gi, 

respectively. The difference between primary and secondary TB (i.e. whether an in

fected develops TB within a year or later) could be modelled with a time-delay model, 

but in this chapter we will not investigate this possibility and we keep the structure of 

a basic Markov process.

Latents may develop chnical disease at some point as a result of endogenous 

reactivation of an old infection or exogenous reinfection (acquiring a new infection). 

There have been doubts about whether exogenous reinfection is possible for TB (see 

Section 2.3) but in the recent hterature it has become more certain th a t reinfection is 

possible and should be taken into account, especially in areas with high risk of infection 

(see, e.g., Vynnycky 1996, Dye et al. 1998). Therefore, the possibility of exogenous 

reinfection for the latents is included in this model. On the other hand, we assume that 

reinfection is possible only for the latents and not for the non-infectious and recovered 

cases, since the relapse rates from these two classes (to the infectious class) are very 

high, so tha t the effect of reinfection is negligible for these cases.

The reactivation rate is denoted by ^  so that the probability of an endogenous 

reactivation occurring in [t, t+ d t] is (3Z{t)dt-\-o{dt). After reactivation the individual has 

infectious or non-infectious TB with probability Q2 and 1—92, respectively. For exogenous 

reactivation we assume tha t the effective contact rate between latents and infectious cases 

is Pr«, where 0 <  Pr ^  1- If Pr =  0 then reinfection is not possible; if Pr =  1 this means 

that past infections confer no immunity a t all, so that latents are equally likely to get 

infected as the uninfected. This is not the case with TB, since infection does provide 

immunity (at least partial and/or temporal) and therefore pr must be strictly less than 

1. A more realistic approach would be to assume tha t pr is an increasing function of the 

time since infection since most results (see, e.g., Styblo 1991, Dye et al. 1998) suggest 

tha t immunity conferred by an old infection wanes in time. This approach though would 

increase substantially the complexity of the model (since tha t implies keeping track of the 

time since infection for each infected individual) and therefore for simplicity we assume
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tha t Pr is constant. After reinfection an individual develops clinical disease within a year 

(primary TB) or remains latent with probabilities ps, 1 — ps, respectively; those who 

develop TB are infectious or non-infectious with probabihties 1 — Ç3, respectively. For 

simplicity we will denote Q2 =  P3Pr« so tha t the probability of a reinfection leading to 

primary TB occurring in [t,t-\-dt] is a 2 Z{t)Y { t)d t/n  + o(dt). We assume tha t additional 

infections do not change the reactivation rate /3 or the effective contact rate Q2.

Non-infectious TB cases become infectious a t a rate SW. Infectious and non- 

infectious cases recover spontaneously at rates 70 and So per capita, respectively, and 

those who have recovered may relapse later and become infectious or non-infectious cases 

at rates eiU  and €2 U, respectively.

Finally, there is immigration of susceptibles at a constant rate A, normal death 

at rate p  per capita, and excess death due to TB at rates p i and p 2 (per capita) for the 

infectious and non-infectious cases, respectively. Individuals with latent infection and 

those who have recovered are healthy and hence there is no excess death for these two 

classes. At some points the special case A =  pn  will be investigated.

The definitions of the variables and parameters used for this model are sum

marised in Table 6.1. The possible transitions and their rates are illustrated in Fig

ure 6.1.

It has to be noted that this formulation assumes that the values of çi, 92, Qs may 

be different in general. This means that when an individual develops clinical disease the 

probability th a t the form of disease will be infectious or non-infectious depends on

(a) whether the individual had an old infection or not (%, Qs for the former, qi for the 

latter)

(b) for an individual who had an old infection, whether the current incidence of disease 

is a result of the old infection (endogenous reactivation) or of a new additional infection 

(exogenous reinfection); the probabilities are Q2 and %, respectively.

In the literature there is not enough evidence to prove either tha t the çi,

Ç3 are equal or tha t they are not, and therefore modellers have taken either line (for 

instance. Dye et al. (1998) assumed tha t qi = Q2 = %; Blower et al. (1995) assumed tha t 

qi and % are not equal and % = 0 ) .  In this chapter we have used the three different 

parameters çi, since tha t allows for both approaches to be adapted, and in some

cases we investigate the situation çi =  92 =  93 as a special case.
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X (t)
Y{t)
m
W{t)
U{t]

Number of uninfected individuals a t time t 
Number of infectious TB cases at time t 
Number of latents at time t 
Number of non-infectious TB cases a t time t 
Number of naturally recovered patients at time t

Ml
M2
a
P
Qi

P
Q2

PrOL

P3
«2
Q3

6
70
«5g

62
n

Immigration of uninfected individuals 
Normal death rate (per capita)
Excess death rate due to TB for infectious cases (per capita)
Excess death rate due to TB for non-infectious cases (per capita)
The effective contact rate between uninfected and infectious cases 
Probability of developing primary TB (after first infection) 
Probabihty of developing infectious TB for those with prim ary TB 
(after the first infection)
Reactivation rate for the latents
Probability that reactivation leads to infectious TB
The effective contact rate between latents and infectious cases
Probability of developing primary TB (after reinfection)
«2 =  P3PrOi
Probability of developing infectious TB for those with primary TB 
(after reinfection)
Rate at which non-infectious cases become infectious
Natural recovery rate for infectious cases
Natural recovery rate for non-infectious cases
Relapse rate to the infectious class (for those naturally recovered)
Relapse rate to the non-infectious class (for those naturally recovered)
Initial total population size

Table 6.1: Variables and parameters used in model Zeus

The same problem arises for p  and p^. Assuming tha t they are not equal means 

tha t the probability that an individual develops primary TB after infection depends on 

whether this is the first infection or a superinfection. The mathematics here are carried 

out with the two distinct parameters and the situation p = p^ is studied as a special 

case.

6.2 The determ inistic model

For the corresponding deterministic model, let x{t), y{t), z(t), w{t), and u{t) denote 

the number of uninfected, infectious cases, latents, non-infectious cases, and recovered.
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respectively, at time t. The diflFerential equations for x, y, z, tu, and u are:

dx a  -
=  xy  -  /ix +  A

at n

^  =  PQi—xy  +  Qz— yz -  Vgy +  Q2^ z  +  (Jiü +  eiuOfXt 7% 7%
d z  a  0 ! 2  ,
—  =  { l - p ) - x y  y z - ^ s z  (6 .1)
OC 7% 7%

—  =  p ( l — g i)—xy +  (1 — Q?i)— yz  +  (1 — Q2 )pz  — AgW 4- C2 U 
at n  n
du _ _

=  702/ +  Oqw -  EgU, 

where, for simplicity, the parameters have been grouped as

T s =  7 o  4- / i  +  / i l  

A g  =  (5 4- <5q 4" / i  4- / i 2

(6.2)
Eg =  Cl 4- 62 4" /i 

$g =  /? 4- /i.

Here x, y, z, w, and u are non-negative continuous functions. The initial conditions are 

(x(0) ,y (0) ,z (0),iü(0) ,u (0)) =  (xo,yo,zo,wo,uo) E So, where

<So =  {x =  (x, y, z, IÜ, u) e  : 1 <  X <  n  — 1, X 4- y 4- z 4-10 4- u =  n}, (6.3)

where n >  2 is the initial total population size: n =  xq 4- yo 4- zq 4- ioq 4- uq. From the 

system (6.1) it follows that the total population size, N{t) = x{t)-\-y{t)-\-z{t)-\-w{t)+u{t), 

satisfies the following equation:

— \  — fiN{t) — fiiy{t) — p 2 w{t). (6.4)

W ith integration this gives

N{t)  =  -  4- ( n  -  f  e^®[/iiy(s) 4- fj,2 w{s)]ds, (6.5)
P \  P j  Jo

for t >  0. Prom this equation it follows tha t N (t),  and hence x{t), y(t), z(t), w{t), and

u{t) as well, are always bounded above by n  if A < /in and by A//i if A > /in.

Solving the system (6.1) with the derivatives on the left-hand side equal to zero,

we see that the system (6.1) admits three possible equilibria, e% =  { x f ,y f , z f ,w f ,u f ) ,  for

i = 1,2,3. The first of these points, e i, corresponds to the extinction of the infection:

e i =  (A//i, 0 ,0 ,0 ,0 ), while the other two points, 6 2  and 6 3 ,  are defined by

W)
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where V  = (p2 — 4y?iv?3, and for z =  2,3

a x \ !n

+  +  (6.7)

* A g E g  —  S o € 2
p ( l  -  9i)-a^i2/f +  (1 -  Q3}— y i 4  +  ^ y f  +  (1 -  92)/3zf n  n  fLj,

where

ipi =  — (^Eg +  Joei)  ̂ (1 — p){Pd2 — ^sds)  +  (—$* — /z— )[pdi 4- (1 — p)d3]^

_  A^^[p<ii +  (1 — p)d3] — ( ^ 0 g — fi^)[Tg{AgEg — 6 0 6 2 )  — 'Y o{S e2  +  eiAg)]
<5E,+«o£i

\  0:2 [rg(AgEg — 6 0 6 2 )  — 'i fo {0e2  +  Cl Ag)]

and

— Qji^s^a ~  ^0^2) 4- (1 — 9j)(^Eg 4- j  =  I 5 2,3.

Depending on the parameter values, the coordinates of 02 and 63 may be positive, 

negative, or complex. So we will call an equilibrium point e feasible if all its coordinates 

are non-negative, e i is always feasible. Table 6.2 shows when 02 and 03 are feasible, 

where TZq is the basic reproduction ratio, defined by

^  Q X/p p ^ s d i  +  (1 -  P ) f3d 2  . .
n  0g [Fg(AgEg — (5oe2) ~  7o(<5c2 4- Cl Ag)] ’

(see Section A.3.1 for the calculation of TZq) and 61  is defined (whenever 7 ^  < 1) as

0  ̂ _  [Fg(AgEg -  Ôo€2) ~7o(<^^2 4- eiAg)]
(JEg 4- SQei)X/p

W hen 7 ^  >  1 the system has only two possible equilibria, the disease-free equi

librium 01 and the endemic equilibrium 02, as is the case with most epidemic models. 

When 7̂ 0 <  1 though, we have a situation that is not tha t common in epidemic mod

elling: there is a subset of the parameter space where the system admits three feasible 

equilibria: the disease-free one and two endemic. In the remaining of this section we will 

study the stability of these critical points for the cases with TIq ^  1 (when 7 ^  =  1 the 

study of the stability is more complicated and since 7^o is a function of 15 parameters.
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Conditions Other Equilibrium
on TZq conditions® points

TZq > 1 ei, 6 2

ipi < —6 i ei, 6 2 , 6 3

TZq < 1 (pi = —61 ei, 6 2

ifi >  — d \ ei
> 0, Cy, >  0 ei, 6 3

>  0, Cy <  0 ei, 6 2

^  =  1
> 0, =  0 
<  0, Cy, <  0

ei
ei, 6 2

<̂ i < 0, >  0 ei
<̂ 1 = 0 ei

and 6 i are defined in (6.8) and (6.10), respec
tively, and is defined by = (p2 + 2( îA//x.

Table 6.2: The distinct and feasible equilibria of the deterministic model

it is highly unlikely that it can be exactly equal to 1; therefore the cases with TZq = 1 

have not been studied here).

The system (6.1) can be written in the form

where v{t) = (a;(t), y(t), z(t), m(t), u(t)) for t >  0 and F  is a mapping from into R^

with coordinates f i{x ,y ,z^w ,u ) ,  z =  1 ,2 ,. . .  ,5 given by /i(v )  =  dx/dt^ / 2(v) =  dy/dt, 

h { ^ )  = dz/dt^ / 4(v) =  dw/dt^ /s(v ) =  du/dt and the derivatives of rr, y, z, w, and u as 

defined in (6.1).

For the equilibrium points e&, k = 1,2,3, let DF{ek) denote the Jacobian matrix 

of F  a t the point ejt, i.e. the matrix whose ( i , j)  element is dfi{ek ) ld j  for i = 1 , . . .  ,5

and j  = X, y, z, w, u. Then DF{ek) is defined by

0 G O

pgi^Vk q z^V k  + <i2 0  ^

( i - p ) | y |  0 0

P(l-9l)®Pfc p(l  +  (1 -  (1 “  93)^Pfc +  (1 -  92)^ -A s  t2
0 7o 0 Jo —Eg

where =  {x\^y\^z^^w\^u\)  for A; =  1,2,3 as defined in (6.6) and (6.7).

The characteristic polynomial Pi(r)  of D F{ei)  is

P i {t ) =  +  T)(T'^ +  M u t  ̂ -I- M i2T^ +  M i s t  +  M 14), (6 .11 )

-  iVk n^k
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where the M u , M 12, M 13, M 14 are functions of the parameters (see Section A.3.1). 

According to the Routh-Hurwitz criterion (see Theorem 5.1) e i is stable if the following 

four quantities are positive;

D \ =  M il D 3 =  M 13D 2 — M 11M 14

D 2 =  M 11M 12 — M i3 D 4 =  M 14D 3.

After some calculations it can be shown tha t ifT^o <  1 then D{ >  0 for alH  =  1, 2,3 ,4  so 

tha t 01 is stable, but if T̂ o >  1 then at least one of the Di is negative and e i is unstable. 

If 7^0 =  1 then ZI4 =  0 and the criterion does not apply.

The characteristic polynomials f^(T) and Ps(r) of D F {e 2 ) and D F {e 3 ), respec

tively, are

■ f t W  =  -("T^ +  M jir^ - f  M i2T ^  +  Mi3r^ - f  M i ^ r  4- M^s), % =  2,3, (6.12)

where the M%i, . . .  , Mj5 are functions of the parameters (see Section A.3.1). According 

to the Routh-Hurwitz criterion (Theorem 5.1) is stable if the following five quantities 

are positive:

Dii = Mil

D {2 = M jiM j2 — Mf3

Di^ =  MizDi2 — M ii{M i4M ii  —  Mis)

D {4  =  M i4 D ;3  — M i 5 [ M i i { M i 2  — M j4 ) — M j2 M j3  4- M 1 5 ]

Di^ = Mi^Di4.

The coefiicient M35 can be w ritten as

M35 =  — (^Eg -f S o € i)^ [—ipi{xl)‘̂ 4- ys],

and from tha t it can be shown that if %o <  1 and tpi < —9i then M35 <  0 and therefore 

at least one of the D 34, D35 is negative and hence 63 is unstable. Therefore in the 

subspace of the parameter space where 63 is feasible (when 7 ^  < 1 and (pi < —6 1 ) it is 

also unstable. If we define

^  _  2y?iA//u (6.13)

—y?2 4- V %)
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then the second equilibrium point 62 is 62 =  (2:2, 2/2,^2; ^ 2) where

.5  =  ^  (6.14)

=  2 ^ ( % i  - 1 ) ,  (6.15)

and 2:|, u l as defined in (6.7). Also it can be shown tha t the conditions for the 

feasibility of 62 (shown in Table 6.2) are equivalent to the condition 7^i >  1: if 7^i >  1 

then 62 is feasible; if 7^i =  1 then 62 =  e i; otherwise (if <  1 or 7^i is not real) then 

02 is not feasible. It can be shown tha t if >  1 then £>21 >  0 and M 25 >  0. So it only 

remains to show whether (or when) D 2 2 , £^23, and £>24 are positive. Unfortunately the

algebra involved in these calculations does not allow us to investigate the signs of these

quantities. Further results can possibly be deduced using a computer algebra package, 

although here we will try a numerical approach instead.

First of all it has to be noted tha t the expression (6.14) for is quite common in 

epidemic models (see, e.g., Jacquez & Simon 1993), where instead of it is usually TZq  ̂

the basic reproduction ratio, tha t appears in the denominator of (6.14). W hen X = fj,n 

equation (6.14) gives an approximation to the proportion of uninfected individuals

_ J_
n TZi'

Because of the form of 02 and the way it is defined we suspect tha t 02 is stable 

if 7̂ 1 >  1 and unstable if 72.i <  1. One way to assess this numerically is by minimising 

the quantities £>22, D 2 3 , £>24 over the whole parameter space and under the condition 

7̂ 1 >  1. If the minimum values of £>22, D 2 3 , £̂ 24 are positive in this subspace (where 

TZi > 1) then D 2 2 , D23, D24 are positive whenever >  1 and hence 02 is stable. Details 

for the implementation of the numerical minimisation can be found in the Appendix 

(Section A.3.1).

The minimum values for D 2 2 , £>23, £>24 were found to be positive, but fioating 

underflow occurred during the implementation of the method (i.e. some of the quantities 

calculated during the procedure were smaller than the smallest number tha t the machine 

recognises). This fact does not necessarily invalidate the final result (that the minimum 

values are positive) but certainly raises serious questions for its validity. Also the fact 

that the numerical minimisation did not give negative values for the £>22, D 2 3 , D 24 means 

that at least for some combination of parameters with 7^i >  1, 02 is indeed stable. We 

will investigate this point in a little more detail.
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Figure 6.2: The values of x®, Xg, x§ for a particular set of parameter values: n =  100, n =  
0.0222, = 0.3, H2 = 0.21, A = /zn, q\ = 0.55, = 0.55, % = 0.055, p = 0.1, Pr =  0.6,
a  =  6 , Q2  =  PrO;, (5 =- 0.0001, 6 =  0.015, 5o =  0.2, ei =- 0.03, € 2  =  0.03, and 7 0  varies over 
7o =  0 .0001 ,0 .0002 ,... ,0.3243,0.3244. With 7 0  > 0.3245, and xg are not real and x\ = 100. 
Table 6.3 shows when the points x®, x |,  and x\ are feasible and stable.

The quantities D21, . . .  , D25, T̂ Oi and Hi were iteratively calculated with 70 =  

0.0001,0.0002,... , 0.9999,1.0000 and the other parameters equal to the following values

p =  0.0222 qi = 0.55 p =  0.1 6 = 0.015

A =  pn Q2 = 0.55 Pr = 0.6 ei =  0.03

Pi =  0.3 93 -  0.055 0:2 =  PrCt C2 =  0.03

P 2  = 0.21 a = 6 (3 = 0.0001 Ôq = 0.2

(6.16)

(and n =  100). These parameter values are not all representative of TB (see Table 6.8 

for the values that are representative for TB), but they are used here in order to show 

that 02 can be stable even when TZq < 1. The following results were deduced:

(a) For 70 =  0.0001,0.0002,... , 0.1587: both TIq and Hi are greater than 1; x§ is greater 

than 100 = X / p  and hence 63 is not feasible; x | is between 0 and 100 and 62 is feasible 

(the values of y |i 2̂1 2̂ shown here); the values of D 2 1 , . . .  , D25 are all

positive and hence 62 is stable.

(b) For 70 =  0.1588,0.1589,... , 0.3244: H q < 1 and 77i >  1 {(fi < —̂ i); both 62 and 63 

are feasible; D35 is negative, so 03 is unstable; all D21, . . .  ,T>25 are positive and hence 

02 is stable.

(c) For 7o =  0.3245,0.3246,... , 1.0000: 7^  < 1 and Hi is not real; both x | and x | are
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V alue o f 70 S tab ility

0.0001,... ,0.1587

7^0 >  1, 7Zi > 1 
01 unstable 

02 feasible, stable 
03 infeasible

0.1588,... ,0.3244

7^0 <  1, 72,1 >  1 
01 stable 

02 feasible, stable 
03 feasible, unstable

0.3245,... ,1

7̂ 0 <  1, 7̂ 1 not real 
01 stable

02 infeasible
03 infeasible

Table 6.3: Feasibility and stability of the deterministic equilibria in a subspace of the parameter 
space: grid for 70

not real and hence C2 and 63 are not feasible.

Figure 6.2 shows the values of as 70 varies from 0.0001 to 0.3244 (when

7o >  0.3245 the values of are not real).

These observations (which are summarised in Table 6.3) show that indeed there 

is a subspace of the parameter space where TZq is less than one but still the endemic 

equihbrium is stable. Of course this is local stability since the disease-free equilibrium is 

also stable in the area where TZq < 1 and TZi > I. We investigated further this behaviour 

of 02 by taking another grid of the parameter space, this time centred around the values 

which are representative for TB. For this grid we used n =  100, = 0.02, A =  //n,

Q2 =  Prd and for the other parameters the range of values shown in Table 6.4. All 

the combinations of parameters in these ranges were tried and for each combination the 

values of D 21, . . .  , f ) 25, TZq, and IZi were calculated. The result deduced was the same 

as above: whenever TZ\ > I (even if T̂ o <  1) 2̂ is stable.

It goes without saying that the results aforementioned do not constitute proof 

of our assertion tha t 62 is stable whenever TZi > 1 (and not only when TZq > 1), but 

they do give positive indications that this could be the case, and most of all they do 

prove tha t the endemic equilibrium 62 can be stable even when 7 ^  <  1. This behaviour 

is not common in epidemic models, although in the recent years it has appeared in the 

literature (see, e.g., Castillo-Chavez & Feng 1997, Kribs-Zaleta & Velasco-Hernandez 

2000, Kribs-Zaleta 2001, and their references), partly because modellers have turned to
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P a ra m e te r R an g e  o f  values
Q1 =Q2 = 93 0.50,0.51,... 0.60

p 0.05,0.06,... 0.20
70 = 0.055,0.056,.. . ,0.075
ei =  €2 0.010, 0.011, . . . , 0.020

Pr 0.30,0.31,... 0.60
0.0020, 0.0021 . . .  ,0.0040

Ô 0.010, 0.011, . . . , 0.020
Pi 0.10, 0.11, . . . 0.20
P2 0.08,0.09,... 0.15
a 8 ,9 ,. . .  ,13

Table 6.4: Grid of the parameter space centred around values representative for TB

more complicated models, which in some cases yield non-trivial behaviours.

The question that naturally arises from this behaviour is what happens when 

both 6 i and 62 are stable. When two equilibrium points are locally stable, each one 

has a domain of attraction, say A i  and A 21 respectively, so that if the vector of initial 

conditions xq =  (a;o,2/o,^OiW;ojWo) belongs to A i  then the vector x(t) tends to e i as t 

tends to infinity, while if xq 6 .A2 then x(t) tends to 62.

The deterministic system (6.1) was solved numerically with various initial con

ditions Xq and with the parameter values shown in (6.16) and 70 =  0.2. For these 

parameter values TZq =  0.9475, 7ii =  2.6481, and both c i and 62 are stable. W ith 

Zq = Xq = n  — I the system tends to extinction, while with yo =  1, xq =  n  — 1; 

W q = 1, X q =  n  — 1; and uq =  1, xo =  w — 1 it tends to the endemic equilibrium. 

These four points x q  are the ones that are “closest” to the disease-free equilibrium, since 

we are only interested in integer values for the initial conditions xq (see (6.3) for the 

definition of the initial values x q ) .  Therefore it seems that for any practical purposes, 

the point x j =  (n — 1, 0, 1, 0, 0) is the only point xq ^  e i from which the disease-free 

equilibrium can be reached, and for all the other possible x q  the system tends to the 

endemic equilibrium.

We tried different parameter values from the ones shown in (6.16), changing one 

of the parameters at a time (and keeping 70 =  0.2, since we know the behaviour when 

70 varies) for the two points

Xq =  (n -  1, 0, 1, 0, 0) and Xg =  (n -  1, 1, 0, 0, 0).
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In all cases the same behaviour was observed: starting from Xq the system tends to ei 

and starting from Xq it tends to 02- The only exceptions were the following:

(a) Close to the point where TZq — 1 changes sign, the deterministic system tends to 62 (as 

long as TZi > 1) with both initial conditions xJ, Xg. For instance with 70 =  0.1587 (7^ > 

1) and 70 =  0.1588 (7^  <  1) the system tends to  02 with both xJ and Xq. The same 

happens with qi =  0.6. So we calculated the values of . . .  , D 25, and TZ\ for those 

parameter values (as in (6.16) and 70 =  0.2) and for qi = 0.0001,0.0002,... , 1.0000. The 

results are shown in Table 6.5 which shows that qi = 0.6 is close to the point where 7 ^  — 1 

changes sign.

V alue o f qi S tab ility

0.0001,... ,0.3066
77o <  1, 77i not real 

01 stable 
02 infeasible

0.3067,... ,0.5994
77o <  1, 77i >  1 

01 stable 
02 feasible, stable

0.5995,... ,1
77g >  1, 77i >  1 

01 unstable 
02 feasible, stable

Table 6.5: Feasibility and stability of the deterministic equilibria in a subspace of the parameter 
space: grid for qi

{/3) Close to the point where 7^i — 1 changes sign or changes between being positive and 

pure complex (and as long as IZq < 1) the deterministic system tends to 0% with both 

initial conditions xJ, Xg. For instance that happens with 7g =  0.3244 (7^i > 1 )  and 

7g =  0.3245 (771 non-real) and also for p = 0.07. Table 6.6 shows that the value p = 0.07 

is close to the point where 77i changes from being non-real to real and greater than one.

It seems therefore that close to the point where 77i — 1 changes behaviour (and 

as long as 77o <  1) the system is attracted to 01; in most of the numerical solutions 

this happened a t a slower rate than when the corresponding param eter value (that was 

varied) was far away from that point. On the other hand, close to the point where 77q — 1 

changes sign (and as long as 77i remains greater than 1) the system is attracted to 02- 

In some cases it is more accurate to say tha t the system is ultimately attracted to 02; 

Figure 6.3 shows the value of z  over a period of 6000 years ((a) shows the first 1000 years 

and (b) the whole period) for a system tha t begins from xJ =  (n — 1, 0, 1, 0, 0) with the
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V alue o f p S tab ility

0.0001,... ,0.0672
7̂ 0 < 1, 97.1 not real 

01 stable 
02 infeasible

0.0673,... ,0.1057
TZq < 1, 7̂ 1 > 1 

01 stable 
02 feasible, stable

0.1058,... ,1
TZq > 1, 7Zi > 1 

01 unstable 
02 feasible, stable

Table 6.6: Feasibility and stability of the deterministic equilibria in a subspace of the parameter 
space: grid for p

(a) (b)

T im e tT im e t

Figure 6.3: The value of z(t) as obtained from numerical solution of the system (6.1). (a) shows 
the first 1000 years and (b) the first 6000 years. The parameter values are as shown in (6.16) 
and 7o = 0.1588. The initial conditions are xo = n -  1 and zq = 1.

parameter values shown in (6.16) and 70 =  0.1588. In this case TZq < 1 and 7Zi > 1 and 

both 6 i and 02 are stable. Initially the value of z decreases and reaches its minimum 

at z(226) =  0.2023. Then it starts increasing slowly and after 3500 years it jumps to a 

peak of z = 33.2 and then drops to the endemic value =  27.38. A similar behaviour 

was observed for y, and u. It has to be stressed that from these results it appears 

that the final equilibrium may not be so significant for any practical purposes, since it is 

reached after a very long time and for such a long timescale it is unreasonable to assume 

that the values of the parameters remain the same.
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Summarising the results for the equilibrium of the deterministic system, we have 

found the following:

• The deterministic system has three equilibrium points: the disease-free equilibrium e i, 

and two endemic equilibria 62 and 63.

•  e i is locally stable when 7 ^  <  1 and unstable when TIq> 1 .

•  62 is feasible when 7^i >  1 and infeasible otherwise. The numerical results presented in 

this section prove tha t 62 is stable in some subsets of the param eter space where 7^i >  1 

(and with either %o >  1 or %o <  1) and suggest tha t maybe this is the case throughout 

the region >  1 (even when 72,o <  1).

•  63 is unstable in the space where it is feasible.

Finally it has to be noted tha t the fact tha t the endemic equilibrium can be 

stable even when 7 ^  <  1 has serious implications for the control of the disease. If public 

health policies aim a t reducing 'Rq in order to control the disease, then for TB this is not 

enough: reducing 72.q to a value less than  one makes the disease-free equilibrium stable, 

but still the disease may not tend to extinction (depending on the initial conditions) if 

7̂ 1 is still greater than one. Therefore R \  has to be reduced (to a value less than 1) 

as well, in order to "guarantee" the extinction of the disease. In any case, though, the 

time until extinction (if extinction is achieved) can be very long, as the results in the 

following sections will show.

6.3 The stochastic m odel

6.3 .1  T h e transien t phase

Let Px(^) =  p(a;, y, z, w, u; t) be the probability that there are x  uninfected individuals, y 

infectious cases, z  latents, w non-infectious cases, and u recovered cases in the population 

at time / >  0:

Px{t) = p { x ,y ,z ,w ,u ; t )  =  P[X{t) = x ,Y { t )  = y ,Z {t)  = z ,W { t)  =  tu, U{t) =  u], (6.17)

for t >  0, X e  5  =  Z^., and Px(t) =  0 otherwise. The initial conditions are Pxo(O) =  

1 and Px(0) =  0 for any x  xq where xq =  (xo,yo,zo,wo,UQ) 6  «So as defined 

in (6.3). The corresponding Kolmogorov forward equations for Px(^) are given in the Ap

pendix, equation (A.7). The joint probability generating function P (0 i, 02, 0 3 , 04, 05; t) =
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satisfies the equation

dV dV

dV
+ [(/i + /^i)(l — 2̂) +70(^5 — ^2)]^^

dV
+  [m(1 ~  ^3) +  Q2 ^ ( ^ 2  — ^3) 4- (1 — g2)/?(^4 — ^3) ] ^ ^

dV
+  [(/̂  +  /U2)(l — O4)  +  0 ( 6 2  — Oa ) +  #o(#5 — ^4) ) ^ ^  (6.18)

dV
+  [/^(l “  ^5) +  fl(#2 — ^5) +  (2(^4 — ^3) ] ^ ^

4— 02[~&i 4- pgi 2̂ 4- (1 — p )^3 4 -p(l — 91)^4]n  d9 id 0 2

4— -^ 2[93 2̂ 4- (1 — 93)^4 — ^3]n  0 6 2 8 6 3  ’

with the initial condition V (6 1 , 6 2 , 6 3 , 6 4 , 6 3 ] 0 ) = 6 ^^6 2 6̂ ^°6 ^ ° 6 ^ .

From equation (6.18) a system of diflFerential equation for the first and second 

moments of X , Y ,  Z^W,  and U is deduced; the equations for the means are the following

= -  -E[XY]  -  pE[X] + A
uit Tt

= pqi -E[XY]  +  î3^E[yZ] -  r,E[y] + î 2/3E[Z] + <5E[iy] + eiE[Ĉ
at n TL

=  (1 - p ) - E [ x y ]  -  — E [y z ] -  (/3 +  p)E[Z] (6.19)
CLZ TL TL

=  p ( l  -  gi)-E[Xy] +  ( 1  -  9 3 ) — E [ y x ]  +  ( 1  -  92)/3E[Z] -  A.E[M +  £2E[!7]
Cbt TL TL

^ 2  =  .yqE[y] +  4 E [ M  -  (ei +  £2 +  p )E M ,

where the Fg and Ag are as defined in (6.2) and the terms E[%Y] and E[YZ] can be 

expressed as

E[XY] =  Cov[X,Y] +  E[X]E[Y]

E[YZ] =  Cov[y, Z] +  E[y]E[Z].

