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ABSTRACT
We present hierarchical machine learning (hML) of highly accurate potential energy surfaces (PESs). Our scheme is based on adding predic-
tions of multiple Δ-machine learning models trained on energies and energy corrections calculated with a hierarchy of quantum chemical
methods. Our (semi-)automatic procedure determines the optimal training set size and composition of each constituent machine learning
model, simultaneously minimizing the computational effort necessary to achieve the required accuracy of the hML PES. Machine learning
models are built using kernel ridge regression, and training points are selected with structure-based sampling. As an illustrative example, hML
is applied to a high-level ab initio CH3Cl PES and is shown to significantly reduce the computational cost of generating the PES by a factor of
100 while retaining similar levels of accuracy (errors of ∼1 cm−1).

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006498., s

I. INTRODUCTION

Detailed knowledge of the potential energy surface (PES) of
an atomistic system is crucial for understanding its physicochemi-
cal behavior, e.g., its spectroscopic, thermochemical, and dynamical
properties. Quantum chemistry (QC) provides a systematic route
for constructing accurate representations of the PES, but in prac-
tice, the quality of the PES is strongly limited by the system size,
which largely dictates the choice of electronic structure method and
basis set. As the number of atoms increases, the required number of
single point calculations to build the PES rapidly grows. The situa-
tion is also computationally challenging for small molecules when
constructing highly accurate PESs, for example, in high-resolution
molecular spectroscopy,1 which requires rotation–vibration spectra
to be calculated with sub-wavenumber accuracy (errors less than
1 cm−1, 0.03 kcal/mol, 1.2 ⋅ 10−4 eV, 12 J/mol, or 4.6 μHartree).

Such high requirements on the accuracy of the PES impose very
strict standards on the quality of the QC calculations and on the den-
sity and coverage of grid points—nuclear geometries—on the PES.
Wavefunction-based methods such as coupled cluster, usually cou-
pled cluster singles, doubles, and perturbative triples [CCSD(T)],
or multireference configuration interaction (MRCI) are employed
along with large one-particle basis sets near the complete basis
set (CBS) limit. Furthermore, the treatment of additional, smaller
energy corrections to account for effects such as scalar relativity
can recover more of the electron correlation energy2,3 and greatly
improve the PES. Naturally, calculations for each point can take
many central processing unit (CPU) hours and amount to years
of CPU-time for the entire PES. For example, a highly accurate
ab initio PES of methane4 required ten separate calculations at each
point on a grid of 97 721 nuclear geometries, so nearly 1 × 106 single
point calculations.
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With recent advances in machine learning (ML) in QC,5–8 there
is scope for massive savings in computational effort, particularly
with regard to constructing PESs.9–11 QC can be used to calculate
energies (and energy gradients) for only a small fraction of grid
points, which are subsequently employed as the training set for an
ML model capable of predicting the energy (and gradients) for any
grid point of interest. Many ML methods have been suggested for
representing PESs in different applications, e.g., in spectroscopy and
(molecular) dynamics,11–80 and in most published studies, ML is
applied directly to learn the energies at the target QC level. However,
it is known that learning energy differences between high- and low-
level QC methods is more straightforward and requires far fewer
training points,80–102 as has been demonstrated, e.g., in our previous
studies on the water PES81 and on Δ-machine learning (Δ-ML).82 It
was also shown that combining several Δ-ML models achieves bet-
ter performance and lowers the computational cost of generating the
training data.83,84 This fact has yet to be fully exploited in the con-
struction of molecular ML PESs, and to the best of our knowledge,
no such procedure has been devised to find the optimal training data.
Furthermore, practical research usually requires knowledge about
the choice of QC levels of theory, training set geometries, and sizes
before generating the computationally intensive reference data.

In this study, we exploit the hierarchy of increasingly accurate
but computationally costly quantum chemical methods to signifi-
cantly reduce the computational cost of generating training data for
accurate ML PESs. We introduce hierarchical ML (hML) for con-
structing the molecular PES and utilize a hierarchy of Δ-ML models
trained on energies and energy corrections calculated with multi-
ple QC methods. The training set size and composition of each of
these models are optimized in a semi-automatic way before generat-
ing the computationally intensive QC reference data, chosen using
structure-based sampling. Each constituent ML model is trained
within the kernel ridge regression (KRR) approach. Our scheme is
applied to a highly accurate ab initio CH3Cl PES103 with the aim of
reproducing it as accurately as possible with the minimum amount
of computational cost required to generate the reference energies
and energy corrections for training.

