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Abstract 

Investigating associations between random variables (rvs) is one of many topics in 

the heart of statistical science. Graphical displays show emerging patterns between 

rvs, and the strength of their association is conventionally quantified via correlation 

coefficients. When two or more of these rvs are thought of as outcomes, their 

association is governed by a joint probability distribution function (pdf). When the joint 

pdf is bivariate normal, scalar correlation coefficients will produce a satisfactory 

summary of the association, otherwise alternative measures are needed.  

Local dependence functions, together with their corresponding graphical displays, 

quantify and show how the strength of the association varies across the span of the 

data. Additionally, the multivariate distribution function can be explicitly formulated 

and explored.  

Copulas model joint distributions of varying shapes by combining the separate 

(univariate) marginal cumulative distribution functions of each rv under a specified 

correlation structure. Copula models can be used to analyse complex relationships 

and incorporate covariates into their parameters. Therefore, they offer increased 

flexibility in modelling dependence between rvs.  

Copula models may also be used to construct bivariate analogues of centiles, an 

application for which few references are available in the literature though it is of 

particular interest for many paediatric applications. Population centiles are widely 

used to highlight children or adults who have unusual univariate outcomes. Whilst the 

methodology for the construction of univariate centiles is well established there has 

been very little work in the area of bivariate analogues of centiles where two outcomes 
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are jointly considered. Conditional models can increase the efficiency of centile 

analogues in detection of individuals who require some form of intervention. Such 

adjustments can be readily incorporated into the modelling of the marginal 

distributions and of the dependence parameter within the copula model.   
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Impact statement 

The methods and results presented in this thesis have the potential to improve 

patients’ lives by allowing clinicians and researchers to better explore bivariate 

associations between random variables, e.g. clinical outcomes.  

Such improvements can be achieved via firstly having a better understanding of the 

limitations of correlation coefficients. Secondly, by appreciating the enhancements 

local dependence functions can bring as well as alternative graphical displays that 

complement the conventional scatterplot. Thirdly, via multivariate distribution 

functions that can capture a wide range of association patterns and strengths between 

two or more random variables.  

Copula models are a flexible tool that can be used for the construction of multivariate 

distribution functions and allow the exploration of varying relationships across the 

range of the two rvs. Informing healthcare professionals, including paediatricians, 

about these models will advance their understanding of multivariate relationships and 

enable them to construct more in-depth and flexible models for associations of 

variables and their joint characteristics.  

Moreover, healthcare professionals often need to evaluate patients’ individual or 

combined results and classify them according to whether they fall inside or outside a 

normal range of values (normal range is defined as a range within which the vast 

majority of the population lies). When two or more individual results are available, it 

would be beneficial to be able to classify patients according to whether they fall within 

a multivariate normal range or not, rather than evaluating multiple univariate ranges. 

Using a multivariate normal range is expected to reduce the number of false positive 
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results, i.e. patients falsely being classified as unusual according to multiple individual 

tests which might in fact be within the normal range when jointly considered. The use 

of a multivariate range will also enable the identification of unusual cases that might 

have been missed based on univariate centiles alone, resulting in the identification of 

hidden extremes. 

This thesis reviews the empirical exploration of bivariate associations, including 

conditional models, and showcases a new classification method for extreme values. 

This new method has the potential to become a conventional tool for everyday use in 

a healthcare setting that will enable its users to make better informed choices 

regarding unusual observations within a sample of subjects.  

The applicability of the results from this thesis are not limited to healthcare 

professions. Greater flexibility in the investigation of bivariate associations and the 

ability to identify unusual observations in a multivariate setting is likely to have wider 

applicability.  
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Overview 

This thesis is structured in six Chapters and focuses on bivariate associations with 

discussion on appropriate extensions to multivariate dimensions of the methods and 

work presented here in the final Chapter. 

 The first half of Chapter 1 provides a description of conventional approaches to 

exploring associations (i.e. bivariate distributions and scalar measures of 

association). The second half of Chapter 1 introduces the notion of copulas and lists 

their fundamental properties. Several copula functions are shown in detail and each 

is graphically displayed to facilitate understanding of the variety of association 

patterns copula models can capture. Chapter 1 closes with a summary table of the 

copulas introduced and a flowchart diagram of the step-by-step copula fitting 

procedure. 

Chapter 2 discusses local dependence and explores in detail various ways this can 

be measured and displayed; via the local dependence function, local dependence 

maps, chi-plots.  

Chapter 3 starts with a literature review on the topic of bivariate centiles/tolerance 

regions. The concept of Bivariate Analogues of Centiles (BACs) is introduced and 

these are then applied to simulated datasets to test their efficiency and robustness. 

Joint, bivariate outliers are compared to values that univariately fall outside the normal 

range. The process is used to highlight potentially false extremes as well as hidden 

extremes, i.e. subjects whose univariate characteristics would respectively falsely flag 

them as extreme and miss them. 
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Chapter 4 combines copulas and BACs. This results in copula BACs (CBACs) and 

conditional copula BACs (CCBAC). Each of these extensions of BACs produce 

relevant and realistic results regarding joint extremes as they take into account the 

marginal distribution of each response variable with covariate adjustment where 

necessary.  

Chapter 5 applies the techniques presented in Chapters 2 to 4 to analyse a large 

dataset comprising all live-births recorded in Mexico City in 2017. The exploration of 

this dataset starts with scalar coefficient measures, local association measures, 

followed by conditional copula modelling. The results of the BAC algorithm are 

presented, and these are also extended to CBACs and CCBACs.   

The final Chapter draws conclusions on the analyses and results presented. Gaps in 

the literature are discussed alongside ideas for future work.   

All analysis (plots, numerical results, etc.) in this thesis have been produced in R, The 

Comprehensive R Archive Network 1, version 3.6.1, unless otherwise stated. Where 

R libraries have been used, these are cited within the relevant sections.
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1. Exploring relationships 

Researchers often investigate the joint behaviour of several numerical response 

variables, such as size and shape of an object; speed, emissions, and noise of a car; 

right and left parts of the body; weight and height of children.  

When exploring bivariate relationships, the tools used to understand and quantify the 

association of interest include probability distribution functions and measurements of 

association. This Chapter provides an overview of these two tools and also introduces 

copulas to further explore the association between random variables.  

1.1 Probability distribution functions 

A probability distribution function (pdf) describes the behaviour of a random variable 

(rv) across the entire range of possible values. More specifically, the pdf is a function 

whose value at any given datapoint can be interpreted as a relative likelihood that the 

random variable would equal that datapoint. All distributions require a set of 

parameters in order to be perfectly defined. These take the form of at least one of the 

following four parameters: location (;), scale/dispersion	(<), skewness (D) and 

kurtosis (?). For example, for the Normal distribution ; is the mean and < the standard 

deviation (sd) and has D = 0 and ? = 3 ∙ <#, whilst the Gamma distribution is defined 

in terms of scale and shape parameters, with ;, <, D, ? being functions of them.  

Results can be extended to multidimensional settings for dependence between two 

or more variables (H$, H%,⋯, H&), where bivariate pdfs, applicable to just two dependent 

variables, are most commonly seen in real-life applications. 
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1.1.1 Marginals and joint probability distribution functions 

Let H$ be a continuous univariate rv. The distribution function of H$ in an interval (J, K) 

is given by the integral of	H$’s probability density function, 8$, over the interval:   

Pr(J ≤ H$ ≤ b) = Q 8$(R$) ∂R$
'

(
 

6$ is the cumulative distribution function (cdf) of H$ and provides the probability of its 

values falling in the interval	[−∞, R$], i.e. values less than or equal to	R$: 

6$(R$) = Pr(H$ ≤ R$) = Q 8$(U) ∂u
)!

