
SimAUD 2020 May 25-27, Online
© 2020 Society for Modeling & Simulation International (SCS)

SpeckleViz: A Web-based Interactive
Activity Network Diagram for AEC
Paul Poinet1, Dimitrie Stefanescu1, Eleni Papadonikolaki1

1University College London
Bartlett School of Construction and Project Management

London, United Kingdom
{p.poinet, d.stefanescu, e.papadonikolaki}@ucl.ac.uk

ABSTRACT
As architectural design and construction projects tend to
tackle larger scales and become more complex, the multiple
involved disciplines in the Architecture, Engineering and
Construction (AEC) sector often need to work globally from
different remote locations. This increased complexity
impacts digital design up until to fabrication workflows,
which become more challenging and discontinuous, as each
industry partner involved in the construction of a given
project operates on different software environments and
needs to access the precise fabrication data of specific design
components. Consequently, managing and keeping track of
design changes and data flow throughout the whole design
process still remains a challenging task. This paper discusses
how this particular challenge can be tackled through the
development of a web-based interactive Activity Network
Diagram (AND) - named SpeckleViz - that continuously
maps the data transfers of the design and building processes,
enabling the end-user to explore, interact and get a better
understanding of the constantly evolving digital design
workflow. Through this paper, the authors qualify an “end-
user” as an advanced or expert user that performs complex
geometry modelling tasks within wider collaborative
workflows involving other advanced end-users. SpeckleViz
(2020) is an application built upon Speckle (2020), an open-
source data platform for the AEC. We illustrate the
usefulness of interactive visualization of ANDs in the
development of digital design workflows.

Author Keywords
Digital Workflow; Project Management; Data
Visualization; User Interface; Activity Network Diagram.

ACM Classification Keywords
Project management techniques; Visualization techniques;
Graph theory; User interface design; User centred design;
Activity centred design.

1 INTRODUCTION
Design is a key phase across projects’ lifecycle and
collaboration among design actors is complex and crucial for
project success. A recent report released by the Association
of Project Management (APM) emphasizes the need for
developing custom specific solutions to tackle contemporary

large-scale and complex projects (Davies 2019). Indeed,
contemporary design to manufacture process of large-scale
and geometrically complex architectural projects remains a
significant challenge, even though digital literacy keeps
improving and computational design knowledge becomes
more available.

It is not enough to be able to model complex geometry, but
the design process must also be curated, shared and
understood in more simple, transparent and intuitive ways
than it is currently taking place within the Architecture,
Engineering and Construction (AEC) industry. In this regard,
previous research has demonstrated that simplifying intricate
workflows through custom interactive visualization features
enabled the end-users to better understand complex
processes taking place across multiple stakeholders or
software engineers.

In the AEC realm, current design processes are still
segregated, and laborious manual interventions sometimes
become a daily routine. In order to tackle this issue, custom
management and visualization tools enabling better
understanding and curation of complex projects activity
networks have been proposed by different firms and
individuals. Those proposed solutions converge towards the
need for defining low level open-source infrastructures
enabling more transparent collaborative workflows.

The present paper reviews both these contemporary
solutions, the web-based open-source interoperability
framework Speckle (described in section 3) that starts to gain
traction in the built environment, and SpeckleViz: an
interactive activity network diagram built within Speckle.

This research paper is divided into six sections: the present
introduction, a state of the art in managing and visualizing
complex digital design workflows (both in practice and
through existing standards), an introduction to the Speckle
framework, a description of the developed SpeckleViz
interface, an illustration of the SpeckleViz interface through
the description a selected case study, a discussion section and
final concluding remarks with an outline of future works.

419PREPRINT PREPRINT

2 RELATED WORKS IN VISUALISING DESIGN
PROCESSES

2.1 De Vries’ Activity Network
Bauke de Vries (1995) conceptualized an Activity Network
for the AEC industries in “Message Development in the
Building Process”. The author defined the activity network
as follows: “An activity network shows the information flow
between activities. [...] The most important property of the
network is that an activity can only start executing if all input
channels contain the required information. The squares in
figure 1 symbolize the activities. [...] The arrows symbolize
the channels through which the information flows from one
activity to another.” (de Vries, 1995). Such Activity
Network can also be analogically compared with a Social
Network, which has been defined by Wasserman and Faust
(1994) as a “social structure” of actors (nodes) connected by
one or more relations (ties), such as friendship or alliance. In
the case of an Activity Network, the nodes represent
activities and the ties represent data transfers –
input(s)/output(s) – between the activities. Although more
than 20 years old, De Vries’ Activity Network for the AEC
industries anticipated future design workflows and strategies
that have been deployed since within practice. Those are
illustrated within the next sections.