II. METHODS
In this section, we provide a general description of the hML

approach, discuss the dataset we tested hML on, and describe the
details of how hML is applied to this dataset.

A. Hierarchical machine learning
In hierarchical machine learning (hML), the target property ŷΣ ,i

for a point (geometry) i is calculated as the sum over the predictions
ŷM ,i made by its constituent Δ-ML models,

ŷΣ,i = ∑
M

ŷM,i(Ntr,M). (1)

Each Δ-ML model M may be trained on a different set of points,
i.e., ŷM ,i is a function of both the training set composition and the
training set size Ntr,M . We designed the procedure to determine the
optimal number of training points for each Δ-ML model to achieve
the required accuracy of the hML predictions with as short as possi-
ble CPU-time tΣ, needed to generate the reference data for training

all Δ-ML models. To do this, we minimize the following objective
function for a set of training set sizes {Ntr,M}:

eΣ
eΣ,th

+
tΣ/tΣ,max

1 − sth
+

p
eΣ,th

, (2)

where eΣ and eΣ ,th are the estimated and user-defined “target” errors
of the hML model, respectively, tΣ ,max is the CPU-time that would
be necessary to generate the “pure QC PES,” sth is the user-defined
“target time saving,” and p is the penalty for too small training set
sizes. Below, we describe all these terms.

The crucial problem is how to estimate the error of the hML
model eΣ for a given set of training set sizes {Ntr,M} without train-
ing all of the component Δ-ML models, because we want to cir-
cumvent the need to generate large amounts of costly QC reference
data. To solve this problem, we estimate the hML error eΣ on a very
small test set of Nrnd = 100 points randomly drawn from the entire
dataset. eΣ is a function of both the reference values {yΣ,i}Nrnd

i=1 and
the values {ŷΣ,i}Nrnd

i=1 predicted by the hML model. The reference data
{yΣ,i}Nrnd

i=1 are calculated with QC methods, but the predicted val-
ues are unknown without training the constituent Δ-ML models.
Thus, we need to estimate the values {ŷ′M,i(Ntr,M)}Nrnd

i=1
to be pre-

dicted by the Δ-ML models. For the estimation, we make an assump-
tion that for the same training points, the ratio between predictions
made by the constituent Δ-ML models for each point i remains
roughly the same and equal to the ratio calculated from the reference
data. For the ratio between the Δ-ML model M and M = 1 and for
Ntr,1 = Ntr,M ,

ŷM,i(Ntr,M)
ŷ1,i(Ntr,M) ≈ rM/1,i = yM,i

y1,i
. (3)

We investigate the validity of this assumption in Sec. III while here,
we focus on the details of the implementation.

From Eq. (3), we can estimate the value predicted by the Δ-ML
model M trained on Ntr,M points as

ŷ′M,i(Ntr,M) ≈ ŷ1,i(Ntr,M)rM/1,i. (4)

The problem, therefore, reduces to making predictions ŷ1,i(Ntr,M)
for each point i in the test set using the Δ-ML model M = 1 trained
on Ntr,M points. It is solved by calculating reference data {y1,i} with
the most computationally affordable QC method(s) and training the
Δ-ML model M = 1 on an increasing number of training points.
Practically, this is done with a small step for small training set sizes
and with larger steps for larger training set sizes forming a set of the
numbers of training points with the corresponding predicted values
{(Ntr,1,j,{ŷ1,i(Ntr,1,j)}Nrnd

i=1 )}. For Ntr,1 between Ntr,1,j and Ntr,1,j+1,
we use a two-point linear interpolation to calculate the value of
ŷ1,i(Ntr,1).

In our assumption, we also stipulated that the same training
points, i.e., geometries in the training set, should be used for Eq. (3)
to be valid. This is ensured by ordering the dataset points and then
by pulling the first Ntr,M points into the training set for each Δ-ML
model M. The geometries in the smaller training set always form a
subset of any larger training set of any other Δ-ML model.