*+
 

A pdf can be defined via the cdf as follows: 

8$(R$) =
W
WR$

6$(R$) 

The joint pdf and cdf for rvs H$ and	H% are respectively given below, along with the 

function that connects the two:  

Pr(J$ ≤ H$ ≤ K$, J% ≤ H% ≤ K%) = Q Q 8$%(R$, R%) ∂R% ∂R$
'"

("

'!

(!
	

6$%(R$, R%) = Pr(H$ ≤ R$, H% ≤ R%) = Q Q 8$%(U$, U%) ∂U% ∂U$
)"

*+

)!

*+
	

8$%(R$, R%) =
W%6$%(R$, R%)
WR$WR%

 

The marginal pdf for each individual variable is given by: 

8$(R$) = Q 8(R$, U%)WU%
	

)"
	and		8%(R%) = Q 8(U$, R%)WU$

	

)!
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If there are 9	(9 > 2) rvs,	H$…H&, then the bivariate marginal pdf of H$and H% is given 

by: 

8$%(R$, R%) = Q Q ⋯
	

)#

	

)$
Q 8(R$, R%, U-⋯ ,U&)WU-⋯WU&
	

)%
 

Any 9-dimensional joint cdf 6 of continuous rvs	H. , ^ = 1…9, with univariate 

margins	6$, 6%, … , 6&, is bounded below and above by the Fréchet-Hoeffding 2,3 lower 

and upper bounds, 6" and	6!, respectively, defined as: 

6"!…%(R$, R%, … R&) = max bc6.

&

./$

−9 + 1, 0e	

6!!…%(R$, R%, … R&) = min[	6$, 6%, … , 6&] 

Two of the most common multivariate distribution functions, the Normal and the g, are 

presented in the following two sections. 

1.1.1.1 The bivariate Normal distribution 

The Normal distribution has a bell-shaped and symmetrical shape. It peaks at the 

centre of the curve and its values tail off evenly on either side of the centre (mean).  

If ; and <% denote the mean and the variance of a Normally distributed 

rv	H$,	H$~i(;, <%), the univariate Normal pdf of H$ is given by:  

8$(R$) =
1

<√2k
expn−

(R$ − ;)%

2<%
o 

The multivariate Normal pdf for an 9-dimensional set of univariate rvs H$, H%, ⋯ , H&		 is 

given by: 
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8$…&(R$, R%, … , R&) =
1

|q|$/%(2k)&/%
expn−

1
2
(R − ;)2q*$(R − ;)o	 

where R and ; represent, respectively, the 9-dimensional vector of rvs H$, H%, ⋯ , H& 

and the 9-dimensional vector of univariate means: 

; = (;$, ;%, ⋯ , ;&) 

q is the 9 ×9 covariance matrix: 

q = r
<$% ⋯ <$&%
⋮ ⋱ ⋮

<&$% ⋯ <&%
u	 

where <.3 (for ^, v = 1,… ,9) is the covariance between rvs H. and H3 and <.% is the 

variance of the ^-th rv. 

The pdf of a bivariate Normal distribution can be written as follows: 

8$%(R$, R%) =
1

2k<$<%w(1 − =$%% )
exp x

1
2(1 − =$%% )

y
(R$ − ;$)%

<$%
− 2=$%

(R$ − ;$)(R% − ;%)
<$<%

+
(R% − ;%)%

<%%
z{ 

Where =$% =
4!"
4!4"

	is Pearson’s correlation coefficient 4, = (it measures linear 

dependence between two continuous rvs, more details about = follow in Section 

1.2.1). 

Figure 1-1 and Figure 1-2 below present the pdf and contour plots of 2 bivariate 

Normal distributions of a pair of random variables	(R$, R%), where	;$ = ;% = 0, <$$% =

<%%% = 10 with varying correlation =$%.  
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Contour plots slice the probability density function horizontally in small areas and 

show how dense the function is within each sliced area (25 levels are displayed in 

Figure 1-1 and Figure 1-2). The |-axis of the bivariate 3D-pdf represents the bivariate 

probability density and the values of the pair (R$, R%) are represented on the two 

horizontal axes respectively, as annotated on the plot.  

Figure 1-1: Bivariate Normal distribution, 	"!" = −%. ' 

 
 

  

Figure 1-2: Bivariate Normal distribution, 	"!" = %. () 

 

 

The main characteristics of the bivariate Normal distribution 5 are constant correlation, 

radial symmetry, and Normally distributed conditional and marginal distributions for 
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any dimensions smaller than 9. In situations where the above are appropriate 

assumptions of the bivariate association between the rvs under investigation, the 

bivariate Normal can be a good model choice.  

However, there are many examples, where at least one of these features will not be 

evident. For example, non-constant correlation is often evident in the medical field 

where it is common to find distributions with a few patients producing extreme 

responses, i.e. most healthy children’s visual acuity in the right and left eyes would 

be expected to be scattered around a ‘normal’ centre depending on their age group, 

but visually impaired (but otherwise healthy) children may distort the shape of this 

distribution.  

Normality tests are often used to evaluate evidence (in the form of }-values) for or 

against the assumption of a Normally distributed population from which a rv has come 

from 6. However, the key question at this stage is whether a given data set 

approximates the Normal distribution well, but significance tests for normality answer 

the alternative question of whether the population that the sample was derived from 

could be Normally distributed.  

Multivariate skewness and kurtosis indices were introduced with corresponding 

statistical tests by Mardia 7,8 and can assist in quantifying the shape of the distribution 

under investigation. The notation generally used is ~$ for skewness and ~% for 

kurtosis, and their values indicate the extent of departure from multivariate normality. 

Values of ~$ close to 0 and to 9(9 + 2) for ~%, correspond to bivariate (or higher) 

Normal distributions, where	9 denotes the dimensionality of the outcome (9 = 2 for 

bivariate scenarios). 
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The multivariate g distribution provides an alternative with heavier tails and hence has 

wider applicability (the Normal distribution is a special case of the g).  

1.1.1.2 The bivariate 0 distribution 

The g distribution 9,10 is also symmetric and bell-shaped but has heavier tails than the 

Normal distribution. If � is Normally distributed with mean ; and variance <% (sample 

estimate Ä), then g$ =
5̅*7

8/√:
 is a g-distributed rv,	g$~g(df), where Ç8 = : − 1 and whose 

values can range within (−∞,∞), with pdf:  

8$(g$) =
É Ñdf + 12 Ö

√df	 ∙ k	É Ñdf2 Ö
n1 +

t$%

df
o
*
df=$
%
	

É is the gamma function and df denotes the degrees of freedom which must be 

positive but not necessarily an integer.  

The number of degrees of freedom, df, is a shape parameter and determines how 

strong/dominant the peak of the curve is around the centre. As it increases, the g 

distribution approaches the standard Normal distribution. The mean of the g 

distribution is 0  for df > 1 and the variance for	df > 2, is given by: 

Var(g$) =
df

df − 2
	 

The pdf of the bivariate g distribution 11 is given by: 

8$%(g$, g%) =
É Ñdf + 22 Ö

df	∙	k ∙ É Ñdf2Ö

1
|à|$/%

n1 +
g2à*$g
df

o
*
df=%
%

 

With:  
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- g = (g$, g%) representing the bivariate vector of variables g$ and g% 

- the correlation matrix, à is a positive-definite real 2	 × 2 matrix, where the off-

diagonal elements contain the correlation between g$ and g% (notice that this 

is not the covariance matrix as it was for the Normal distribution). The 

covariance is given by 12: df

df*%
à for df > 2. 