The equations for the variances and covariances are given in the Appendix (Sec

tion A.3.2). The system of equations for the first and second moments contains higher- 

order moments and hence it is open and cannot be solved directly.

From the system (6.19) it follows that the expected value of the total population 

size satisfies the equation

= A -  pE[N{t)] -  /iiE[y((}] -  mE[W(()],

125



which with integration gives

e " " ' f  e '"{piE [y(«)] +  p 2E[H^(s)]}ds. (6.20)

Equation (6.20) shows tha t the mean population size is bounded above by A//x if A > /jlti 

and by n if A <  /in. Therefore, E[X(t)], E[y(t)], E[Z(t)], E[W{t)], E[U{t)], and E[iV(t)] 

are bounded above by max{n, A//x}, for all t  >  0.

6.3 .2  T h e equilibrium  sta te  o f  th e  process

The process described in this chapter is a Markov process in continuous time with 

countable state space S  =  Z^.. Let A  denote the subset of S  that contains all the states 

of the form (x, 0, 0 , 0, 0) and V  the remaining set of states:

.4 =  {(x ,0 ,0 ,0 ,0) €Z5.}

V  = S  -  A  = { { x ,y ,z ,w ,u )  €  Z® ; (y ,z ,w ,u )  ^  (0 , 0, 0 , 0)}.

The sets A  and V  form two irreducible classes. The former is closed and absorb

ing, while the la tter is open and transient. The fact tha t the class A  is absorbing means 

that once the chain reaches one of the states in A  then it will remain within A  (because 

there are no infected individuals in the population and hence there will be no more new 

infections and the population will remain free from the infection). Using Theorem 5.3 

we will show tha t the chain will be absorbed in A  with probability one.

Following the notation in Definition 5.2, we define the functions aj(x ), dj(x), 

eÿ(x), for X =  {x ,y ,z ,w ,u )  6 «S, i , j  = 1 ,2 ,. . .  ,5 and i ^  j ,  as follows: ui(x) =  A 

and Oj(x) =  0, for j  = 2,3,4,5; di(x) =  /ix, c?2(x) =  (/i +  //i)^, ds(x) =  fiz, c?4(x) =  

(/i -I- /22)w, and ds(x) =  fj,u. The definitions of are shown in Table 6.7.

j eij(x) e2j(x ) C3i(x) e4j(x ) e5j(x )
1 — 0 0 0 0
2 VQi%xy — Q 2 l 3 z q s ^ y z 5w eiu
3 { l - p ) ^ x y 0 — 0 0
4 p (l - 9i ) ^ 2;y 0 {1 -  q2 )Pz + {1 -  q3 ) ^ y z — t2U
5 0 702/ 0 —

Table 6.7: The functions ê - from Reuter’s Theorem

The functions dj and satisfy the conditions (5.17) for all j  =  1 , . . .  , 5 and 

j .  Also, by “freezing” the states (x, 0 ,0 ,0 ,0), i.e. assuming that oi(x , 0 ,0 ,0 ,0) =
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rfi(a;, 0, 0 , 0, 0) =  0 for all a; =  0, 1, . . . ,  the states (a;, 0, 0, 0, 0) become absorbing and

Theorem 5.3 can be apphed. Let Ak  denote the set of all states (x, y, z, w,u)  E D such

that x - \-y - \ - z -{ -w -h u  = k for A: =  1 ,2 , Then it follows that

5
Tk =  max Oi(x) =  A (6.21)

5
Sk =  min ^ d i ( x )  =  iik, (6.22)

i= i

for all A; =  1 ,2 , From the statements (a), (b), and (c) of Theorem 5.3 the following

results can be deduced:

2̂ \ r k  rkrk-i  r* • • • r 2 /

1 ^  / I  (U* &( &- ! ) -  -3 p * -2 \
=  — j = ° ° -

Hence the process is regular.

Therefore 7t ( x , y) =  0 if y  E D and a(x ) =  X)ye>l ^(* , y ) = = l  for all x  E X>, where 

7r(x, y) is the limit as t  tends to infinity of the probability P[X(t) =  y|X (0) =  x] 

for X ,  y E «S.

Hence the mean time to reach A,  starting from any state i in D, is finite.

Since Pxo(O) =  P[X(0) =  x q ] =  1, the above results imply tha t Xlyew4 ^(y) =  1

where

7r(y) =  lim P[X(t) =  y], for y  E 5 ,r-^oo

so tha t the population will ultimately be free from the infection with probabihty 1. After 

the extinction of the infection, the process of the uninfected individuals can be described 

by a birth  and death process with birth  and death rates A* =  A and fik =  y>k, respectively, 

for k = 0 , 1 , . . . .  The limiting distribution is a Poisson process with parameter X/fi. 

Summarising, the results of this section are:

• The process will be absorbed in A  with probability 1, so tha t extinction of the infection 

is certain: X)ye>t^(y) =  1-
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•  The mean time until extinction is finite.

• After extinction of the infection, the limiting distribution of the uninfected individuals 

is Poisson with parameter A//i and

0 if y  e

kl

6.3 .3  T h e quasi-sta tionary  d istr ib u tion

if y  =  (A;, 0,0 ,0, 0) G A.

The results in the previous section show tha t the TB infection will die out in finite 

time with probability one. The fact tha t extinction occurs in finite time, though, does 

not set any limits to the length of the extinction time, which can be arbitrarily large. 

Moreover, as was explained in Section 5.3.4, before extinction the process may settle 

down around a quasi-stationary level and remain there for a long time before proceeding 

to extinction. Some of the most im portant results on the theory of quasi-stationary and 

limiting-conditional distributions were presented in Section 5.3.4. Here we will briefly 

discuss the implications of the existence of quasi-stationary distributions.

For X (t) =  {X{t) ,Y{t) ,  Z{t) ,W {t),U {t)) ,  the state space «S =  Z® of the process 

{X(t), t >  0} consists of an absorbing class A  and a transient class V  = S  — A,  where

.A =  {(x, 0 ,0 ,0 ,0) : a; G Z+}.

If the limits

l im P [X {t)  = j\X{0) = i ,X ( t )  = <t>j, i j  in V

exist and are independent of the initial conditions i then the process has a limiting- 

conditional distribution. This means that the process conditioned on non-absorption in 

A  has a stationary distribution over V.  Given the fact tha t ultimate absorption in A  is 

certain, this implies that the (unconditional) process can go through this “stationary” 

distribution, where it will settle for some time and then eventually it will be absorbed 

in A.  Thus if we look at an individual realisation of the process we may observe an 

apparent stationarity (at a level different firom the one corresponding to the extinction 

of the infection) while the process is still in the transient class V  (and hence in the 

transient phase) before it reaches the absorbing class A.

The numerical results tha t we present in the following sections exhibit this be

haviour. For instance the means of X ,  Y, Z, W , U stabihse at a level different from
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(A //i,0 ,0 ,0,0) which corresponds to the extinction of TB. Also the marginal distribu

tions (Section 6.3.6) split into two distributions, one centred around the disease-free 

equilibrium and the other around an endemic equilibrium (the equilibrium of the condi

tional means).

It appears therefore tha t our process has a limiting-conditional distribution and 

for th a t reason the conditional properties of the process have been studied along with the 

unconditional ones in the following sections, where we present some numerical results 

(from simulations of the stochastic process). Analytically the conditional properties can 

be deduced from the differential equation (A.7) for the probabilities Px(^); define

px(() = P[x(t) € A ]  =  p [y (t)  =  z ( t )  = w { t)  = u ( t)  =  0] =  ^ p x ( t )
(6.23)

gx(t) =  P[X(i) =  x |X (t) i A ]  =

for t >  0, X G P , and qx{t) =  0 otherwise. Then the differential equation for the 

probabilities qx{t) can be deduced by differentiating with respect to time in (6.23) and 

substituting in (A.7). The conditional probabilities qx{t) can also be evaluated numeri

cally with the algorithm developed by Pollett & Stewart (1994) (see also Section 5.3.4).

6.3 .4  E pid em io log ica l ind ices

In this section we will study some epidemiological indices which are helpful in assessing 

the severity of an epidemic. The indices to be studied are the following:

D efin itio n  6.1

• R isk  o f in fec tio n  a n d  re in fec tio n : The risk of infection at year i is the number of 

primary infections that occurred during the i-th year, expressed as proportion per 100,000 

general population. Primary infections are the infections of uninfected individuals (so 

that this index does not account for reinfections). The risk of reinfection at year i is 

the number of reinfections that occurred during the i-th year, expressed as proportion per

100,000 general population.

•  Inc id en ce : The total incidence at year i is the number of new cases that developed 

during the i-th year per 100,000 general population. On some occasions the incidence of 

infectious TB (number of new infectious cases) and the incidence of non-infectious TB 

(number of new non-infectious cases) will be given separately.
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•  M o rta lity : Total mortality at year i is the number of TB-deaths during year i, per

100,000 general population. This index counts only the excess deaths due to TB and 

not the total number of deaths of TB cases. The mortality of infectious TB and that of 

non-infectious TB will be given separately on some occasions.

•  P rev a len ce : Prevalence of infectious and non-infectious TB at year i is the number 

of infectious and non-infectious cases, respectively, per 100,000 general population at the 

end of year i. Prevalence of TB infection at year i is the number of infected individuals 

per 100,000 general population at the end of year i.

For the incidence of infectious TB, new infectious cases developing during a cer

tain  year are all the transitions from the class of uninfected (X)  and the class of latents 

{Z) to tha t of infectious cases (Y) during tha t year. Prom an epidemiological point of 

view the number of recovered {U) or non-infectious cases {W) who become infectious 

should not be included in this index (see, e.g.. Sty bio 1991). Similarly, for the incidence 

of non-infectious TB, new non-infectious cases developing during a certain year are all 

the transitions from the class of uninfected (X) and the class of latents (Z) to tha t of 

non-infectious cases {W) during that year. Finally, for the prevalence of TB infection, 

the number of infected individuals is the sum Y  Z  -\-W + U.

Throughout this chapter these rates are presented as proportions per 10  ̂ general 

population and therefore the term “per 100,000 general population” will be occasionally 

suppressed. The rates presented in this section were calculated from simulations of the 

stochastic model (details of the implementation of the simulations can be found in the 

Appendix, Section A.3.3). These rates were also calculated for each year i conditional

on non-extinction of the epidemic by time i. For simplicity they will be referred as the

conditional rates.

The param eter values used in these simulations are shown in Table 6.8 (which 

also cites the references which justify these choices). The simulations were carried out 

for three population sizes n  =  100, n  =  1000, and n =  10000. For each of these three 

situations, the following six sets of initial conditions were used:

Pq = \,xq  = n  — 1 IÜO =  10, Xq =  n — 10

2/0 =  10, Xq =  n  — 10 uq =  10, xo =  n — 10 (6.24)

Zq =  10, Xq =  n — 10 Vq = Zq = W q = U q = 10.
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Param eter Value References
A /in

0.02
Ml 0.13 Grzybowski &: Enaxson (1978), Dolin et al. (1994), 

Bloom & Murray (1992), Springett (1971), 
Enarson & Rouillon (1998)

M2 0.1 Grzybowski & Enarson (1978), Dolin et al. (1994), 
Bloom & Murray (1992), Springett (1971), 
Enarson & Rouillon (1998)

a 10 Murray et al. (1993), Styblo (1991)
P 0.05 Murray et al. (1993), Styblo (1991),

Sutherland, Svandova & Radhakrishna (1982), 
Vynnycky & Fine (1997), Enarson & Rouillon (1998)

Qi 0.55 Murray et al. (1993), Styblo (1991)
0 0.002 Krishnamurthy & Chaudhuri (1990), Dolin et al. (1994), 

Enarson & Rouillon (1998),
Krishnamurthy, Nair, GotW & Chakraborty (1976)

02 0.55 Dye et al. (1998), Blower et al. (1995),
Vynnycky &: Fine (1997), Krishnamurthy et ai. (1976)

P r 0.45 Dye et al. (1998), Sutherland et ai. (1982), 
Vynnycky & Fine (1997)

P3 0.05 Murray et ai. (1993), Styblo (1991), Sutherland et ai. (1982), 
Vynnycky & Fine (1997), Enarson & Rouillon (1998)

Q2 P3PrOi

03 0.55 Dye et al. (1998), Vynnycky & Fine (1997)
6 0.02 Grosset (1989), Murray et al. (1993)
7o 0.066 Murray et ai. (1991), Springett (1971),

Enarson & Rouillon (1998), Grzybowski & Enarson (1978)
So 0.066 Murray et ai. (1991), Springett (1971),

Enarson & Rouillon (1998), Grzybowski & Enarson (1978)
€l 0.015 Styblo (1991), Springett (1971), Campbell (1974)
C2 0.015 Styblo (1991), Springett (1971), Campbell (1974)

Table 6.8: Parameter values for model Zeus

The simulations were carried out up to time t =  300 years. Throughout this 

section time is measured in years.

Prevalence of infectious TB

The conditional and unconditional prevalences of infectious TB, as calculated from the 

simulations, are shown in Figure 6.4. For yo =  10 and yo = z q  = w q  =  u q  =  10 the 

prevalences are quite similar and higher than in the other cases. After these two, the 

next most severe situation is with uq = 10, then with wq =  10, then with j/o =  1, and the 

least severe with z q  =  10. The same ordering in severity is observed in the conditional 

prevalences, but there the diflFerences decrease as time increases and the system tends

131



(a) (d)

8

P

1

(b)

(c)

2  *00

Time t

i  ““

Time f

(e)

Time I

(f)

Time t

Figure 6.4: (a),(b),(c): Prevalence of infectious TB for n =■ 100, n =  1000, and n =  10000, 
respectively. (d),(e),(f): Conditional prevalence of infectious TB for n =  100, n =  1000, and 
n =  10000, respectively. All the rates were calculated as proportions per 10  ̂ general population. 
In each graph there are six curves, one for each of the set of initial conditions shown in (6.24) 
(the curves are labelled as in Figures (a) and (d)). The parameter values used are shown in 
Table 6.8. Time is measured in years.
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(a) (b)

T im e  f T im e t

Figure 6.5; Prevalence of infectious TB for two special cases: the parameter values used are the 
ones shown in Table 6.8 except =  0 for (a) and 0  =  0.6 for (b). In both cases n =  1000. All 
the rates shown are proportions per 10̂  general population. Time is measured in years.

to quasi-stationarity. So that at time t = 300 the conditional prevalences are almost the 

same regardless of the initial conditions The diflFerences observed for the

various initial conditions can be explained by the following arguments:

• The prevalence is higher with larger values of because then there are more infections 

from the beginning of the epidemic which increase the reservoir of infected individuals 

thus boosting the severity of the epidemic.

• The prevalence is higher when uq = 10 than when wq = 10 because the total death 

rate 11 + ^2 for the class W  decreases its size more than the normal death rate /u for the 

class U  decreases the size of U. Therefore the number of infectious cases Y  developing 

from U  is greater than that from W  and hence starting with uq =  10 increases the value 

of Y  more (and faster) than starting with wq = 10. And having more infectious cases 

boosts the severity of the epidemic, as was explained above. This explanation can be 

supported from the results of cinother simulation shown in Figure 6.5(a). In this case we 

used n =  1000 and the parameter values shown in Table 6.8, except that /ig was set equal 

to zero. In this case the prevalence of infectious TB was almost identical throughout the 

time interval Xf =  [1, 300] for the two cases {uq = 10 and wq =  10).

• The prevalence is the smallest when zq = 10 because the rate q2/3 at which the latents 

become infectious is very small and much smaller than the rates 6  and ei at which the 

non-infectious and the recovered, respectively, become infectious. Therefore the size of 

the infectious class Y  increases faster (and more) when uq — 10 or wq =  10 than when 

Zq = 10 leading to more severe epidemics. This explanation can be supported by the
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results of the simulations shown in Figure 6.5(b). For this case we used a larger value 

for P ((3 =  0.6, the other parameters as shown in Table 6.8, and n  =  1000); initially the 

prevalence of infectious TB is much higher with zq =  10 than with wq =  10 or uq = 10 

and remains higher up to time t  =  300.

These observations hold for all three cases n  =  100, n = 1000, and n  =  10000 and 

seem to suggest tha t the level of the prevalence of infectious TB depends (proportion

ately) on the rates a t which individuals become infectious. Therefore the prevalence will 

be higher when the epidemic starts with 10 individuals in the class Ff, for H  = Z ,W , U, 

if the total contribution from H  to Y  is higher than the others (i.e. the more it increases 

y ,  the more severe the epidemic will be). y

Comparing the results for n  =  100, n =  1000, and n =  10000 at the end of the 

interval 2 * it can be observed that the prevalences for n =  1000 and n =  10000 are 

quite similar, while those for n = 100 are shghtly lower than the others. This difference 

remains even between the conditional prevalences. This is apparently a result of the 

effect of the initial total population size n  on the quasi-stationary distribution. As has 

been explained before, the system remains in a quasi-stationary state before it reaches 

the final stationary distribution (which corresponds to extinction of the infection), unless 

the values of TZq and/or n  are too small to preserve an endemic infection. In this case 

TZq =  4.59 but n  =  100 so tha t the system does not remain in quasi-stationarity, as it 

does when n  is 1000 or 10000. Thus the prevalences steadily (although slightly) decrease 

when n = 100 while they seem to have stabilised when n  is 1000 or 10000.

Prevalence of non-infectious TB and TB infection

The conditional prevalences of non-infectious TB are shown in Figure 6.6. The graphs 

for the unconditional prevalences are similar to the ones for infectious TB and are not 

shown here. The unconditional and conditional prevalences of TB infection are shown 

in Figure 6.7. The ordering in severity (highest prevalences rates) is the same as for 

the infectious TB: yo =  10 and yo = zq = wq = uq = 10 are the most severe, then 

l i o  =  10, W q =  10, y o  =  I j  and the least severe z q  =  10. In the conditional prevalences 

the difference decreases as time increases and the system tends to quasi-stationarity.

At the end of the interval the values for n =  1000 and n  =  10000 are quite 

similar but remain greater than the ones for n  =  100 even in the conditional prevalences.
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Figure 6.6: Conditional prevalence of non-infectious TB for n =  100,1000,10000. Ail the rates 
were calculated as proportions per 10  ̂ general population. In each graph there are six curves, 
one for each of the set of initial conditions shown in (6.24). The parameter values used are shown 
in Table 6.8. Time is measured in years.

The prevalences of non-infectious TB are of the same order as the prevalences of infec

tious TB (as was expected since the infectious cases are about half of the total number 

of cases; see, e.g., Murray et al. 1993).

Again for n = 100 the prevalence of TB infection declines slowly as time increases, 

so that we can observe the (slow) tendency to extinction, while the ones for n = 1000 

and n  =  10000 remain stable. It is interesting to note that the prevalence of TB infection 

reaches a maximum of about 95% when n =  100 and 85% when n is 1000 or 10000 for 

the cases with =  10 and = zq = wq = uq = 10 during the first 30 years and 

then declines. The proportion of the population that is infected with TB after 300 years 

conditioned on non-extinction by that point is about 60% when n =  100 and about 85% 

when n is 1000 or 10000.
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Figure 6.7: (a),(b),(c): Prevalence of TB infection for n =  100, n =  1000, and n =  10000, 
respectively. (d),(e),(f): Conditional prevalence of TB infection for n =  100, n =  1000, and 
n =  10000, respectively. All the rates were calculated as proportions per 10  ̂ general population. 
In each graph there are six curves, one for each of the set of initial conditions shown in (6.24) 
(the curves are labelled as in Figures (a) and (d)). The parameter values used are shown in 
Table 6.8. Time is measured in years.
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Incidence o f in fectious and  non-in fec tious T B

The conditional incidences of infectious and non-infectious TB for n = 100 and n  =  1000 

are shown in Figure 6.8 (the results for n =  10000 are similar to the ones for n = 1000 

and are omitted). The same qualitative behaviour is exhibited as for the prevalences. 

Conditional on non-extinction by time t = 300, the incidences at that time point are: 

200 infectious and 170 non-infectious new cases per 10  ̂general population when n = 100 

and 270 infectious and 230 non-infectious new cases per 10  ̂ general population when 

n = 1000.
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Figure 6.8: (a),(b): Conditional incidence of infectious TB for n = 100, n =  1000, respectively. 
(c),(d): Conditional incidence of non-infectious TB for n = 100, n = 1000, respectively. All 
the rates were calculated as proportions per 10  ̂ general population. In each graph there are six 
curves, one for each of the set of initiail conditions shown in (6.24). The parameter values used 
are shown in Table 6.8. Time is measured in years.
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Figure 6.9: (a),(b),(c): Conditional risk of infection for n =  100, n =  1000, and n =  10000 
respectively. (d),(e),(f): Conditional risk of reinfection for n =  100, n =  1000, and n =  10000, 
respectively. All the rates were calculated as proportions per 10  ̂ general population. In each 
graph there are six curves, one for each of the set of initial conditions shown in (6.24). The 
parameter values used are shown in Table 6.8. Time is measured in years.
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R isk  o f in fec tion  and  re in fec tion

The conditional risks of infection and reinfection are shown in Figure 6.9. Observations 

similar to the ones for prevalences can be made from these graphs. The highest risks 

correspond to the cases = 10 and yQ = zq = wq = uq = 10, while the lowest for 

Zq = 10. W ith n = 1000 and n =  10000, the risks are quite similar (about 2000 

infections and 260 reinfections per 10  ̂ general population aX t = 300) and higher than 

when n = 100 (about 1500 infections and 180 reinfections per 10  ̂ general population at 

t =  300).

M o rta lity  ra te

The conditional mortality rates of infectious TB are shown in Figure 6.10 for n =  100 

and n =  1000. The results are qualitatively the same as for the prevalences. Conditional 

on non-extinction by time t = 300, the mortality rate at ( =  300 is about 170 and 220 

deaths per 10  ̂ general population when n = 100 and n = 1000, respectively. The results 

for n = 10000 (not shown here) are similar to the ones for n = 1000.

(a) (b)
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Figure 6.10: Conditional mortality rate of infectious TB (per 10̂  general population) for (a) 
n = 100 and (b) n = 1000. In each graph there are six curves, one for each of the set of initial 
conditions shown in (6.24). The parameter values used are shown in Table 6.8. Time is measured 
in years.

6.3.5 M om ents

In this section the mean and standard deviation of X , Y, Z, W, and U are studied. 

The stochastic model was simulated with the parameter values shown in Table 6.8 and n 

equal to 100, 1000, and 10000. For each value of n the six sets of initial conditions shown
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Figure 6.11: The unconditional and conditional mean of X  and the mean of N.  In each graph 
there are six curves, one for each of the set of initial conditions shown in (6.24). In all cases 
n — 10000 and the parameter values are as shown in Table 6.8. Time is measured in years.

in (6.24) were used. Details of the implementation of the simulations can be found in 

the Appendix (Section A.3.3).

M eans

Figures 6.11, 6.12, and 6.13 show the conditional and unconditional means of X ,  Y, Z, 

VF, and U and the unconditional mean of the total population size N  foi n = 10000. 

The results for n = 100 and n = 1000 do not differ qualitatively and are not shown.

The behaviour of the means of Y, Z, W,  and U is similar to that for the preva

lences (see Section 6.3.4) and the same ordering in the severity of the epidemic can be 

observed:

(a) The means of Y, Z, VF, and U are higher if the epidemic starts with many infectious 

cases, for instance with yo = 10 and yo = zq = wq = uq = 10, compared to the cases 

yo = I, xo = n — 1 and yo =  0, zq +  =  10. Also, the larger the value of yo the
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Figure 6.12: (a), (b) Unconditional and conditional means of Y .  (c), (d) Unconditional and 
conditional means of Z. In each graph there are six curves, one for each of the set of initial 
conditions shown in (6.24) (the curves are labelled as in Figures (b) and (d)). In all cases 
n =  10000 and the parameter values are as shown in Table 6.8. Time is measured in years.

larger the decrease in the size of the susceptible population and of the total population. 

Therefore the most severe cases are the ones that begin with large numbers of infectious 

individuals.

(b) Among the epidemics that begin with 10 infected but non-infectious individuals 

{zq = 10 or IÜQ =  10 or uq = 10) the most severe case is when uq = 10 (largest means of 

y ,  Z, W, U and smallest means of X ,  N),  while the least severe is when zq = 10.

(c) For the conditional means these differences decrease in time and the conditional 

means converge to the same value, regardless of the initial conditions.

This ordering for the means depending on the initial value of X q can be explained 

with the same argument as for the prevalences. The larger the initial number of infectious 

cases the more infections will take place in the beginning, thus boosting the epidemic 

to take off quickly and increasing the sizes of all the classes of infected individuals. If
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Figure 6.13: (a), (b) Unconditional and conditional means of W. (c), (d) Unconditional and 
conditional means of U. In each graph there are six curves, one for each of the set of initial 
conditions shown in (6.24) (the curves are labelled as in Figures (b) and (d)). In all cases 
n = 10000 and the parameter values are as shown in Table 6.8. Time is measured in years.

the epidemic starts with a number of infected but non-infectious individuals (yo =  0, 

Zq -h Wq Uq > 0) then it all depends on how quickly and how many of these infected 

become infectious. It has to be noted that this depends not only on the rates at whicli 

individuals from the Z , W , U  classes move to the Y  class, but also on the rates at whicli 

they move out of these classes, since these decrease the sizes of Z, W, U.

T he d e te rm in is tic  values an d  th e  s to ch astic  m eans

The conditional and unconditional means of Jf, Y, Z, VU, U (as obtained from the sim

ulations) and the corresponding deterministic values (obtained from numerical solutions 

of the system (6.1)) are compared for two cases: with yo =  1 and yo =  10 (Figure 6.14). 

In both cases n = 10000, To = n -yo ,  and the parameter values are as shown in Table 6.8. 

The cumulative distribution function of the extinction time for these initial conditions
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Figure 6.14: The deterministic values and the stochastic means of (a) X,  (b) Y, (c) Z, (d) W, 
(e) U. In each graph there are five curves, two for the deterministic values with yo = 1 and 
yo — 10, two for the unconditional stochastic means with yo = 1 and yo = 10, and one for the 
conditional stochastic means with yo = 1 (when yo = 10, the conditional means are the same as 
the unconditional because none of the simulations ended with extinction). In all cases n = 10000, 
Xo = n — yo, and the parameter values are as shown in Table 6.8. Time is measured in years.
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Figure 6.15: Cumulative distribution of extinction time, P[T < (], for n = 100, 1000, 10000. In 
each graph there are six curves, one for each of the set of initial conditions shown in (6.24). The 
parameter values are as shown in Table 6.8. Time is measured in years.

and parameter values is shown in Figure 6.15 (the distribution of the extinction time will 

be studied in more detail in Section 6.3.7). In the case with yo =  10 none of the individ

ual simulation runs ended with extinction of the infection so that the conditional and 

unconditional means are the same (represented with one curve in Figure 6.14). These 

means are very similar to the deterministic values and basically they only differ slightly 

during the first 70 years.

In the case with = I though there are considerable differences between the 

three curves. The epidemic takes off more quickly with the deterministic formulation, 

so that the decrease in X  and the increase in Y, W, U is steeper in the deterministic 

values than in the stochastic means. The conditional and unconditional means are 

quite close in the beginning since the cumulative probability of extinction is very small 

(see Figure 6.15). As the probability of extinction increases though, the curve for the 

conditional means drifts away from the one for the unconditional means and moves closer

144



to the deterministic curve.

In both cases the stochastic means seem to have reached a steady state by time 

t =  300, which is not the equilibrium of the process (E[%g] =  n, E[Yg] =  E[Zg] =  

E[Wg] =  E[C/g] = 0 ) .  As was explained for the model in the previous chapter and in 

Section 6.3.3, this apparent stationarity can be explained by the existence of a quasi- 

stationary distribution or limiting-conditional distribution (see Sections 5.3.4 and 6.3.3).

Standard deviations

Results for the standard deviations of Y  and Z  for n = 100, n =  1000, and n =  10000 

are shown in Figure 6.16, while Figure 6.17 shows the standard deviation of %, VF, and 

Î7 for n  =  10000 (with n  =  100 and n  =  1000 the results are qualitatively similar, as it 

wiU be explained below, and are not shown here). The parameter values used are shown 

in Table 6.8 and the initial conditions in (6.24).

The results for the means presented earlier in this section suggest tha t by time 

t = 300 the process has settled down and hence we would expect tha t a t that point the 

process either has reached the final equilibrium (extinction of TB) or it is still around 

the quasi-stationary level (this can be verified from the marginal distributions of X ,  

y ,  Z,  VF, U] see Section 6.3.6). Therefore we would expect to have small standard 

deviations for the cases in which the majority of the simulation runs ended at one of 

the two extremes (i.e. most runs had died out or most runs were at the quasi-stationary 

level).

For n = 1000 and n = 10000 the results in Figures 6.16 and 6.17 suggest that 

this must be the case. In both cases, a t the end of the interval 2f, the ordering in the 

value of the standard deviation, starting with the smallest, is the following:

yo = 1 0 ,xq = n — 10 and yo = zq = wq = uq = 10 

Uq =  I O ^ x q  = n — 10 

W q  = 10, X q  =  n — 10 

yo = 1 ,xq = n  — 1 

Zq  =  10, Xq =  n — 10.

It should be noticed that this is exactly the same ordering as for the cumulative 

distribution function of the extinction time (Figure 6.15). For n  =  1000 and n  =  10000 

with yo =  10 (and xq = n — 1 0  or zq = wq = uq =  10) none of the simulation runs
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Figure 6.16: (a), (b), (c) Standard deviations of F  for n =  100, n =  1000, n =  10000, 
respectively; (d), (e), (f) standard deviations of Z forn  =  100, n =  1000, n =  10000, respectively. 
In each graph there are six curves, one for each of the set of initial conditions shown in (6.24) (the 
curves are labelled as in Figures (a) and (d)). The parameter values are as shown in Table 6.8. 
Time is measured in years.
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Figure 6.17: Standard deviations of (a) X ,  (b) W ,  and (c) U ior n =  10000. In each graph 
there are six curves, one for each of the set of initial conditions shown in (6.24). The parameter 
values cire as shown in Table 6.8. Time is measured in years.

ended with extinction and the process is most likely to be at the quasi-stationary level 

(i.e. most runs are at the quasi-stationary phase) so that the standard deviation is very 

small in this case. With uq =  10, zo =  n — 10 only a few runs had died out so that the 

standard deviation is slightly larger. W ith zq = 1 0 , x q  =  n — 10 about 60% of the runs 

ended with extinction so that the standard deviation is much larger in this case.