Alongside error estimate, the CPU-time tΣ needed to gener-
ate the training data for all the Δ-ML models is of highest impor-
tance. Each Δ-ML model M is trained on Ntr,M differences between
values calculated with higher- and lower-level QC approximations.
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The number of required calculations with both QC approxima-
tions for this Δ-ML model is equal to Ntr,M . The same method
can be used either as a high- or a low-level QC approximation
for generating reference data for several Δ-ML models. Hence, we
have a list with varying numbers of required calculations for each
QC approximation. Since we pull training points from an ordered
dataset as described above, the number of total calculations NA
with the QC approximation A is just the maximum number in that
list. Now, we can estimate the CPU-time tΣ from estimates of the
CPU-time tA needed to perform a QC calculation for a single point
(geometry),

tΣ = ∑
A
NAtA. (5)

We also use Eq. (5) to calculate the tΣ ,max by setting all NA to
the largest number of training points max({Ntr,1,j}) used to train
the first Δ-ML model M = 1. It can be interpreted as the maximum
CPU-time that would be necessary to spend in order to calculate
the energies and energy corrections at all required QC approxima-
tions without any ML to generate the “pure QC PES” defined by a
grid of points used to train the largest Δ-ML model M = 1. This is a
very strict and technical definition, because in practice, hML mod-
els can be used for many more energy evaluations, e.g., in molecular
dynamics simulations.

Now, we can calculate the first two terms of the objective
function given by Eq. (2). If the optimization is performed using
only these two terms, it can lead to very small training set sizes to
reduce the estimated CPU-time, especially when very computation-
ally intensive high-level QC approximations are involved. For very
small training set sizes, however, ML predictions become increas-
ingly unreliable. The validity of our approximation for the ratio
[Eq. (3)] may deteriorate. Hence, the estimated error eΣ can be
overoptimistically too small due to the overestimated error compen-
sation. Thus, we introduce an additional term p to penalize for very
small training set sizes. This penalty is calculated as the sum of the
estimated errors eM of each Δ-ML model M,

p = ∑
M

eM({yM,i}Nrnd
i=1 ,{ŷ′M,i(Ntr,M)}Nrnd

i=1
). (6)

eM are calculated in the same way as eΣ. This penalty exploits the
fact that eΣ is usually not equal to ∑MeM , e.g., if e is the root-mean-
squared error (RMSE), ∑MeM , therefore, decouples different Δ-ML
models avoiding fortuitous error compensation.

Above, we described how to calculate eΣ, tΣ, and p entering
Eq. (2). The user needs to choose parameters eΣ ,th (“target error”
of the hML model) and sth (“target time saving”). They enter the
objective function in order to scale the estimated error, penalty,
and CPU-time saving. These parameters have intuitive meanings
given by their names, but it is more appropriate to consider them as
weights enabling the user to tune the optimization procedure as dis-
cussed below. We optimize the objective function in this study using
the global optimization algorithm dual annealing104–109 as imple-
mented in SciPy.110,111 This algorithm worked much better in our
tests for many Δ-ML models than the Nelder–Mead simplex112,113

or the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithms.114

After the training sets for each Δ-ML model are determined, the
reference data are generated for them with the QC approximations

and the Δ-ML models trained. A better error estimate of the result-
ing hML model can then be made on the test set as it will not rely on
the above assumption and will use the actual values {ŷM,i(Ntr,M)}Nrnd

i=1

instead of the estimated values {ŷ′M,i(Ntr,M)}Nrnd

i=1
. If the accuracy of

this hML model is not sufficient, then the optimization procedure
can be repeated with a lower value of the target error eΣ ,th, and
additional reference data can be generated.

B. Dataset: Ab initio CH3Cl potential energy surface
We use the dataset of 44 819 grid points of the published CBS-

35HL PES of CH3Cl,103 for which very accurate ab initio energies are
available. The grid points represent deformed nuclear geometries of
CH3Cl with energies up to hc⋅ 50 000 cm−1, where c is the speed of
light and h is the Planck constant. The ab initio energies, which we
denote as TBE (theoretical best estimate), were calculated using a
range of high-level electronic structure methods with large corre-
lation consistent basis sets, namely, explicitly correlated CCSD(T)-
F12b115 coupled cluster calculations with extrapolation to the com-
plete basis set (CBS) limit using the cc-pVTZ-F12 and cc-pVQZ-
F12 basis sets,116 plus additional energy corrections to account for
core–valence (CV) electron correlation, higher-order (HO) cou-
pled cluster terms beyond perturbative triples, scalar relativistic (SR)
effects, and diagonal Born–Oppenheimer corrections (DBOC). In
the following, we denote CCSD(T)-F12b with a complete basis set,
cc-pVTZ-F12, and cc-pVQZ-F12 simply as CBS, VTZ, and VQZ,
respectively. Full details of the ab initio calculations and grid gener-
ation can be found in the original work,103 which was motivated by
the need for a highly accurate rotation–vibration spectrum of methyl
chloride.117

Here, we also report second-order Møller–Plesset perturbation
theory (MP2) calculations with the augmented correlation consis-
tent basis set, aug-cc-pVQZ,118,119 on the same grid of 44 819 geome-
tries. MP2 calculations are computationally cheap and often used for
initial explorations of molecular PESs. Calculations were performed
using MOLPRO2012.120 In the following, this dataset is referred to
simply as MP2.