Similarly, to the Normal distribution above, bivariate g pdfs can be drawn along with 

contour plots. In fact, the bivariate g plots look very similar to the equivalent Normal 

distribution plots with the only difference seen in the heavier tails of the g distribution.  

Summary 

The end of this review of the bivariate Normal and g distributions highlights the 

importance of best practice when variables do not comply with the characteristics of 

either of these distributions, which so often is the case in the medical and other fields. 

Copulas are multivariate distribution functions that allow great flexibility in the 

shape/form of the association that is being investigated. Copula functions are 

described in detail in section 1.3 and section 1.4 and their benefits as means of 

constructing bivariate distributions are demonstrated. Firstly, however, the idea and 

principles of scalar dependency, including correlation coefficients need to be explored 

(Section 1.2) as these play a significant role in the understanding of copulas.   

1.2 Scalar dependence coefficients  

There are several quantities that measure the association/dependence between two 

continuous random variables 13,14 in the numerical scale (i.e. scalar coefficients). 

Three of the most commonly used ones will be considered here: linear correlation, 

concordance (or rank correlation) and tail dependence. 
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Scalar coefficients summarise the relationships between pairs of variables (H$ and H%) 

in one number. They assume that the strength of each pairwise relationship 

condenses to a single parameter/numerical value. Similarly, tail dependence 

measurements are scalar parameters that focus on describing the tails of the marginal 

distribution functions of the variables whose association is being explored. 

A “good” scalar measure of association between any two pairs of bivariate 

observations (R$. , R%.) and (R$3 , R%3) from rvs H$ and H%, as defined by Gibbons and 

Chakraborti 15 is one that satisfies the following criteria: 

i. The association measure equals 1 if the relationship is direct and perfect 

(perfect concordance) such that: R$. <	R$3 when R%. <	R%3 or R$. >	R$3 when 

R%. >	R%3 

ii. The measure equals −1 if the relationship is indirect and perfect (perfect 

discordance) such that: R$. <	R$3 when R%. >	R%3 or R$. >	R$3 when R%. <	R%3 

iii. If neither criterion (i) nor (ii) is true for all pairs, the measure lies between the 

two extremes, −1 and 1 

iv. The measure equals 0 if R$ and R% are independent 

v. The measure for R$ and R% is the same as for R% and R$ or −R$ and −R% or −R% 

and −R$ 

vi. The measure for −R$ and R% or R$ and −R% is the negative of the measure for 

R$ and R% 

vii. The measure should be invariant under all transformations of R$ and R% for 

which order is preserved 

The next three sections briefly introduce each of the three scalar association 

measurements mentioned earlier (linear correlation, concordance (or rank correlation) 
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and tail dependence) and each section concludes with several graphical displays for 

illustration. Via this overview the pros and cons of each scalar measurement will be 

highlighted and the need for an alternative will emerge. Association measures should 

be expected to yield more than just a single number in order to successfully represent 

complicated changes in magnitude and direction of correlation across the range of 

two or more rvs. Chapter 2 explores in detail alternatives to scalar measures.  

1.2.1 Scalar linear correlation coefficient  

By far, the most commonly used dependence measure is the Pearson’s linear 

correlation coefficient 4, =, which quantifies linear dependence, by “averaging out” the 

linear association between two rvs (where ≅ denotes the approximation of a 

population parameter by a sample estimate):   

=$% = =(R$, R%) =
Cov(R$, R%)

<$<%
≅

∑ (. R$. − R$èèè)	(R%. − R%èèè)

w∑ (. R$. − R$èèè)%w∑ (. R%. − R%èèè)%
	 

- Cov(R$, R%), <$and <% denote the covariance between rvs R$ and R% and the 

standard deviation of each, respectively.  

- = satisfies the first six general properties of association measures seen earlier.  

- However, it is invariant only with respect to linear transformations of R$ and	R%, 

e.g.	=$% = =(R$ + J, R%) = =(R$ + K, êR% − Ç) where J, K, ê	and Ç are real 

numerical values, but not for all order-preserving transformations. 

Pearson’s = is a reflection of the proximity of the data to a straight line, so it only 

detects linear relationships between the rvs being investigated. Non-linear 

associations cannot be validly explored with Pearson’s coefficient. Additionally, if the 

bivariate distribution between the two rvs is Normal, it then provides a complete 

description of the dependence structure between them, as a straight line cutting 
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through a bivariate Normal shape is definitely a good summary of the linear 

association seen. Moreover, if the pair (R$, R%) follows a bivariate Normal distribution, 

then =$% = 0 implies that the two variables are independent; the latter is not 

necessarily true when the pair of rvs does not follow a bivariate Normal distribution. 

The first seven graphs in Figure 1-3 show examples of a Bivariate Normal distribution 

with different values for =, including its two most “extreme” values of +1	and −1. The 

last two graphs show two cases where there is a very well-defined non-linear 

association between the two rvs and Pearson’s = is unable to capture this. 

Figure 1-3: Examples of " values for 100 simulated Bivariate Normal cases 
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The necessary prerequisites of linear structure and bivariate Normality of the data can 

prove too restrictive in many real-life scenarios. Correlation measures for non-linear 

associations are discussed in detail in Barbour 16 and two of the most common such 

measures are described in the following sections.    

1.2.2 Scalar concordance correlation coefficients 

The Spearman’s > 17 and Kendall’s ? 18 are two alternative distribution-free scalar 

dependence measures, referred to as rank correlation measures. The formulae for 

each are presented below: 

>$% ≅
∑ (' )(!'*)(!@@@@@)	()("'*)("@@@@@)

B∑ (' )(!'*)(!@@@@@)" ∑ (' )("'*)("@@@@@)"
 

(Spearman’s) 

If there are tied ranks, where RC$. and RC%. 

are the ranked values of the original data R$ 

and	R%.  

>$% ≅ 1 − D∑ E'
"'

:(:"*$)
		

(Spearman’s)	

A simpler calculation that can be used if 

there are no tied ranks, where Ç is the 

difference in paired ranks (i.e. ranks of	R$. 

and	R%.) 
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?$% ≅
:)*:*
F:)=:*

%
G
= %(:)*:*)

:(:*$)
		

(Kendall’s)		

:H and :E are the number of concordant 

and discordant pairs, respectively 

Two pairs (R$. , R%.) and (R$3 , R%3) are concordant if R$. > R$3 and R%. > R%3 or if R$. <

R$3 and	R$. < R%3. The pairs are said to be discordant if R$. > R$3 and 	R$. < R%3 or if 

R$. < R$3 and	R%. > R%3.   

Spearman’s > and Kendall’s ? satisfy all criteria seen in the earlier section. In contrast 

with Pearson’s =, they satisfy the seventh criterion as ranks are preserved under all 

order-preserving transformations, hence > and ? will remain constant for such 

transformations.  