2.2 Front’s Building Information Generation
During the realization of the City of Dreams Casino Hotel in
Macau conceived by Zaha Hadid Architects, the consultancy
practice Front developed a modelling strategy labelled
“Building Information Generation” (Van der Heijden et al.,
2015) enabling parallel generation of information and
attributes necessary for further fabrication. In order to
manage attributes and assign user data to the processed
geometrical objects, Front developed an in-house a custom
Rhino3D plug-in called “Elefront”. The whole modelling
process consisted of a strategic alternation between the
generation of objects in Grasshopper and their subsequent
storage and classification within staged Rhino3D models,
within which the geometry is “frozen”, thus devoid of any
geometrical linkage. From these static, fixed geometrical
objects were generated further information through a next
iteration of Grasshopper sessions in which parametric
linkage was kept. This process repeated itself until the last
level of detail was modelled and ready for manufacture,
fabrication and assembly (see Figure 2). In the words of the

Computational Design Specialist at Front, this process is
called “staging”, consisting of a “discretization of logics”,
where many different smaller files are individually
processed, instead of embedding intelligence within one
single very large model. Each smaller file can be manually
triggered and re-computed when a change occurs up-front,
allowing therefore data propagation throughout the whole
digital chain. Similarly, the developed SpeckleViz interface
enable the end-user to obtain a clear overview on such
discretization of logics that is operated within Speckle.

2.3 Woods Bagot’s Metagraph
The architecture firm Woods Bagot has been developing
internal methods and customized workflows for improving
communication and software interoperability. Software
platforms are not seen here as limiting the design
possibilities but rather as an array of tools from which the
architect can pick and choose, serving the project's needs to
be designed and delivered.

Based on this approach, Woods Bagot developed Metagraph
(see Figure 3), a data visualization tool based on Flux (a
former interoperability platform described in the next
section) data keys (or data transfer identifiers) which are
used to represent all relationships between the different

Figure 1. The Activity Network modelled as a PERT (Program
Evaluation and Review Technique) network by de Vries (1995).

Figure 2. Project ecosystem of staged models and generating
logic, across Rhino3D and Grasshopper files.

Figure 3. The Metagraph developed by Woods Bagot
represents data key relationships among different scripts from

different software platforms, using the Grasshopper canvas with
its parameters and wire connections. (Ringley, 2017)

420PREPRINT PREPRINT

models, software and programming environments (Rhino,
Grasshopper, Revit and Dynamo) constituting the same
architectural project. The data exchange between these
different software platforms are represented through a
decentralized global network of nodes. While being useful
for understanding and debugging models at systemic level, it
is still being developed to allow for local-level programmatic
control. Brian Ringley, former associate and global specialist
at the design technology department of Woods Bagot,
speculated that the next step of the Metagraph would be to
“set another layer of parametric intelligence where different
scripts can adapt and update based on changes of other
scripts.” (Ringley, 2017)

2.4 Flux Data Inc.
Flux Data Inc. was an interoperability platform which paved
the way to transfer seamlessly building data across different
software platforms. It became popular within the AEC
community and was largely used by many architects,
engineers, and consultants before it ceased software
development on the 31st of March 2018. This event was
unfortunate for a substantial part of the industry, especially
for those who have built up their digital workflows upon this
platform. Flux had four main management tools that were
accessible from the site: “Community” enabled the users to
help each other on an exchange platform, “Data Explorer”
helped in assessing the project's workload, “Flow” allowed
to visualize the different data flows within the same project,
and “Projects” enabled the different disciplines to keep track
and see the current status of the projects in progress.

Depending on the client’s need, the appropriate applications
could be downloaded and installed from the main website,
enabling better communication between the specific
software environments used by the office. If the company
used a software platform that was not supported by the Flux
applications, it was still possible to undertake third party
software development through the available Software
Development Kit (SDK). Flux software was being used by
“more than 6,200 companies in 151 countries and relied
upon by Computational Designers, Engineers and
sophisticated BIM professionals at Frank Gehry Partners,
BIG, SHOP, Arup, BuroHappold Engineering, Thornton
Tomasetti and more.” (Flux, 2018).