In Table I, we report the computational cost of calculating the
required energies and energy corrections in the dataset. Note that
the CBS is the composite method requiring calculations at both VTZ
and VQZ for extrapolation. Since this extrapolation does not incur
any noticeable additional cost, it is set to zero. We also estimate the
influence of the level of theory used for the energy calculations with
respect to TBE. For this, we use the following unweighted RMSE and
weighted RMSE (wRMSE) for the energies calculated with the QC
approximation A:

RMSE =
¿
ÁÁÀ 1

N

N

∑
i
(EA,i − ETBE,i)2, (7)

wRMSE =
¿
ÁÁÀ 1

N

N

∑
i
(EA,i − ETBE

i )
2
w(ETBE,i). (8)

The weights w(E) reflect the importance of the more spectroscop-
ically relevant low-energy region of the PES close to equilibrium
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TABLE I. Computational cost of calculations on an Intel Xeon E5-2690 v2 3.0 GHz processor at the equilibrium geometry of
CH3Cl (CPU-seconds and % with respect to TBE). CPU-years for the entire grid are estimated as CPU-seconds multiplied
by 44 819. Errors of the energies calculated at different levels vs TBE (RMSE, wRMSE, and wllRMSE) for the entire CH3Cl
PES are in cm−1. Standard deviations (SD, wSD, and wllSD) for each energy correction from the zero baseline for the entire
PES are in cm−1.a

CPU-seconds CPU-years % of CPU-time
per grid for entire with respect

Method point grid to TBE RMSE/SD wRMSE/wSD wllRMSE/wllSD

MP2 296.85 0.42 0.31 746.41 202.26 183.30

VTZ 298.24 0.42 0.31 108.46 55.44 54.61
VQZ 2 224.71 3.16 2.31 95.40 48.75 48.10
CBS 0.00 0.00 0.00 93.01 47.42 46.78
SR 2 059.50 2.92 2.14 18.84 8.37 7.96
CV 12 450.03 17.68 12.95 129.37 63.64 61.66
HO 49 711.76 70.60 51.71 62.43 21.72 19.74
DBOC 29 400.00 41.75 30.58 6.18 3.11 3.04

TBEb 96 144.24 136.55 100.00 0.00 0.00 0.00

aFor energies (MP2, VTZ, VQZ, and CBS) calculated as the error of the energy at each respective level vs TBE. For energy
corrections CV, HO, SR, and DBOC calculated as the error of the TBE energy minus the value of the energy correction vs TBE.
bTBE does not include MP2. It also does not include the computational cost for extrapolation in the CBS (see the text).

and are calculated as described in previous studies using cm−1 units
throughout,12,103,121

w(E) = ( tanh[−0.0006 × (E − 15 000)] + 1.002 002 002
2.002 002 002

)

× 1
0.0001 max(E, 10 000) . (9)

For a QC correctionA (DBOC, SR, CV, or HO), we also provide
the standard deviation (SD) and weighted standard deviation (wSD)
of the correction from the zero baseline,

SD =
¿
ÁÁÀ 1

N

N

∑
i
E2

A,i, (10)

wSD =
¿
ÁÁÀ 1

N

N

∑
i
E2

A,iw(ETBE,i). (11)

This definition of the standard deviation is equivalent to calculating
the corresponding RMSEs for the TBE energies without a QC cor-
rection A, i.e., it shows how the PES quality would deteriorate if the
QC correction was not included.

From Table I, it is clear that the most CPU-time is spent
on calculating higher-level energies and energy corrections. The
most approximate level of theory MP2 requires almost negligible
amount of CPU-time for a rough estimate of the PES possess-
ing a relatively small unweighted error of ∼2 kcal/mol. This error
of the MP2 PES is, nevertheless, unacceptably high for calcula-
tions of rovibrational spectra. We call MP2 the lowest level (ll) QC
approximation.