Finally, note that all the correlation measurements introduced are specific applications 

of the generalised correlation coefficient that was first discussed by Daniels in 1944 

19. The generalised correlation coefficient (ignoring standardisation) of ordered rvs H$. 

and H%3 for ^, v = 1…: is given by: 

É =ccJ.3K.3

:

3/$

:

./$

	 

Where J.3 and K.3 are scores for every pair of (R$. , R$3)	 and ëR%. , R%3í observations, 

respectively. The following choices for J.3 and K.3 lead respectively to Pearson’s =, 

Spearman’s > and Kendall’s ?: 

J.3 = (R$. , R$3)	 and K.3 = R%. − R%3 
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J.3 = rank(R$.) − rank(R$3) and K.3 = rank(R%.) − rank(R%3) 

J.3 = sign(R$. − R$3) and K.3 = signëR%. − R%3í 

Figure 1-4: Simulated data with scalar coefficients 

  

Figure 1-4 shows that the three scalar coefficients differ depending on the association 

pattern evident in the data. In the first example, Spearman’s and Kendall’s are larger 

than Pearson’s as they are not influenced by the curvature of the pattern. In the 

second example, Pearson’s is affected by outliers. All three measures result in no 

more than a single number to summarise dependency, which can be deemed 

inadequate in many cases, as illustrated by the examples above.  

1.2.3 Scalar tail dependence (TD) coefficient  

The concept of bivariate tail dependence (@) 20,21 relates to the dependence in extreme 

values at the tails of a bivariate distribution. It measures dependence in the upper-

quadrant tail or lower-quadrant tail of a bivariate distribution. As previously, let 

8$%(R$, R%) denote the bivariate pdf of variables H$ and H% and 8$(R$) and 8%(R%) the 

two marginals. Tail dependence (TD) is defined as the probability a value of one of 

the marginals exceeds a high/low threshold (g2) under the condition that the other 

marginal has already exceeded that threshold. 
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The upper tail dependence coefficient,	@!, is defined 5, if the following limit exists, as: 

@! = lim
I2→$+

Pr	(8$(R$) > g′|(8%(R%) > g2) 	 

If @! > 0, H$ and H% are said to be upper-tail dependent and upper-tail independent if 

@! = 0. 

Similarly, the lower tail dependence coefficient, @", is given by:  

@" = lim
I2→K,

Pr	(8$(R$) ≤ g′|(8%(R%) ≤ g2) 

If @" > 0, H$ and H% are said to be lower-tail dependent and lower-tail independent if 

@" = 0. 

Figure 1-5 shows examples of various tail dependence scenarios. For negative 

correlation, lower and upper tail dependence is zero as the two rvs do not span small 

or large values at the same time, i.e. likelihood of the ò axis to be below a certain 

threshold whilst values on the R axis are also below this threshold is 0. 

Figure 1-5: Scenarios of varying tail dependence 

  
 

 

TD does not satisfy the criteria for a “good” measure of association presented at the 

beginning of section 1.2 as it only measures association at the tail of the bivariate 
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distribution, as opposed to any pair of values of R$ and R% and it can only range from 

0 (no tail dependence) to 	1 (perfect tail dependence), as opposed to from −1 to 1.  

Summary 

Scalar dependence measurements do not adequately capture non-constant 

correlation (mixture of positive, negative and zero associations) across the defined 

range of the two variables of interest or just in their tails. Scalar correlation measures 

assume that correlation remains constant along the range of the two rvs. However, 

varying association structures do not always comply with this assumption, i.e. patterns 

of association that change in strength across the range of observed values are 

sometimes more realistic. Out of the 5 measures, the TD represents a local concept 

of correlation by simply narrowing down the range of values it focuses on. This 

concept will be further explored in Chapter 2 via the introduction of the local 

dependence function.  

Finally, there is clearly a need for an improved way for exploring bivariate associations 

that reflect realistic data patterns. Multivariate distribution functions provide an answer 

to this objective and are described in the next section.   

1.3 Copulas 

For multivariate distributions to be constructed, the univariate distribution of each of 

the variables of interest should be fully defined. Many applications and methodologies 

assume that the joint behaviour of several variables is best described via a 

multivariate Normal distribution. However, this is often unrealistic. Copulas provide 

flexible means of multivariate distribution construction that goes beyond the 

conventional multivariate Normal or g distributions. 
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Copulas or copula distributions or copula models are multivariate probability 

distribution functions (bivariate in their simplest form) that describe the joint behaviour 

of two or more rvs; in other words, they provide a comprehensive model of the 

dependence structure between several variables.  

The term originates from the Latin word “cōpula”; from co- which means together and 

apere which means to fasten 22. It is used to describe anything (e.g. a word, an object), 

that connects, ties, or bonds elements together. 

Mathematically, copulas are joint cumulative distribution functions generated from 

given marginals. In other words, they couple multivariate distribution functions to their 

marginal distribution functions.  

This thesis focuses on continuous random variables (rvs), unless otherwise stated. 

For continuous rvs	H. , ^ = 1…9, if 6 is an 9−dimensional cumulative distribution 

function (cdf) with one-dimensional margins	6$, 6%, … , 6&, then there exists an 9-

dimensional copula function A such that:  

6$,%,…,&(R$, R%, … , R&	; B) = A(6$(R$), 6%(R%), … , 6&(R&); B) 

Where 6.(R.) = 6)'(R.), for ^ = 1,… ,9 and B is the dependence or copula parameter, 

which governs the degree of association between the marginals (more details about 

B will follow in Section 1.3.3).  

The univariate marginals of the response variables are coupled via the copula 

function	A, which combined with the copula parameter (B) leads to the copula 

distribution. 
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The bivariate case, 9 = 2, has attracted special attention, with the best-known 

bivariate copula function being the bivariate Normal distribution 6(R$, R%) with Normal 

margins, 6$ and		6%. However, within the copula framework, two Normal marginals can 

also lead to a non-Normal bivariate distribution. To illustrate this, Figure 1-6 shows 4 

sets of data whose marginals are Normally distributed with mean 0 and standard 

deviation 1 (i.e. N(0,1)). They are clearly different though with respect to their joint 

distribution. The first graph shows complete independence and Kendall’s rank 

correlation ? equals 0. For the remaining three graphs ? equals 0.5. The “Bivariate 

Normal” graph is an example where the joint distribution of the Normal marginals is 

also Normal, whereas for the remaining two (“Bivariate non-Normal”) the Normal 

marginals join to produce non-Normal bivariate probability density functions, skewed 

on the lower and upper tails respectively. Copulas provide the means via which an 

explicit exploration of dependence patterns between rvs such as the ones seen in 

Figure 1-6 is undertaken. 
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Figure 1-6: Examples of bivariate distributions with Normal marginals 

  

  

 
Copulas first appeared in the works of Hoeffding 23 and Fréchet 2. Sklar was the first 

to use the term “copulas” to denote these functions in an article published in 1959 24. 

In 1990, Dall’Aglio organised the first conference devoted to the idea of marginal 

distributions and the way they join together, entitled “Probability distributions with 

given marginals” 25. 

By the end of the 1990s, the notion of copulas was increasingly popular with two text 

books becoming standard references in this area. In 1997, Joe 14 published a book 

on multivariate models and in 1999 Nelsen 26 published the first edition of an 

introductory text on copulas, followed by a second edition in 2006 27. The main reason 

for this increased interest was the realisation of the advantages copula models offer 

in research fields as diverse as finance and hydrology. This led to appropriate 

computational developments which assisted copulas’ further applicability and ease of 

implementation. In 2007, Schweizer 28 noted that:  
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“The ‘era of i.i.d.’ is over: and when dependence is taken seriously, copulas naturally 

come into play. It remains for the statistical community at large to recognise this fact. 

And when every statistics text contains a section or Chapter on copulas, the subject 

will have come of age.” 

Twelve years later, I believe there is still work to be done in the recognition of the 

benefits of copula multivariate analysis; this can be partly achieved by enabling 

researchers to extend familiar univariate methods to their multivariate equivalents, an 

area which I think lacks behind. This thesis aims to fill in one of these gaps by 

producing an equivalent to univariate centiles.  