2.5 Existing Standards in Process Modelling
Paralelly to the practices described above, different standards
have been developed by the industry to standardise the
formal representation of exchanges and activities hapenning
during a business process. For example, the Business
Process Modeling Notation (BPMN) has been introduced in
2004 by Stephen A. White, in order “to provide a notation
that is readily understandable by all business users, from the
business analysts who create the initial drafts of the
processes, to the technical developers responsible for
implementing the technology that will perform those
processes, and, finally, to the business people who will
manage and monitor those processes.” (White, 2004). The

author has identify for different categories of elements: Flow
Objects (Event, Activity, Gateway), Connecting Objects
(Sequence Flow, Message Flow, Association), Swimlanes
(Pool and Lane) and Artifacts (Data Object, Group,
Annotation).

While the BPMN notation helps all business users to
understand business processes more clearly, it reasonates
very strongly with the Unified Modelling Language (UML),
which focuses instead on modeling software system and acts
as general-purpose visual modeling language intedend to
specify, visualize and construct the artifacts of a software
system. UML was developed in 1994-95 and was originally
motivated by the desire to standardize the different notational
systems and approaches to software design. UML also comes
with its sets of graphical rules which helps in documenting a
system model (Booch et al., 2005).

Not specially focused on business or software modelling
processes but looking instead at timed event systems in a
more general way, the Discrete Event System Specification
(DEVS) has been introduced by Bernard P. Zeigler in 1976
to formalise the modeling and analysis of discrete event
systems (DESs). A DES can be represented by a step
function, and is defined as a non‑linear process in which
different events can happen in parallel, one event triggering
an other in an asynchronous manner. This differs a lot from
the more traditional, continuous imulations which could be
represented by a continuous function in which optimization
tasks are running one after the other (Ziegler et al., 2000).

As building design processes are not linear or continuous but
discrete and intricate (as described in the previous
subsections), the formalisms introduced by BPMN, UML
and DEVS represent useful sources of inspiration to visualize
Activities Networks in AEC. The next section introduces
Speckle (2020), an open-source data platform for the AEC
which enables the deployment of SpeckleViz, the Activity
Network Diagram described in section 4.

3 SPECKLE, AN OPEN-SOURCE DATA PLATFORM
FOR AEC

Speckle (2020) differentiates itself from commercial web-
based interoperability platforms by proposing a complete
open-source data framework for architects, designers and
engineers. Speckle was originally developed at University
College London in 2016 by Dimitrie Stefanescu. Speckle
does not enforce a predefined topology of communication
patterns, but rather allows for the emergence (and analysis)
of meaningful data-driven dialogue amongst the different
actors involved in the design process

With regards to schemas, Speckle, in contrast with the
existing industry standard IFC (Industry Foundation
Classes), promotes composability over completeness and
provides a programmatic infrastructure for end-users to
define their own, domain-, company-, or even project-
specific, object models. Furthermore, Speckle can support
pre-existing object models (such as IFC) “out of the box”,

421PREPRINT PREPRINT

provided that they exhibit certain technical characteristics
(Speckle, 2020).

Data transfer to and from each end-user is orchestrated by a
given Speckle Server, which ensures its availability in the
case the original source is offline. Furthermore, the server
allows also for efficient updates by leveraging several
mechanisms, such as caching, object immutability and
partial, differential updates. Speckle implements a
discretionary access control model, which gives full control
to data authors on how accessible their information is, and
with whom. This allows for either fully public or private
resources but as well for granular privacy and security
settings customised to the roles and needs of each design
actor a particular resource is shared with Speckle (2020).

Resources in Speckle are organized in a hierarchical manner
as a Work Breakdown Structure (WBS) (see Figure 4)
through Objects, Layers (collections of Objects), Streams
(collections of Layers and/or Objects) and Projects
(collections of Streams). Furthermore, Speckle allows for
resources to be enriched with extra metadata such as
description, tags, comments, so as to be able to respond to
the project's needs and allow for diagonal queries.

Since its inception in 2016, it has been adopted by a large
number of progressive AEC companies as a key piece in their
digital transformation efforts.