C. Application of hierarchical machine learning
to the CH3Cl potential energy surface

The goal of applying hML to the CH3Cl PES is to reproduce
the TBE energies (yΣ,i = ETBE

i ) as accurately as possible with the
least amount of CPU-time needed to generate the reference data for
training. As discussed above, hML consists of multiple Δ-ML mod-
els. The hML model is constructed automatically given a hierarchy
of QC approximations for energies (QC hierarchy), energy correc-
tions (QC corrections), and defined composite methods. Below, we
show an example of the dataset of the CH3Cl PES on how all three
components are used.

The QC hierarchy is an ordered list of QC approximations with
increasing accuracy. In our case, the QC hierarchy is MP2, VTZ,
VQZ, and CBS. We define Δ-ML models for learning the differences
between each higher-level QC approximation on the right and the
next lower-level QC approximation on the left. We add the baseline
zero “0” in front of this list, so we have as many Δ-ML models as
there are QC approximations in the QC hierarchy. This gives rise to
the following four Δ-ML models:

1. ΔMP2
0 gives estimates ŷ1,i(Ntr,1) after being trained on Ntr,1.

2. ΔVTZ
MP2 gives estimates ŷ2,i(Ntr,2) after being trained on Ntr,2.

3. ΔVQZ
VTZ gives estimates ŷ3,i(Ntr,3) after being trained on Ntr,3.

4. ΔCBS
VQZ gives estimates ŷ4,i(Ntr,4) after being trained on Ntr,4.

Next, we define Δ-ML models for each correction, where
order is not important. In our case, we have four more addi-
tional Δ-ML models:

5. ΔSR
0 gives estimates ŷ5,i(Ntr,5) after being trained on Ntr,5.
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6. ΔCV
0 gives estimates ŷ6,i(Ntr,6) after being trained on Ntr,6.

7. ΔHO
0 gives estimates ŷ7,i(Ntr,7) after being trained on Ntr,7.

8. ΔDBOC
0 gives estimates ŷ8,i(Ntr,8) after being trained on Ntr,8.

Thus, the hML model for the CH3Cl PES consists of eightΔ-ML
models,

hML = ΔMP2
0 +ΔVTZ

MP2 +ΔVQZ
VTZ +ΔCBS

VQZ +ΔSR
0 +ΔCV

0 +ΔHO
0 +ΔDBOC

0 . (12)

After all the Δ-ML models are defined, the procedure described
above is used to determine their training set sizes {Ntr,M}8

M=1.
We start with ordering the grid points on the CH3Cl PES using
structure-based sampling12,122 [related to farthest-point sampling
(FPS) also used in constructing ML PESs]122–124 of all points from
three slices (the procedure identical to the one described in the previ-
ous work12). In this procedure, the points farthest apart are selected
iteratively, i.e., the ordering is ensured automatically. We then select
one hundred random geometries for the test set with associated
energies and energy corrections at all QC approximations from the
dataset, from which we can calculate the ratios rM /1,i. We train the
Δ-ML model 1 (ΔMP2

0 ) on an increasing number of training points in
the interval [18, 44 817] taken from the beginning of the ordered grid
points. Predictions are made with this Δ-ML model for each point in
the test set, which allows us to estimate the error eΣ and the penalty
p terms for the optimization of the training set sizes.

To estimate the CPU-time needed to generate reference ener-
gies and energy corrections for given training sets, we take into
account that the number of training points for the models based
on composite QC methods, such as CBS, translates into the same
number of required calculations of each constituent QC approxima-
tion used in the composite QC method. tΣ ,max is calculated as if each
Δ-ML model was trained on the entire PES. We set the target time
saving sth to 0.99 (99%) in all optimizations.

In order to monitor the error of the hML model and its com-
ponent Δ-ML models, we want to use the wRMSE measure for the
CH3Cl PES as was done in previous studies.12,103 However, this
requires knowledge of the TBE energies [see Eq. (8)], which are not
always available, i.e., in cases where the number of training points is
different. Thus, we suggest to use the weights w(Ell,i) estimated with
the lowest-level and computationally most affordable QM approxi-
mation (MP2) instead of w(ETBE,i). This error estimate is denoted as
wllRMSE to distinguish it from the true wRMSE. Analogously, wllSD
can be defined. Using ll energies instead of TBE has a relatively small
effect on the weighted RMSE and SD (Table I). We use wllRMSE as
the error e both in the optimization procedure and to estimate the
hML error after its constituent Δ-ML models are trained.