For n  = 100 though things are slightly different. The standard deviation of X  

and Z  is almost as for the larger values of n, but for F , W,  and U the ordering is exactly 

reversed: the cases with yo =  10 (and xq =  n  — 10 or zq = wq =  uq = 10) have the 

largest standard deviation and the one with zq =  10, â o =  n  — 10 the smallest. This is 

probably a result of the fact that when n  =  100 the population is quite small to preserve 

the infection, so that the process remains at the quasi-stationary level only for a short 

time and hence at time t =  300 some of the simulation runs are in the phase of falling 

from the quasi-stationary level to extinction. Therefore, although with large n each run
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Figure 6.18: (a), (b), (c), (d) Mean and standard deviation of X, Y, Z, W, respectively, with 
Uq = Xq = n — yo, and n = 10000. The parameter values are as shown in Table 6.8. The 
centre of each circle represents the value of the mean at the respective time point and the length 
of the line segment above (and that below) the circle is equal to the standard deviation at the 
respective point. Time is measured in years.

was either around the quasi-stationary level or at extinction, with small n there are 

some runs which are at a level between extinction and quasi-stationarity. Therefore the 

ordering in the value of the standard deviation when n = 100 can be different than the 

one for n = 1000 and n =  10000 and also the ordering for the standard deviation of 

Y  and Z  may be different depending on how fast each of the variables X ,  Y ,  Z, W,  

U move towards extinction. The results from the marginal distributions presented in 

Section 6.3.6 support these arguments.

Finally in Figures 6.18 and 6.19 we present the results for the means and standard 

deviations combined, for the two cases yo = 1, xq = n — 1 and yo =  10, xq =  n -  10. The 

value of n is 10000 and the parameters as shown in Table 6.8. The centre of each circle 

in Figures 6.18 and 6.19 represents the value of the mean at the respective time point 

and the length of the line segment above (and the one below) the circle is equal to the
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Figure 6.19: (a), (b), (c), (d) Mean and standcird deviation of X, Y, Z, W, respectively, with 
yo = 10, xq = n  -  yo , and n = 10000. The parameter values are as shown in Table 6.8. The 
centre of each circle represents the value of the mean at the respective time point and the length 
of the line segment above (and that below) the circle is equal to the standard deviation at the 
respective point. Time is measured in years.

standard deviation at the respective time point. Therefore the whole segment with the 

circle in the middle represents the interval {jj, — â,fï + â) where p. and â  are the estimates 

for the mean and standard deviation, respectively, at the particular time point.

These graphs show the enormous variation in the cases that begin with a small 

number of infectives and how much this variation is reduced if the epidemic begins with 

a larger number of infectives. As was explained above, this variation is a result of the 

initial phase until the epidemic takes off and the fact that the smaller the initial number 

of infectives {yo) the larger the probability that the epidemic will die out. This is the 

reason why looking only at the means of A , Y,  Z, W , U can be misleading, while 

graphs like those in Figures 6.18 and 6.19 can give a better picture of the evolution of 

the epidemic. Also they are helpful for comparisons with data from actual epidemics.
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6.3 .6  M arginal d istr ibu tion s

The marginal distributions of X , y ,  Z, W,  and U were calculated from simulations of 

the stochastic model for the following initial conditions:

n =  50, 2/0 =  1 n  =  100, 2/0 =  1 n = 1000, 2/0 =  1

n  =  50, 2/0 =  5 n =  100, 2/0 =  10 n =  1000, 2/0 =  10,

and xo = n  — 2/0- The parameter values used are as shown in Table 6.8. The cases 

with n =  50, 2/0 =  1 and n = 100, 2/0 =  1 were also examined with a  =  4 and a  = 20, 

respectively (and the other parameters as in Table 6.8).

The observations made from these cases are the same as the ones for the marginal 

distributions in the previous chapter (Section 5.3.5), so we present only the results for 

some of the cases here and briefly discuss about the others. Figure 6.20 shows the 

marginal distribution of Z  for the cases with n = 100, 2/0 =  1 and a  equal to 10 and 20. 

The marginal distribution of Y  for the cases with n  =  1000 and 2/0 equal to 1 and 10 is 

shown in Figure 6.21. As was explained in Section 5.3.5, the marginal distributions are 

bimodal, with one mode around the disease-free equilibrium and the other around the 

equilibrium of the conditional means (see Section 6.3.5 for the conditional means).

Figure 6.20 shows the eflFect of increasing H q: as the value of 'R.q increases more 

mass appears around the conditional means and less around the stochastic equilibrium. 

The same eflFect is observed by increasing 2/0 (Figure 6.21) and n  (results not shown 

here). This behaviour can be explained by the fact that for the more severe epidemics 

(with larger TZq or 2/0) it takes more time until the infection dies out and it is more likely 

that the process will remain around the limiting-conditional distribution for a long time. 

The same holds for the cases with large initial population size n; the process fluctuates 

around the endemic conditional means for a long time unless the population size is too 

small to preserve the infection, which then dies out relatively soon (see, e.g., Bartlett 

1957, 1960a). These results agree with the results for the distribution of the extinction 

time (see Section 6.3.7).

Because of this long time scale of the epidemic, the simulations have to be carried 

out for a very long time in order to demonstrate the ultim ate extinction, so tha t our 

results here show only how the probability mass around the endemic level decreases in 

size and even then only for small values of n  and 2/0- For instance, in Figure 6.20 it can 

be observed how the probability P[Z(t) =  0] increases in time, although after 100 years
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Figure 6.20: The marginal distribution of Z with n = 100, yo = 1, and Xq = n -  1 . The 
parameter values are as shown in Table 6.8 and (a) a  = 10 and (b) a = 20. Time is measured 
in years.
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Figure 6.21: The marginal distribution of V  with (a) yo =  1, (b) yo = 10 and n = 1000, 
Xq =  n — yo. The parameter values are as shown in Table 6.8 and time is measured in years.

it is still just around 0.1. One simulation was carried out for a long time and with small 

values of n, TZq, and yo {n = bO, TZq = 1.84 and yo = I, xq = n — yo) and it took about 

2500 years until the epidemic had died out in all 10"̂  simulation runs (at that point the 

probability P[y(t) =  Z{t) = W{t) = U{t) = 0] was equal to 1).

6.3 .7  T he tim e until ex tin ction

In this section we will study the distribution of the extinction time, T. The results 

presented here were obtained from simulations of the stochastic model. Details for the 

implementation of the simulations can be found in the Appendix (Section A.3.3). The 

observations made for the distribution of T  are the same as the ones for the distribution 

of the extinction time in the previous chapter (Section 5.3.6), so we present the results 

only for some cases here and briefly discuss about the others.

Processes starting with the introduction of one infectious case

First we consider only processes that begin with the introduction of one infectious TB 

case into an uninfected population, so that yo = I and xo = n — 1. The process was 

simulated for four different values of n  (50, 100, 200, 400) and three values of a  (2, 4, 

6). The other parameter values are as shown in Table 6.8.

The statistics of the distribution of T  and the value of T̂ o are shown in Table 6.9. 

Figure 6.22 shows the distribution of T . As n and/or 7^  increase, the mean and standard 

deviation of T  increase and the probability P [T  < f] decreases for each t > 0 , more so if 

both n and TZo increase. For instance when a  =  2 or n =  50, in more than 80% of the
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n  =  50 n =  100 n  =  200 n  =  400
Min: 0.002 0.001 0.000 0.000
Qi: 65.916 71.397 66.412 66.504
Mean: 152.594 170.349 176.195 185.212

a  =  2 0 2 : 131.974 140.352 139.136 141.613
03: 213.459 235.288 241.493 248.198
Max: 1284.480 1244.439 1386.200 1762.013
SD: 120.461 140.701 156.594 176.889
Min: 0.001 0.002 0.001 0.000
0 1 : 108.765 112.541 116.114 116.062
Mean: 233.716 319.459 549.948 1917.187

a  = 4 0 2 : 194.455 225.987 259.410 267.739
03: 313.055 443.279 741.399 2449.284
Max: 1885.835 2928.283 7237.947 34311.616
SD: 181.468 299.629 697.133 3278.436
Min: 0.000 0.000 0.000 0.001
0 1 : 143.062 151.371 161.539 161.294
Mean: 303.350 549.674 2224.288 78132.950

a  =  6 0 2 : 249.847 357.697 951.172 28572.778
03: 402.266 756.234 3263.992 114533.306
Max: 2297.351 4657.944 26429.326 1384176.682
SD: 232.413 572.194 2995.758 116489.417

Table 6.9; Statistics of the extinction time for processes that begin with one infectious case 
(yo =  1, Xo =  n — 1) and for various values of a  and n. Qi is the i-th quartile (for i = 1, 2,3) and 
SD is the standard deviation. In some cases the minimum value is less than 0.0005 and hence it 
is rounded here to 0.000. The value of 7?o is 7^ =  0,918,1.836,2.754 for a  =  2,4 ,6, respectively.

10000 runs the epidemic had died out by time t = 500 while this proportion is about 

40% when a; =  6 and n  is 200 or 400.

The distribution of T  is highly skewed to the right with a very high peak at the 

first 1-2 years. As n  and/or a  increases the distribution becomes less skewed and shifts 

to the right: the peak in the beginning has less mass and the tail of the distribution has 

more mass and becomes longer. The same qualitative behaviour was observed as 7Zq 

increases by changing the other parameters (results not shown here). We can conclude 

therefore th a t the efiect of increasing TZq on the distribution of the extinction time is 

the same as the efiect of increasing a , as described in this section.

These results suggest tha t as n  and /or TZq increase it is more likely tha t the epi

demic will last longer, either because the dynamics of the infection are strong (large T̂ o) 

or because the population size is large enough to preserve the infection (see discussion 

a t the end of the previous chapter).
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Figure 6.22: The distribution of the extinction time, T,  for processes that start with one 
infectious case (yo = 1, xq = n — 1). The parameter values are as shown in Table 6.8 except for 
a, which has the value indicated in each graph. Time is measured in years, (a), (b), (c) The 
cumulative distribution, P[T < t], with a = 2,4,6, respectively, (d) Histogram of the extinction 
time for the case with a = 2 and n = 50.

P rocesses s ta r t in g  w ith  m ore th a n  one in fec ted  ind iv idual

In this part we consider only processes with yo + zq wq + uq > 1. The process was 

simulated with three combinations of a  and n: o: =  2, n =  50; a  == 2, n =  100; and o  =  6, 

n = 50; the other parameter vaJues are as shown in Table 6.8. For each combination of 

a  and n, the following initial conditions were used:

yo =  10% of n, Xq =  n -  yo 

yo — 20% of 71, X q  = 71 yo 

Zo = 10% of 71, Xo =  71 -  Zq 

Zo = 20% of 71, Xo =  71 -  Zq

W q =  10% of 71, X o =  71 — W q

W q = 20% of 71, Xo =  71 -  Wo

Uo = 10% of 71, X o =  71 -  Uo

Uo = 20% of 71, Xo =  71 — Uo

(6.25)

yo =  ^0 =  tuo =  Uo =  10% of 71.

For each of these cases the statistics of the distribution of T  are shown in Table 6.10.
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a  =  2 and n = 50
yo =  5 yo =  10 20 =  5 Zo =  10 1Ü0 =  5 tüo =  10 Uo =  5 Uo =  10 yo =  Zo =  5 

Wo =  Uo =  5
Min 31.57 78.31 7.82 26.24 1.99 5.25 8.28 24.77 76.59
Qi 180.00 196.96 72.88 109.64 38.55 110.09 107.01 176.95 199.41
Mean 257.36 276.01 135.08 179.79 146.80 200.23 203.52 258.87 278.03
Q2 235.17 252.17 109.25 153.37 119.28 185.47 186.45 238.69 255.10
Qs 307.42 327.98 166.25 222.40 217.99 267.45 273.73 317.12 330.96
Max 1286.40 1195.61 1092.33 949.07 1095.78 1263.28 1353.09 1140.39 1024.93
SD 112.61 112.52 95.35 101.49 128.63 125.83 127.38 121.41 112.05

Q =  2 and n = 100
yo =  10 yo =  20 20 =  10 20 =  20 Wo =  10 Wo =  20 Uo =  10 Uo =  20 yo =  zo =  10 

Wo =  Uo =  10
Min 91.70 105.82 24.57 51.47 4.84 16.23 28.79 49.23 102.29
Qi 246.56 260.60 109.96 153.23 122.53 196.76 195.30 249.62 265.29
Mean 341.58 357.09 185.85 240.50 231.17 294.33 295.05 344.80 360.49
Q2 311.95 324.52 154.71 207.59 208.63 269.33 270.08 319.33 329.92
Qz 403.45 418.10 226.14 291.79 310.58 365.20 368.91 408.62 420.37
Max 1421.15 1417.44 1147.84 1204.89 1332.44 1435.09 1610.13 1479.18 1349.60
SD 136.99 140.69 115.21 125.90 149.35 144.80 147.14 139.07 137.24

a  =  6 and n = 50
yo =  5 yo =  10 20 =  5 20 =  10 tuo =  5 Wo =  10 Uo =  5 Uo =  10 yo =  Zo =  5 

Wo =  Uo =  5
Min 36.72 85.72 10.05 23.16 1.10 3.19 6.54 25.44 91.58
Qx 248.69 249.35 72.59 112.10 43.63 184.06 180.49 249.41 258.69
Mean 403.06 403.10 169.04 240.54 250.41 337.23 339.41 402.31 414.95
Q2 342.86 344.54 112.25 170.52 198.49 288.36 296.11 346.07 353.95
Qz 490.05 491.62 189.55 293.25 367.76 437.32 452.25 495.81 505.26
Max 2207.87 2548.87 1726.70 2094.49 2016.35 2185.46 2158.97 2331.14 2094.54
SD 225.96 218.38 169.30 201.99 243.56 236.84 235.88 228.04 224.50

Table 6.10: Statistics of the extinction time for processes that start with more than one infected 
individual: j/o + +  iwo + Wq > 1. Q* is the i-th quartile (for i =  1,2,3) and SD is the standard
deviation.

For the case with a =  2 and n = 50, Figure 6.23 shows the estimates of the cumulative 

distribution of T  and Figure 6.24 shows histograms of T  for some of the initial conditions 

examined. The other cases are qualitatively the same and are not shown here.

Comparing Figures 6.24 and 6.22(d), it can be observed that the distribution of 

T  does not have the peak at time t = 1 tha t was observed in the cases with yo = I. 

This happens because starting with 5, 10, or 20 infected individuals it is quite unlikely 

that all of them will die within a year. So tha t the minimum value of T  is larger and 

the probability P [T  < t ]  is smaller (than when yo =  I)-

W ith larger values of yo and/or u q  it becomes less likely that the infection will die 

out soon (compared to cases with yo =  1), but this difference is not tha t noticeable for 

the cases with zq > 0 and wo >  0. For instance, the second peak in the distribution of 

T  when yo =  1 shifts to the right as yo and /or u q  increase, but with zo > 0 and w q  > 0
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Figure 6.23: The cumulative distribution, P[T < t], of the extinction time for processes that 
begin with more than one infected individual with a  = 2 and n = 50. The other parameter 
values are as in Table 6.8. In each graph the different curves are for each set of initial conditions 
shown in (6.25). Time is measured in years.
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Figure 6.24: Histograms of the extinction time, T,  for processes that start with more than one 
infected individual: (a) yo = 10  and x q  = n — yo\ (b) z q  =  1 0  and x q  = n -  zq;  (c )  w q  =  1 0  and 
Xq = n -  Wq] (d) Uo = 10 and xq = n — uq. In all cases n = 50, o: = 2 and the other parameter 
values are as shown in Table 6.8. Time is measured in years.

156



there is still a lot of mass of probability during the first 50 years. Also the probability 

P [T  <  ]̂ decreases and the mean of T  increases considerably as yo and uq increase.

This result agrees with the results in the Section 6.3.4, where it was shown that 

the prevalence, incidence, risk of infection, and mortality were higher for the cases with 

yo > 1 and uq >  1 than those with zq > 1 and wo >  1 (and the explanation is the 

same as in Section 6.3.4). Clearly, though, as each of the j/o, z q , w q , u q  increases then 

it is more likely tha t the epidemic will last for a long time (for instance the mean of T  

increases and the P [T  <t]  decreases) and more so for larger values of n  and a .

6.3 .8  Linear approxim ation

In this section we will study a model tha t approximates the stochastic model presented 

in this chapter. The model is basically the same as the stochastic model, the only 

difference is the assumption tha t X  and Z  (the numbers of uninfected and latents, 

respectively) evolve deterministically in time so tha t only Y (t), W'(t), and U{t) are 

stochastic variables. W ith this modification the stochastic model becomes linear, which 

is the reason why it is called a hnear approximation. In the rest of this section this 

model will be referred to as the hnear model or the linear approximation to model Zeus.

The assumption tha t X  and Z  evolve deterministically is equivalent to assum

ing tha t the rates of all the transitions tha t are functions of the numbers of uninfected 

and latents {X and Z, respectively) are functions of their mean values, E[X] and E[Z], 

instead. Hence, the means from the hnear model are equal to the deterministic values. 

The advantage of the hnear approximation is tha t it “adds” some stochasticity to the 

corresponding deterministic model and hence can be viewed as an approximation to the 

stochastic model. It is possible tha t the resulting linear model will not give accurate 

information about the original stochastic model, since some of the randomness of the 

original model is lost. Nevertheless, it has been observed tha t in some situations the 

hnear model provides good estimates of the second moments of the remaining stochastic 

variables (see, e.g., Herbert 1998, Isham 1991), so in this section we investigate some of 

the properties of the linear model and compare the numerical results obtained with re

sults from simulations of the stochastic model. Further comments about the apphcabhity 

of this approximation can be found at the end of this section.

Let X, z  denote the deterministic variables and Ug, the stochastic variables
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for this model. The initial conditions are a;(0) =  To, Y/(0) =  yo, z(0) =  zq, W/(0) =  wq, 

Ue{0) =  itQ, where (a:o,2/o,^o,iyo,uo) E S q and S q is as defined in (6.3).

The state probabilities are defined as

Pywui^) ~  — 2/j U£{t) = n], t  >  0,

for (y, w, u) E Si  and zero otherwise, where

Si = {(y, w, u) : y , w , u >  0}.

At time zero pjo«,ouo(0) =  1 and pj„,„(0) =  0 for any {y,w,u) ^  (yo,u;o,uo). The corre

sponding Kolmogorov equations for are given in the Appendix (Section A.3.4).

The joint probabUity generating function for 1^, Wi, Ui,

% ( % ,  0 4 , % ; ( )  =

satisfies the equation

=  f iz{ t) [q2{62 — 1) +  (1 — q2){&4 — ^)]'Pi

,dVt
+  \L l { t )^2 {&2  ~  1) +  ^ 2 ( ^ 1  ̂ 2(^4 — 1) +  (/^ +  / i l ) ( l  — Ô2) +  7o(^ 5  — ^2 )]

302

+  [̂ ( 2̂ — O4 ) 4- <5q(05 — O4 ) + {fi + /i2)(l — ^4) ] ^ ^  (6.26)

+  [e i(^ 2  — O5) 4- 6 2 ( ^ 4  — ^5 ) +  pO -  ~  ^5 )]

where

L i ( t ) = p q i - x { t ) - \ - q 3 — z{t)
a  "  %  (6.27)

L 2 {t) =  p ( l -  q i ) - x { t )  4- (1 -  q3 ) — z{t), 
n  n

with the initial condition 7^(^2,^4,^5; 0) =  Of^O^^O^^. The x{t), z{t) tha t appear in 

equation (6.26), as well as in (A.9), are the deterministic values of x  and z  at time t 

which are deduced from the system (6.1).

From equation (6.26) a system of difierential equations for the first and second 

moments of YJj, W'̂ , Ui is deduced; the equations for the means are 

dE[Yi(t)]
dt

dE[Wi{t)]
dt

dE[Ui(t)]

=  [Li{t) -  r j E K ]  -K 0E[Wi] +  eiE[Ut] +  q2 ^z(t )

= Li{t)E[Yt] -  A,E[M^<] +  f 2 E[Ue] +  (1 -  <n)Pz(t) (6.28)

=  7oE[y^] 4- 6oE[W]g] — EgE[Ui],
dt
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where the F ,, A ,, and E , are as defined in (6.2). The equations for the variances and 

covariances are given in the Appendix (Section A.3.4).

The system (6.28) for the first moments of Tg, Ug_ depends on the values of 

x{t)^ z{t) but not on the second moments, so th a t it is a closed system. Similarly the 

system for the second moments (see Section A.3.4) does not contain moments of higher 

order. This is one of the advantages of the linear approximation, which basically aims 

at linearising the model making the equations for the moments linear. Therefore the 

systems for the moments of any order are closed and no further approximation is needed 

in order to deduce their values.

In general, the variables to be taken as deterministic will be chosen among the 

variables tha t appear in the non-linear terms in the original model (so tha t these terms 

will become linear), provided that their size is large enough. The reason for that is that 

in general the behaviour of the mean of a stochastic variable can be similar to tha t of the 

corresponding deterministic variable provided tha t its size is relatively large (see, e.g., 

Bailey 1975, Ch. 5). For this model for example, %, Y, Z  are the variables involved in 

non-linear terms. From the results obtained thus far it appears that the sizes of both X  

and Z  will be quite large, but not that of Y, therefore assuming tha t X  and Z  evolve 

deterministically may give a good approximation.

Also it has to be noted tha t the equations (6.28) for the means of 1^, Ug_ 

are the same as the second, fourth, and fifth equations of the system (6.1) for the 

deterministic y, w, u. Therefore, the values of the stochastic means E[l^(t)], E[W^(t)], 

E[C/^(t)] will be the same as the values of the deterministic y(t), w{t), u{t) for any t > 0 .

The equilibrium of the linear model

Define the variables Ü£e by

=  y, ^£e = W, Uie = u]

= lim P K ( t )  =  y, Wi{t) =  w, Ui{t) = u],
t—>oo

for (y,w,u)  E Si = Z^. Also, let Tg, Zg be the equihbrium values of the deterministic 

x{t), z(t), respectively:

Xe = lim x{t) Zg =  lim z{t).t-¥ 0 0  t-> 0 0
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Taking the limits in equation (A.9) as t tends to infinity, we deduce the equivalent

difference equation for the probabilities It is easy to show tha t îot y  = w  = u = 0

this equation gives

P êQooo =  (/  ̂+  Ml)9l00 +  +  ̂ 2)9010 +  M900l5

from which it follows immediately tha t if Zg 0 then gooo 7̂  I, while if Zg =  0 then

^00 — 9oio — 9ooi — 0. Using this result and taking recursively the equation (A.9) at 

equilibrium for y =  0 ,1 ,2 , . . .  ;w =  0 ,1 ,2 , . . .  ; u =  0 ,1 ,2 , . . . ,  it can be shown tha t if 

Ze = 0 then =  0 for any (y,w,u)  E St -  {(0,0,0)}. Assuming tha t =  1

(summing over all (j/,u;,u) E St) then follows that Qqoo — I- Therefore with the linear 

formulation, extinction of the infection is not always certain as with the stochastic model 

(see Section 6.3.2); the infection ultimately dies out with probability one only when 

Ze = 0 , but otherwise the probability of extinction Çqoo l^ss than one.

Since Zg is the equihbrium value of the deterministic z(t) the results from Sec

tion 6.2 can be used in order to determine when Zg = 0. In Section 6.2 it was shown that 

the deterministic model has three possible equilibria 6i, 62, and 63 (see equations (6.6) 

and (6.7) for definitions), where 6 i is the point tha t corresponds to extinction (and 

hence with Zg =  0). The point eg is unstable whenever it is feasible. If 7Zq < 1, 7Zi < 1 

(see (6.9) and (6.13) for definitions) then e i is the only feasible equilibrium and it is 

stable; if TTq <  1 and 77i > 1 then e i is stable, but also 62 is feasible and possibly stable; 

if 7 ^  > 1 and 77i > 1 then ei is unstable and 02 is feasible and possibly stable.

It follows from these results that if both TTq and 7Zi are less than one then Zg = 0 

and Çqoo =  1; if both 7Zq and 7Zi are greater than one then Zg ^  0  and hence Qqqq ^  1 

and hence extinction is not certain; when IZq < 1 and TT-i >  1 then Zg can be equal to 

zero, depending on the initial conditions.

Numerical results

In Section 5.4 the linear approximation was used for the model presented in Chapter 5. 

As was explained in Section 5.4.2, one of the difficulties encountered in most epidemic 

models is the fact tha t the system of differential equations for the first and second 

moments involves higher order moments, so that it is open and cannot be solved. One 

way to overcome this problem is to approximate the higher order moments by expressions 

that involve only first and second order moments. For instance, if (%i, %2, , Xk)'  has
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a multivariate normal distribution then

E [ X iX 2 X 2,] =  +  //I <723 +  /̂ 2<̂ 13 +  M3<̂ 12 (6.29)

where /i* =  E[X*] and <jÿ =  Cov[Xi,Xj], and with similar expressions for E [ X i X 2], 

E [X iX |] and so on. Substituting for the third order moments from these expressions, 

makes the system for the first and second moments closed and hence it can be solved 

at least numerically. The normal approximation can be justified by results showing that 

certain Markov processes can be approximated by a normal distribution as the initial 

total population size tends to infinity (see, e.g.. W hittle 1957, Kurtz 1970, 1971, 1981).

The linear approximation is another way to overcome this problem, since the 

model is hnear and hence the system for the first and second moments is closed. In this 

section we present numerical results from both the normal and the linear approximations 

and compare them with results from the simulations. For the linear approximation the 

system of differential equations for the means, variances, and covariances was solved 

numerically using routines from the NAG library for Fortran. For the normal approx

imation the third order moments appearing in the equations for the first and second 

moments (see equations (6.19) for the means and Section A.3.2 for the variances and 

covariances) were expressed in terms of the first and second moments (using the for

mulae like (6.29)) and the resulting system was solved numerically using routines from 

the NAG library. Details for the implementation of the simulations can be found in the 

Appendix (Section A.3.3).

For the results discussed in this section we used the param eter values shown in 

Table 6.8 and the following sets of initial conditions:

n  =  1000 yo = 10, xq = n  — yo (6.30)

n =  1000 yo = Zo = Wo = Uo = 10 (6.31)

n  =  10000 yo = 10,xo = n — yo (6.32)

n  =  10000 yo = 100, xo = n  — yo- (6.33)

Also the case with n = 1000, yo =  10, rco =  n — yo was examined with two slightly 

different sets of parameter values: (a) a  =  9 and the rest of the parameters as in 

Table 6.8, (b) (3 =  0.001 and the rest of the parameters as in Table 6.8. For all cases the 

three methods were carried out up to time t =  300 so th a t the results discussed here are 

for the time interval Xt =  [1,300].
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Figure 6.25 shows the results for the means and Figure 6.26 the results for stan

dard deviations and covariances for the case (6.30). In each graph there are three curves, 

one from the linear model, one from the normal approximation, and one from the sim

ulations. For the means of X , Z  the values from the linear model correspond to the 

values of the deterministic a;, z. Also the means of Y, W, V  from the linear model are 

equal to the deterministic y, w, u, respectively. The results for the cases (6.31), (6.32), 

and (6.33) and the ones with a  = 9 and /3 =  0.001 are qualitatively the same and are 

not presented here.

In all the cases examined the results for the means, standard deviations, and 

covariances from the normal approximation and the simulations were very close (in 

some cases the two curves seem to coincide). The results from the linear approximation 

are very close to the others in the beginning (the first 10-15 years) but then deviate, in 

some cases substantially (for instance for the covariances in Fig. 6.26). For the means in 

case (6.32) the diflFerence between the three curves became smaller in time (see Fig. 6.27 

for the means of Y  and Z)  and after the first 100 years the three curves can be hardly 

distinguished. T hat was observed only for the means in case (6.32) though; in all other 

situations the difierence between the linear and the other two curves remained up to the 

end, t =  300.

It is also interesting to note tha t the standard deviations and covariances calcu

lated from the linear approximation were larger than those from the normal approxima

tion and the simulations: during the first 10-15 years all three values (linear, normal, 

simulation) are very close, but the linear is slightly bigger. The standard deviations and 

covariances from the hnear approximation increase more rapidly than those from the 

normal approximation and the simulation and the curves for the linear model remain 

higher than the other two until the end, t  = 300. This was observed in all cases ex

cept (6.32): in this case (Figure 6.28) all standard deviations and covariances from the 

linear model are smaller than the other two during the first 30-40 years and then the 

linear curve crosses over the other two and remains higher for the rest of the interval

The discrepancies from the linear model may be explained from the sizes of X  and 

Z  (the variables that are taken as deterministic). As can be observed from Figure 6.25, 

in the beginning the value of X  is very large, although Z  is rather small, and the 

linear approximation agrees with the other two methods. As the value of X  falls, the
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Figure 6.25: The means of (a) X,  (b) Y,  (c) Z, (d) W,  and (e) U from the linear and normal 
approximations and simulations of the stochastic model. Each graph has three curves one for 
the linear model, one for the normal, and one from the simulations. The values for X  and Z 
from the linear model are the deterministic x and z, respectively. The parameter values are as 
shown in Table 6.8 and n = 1000, yo = 10, Xq = n -  yo. Time is measured in years.
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Figure 6.26: (a), (b), (c) Standard deviation of F, W, U, respectively, (d), (e), (f) Covariance
OÎY, W;Y ,  U] and W, U, respectively. Each graph has three curves, one for the values from the 
linear model, one from the normal approximation, and one from the simulations. The parameter 
values are as shown in Table 6.8 and n = 1000, ^0 = 10, Zo = n — yo- Time is measured in years.
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Figure 6.27: The means of (a) Y  and (b) Z with n = 10000, yo = 10, xq = n -  yo- Each graph 
has three curves one for the values from the linear model, one from the normal approximation, 
and one from the simulations. The values for Z from the linear model are the deterministic 
values. The parameter values are as shown in Table 6.8. Time is measured in years.
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Figure 6.28: (a) Standard deviation of V  and (b) covariance o î Y , U  as obtained from the linear 
and normal approximations and simulations of the stochastic model. The parameter values are 
as shown in Table 6.8 and n = 10000, yo = 10, Xo = n — yo- Time is measured in years.

discrepancies in the second moments from the linear approximation become larger. This 

may be simply due to the fact that X{t)  is not large enough any more for the linear 

model to give good approximation. Although the size of Z  is small in the beginning and 

large later (when the discrepancies in the second moments appear), this may not affect 

the goodness of the linear approximation, because the effective contact rate (0 :2) for the 

latents is much smaller than that (a) for the uninfected (and hence it is mainly the size 

of X  that will determine the quality of the linear approximation).