4 SPECKLEVIZ
Via Speckle Streams, users are able to share data from the
different existing Speckle clients and plug-ins, which expose
a User Interface to both share data (Senders) and receive
(Receivers). For example, User A creates a Sender to share
Stream A to User B, who creates a Receiver to receive
Stream A from User A. As data transfer protocols in Speckle
operate in a unidirectional (as opposed to bidirectional)
manner, User B would need to create a new Stream (after

working upon the data sent by User A via Stream A) to share
new data to User A. This simple yet crucial triple protocol
(Sender-Stream-Receiver) defines the basis of the Speckle’s
Activity Network and is illustrated in Figure 5, along with
the aforementioned hierarchical directory structure of
Speckle (Object, Layers, Streams, Projects). Although one
Stream can be contained within multiple Projects,
SpeckleViz only renders the activity network happening
within a single Project. In other words, SpeckleViz is a tool
for illustrating data flows among the project network, a
“network that gets re-initiated for each project” (Chinowsky
et al., 2008, p. 806, Chinowsky et al., 2010, p. 453).

As an architectural project involves a large number of actors
working from different software platforms, the above
described procedure scales up to form a larger non-linear
workflow that is composed of multiple Sender-Stream-
Receiver protocols. In general, Speckle Streams are

Figure 4. Data exchange protocol between two users.
Streams are created and stored within the Project panel, and contain the project’s exchanged data.

Figure 5. The overall workflow in Speckle is non-linear and
contains multiple feedback processes between the different

involved trades and software platforms.

422PREPRINT PREPRINT

considered to be single directional flows of data, as this
reduces conflicts arising from various sources updating a
stream with conflicting information. Although the data flow
is deliberatively acyclic (as data transfer mechanisms in
Speckle are unidirectional) one could interpret the pattern
UserA-StreamA-UserB-StreamB-UserA as a data cycle. In
other words, whereas the underlying data transfer in Speckle
is acyclic (and can therefore be defined as a Directed Acyclic
Graph - DAG), its representation can be, in some instances,
perceived as cyclical because it starts and ends with ‘UserA’.
Figure 5 illustrates how data transfers would evolve and look
like throughout the design process timeline of a building
project, amongst multiple disciplines and across different
software platforms. The Speckle’s Activity Network
described in the next section attempts to visualize these
processes by offering an interactive user interface from
which the user can query the different created streams.

4.1 Technological Framework

Back-end
On the back-end, the SpeckleViz activity network diagram
harvests data through the Application Programming
Interface (API) calls using Axios (Axios, 2019). The initial
HTTP request takes a Project ID as an input, returning the
list of contained streams as a response. New HTTP requests
are made to retrieve each stream’s corresponding resources,
such as: _id (Stream’s ID), owner (Stream’s owner),
createdAt (Stream’s creation time), and updatedAt
(Stream’s last update), etc. Finally, last HTTP requests are
made to get the corresponding Clients (Sender and/or
Receiver) resources per Stream, such as: _id (Client’s ID),
owner (Client’s owner), documentGuid (Document’s
GUID), documentName, createdAt (Client’s creation
time) and updatedAt (Client’s last update). Although most
of the resources can inform the graph, the main ones used to
create its nodes and edges are the Client’s _id and Stream’s
_id properties. The collected resources are formated into a
JSON (JavaScript Object Notation) objects which will
further feed the graph on the front-end.

Front-end
SpeckleViz (Figure 6) is built upon the Speckle web
management admin interface, within the Project tab. As the

latter has been designed with Vue.js, an open-source
JavaScript framework for building user interfaces and single-
page applications (Macrae, 2018), a basic layout has been
designed with the same framework in order to host the graph
itself, which has been rendered using D3.js (also known as
D3, short for Data-Driven Documents) - a JavaScript library
for producing dynamic, interactive data visualizations in web
browsers (Murray, 2017).