Each Δ-ML model is trained using the ML technique described
in the previous study.12 In short, we use the self-correcting ker-
nel ridge regression (KRR) with the Gaussian kernel and the RE
molecular descriptor given by a vector of normalized inverted inter-
nuclear distances. We use the four layers of the self-correcting KRR
approach, where each next layer corrects the residual error of the
previous layer. To account for the equivalence of the homonuclear
atoms, a permutationally invariant (symmetrized) kernel10,12,122 is
used. All calculations were performed with MLatom,125 and the
implementation details are described elsewhere.122 The only differ-
ence in this study is that in the hyperparameter optimization pro-
cedure, we use ll (MP2) energies rather than TBE energies as an

additional energy criterion (energies below 10 000 cm−1) for select-
ing the validation set from the training set for the reasons explained
above.

III. RESULTS AND DISCUSSION
In this section, we use the CH3Cl PES to investigate the valid-

ity and limitations of the assumptions made and to demonstrate the
application of hML. We note that in this study, we used the same
sampling procedure (structure-based sampling) and trained each
Δ-ML model using the same setup as that in our previous study12

(with some slight modifications as described above). For a specific
application, it is recommended to choose the best setup (sampling,
ML algorithm, etc.) based on tests using the low-cost reference data
generated with the lowest-level QC approach.

A. Validity of assumptions
Evaluating the error on the small test set of Nrnd = 100 random

points gives a faithful estimate of the actual error for the entire PES,
as can be seen on an example of the learning curve for ΔMP2

0 (Fig. 1).
The learning curve of the wRMSE for the entire PES of 44 819 grid
points does not decrease monotonically. Nevertheless, the learning
curve of the wllRMSE on the test set captures the correct shape of
the learning curve of the wRMSE with all the peaks.

Now, we turn to the main assumption made in the optimiza-
tion procedure, i.e., that the ratio between the predictions made by
the constituentΔ-ML models trained on the same geometries for any
new point is approximately constant [Eq. (3)]. The learning curves
of the ratios rM /1 of the predictions made by a selection of Δ-ML
models and the Δ-ML model 1 (ΔMP2

0 ) are plotted for several test
points and compared with the actual ratios (Fig. 2). The assump-
tion holds rather well, and the ratios practically lie on the lines
of true ratios for large training sizes. This assumption only breaks
down for very small training sets, especially with much fewer than

FIG. 1. The evolution of the wRMSE and wllRMSE of ΔMP2
0 with increasing train-

ing set size as evaluated on the test set of Nrnd = 100 random points and the
entire PES of 44 819 grid points, respectively. The plot is shown with log scaling
for wRMSEs above 0.05 cm−1.
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FIG. 2. The evolution of the ratio between the predictions made by a selection of Δ-ML models [M = 4 (ΔCBS
VQZ), 2 (ΔVTZ

MP2), and 7 (ΔHO
0 )] and the Δ-ML model 1 (ΔMP2

0 ) with
increasing training set size compared to the actual ratios for several random points (i = 1, 66, 86, 33, and 50). Note the different intervals on the x-axis and scales on the
y-axis. Since the ratios are much smaller than one, they were multiplied by 10 000.

100 training points. This issue is addressed by including the penalty
term in the optimization procedure.

We note that the ratios are usually much smaller than unity
because the corrections to the rough energy estimate done with the
ll QC method (in our case MP2) are much smaller than the energy
estimate itself. Thus, the errors of the Δ-ML models trained on these
corrections are also numerically much smaller and not very sensitive
to moderate deviations of the ratios from their true values.

B. Generation and performance of hML models
We applied our optimization procedure to obtain the num-

ber of training points for each constituent Δ-ML model of the
hML model for the CH3Cl PES. We set the target error eΣ ,th to
1.00 cm−1. The optimized training set sizes of the resulting hML
model 1 (hML1), its estimated error eΣ, and penalty p are reported
in Table II. After training the hML1 model on these training sets,
the actual wllRMSE on the same test set as that used for optimiza-
tion was calculated to be 2.23 cm−1, i.e., significantly higher than the
target and estimated errors. It is noteworthy that the actual wRMSE
on the entire PES (2.44 cm−1) is very close to the above wllRMSE,

i.e., wllRMSE evaluated on the small test set proved to be a reliable
indicator of the real error.

To further improve the accuracy, we decreased the user-defined
parameter eΣ ,th to 0.50 cm−1. This led to the second-iteration hML
model (hML2, Table II), which already achieved a spectroscopic
accuracy of 1 cm−1 with training sets that would require spending
only 1% of the CPU-time needed for the pure ab initio PES. It is
clear, however, that some of the training set sizes of hML1 are larger
than those of hML2, i.e., more reference data are available after the
first iteration than those used in the second iteration. This is because
the optimization procedure can find multiple minima with similar
values for the objective function, but with very different training set
sizes. So, it may happen that fewer training points are needed for
some Δ-ML models in the next iteration. This is balanced out by
more training data for other Δ-ML models.