Overall, from the results examined thus far it appears that the results from the 

normal approximations and the simulations agree in all cases, and throughout the time 

interval until the epidemic reaches its endemic level. In contrast, the results from the
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linear approximation agree very closely in the beginning of the epidemic only, but then 

they deviate, slightly for the means bu t more significantly for the standard deviations 

and covariances. In particular the linear approximation tends to overestimate the second 

moments, a phenomenon that has been observed in other situations as well (see, e.g., 

Isham 1991).

Discussion

The device of linearising a stochastic model is clearly advantageous from the point of view 

that it makes the model simpler and more attractive and manageable mathematically. 

Unfortunately, for the model presented in this chapter, taking two of the variables as 

deterministic means tha t there are still three stochastic variables, so th a t the model is 

not tha t simple. Also having x  and z  evolving deterministically does not mean that 

these two variables are completely eliminated from the model, since the values of the 

deterministic x(t) and z{t) still appear in the equations for the state probabilities 

and the probability generating function. Overall therefore the linear model is simpler 

than the original stochastic one, but it is still complicated enough for analytical results to 

be difficult to deduce from it. Clearly for a model like the one presented in the previous 

chapter the linear approximation yields a more manageable linear model, but for model 

Zeus more simplifying assumptions have to be made in order to deduce a really simple 

model.

On the other hand, from the point of deducing numerical results, the linear 

approximation seems more promising. It can be considered as a method for moment 

closure, giving a closed system for the first and second moments that approximate those 

of the original model. Also, compared to simulations it is a much quicker method, 

since the results are easily obtained by numerical solutions of systems of difierential 

equations. Finally, compared to the deterministic model, the linear model has clearly 

the advantage of giving information about the variation of some of the variables: the 

means from the linear model are the same as the deterministic values, but from the 

linear model the variances and covariances (and hence confidence intervals) of the non- 

deterministic variables can also be deduced. This information is completely lost with 

the deterministic formulation.

Nevertheless, the linear approximation still has some drawbacks. First of all
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there is the loss of information about the variances and covariances of the variables 

that are taken as deterministic. For situations where it is not enough to know only 

the means of these variables, this can be a significant disadvantage. Moreover, the 

fact tha t some of the variables are taken as deterministic means tha t the linear model 

accounts for less variation within the whole model and th a t can aflfect even the means 

and covariances of the remaining stochastic variables. Also, from the results presented 

in this section it appears that although the means can be quite well approximated by the 

linear model (i.e. the deterministic values), this does not always hold for the variances 

and covariances, which are significantly overestimated by the linear model in some cases. 

From tha t respect, the normal approximation seems to be better than the linear, since 

the moments from the simulations and the normal approximation closely agree, but they 

do not agree th a t well with those from the linear approximation. Finally it has to be 

noted tha t the accuracies of both the normal and the linear approximation depend on 

the sizes of the total population and /or the individual classes.
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Chapter 7

M odel Clio: 

a m odel for chem otherapy

7.1 Introduction

In this chapter we will study the eflFects of chemotherapy. We assume that we have a 

population in which TB is introduced at some point and the natural evolution of the in

fection (in the absence of any control measures) is described by the model Zeus (presented 

in the previous chapter). Therefore, we have a population divided into five classes, the 

uninfected (%), the latents (Z), the infectious TB cases (Y),  the non-infectious TB cases 

(W),  and those naturally recovered (U). The possible transitions and the assumptions 

made for model Zeus are described in detail in Section 6.1. The main characteristics of 

the model are briefiy described below.

If at time t there are X{t)  uninfected and Y(t) infectious cases in the popu

lation then the probability of one new infection occurring in the interval [t, t -I- dt] is 

a X { t )Y { t )d t /n  -t- o{dt) where a  is the effective contact rate. Among those who get in

fected a proportion p  develop clinical TB within a year after infection (primary TB) and 

the remaining proportion, 1 — p, become latents; those who develop TB are infectious or 

non-infectious with probabilities qi and 1 — gi, respectively.

Latents may develop clinical disease at some point as a result of exogenous rein

fection (acquiring a new infection) or endogenous reactivation of an old infection. The 

reactivation rate is denoted by /3. After reactivation the individual has infectious or 

non-infectious TB with probabilities Q2 and 1 — respectively. The effective contact
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rate between latents and infections cases is PrOt. After reinfection an individual develops 

clinical disease within a year (primary TB) or remains latent with probabilities pa and 

1 — P3, respectively. For simplicity we denote a 2 =  PsPrOt.

p q i t X Y (// +  p i ) Y

( i - p ) g x y

p ( l - g i ) g % y (p +  P2 )W

vi{Y, Z)  = Q2/3Z +  q z ^ Y Z  U2(y, Z) = (1 -  q2 )p Z  +  (1 -  q3 ) ^ Y Z  

Figure 7.1: A model for chemotherapy: Model Clio

Non-infectious TB cases become infectious at a rate ÔW. Infectious and non- 

infectious cases recover spontaneously at rates 70 and (5q per capita, respectively, and 

those who have recovered may relapse later and become infectious or non-infectious cases 

at rates eiU and £2?/, respectively.

Finally, there is immigration of susceptibles a t a constant rate A, normal death at 

a rate p per capita, and excess death due to TB at rates pi  and p 2 (per capita) for the 

infectious and non-infectious cases, respectively. At some points the special case \  = pn  

is also investigated.

As was explained in the previous chapter, after the introduction of the infection 

into the population, the infection spreads and finally settles down at an endemic level, 

described by the mean of the quasi-stationary distribution (see Sections 6.3.3 and 6.3.6). 

In this chapter we will assume tha t chemotherapy is introduced in the population after 

the infection has reached this steady endemic level and study how that will affect the 

further progress of the epidemic.

Suppose that a proportion dida of the infectious TB cases, y ,  are diagnose! 

and a proportion 6 idb of those diagnosed receive treatment. Let 6 id = OidaOidb- In 

most countries nowadays 0ifÿ, = 1, which means that any individual diagnosed with TB 

receives treatment, so the rate did is called the detection rate (for those with infectious

169



TB). Among those treated, a proportion die is cured and become non-infectious. The 

remaining proportion, 1 — 0ic, although receiving treatment, fail to convert to sputum- 

negative or become non-infectious for a very short time (say less than a year) and relapse 

later. This proportion covers those individuals who completed their treatm ent but the 

treatm ent itself is not effective for the particular individual and also those patients 

who did not complete the therapy or did not follow the therapy correctly, for various 

reasons (it is a fact tha t a proportion of those treated remain infectious, see, e.g.. Dye 

et al. 1998, Grosset 1989, Styblo 1989, Murray et al. 1993).

Patients who are treated but do not convert to sputum-negative may be less 

infectious than those in the Y  class (since they have received at least some treatment, 

which possibly has had some effect, i.e. killed a number of tubercle bacilli) but either they 

are slightly less infectious than those in the Y  class or they are less infectious than the Y  

only for a short time and then they are equally infectious, so that we can assume tha t they 

are approximately as infectious as those in the Y  class (see, e.g., Grosset 1989, Murray 

et al. 1993). Therefore the assumption made here is tha t a proportion 6 i = didOic of the 

infectious TB cases is cured and removed out of the class Y .

Similar assumptions are made for the non-infectious cases, W.  A proportion 

0 2 da of the non-infectious cases is diagnosed and a proportion 0 2 db of those diagnosed 

receive treatment. Let 0 2 d =  &2da^2db- Among those treated a proportion 0 2 c is cured. 

The remaining proportion, 1 — 0 2 c  although receiving treatment, remain ill, for reasons 

similar to those mentioned above for the proportion \ —0 ic of the infectious cases who are 

not cured (see, e.g.. Dye et al. 1998, Grosset 1989). Therefore a proportion 0 2  = 0 2 d^2c 

of the non-infectious cases is cured and removed from the W  class.

The parameter 0 2c can be taken as equal to 0\c since there is no evidence that 

treatment is more or less effective depending on whether the patient is infectious or 

not (see, e.g.. Dye et al. 1998). In this chapter we assume tha t 0 2 c =  0\c and hence 

&2 = 0 2 d^ic' From a public health point of view, it is helpful to express the detection 

rate 0 2 d for non-infectious cases as a proportion of the detection rate 0 \d for infectious 

cases (since the control programs are aiming firstly on the infectious cases and secondly 

on the non-infectious, so that it is useful to know the relative ratio 0 2 d/^id)- Therefore 

in the rest of this chapter 0 2 d will be expressed as 0 2 d =  in some cases, and hence

0 2  = ^2r^ij where 0 <  02r ^  1 gives the relative detection rate for non-infectious cases.
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Among those who are treated with chemotherapy and cured, a proportion will 

relapse later and become TB cases (see, e.g., Styblo 1991, Chan & Yew 1998). When 

they relapse, there are two possible scenarios:

(a) they become infectious if they were infectious before treatment, and non-infectious 

if they were non-infectious before treatment.

(b) they become infectious or non-infectious with probabilities and 1—Çg, respectively, 

independently of their status (infectious or non-infectious) before treatment.

There is no study in the medical literature that proves either of the two scenarios 

and possibly the tru th  lies between the two. Most modellers assume tha t the status (in

fectious or non-infectious) after treatm ent is independent of the status before treatment 

(see, e.g.. Dye et al. 1998, Joesoef et al. 1989). It is not unreasonable to assume that 

they are independent since, for instance, treatment may decrease the number of tubercle 

bacilli, so tha t a previously infectious case that relapses may become non-infectious. 

Therefore for the model presented in this chapter we assume tha t they are independent, 

and hence the infectiousness of a patient who relapses after effective treatm ent does not 

depend on his/her infectiousness before treatment.

There is also evidence that reinfection after successful treatm ent is possible (see, 

e.g.. Small et al. 1993). Unfortunately there have been very few studies on reinfection 

of cured individuals, so that it is not clear how likely this is. Reinfection of those 

cured may be a very rare event (except in some high risk groups, like individuals with 

immunosuppression) so that the probability can be considered as negligible. On the 

other hand, maybe it is negligible only in areas with low risk of infection, while in 

areas with high risk it is very likely to happen (as with reinfection of those with a 

latent infection). The model presented here (as the model Zeus) is intended mainly for 

studying the effects of chemotherapy in developing countries, where the risk of infection 

and prevalence are high, so that reinfection even of those cured after successful treatment 

may not be negligible, and therefore it is included as a possibility in this model.

For those who get reinfected after successful treatment there is again the question 

of whether their status (infectious or non-infectious) after reinfection is independent of 

their status before treatment or not. Unfortunately there is not enough evidence in the 

medical literature to support either of the two theories and since it is not unreasonable 

to assume that they are independent we will adopt this assumption.
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We assume tha t the effective contact rate between infectious cases and those 

cured after treatm ent is pj.a. If a patient who has been cured by treatm ent is reinfected, 

he/she develops primary TB (within a year) with probability pg, and then becomes 

infectious or non-infectious with probability Çg, 1 — Çg, respectively. Let =  p^PrCt- 

Then one way to incorporate chemotherapy in model Zeus is to add a class U' for those 

cured after treatm ent and the following transitions from state (X, Y, Z, W, 17, U') in the 

interval [t,

to the state at rate

X,y-l,Z,W,C/,17' + l O i Y

X,y-^l,Z,W,17,C/'-l 

X, y -f-1, Z, W ,  U , U ' - 1  g'3 a' 2 V U ' / n

X , Y , Z , W - l , U , U ' - h l  02W

X , Y , Z , W - h l , U , U ' - l  (l-g'2)/3'

X , Y , Z , W  + 1 , U , U ' - 1  (1 -  q’̂)oc'2 YU'In .

It has to be noted that the class U' has to be separate from the class U because 

the relapse rates (from C7, Î7' to Y, W) for those naturally recovered are much higher 

than those for the recovered after treatm ent (see, e.g., Styblo 1991, Springett 1971, 

Grosset 1989). This is also the reason why reinfection of the naturally recovered has 

not been included in the models (neither in Zeus nor in Clio), since the relapse rate 

for this class is so high that the possibility of reinfection can be ignored (see, e.g., 

Styblo 1991, Springett 1971).

On the other hand, if

and (7.1)
93 =93 0!2 =  OL2̂

then the classes Z  and U' do not have to be separate. Again, there is not enough evidence 

in the medical literature to prove whether the equalities (7.1) hold or not. If we assume 

tha t they are not equal then the classes Z  and U' have to be separate, so that we increase 

the number of variables by one and the number of parameters by four, making the model 

more complicated and (mathematically) unattractive. In addition, by assuming that 

the equalities (7.1) do not hold, the uncertainty about the actual values of the eight 

parameters involved in (7.1) may result in errors in the numerical results deduced from 

this model which balance the errors incurred if we assume tha t (7.1) hold (if in reality
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X{t)
Y{t)
Z(f)
W{t)
U(t)

Number of uninfected individuals at time t 
Number of infectious TB cases at time t 
Number of inactive cases at time t 
Number of non-infectious TB cases at time t 
Number of naturally recovered patients at time t

A
A

a
P
Qi

P
Q2

PrOt

P3
0:2
Q3

Ô
70
50 
ei 
C2
51

Ô2

$2r
n

Immigration of uninfected individuals 
Normal death rate (per capita)
Excess death rate due to TB for infectious cases (per capita)
Excess death rate due to TB for non-infectious cases (per capita)
The effective contact rate between uninfected and infectious cases 
Probability of developing primary TB (after first infection)
Probability of developing infectious TB for those with primary TB (after the 
first infection)
Reactivation/relapse rate for inactive cases
Probability that reactivation/ relapse of inactive cases leads to infectious TB 
The effective contact rate between inactive and infectious cases 
Probability of developing primary TB (after reinfection)
0:2 =  P 3PrOC
Probability of developing infectious TB for those with primary TB (after 
reinfection)
Rate at which non-infectious cases become infectious
Natural recovery rate for infectious cases
Natural recovery rate for non-infectious cases
Relapse rate to the infectious class (for those naturally recovered)
Relapse rate to the non-infectious class (for those naturally recovered) 
Recovery rate after successful treatment with chemotherapy for the infectious 
cases
Recovery rate after successful treatment with chemotherapy for the non- 
infectious cases
Relative detection rate for non-infectious cases (assuming 0 2c = 0ic)
Initial total population size

Table 7.1: Variables and parameters used in model Clio

they do not). Finally, several results in the literature indicate that the relapse rates and 

the effective contact rates for the latents and those cured with chemotherapy are very 

small (see, e.g., Sutherland et al. 1982, Chan & Yew 1998, Enarson & Rouillon 1998, 

Dolin et al. 1994), and it seems unlikely that they will differ substantially. Taking all 

these things into consideration, we will assume from this point on that the equalities (7.1) 

do hold and therefore the Z  and U' classes can be combined in one class which will be 

referred to as the inactive class.

The definitions of the variables and parameters used for this model are sum

marised in Table 7.1. The possible transitions and their rates are illustrated in Fig

ure 7.1. If =  02 =  0 then this model is the same as the model presented in the 

previous chapter.
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7.2 The determ inistic m odel

For the corresponding deterministic model, let x{t), y(t), z(t), w{t), and u{t) denote the 

number of uninfected, infectious cases, inactive cases, non-infectious cases, and recov

ered, respectively, at time t. The differential equations for x, j/, z, w, and u are:

dx a
—  =  xy  -  fix-\-X
at n

^  =  P Q i - ^ y  +  q^— y z  -  (70 +  m +  p i ) y  +  Q2 /3 z  +  +  e iuat n n

^  =  ( l - p ) - x y  -  — yz  4- 6 iy  -  (/3 +  fi)z +  6 2 W (7.2)
CLZ Th Th

~Tr — p (l “  Qi)—x y  +  (1 — Qz)— y z  +  (1 — q2 )(3 z  — (J +  <5q +  ^2 +  Ai +  P 2 ) w  +  t 2 U at 71 71

^  =  702/ +  <̂ ow -  (ei +  62 +  p)u.

Here r ,  y, z, w, and u are non-negative continuous functions. The initial conditions are 

(a:(0),y (0) ,z (0),it;(0) ,u (0)) =  (xq, yo, ^o, tüo, uq) € S q, where

S q =  { x  =  { x , y , z , w , u )  e  : 1 <  re <  n — 1, x +  y +  z +  lo +  u =  n}, (7.3)

and n >  2 is the initial total population size: n =  xq +  yo +  zq -I- iüq +  uq- From the 

system (7.2) a differential equation is deduced for the total population size, N{t)  =

x{t) 4- y{t) +  z{t) -f w{t) +  u{t), which with integration gives

N{t)  =  -  +  f e^*[/iiy(5) -f fi2 w{s)]ds, (7.4)
P \  P j  Jo

for t >  0. This equation is the same as equation (6.5) for the total population size in

the previous chapter. From (7.4) it follows that N{t)  (and hence x{t), y{t), z{t), w{t),

and u{t) as well) is always bounded above by n if A <  /in and by A//i if A >  pn.

Solving the system (7.2) with the derivatives on the left-hand side equal to zero

follows that the system (7.2) admits three possible equilibria, e% =  {x f , y f , z f ,w f ,u f ) ,  for

i = 1,2,3. The first of these points, e i, corresponds to the extinction of the infection:

ei =  (A //i,0 ,0 ,0,0). The coordinates of the other two points, 62 and 03, are given in

the Appendix (Section A.4.1).

Depending on the parameter values, the coordinates of 02 and 03 may be positive,

negative, or complex. So we will call an equilibrium point 0 feasible if all its coordinates

are non-negative. 01 is always feasible. It can be shown that 02 and 03 are feasible if

and only if 0 <  x | <  A/// and 0 <  x | < X/p,  respectively. Using the Routh-Hurwitz
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criterion (Theorem 5.1), it can be shown tha t ei is unstable if 71q > 1, where TIq is the 

basic reproduction ratio

(see Section A.4.1 for the calculation of 7^ ), with H i and H 2 defined as

Hi =  pÇi[$s(AaEa — (̂ 0(2) — ^2Es(1 — q2)0]

+  p ( l  — g i ) [ $ a ( < ® a  +  <^0^1) +  02^ s Q 20 \

+  (1 ~  P ) [Q 2 ^{^ s^ s — 0̂ 2̂) +  (1 — Q2)P{^^ s +  (̂0 1̂ )]

H2 =  $s[ra(A aE s — #062) — 7 o(<̂ 2̂ +  Ag)]

— ^l[g2^(AgEa — #0 2̂) +  (1 — Ç2)^(^Es +  Jo^l)]

— Q2[Q2̂ 1Q̂ 2 +  (1 — 92)/)(EaEg — 70 1̂)],

where, for simplicity, the parameter values have been grouped as follows:

(7.6)
Eg —70 +  ^1 +/^ + P i Eg — Cl +  C2 +  p

Ag =  J +  0̂ +  ^2 +  P +  P2 +  /i.

Unfortunately the feasibility and stability of the equilibrium points cannot be 

further investigated analytically (due to the complexity of the algebra involved), but for 

specific parameter values of interest they can be studied numerically. Figure 7.2 shows 

the values of x®, Xj, for a particular set of parameter values (see legend of the graph). 

These values are not all representative of TB, but they are used here in order to show 

that it is possible to have multiple stable equilibria when TZq < 1. The value of Oi 

varied over the values 6 i = 0.0001,0.0002,... ,0.9999,1.0000 thus giving a grid of the 

parameter space with respect to the value of 6 i.

From Figure 7.2 it can be observed that for 0.0001 < 6 i < 0.3140 all three points 

01, 02, and 03 are feasible (since 0 <  x® <  A//i =  100, for all i = 1,2,3). Using the 

Routh-Hurwitz criterion (Theorem 5.1) it can be shown that 0 1  and 0 2  are stable, but 

0 3  unstable. The value of 'Rq is less than one in this subspace of the parameter space. 

On the other hand, for Oi = 0 .3141,... ,1.0 (T̂ o <  1 also here) only 01 is feasible and 

stable, while 0 2  and 0 3  are infeasible (x | and x | are complex).

These results show that, as for the model presented in the previous chapter, the 

behaviour of the deterministic model does not conform to the usual behaviour observed 

in most epidemic models (where for 7 ^  < 1 the disease-free equilibrium is stable and
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Figure 7.2: The values of x®, for a particular set of parameter values: n =  100, ^ =  0.0222, 
Hi -  0.3, H2 - 0.21, A — /zn, qi — 0.55, q2 =  0.55, qs =  0.055, p =  0.1, Pr =  0.6, a  =  6 , a 2 =  PrQ, 
(3 =  0.0001, Ô =  0.015, 7o = 0.2, 6o = 0.2, ei = 0.03, 6 2  =  0.03, $ 2  =  0.1, and 6 1  varies over 
6 1  =  0 .0001 ,0 .0002 ,... ,0.3139,0.3140. For 9i >  0.3141 the values of and are not real.

the endemic equilibrium unstable or even infeasible, while for IZq > 1 the disease-free 

equilibrium is unstable and the endemic stable). Here, it is possible to have T̂ o < 1 and 

still two equilibria stable, one corresponding to extinction and one endemic.

Finally, for the special case with qi = Q2 = Q3 = Q (most of the numerical results 

presented in this chapter are for this case), it can be shown that the third equilibrium 

point, 63, is not feasible throughout the parameter space, while 02 is feasible if and only 

if 7̂ 0 > 1- Therefore, in this case, we have only two possible equilibria, ei and 62- If 

7 ^  < 1 only 01 is feasible, but when TZq > 1, 01 is unstable and 02 feasible.

7.3 The stochastic model

7.3.1 T he transient phase

Let Px(t) =  p(z, p, z, w, u; t) be the probability that there are x  uninfected individuals, y 

infectious cases, z inactive cases, w non-infectious cases, and u recovered in the popula

tion at time t > 0, for x =  (x, y, z, w, u) E S  = Z^, t > 0  and Px{t) =  0 whenever x ^ 

The initial conditions are Pxo(O) =  I and Px(0) =  0 for any x xq =  {xo^yç,,zo,wo,uo), 

where xq E Sq and Sq is as defined in (7.3). The corresponding Kolmogorov forward 

equations for Px(() are given in the Appendix (Section A.4.2). The probability generating
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function, =  E[<^f satisfies the equation

d V  & P
—  =  \ ( 4 , ^ - i ) V  +  t i ( i - < i > i ) —  

d V  
+  [{fj. +  /i i) ( l  — (h) +  7o(05 — ^ 2) +  ^1(^3 —

d P
+  1/̂ (1 — ^ 3) +  Q2 ^{<h — M  4- (1 — Ç2)/3(<̂ 4 — ^ 3) ] ^ ^

&p
+  [(M +  /^2)(1 — M  +  à((j)2 — ^4) +  ^o(05 — ^ 4) +  ^2 (<̂ 3 — (7.7)

d V
+  [/^(l — ^b) +  ei(02 — ^ 5) +  (2(^4 — ^3) ] ^ ^

Oi Sî P
H----- <^2[ — ^ 1  -^PQl<t>2 +  (1 ~ p ) 0 3  + p ( l  — 9 1 ) ^ 4 ]

n  d(f)id(f)2

Ci2 d'^P
H <^[^3^2 +  (1 — 93)^4 — ^ 3]n  d(j)2 d(f)3 ’

with the initial condition P(<^i, (̂ 2,<̂ 3,<̂ 4,<̂ 5; 0) =  </*i°</*2°^ 3°<̂ 4

Prom equation (7.7) a system of differential equations for the first and second 

moments of %, Y ,  Z, W, and U is deduced; the equations for the means are

=  _ “ E[X y] -  iÆ,{X] +  A
at 71

=  P9i - E [ x y ]  +  93^ E [ y Z ]  -  r ,E [y ]  +  92/3E[Z] +  6E[W] +  «iE[!7]
ClL Tt Th

=  (1 -  p) - E [ x y ]  -  — E [y z ] +  SiE[y] ~ ( p  + p)E[z] +  % E M
dt n  n  (7.8)

— =  p( i  “  9 i ) —E [ x y ]  +  (1 — Ç3)— E [y  z ]  +  (1 — ç2)/?e [z ]
at 71 71

-  A,E[Py] +  e2E[î7]

=  7oE[y] +  ioE[ry] -  (ei +  £ 2  +  l i M u ] ,  

where the Pg and Ag are as defined in (7.6) and the terms E[%y] and E[yZ] can be 

expressed as E[X y] =  Cov[X,y] +  E[X]E[y] and E[yZ] =  Cov[y, Z] +  E[y]E[Z]. The 

equations for the variances and covariances are given in the Appendix (Section A.4.2).

From the system (7.8) it follows tha t the expected value of the total population 

size, N{t)  =  X( t )  +  y ( t)  +  Z{t) +  W'(t) +  U{t), satisfies the equation

=  A -  pE[JV(t)] -  MiE[y(<)] -  /X2E [iy W],

which with integration gives

E[JV(<)] =  -  +  e -" ' f n  -  -  e - " ' f ‘ e'"’{piE[y(s)] +  p 2E[iy(s)]}<is. (7.9)
P \  P j  Jo

This equation is the same as equation (6.20) for the mean total population size in the 

previous chapter.
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7.3.2 T he equilibrium  sta te  o f  th e  process

The process described in this chapter is a Markov process in continuous time with 

countable state space S  = Z^. Let A  denote the subset of S  tha t contains all the states 

of the form (x, 0, 0, 0, 0) and T> the remaining set of states:

A =  {(a:,0, 0 , 0, 0) eZ ^ .}

T) -  S  -  A  = { {x ,y , z ,w ,u )  € : (y,z,  w,u)  /  (0,0,0,0).}

The sets A  and V  form two irreducible classes. The former is closed and absorbing, 

while the latter is open and transient. Using Theorem 5.3 we will show that the chain 

will be absorbed in A  with probability one.

Following the notation in Definition 5.2, the functions Oj(x), dj(x), eÿ(x), for 

X e  «S, =  1 , . . .  , 5 and i ^  j ,  are defined as follows: oi(x) =  A and aj{x) = 0,

for j  = 2,3 ,4 ,5 ; di(x) =  fix, d2 {x) =  (/i +  d sW  =  nz,  d4(x) = { f J - and 

ds(x) =  fiu. The definitions of ê - are shown in Table 7.2.

3 eij(x) 62; (x) 63;  (x) 64; (x) 65; (x)
1 — 0 0 0 0
2 PQi^^y - ( i2^z -Vqz^yz ÔW eiu
3 { l - p ) ^ x y G\y — 0 2  W 0
4 v { ^ - Q i ) ^ x y 0 (1 -92)/0^ +  (1 - q z ) ^ y z — 62 U
5 0 702/ 0 Ôq W —

Table 7.2: The functions from Reuter’s Theorem

The functions dj and satisfy the conditions (5.17) for all z,^ =  1 , .. .  ,5 and 

z j .  Also, by “freezing” the states x  E v4, i.e. assuming that Oi(x) =  di(x) =  0 for all 

X E w4, all the states in A  become absorbing and Theorem 5.3 can be applied. Define

Ak = {{x^y^z^w^u) €T> : X + y + z  -{-w + u = k}, foT k = 1 ,2 ,  Then it follows that

5
rk = max y^Q i(x) =  A

1=]
5

Sk — min di(x) =  y.k,

for all A: =  1 ,2 , The functions r* and Sk are the same as the and Sk for the model

in the previous chapter (see equations (6.21) and (6.22)) and hence Theorem 5.3 gives 

the same results, which can be summarised as follows (see also Section 6.3.2):
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• The process will be absorbed in A  with probability 1, so tha t extinction of the infection 

is certain: X )ye^^(y) =  1-

•  The mean time until extinction is finite.

• After extinction of the infection, the limiting distribution of the uninfected individuals 

is Poisson with parameter X/fi and hence

lim P[X(t) =  y] =  <t->oo
0 if y  E D

kl
if y  =  {k, 0 ,0 ,0 ,0) E A.

7.4 Epidem iology

7 .4 .1  D e f in it io n s

In this section we will study some epidemiological indices which are helpful in assessing 

the severity of an epidemic and hence the efiect of chemotherapy in the spread (and/or 

the endemicity) of TB in a population. The epidemiological indices to be studied are 

the risk of infection and reinfection, incidence, prevalence, and mortality, as defined in 

Definition 6.1.

For this model, new infectious cases developing during a certain year are all 

the transitions from the class of uninfected {X)  and the class of inactive cases (Z) to 

that of infectious cases (T) during that year. From an epidemiological point of view 

the number of recovered {U) or non-infectious cases {W)  who become infectious should 

not be included in this index (see, e.g., Styblo 1991), but the number of cured (after 

treatment) who become infectious are included, since they are in the same class (Z)  as 

the latents. Similarly, new non-infectious cases developing during a certain year are all 

the transitions from the class of uninfected (X) and the class of inactive cases (Z) to 

that of non-infectious cases (W)  during that year.

Throughout this chapter the epidemiological indices are presented as proportions 

per 100,000 general population. The indices presented in this section were calculated 

from simulations of the stochastic model shown in Figure 7.1. Details of the implemen

tation of the simulations can be found in the Appendix (Section A.4.3).

The parameters were chosen to have values tha t are representative for TB and are 

shown in Table 6.8; they are the same as the values used in the respective Section 6.3.4 

for the epidemiological indices in the previous chapter. The values of 6 i and 6 2  depend on 

the particular control program implemented. In this section we present results for various
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values of 6 i and ^2, in order to study the relationship of the effect of chemotherapy with 

the detection and cure rates. For all the results presented in this section we give only 

the total value of Oi and not separately the values of did and 0ic, since in the simulations 

these two parameters appear only in the product did^ic =  hence the results for a 

specific value of 61  can be translated as results for all the combinations of values of did 

and did whose product is equal to tha t value of di. Also, we assume tha t 02c =  0ic and 

02(f =  & 2 r^ ld :  SO tha t 0 2  =  0 2 r ^ l  »

The initial conditions were taken as the equilibrium values firom model Zeus. 