As Vue.js and D3.js operate on different levels and through
different mechanisms, a suitable pattern had to be established
to enable the passing of data seamlessly from one framework
to the other. In this context, a Vue template has been created
to receive the SVG elements from D3.js. For example, the
SVG elements <svg> <g> and <rect> elements are added
individually rather than through the familiar D3.js method
chaining pattern. This allows to dynamically bind these
elements to D3.js data within the Vue component, and take
advantage of Vue’s reactivity. In general, the graph is
generated through d3-force, a D3.js module dedicated to
force-directed graph layout using velocity verlet integration.
In regards to the styling of the toolbar and control panels,
SpeckleViz relies on Vuetify.js (Vuetify, 2020)

4.2 Visualization Features
While circle nodes represent Senders (S) and Receivers (R),
square nodes represent Streams. Arrows (or graph edges)
represent either data that has been shared to a stream by the
user (Receiver to Stream) or data that has been retrieved by
a user from a stream (Stream to Sender). The edge’s
thickness is proportional to the number of exchanged
geometrical objects. Generally, both nodes and edges are
coloured according to their respective timestamp: dark blue
for the newest created, and light grey for the oldest.

As the graph is force-directed and rendered dynamically, its
overall layout might sometimes become too convoluted and
not tidy enough to be grasped as a whole. Therefore, several
options have been exposed to the end-user in order to
manually adapt the graph representation: while the display
mode of the graph edges could be switched between three
different modes (straight line, arc or diagonal), the force-
directed graph layout could be altered in order to force its
alignment along the X or Y axis, taking the shape of a tidier

Figure 6. The current SpeckleViz interface (SpeckleViz, 2020).

423PREPRINT PREPRINT

Directed Acyclic Graph (DAG) (see Figure 7). Furthermore,
the end-user could at any time during render stop the force-
directed simulation.

Senders and Receivers can be grouped either by identical
Document GUID or identical Client’s owner ID. While the
latter is represented by a blue convex hull, the former is
visualized by a pink convex hull. The next section will
elaborate on an interaction feature enabling the end-user to
switch between two modes of representation: user-centred or
document-centred.

4.3 Interaction Features
Multiple interaction features have been implemented on the
front-end in order to give the end-user a more granular
control over the data exposed by SpeckleViz. These features
operate on four different levels:

Drop-down menus
Right-clicking on one the graph nodes would display their
related drop-down menu. In the case of a Stream, the user
can choose between accessing the Stream’s information
through the Speckle web management admin interface,
viewing the Stream within the Speckle viewer interface or
accessing the Stream’s data available through the API itself.
In the case of a Client, the user can retrieve basic
information, such as its _id, createdAt and updatedAt
properties.

Time frame selection
As specified above, both Streams and Clients expose the
createdAt property informing on when the Stream or Client
was created. This data has been brought to the front-end of
SpeckleViz by integrating a slider within the application,
enabling the end-user to select a specific time frame of the
project. When dragging the slider, the graph’s nodes and
links fade out when they are out of range and fade back in
when they are in range. Furthermore, the Streams created
within the selected time frame are continuously collated and
can be visualized altogether inside the Speckle viewer
through a dedicated button.

Tab-based queries
In Speckle, Streams can be tagged by the end-user through
the web management admin interface. Input tags are then
exposed on the API side through the Stream’s property
tags, which is collected on the back-end before rendering
the graph in SpeckleViz. On the front-end side, the Vuetify
v-autocomplete component (Vuetify, 2020) has been
integrated, enabling the end-user to select/deselect the
existing tags present within the API. The selection
dynamically updates the display of the Stream nodes within
the graph by highlighting the ones containing at least one tag
present within the current selection. Furthermore, the
selected tagged Streams are continuously collated and can be
visualized altogether inside the Speckle viewer through a
dedicated button.

Adaptive representations
While the activity network in Speckle has been so far
illustrated from a user-centred perspective (Figure 4 and 5),
the related works referenced earlier highlighted workflows
that were instead document-centered (Figure 2), or company-
centered (Figure 1). Data flows within the AEC sector can
therefore be interpreted (and visualized) from different
perspectives. In such a context, SpeckleViz attempts to give
the end-user the possibility to visualize and adapt its graph
from different points of view: the SpeckleViz toolbar
exposes a toggle button enabling the user to choose between
the “Data flow per user” and “Data flow per document”
modes. Therefore, SpeckleViz provides the users with
illustrations of the data flows among the Social Network, as
described by Wasserman and Faust (1994), and the inherent
Activity Network, as defined by Bauke de Vries (1995).
Switching between these two modes dynamically updates the
graph that reorganizes its nodes according to the chosen data
flow perspective.

Although the main visualization and interaction features
have been described above, every single one has been
described in more details on the main documentation page of
SpeckleViz (SpeckleViz, 2020).