In a nutshell, copulas provide increased flexibility in capturing dependence between 

rvs to supplement the commonly used independence models (perhaps with non-

Normal marginals) and multivariate Normal models.  

The remaining sections of this Chapter describe theoretical aspects of copulas (i.e. 

Sklar’s theorem, copula parameter and copula types).  

 

1.3.1 Sklar’s theorem 

Abe Sklar in 1959 24 published the following definition of copulas: 

Let õ be an 9−dimensional cdf with marginals 6.(R.), ^ = 1,… ,9. Then there exists 

a copula A: [0,1]& → [0,1] such that for all rvs	H. in [-∞,+∞]: 

õ(R$, R%, … , R&) = Aë6$(R$), 6%(R%), … , 6&(R&)í (Eq. 1-1) 
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If 6$, 6%, … , 6& are all continuous, then A is unique. Conversely, if A is an 9−copula 

and 6$, 6%, … , 6& are distribution functions, then the function õ defined in (Eq. 1-1) is 

an 9−dimensional distribution function with margins 6$, 6%, … , 6&. A proof of this 

theorem can be found in Schweizer and Sklar 29. 

This thesis will focus on continuous copulas and all A functions that follow will be 

considered as continuous unless otherwise stated.  

Researchers often have information about marginal distributions of individual 

variables but know little about their joint behaviour. Copulas can be used to piece 

together joint marginal distributions or express a multivariate distribution in terms of 

its marginals. 

 

 

 

 

The function A can be obtained as: 

A(U$, U%, U-, … , U&) = õ Ñ6$*$(R$), 6%*$(R%), 6-*$(R-), … , 6&*$(R&)Ö 

Where  6.*$(R.), also known as the quantile function of R. ,	denotes the inverse of 6. . 

Thus, copulas are essentially transformations of rvs H$, … , H& into another set of 

variables û$, … , û& whose margins are uniform on the unit range [0,1], i.e. 

û. = 	6M'(H.)~û(0,1). Such strictly increasing transformation (known as the probability 

CDF 
univariate  
marginals 

[0,1] 
take 

values in 
joined together 

via 
m-dimensional 

copula or 
m-copula C 

takes 
values in 

[0,1]- 
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integral transform 30) is invariant with regards to the association between H.s, i.e. the 

dependence structure is preserved amongst the new components, û..  

For example, in the bivariate case:  

Pr(û$ ≤ U$) = Prë6M!(H$) ≤ U$í = Pr ÑH$ ≤ 6M!
*$(U$)Ö =6M!(6M!

*$(U$)) = U$	

A(U$, U%) = Pr(û$ ≤ U$, û% ≤ U%) = Pr ÑH$ ≤ 6M!
*$(U$), H% ≤ 6M"

*$(U%)Ö	

= õ Ñ6M!
*$(U$), 6M"

*$(U%)Ö 

Finally, Figure 1-7 below represents all the relationships described above from the 

perspective of the [0,1]% plane defined by the two uniform marginal distributions, 

where g denotes any real number. 

Figure 1-7: The marginal and copula distributions in the [%, ,] × [%, ,] plane 

 

 

The copula represents the area of the [0, U$] × [U%, 0] rectangle. 

(0,0) 

(1,1) 

(R$, R%) õ(R$, R%	) 

!!(#) 

!"(#) 

(6N!(H$), 6M"(H%))
= (U$, U%) 

!(##, #$) 
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The joint distribution is expressed in terms of its respective marginal distributions and 

a function A that binds them together. The copula A depends on B – this is the 

parameter of the copula function (known as dependence or copula parameter), which 

governs the degree of association between the marginals. It may be multivariate, 

though it is often defined as a scalar. More details about the copula parameter B follow 

in Section 1.3.3.  

To summarise, copula analysis involves specifying univariate marginals for each rv 

along with a copula function that binds them together. A copula can incorporate 

various forms of dependence structures regardless of the form of the marginals. 

Choosing the right copula function to capture the underlying dependence structure 

becomes the pivotal problem in many applications.    

1.3.2 Copula properties 

Bivariate copulas are written below in terms of standard uniform rvs û$ and û% such 

that A(U$, U%):	[0,1]% → [0,1]. Any copula function must satisfy the following properties 

26.  

• For every U$, U% in [0,1], A(U$, 0) = 0 = A(0, U%), A(U$, 1) = U$ and A(1, U%) =

U%. 

• For every U$, U%, ü$, ü% in [0,1] such that U$ ≤ U% and ü$ ≤ ü%, A(U%, ü%) −

A(U%, ü$) − A(U$, ü%) + A(U$, ü$) ≥ 0. In other words, the volume of the 

rectangle in the unit cube, defined by the univariate marginals on	[0,1] × [0,1] 

is positive. In terms of rectangles, similar to Figure 1-7 seen earlier, this 

property translates to the volume of the rectangle in Figure 1-8 being positive. 
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Figure 1-8: Copula properties – positive volume 

 

• If the copula is a product of two marginals, then this implies that the variables 

are independent and separate estimation of each marginal is appropriate.  

• Suppose °$ and °% are non-decreasing continuous functions of U$ and	U%, then 

the random vector (°$(U$), °%(U%)) has the same copula A as U$ and	U%.   

Hence, provided a marginal distribution for each rv can be specified, copulas 

do not require data transformations of any kind to perform/fit well.   

• Any copula A is bounded by copulas ¢,£ such that " U$, U% in [0,1]: 

£(U$, U%) ≤ A(U$, U%) ≤ ¢(U$, U%) and 

max(U$ + U% − 1,0) ≤ A(U$, U%) ≤ min(U$, U%) 

¢ and £ are called the Fréchet-Hoeffding bounds for A. Any 9-dimensional 

joint cdf 6 of continuous rvs	H. , ^ = 1…9, with univariate margins	6$, 6%, … , 6&, 

is bounded below and above by the Fréchet-Hoeffding 2,3.  

• The lower bound £(U$, U%) corresponds to perfect negative dependence. 

(0,0) 

(1,1) 

&#(') 

&$(') 

U$, ü$ 

U%, ü% 
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• The upper bound ¢(U$, U%) describes perfect positive dependence. 

1.3.3 Dependence measures and the copula parameter 

A copula is fully defined via its dimensions, dependence parameter and marginals. 

The aim is to find a copula that best describes the dependence structure between 

observed variables  

The dimension of a copula is that of its characteristics and is equal to the number of 

variables whose dependence is being investigated. Hence, a 2-dimensional copula is 

a bivariate distribution function; a 3-dimensional copula is a trivariate distribution 

function and so on.  

The dependence parameter, B, accounts for the strength of the relationship under 

investigation.  

A key consideration for the choice of the right copula is the ability of the model to 

capture the dependence between the variables of interest. 