Model Zeus describes the natural evolution of TB and is the same as model Clio with 

01 =  02 =  0. As was explained in Section 7.1, the epidemic begins with the introduction 

of the infection into a population of size n  (for the results presented in this section n 

was taken equal to 1000). The infection spreads and finally settles down at an endemic 

stable equilibrium (the quasi-stationary distribution of model Zeus; see Sections 6.3.3 

and 6.3.6). We assume tha t chemotherapy is introduced after the process has reached 

this steady endemic level. Therefore the most natural way to simulate this process is 

to simulate model Zeus (or equivalently model Clio with 0% =  02 =  0) until the process 

reaches the endemic stable state and then simulate model Clio (with the particular values 

of 01 and 02 desired) taking the initial value of the vector (X, Y ,  Z, W ,  U) to be equal 

to the equilibrium value of (X, Y, Z, W, U) deduced from the simulations of model 

Zeus. Details of how the simulations were implemented can be found in the Appendix 

(Section A.4.3).

In the following two sections we present results for the percentage decline in 

the epidemiological indices. The value of each index, say JF(t), t years after the in

troduction of chemotherapy, was calculated from the simulations of model Clio (with 

initial conditions as explained above). Then the decline, t years after the introduction 

of chemotherapy, was calculated as Te — T ( t ) ,  where Te  is the value of the respective 

index at the equilibrium level for model Zeus.

7.4.2 T he first 30 years after th e  in trod u ction  o f chem otherapy

First we will study the effects of chemotherapy during the first 30 years after its introduc

tion. The simulations were carried out up to  time t =  30 for di =  15 ,2 0 ,... , 55,60%, 

02r =  0,0.5,0.7 and 02 =  02r0i- h  has to be stressed th a t the results with 02r >  0
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show the effect of treating the non-infectious TB cases, as 02r =  0 means that the non- 

infectious are given no treatm ent at all. The percentage decrease was calculated for all 

the epidemiological indices listed in Definition 6.1. Figure 7.3 shows the results for the 

total incidence and the prevalence of TB infection a t 10, 20, and 30 years and Figure 7.4 

for the prevalence of infectious and non-infectious TB, mortality, and risk of infection 

at 10 years. The other results were qualitatively similar and are not presented here.

The first point that should be noticed from Figures 7.3 and 7.4 is tha t for most 

of the epidemiological indices under study, the value of 02r does not substantially affect 

their decline. Especially during the first 10 years the results from the three different 

values of 02r are almost the same. As time increases the difference between the three 

curves (for the three different values of 02r) increases, but still it remains very small even 

after 30 years. The only cases were the value of 02r made a significant difference were 

for the prevalence and the mortality of non-infectious TB and the total mortality.

This result is quite reasonable since 6 2  = ^2r^i and 6 2  is the rate at which 

the non-infectious cases are removed from the W  class (to the inactive class, Z, after 

successful treatment). Therefore even a small increase in 6 2  will decrease the number 

of non-infectious cases, W,  and hence the prevalence and mortafity of W  (and the total 

mortality, which is the sum of the mortality of Y  and W).  On the other hand, all the 

other epidemiological indices depend on the value of W  only indirectly, because they 

depend mainly on the value of infectious cases, Y  (which of course is the key element 

that drives the progress of the epidemic). Hence, the chain of reactions that we would 

expect is that an increase in 6 2  will decrease W  and tha t will decrease Y  (because of 

the transitions from W  to Y), which in turn  will decrease the other epidemiological 

indices. Since the value of Ô (the rate of transitions from W to T) is quite small, the 

epidemiological indices depend on W  only slightly and indirectly and therefore they will 

not be affected tha t much by a small increase in 6 2 -

In contrast, the value of 6 1  has more effect on the epidemiological indices. Even 

after 10 years, increasing 6 1  from 0.15 to 0.60 increases the decline in most epidemio

logical indices by 10-15%. As was explained above this is a result of the fact that the 

main force driving the epidemic is the number of infectious cases, Y .  Therefore with an 

increase in the value of 0i, the value of Y  decreases, thus decreasing the prevalence of Y  

and hence the number of infections (counted by the risk of infection and reinfection), the
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Figure 7.3: (a), (b), (c): Percentage decline in the total incidence of TB as a function of ^i. 
The three graphs are for the decline 10, 20, and 30 years, respectively, after the introduction of 
chemotherapy, (d), (e), (f): Percentage decline in the prevalence of TB infection as a function of 
9i. The three graphs are for the decline 10, 20, and 30 years, respectively, after the introduction 
of chemotherapy. All the rates were calculated as proportions per 10  ̂ general population. In 
each graph there are three curves, one for each of the following values of 92r- 0, 0.5, and 0.7. 
The other parameter values used are shown in Table 6.8. The initial conditions are taken from 
the endemic steady level of the natural evolution of TB (see Section 7.4.1 for details). Time is 
measured in years after the introduction of chemotherapy. The data used for these graphs were 
available only for the discrete points 9i =  1 5 ,2 0 ,...  ,55,60%  and not for all the values of 9i 
between 15% and 60%.
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Figure 7.4; Percentage decline in (a) prevalence of infectious TB, (b) prevalence of non-infectious 
TB, (c) mortality of infectious TB, and (d) risk of infection, as a function of 6i (10 years after 
the introduction of chemotherapy). All the rates were calculated as proportions per 10  ̂ general 
population. The parameter values used are shown in Table 6.8. The initial conditions are taken 
from the endemic steady level of the natural evolution of TB (see Section 7.4.1 for details). The 
data used for these graphs were available only for the discrete points d\ =  1 5 ,2 0 ,...  , 55,60% 
and not for all the values of 6\ between 15% and 60%.

number of new cases developing (incidence) and so on. The différence is bigger for small 

values of while for 6 i greater than 0.45 the slope of the curves shown in Figures 7.3 

and 7.4 decreases.

Also it should be noticed that even for the smallest values of 9\ and ^2r examined 

here and even after only 10 years, there was a significant decrease (about 35% to 55% in 

most cases) in all the epidemiological indices, except for the prevalence of TB infection 

and the prevalence of the Z  class (not shown here). For these two indices the decline 

was rather small and only for the largest values of d\ and 02r did the decline reach a 

level of about 30% after 30 years.

This is probably a result of the fact that in the beginning there is still a large

183



number of infectious, Y ,  and non-infectious, W,  cases (from the endemic steady state 

of the natural evolution, before the introduction of chemotherapy). After successful 

treatm ent these move to the inactive class, Z.  Therefore there is an influx into the Z  

class, which means tha t the number of inactive cases does not decrease significantly. 

On the other hand, the size of the Z  class does not substantially increase, because the 

influx from the infectious and non-infectious classes into the inactive class increases the 

outflow from the inactive class due to endogenous reactivation and exogenous reinfection 

(at rates /3Z and a 2Y Z /n ^  respectively). Therefore the prevalence of Z  decreases only 

slightly. On the other hand the prevalences of infectious and non-infectious TB decline 

significantly because of the outflow due to successful treatm ent and hence the other 

indices decrease as well, as a result of the decreased number of infectious cases. Overall, 

the prevalence of TB infection (which is the sum of prevalences of the Y ,  Z,  W, and 

U classes) does not decrease significantly because it is the sizes of each individual class 

that are affected in the beginning (for instance by “moving” individuals from the Y  to 

the Z  class), but the overall size of Y Z  + W  + U does not change tha t much. It takes 

more time to see the effect of chemotherapy in the size o îY - \ - Z - \ - W  + U and hence the 

prevalence of TB infection as well, as the results in the next section will show.

7.4.3 T he long run behaviour

Now we will study the long run behaviour of the process. The simulations were carried 

out up to time t = 300. From a practical point of view the results for such a long period 

are of no interest, since it is unreasonable to assume tha t the values of the parameters will 

remain the same for 300 years. Nevertheless, the information about how the epidemic 

could evolve (if things remained the same with respect to possible transitions and the 

values of the parameters) can be helpful in planning long-term policies or as an indication 

of the possible long-run effects of chemotherapy.

The simulations were carried out with 6 \ = 20,40,60%, 0 2 r = 0,0.5,0.7 and 

0 2  = 0 2 r^i- The percentage decline was calculated for all the epidemiological indices 

listed in Definition 6.1. Figure 7.5 shows the results for the total incidence and the 

prevalence of non-infectious TB for 0 2 t  — 0,0.5,0.7 and Figure 7.6 for the prevalence of 

infectious TB and TB infection and the risks of infection and reinfection for 0 2 r =  0.5. 

The other results were quahtatively similar and are not presented here.
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Figure 7.5: (a), (b), (c): Percentage decline in the total incidence of TB as a function of time. 
The three graphs are for the following three values of Û2r- 0, 0.5, and 0.7. (d), (e), (f): Percentage 
decline in the prevalence of non-infectious TB as a function time. The three graphs are for the 
following three values of 02r- 0, 0.5, and 0.7. All the rates were calculated as proportions per 
10  ̂ general population. In each graph there are three curves, one for each of the following values 
of 0i: 20%, 40%, and 60%. The other parameter values used are shown in Table 6.8. The 
initial conditions are taken from the endemic steady level of the natural evolution of TB (see 
Section 7.4.1 for details). Time t  is measured in years after the introduction of chemotherapy.
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Figure 7.6: Percentage decline in (a) prevalence of infectious TB, (b) prevalence of TB infection, 
(c) risk of infection, and (d) risk of reinfection as a function of time, with 2̂ r =  0.5. All the 
rates were calculated as proportions per 10  ̂ general population. The parameter values used are 
shown in Table 6.8. The initial conditions are taken from the endemic steady level of the natural 
evolution of TB (see Section 7.4.1 for details). Time t is measured in years after the introduction 
of chemotherapy.

As for the results in the previous section, the decline in the epidemiological indices 

does not vary significantly depending on the value of 02r- The difiference between the 

curves for 0 2r equal to 0, 0.5, and 0.7 is quite small, although it increases slightly after 

the first 40-50 years (at time t = 300 the difiference is 5-10% for the various indices). 

The only exception is for the prevalence and the mortality of non-infectious cases, where 

the difierence reaches its maximum during the first 30-40 years and then declines. The 

efiect of changing the value of ^2r during the initial phase was explained in the previous 

section: an increase in 0 2r will decrease the size of W ; hence the prevalence and mortality 

of non-infectious cases will decline significantly (since these indices directly depend on 

the size of IF), but the other indices will change only slightly (since they depend on 

W  only indirectly). In the long run though, this efiect of changing $2r wanes, as it
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affects mainly the size of W .  The main force tha t drives the epidemic is the size of Y  ; 

since this is not altered significantly by changing the value of ^2r, eventually the size 

of W  and hence the prevalence and mortality of non-infectious TB will not be affected 

considerably.

Some other interesting elements of the behaviour of the decline in the epidemio

logical indices can be grouped in the following three classes:

Mortality and prevalence of infectious cases, risk of reinfection: The slope of the curves 

is very high in the beginning and the percentage decfine rapidly increases during the 

first 20-30 years, reaching a level of more than 70%. After tha t it increases more slowly 

and at time t = 300 the percentage decline is more than 95% for 6 i =  60% and around 

75-80% for di = 20%. The difference between the curves depending on the value of 6 \ 

is much smaller than for the other indices and increases slightly in time.

Total mortality and incidence, incidence of infectious TB, prevalence of non-infectious 

TB: The slope of the curves is still quite high in the beginning although lower than for 

the indices mentioned above. The percentage decline increases quite rapidly during the 

first 20-30 years, reaching a level around 50-80%. After that it increases more slowly 

and at time t = 300 it is about 90-95% for 6 i =  60% and around 55-70% for 6 i = 20%. 

The difference between the curves depending on the value of 6 i is more considerable 

than for the indices mentioned above, but increases slightly in time.

Prevalence of TB infection and of the class Z  : The slope of the curves in the beginning 

is much lower than for the other indices; the percentage decline increases much more 

slowly and smoothly during the first 50 years, and for 6 i =  60% it continues to increase 

significantly up to t =  100. The difference between the curves for the different values of 

6 i is very considerable here and increases a lot in time: the percentage decline in these 

indices at t =  50 is about 40-45% for 6 i =  60% and about 20-25% for 6 i = 20%, while 

at t =  300 it is around 80% for 6 i = 60% and around 25-30% for Gi = 20%.

Finally, for the risk of infection the behaviour is similar to the one for the second 

class described above, the only difference being tha t in the beginning the curves have 

a peak (around t =  20). The percentage decline then decreases up to t =  50 and then 

remains almost steady for 6 i = 20,40% and slightly increases for 6 i =  60%.

The behaviour described above can be explained by the effect of the class of 

infectious cases. The epidemiological indices tha t depend more heavily and/or directly
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on the size of the Y  class are the ones which are more affected by the different values of 0i 

and have the highest and more rapid decrease. Therefore the mortality and prevalence of 

infectious cases decreases more, and more rapidly, than the prevalence of the other classes 

and the m ortality of non-infectious cases. Also, they decrease more than the incidence 

since this la tter index depends also on the sizes of X  and Z,  and only indirectly on 

the size of Y  (the infections and reinfections tha t develop into cases). The prevalence 

of TB infection and tha t of the class Z  present the smallest and slowest decrease for 

the reasons explained in the previous section for the first years after the introduction of 

chemotherapy: the influx from the classes of infectious and non-infectious cases (due to 

successful treatm ent) makes the decrease in these indices slower.

The peak observed in the decline of the risk of infection can be explained by the 

interaction between the classes X  and Y . After the introduction of chemotherapy the 

size of Y  rapidly decreases (as the prevalence of infectious TB shows) thus decreasing 

the number of new infections quite significantly. T hat results in an increase in the size 

of the X  class (results not shown here). Therefore, although there is a smaller number 

of infectious cases to transm it the disease, there is a larger pool of uninfected individuals 

to get infected, and hence their product [ X Y )  can increase.

One final observation that should be made with respect to the effect of the value 

of 6 i is tha t for Oi =  20% the epidemiological indices seem to stabilise after 100 years, 

while for 6 \ =  40% this point is reached somewhat later. For 6 i =  60% though they 

continue to decrease slightly even up to time t =  300, indicating that the process has 

not reached the steady endemic level yet.

7.4 .4  V ariation  in  th e  ep idem iolog ica l ind ices

Finally we conclude the study of the decline in the epidemiological indices with a few 

comments about their variation. Figure 7.7 shows the standard deviation of the preva

lence of infectious and non-infectious TB 10 years after the introduction of chemotherapy 

and during the first 300 years after its introduction (details of how the standard devi

ations were calculated can be found in the Appendix, Section A.4.3). For the other 

indices the results were qualitatively similar and are not shown here.

The value of 6 \ affects the level of variation substantially. As d\ increases the 

standard deviation decreases, so for the largest values of 9i the results presented in the
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Figure 7.7: (a), (b) Standard deviation of the prevalence of infectious and non-infectious TB, 
respectively, 10 years after the introduction of chemotherapy. The data used for these graphs 
were available only for the discrete points Oi =  15 ,20 , . . .  , 55,60% and not for all the values of 
01 between 15% and 60%. (c), (d) Standard deviation of the prevalence of non-infectious TB as 
a function of time with Ô r =  0,0.7, respectively. In all cases the prevalences were calculated as 
proportions per 10  ̂ general population. The parameter values used are shown in Table 6.8. The 
initial conditions are taken from the endemic steady level of the natural evolution of TB (see 
Section 7.4.1 for details). Time is measured in years after the introduction of chemotherapy.

previous sections are more accurate (in the sense that there is less variability in the 

results obtained for the estimates of the epidemiological indices). In contrast, the value 

of 0 2r does not affect the variability that much, and the standard deviations decrease 

only slightly as 0 2 r increases.

A clearer picture about the decline in the epidemiological indices and the com

parisons for the relative effect of the various levels of &i and 02r can be obtained by 

Figure 7.8. In this figure we present results for 95% confidence intervals for the per

centage decline in the prevalence and the incidence of infectious TB 10 years after the 

introduction of chemotherapy and for 0 2r equal to 0 and 0.7 and 0i = 15 ,20,... , 55,60. 

It is obvious from these graphs that the value of &i significantly affects the decline, espe-
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Figure 7.8: 95% confidence intervals for the percentage decline in (a), (b) the prevalence of 
infectious TB, with 02r =  0,0.7, respectively, and (c), (d) the incidence of infectious TB, with 
^2r =  0,0.7, respectively. The indices were calculated as proportions per 10® general population, 
10 years after the introduction of chemotherapy. The parameter values used are shown in Ta
ble 6.8 and 6 \ =  15,20,... , 55,60%. For eadi value of 6 \ the dot in the figures above presents 
the percentage decline in the prevalence and incidence, and the length of the line segment above 
ajid below the dot is equal to the length of the 95% confidence interval. The initial conditions 
are taken from the endemic steady level of the natural evolution of TB (see Section 7.4.1 for 
details).

cially for small values of d\ (up to 35-40%), while varying 02r even from 0 to 0.7 results 

in only minor difiFerences in the decline.

7.4.5 C onclusions

The results presented in the previous sections suggest tha t the level of the recovery 

rate (after successful treatment) for the non-infectious cases, 6 2 -, does not substantially 

affect the epidemiological indices. Surprisingly, even with 02 =  0 the decline in the 

epidemiological indices is not substantially smaller than the decline with positive values 

of 02, suggesting that treatment of non-infectious cases may not significantly contribute
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in the reduction of the TB problem.

On the other hand, the level of the recovery rate for the infectious cases, 0i, 

has a significant impact on the decline of the epidemic. For instance by varying 6 i 

from 0.4 to 0.6 the difference in the decline of the epidemiological indices can be 5-10% 

in the short term  and 10-30% in the long run. The level of decline depends on the 

epidemiological index studied, but even with a moderate value of 6 i =  0.4 the decrease 

in incidence, mortality, and prevalence of infectious TB is more than 50% 10 years after 

the introduction of chemotherapy. For the prevalence of the infection, however, the 

decrease is only about 10%.

In interpreting these results and determining the best policy to be implemented 

there are several things that have to be taken into account. F irst of all there is the fact 

that TB control policies have long-run effects, in the sense that it may take some time 

until substantial effects can be observed, but also tha t the reduction achieved can be 

sustained for a long time, even after terminating the control policy (Enarson & RouiUon 

1998; see also Azuma 1975 for modelling the decline after termination of the controls).

On the other hand, low cure rates may also have the exactly opposite effect. 

In the short term they decrease the number of infectious cases and hence the number 

of new infections, number of deaths and so on. In particular the mortality rates may 

be reduced even in the long run, since treatm ent always has some effect on the patient, 

reducing the number of tubercle bacilli, for instance, thus reducing th^ mortality for these 

individuals. But low cure rates result in high treatm ent failures, persons who relapse 

and become infectious again later, and therefore increase the rate of transmission of 

the disease (see, e.g.. Dye et al. 1998). In other words, with low cure rates most of 

the infectious cases treated will be cured only temporarily or partially and hence they 

will remain alive and infectious for longer time thus prolonging their infectious periods. 

Therefore, although the mortality rate may be decreased, the risk of infection may not be 

substantially reduced in the long run, which is also one of the reasons why the mortality 

rates are no longer useful epidemiological indices of the severity of the epidemic (see, 

e.g., Styblo 1991). The results presented in the previous sections agree with this point 

since the decline in the risk of infection is smaller than the decline in mortality and 

also the difference in the decline in the various indices, depending on the value of 0i, 

increased in time.
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Another point that has to be taken into account with respect to the treatment 

of non-infectious cases is the fact tha t treating these patients helps in reducing the 

transmission of TB before diagnosis (for those non-infectious cases who finally convert 

to infectious TB), which accounts for a significant proportion of the total transmission 

(Murray et al. 1991). Therefore treating non-infectious cases has a direct eflFect on the 

reduction of the rate of transmission, which cannot be achieved by treating only infectious 

cases. The only way of compensating for this efiect is by increasing the detection rate 

did so tha t the non-infectious who become infectious will be detected early enough and 

hence pre-diagnosis transmission will not be significant.

Finally it has to be mentioned tha t the efiectiveness of any control program 

also depends on cultural and behavioural indices in the country/area where it is imple

mented. Nevertheless, it has been shown that despite these difierences, high cure rates 

can be achieved, for instance 80-90% in Malawi, Mozambique, and Tanzania (Murray 

et al. 1991) and 85-90% in China (China Tuberculosis Control Collaboration 1996). If 

these high cure rates are combined with high detection rates, then the overall success

ful treatm ent rate will be high, thus contributing in the reduction of the TB problem. 

The importance of an efiective case-findiug system has been extensively emphasised in 

the literature, especially after the publication of results tha t document high successful 

treatm ent rates with intensive control programmes in countries where previous (not in

tensive) programmes had been consistently unsuccessful (see, e.g., Styblo 1983, China 

Tuberculosis Control Collaboration 1996, Murray et al. 1993). This is the reason why 

case-finding and treatment are no longer seen as separate or inequivalent elements of 

a TB control program, but have to be targeted as one entity in order to achieve the 

best possible results. The WHO targets for case-finding and cure are 70% and 80-85%, 

respectively, giving a value of 6 i around 0.6 (which is the maximum value of 6 i studied 

in the previous sections).
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Chapter 8

M odel Erato: 

a m odel for the BCG vaccine

8.1 Introduction

The Bacille Calmette-Guérin (BCG) vaccine for tuberculosis is one of the most widely 

used, but also one of the most controversial vaccines (Fine 1995), Its effectiveness varies 

from zero to 80% and for this reason it has never been routinely recommended in some 

countries, except for some specific classes of the population (Murray et al. 1993, LaScolea 

& Rangoonwala 1996). BCG offers protection against development of disease but not 

against infection (or reinfection) and even tha t is for a limited length of time (about 

10-15 years) (Huebner 1996, Murray et al. 1993). It is recommended that the vaccine 

should be given as early in life as possible, but the effect of revaccination or vaccination 

at older ages is unknown (Smith & Fine 1998, Murray et al. 1993). Since its protection 

lasts only for 10-15 years, the vaccinated individual is protected mainly during childhood 

and adolescence. During these periods of life, though, the infectious forms of TB are 

rare, and this limits the effect of BCG as a control method.

Because of these limitations in the effectiveness of BCG, even total BCG coverage 

of the population will have little effect on the annual risk of infection and hence in 

controlling tuberculosis (Murray et al. 1993). Consequently no control program can 

depend solely on BCG, but when a mass-vaccination program is implemented along with 

an intense chemotherapy program, it can help in controlling the TB problem. Therefore 

in this chapter the effect of BCG will be examined by comparing the effect of a control

193



program implementing both BCG and chemotherapy with a program implementing only 

chemotherapy. To this end, the model for chemotherapy (as presented in the previous 

chapter) is extended to account for the fact that some members of the population will 

be vaccinated.

The definitions of the variables and parameters used for the model for chemother

apy (model Clio) are summarised in Table 7.1. The additional variables and parameters 

used for the model for BCG are shown in Table 8.1. The possible transitions and their 

rates are illustrated in Figure 8.1.

nx

Cl5

nz

(1-0)A. X
Cl3 z

C35
Y

BiY ^

sw

ci3 { X , Y )  = { l - p ) ^ X Y  

C i5 ( x ,y ) = p g i a x y

c i 6 ( X , y ) = p ( l - g i ) a x y
C3i(Y ,Z)=q2PZ + g 3 ^ Y Z

C36(y, z) = (l- q2 )pz +  (1 -  9 3 )f  XX

C24(x„,y) =  ( i - p ' ) | x „ y  

% ( x « ,y )  =  p 'g i§ x « y  

C26(X„,y)=p'{l-gi)ax„y 
C45(y, z„) = q2 Ẑ„ + 93^XZ„
C46(y, X.) =  (1 -  92)/3'X. + (1 -  93)# X X .

Figure 8.1: Model Erato: a model for chemotherapy and BCG vaccine

The population is divided into 7 classes, X , Xy,  Z, Y, W , U. The classes 

%, Z, y ,  W, and U and the possible transitions between them are defined exactly as in 

model Clio (see Section 7.1). Xy  are vaccinated individuals who have never been infected 

and Zy are vaccinated individuals who have been infected but are inactive (they will be 

referred to as uninfected vaccinated and inactive vaccinated classes, respectively). We 

assume tha t all vaccinations are given soon after birth. If cf) is the proportion of newborns
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Zv(t)

vi

V2

P'

« 2

Number of uninfected vaccinated individuals a t time t 
Number of vaccinated inactive cases a t time t
Proportion of newborns who are vaccinated
Average length of protection from BCG, for uninfected individuals 
Average length of protection from BCG, for infected individuals 
Reduction (due to BCG) in the probabihty p  of developing primary 
TB (within a year after infection)
Reduction (due to BCG) in the probability /5 of developing secondary 
TB (endogenous reactivation)
vip (probability of developing primary TB for vaccinated individuals)
V2 /3  (reactivation rate for vaccinated individuals)
v i a 2

Table 8.1: Additional variables and parameters, which are used in model Erato over and above 
those defined in Table 7.1 for model Clio

who are vaccinated, then the immigration rate into the uninfected vaccinated class 

is (f)X and the immigration rate into the uninfected class X  is (1 — 0)A.

The protection from BCG lasts only for a few years, so we assume that vaccinated 

individuals who have not been infected (Xy) move to the class % at a rate c^iXy and hence 

they are not protected anymore. Similarly, inactive cases who have been vaccinated but 

not developed TB yet (Z^) move to the class Z  at a rate <̂2 ^v  (with ^2 >  ^ 1) and they 

are not protected anymore from the vaccine.

Since BCG does not protect against infection, new infections of vaccinated in

dividuals (Xv) occur a t the same rate as for the non-vaccinated {a Y /n  per capita). 

The vaccine does, however, protect against the development of disease and hence the 

probability p’ tha t a newly infected individual will develop TB soon after infection is 

decreased: p' = vip,  with 0 <  <  1. There is no evidence that BCG offers more

protection against infectious forms of TB than against the non-infectious ones (Rouillon 

& Waaler 1976), so we assume that the probability qi tha t a newly infected individual 

will develop infectious TB is the same regardless of whether the individual is vaccinated 

or not.

Similarly for the reinfections, the effective contact rate between vaccinated inac

tive cases and infectious cases is the same {prcn) as for the non-vaccinated inactive cases. 

After reinfection, an individual develops clinical disease within a year (primary TB) or 

remains inactive with probabihties pg and 1—P3, respectively, where pg =  vipa (and pg is 

the corresponding probability for the non-vaccinated inactive cases). For simplicity we
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will denote =  PsPrĈ  =  v ia 2- Those who develop TB are infections or non-infections 

with probabilities % and 1 — respectively (eqnal to those for the non-vaccinated).

Finally, vaccinated inactive cases may develop TB dne to endogenons reactivation 

at a rate =  ^2/?, with 0 <  V2 <  1. The redaction V2 in the reactivation rate P is either 

the same or greater than v\ (the redaction in the rate of development of primary TB). 

There is not enongh evidence to sapport either alternative, b a t since the efficacy of BCG 

wanes in time (Ferebee 1970, M array et al. 1993), it is possible tha t V2 is greater than 

v\. For the moment we will assame tha t v\ and V2 are différent, and later in Section 8.3, 

where we stady the effect of BCG namerically, both cases (with v\ = V2 and vi < V2 ) 

are examined. Since there is not enoagh evidence tha t the level of protection from the 

vaccine is different for different kinds (or severity) of TB (Roaillon & Waaler 1976), we 

assame th a t the probability tha t after reactivation the individaal has infectioas TB, 

is the same for vaccinated and anvaccinated inactive cases.

8.2 M odel equations

The corresponding deterministic model is described by the following eqaations:

da; a , ... , .
-TT =  xy -  +  <f))X +  (piXv
Ctb Tt

=  arv2/ — (01 +  y)xv  +  0A
( t t  Tl

- ^ =  { I -  p ) - x y  -  — yz  -  (/? +  p)z  -f (f>2 Zv + 6 iy  +  6 2 W
( t t  71f Th

=  (1 — p')—Xvy — -yzv — (02 + P' + p)zy
( t t  Tt Tt

dy c t , a  Q2 a'n / „ . , n
_  =  pq^ - x y  -\-pqi - x ^ y  +  % — yz  +  93— 2/^u -  ( 7 0  +  ^ 1  +  M +  /^i)î/
( t t  Tt Tt Tt Tt

+  Q2 Pz +  Q2P'Zv -hSw-\- eiU

—  =  p (l — qi)—xy  -\-p'(l — qi )—Xyy +  (1 — qz)— yz  +  (1 — qz)— yzv 
a t  n  Tl n  Tl

+  (1 — q2 )Pz +  (1 — q2 )P'zy — {Ô + 60  + 6 2  + p P2 )w +  C2 U

^  =  702/ +  -  (ei +  C2 +  p)u,

where x, a;%,, z, ?/, w, and u are non-negative continaoas fanctions. The initial 

conditions are xq =  (a:(0),a;t,(0),z(0),Zu(0),y(0),io(0),u(0)) E «So, where

«Sq =  {(hi, /i2, — , hf)  E ; 1 <  hi +  /i2 <  n  — 1, hi +  • * • +  h7 =  n}, (8.1)
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and n >  2 is the initial total population size.