5 CASE STUDY: SPECKLE WORKSHOP AT SIMAUD
2018

As the Project management panel within the web
management admin interface is relatively new, not many
practices have used it to organize their exchanged Speckle
Streams. Instead, Speckle has been used so far in a more
informal manner without too much focus on the Project
management interface. As a consequence, there exist today
only a very few publicly available data sets on which
SpeckleViz could be eventually deployed. Therefore, the
authors have exploited an existing digital workflow deployed
during a workshop focussing on the Speckle platform,
conducted at Delft University of Technology on the 4th of
June 2018 in the context of the Symposium on Simulation
for Architecture and Urban Design (SimAUD) conference.
The Streams created and used during this workshop have
been reorganized through the Speckle Project panel, serving
here as initial data sets to test and deploy the SpeckleViz
graph.

5.1 Case study brief and set-up
After an initial introduction to the Speckle communication
platform, a parametric modelling workflow of a free-form
timber structure developed within the Grasshopper interface
has been segregated into eight different computational
“pipelines” distributed amongst the eight different
participants: (1) Global Network Control, (2) Geometrical
Optimization (angle maximization between the members),
(3) Radius Control and Maximization, (4) Master Surface
Control, (5) Blank Mesh Generation, (6) Volume Mesh
Generation, (7) Lamella Mesh Generation, (8) Result
Overview. Each participant had control over its own local
design space. When satisfied with the local design outcome,
the workshop participant could communicate the output of

424PREPRINT PREPRINT

its own computational pipeline to the next design actor,
which also had control over its own design space, and so on.

5.2 Case study data collection and analysis
Through the Grasshopper Speckle Client, both Speckle
Senders and Receivers were used to seamlessly share design
data across all the phases of the design process. The data
collected originated directly from the different Rhino-
Grasshopper sessions manipulated by the students, and could
serve three different purposes:

 Sharing design ideas: data could be shared in the sole
purpose of exchanging design ideas. This way, students
could always log in to the admin interface, explore design
possibilities and be inspired by the different models shared
by their classmates.

 Monitoring a Stream’s design history: data could be
collected in order to keep track of the design history
(enabled by the Speckle platform) of a particular Stream.

 Keeping track of the project’s timeline history: Finally,
data could also be gathered in order to keep track of the
chronological evolution of the design process, from the
lowest level of detailing to the highest.

The present case study can be seen as an experimental,
distributed design chain across all participants, forming the
overall design workflow of the workshop. Speckle Senders
and Receivers were used to seamlessly share design data

across the pipelines. The overall workflow has been
represented through the SpeckleViz interface (Figure 7). The
end-user (here, a speculative project manager) is able to
visualize all the data exchanged during the workshop and
access each Stream within the Speckle viewer environment.
The interaction features described above were all operable,
such as the tag-based query interface. For example, streams
tagged as “fabrication” and/or “global design” could be
called, collected and visualized within the Speckle viewer.

6 DISCUSSION AND CONCLUSION
This paper introduced the current challenges in collaborative
design workflows within the AEC sector and described the
SpeckleViz interface, an experimental and work-in-progress
web-based interactive visualization tool which aims at
representing the activity network (across users or
documents) that operates within the open-source Speckle
framework.

The SpeckleViz interface has demonstrated how existing
open-source frameworks, such has Vue.js (Macrae, 2018),
D3.js (Marray, 2017), Vuetify.js (Vuetify, 2020) and Speckle
(Speckle, 2020) can be leveraged and orchestrated altogether
in order to build a custom application that answers specific
needs from the industry (the AEC sector in the present case).
The developed application can then feed back to the open
source community, and hopefully inspire future open source
contributors to develop custom applications built on Speckle.

Figure 7. The deployed SpeckleViz interface representing the data flow of the Speckle Workshop at SimAUD 2018

425PREPRINT PREPRINT

6.1 Limitations

Maintenance
Currently, Speckle provides five different application
integrations (such as Grasshopper3D and Dynamo), and it is
expected that this number increases over time as the Speckle
community continuously grows and therefore might gain
interest in integrating the open-source platform within other
specific software packages. Speckle already requires high
maintenance as each software package that integrates a
Speckle client could modify its .NET API (A or SDK
unexpectedly. Consequently, the contributors to the Speckle
platform would need to revisit the affected open-source
repositories and rewrite specific object model conversions.