The scalar correlation measures introduced earlier can be expressed in terms of the 

R$ and R% univariate margins,	6$(R$), 6%(R%) and bivariate distribution, 6$%(R$, R%) 31–33 

as follows: 

Pearson’s: =$% =
$

4!4"
∫ ∫ [6$%(R$, R%) − 6$(R$)6%(R%)]WR$WR%

=+
*+

=+
*+ 	

Spearman’s:  >$% = 12∫ ∫ [6$%(R$, R%) − 6$(R$)6%(R%)]W6$(R$)W6%(R%)
=+
*+

=+
*+ 	

Kendall’s: ?$% = 4∫ ∫ 6$%(R$, R%)W6$%(R$, R%)
=+
*+

=+
*+ − 1 
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Considering U$ = 6$(R$) and U% = 6%(R%) as defined in section 1.3.1 (û. =

	6M'(H.)~û(0,1)), the above equations can be re-written as follows, where A is the 

copula function of (R$, R%).: 

Pearson’s: =$% =
$

4!4"
∫ ∫ [A(U$, U%) − U$U%]W6$*$(U$)	W6%*$(U%)

$
K

$
K  

Spearman’s: >$% = 12∫ ∫ [A(U$, U%) − U$U%]WU$WU%
$
K

$
K  

Kendall’s: ?$% = 4∫ ∫ A(U$, U%)
$
K WA(U$, U%) − 1

$
K  

(Eq. 1-2) 

These equations clearly show that these scalar coefficients are functions of A over 

specified ranges and each can be calculated from the copula function. Hence, copulas 

are also meaningful in scenarios where the dependence structure is well described 

by a scalar correlation coefficient. 

Recall that a bivariate copula function A is formed by two univariate marginals and the 

dependence parameter B.  The marginals are often specified according to observed 

data, hence from the formulae above it is clear that B is the only element directly 

associated with the scalar correlation coefficients. The exact relationship binding each 

of these with B depends on the functional form of A and hence will differ for different 

types of copula. More specifically, the relationship between ? and the B plays an 

integral part in the definition of certain classes of copulas. This is because ? is the 

only one of the correlation coefficients above that depends just on the copula function 

and not on the marginals themselves 27. For some copulas, as seen in Table 1-1 

towards the end of this Chapter, B can be expressed as a function of Kendall’s ?. But 

for others, the equation connecting ? and B might not yield an exact solution due to 

the mathematical formulations involved, but it is always possible to numerically 

approximate B from ?.  
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1.4 Copula families 

Having specified the marginal distributions of each variable, an appropriate copula 

function should be selected that best captures the dependence structure of the data.  

A large number of copulas have been proposed, each imposing a different 

dependence structure on the data. Some of these are grouped together in copula 

families as their functions fall under the same general formula/rules and have the 

same properties. Hence, there are copulas that are stand-alone, not belonging to a 

family and there are others that fall under a specific categorisation of copulas, i.e. a 

family of copulas.  

An extensive description of bivariate copulas is given by Joe 14 and Nelsen 26. Here, 

the focus is on only some of them and at the end of the section, a table will summarise 

the dependence features these copulas can capture along with additional copulas that 

have not been described here.  

There are no definite rules about which copula type is right for a certain data set; 

selecting a copula to fit specific data is an important but difficult problem. The true 

data generation mechanism is often unknown and hence it is possible that several, or 

none, of the possible copulas may fit the data reasonably well. A maximum likelihood 

method can be used to compare candidate copulas and select the optimum as that 

with the highest likelihood based on the Bayesian Information Criterion (BIC) and/or 

Akaike’s Information Criterion (AIC) 34,35 values.  

Each copula introduced in this section is followed by graphical examples of the 

respective bivariate density and contour plots of U$ and	U%. Contour plots slice the pdf 

horizontally in small areas and show how dense the function is within each sliced 
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area; 25 levels are displayed in all the graphs of this Chapter. For the remainder of 

this Chapter alone, the density levels of each contour will also be superimposed over 

the contour graph for easier interpretation. Variables U$ and	U% are displayed on the 

ò and R axes of the contour plots. For the 3d pdf plot the horizontal axes represent 

rvs U$ and	U% and the R axis represents the density function. Kendall’s ? and B are 

also presented. Both marginal distributions of U$ and	U% are set to Normal(0,1). 

1.4.1 Independent copula 

This is the simplest copula and it is also known as the product copula:  

A(U$, U%) = U$ ∙ U% 

This copula has independent marginals and analysing these variables separately will 

yield the same results as their joint analysis. There is no dependence structure 

between the rvs of interest, hence the resulting copula has no dependence parameter 

and Kendall’s 	? = 0. The bivariate density on the left-hand side of Figure 1-9 peaks at 

0 for both variables (pre-set univariate mean for each) and spreads along the ò and 

R axes with SD = 1 (also pre-set). The contour plot on the right-hand side shows the 

density at selected levels, where the numbers denote the density within each 

encircled area. 

Figure 1-9: Independent Copula 
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1.4.2 Farlie-Gumbel-Morgenstern copula 

The Farlie-Gumbel-Morgenstern (FGM) copula 36–38 is a computationally simple 

copula: 

A(U$, U%; B) = U$U%ë1 + B(1 − U$)(1 − U%)í	; 	−1	 ≤ B ≤ 1 

The association between B and ? follows from (Eq. 1-2): ? = %O

P
. When applying this 

copula to a dataset, an initial value for B can be easily decided upon by inverting the 

above formula for an observed ?, i.e. B = 9?/2.  

Positive and negative B values correspond to positive and negative dependence 

respectively. The independent copula is given by FGM with B = 	0. FGM copulas can 

only model relatively weak dependence as illustrated in Figure 1-10 for B = 1 and	B =

−0.6, which correspond to ? values of 2/9 and −1.2/9.  

Figure 1-10: FGM Copula 
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1.4.3 Archimedean copulas 

The two previous copulas (independent and FGM) are single, stand-alone types of 

copulas. Archimedean copulas form a particularly popular and important family of 

copulas39. They are easily constructed (e.g. additivity property mentioned below), are 

capable of capturing a wide range of dependencies (displayed via the three types 

below) and have convenient statistical properties (listed below). A 2-dimensional 

copula A is called Archimedean if it has the following property:  

A(U$, U%; B) = 	´[*$][´(U$; B) + ´(U%; B)] (Eq. 1-3) 

Archimedean copulas are characterised by a single function, ´, called the generator 

function, which is unique to each copula and satisfies the following properties: 

• ´:	[0,1] → [0,∞] 

• ´(0) = ∞, ´(1) = 0 

• ´[*$]: pseudo-inverse of ´   

• ´ is a continuous, additive, strictly decreasing (´2(g) < 0) and convex 

(´22(g) ≥ 0) function 

 

For example, if ́ (g) = 1 − g, for	g ∈ [0,1]; then	´[*$](g) = max(1 − g, 0), from (Eq. 1-3) 

for any	U$, U% ∈ [0,1]:		A(U$, U%) = max(U$ + U% − 1,0), which is the lower Fréchet-

Hoeffding bound in the bivariate case (discussed earlier in section 1.3.2). In other 

words, the lower bound of any copula, if it exists, is an Archimedean copula itself.   

One of the main advantages of Archimedean copulas is that the introduction of an 

extra dimension/rv (in other words, a marginal distribution	U- describing a 3rd rv) can 

be done additively, by including the generator	´(U-; B): 
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A(U$, U%, U-; B) = ´[´*$(U$; B) + ´*$(U%; B) + ´*$(U-; B)] 

More properties of this family of copulas are: 

• A(U$, U%) = A(U%, U$), ∀	U$, U% ∈ [0,1] – commutative  

• A(A(U$, U%), U-) = AëU$, A(U%, U-)í, ∀	U$, U%, U- ∈ [0,1] – associative  

• A(U$, U%) ≤ A(U-, U#), ∀	U$ ≤ U-	, U% ≤ U# ∈ [0,1] – order preserving 

For any Archimedean copula and some marginal distribution g (defined in [0,1]), ? is 

given by 40: 

? = 4Æ A(U$, U%)WA(U$, U%)
	

(K,$)"
− 1 = 1 + 4Q

´(t)
´′(t)

Wt
$

K

 

 

(Eq. 1-4) 

 

In the sections that follow, three Archimedean copulas (Gumbel, Frank and Clayton) 

are described and examples presented. The generator function differs for each of 

them as well as the range within which B is defined.  