For the stochastic model, the probabilities p (x ;t) =  p(x,Xv^z,Zv,y ,w,u;t)  are 

defined as

p (x ;t) =  F[X(t)  =  x,Xy{t)  = Xv,Z{t) =  z,Zv{t)  =  z „ ,y ( t)  =  y ,W { t )  =  w,U{t)  = u],

for t >  0 and x  =  (x ,Xv, z ,Zv,y ,w,u )  € S  = and p (x ;t) =  0 whenever x  f  S.  The 

initial conditions are p(xo;0) =  1 and p (x ;0) =  0 for any x  xq, where xo E Jo as 

defined in (8.1). The corresponding Kolmogorov forward equations for p (x ;t) are given 

in the Appendix (Section A.5.1). The joint probabihty generating function

V{hu.. .

satisfies the equation

dV dV
=  A[(l -  cf>)hi +  cf>h2 -  l )V  +  fJLil -  h i ) ^

dV
+  [/^(l — ^2) +  01 ( 1̂ — ^2) ] ^ ^

dV
+  [/i(l — /13) +  q2 p{h5 — /13) +  (1 — 92)/?(^6 — ^3) ] ^ ^

dV
+  [/i(l — /14) 4-  q 2^ ' { h ^  — /14 ) +  (1 — q 2) ^ ' { h e  — ^ 4 )  +  0 2 ( ^ 3  —

dV
4-  [(/X 4- / x i ) ( l  — /15) 4-  7o ( / i 7 — h g )  4-  ^ 1 ( ^ 3  —

dV
4- [(/X 4-  /X 2 ) ( l  — h e )  4-  6 ( h e  — h e )  4- ^ o ( h 7  — h e )  4- ^ 2 ( h e  — h e ) ] ^ ^

dP
4-  [ / x ( l  — h 7 )  4- e i ( h e  — h ^ )  4- C 2 (h e  — ^ 7 ) ] ^ ^

a  ^ 2 p
4-  — h e [ — h i  4- p g i h s  4-  (1 — p ) h s  4- p ( l  — 9i ) h e ] ^ ^ ^ ^ ^ ^

a d'̂ V
4-  — h e [ — h 2  4- p ' ç i h e  4- (1 —p')h/  ̂ 4- p ' ( l  — 9 i ) h e ]

4— ^ h e f ç e h e  4-  (1 — 9 3 ) h o  — h e ]
n dh^dh^

+ ^h^[gshs  +  (1 -  93)ft6 -

with the initial condition P ( h i , . . .  ,h 7; 0) =

Prom the equation for the probability generating function a system of difiFerential 

equations for the first and second moments of Xy, Z,  Zy, Y ,  W ,  and U is deduced;
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the equations for the means are

= -  -E[jçy] -  + (1 -  ÿ)A +  0iE[X„]
a t  TL

— = — —E[X̂ y] — (ÿi + //)E[Xt,] + ij>\

=  (1 -  p ) - E [ x y ]  -  ^ E [ y z ]  ~ ( p  + fi)E[z] +  <fcE[z„] +  @iE[y] +  $2 E[w]  
a t  Tl Tl

 =  (1--------------------- ----- -E [y Zy] — (<t>2+ 0  P)^[Zv\
CLX Th Th

—J —̂  =  p q i —E[XY]  4-p'q\—E[XyY]  4- q^— E[YZ]  4- E[YZy] 4- q2PE[Z]
a t  n  Tl Tl Tl

— (70 4- 01 4- /u 4- /ii)E [y] 4- q20E[Zy] 4- <5E[Ty] 4- eiE[f7]

= (1 -  9 i)-(pE[xy] +p'E[x„y]) + (1 -  g3 )(—E[yz] + ^E[yz„])
a t  Tl Tl Tl

4- (1 — q2){PE[Z] 4* 0E\Zy \)  — ((J 4- <5o 4- 02 4- 4- /Li2)E[Ty] 4- C2E[J7]

dE[U]
dt

=  7oE[y] 4- <5oE[py] -  (ei 4- 62 4- f J>)E[U] ,

where the term E[%y] can be expressed as E[%y] =  Cov[%, Y ]  4- E[X]E[y], and sim

ilarly for the terms E[X„y], E[yZ], and E[yZ„]. The equations for the variances and 

covariances are given in the Appendix (Section A.5.1).

8.3 Epidemiology

In this section we present some numerical results for the epidemiological indices defined 

in Definition 6.1. For this model the risk of infection is the number of primary infections 

of both vaccinated and unvaccinated individuals { X  and X y ) .  Similarly the risk of 

reinfection is the number of reinfections of vaccinated and unvaccinated inactive cases 

{ Z  and Z y ) .  The incidence of infectious TB is the number of new infectious cases that 

developed during a year, which counts all the transitions from the uninfected and inactive 

classes (X, X y ,  Z ,  Z y )  to the class of infectious cases (y). The incidence of non-infectious 

TB counts all the transitions from the uninfected and inactive classes (X, X y ,  Z ,  Z y )  

to the class of non-infectious cases ( W ) .  Finally, the prevalence of TB infection is the 

proportion of infected individuals { Z  Z y  +  Y  W  •]-U )  in the population. All these 

rates are defined (and were calculated from the numerical simulations) as proportions 

per 10  ̂ general population. Details of the implementation of the simulations can be 

found in the Appendix (Section A.5.2).
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The parameter values are the same as in the previous chapter (see Table 6.8), 

with 6 i =  0.4, ^2r =  0.5, and 6 2  =  ^2r^i* For v\  and U2, the reduction in the probability 

of developing TB (primary and secondary, respectively), we used the following values: 

v\ = 20,40,60,80% and V2 =  v\ or U2 =  vi 4- 10%.

For the proportion (f> of newborns vaccinated, we used two différent values, 50% 

and 95%. The value 4> =  95% is rather extreme (since it assumes tha t almost all 

newborns are vaccinated), but still it is a value tha t has been achieved (see Rouillon & 

Waaler 1976, Fine 1995) and also it gives a limit for the maximum effect that BCG can 

have.

The values of (pi and <p2 depend on the length of the protection conferred by 

BCG. It is believed tha t the protection can last for 10-15 years, but there is no evidence 

tha t it can last for more than 15 years (see, e.g., Murray et al. 1993, Styblo 1991). For 

the numerical results presented in this section we used an average length of protection 

of 12 years, so tha t =  0.0833. The value of cp2 is greater than or equal to ^ 1, If 

the vaccinated individual gets infected and becomes inactive soon after vaccination then 

(p2 = (pi'i ill all other situations (p2 > (pi- The difference cp2 — (pi depends on the length of 

the time between vaccination and infection. The sooner the vaccinated individual gets 

infected, the smaller the difference (p2 — (pi will be. Therefore the value of (p2 depends 

on the particular individual and the only knowledge we have for its value is that it will 

be at least equal to (pi- For the numerical results presented in this section we assumed 

that (p2 =  (pi so that will give a view of the maximum effect tha t BCG can have.

The initial conditions were taken as in model Clio (see Section 7.4.1). Model Zeus 

(Chapter 6) describes the natural evolution of TB and is the same as model Clio with 

0  ̂ = 0 2  = 0 and the same as model Erato with 0i, 6 2 , (p, (pi, (p2 , vi,  and V2 all equal to 

zero. The epidemic begins with the introduction of the infection into a population of size 

n  (for the results presented in this section n  was taken equal to 1000). In the absence 

of any control measures, the infection spreads and finally settles down at an endemic 

stable equilibrium (the quasi-stationary distribution of model Zeus; see Sections 6.3.3 

and 6.3.6). For the numerical results presented in this chapter we considered only the 

situations where the control program is introduced after the process has reached this 

steady endemic level, since in most countries the controls were introduced when the 

infection was endemic. Other initial conditions have not been considered here, although

199



they may give different results for the effectiveness of the vaccine (for instance, if the 

prevalences are a t a lower level when the controls are introduced, then the progress of 

the epidemic can be seen from the figures presented in this section from the time point 

that the prevalences have reached this level). The following two control programs are 

considered in this chapter:

(a) a program implementing only chemotherapy (the progress of the epidemic then is 

described by model Clio).

(b) a program implementing both chemotherapy and BCG vaccination (the progress of 

the epidemic then is described by model Erato).

The initial conditions for both Clio and Erato are taken from the endemic stable 

state of Zeus: model Zeus is simulated (with the same param eter values) until the process 

reaches the stable state; then both Clio and Erato are simulated by taking the initial 

value of the vector (%, Y, Z, W, U) to be equal to the equilibrium value of (X,  Y ,  Z,  

W, U) deduced from the simulations of model Zeus (and %^(0) =  Z„(0) =  0 for Erato, 

since there are no vaccinated individuals a t time t =  0). Details of how the simulations 

were implemented can be found in the Appendix (Section A.5.2).

Both models were simulated with the parameters shown in Table 6.8 and 0\ =  0.4, 

02r =  0.5 , 0 2  = 0 2 r^it and for Erato the values of 0, ^ i, (f>2 , f i ,  V2 mentioned above (the 

results for Clio are also shown in Section 7.4). Estimates of each epidemiological index 

were calculated from the models Clio and Erato, say Fc{t) and f^ (t), respectively {t 

years after the introduction of the respective control program). Then the percentage 

decline due to the vaccine was calculated from the formula

m  = 100. (8.2)

In the remaining part of this section we present results (obtained from numerical 

simulations of the models Clio and Erato) for the percentage decline in the epidemio

logical indices and the variation of these estimates. Figure 8.2 shows the decline in the 

prevalence of TB infection for (j) =  50,95% and V2 equal to vi and vi -}-10%. Figure 8.3 

shows the decline in the risk of infection and the incidence of infectious TB with (f> = 95% 

and V2 = vi. For the other cases the results were qualitatively similar and are not shown 

here. Also, the 95% confidence intervals for the estimates of the incidence and prevalence 

of infectious TB and the risk of infection and reinfection are shown in Table 8.2.

As the values of v\ and V2 decrease (which means tha t the protection from BCG
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Figure 8.2: Percentage decline in the prevalence of TB infection due to BCG vaccination (cal
culated from the formula (8.2)). The prevalence was calculated as proportion per 10̂  general 
population. The parameter values are as shown in Table 6.8 and 6\ = 0.4, 02r = 0.5, 9̂  = #2r#i, 
01 z= 02 = 0.0833. The initial conditions are taken from the endemic steady level of the natural 
evolution of TB. Time t is measured in years after the introduction of the control policy.
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Figure 8.3: Percentage decline in the risk of infection and the incidence of infectious TB due to 
BCG vaccination (calculated from the formula (8 .2)). The values of the rates are proportions per 
10̂  general population. The parameter values are as shown in Table 6.8 and 9i = 0.4, 02r = 0.5, 
$ 2  = #2r#i, 01 = 02 = 0.0833. The initial conditions are taken from the endemic steady level of 
the natural evolution of TB. Time t is measured in years after the introduction of the control 
policy.
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Y ear In c id en ce  o f 
in fec tious T B

P rev a len ce  o f 
in fec tious T B

R isk  o f  
in fec tio n

R isk  o f 
re in fec tio n

1 (242.9, 250.3) (1173.8, 1193.6) (1713.8, 1738.7) (210.0 , 217.5)
2 (193.3, 199.7) ( 837.8, 853.6) (1246.1, 1267.9) (145.8, 151.7)
3 (161.9, 167.8) ( 630.4, 643.3) ( 967.3, 987.3) (106.0, 111.1)
4 (142.5, 148.1) ( 502.9, 514.1) ( 804.8, 823.6) ( 82.5, 87.0)
5 (130.0, 135.3) ( 416.1, 426.1) ( 704.3, 722.4) ( 66.0, 70.0)
6 (119.8, 124.8) ( 362.0, 371.3) ( 640.5, 658.0) ( 54.3, 57.9)
7 (115.5, 120.3) ( 325.4, 334.0) ( 605.6, 623.0) ( 46.5, 49.7)
8 (113.2, 118.1) ( 301.7, 310.0) ( 588.5, 605.9) ( 43.4, 46.5)
9 (109.5, 114.3) ( 287.9, 296.0) ( 585.5, 603.1) ( 39.5, 42.5)
10 (105.8, 110.4) ( 276.1, 284.0) ( 587.3, 605.3) ( 38.7, 41.7)
11 (104.8, 109.4) ( 264.8, 272.6) ( 594.9, 613.4) ( 36.3, 39.1)
12 (100.7, 105.3) ( 256.1, 263.7) ( 601.9, 620.7) ( 33.6, 36.3)
13 (101.8, 106.4) ( 248.7, 256.2) ( 601.5, 620.6) ( 32.0, 34.8)
14 ( 98.2, 102.7) ( 240.2, 247.5) ( 608.3, 627.8) ( 29.7, 32.2)
15 ( 94.6, 99.0) ( 234.4, 241.6) ( 614.1, 633.9) ( 29.3, 31.8)
16 ( 94.7, 99.0) ( 229.2, 236.4) ( 621.7, 641.9) ( 28.4, 31.0)
17 ( 93.0, 97.4) ( 225.1, 232.2) ( 626.7, 647.3) { 28.2, 30.7)
18 ( 93.0, 97.4) ( 219.7, 226.7) ( 633.5, 654.3) ( 26.2, 28.6)
19 ( 89.4, 93.7) ( 214.6, 221.5) ( 634.7, 655.7) ( 24.9, 27.2)
20 ( 88.9, 93.2) ( 209.4, 216.3) ( 639.9, 661.4) ( 24.5, 26.8)

Table 8.2: 95% confidence intervals for the estimates of the incidence and prevalence of infectious 
TB and the risk of infection and reinfection. The values of the rates are proportions per 10® 
general population. The parameter values are as shown in Table 6.8 and 6 i = 0.4, 02r =  0.5, 
$ 2  = ^2r^i, = 4>2 = 0.0833 <f> = 95%, vi = V2  = 20%. The initial conditions are taken from
the endemic steady level of the natural evolution of TB. Time is measured in years after the 
introduction of the control policy.

increases) the epidemic becomes less severe and hence the epidemiological indices de

crease. The decline becomes more significant as time increases, since the number of 

infectious cases slowly decreases and tha t reduces the TB problem in the long run. For 

some indices though the reduction is very small. For instance the decline in the preva

lence of TB infection is ju st 3.5% after 50 years with (f) =  95% and v \ = V 2 =  20%. For 

the same parameters the decline in the risk of infection is more considerable (about 4% 

at t =  5 and around 10% after 30 years) and even more for the incidence of infectious 

TB (around 4% at t =  5 and between 10% and 16% after 15 years). This was observed 

with the other values of (f> and V2 well.

This difference can be explained by the fact that BCG offers protection against 

development of disease, but not against infection. The level of protection is determined 

by the parameters vi and V2, which reduce the rates of development of disease after
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infection (primary and secondary, respectively). Reducing these rates means tha t the 

numbers of new cases tha t develop each year are reduced. The incidence rate represents 

exactly this number of new cases and hence the most significant effect of BCG will be 

on the incidence rate.

Since the vaccine does not protect against infection, the number of new infections 

will be the same initially (after the introduction of the BCG campaign). When the 

number of new cases developing each year starts to decrease, the number of infectious 

cases (y ) will decrease and hence tha t of new infections as well (since new infections 

occur at a rate a X Y f n ) .  The risk of infection represents precisely this number of new 

infections, but since it is more indirectly related to the reduction in the number of new 

cases (than the incidence rate), the decline in the risk of infection will be smaller than 

the decline in the incidence.

On the other hand, the prevalence of TB infection is the index that we would 

expect to be the least affected by BCG. The prevalence of infection is the proportion of 

infected individuals in the population and that will be significantly reduced when the 

sizes of all Z, Z„, y ,  W, U classes are reduced. Since BCG does not protect against 

infection, the sizes of these classes will be more or less the same in the beginning. 

After the number of new cases developing each year starts decreasing, the sizes of y ,  

W,  and U will decrease, but it will take more time until the number of inactive cases is 

considerably reduced (since for those in the Zy class the rate of development to disease is 

reduced, and hence most of them will remain in this clziss). For instance, with (f) =  95% 

and vi = V2 =  20%, the percentage dechne in the number of inactive cases (i.e. the 

difference between Z  from model Clio and Z  Zy from Erato) is less than 0.5% during 

the first 15 years and around 3.5% at t =  50.

8.4 Discussion and conclusions

The BCG vaccine is one of the most controversial vaccines because of the uncertainty 

about its effectiveness (in protecting those vaccinated) and its impact on the general TB 

problem. The results presented in the previous section can provide some insight into 

the effect of a mass-vaccination campaign for newborns, but there are a few things that 

have to be taken into account when interpreting these results.

First of aU, the model presented in this chapter does not take into account the
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age distribution of the population. This can affect the results for the effectiveness of the 

vaccine, since the protection from BCG lasts only for one or two decades and the age 

distribution of the infectious forms of TB is not uniform. For instance, the proportion of 

infectious cases following primary infection is about 2% for those aged 0-14 and about 

24% for those aged 15-29 (Styblo 1991). An age-dependent model might be more suitable 

for the study of the effectiveness of BCG.

Another drawback is the uncertainty about the values of some of the parameters 

used in this model, for instance the values of <f>2 (which depends on the typical length 

of the time between vaccination and infection), gj, Çg, 9s (whether they are equal to 

gi, 92, 93, respectively, or not), and the difference between ui and V2 - Although small 

differences in the assumptions we have made in this chapter may not affect the results 

substantially, this is a m atter tha t should also be taken into consideration.

Apart from these model-related considerations, there are other matters that make 

the use of BCG controversial. For instance, it is beheved tha t vaccination at school- 

leaving age may also have a significant effect in controlling TB, both directly and in

directly. The direct effect is by decreasing the probability of developing TB for those 

vaccinated. The indirect effect is that by preventing the development of disease (for 

those vaccinated and infected), the number of infectious cases decreases and hence the 

number of new infections as well, thus decreasing the probability of developing TB even 

for the unvaccinated individuals. Since the infectious forms of TB are more common 

among teenagers and young adults than among infants, vaccination a t school-leaving 

age may prevent more infectious cases and hence have a more significant effect than 

vaccination of newborns (Styblo 1991). On the other hand, if vaccination is not given 

at b irth  but at an older age, then a proportion of those vaccinated will have already 

been infected and there is no evidence tha t BCG can offer any protection if given after 

infection (Styblo 1991).

The main advantages of BCG are that its financial costs are low, it is simple to 

administer, and causes few comphcations (Smith & Fine 1998, Comstock & Geiter 1994). 

Therefore in areas with a high risk of infection, BCG can have a significant impact over 

time in fighting TB. The major disadvantage is that it invalidates the tuberculin skin 

test, thus interfering with the diagnosis of TB (Huebner 1996, Murray et al. 1993). 

Combined with the uncertainty about its efficacy, this makes most health-policy makers
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believe th a t in areas with low risk of infection there is little need for a mass-vaccination 

campaign. In these areas most TB cases occur among people who have been infected in 

the past; it is crucial to identify these individuals as early as possible and the tuberculin 

test is the easiest and most immediate diagnostic tool. BCG vaccination may invalidate 

the skin test, and possibly without offering any protection.

Finally it has to be mentioned tha t the impact of HIV on tuberculosis and the 

emergence of multi-drug resistant TB has lead to reassessment of the vaccination policies 

in areas with high risk of infection (Smith & Fine 1998).

The results presented in the previous section show th a t a mass-vaccination cam

paign among newborns can contribute in the control of TB. Comparing a policy that 

implements only chemotherapy with a policy implementing both chemotherapy and BCG 

vaccination of newborns, the decline in the epidemiological indices is not very high in 

most situations, but when this decline is viewed in terms of human lives saved it cannot 

be ignored, no m atter how small it is. BCG has been characterised as the vaccine that 

is “given to the young to protect against a disease that is most common in adulthood” 

(LaScolea & Rangoonwala 1996) and it is believed tha t the absolute number of cases 

prevented by BCG is very small. Since TB is highly fatal, though, this small number of 

cases among children can be translated into a significant number of man-years saved.

The question tha t health-policy makers are facing is whether this effect is worth 

the time and money invested in a mass-BCG campaign. For instance it may be the 

case that if this investment were made in increasing the rate of diagnosing and treating 

infectious cases instead, then there would be a more significant effect in the decline of 

tuberculosis. Unfortunately it is very hard to estimate the cost-effectiveness of BGG 

(Murray et al. 1993). Bouillon & Waaler (1976) developed a decision model tha t takes 

into account epidemiological, economical, and psychological aspects of a mass-BCG cam

paign in order to assess when (and if) it should be terminated. Their final conclusion was 

that “. . .  the decision itself — to start, to pursue or to stop BCG on a mass scale — is of 

pohtical nature (pubhc health policy): it always implies a value judgement — from the 

part of the providers . . .  and/or, preferably, from the part of the users, i.e. a preference 

which is a result of a ‘weighing’ between advantages and inevitable disadvantages . . .  ” .
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Chapter 9

Discussion

9.1 Conclusions

The main use of mathematical modelling in epidemiology is to improve our understanding 

of the dynamics of the infection under study and, in particular, how the progress of the 

infection at the individual level affects its progress at the population level. In this thesis 

we have presented models for the evolution of TB in the absence and in the presence 

of control measures. The study of models for the natural evolution of TB can improve 

our understanding of the epidemiology of the disease (since some aspects of its dynamics 

will be obscured by the effects of medical treatment) and show how predictions for the 

future patterns of TB can be made. The models that include control measures can 

provide insights about the effectiveness of the controls and allow comparisons to be 

made between different control policies.

In Chapters 4 and 5 we presented a simple model for a population with constant 

and variable sizes, respectively. The dynamics of M. tuberculosis are quite complicated 

and these models may seem oversimplified. Nevertheless, they do account for the most 

im portant determinants of the spread of TB and provide insights for the development of 

a TB epidemic, which were verified by the more detailed model presented in Chapter 6.

The progress of an epidemic will be determined mainly by the initial size of the 

population and the value of the basic reproduction ratio, TZq. In an open population, 

the infection will ultimately die out with probability one. Before extinction, though, 

the epidemic may settle down at an endemic level, unless the value of IZq and/or the 

initial population size are too small to preserve an endemic infection. The results from
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Chapter 6 also show that, in contrast with other epidemic models, the condition 71q < 1  

may not be enough to ensure tha t there will not be a major epidemic (since for the 

corresponding deterministic model both the endemic and the disease-free equilibrium 

can be stable when TIq <  1). It has to be stressed though th a t even in the situations 

where there is no major epidemic, the time until the final extinction of the infection (i.e. 

until there is no infected individual in the population) can be very long.

These results agree with the history of TB epidemics in the pre-chemotherapy 

era. The existence of TB has been traced back to Egyptian mummies (4000-2000 BC), 

but m ajor epidemics did not arise until the 1600’s in Europe and somewhat later in 

North America (Bloom & Murray 1992). From the beginning of the 20th century these 

epidemics were in decline, although eflFective therapy had not been introduced (Murray 

et al. 1993).

This pattern can be explained by the fact that until the 1600’s there were only 

a few infectious cases which, given the small size of the populations of tha t era, could 

not give rise to major epidemics. On the other hand, the number of infectives was large 

enough to keep the infection within the population (since these few infectives cause new 

infections and thus increase the pool of infected individuals).

The population growth, urbanisation, and industrialisation in Europe in the 17th 

century created the conditions needed for a major epidemic: (a) increasing population 

sizes and (b) crowding of people (increased contact rates), increased poverty, unsanitary 

living conditions, malnutrition, resulting in poor health and hence weak immune system 

(higher reactivation and reinfection rates), overall increased H q. It is possible therefore 

tha t an increase in the population sizes and the value of TIq caused the outbreaks of the 

17th century, which peaked and then fell to their endemic stable level.

Further results on the distribution of the numbers of infectious cases and infected 

individuals, the size of the epidemic, and the epidemiological indices (incidence, preva

lence, mortality, and risk of infection) have been obtained by numerical simulations and 

approximations of the stochastic models presented in Chapters 4-6. In particular, the 

normal and linear approximations proved to be quite efficient in estimating the moments 

of the sizes of the various classes into which the population is divided. The advantage 

of these approximations is tha t numerical results are obtained more quickly (since the 

results are deduced by solving systems of difierential equations) and still, compared to
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the deterministic models, they can provide information about the variability (variance, 

covariance, confidence intervals) of the variables of interest.

We continued our study with two models that allow the implementation of a 

control policy: in Chapter 7 we considered a policy implementing only chemotherapy and 

in Chapter 8 a policy implementing chemotherapy and BCG vaccination of newborns. 

Numerical results for the percentage decline in the epidemiological indices were obtained 

for various levels of detection and cure rates for chemotherapy and various coverage 

and protective levels for BCG. Our results show tha t treatm ent of non-infectious cases 

and vaccination cannot significantly contribute to the reduction in the TB problem. 

Treatment of infectious cases is the most im portant tool in controlling TB, and since the 

currently recommended regimens have proved to be effective (Murray et al. 1991, China 

Tuberculosis Control Collaboration 1996), the main aim of any control program should 

be the immediate detection of those who are infectious and their successful treatment.

9.2 Recommendations for further research

One of the areas in which the work of this thesis can be extended is with regard to the 

quasi-stationary distributions. Several issues still remain open, for instance the formal 

proof of the existence of quasi-stationary distributions, the distribution of the time until 

the process reaches quasi-stationarity and how long it remains there. The importance 

of the quasi-stationary distributions arises from the fact th a t for any practical purposes 

for TB, it is not the actual stochastic equilibrium (extinction) that will be observed, but 

the endemic quasi-stationary distribution.

For the same reason, it would be interesting to investigate further the stability of 

the deterministic equilibria for the models presented in Chapters 6- 8, since the quasi- 

stationary distributions are centred around a level close to the deterministic endemic 

equilibrium.

Another area for further research is the analysis of data  for parameter estimation, 

model validation, and curve-fitting (see, e.g., Vynnycky (1996), Vynnycky & Fine (1997), 

Becker (1989) for statistical models for TB and other infectious diseases and Styblo 

(1991), Murray et al. (1993) for discussions about available data for TB).

It is also possible to modify the models presented in this thesis in order to account 

for other features of TB th a t have not been included here. For instance, the population
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can be divided into specific age-groups (as well as clinical states) in order to account 

for the fact tha t the probability of developing infectious (vs. non-infectious) TB and the 

reactivation rate vary depending on the age of the infected individual.

Also, some parameters can be taken as functions of time, for instance the con

tact rate or the reactivation rate, in order to account for behavioural changes, public 

awareness of the TB problem, better nutrition and so on.

In addition, it might be helpful to model the dynamics of TB using a cluster 

model (taking as clusters the circle of close contacts, for instance home, school, work 

place), since the contact rate, and hence the probability of being infected, is much higher 

for the individuals that have daily contact with an infectious case than for those who 

have only casual contact.

The models presented in this thesis can also be extended to account for the effects 

of preventive therapy (chemoprophylaxis), multidrug-resistant TB, and HIV infection. 

In particular for the effect of preventive therapy, as well as the effect of BCG vaccination, 

it would be interesting to take into account the cost-benefits of these controls, since no 

control program can depend solely on BCG or chemoprophylaxis (Murray et al. 1993, 

Styblo 1991) and the decision on whether to implement one of these controls along with 

chemotherapy will be based on whether their contribution in reducing the TB problem 

is worth the means invested in them.
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Appendix A

A .l  The first model

A . l . l  T h e variances and covariance o f X  and Y

The variances of X  and Y  {axx ,  ctyy) and the covariance of A , Y  {axv)  satisfy the 

following equations

+  2/ix) -  2 - E [ X ‘̂ Y]
a t  71 n

^  = 2 ^ y ^ E [X y = ]  + 0{n -  Mx) +  (7 -  0)l^Y -  m  +  i h Y Y
a t  71

- 2 l 3 a x Y - \ ---------   ^ ( o ’A’y  + — 2 / i y )  (A.l)
71

-  -E[xy=] -  0 a x x  - ( 0  +  7)(T%y
OX Tl Ti

Ot
— — (<Txy +  /^x/^y)[(l — p)(l +  — Â y].

A . 1.2 N u m erica l resu lts from  sim ulations

For the simulation of this model there are 4 different kinds of events tha t can occur. 

The events and their rates are defined in Table A.L The simulation clock, T , gives the 

current time and the vector Xc =  (Xc, Vc) gives the current value of the state of the 

process, X  =  (X, Y) .  At time t  = 0 the simulation clock is set equal to 0 and Xg is set 

equal to the initial value Xq =  ( ro ,2/o)-

The rates of the events shown in Table A .l are calculated using the current value 

of Xc. The sum of these rates gives the rate of the exponentially distributed time until 

the next event occurs. A variate from the exponential distribution (with this rate) is 

generated to determine the time of the next event and then a Uniform(0,1) variate is 

generated to determine what kind of event it is. The simulation clock, T , is advanced to

210



Event Rate
(x,yz)-^(x-i,y + i,z) 
(%,y,z)- (̂%-i,y,Z4-i) 
(x,y,z)->(x,y-i,z + i)
( X , Y Z ) - ^ ( X , Y  +  l , Z - l )

i l - p ) ^ X Y

?y
(3Z

Table A.l: Events for the simulations of the first model

the time of the next event, the value of Xc is updated according to what kind of event 

it is, and also the statistics of interest are updated.

The stochastic model was simulated R  = 10  ̂ times. The estimates for the means 

of X  a t time t  were calculated using the formula p. = where Xi is the value of

X  at time t in the i-th  individual simulation run. The mean of Y  was calculated similarly. 

The mean of Z  was deduced firom those of X  and Y ,  as E[Z] = n — E[X] — E[y].

The simulations were terminated after 100 years and the number of susceptibles 

was zero a t tha t point in all 10  ̂ individual runs. Consequently the R  = 10  ̂ runs 

yielded a sample of R  independent values ti ,T 2, . . .  ,t / j ,  where Tj is the time that the 

last susceptible got infected in the i-th run. The sample r  =  {ri,T2, . . .  ,r/j}  was then 

used to calculate the distribution of T  shown in Figure 4.6.

A.2 The second model

A .2.1 T h e variances and covariances o f  X ,  y ,  and Z

The variances and covariances of X , Y , and Z  satisfy the following equations:

= b  +  f!E[X] -  2fiVar[X] + ^(1 + 2E[X])E[Xy] -  2^E[X^y]

dVar[y(«)]
dt

= {-y + H + i)E[y] + /3E[Z] -  2(7 + p + i)Var[y] + 2;8Cov[y, Z] 

+ (1 -  p)^(i -  2E[y])E[xy] + 2(1 -  f)^E[xy^)

= 7 E[y] +  ( P +  A*)E[Z] + 2 7 Cov[y, Z] -  2{0 +  p)Var[Z]

+  p ~ ( l ~  2E[Z])E[Xy] + 2p-E[XyZ]
Tl TL

= /3Cov[X, Z] -  ( 7  + i  + 2#i)Cov[X, y] +  (1 -  p)^E[X^y] 

-  -E[xy^] -  -( (1  -  p )  + (1 -  p)E[x] -  E[y])E[xy]
TL TL
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=  7 Cov[X, Y ] - ( p  + 2^)Cov[X, Z \ - - ( p  + pE[X\ -  E[Z])E[Xy] 
at n

+  p - E [ x ^ y ] - - E [ x r z ]
n n

dCov[Y,Z]
dt

= — 7E[y] +  7 Var[y] -  PE[Z] +  /5Var[Z] — (^  +  7  + (5 + 2/z)Cov[y, Z] 

+  p^E[xy ]̂ + (1 -  p ) ^ ¥ { X Y Z ]  -  (̂pE[y] + (1 -  p)E[z])E[xy].

A .2.2 N u m erica l resu lts from  sim ulations

The simulations were implemented as explained in Section A. 1.2 for the first model. For 

this model there are 8 different kinds of events (as shown in Table A.2) and the vector 

Xc =  (Xc, Yc, Zc) gives the current value of the state of the process X  =  (X,  Y, Z) .  The 

initial conditions are Xq =  {xQ,yo,zo). For each set on initial conditions and parameter 

values the simulation was repeated i î  =  10“̂ times.