Beyond Visualization
The current SpeckleViz interface can mainly be used to
monitor a design process, and its interaction features are
mostly limited to the inspection of one or multiple streams
based on a time range or tag(s). The authors believe that these
existing features could be extended beyond simple
visualization or Stream inspection by enabling the end-users
to directly manage a Speckle project through the graph itself,
by adding, deleting, or tagging Streams. More than a
visualization tool, SpeckleViz would then act as a data
management platform.

6.2 Future work
Although it has not yet been widely adopted by architectural
or engineering practices, future collaboration with different
AEC companies (e.g. BuroHappold Engineering and
Grimshaw Architects) will look precisely at how SpeckleViz
could be deployed within and adapted for data exchanges
within practice. Future work will also look at how
SpeckleViz could represent the data flows beyond a single
project environment. Visualizing the data exchange across
multiple projects, companies and/or servers remain open
questions that still need to be addressed. Enabling adaptive
display strategies to focus at different levels of representation
(collapsing the nodes belonging to the same document or
same user into one) is another aspect that needs to be tackled.
Finally, further research will investigate more in depth the
data available within the Speckle API on the back-end to
increase analytics and give richer insights to the end-user on
the front-end.

REFERENCES
1. Autodesk Revit is a Building Information Modelling

(BIM) software for architects, engineers, designers and
contractors.

2. Axios, A promise based HTTP client for the browser
and node.js. https://github.com/axios/axios. 2020.

3. Booch, G., Rumbaugh, J. & Jacobson, I. The Unified
Modeling Language User Guide. (2nd ed.) Addison-
Wesley Professional, 2005.

4. Chinowsky, P., Diekmann, J. & Galotti, V., Social
network model of construction. Journal of construction
engineering and management, 134 (2008), 804-812.

5. Chinowsky, P.S., Diekmann, J. & O’brien, J., Project
organizations as social networks. Journal of
Construction Engineering and Management (2010),
452-458.

6. Davies, A. Project management for large, complex
projects. London, United Kingdom: The Bartlett School
of Construction and Project Management (2019).

7. De Vries, B. Message Development in the Building
Process. Modeling of Buildings through their Life-Cycle.
Proceedings of the CIB w78 Conference. Standford
(1995) 467-479.

8. Dynamo is a graphical programming interface within
Revit.

9. Flux, 2018. Retrieved from http://flux.io/ (accessed
before the 31st of March 2018).

10. Grasshopper3D (typically abbreviated Grasshopper) is a
visual programming language and environment that runs
within Rhino3D.

11. Macrae, C. Vue.js – Up and Running. O’Reilly, 2018.

12. Murray, S. Interactive Data Visualization for the Web -
an Introduction to Designing with D3. (2nd ed.)
Sebastopol: O’Reilly, 2017.

13. Ringley, B. San Francisco Computational Design User
Group, June 2017: What is the point of using Dynamo?
(https://www.youtube.com/watch?v=y6N1ICoFoyU)

14. Rhinoceros (typically abbreviated Rhino, or Rhino3D) is
a commercial 3D computer graphics and computer-aided
design (CAD) application software developed by Robert
McNeel & Associates. Available from
https://www.rhino3d.com/ (accessed on the 17th of
March 2020).

15. Speckle, 2020. Retrieved from http://speckle.systems
(accessed on the 17th of March 2020).

16. SpeckleViz, 2020. Retrieved from
https://speckle.systems/docs/web/speckleviz/ (accessed
on the 17th of March 2020).

17. Van Der Heijden, R., E. Levelle, and M. Reise.
Parametric Building Information Generation for Design
and Construction. In Proceedings of the 35th Annual
Conference of the Association for Computer Aided
Design in Architecture (ACADIA 2015). 417–430.

18. Vuetify, A Material Component Framework for Vue.js.
https://github.com/vuetifyjs/vuetify. 2020.

19.Wasserman, S. and Faust, K. Social network analysis:
Methods and applications. Cambridge, United Kingdom:
Cambridge University Press, 1995.

20.White, S. A. Introduction to BPMN. BPTrends, July 2004.

21. Ziegler, B. P., Praehofer, H. & Kim, T. G. Theory of
Modeling and Simulation. (2nd ed.) Academic Press,
2000.

426PREPRINT PREPRINT
Powered by TCPDF (www.tcpdf.org)