One of the approaches to avoid losing reference data avail-
able in the previous iteration is to train the hML model on the
union of reference data from hML1 and hML2. Such an hML model
(hML1∪2, Table II) is only nominally better than hML2. It also
achieves spectroscopic accuracy while saving 99% of the CPU-time.
Here, the user should be careful that the combined CPU-cost of
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TABLE II. Hierarchical machine learning (hML) models for the CH3Cl PES created
in this study: training set sizes Nt r of the constituent Δ-ML models, saved time
s = 100(1 − tΣ/tΣ,max) in %, wRMSEs and RMSEs evaluated on the entire PES,
wllRMSEs evaluated on the test set, eΣ ,th, eΣ, and p. All errors are in cm−1.

hML1 hML2 hML1∪2 hML3 hML4 10%-hML

ΔMP2
0 30 727 30 720 30 727 30 735 41 985 4480

ΔVTZ
MP2 5 261 8 433 8 433 7 595 12 135 4480

ΔVQZ
VTZ 915 1 653 1 653 1 536 2 117 4480

ΔCBS
VQZ 915 1 653 1 653 1 536 2 117 4480

ΔSR
0 749 860 860 754 863 4480

ΔCV
0 881 746 881 900 911 4480

ΔHO
0 122 274 274 122 587 4480

ΔDBOC
0 87 112 112 87 119 4480

s 99.22 99.00 98.96 99.26 98.46 90.00
RMSE 13.88 11.23 11.08 13.46 10.11 58.81
wRMSE 2.44 1.12 1.12 2.44 0.91 3.49
wllRMSE 2.23 1.01 1.00 2.19 0.85 2.72
eΣ 0.18 0.15 0.18 0.18 0.10 2.77
p 0.44 0.39 0.36 0.42 0.23 2.86

generating the reference data for hML1 and hML2 is not too large.
This can be tuned by re-running the optimization procedure in
the second iteration with different parameters and calculating the
combined cost before generating the training data.

Another approach is to set the lower boundary for the training
set sizes in the second optimization iteration to those obtained in the
first optimization iteration. This would naturally solve the problem
of losing a part of the reference data generated in the first iteration.
We re-ran the second optimization iteration starting with the opti-
mal number of training points from the hML1 model as the lower
boundary and trained the hML3 model on the resulting training set
sizes. We used the same parameter eΣ ,th = 0.50 cm−1 for optimizing
the hML2 model. The estimated eΣ and p for the hML3 model are not
much better than those for hML1. Indeed, the trained hML3 model
was no better than hML1 and much worse than hML2 (compare
wRMSEs and RMSEs, Table II).

Apparently, the optimization algorithm that performed the
search with more constraints on the training set sizes failed to find
as good an hML composition as that in the hML2 case. Decreasing
the parameter eΣ ,th to 0.25 cm−1 and using the optimized training
set sizes from hML3 as the lower boundary in the third optimiza-
tion iteration led to the hML4 model. This model is very similar
to hML1∪2 in terms of achieved accuracy and saved CPU-time
(Table II). The main difference is that the achieved error is notice-
ably lower than 1 cm−1 (wRMSE of 0.91 cm−1 vs 1.12 cm−1) with a
slightly decreased computational time saving (98.5% vs 99%), while
the unweighted RMSE is also lower (10.11 cm−1 vs 11.08 cm−1).

For comparison, we created an hML model with all Δ-ML mod-
els trained on 10% of the PES grid points (Table II). This 10%-
hML model is essentially equivalent to the s10%-ML model trained
directly on TBE energies for the same 10% of points (see the previous

study12), meaning that learning the energy components separately
on the same set of training points gives the same results as those of
learning the combined energy. Thus, in practical situations, for very
similar training set sizes, it makes sense to combine several Δ-ML
models into a single Δ-ML model in order to decrease the calculation
time with ML for new points. This may become relevant in applica-
tions with many ML function calls, e.g., in long molecular dynamics,
Monte Carlo simulations, or rovibrational calculations.