Event Rate
( X , Y , Z ) - ^ { X  +  l , Y, Z)  
i X , Y , Z ) ^ { X - l , Y , Z )
( x , y , z ) - + ( x , y - i , z )
{ X , Y , Z ) ^ { X , Y , Z - l )  
( X , Y , Z ) - ^ ( X - 1 , Y  +  1,Z)  
( X , Y , Z ) - ^ ( X - 1 , Y , Z  +  1)
(X,y ,z ) - f  ( X , y - I , z  + 1)
( X , Y , Z ) - ^ ( X , Y  +  1 , Z - 1 )

b
f iX 

{fx +  5)Y 
y Z

( i-p)&%y

l Y
p z

Table A.2: Events for the simulations of the second model

T h e  m o m en ts  o f X ,  Y ,  a n d  Z

The estimates for the mean and standard deviation of H  and the covariance of H ,  H '  

at time t, for H, H '  = X ,  Y, Z,  were calculated from the formulae

t=i

Gh =  

1

R i=l

1/2

R - l

R R R

where Hi and Hi are the vaines of H  and H \  respectively, a t tim e t in the *-th individual

(A.2)

(A.3)

(A.4)

simulation run. The conditional mean of H  was calculated with the same formula as
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above for the mean, but with R  equal to the number of runs in which the epidemic had 

not died out by time t.

The marginal distributions of X , Y, and Z

The marginal distributions were calculated from the following formula

M k(t )
R

for H  = X j Y ,  Z,  where M k( t )  is the number of runs in which H(t)  =  fc, for t =  1 ,2 ,. ..  

and A; =  0, 1, ----

Time until extinction and size o f the epidemic

For each set of parameter values and initial conditions the stochastic model was simulated 

10  ̂ times. The simulations were term inated at a time point large enough such that 

all i î  =  10"̂  runs ended with extinction of the infection by that point. Prom each 

individual run i the extinction time Tj and the size of the epidemic s, were obtained (for 

i =  1, 2, . . .  , R)j thus yielding a sample r  =  { n , . . .  , t r } from the distribution of the 

extinction time and a sample s = { s i , . . .  , from the distribution of the size of the 

epidemic. These two samples were used to calculate the statistics of the extinction time 

and those of the size, presented in Section 5.3.6.

A.3 M odel Zeus

A .3.1 T he determ in istic  m od el

In this model the infected individuals can be in four different states: latent, infectious 

cases, non-infectious cases, and recovered. State transitions occur according to the rate 

matrix S, where

S =

~7o Q2 P ^

0 - / 3  0

0 (1 —92)/? —(<5 +  ^o)

70 0 Ô0

ei

0

Ê2

— (ei +  62)

and death occurs according to the diagonal matrix D =  diag{/i -h/xi, /i,/u +  /i2, /i}. Let T 

be the matrix whose {i,j) element is the rate at which an infected individual with state
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j  produces secondary cases with state i, such that

0 0 0

T = (A.5)

Then TZq is the dominant eigenvalue of the m atrix K =  —T(S — D)  ̂ (see Definition 3.1) 

and so the formula (6.9) for TZq is deduced.

Equilibrium points

The coefiicients Mij ,  j  = 1,2,3,4, for the characteristic polynomial Pi{r)  of DF{ei)  

(see equation 6.11) are

M i l  =  +  Aa +  Eg 4- 7714

M i 2 — —(1 — p ) ----Q2P +  (Ag +  E)($a 4- 7714) 4- 0̂ 7714 — 0p{\ — Qi)------ ei7o 4- 77li
77 /i n fi

M i3 =  —(1 —p ) ----P[q2 {Ag 4- E) 4- (1 — 92)^] — ^a<^p(l — Çl) -$a(l7on p n  p
Ot ^

4- $a(Ag 4- E)77l4 4- ($a 4" 77l4)77li — p (l — Çi) 7712 ~  70^3
n p

M i 4 = —(1 — p ) --- /)[Ç2^1 4" (1 — Q2 ) ' ^ 2] 4- $s77l477li — 0gp(l — Çi)-7712 ~  ^sTO^Si
Tl p  Tl p

where 77ii =  Aj,Ea-(5oe2, m 2 — %4-(^oGi, m^  =  Je24-eiAa, and 7714 =  Va-pqi(oL\)l(pTi). 

Now for z =  2,3 define the quantities

C\ , CK g
C i ( z )  = p + - P i  

Tl

C2 (i) =  +  ^ V i

cs(0 =  Q3— yt  +  Q2 P
Tl

«2
Ci(i) — ( 1  -  9 3 ) — y f  4- ( 1  — 92)/?

Tl

/■\ -n ^  e <^2 e%(%) =  Ts - p q i - X i  -  q^— Zi 
Tl Tl

CQ(i) = 'T-h p{l -  q i ) - x f  4- (1 - 93) — 4  
77 77

C?(%) =  (1 — p) —^ i  Î

where e* =  (a;f,7/f,2:f,7i;f,uf) for z =  2,3 are the equilibrium points as defined in (6.6) 

and (6.7). Using these formulae, the coefiicients M ÿ for z =  2,3 and j  =  1 , . . .  , 5, of the
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characteristic polynomial P i ( r )  of D F ( e i )  (see equation 6.12) are the following:

M i l  =  c i( z }  +  A g  4- Eg 4- C2 {i)  4- c s { i )

M { 2  =  C l(z )[A g  4-  E g 4- C2[i)  4- 05(2)] — 07(2)03(2) 4- m i  4- ( A ,  4-  E a )[c2 (2 ) 4- 05(2)]

4- €2 (2 )05(2) -  e i7 o  -  5o6 (2) 4- p g ix - j / f  

M i z  =  01 (2 ) { -€ 7 (2 )0 3 ( 2 )  4- m i  4- (A g  4- E g )[o 2 (Q  4- 05(2)] 4- 02(2)05(2) -  <^05(2) -  0170}

— (A g  4- Eg)o7(2*)o3(2') — 507(2)04(2) 4- (A g  4- E g)o2(i)o5 (2 ') 4- m i [02(2) 4- 05(2)]

— 05(2 )[m 2  4- 502(2)] -  7 0 [m 3  +  €102(2)]

+  ( —)  — p ) c z { i )  + P 9iO2 (0  + P 9i ( A s 4- E g )  4- p ( l  — ç i ) 5]

M i4  =  o i(2 '){ (A g  4- E g ) [02(2)05(2) -  03 (2 )07(2)] -  507(2)04(2) 4- m i [02(2) 4- 05(2)]

— 05(2 )[m 2  4- 502(2)] — 7 o [m 3  4- €102(2)]} — m i 07(2)03(2) — m 2 0 j { i ) c / i { i )

+  m i C 2 { i ) c ^ ( i )  -  7002(%)m3 -  m 2C2 ( i ) c ^ { i )  4- x \ y i { p q i m i

4-  (A g  4- E g ) [ ( l  — p )o 3 (2 ) 4- p ç i 02(2)] 4- (1 — p ) 504(2) 4- p ( I  — Q i)[502(2) 4- m 2 ]}

Mi^ = ci(i){-miC7(i)cz(i) -  m2C7{i)cA{i) + miC2{i)c^{i) -  m37o02(2) -  m2C2(i)c^{i)}
/  Q \  2

+  - p ) ’^ iC 3 (0  + P 9 i m i 02(2) 4- (1 - p ) m 2 0 4 ( 2 )  4- p ( l  -  g i)m 202(2*)}.

Numerical minimisation

The programs for the numerical minimisation were w ritten in Fortran using the routines 

E04UCF and E04UEF of the NAG library (Mark ISA). E04UCF is essentially identical 

to the subroutine NPSOL described in Gill, Murray, Saunders & Wright (1986) and is 

used to solve the following minimisation problem

l i  <  X  <  U i

Minimise F{x)  subject to I2 <  Ax <  U2

I3 <  o(x) <  U 3

(A.6)

where the conditions are bound, linear, and nonlinear conditions, respectively. The 

basic structure of E04UCF involves major and minor iterations. The major iterations 

generate a sequence of iterates Xk tha t converge to a;*, a first-order Kuhn-Tucker point 

of the problem (A.6). At a typical major iteration, the new iterate x'  is defined by 

x' = X + op, where x  is the current iterate, a is the step length, and p is the search 

direction. The search direction p is the solution to a quadratic subproblem (the minor
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D 22 Z?23 JD24
A 2.783776-10“ "“ 6.347017-10“ "“ 2.000000

1.000000-10“ °̂ 1.000000-10“ °̂ 2.000002-10“°̂
1.000000 1.000000 0.130000

fi2 1.000000-10“ °̂ 1.000000-10“ *° 0.100000
P 0.267919 1.000000 4.999996-10“ °̂

9 1 1.000000-10“ °̂ 1.000000-10“ *° 0.550000
a /n 1.000000 0.669613 0.100000

OL̂ jn 1.000000-10“ °̂ 1.000000-10“ *° 1.000000-10“ *°
/3 1.000000-10“ °̂ 1.000000 1.000000-10“ *°
5 1.000000-10“ °̂ 1.000000-10“ *° 1.999998-10“°̂

Cl 1.000000-10“ °̂ 1.000000-10“ *° 1.499995-10“ °̂
7 0 1.000000-10“ °̂ 1.000000 6.600000-10“°̂
C2 1.000000-10“ °̂ 1.000000-10“ *° 1.499999-10“°̂
fo 1.000000-10“ °̂ 1.000000-10“ *° 6.599999-10“°**
Q2 0.552488 1.000000-10“ *° 0.550000
93 1.000000-10“ °̂ 1.000000-10“ *° 0.550000

Obj. Val. 0.812823-10““" 0.645001-10“““ 0.596063-10““"

Table A.3: Results of the numerical minimisation of the principal minors £>22» D23, and D24 
over the whole parameter space with 72o > 1. The last row of the table gives the optimal values 
of the objective functions D2 2 , D2 3 , D24 and the other rows the values of the parameters at the 
point where these optimal values are achieved.

iterations of E04UCF are for the solution of this subproblem). The major iteration 

proceeds by determining a step length a tha t produces a “sufficient decrease” in an 

augmented Lagrangian merit function. The method used by E04UCF is described in 

detail in the manual of the NAG library (see also Gill et al. 1986).

For our problem, there are three functions to be minimised: / i (h )  =  £>22, / 2(h) =  

£>23; /a(b) =  D 24, as functions of the parameters (i.e. h  is a vector with elements the 

parameters, fi, /ii, /X2, a,  and so on). The programs were run separately minimising 

first under the condition TZq > 1 and then under the conditions {TZq < 1 and 7Zi > 1}. 

Only the minimum of £>24 when 7 ^  >  1 was found without floating underflow and that 

was positive. For all the other cases, floating underflow occurred during the process 

of finding the minimum value, but the optimal solution found was positive. Table A.3 

shows the optimal solutions (the values of the objective functions D 2 2 , D 2 3 , £>24) and 

the values of the parameters at the point where these values are achieved for TZq >  1.
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A .3.2 T h e  sto ch astic  m od el

The probabilities Px{t) =  p(a;, 2/,%, w, as defined in (6.17), satisfy the following 

equations:

dpjx, y, z, w, u) 
dt

= Xp{x -  1,2/, z, w, u) +  fx{x +  l)p{x  +  1 ,2/, 2, w, u)

+  (/2 +  / i l ) (2/ +  l)p(a;, 2/4-1,%, w, u) 4- p(z  4- l)p(a;, 2/, % 4-1, w, u)

4- (/i 4- /i2)(w 4- l)p(x, 2/,%,w 4-1, u) 4- p{u 4- l)p(a;, 2/, %, iw, u 4-1)

4- - ( x l ) \ p q i { y  -  l)p (a;4 -1 ,2 /-  l,% ,w ,u) (A.7)
n

4- (1 -  p)yp{x 4-1,2/,% -  1, w, u) 4- p (l -  Qi)yp(x 4- l , 2/,%,w -  1, u)]

4- Q2 l3 {z + l)p{x, 2/ -  1,% 4- l ,w ,u )  4- (1 -  q2 )P{z 4- l)p(a;, y , z  + l , w  -  l ,u )

4- — (% 4- 1)^3(3/ -  l)p(a;, 2/ -  1, % 4-1, IÜ, u) 4- (1 -  q3 )yp{x, 2/,% 4- l ,w  -  1, u)] n

4- (J(iü 4- l)p(T, 2/ — 1,%, w 4- l ,u )

4- 70(2/ 4- l)p(T, 2/ 4- 1, %, 10, u -  1) 4- <5o(io 4- l)p(x, 2/,%,w 4- l ,u  -  1)

4- ei (u 4- l)p(ar, 2/ -  1,%, to, u 4-1) 4- €2(1/ 4- l)p(T, 2/, %, to -  1, u 4-1)

-  (A 4- /ix 4- -X 2/ 4- — 2/% 4-Ta2/4- $«% 4- Agio 4- Egu)p(x, 2/, %, to, u),
71 71

where for simphcity the dependence on t was suspended in the right-hand side of (A.7). 

The term s Tg, Ag, 0g, and Eg are defined in (6.2). Equation (A.7) holds for all 

(x, 2/, %, to, ti) 6 5  and p%(t) =  0 for any x  ^  5 . The initial conditions are Pxo(O) =  1 and 

Px(0) =  0 for any x  ^  xq, where 5  =  Z® and xq 6 Sq as defined in (6.3).

The variances of %, Y ,  Z, W ,  and U satisfy the following differential equations:

= ' ' '  +  -  2iNax[X] +  ^ (1  +  2E[X])E[Xy] -  2^E[X^y]
<iVar[y(t)]

dt
=  r,E[y] + 92/3E[^] + SE\W] +  eiE[y] -  2r,Var[y] + 2iCov[y, W] 

+  2g2;8Cov[y, Z] + 2£iCov[y, U ] + p q i - { \ -  2E[y])E[Xy]
71

+  % — ( 1 -  2E[Y])E\yZ] +  2pqi-E[XY^] + 253— E[y^Z]
71 71 71

= $,E[Z] -  2$,Var[Z] + (1 -  p )-{ l -  2E[Z])E[Xy]
at 71

+ — (1 + 2E[Z])E[YZ] +  2(1 -  p)-E[XYZ]  -  2 — E[YZ^]
71 71 71
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= (1 -  ®)/3E[Z] + A,E[W] + eiE[U] -  2A,Var[W]

+  2e2Cov[W ,̂ C/] +  2(1 — Ç2)/5Cov[^, W]

+ p (l -  g i) - ( l  -  2E[W])B[Xy] +  (1 -  93)— (1 -  2E[W])E[yZ]
n  n

+ 2p(l -  gi)-E[A-ypy] +  2(1 -  gs)— E[yziy]
n  Tl

= 7 „(E[y] + 2Cov[y, u]) +  io(E[py] + 2Cov[»y, u])

+  E,(E[(7]-2Var[Cl]),

where the terms ' E [ X Y ]  and E [ Y Z ]  can be expressed as E[%y] =  Cov[X, Y) 4-E[X]E[y] 

and E[yZ] =  Cov[y, Z ]  +  E[y]E[Z]. The covariances of X ,  y ,  Z ,  W ,  and U  satisfy the 

following differential equations:

dCov[X,y]
d t

= q2 PCov[X, Z] +  SCoy[X, W] +  eiGov[X, U] -  (E, +  /i)Cov[X, Y]

-  % 9 i  + P 9iE[X] -E [y ])E [X y ]  -  93^ E [X ]E [y Z ] + p g i^ E [X ^ y ]

-  ^ E [ X Y ^ ] + g 3 ^ E [ X Y Z ]

dCov[X,Z]  ^  ^  p)Cov[X, Z] -  - ( 1  -  p  +  (1 -  p)E[X] -  E[Z])E[XY]
a t  Tl

+ ^ E [ x ] E [ y z ]  +  (1 -  p )^ E [x ^ y ]  -  ( ^  +  ^ )  E [ x y z ]

=  (1 -  92)/3Cov[x , z ] +  €2Cov[x , £/] -  ^ E [ x y iy ]

-  (A, +  p)Cov[X, W] -  % ( 1  -  gi) + p ( l  -  gi)E[X] -  E[W ])E[Xy]

-  (1 — 93)— E [x]E [y  z ] + p (i — 9i) —E [x ^ y ] +  (1 — 93) — E [ x y  z]
Tl Tl Tl

dCov[X, Cl] ^  y ] + ioCov[X, W] -  (E, +  p)Cov[X, Cl]
d t

+ ^E[ci]E[xy] -  ^E[xyci]

dCov[y, Z] ^  +  92/8Var[Z] +  <5Cov[Z, W] +  eiCov[Z, Cl] -  ( r .  +  $ ,)C o v [y  Z]
d t

-  -{(1 -p)E[y]+p9 iE[Z]}E[Xy] -  — ( 9 3  + 9 3 E[Z]-E[y])E[yZ]
Tl Tl

+ P 9i - E [ x y z ]  +  (1 - p ) - E [ x y 2 ]  -  — E [y^z] +  93— E [yz^]
Tl Tl n  TL
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dCov[y, W] ^  + iVar[Ŵ ] + (1 -  g2 )/3 Cov[K, Z]
dt

rfCov[r, u] 
dt

+ e2Cov[K, U] -  (r, +  A,)Cov[y, W] + eiCov[lV, XJ] +  g2/3Cov[Z, W]

-  -{p ( l -  gi)E[y] +pgiE[W"]}E[Xy] +pqi~^[XYW]  
n  n

-  ^ { (1  -  53)E[y] + 53E[iy]}E[yZ] + p (l -  gi)^E[Xy2]

+93— E[y^iy] +  (1 -  93)— E[y^z]
n TL

= -eiE[U] -  7oE[y] +  ei Var[?7] +  7oVar[y] +  %/)Cov[Z, U]

+ scoviw, u] -  (r, + E,)Cov[y, u] + <JoCov[y, w]

dCov[Z, W]

-  pqi -E[A:y]E[i7] -  9 3  ̂ E[yZ]E[(7] +  p9 i -E[XYU] +  9 3  ̂ E[YZU]
TL Tl Tl Tl

dt
—(1 — Ç2)/3(E[Z] — Var[^]) — (Ag +  $a)Cov[Z, W]

+ 62Cov[Z, U] -  ^ { p ( l -  9 i ) E [ Z ]  +  (1 -  p)E[Py]}E[Xy]

+ (1 -p )^ E [xyw ] +p(i -  9i)^E[xyz] -  ^ e [y z w ]
+  — {E[Ty] — (1 — qz)E[Z\ — (1 — 93)}E[y Z] +  (1 — 93) — E [y  Z^]

dCov[Z,U] ^  ^  +  ioCov[Z, W] -  (E, +  $,)Cov[Z, (7] -  (1 -  p) -E[(7]E[X y]
a t  n

+  ^E [C r|E [yZ ] +  (1 -  p )^ E [X Y U ]  -  ^ E [ y z i7 ]  

dCov[ty,Lf] ^  _  Var[iy]) -  «2(E[C^ -  Var[!7]) +  7oCov[y, W]

-  (A, +  E,)Cov[W, !7] +  (1 -  92)/3Cov[Z, C7]

- p ( l  -  9i)^E[i7]E[xy] -  (1 -  9 3 )^E M E [yz]

+  p ( l -  q i ) -E [ X Y U ]  +  (1 -  93)— E [yzc/]. 
n  n

A .3.3  N u m e r ic a l  r e s u l t s  f ro m  s im u la tio n s

For the simulation of this model there are 20 difierent kinds of events tha t can occur. The 

events and their rates are defined in Table A.4. The simulations were implemented as 

described in Section A.1.2, where the vector Xc =  (Xc,T^, Wc, Uc) gives the current 

value of the state of the process X  =  (X, y, Z, TV, U) and the initial value at time t  = 0 

is Xq =  {xQ,yo,zo,wo,uo). For each set of initial conditions and parameter values the 

simulation was repeated R  = 10'̂  times.
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Event Rate Event Rate
birth (of X) A X ^ Y p q i^X Y
death of X fiX X - ^ Z ( l - p ) | X y
normal death of Y X - ^ W p ( l - g i ) 2 % y
TB death of V m y Z -¥ Y  (reactivation) Q2pZ
death of Z fiZ Z Y  (reinfection) q z ^ Y Z
normal death of W fiW Z - ^ W  (reactivation) (1 — Q2)^Z
TB death of W fiiW Z - ¥ W  (reinfection) { l - q , ) ^ Y Z
death of U yU W - ^ Y SW
y - ^ u loY U ^ Y €lU
W - ^ U 5qW U - ^ W

Table A.4: Events for the simulations of model Zeus

Epidemiology

For the calculation of the estimates of the epidemiological indices of interest and the 

corresponding variance a t a particular time point t  we used the following formulae:

(A.8)

R - l

where R  is the number of individual simulation runs {R =  10^). Let NB{  and NE i  

denote the total population sizes in the beginning and the end of year t, respectively, in 

the i-th  run. Then the di and N{ are defined as follows:

•  for the mortality: d{ is the number of excess deaths due to TB during year t in the 

2-th  run and N{ = NB{.  For the separate rates, mortality of infectious and mortality 

of non-infectious, the d{ counts either the excess deaths from the Y  or the W  class, 

respectively.

• for the risk of infection: d{ is the number of new infections (i.e. transitions from X  

to y ,  from X  to Z, and from X  to W )  tha t occurred during year t  in the 2-th  run and 

Ni = ( N B i - ^ N E i ) ! 2 .

•  for the risk of reinfection: d* is the number of reinfections during year t in the 2-th 

run and Ni = (NBi  4- iVEj)/2.

• for the incidence of infectious TB: d% is the number of transitions from the X  or the 

Z  class to y ,  during year t  in the 2-th  run and N{ = {NBi  +  NEi) /2 .

•  for the incidence of non-infectious TB: d{ is the number of transitions from the X  or 

the Z  class to PF, during year t in the 2-th run and N( = {NB{  +  NEi) /2 .
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•  for the prevalence of infectious and non-infectious TB: d{ is the value of Y  and W, 

respectively, at the end of year t  in the i-th  run and N{ = NEi.

•  for the prevalence of TB infection: d{ is the value o î Y  + Z  + W  -{-U a t the end of year 

t in the z-th run and N{ = NEi.

•  for the respective conditional factors: The d{ and N{ are as defined for each index 

above, the only difference being tha t R  is equal to the number of runs for which the 

epidemic had not died out up to time t.

M oments, marginal distributions, and statistics for the extinction tim e

The estimates for the means and standard deviations of H  a t time t and the covariance 

of H  and H ’ a t time t, for i ï ,  H '  =  X, Y, Z, W, C/, were calculated from the equa

tions A.2, A.3, and A.4, where Hi, H[ are the values of H ,  H' , respectively, at time t  in 

the z-th run. The conditional mean of H  was calculated with the same formula as for 

the mean, but with R  equal to the number of runs in which the epidemic had not died 

out by time t.

The marginal distribution oî H  = X ,  Y, Z, W, U was calculated from the formula 

F[H{t) = k] = M k { t ) /R ,  where Mk{t)  is the number of runs in which H(t)  = k, with 

t — 1 ,2 ,. . .  and k  — 0 ,1 , . . . .

For the extinction time the simulations were terminated a t a time point large 

enough such tha t all 10  ̂ runs ended with extinction of the infection by that point. 

Consequently the R  = 10“̂ runs yielded a sample of R  independent values t i ,  T2, . . .  

where Tj is the extinction time in the z-th run. The sample r  =  {ri, T2, . . .  , t r } was then 

used to calculate the statistics presented in Section 6.3.7.
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A .3.4 Linear approximation

The probabilities Pyu,u(^) satisfy the following equations

=  [Li{t){y - 1 ) 4 -  +  [L2 {t)y 4- (1 -  g2)/?^(t)]pj,^i,_i,u

4- (/i 4- fil){y 4- l)pj+i,ti;,u +  +  l)Py-l,w+l,u

4- (p 4- fl2 ){w 4- l)Py,w+l,W +  70(2/ 4- l)pj-|-l,

4- ei(u 4- l)pj-i,u),u+i +  4- l)pJ,to_i,u+i

4“ Sq{w 4" l)Py,tü+l,U—1 "t" l)Py,tO,U+l

— -4- AgW 4-EjU 4- |p —r(t)  4- ~ ^ i ^ )  + ^ a ]  2/}Py,«;,u?

where the Li{t),  L 2 (t) are as defined in (6.27).

Prom equation (6.26) for the probabiUty generating function of We, Ui we 

obtain the following equations for the variances and covariances:

=  [T, +  £i(t)]E[y<] +  2[Li(t) -  r ,]V a rM  +  2iCov(y<, Wt]

4- 2eiCov[Y^, Ue\ 4- <JE[tV£] 4- eiE[l7^] 4- q2 ^z{t)

=  -2A,Var[W /] +  2i 2(«)Cov[y<, We] + 2 t 2 Cow[Wi, Ui] +

4- L2(t)E[Yg] 4- (1 — q2 )^z{t)  4- €2 ^[Ue]

=  E .E M  -  2E,Var[%] +  7oE[y<] +  <5oE[W>] +  27oCov[y<, Ue]

+ 2SoCov[Wt,Ue]

- r , -  A,]Cov[y<, Wt] -  6 ^ W i ]  + eiCov[iy<,Ui]

4- Z/2(t)Var[l£] 4- e2Cov[YJ;, Ug\ 4- (TVar[W ]̂

- r , - E J C o v K ,  Vt] -  dE [% ] +  <5oCov[y<, We] + 6iVar[%]

4- 7oVar[yj;] -  7oE[Y(] 4- 6 Cow\We, Ue]

=  L 2 {t)Cov[Ye,Ue] -  t iEpe]  + 7oCov[y<, We] -  (A . +  E.)Cov[W<,Ue]

4- e2Var[C7J 4- (5oVar[W ]̂ — <5oE[Wj.
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A.4 M odel Clio

A .4.1  T h e determ in istic  m od el

Define tti, 7T2, . . .  , tts as follows:

7Ti =  (1 — p)(AaEs — 0̂ 2̂) + p ( l  — Qi)02^ s  

7T2 = — (AjEa — 6 0 6 2 } +  (1 — Ç3)02^s 

7T3 = 0i(AsEs — 0o€2) +  0270^2 

7T4 =  — $a(AgEa — (̂0^2) +  (1 ~  Q2)/302^3

5̂ =  p[9i(^sEa — 60 2̂) 4- (1 — gi)(<5Ea + ô̂ i)]

^6 =  9 3 — So€2) +  (1 — 93)(^Eg 4-

7T7 =  ^["(E flE g — 7061)(AgEg — ^0 2̂) 4- 70 2̂(Œg 4- ^o^i)]

^8 =  /3[92(AgEg — 6062) 4- (1 — 92)(^Eg +  6061)], 

where the Fg, Ag, Eg, and 0g are as defined in (7.6). Now, define <pi, y)2, and cps as

(pi =

^ 2  =

7̂T2
774776 —  77277g 

772

774775 — 77277g

[ — (7747T5 — 77 i77g ) — / /  —  (77277s — 7 7 i7 7 6 )l
Ln n J

I—(774777 — 77g77g) — // — (772777 — 773775)  4" A -(772775 — 77i7T5) ILn n n n J
CK2 7727T7 — 77g775

V ? 3  =  A  7 7 2 ---------------------------------------------•n 774775 — 77277g

W ith the notation above the equilibrium points e% =  (a;®, %/®, z®, w®, u®) for i =  2,3 

are defined from the following relationships:

- 1  4 - : ^ .

where D =  v?2 ~  and for z =  2,3

ax\ !n 
e _  +  W
* 4-774

<  = A . [p(i - +  (1 - «3)^yf4 + + (1 - ®)/3̂ flAgiifg — 0062 n n Hig

u\ =  ^ (7 o î/i  4- (JqO .

The value of TZq is calculated from Definition 3.1. In this model the infected 

individuals can be in four difierent states: inactive, infectious, and non-infectious cases,
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and recovered. Then 71q is the dominant eigenvalue of the m atrix K =  —T(S — D) \  

where

S =

“ (70 +  ^1) 92/3 <3 Cl

0\ —/3 02 0

0 (1 — 92)/3 — ((J +  (5q +  ^2) (2

7o 0 ^0 — (̂ 1 4" (2)

D is the diagonal m atrix D =  diag{// +  /ii, / / , /z +  /i2, /i}, and the m atrix T is as defined 

in (A.5).

A .4 .2  T he sto ch astic  m od el

The Kolmogorov forward equations for the probabilities Px(^) =  p(T, y, z, w, u; t) are 

dp{x, y, z, w, u)
dt

= Xp{x -  1, y, z, w, u) +  p{x  +  l)p(a; - \- l ,y ,z ,w , u)

+  (/i +  p i){y  +  l)p(a;, y +  1 ,2:, w, u) +  p{z +  l)p(x, y, 2 +  1, w, u)

+  (/i +  p 2 ){w +  l)p(T, y, z, IÜ +  1, u) +  p{u +  l)p(a;, y, z ,w ,u  + 1)

+  - { x  +  l)\pqi(y -  l)p{x +  l ,y  -  l ,z ,w ,u )  
n

+  (1 -  p)yp{x +  1, y, z -  1, u), u) +  p ( l -  qi)yp{x + l , y , z , w -  1, u)]

+  q2P{z +  l)p(rr, y -  1,2: +  1, iü, u) +  (1 -  q2 )l3 {z +  l)p(a;, y ,z  + l ,w  -  I, u)

4- — (% 4- l)[g3(y -  l)p(a^, y -  1, ^ 4-1, IÜ, u) +  (1 -  q3 )yp{x, y, 2 +  1, u; -  1, u)] n

+ 0i{y + l)p(a;, y 4-1, z -  1, w, u) +  ^2(w 4- l)p(a;, y, z -  1, u; +  1, u)

4- 6(w 4- l)p(a;, y -  1,2:, iw +  1, u)

4- 70(2/ 4- l)p(z, y +  1, z, lü, u -  1) +  (5o(io 4- l)p{x, y ,z ,w  + l ,u  -  1)

+  €i{u +  l)p(a;,y -  l ,z ,u ; ,u  -t-1) -I- 62(u +  l)p(a;, y, z, u; -  l , u  +  1)

-  (A 4- pa; 4- - x y  4- — yz 4- T^y +  $gZ +  AgW 4- Egu)p(a;, y, z, w, u), 
n 71

where for simplicity, the dependence on t  in the terms p(a:, y, z, tu, u; t) has been sup

pressed, and the F ,, A ,, and Eg are defined in (7.6).