1.4.3.1 Gumbel 

For the Gumbel copula 37,41 B is restricted in [1,∞). Values of 1 and ∞ correspond, 

respectively, to independence and Fréchet-Hoeffding upper bound, but this copula 

does not attain the Fréchet-Hoeffding lower bound for any value of B (hence cannot 

cope with negative dependence).  

A(U$, U%; B) = exp Ñ−Ø(− ln U$)O + (− ln U%)O∞
$/O
Ö 

The generator function of the Gumbel copula 42 is given by ́ (g) = (− ln g)O ,			g	 ∈ (0,1], 

and ? is equal to 1 − B*$.  The Gumbel copula (B = 1/(1 − ?)) does not allow negative 
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dependence (0 ≤ ? ≤ 1). It can capture skewed associations and it measures more 

precisely upper than lower tail dependence. It is therefore suited not only for positively 

correlated rvs, but also for rvs whose high values are more strongly correlated than 

low values (Figure 1-11).  

Figure 1-11: Gumbel Copula 

  

  

 

 

1.4.3.2 Frank 

For the Frank copula 43 B may take any real value (−∞,∞) apart from 0. Values of 

−∞ and +∞ correspond to the lower and upper bounds, respectively. The Frank 

copula function is given by: 

A(U$, U%; B) = −
1
B
ln n1 +

(±*OS! − 1)(±*OS" − 1)
±*O − 1

o 
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It is constructed using the following generator function ´: 

´(g) = − lnn
±*OI − 1
±*O − 1

o ,		where	g	 ∈ [0,∞)	

Kendall’s ? for the Frank generator is given below:  

? = 1 −
4
B
y
1
B
Q

g
±I − 1

Wg
O

K
+
B − 2
2

z 

For this copula, there is no exact solution for B in terms of ?. The Frank copula permits 

negative dependence between marginals, dependence is symmetric on both tails and 

both its lower and upper bounds can be reached. However, it has been noted that tail 

dependence tends to be relatively weak and the strongest dependence is centred in 

the middle of the distribution. In conclusion, Frank copulas are suitable when either 

strong negative or positive association is observed with weak tail dependence. Notice 

the subtle difference between the first graph of Figure 1-10 and the last graph of 

Figure 1-12, whose ?’s are almost identical. 
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Figure 1-12: Frank Copula 

  

  

  

1.4.3.3 Clayton copula 

The function of the Clayton copula 44, also referred to as Cook and Johnson 45, was 

originally studied by Kimaldorf et al 46,47 and is given below:  

A(U$, U%) = ØmaxëU$*O + U%*O − 1,0í∞
*$/O 

The dependence parameter, B, is restricted in the region	[−1,∞), whilst excluding 0. 

As B approaches zero, the marginals become independent. As B approaches infinity, 

the copula attains its upper bound. The distribution tends to the lower Fréchet-

Hoeffding bound as B approaches 1, but does not attain it for no value of B (i.e. not 

comprehensive).  
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The Clayton copula can account for negative dependence (Figure 1-13). It generates 

asymmetric dependence and lower tail dependence, but relatively weak upper tail 

dependence.  

Its generator function and Kendall’s ? are given, respectively, by: 

´(g) =
1
B
ëg*O − 1í	and	? =

B
B + 2

 

The simplicity of the relationship between ? and B for the Clayton copula is a great 

example of scenarios where a reliable initial value for B can be obtained directly from 

the data when trying to identify the best copula.       

Figure 1-13: Clayton copula  

  

1.4.4 Elliptical copulas 

Ellipses are curves such that the sum of the distances from two fixed points (called 

foci) for every point on the curve is constant. Elliptical distributions have contour 

shapes of ellipses. Two well-known examples of elliptical distributions are the 

bivariate Normal and g. 

Elliptically-contoured distributions were introduced by Kelker 48 and widely discussed 

by Fang 49. Let ¥& be a class of functions µ(g): [0,∞] → R, where R represents a set 
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of real numbers, such that function µ(∑ g.
%&

./$ ) is an 9-dimensional characteristic 

function* for all g ∈ R& 50. A rv H has a 9-multivariate elliptical distribution, written as 

H~∑&(;, Σ, µ) or H~∑A&(;, Σ, µ), if its characteristic function can be expressed as: 

´T(g) = exp(^g2;)µ π
1
2
g2qg∫ 

for some 9-long column-vector ;, 9 ×9 positive definite matrix q and for some 

function µ(g) ∈ ¥& which is called the characteristic generator. The parameter ; is a 

location parameter and the q matrix determines the scale and the correlation of the 

rvs. 

If	H~∑&(;, Σ, µ) exists, then H has a density	8M(R) that takes the following form: 

8M(R) =
ê&
w|Σ|

ª& π
1
2
(ò − ;)2Σ*$(ò − ;)∫ 

Where ê& is a Normalising constant and ª&(∙) is called the density generator 49.  

For two components, H$ and H%, of an 9-dimensional rv H it has been shown 51,52 that 

Kendall’s ? is given by: 

?$% =
2
π
arcsin =$% 

 
* The characteristic function of any real-valued rv completely defines its probability distribution 

and determines the variable’s behaviour and properties. It provides an alternative route to 

analytical results compared to working directly with pdfs or cdfs. 
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Hence, Kendall’s ? only depends on Pearson’s = and neither the characteristics 

generator nor the shape of the distribution affects the rank correlation 53.  

The Normal and	g	distributions, which comply with the elliptical distribution pdf seen 

above, are examples of elliptical distributions, with respective density generators and 

Normalising constants given below: 

ª(U) = exp(−U) ; ê& = (2π)*
&
% , 

ª&(U) = π1 + S

U.
∫
*V

 ; ê& =
É(})

É Ñ} −92Ö
(2πæV)*&/%, 

Where the parameter } > 9/2 and æV is some constant that may depend on }. For 

example, in the bivariate case where 9 = 2 and df is the degrees of freedom, 

assuming } = (df + 2)/2 and æV = df/2, the resulting distribution is the multivariate 

student g (identical to the one seen in Section 1.1.1.2). 

Elliptical copulas describe such joint distribution functions. More specifically, if 6 is the 

cdf of an elliptical distribution and 6*$ its inverse function, the elliptical copulas 

determined by 6 are: 

A(U$, U%) = 6[F*$(U$), F*$(U%)] 

The corresponding Normal and g copulas are studied in the next two sections. These 

copulas are appropriate when radial symmetry (i.e. equivalent upper and lower tail 

dependence) is evident between the two random variables of interest. This constraint 

is not necessarily present in the more flexible Archimedean copulas. Both copulas 

have a correlation matrix, inherited from the elliptical distributions, which determines 

the dependence structure between the rvs, hence related to B. 
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1.4.4.1 Gaussian (Normal) copula 

The form of the (bivariate) Normal copula 54 is given by: 

A(U$, U%; B) = Φë6$*$(U$), 6%*$(U%); Bí	

Where Φ is the cdf for the bivariate standard Normal distribution, i(0,1) and 6$*$(U$),

6%*$(U%) are the inverse of the two univariate marginals.  In this copula case, the 

parameter B is equal to =. If the marginals are Normally distributed and the Normal 

copula is used to describe the association, the resulting joint distribution is multivariate 

Normal (Figure 1-14). This copula assigns equal degrees of positive and negative 

dependence to the joint distribution whilst assuming no tail dependence. As the B 

approaches −1 and 1, the Normal copula attains the Fréchet lower and upper bound, 

respectively.   