In the 10%-hML model, relatively large training sets of 4480
points were used. Consequently, our assumptions become more
valid, and the error estimate eΣ = 2.77 cm−1 made with these
assumptions on 100 test points is almost the same as the actual
wllRMSE = 2.72 cm−1 for the same test points, and very close to the
wRMSE = 3.49 cm−1 for the entire PES. Another interesting observa-
tion is that the penalty p= 2.86 cm−1 is almost the same as e, while for
small training set sizes, the penalty was twice as large as the estimated
error.

FIG. 3. Top: energies evaluated with QC (TBE) and the hML1∪2 and 10%-hML
models. Bottom: errors of the hML1∪2 and 10%-hML models relative to TBE. All
energies and errors are plotted for the entire CH3Cl PES and all TBE energies.
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Our hML1∪2 model saves ten times more CPU-time than the
previously reported s10%-ML model12 or the 10%-hML model gen-
erated here and at the same time has three times smaller wRMSE and
five times smaller RMSE. The energies predicted by the hML1∪2 and
10%-hML models compared to the TBE energies are given in Fig. 3,
which shows that better correlation and less outliers are achieved
with hML1∪2. hML1∪2 is even better than the previously reported
25%-ML model trained on 11 204 points (wRMSE of 1.39 cm−1 and
RMSE of 13.96 cm−1, saving 75% CPU-time).12 We also assessed
the quality of the hML1∪2 model from a different perspective; the
energies predicted by it for the entire CH3Cl PES were used for cal-
culating vibrational energy levels using the same procedure as that
in the original studies.12,103 The quality of the resulting hML1∪2
vibrational energy levels with respect to the pure ab initio levels103 is
comparable to the quality of vibrational energy levels obtained with
previously reported s10%-ML and 25%-ML models12 with an RMSE
of only 0.17 cm−1 (see the supplementary material).

IV. CONCLUSIONS
In this study, we propose a hierarchical machine learning

(hML) scheme composed of multiple Δ-ML82 models for construct-
ing highly accurate potential energy surfaces (PESs). This scheme
exploits the hierarchy of increasingly accurate but computation-
ally costly quantum chemical (QC) methods to generate reference
energies and energy corrections for training the constituent Δ-ML
models. Our scheme semi-automatically defines the composition of
an hML model including the training set sizes of each constituent
Δ-ML model before performing computationally expensive QC cal-
culations. The number of training points is optimized to achieve
the target accuracy of the hML PES with the minimum amount
of CPU-time needed for generating reference energies and energy
corrections with the QC approximations.

It is known that the number of computationally expensive high-
level QC calculations can be greatly reduced by combining several
Δ-ML models, some of which are trained on many more low-level
QC data.83,84 However, the choice of the optimal number of training
points for each constituent Δ-ML model is not trivial, especially for
a large number of the Δ-ML models. To the best of our knowledge,
until now, no procedure was suggested to determine the training
set sizes ahead of time. Here, we developed such an optimization
procedure.

The training set sizes are determined by exploiting an assump-
tion introduced here that the ratio of predictions between two Δ-ML
models trained on the same geometries remains approximately con-
stant. This allows us to estimate the Δ-ML model predictions for
a given training set size before training the Δ-ML models, if the
prediction of the Δ-ML model trained on the least computation-
ally expensive QC energies is known. Thus, most of the CPU-cost
incurred during the optimization procedure comes from generating
reference energies at the lowest-level QC approximation, which is
negligible in the case of high-accuracy PESs. Here, we have shown
that this assumption works rather well and only breaks down for
very small training set sizes.

During the optimization of training set sizes, the CPU-cost that
would be necessary for generating reference energies and energy cor-
rections is minimized together with the estimated error of the hML

model. This error is estimated on a small test set (in this study 100
points). We have demonstrated that these error estimates are rather
good for larger training set sizes, but become increasingly less accu-
rate for very small training set sizes. However, the error of the hML
model can be reliably determined after all constituent Δ-ML models
are trained, and the training set sizes can be re-optimized in an iter-
ative manner with stricter optimization criteria until the hML error
is sufficiently low.

The numerical validation of our hML approach was performed
on an example of CH3Cl PES, for which highly accurate ab initio data
at various QC levels were available. We have shown that the hML
scheme can reproduce this ab initio PES with an error of ∼1 cm−1,
while reducing the required amount of CPU-time for generating the
QC energies and energy corrections by a factor of 100.

SUPPLEMENTARY MATERIAL

See the supplementary material for the analysis of the vibra-
tional energy levels of CH3Cl calculated using the potential energy
surface obtained with the hML1∪2 model.
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