The variances of %, Y, Z, W, and Î7 satisfy the following differential equations:

rfyar[^W ] _  ^E[X] +  2pVar[X] +  -E [X y ] ( l  +  2E[X]) -  2 -E [X ^ y ]
d t  T l Tl
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I  =  r,E[y] + g2/3E[Z] + fE M  + eiE[!7] -  2r,Var[y] + 2(5Cov[r, W]

+  2eiCov[y, U] + 2g2/3Cov[y, Z] + pgi ̂ E[Xy](l -  2E[y])

+ 9 3 ^E[yZ](l -  2E[y]) + 2 ç3 ^E[y^Z] + 2p9i^E[Xy2]

=  6iE[y] + $,E[Z) + 02E[Ty] -  2$,Var[Z] + 2@iCov[y,Z] +  202Cov[Z, W] 

+  (1 -p )-E [X y](l -  2E[Z]) + —E[yz](l + 2E[Z]) -  2—E[yz^]
n  n n

+  2(1- p ) ^E [X YZ ]

= ( 1  _  92)/3E[Z] +  A,E[W] + e2E[C7] -  2A,Var[W]

+ 2 (1 - g2)0Cov[Z, W] +  2e2Cov[iy, U]

+ p(l -  gi)^E[Xy](l -  2E[iy]) +  (1 -  93)^E[yZ](l -  2E[W])

+ 2p(l - gi)^E[Xyiy] + 2(1 - g i ) ^ E\ YZ W ]

=  ^„E[y] + ioE[iy] + E,E[i7] -  2E»Var[î7] + 2-yoCov[y, U] +  2ioCov[TV; U],

The covariances of X, y , 2, W,  and U satisfy the following dihkrential equations: 

dCov[X,y]
dt =  - ( r ,  +  p)Cov[X, y ]  +  92:9Cov[X, Z] + €iCov[X, U] + (5Cov[X, W]

+ -E [X y ](E [y ] -p g iE [X ] - p g i )  -  gs— E[yZ]E[X] -  -E [X y ^ j 
n n n

+ pgi-E[X=y] + q 3 — E [ X Y Z \  
n n

= -($ , + f)Cov[x, z ]  + eiCov[x, y] + @2 Cov[x, w]

+ ^E[Xy](E[Z] -  (1 -  p)E[X] -  (1 -  p)) + ^E[YZ]E[X]

- ( -  + —)E[xyz] + (1 -  p)-E[x^y]
n n  n

= -(A, + f«)Cov[X, ly] + (1 -  g2),8Cov[X, Z] + e2Cov[X, U]

+ -E[Xy](E[iy] -p(l -  gi)E[X] -p(l -  gi))
Tl

-  (1 -  gs)̂ E[yZ]E[X] -  ^E[xyiy] + p(l -  gi)̂ E[X̂ y]

+ (1 — gs)~E[xy z \  

dCov[X, U] _  _  ir\ +  7oCov[X, y ]  +  (SoCov[X, W]
dt

+  ^ E [ x y ] E [ i 7] -  ^ E [ x y ( 7]
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~^ d ï  == -  CiEM -  92/3E[Z] + ®/3Var[Z] +  @iVar[y] +  5Cov[Z, W]

+ £iCov[z, y] -  (r, +  $,)Cov[y, Z] + %Cov[y, w]

-  ^ E [xy]((l -  p)E[y] +pgiE[Z]) -  ^E[yZ](E[y] -  gsEIZ] -  93) 

+  (1 - P ) - E [ x y 2 ]  + p g i-E [X y Z ] +  9 3 ^ E [y z2 ] _  HZgryZg]
Tl n n n

dCov[y, W]_ ^  ^  fVar[W] + ç2l3Cov[Z, W]
dt

rfCov[y,t7]
dt

dCov[Z, W] 
dt

+ eiCov[iy, y ] - ( r ,  + A,)Cov[y, ly] + (i -  92)/3Cov[y, z] 

+ £2Cov[y, U] -  ~E[XY]{p{l  -  gi)E[y] + pgiE[W])

— ^ E [y Z ]{{1 — 93}E[y] 4- 93E[Ty]) +  p{l — gi)—E[xy^]

+ p g i-E [x y iy ]+93— E[yziy] + (1 -9 3 )— E[y^z] 
n  n  n

= -  £iE[[f] -  7oE[y] + eiVar[(7] +  7oVar[y] + g2/3Cov[Z, (7] 

+ <5Cov[>y, !7] -  (r, +  E,)Cov[y, U] +  (5oCov[y, W] -  P9 i ̂ E[Xy]E[l7]

-  93— E[yZ]E[C/] +pqi - E[ XYU]  +  qs— ElYZU]
n  n n

= -  %E[W] -  (1 -  g2}/3E[Z] + @2Var[W] + (1 -  92)/3Var[Z]

+ @iCov[y, W] -  (A, + 0 ,)Cov[Z, W] +  £2 Cov[Z, U]

-  ^E[xy](p(i -  9i)e [z ] +  (1 -p)E[iy])

+ — E[y Z](E[Ty] — (1 — 93)E[Z] — (1 — 93)) + p {l — 9i)“ E [xy  z]

+ (1 -p )-E [x y p y ] -  — E[yziy) + (1 -9 3 )— E[yz^]
n n Tl

= »iCov[y, U] +  %Cov[W, Î7] -  (O, + E,)Cov[Z, U] +  7 oCov[y, Z] 

+  (5oCov[Z, W ]  -  ( 1  -p )-E [X Y ]E [U \  +  — E\YZ\E[U]
Tl Tl

+  (1 -p)^E[Xy!7] -  ^E[YZU]  

dCov[W, U] ^  +  ioVar[iy] +  (1 -  g2)/3Cov[Z, U]

-  (A, + E,)Cov[W, U] + 7 oCov[y, W] 

- p ( l  -9i)2E[Xy]E[C7] -  (l-93)^E[yZ]E[(7] 

+  p ( l - q i)-E [X Y U ]  +  (1 -  q3 ) ^ E \Y Z U ] .
Tl Tl
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A .4 .3  N u m erica l resu lts from  sim ulations

For the sinmlation of model Clio there are 22 difiFerent kinds of events tha t can occur. 

The events and their rates are defined in Table A.5. For each set of parameter values 

the simulation was repeated R  =  10  ̂ times.

Event Rate Event Rate
birth (of X) A PQi^XY
death of X fiX X - ^ Z ( i - p ) ^ x y
normal death of Y y y X - ^ W p ( i - 9 i ) ^ x y
TB death of Y y iY Z —¥ Y  (reactivation) Q20Z
death of Z y z Z Y  (reinfection) q z ^ Y Z
normal death of W n w Z - ¥ W  (reéictivation) (1 — q2)PZ
TB death of W y^W Z - ^ W  (reinfection) { l - q , ) ^ Y Z
death of U yU Y - ¥ U 'yoY
y - > z 6iY U - ^ Y eiU
w - ^ z 02W W - ^ U 6oW
W - ^ Y 6W U - ^ W €2U

Table A.5: Events for the simulations of model Clio

For this model we assumed that at time t =  0, when chemotherapy is intro

duced, the epidemic has already reached the steady endemic level described by the 

quasi-stationary distribution of model Zeus (for the natural evolution of TB). Therefore, 

the vector of initial conditions, Xq =  (xq, yo^zo,wo,uo), for model Clio must be a variate 

from the quasi-stationary distribution of model Zeus.

In order to implement that, 10  ̂ simulation runs of model Zeus were carried 

out with the parameter values of interest. Let X f  (t) denote the value of the vector 

{X {t) ,Y { t) ,Z { t) ,W { t) ,U { t))  at time t from the i-th  simulation run of model Zeus, for 

i =  1, 2, . . .  , 10000, and similarly X^(t) for Cho.

The results from the simulations of model Zeus (see Sections 6.3.5 and 6.3.4) show 

that by time t =  300 the process has either died out or reached the steady endemic level. 

In particular the simulations that were carried out with a large value of yo (the initial 

number of infectious cases) all ended at the steady endemic level. So, the 10“̂ runs of Zeus 

were carried out with the parameter values of interest and Xf'(O) =  (n — 10,10,0,0,0), 

which ensured tha t all 10  ̂ runs ended at the steady endemic level and hence each of the 

10'̂  vectors X^(300) is a variate from the quasi-stationary distribution of Zeus. Then 

the initial conditions for the simulations of Clio where taken as X^(0) =  Xf'(300), for 

i = 1 ,2 ,. . .  ,10000, ensuring tha t the initial conditions of Clio are variâtes from the 

steady endemic level of the natural evolution of TB.
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Similarly for the various statistics of interest, the final values calculated firom 

the simulations of Zeus where used as the initial values for Clio. For instance, if V^{t) 

and V^{t) denote the prevalence of infectious cases at time t  for model Zeus and Clio, 

respectively, then we take V^(0) =  V^(300).

E p idem io logy

The estimates of the epidemiological indices and the corresponding variances a t a par

ticular time point t were calculated using formulae (A.8), where R  is the number of 

individual simulation runs {R =  10' )̂ and the d* and iVj are defined as for the equa

tions (A.8). The percentage decline a t time t for each index was calculated from the 

formula

w n t )  =  (A.10)

and the 95% confidence interval for the percentage decline from the formula

where T {t)  is the value of the particular index at time t, .F(O) is the respective value 

at t =  0, Sjr{t) is the standard deviation of the index a t time t, and W T { t )  is the 

percentage decrease in this factor at time t.

A .5 M odel Erato

A .5.1 M odel equations

For simplicity, we introduce the notation

Ts =  70 +  + /  ̂+  ^ s  =  <^i+/^

A j =  ^ +  (5q +  02 +  A* +  Â2 Bg =  +  ^2 +

Ej =  ei -f 62 +  /i Bs =  /? +  /i.

Let Cj denote the vector of whose i-th  component is 1 and all other components

are zero. For x  =  (a;,a;„, z, Zy, y, w, u) E the probabihties p (x ; t) satisfy the following
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equations:

=  (1 -  <^)Ap(x -  e i) +  (/)Ap(x -  62) +  (i{x +  l)p (x  +  e i)

+  fj,(xy +  l)p (x  +  62) 4- fi(z +  l)p (x  4- 63) 4- iJL{zy 4- l)p (x  4- 64)

4- (/u 4- iJti){y 4- l)p (x  4- 65) 4- (/i 4- P2)(w 4- l)p (x  4- ee) 4- /z(u 4- l)p (x  4- 67)

4- (j>i{xv 4- l)p (x  — 01 4- 02) 4- (f>2 {zy 4- l)p (x  — 03 4- 64) 4- S(w 4- l)p (x  — 05 4- 03)

4- ~ (x  4- l)\pqi(y -  l)p(x  -  05 4- 01) 4- (1 -  p)pp(x - 0 3  4- e i) n
4-p(l -  gi)yp(x - 0 6  4- ei)] 4- - { x ^  4- l)\p'qi{y -  l)p (x  -  05 4- 62)n
4- (1 -p ')y p (x  - 6 4  4- 62) 4 - /(1  -  9i)yp(x - 0 6  4- 62)] 4- 0i(y 4- l)p (x  - 0 3  4- 65)

4- 62{ w  4- l)p (x  - 0 3  4- 66) 4- 4-93 — (y -  l)](z 4- l)p (x  -  05 4- 63)n
4- [(1 -  q2 ) (3  4- (1 -  ya)— y](^ 4- l)p (x  - 6 6  4- 63) 4- 7o(y 4- l)p (x  - 0 7  4- 05)

q '
4- [(1 — q2 )P' 4- (1 — Ça)— y](^v 4- l)p(x  — 06 4- 64) 4- S q { w  4- l)p (x  — 07 4- 06) 

a '
4- [q2 ^ '  4- 9a -^ (y  -  ^)]{zv 4- l)p (x  -  05 4- 64) 4- ei(u 4- l)p (x  -  05 4- 67)

4- €2 {u 4- l)p (x  — 06 -f- 67) — [A 4- fJ>x 4- ^sXy 4" 4- 4- T^y 4- A^iü

4- EgU 4- - { x  4- Xy)y 4- — yz  4- — yzt,]p(x), n n n

where for simplicity, the dependence on t  has been suppressed in all the terms p(x; t).

The variances of A", Z, Y, W , and U satisfy the following equations:

dMai[X(t)] ^ _  2̂ Var[A-] + -(1  + 2E[X])E[Xy] -  2-E[X^y]
CLb Tit Tit

4- 0iE[Au] 4- 2^iCov[A, X^]

=<i>\ + $,E[X„] -  2$,Var[X„] + - ( 1  +  2E[X„])E[X„y] -  2-E[X^y]
a t  Tl Tl

dVar[Z(t)]
d t

= BgE[Z] +  (l>2 E[Zy] + e2E[W] +  0iE[y] 4- 2(/>2Cov[Z, Z„] 4- 26>2Cov[Z, W] 

+  2@iCov[y, Z] -  2B,Var[Z] -  2 ^ E [y Z ^ ]  +  2(1 -  p )^ E [X y Z ]

+ (1 - p ) - ( l  -  2E[Z])E[Xy] + ^ (1  + 2E[Z])E[yZ]

= Bi(E[Z„] -  2Var[Z]) -  2 ^ E [yz |] + 2(1 - p')-E[X„yZ„]
a t  Tl Tl

+ (1 - p ' ) - ( l  -  2E[Z„])E[X.y] + ^ (1  + 2E[z„])E[yz„]
Tl Tl
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<iVar[y(()] ^  +  %#E[Z] +  SE.\W\ +  +  eiE[(7] -  2T,Var[y]
dt

dVa,T[W{t)]
dt

+ 2 pgi-E[Xy^] + 2 9 3 —EfK^Z] + 2p'gi-E[X„y^] + 2 9 3 ^E[y^Z.]
n  T l Tl 71

+  2(5Cov[y, W] + 2eiCov[y, U] + 2g20Cov[Y, Z] +  2g2/3'Cov[y, Z„]

+ 9 1 - ( 1  -  2E[y])(pE[xy] +p'E[x„y])
Tl

+  93(1 -  2E[y]) f^ E [y x ]  +  ^E[y% ]^

= A,E[iy] + (1 -  92)(/0E[Z] + /3'E[Z„]) +  e2 E[Cl] -  2A,Vai[iy]

+  2(1 -  9 i)-(pE[XyW] +p'E[X„yiy]) + 2e2Cov[W, U]
Tl

+  2 ( 1  -  9 3 ) I ^ E [yz iy ] +  ^E [yz„iyi I + 2 ( 1  -  q2WCov[z ,  w]
\  Tl T l J

+ 0 Coy[Z„,W\) +  (1 -  9 i)^ (l -  2E[iy])(pE[Xy] +p'E[X„y])

+ (1 -  93) (1 -  2E[iy]) r ^ E [ y z ]  +  ^ E [ y y „ ]  j

— = 7o(E[y] + 2Cov[y U]) +  (5o(E[iy] + 2Cov[iy, Cl]) + E,(E[[1] -  2Var[C7]).

The covariances of X , X„, Z, Z„, Y, W, and U satisfy the following equations: 

— ^  = -  i îE[X„] + ^ 1  Var[X„] -  2-E[XX.y] -  (0, +  p)Cov[X, X„]
a t  Tl

+  ^(E[X]E[X„y] + E[x„]E[xy])

=  0iCov[X,Y] +  02Cov[X, W] -  (B, + p)Cov[X,Z] + (j>iCov[Xy,Z]

+ <hCoy[X, Zy] -  E[XyZ](a + Q2)/n  +  (1 -  p)-E[X^y]
Tl

+  ^ E [ X Y ] { E [ Z ]  -  ( 1  -p)E[X] -  ( 1  -p )) +  ^E[yZ]E[X] 

dCov[X,Z„] ^ 2„] -  E[XyZ„](a + a^ /n  + (1 -  p')-E[XX„y]
a t  Tl

-  (b;+p)Cov[X,Z„] + -E[Xy]E[Z„] -  (1 -p')-E[X]E[X„y]
n  Tl

+ ^E[X]E[YZy]

dCov[X, y] ^  +  ^)Cov[X, y] +  <5Cov[X, W] +  eiCov[X, U] +  92/3Cov[X, Z]
dt

+  g2/?'Cov[X, Zy] +  0iCov[X„, Y] -  -E [x y 2 ]  +  ç3^ E [ X y Z ]
Tl Tl

+ p ' g i -E [X X „ y ] +  93 ^ E [ x y  Z„] +  P 9 ,  - E [ x 2y ] + p ' 9 i  -E [X ]E [X „y]
Tl T l T l Tl

+  -E[Xy](E[y] - P 9iE[X] - p g i )  -  93E[X](a2E[yZ] + â E[yZ„])/n
Tl

230



= ÿiCov[:ï„, W] -  (A, + f,)Cov[%, W] +  €2Cov[X, U] -  ^^[XYW]  

+ (1 -  92)(;SCov[X, Z] +  0Co-v[X, Z„]) +p'(l -  q { ) ^ ^ X X ^ Y ]

+ (1 -  «s)(a2E[XyZ] + a^E[xy^„])/n + p(l -  gi)-E[X''y]
Tl

+  -E[Xy](E[Py] -  p(l -  gi)E[X] -  p(l -  9i))
Tl

-  (1 -  ®)E[X](a2E[yE] + o^E[yZ.])/n -  p'(l -  gi)^E[X]E[X^y] 

=  ^iCov[X„, 17] -  (E, + p)Cov[X, U] +  7oCov[X, y] +  4 Cov[X, W]

+ ^E[Xy]E[î7] -  ^B [X Y U ]  

dCov[Xy,Z] ^  ^B,)Cov[X„,Z] + ,feCov[X„,Zy] +  @iCov[X.,y)

+ @2Cov[X., W] -  E[x„yz](a + %)/» + (1 - p)^E[XX„y] 

-  (1 -p)-E[xy]E[x„] + ^E[yz]E[x„] + -E[x„y]E[y]
Tl n  Tl

dCov[X„,Z„] ^  Z„] -  E[x„yz„](a +  4 ) / n  +  (1 -  p') ̂ E[X?y]

+  2 E[X.y](E[Z„] -  (1 -p')E[X„] -  (1 -  p')) +  ^E[x„]E[yz„]

"  - ( ^ '  +  «,)Cov[X„,y] + 92/3Cov[X„,Z] + Q2 0 'Cov[Xy,Z„]

+ iCov[X„, W] +  €iCovtX„, U] -  ^E[X„y2] + Pîi ̂ E[XX„y]

+ Ç3 —E[X(,y z] +  Ç3 -^E[Xi,y Zy] + p gi —E[Xç y]

+ ^E[X„y](E[y] -p'giE[X„] -p'gi) -pgi^E[X„]E[Xy]

-  93E[X„](a2E[yZ] + a^E[yZ„])/n

dC m \X y,W ] ^  ^  $,)Cov[X„, W] + €2Cov[X„, U] -  -E[x„yiy]
a t  Tl

+  (1 -  92)(/3Cov[X„, Z] +  /3'Cov[X„,z.]) - p(l -  gi)^E[X„]E[Xy] 

+ (1 -  g3)(a2E[X„yZ] + a^E[X„yZ„])/n + (1 -  gi)^(pE[XX„y] 

+ p'E[Xjyj) + ^E[X.y](E[W] - p'(l -  gi)E[X„] - p'(l -  gi))

-  (1 -  g3)E[X.](«2E[yZ] +  a iB [yZ „])/n  

dCov[Xy,U] ^  0 ,)Cov[X„, U] + 7oCov[X„, y] + ioCov[X„, W]

+ -E[X„y]E[(7] -  -E[X„y(7]
Tl Tl
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=  -  (B, +  B;)Cov[Z, Zy] + 0iCov[Y, Zy] + OiCovlW, Z„] +  ^Var[Zy]

-  (h^lZy] +  (1 -  p )-E [X Y Z y]  -  E[ZZyY]{a2  + a i ) / n
n

+  (1 -  p ')-(E [X yZ Y ]  -  E[Z]E[XyY]) + ^E [Z \E [Z yY ]  
n  n

-  (1 - p)^E[Zy]E[XY] + ^E [Zy]E [Z Y ]

*C ov[Z„, Y] +  %Cov[y, W] + 01 Var[y] -  0iE[y] +  eiCov[Z, U]

-  ( r ,  +  B,)Cov[y, g] +  0Cov[Z, W] +  q3 P(Yax[Z] -  E[Z])

+  (1 -  p )-E [X y ^ ] +  ^E [Y Z ](E [Y ]  -  q3 E[Z] -  qs) -  — E[Y^Z] 
n  Tl Tl

+  p , l -E [X y Z ]  + p 'qx-E [X yY Z ] + q2 0 Coy[ZZy] +  93— E[ZZ„y]
Tl Tl Tl

+ 9 3 —E[yZ^) -  -E[XY]{pq{E[Z\ +  (1 -p)E[y])
Tl Tl

-p'q i-E[Z]E[XyY] -  93^E[Z]E[Z„y]
Tl Tl

 ̂ rff’ =  «iCov[y, W] +  6 2 Cov[Z, U] +  0 2 (Var[lV] -  E[W]) + ^Cov[Z„, W]

+ (1 -  9 2 )/3 (Var[Z] -  E[Z]) -  (A, +  B,)Gov[Z, W] +  —E[W]E[yZ]
Tl

+ (1 -  m)0 Gav[z, Z y ]  +  ( i -  p )-(E [xyw ] -  E[iy]E[xy])
Tl

+ p'(l - 9 i)-(E [x„zy] -E[Z]E[X„y]) +p(l - 9 i)-(E [x zy ]
Tl Tl

-  E[Z\E[XY\) + (1 -  93)— (E[Z^y] -  E[yz](l -  E[Z]))
Tl

-  —E[yzw] + (1 -  93)^(E[ZZ„y] -  E[Z]E[ZyY])
Tl Tl

= *2Cov[z„, u ] +  0 iCov[y, u ] +  02Cov[iy, u ]  +  7 oCov[y, z ]

+  (5oCov[Z, W] -  (B, +  E,)Cov[Z, U]

+ (1 -  p)^{E[XYU] -  E[Xy]E[U]) + ^(E[yZ]E[Cy] -  E[YZU]) 

dCov[Z„,y] ^ _  (r, + B;)Cov[y, Z„] + 92/3Cov[Z, Z„] + JCov[Z„, W] +  eiCov[Z„, U]
dt

+ 92/3'(Var[Z„] -  E[Z.]) +  (1 -p ')-(E [X „y 2] -  E[y]E[X„y])
Tl

+ p'qi-(E[XyZyY] -  E[Z„]E[X„y]) +  93— (E[ZZ„y] -  E[Z„]E[Zy])
Tl Tl

+ pqi^(E[XZyY] -  E[Z„]E[Xy]) -  ^(E[Z„y=] -  E[y]E[Z„y])

+  9 3 ^ ( E [ Z M  -  E [y z .] ( l  +  E[Z„]))
Tl
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dCov[Z„, M  =  _  (A , +  Bi)Cov[Z„, W] + e2Cov[Z„, ^ ] +  (1 -  ?2);8'(Var[Z„] -  E[Z„])
dt

dCov[Zv, U]

+  (1 -  ffi)/3Cov[Z, Z„] +  (1 -  p ')-{E [X „ Y W ] -  E[W']E[X„y])
n

+ p '(l -  gi)2(E[Jç„Z„y] -  E[Z„]E[X„y]) + p (l -  gi)^(E [X Z„Y]

-  E[Z„]E[XY]) +  (1 -  q3 )^ (E [Z Z „ Y ]  -  E[Z„]E[Zy]) -  ^ E [ Z ^ Y W ]  

+  (1 -  g3 ) ^ (E [ Z ^ Y ]  -  E{YZ„]{1 + E[Z„])) + ^E[W ]E [Z„Y]

= — (Bg + Ea)Cov[Zy, U] + 7oCov[y, Zy] 4- SqCov[Zj Wy\
dt

+ ^(E \YZ„]E[U ] -  E\YZ„U]) +  (1 - p ')-[E [X ^Y U ] -  E[X„y]E[C7]) 
n n

dCov[Y,W]
dt

=  - ( r ,  + A,)Cov[y, W] +  eiCov[iy, U] +  e2Cov[y, U] +  iVar[iy]

-  (5E[iy] + g2PCov[Z, W] + g2l3'Cov[Zy, W] + (1 -  g2){pCov[Y, Z]

+ ̂ Cov[y, Z„]) + (1 -  ga)—(E[Z„ŷ ] -  E[y]E[y%])
Tl

+ p g i-(E [x y iy ] -  E[py]E[xy]) +  (i -  93)— E[xy^]
n n

+p'gi^(E[x„yiy] -  E[iy]E[x„y]) +  g3^ (E [y z iy ]  -  E[w]E[yz])

+ (1 -  gi)-{p'B[x,y2] ^ pE [xy2] _  E[y](pE[xy] +p'E[x„y])}
Tl

+ 93—(E[Z„yiy] -  E[W\E\YZ„]) -  (1 -  9 3 )^E[y]E[yZ]
Tl Tl

=  -  ( r ,  +  E,)Cov[y, U] + SCov[W, U] + foCov[y, W] + %Var[y]

-  7oE[y] +  ÉiVar[î7] — €iE[î7] 4- q2l3Cov[Z, U\ 4- U\

-  9i^E[c/](pE[xy]+p'E[x„y])+9i^(pE[xyy]+p'E[X„y[T|)

-  93E[Cr|(a2E[yZ] + a^E[yZJ)/n + 93(a2E[y2!7] + a^E[yZ„t;])/n
rfCov[iy, u]

dt
=  -  (A , +  E,)Cov[iy, U] -  62E[Cf] -  ioE[iy] +  t i V a s p ]  +  5oVar[>y]

+  7oCov[y, W] +  (1 -  92)((0Cov[Z, U] + /3'Cov[Z„, U])

+ (1 -  gi)-{pE[XYU] + ]/E[XyYU] -  E[i7](pE[Xy] + p'E[X„y])}
Tl

+ (1 -  93)-{a2E[yXC7] + aiE[Z„yy] -  E[U](a2E\YZ\ + a^E[Z„y])}.
71
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A .5.2 N u m erica l resu lts from  sim ulations

For the simulation of model Erato there are 34 different kinds of events tha t can 

occur. The events and their rates are defined in Table A.6. The vector Xg gives 

the current value of X  =  (X, Z„,Y, W,C7), which at time t  = 0 has the value

Xo = (x(o),x„(o),z(o),z„(o),y(o),iy(o),c7(o)).

Event R ate Event R ate
birth of X (1 — <f>)X Z -4 y  (reactiv) 92/3Z
birth of Xv <f>\ Z -)■ y  (reinf ) 9 3 ^ y z
death of X txX Z - ^ W  (reactiv) (1 — qi)PZ
death of Xv fiXy Z -4 W (reinf) { l - q , ) ^ Y Z  

92)9'Zvdeath of Z fxZ Zv y  (reactiv)
death of Zy fiZy Zv -4 y  (reinf) 9 3 ^ y Z v
natural death of Y y Y Zv -4 W (reactiv) (1 — q2)(3' Zy
TB death of Y y i Y Zy - ^ W  (reinf) ( l - q , ) ^ Y Z y
natural death of W n w Y ^ U 70 F
TB death of W H2W U - ^ Y eiU
death of U yU W - ^ U SoW
X - ^ Y pq i^X Y U - ^ W til l
X - ^ Z ( i - p ) ^ x y y - +  z 6xY
X - ^ W p ( l - g i ) ^ X y w - ^ z Q2W
X y - ^ Y p'qi^XyY W ^ Y m
Xy —> Zy ( l - p ' ) ^ X y Y

p ' { l - q i ) ^ X y Y
Xy -4 X Xv

X y - ^ W Zy -4 Z 02 Zv

Table A.6: Events for the simulations of model Erato

We assume that at time t = 0, when chemotherapy and BCG vaccination are 

introduced, the epidemic has already reached the steady endemic level for the natural 

evolution of TB (described by the quasi-stationary distribution of model Zeus). There

fore, the vector of initial conditions, X q , for model Erato must be a variate from the 

quasi-stationary distribution of model Zeus.

This was implemented as for model Cho (see Section A.4.3). R  = 10  ̂ simulation 

runs of model Zeus were carried out with the parameter values of interest. Let X f(t) 

denote the value of the vector {X { t) ,Y { t) ,Z { t) ,W {t) ,U {t))  a t time t  from the %-th 

simulation run of model Zeus, for z =  1 ,2 ,. . .  ,R  and X^^(t), Xf^(t) the values of the 

vectors (X (t),y (t) ,Z (< ), W (t),ï7(t)) and (X„(t), Z„(t)), respectively, at time t  from the 

z-th simulation run of Erato.

The results from the simulations of model Zeus (see Sections 6.3.5 and 6.3.4) show 

that by time t  =  300 the process has either died out or reached the steady endemic level. 

In particular the simulations that were carried out with a large value of z/o (the initial
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number of infectious cases) all ended at the steady endemic level. So, the lO'̂  runs of Zeus 

were carried out with the parameter values of interest and X?(0) =  (n — 10,10,0,0,0), 

which ensured tha t all 10  ̂ runs ended at the steady endemic level and hence each of the 

10  ̂ vectors X?(300) is a variate from the quasi-stationary distribution of Zeus. Then 

the initial conditions for the simulations of Erato where taken as Xf^(O) =  Xf(300) and 

X p(0) =  (0,0), for i =  1 ,2 , . . .  ,i2, ensuring th a t the initial conditions of Erato are 

variâtes from the steady endemic level of the natural evolution of TB.

The estimates of the epidemiological indices and the corresponding variances 

were calculated from formulae (A.8), where R  is the number of individual simulation 

runs (R  =  10^). The di and Ni are defined as for the equations (A.8), except

• for the risk o f infection: di is the number of new infections (i.e. transitions from X  to 

y ,  Z, and W  and transitions from Xy to Y, Zy, and W ) tha t occurred during year t in 

the 2-th  run.

•  for the incidence of infectious TB: di is the number of all the transitions from the 

classes X , Xy, Z , Zy to the class Y ,  during year t in the 2-th run.

•  for the incidence of non-infections TB: di is the number of all the transitions from the 

classes X , Xy, Z , Zy to the class W , during year t in the 2-th run.

The percentage decline (due to BCG) in the particular epidemiological index at 

time t  was calculated from the formula

where Fs{t) and Fc{t) are the values of the particular index at time t, as calculated from 

models Erato and Clio, respectively. Also, if Ss{t) denotes the standard deviation of the 

index a t time t, then the corresponding 95% confidence interval for the estimate of the 

index was calculated from the formula

F,{t) ±  1-96^ .
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