Figure 1-14: Normal Elliptical Copula 
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1.4.4.2 Student’s ( copula 

The copula parameter B is a vector of two parameters, = and df (degrees of freedom), 

where the latter controls the heaviness of the tails 49. Its function is given by: 

A(U$, U%; B) = °dfë6$*$(U$), 6%*$(U%); Bí	

where °df and 6.*$(U.)(^ = 1,2) are the bivariate Student’s g cdf and the inverse of the 

univariate marginals, respectively, with B = =. As df increases the Student’s g copula 

converges to the Gaussian copula, hence decreasing the probability of tail events. 

This copula has more points in the tails than the Normal one and a star-like shape. 

Figure 1-15 shows examples of varying = (labelled as B) with df = 2 (called Cauchy 

copula 55). 

Figure 1-15: t Elliptical Copulas (df=2) 
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1.4.5 Extreme value copulas 

In cases where researchers’ interest is in joint extreme events, extreme value copulas 

can be a good choice for modelling of the dependence structure between exceptional 

events 56–58. Extreme value copulas’ biggest advantage is the fact that they are not 

symmetric and can, of course, account for tail dependence.  

A bivariate copula A(U$, U%) is an extreme value copula if there exists a copula AW 

such that:  

A(U$, U%) = lim
:→+

AW(U$
$/:, U%

$/:): 

In other words, the family of extreme-value copulas arises at the limits of ordinary 

copulas as the sample size : tends to infinity.  

Alternatively, a copula A(U$, U%) is an extreme value copula if and only if: 

A(U$, U%) = exp¡ln(U$U%) ¬ π
lnU$

ln(U$U%)
; B∫√	

= (U$U%)
XY lnS!
\](S!S")

;O_
 

for (U$, U%) 	∈ [0,1]% where ¬: [0,1] → [$
%
, 1] is an appropriately chosen convex 

function, which satisfies the following conditions: ¬(0) = ¬(1) = 1, max	(g, 1 − g) ≤

¬(g) ≤ 1 for all g ∈ [0,1]. ¬ is Pickand’s dependence function 59. The upper bound of 

function ¬ corresponds to the independent copula, section 1.4.1 and the lower bound 

corresponds to the comonotone copula,	A(U$, U%) = max(U$, U%). 

If ¬(g; B) = ëgO + (1 − g)Oí
$/O
, B ≥ 1, then the equation above yields the Gumbel 

copula. Hence, the Gumbel copula as seen earlier in section 1.4.3.1 is the only 
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Archimedean copula that is also an extreme value copula. There are no other 

Archimedean copulas with this property 42. 

Kendall’s ? and Spearman’s > (unless there is independence) are given by: 

? = 4Q
g(1 − g)
¬(g)

W¬2(g)
$

K
	

> = 12Q
1

(1 + ¬(g))%
Wg

$

K
− 3 

In the context of extremes, it is natural to also study the coefficient of upper and lower 

tail dependence. 

@! = lim
S↑$

Pr(û > U|ƒ > ü)	

= 2n1 − ¬ π
1
2
∫o	

@" = lim
S↓K

Pr(û ≤ U|ƒ ≤ ü)	

= lim
S↓K

U(%X($/%)*$)	 

1.4.5.1 0-EV copula 

In section 1.4.4.2, the bivariate g-copula was explored. It is shown 56 that this copula 

also falls in the domain of the extreme-value copula A with Pickand’s dependence 

function ¬ equal to: 

¬(≈) = ≈gdf=$(|b) + (1 − ≈)gdf=$(|$*b)	

|b = (1 + df)$/% y∆
≈

1 − ≈
«
$/df

− =z (1 − =%)*$/% 
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where ≈ ∈ [0,1] and gdf represents the distribution function of the univariate g-

distribution with df degrees of freedom (Figure 1-16).  

Figure 1-16: /-extreme value copula 

  

1.4.5.2 Hüsler-Reiss copula 

The Hüsler-Reiss 56,60 copula A (Figure 1-17) is the bivariate extreme copula with 

Pickand’s dependence function: 

¬(≈) = (1 − ≈) ∙ » π@ +
1
2@
ln
1 − ≈
≈

∫ + ≈ ∙ » π@ +
1
2@
ln
1 − ≈
≈

∫ 

for ≈ ∈ [0,1], with » representing the standard Normal cumulative distribution 

function. The parameter @ measures the degree of dependence, going from 

independence (@ → ∞) to complete dependence (@ = 0). 

Figure 1-17: Hüsler-Reiss copula 
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1.5 Conclusions 

The review provided in this Chapter outlines the fundamental aspects of bivariate 

associations and forms the basis of the rest of the thesis. Chapter 2 will provide 

information on several alternative methods that can be used to investigate bivariate 

associations in a more local scale, i.e. in smaller neighbourhoods around bivariate 

points.     

The flowchart in Figure 1-18 aims to provide a diagrammatical representation and 

summary of copula analysis as described in the earlier sections of this Chapter.  

 

Table 1-1 summarises some of the dependence characteristics of the copulas seen 

thus far as well as some new ones, not explicitly defined here.   

Copula models will be used in the coming Chapters of this thesis to enhance the 

exploration of local dependence as well as of the overall association pattern under 

investigation.      
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Figure 1-18: Summative flowchart of copula modelling 

 

 

Marginal distributions + corresponding 
parameters (best choice via BIC)  

via the 
Scatterplot of 

the data 
define  

Copula fitted on the data based on initial values for all 
parameters 

All parameters will be updated 

Original choice of copula can vary in a quest of the 
best fitted copula (based on BIC) 

Decision on final copula 

Extension of copula model by addition of covariates to 
all or some of the copula model parameters (Chapter 4) 

If covariates are added, update parameter estimates 
to form the final copula model 

Copula type + parameter decided upon best 
fit of contours  
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Table 1-1: Summary table of two dimensional copulas 

Copula ! range Kendall’s " " range Dependence 
structure  

Tail dependence 

Independent NA 0 NA Independent NA 

FGM [−1,1] ((2/9) [−0.22,0.22] Symmetric 
Weak overall 

Weak/Independent 

 Archimedean family 

Frank (−∞,∞) excl 0 1 − 4( 21 −
1
(3

4
5! − 164

"

#
7 [−1,1] excl 0 

Symmetric 
Strong centre 

Weak/Independent 

Gumbel [1,∞) 1 − ($% [0,1] Asymmetric Upper  

Clayton [−1,∞) excl 0 ((( + 2)$% (−1,1) excl 0 Asymmetric Lower  

 

 



   

73 
 

 

 

Ali-Mikhail-
Haq* [−1,1] 1 + 2 9

−1
6( − [(( − 1)

&ln	(1 − ()]
3(& ? [−0.18,0.33] Asymmetric Lower  

Joe* [1,∞) 1 + 4(3
(ln	(1 − 4"))(1 − 4")

4"$%
%

!'#
 (0,1] Asymmetric Upper 

 Elliptical family 

Normal [−1,1] (2/A) arcsin ( [−1,1] Symmetric Weak/Independent 

t [−1,1] (2/A) arcsin ( [−1,1] Symmetric Upper and lower  

 Extreme value family 

t-EV [−1,1) no closed form [0,1] Asymmetric Upper 

Hüsler-Reiss [0,∞) no closed form [0,1] Asymmetric Upper 

* not presented in detail in this thesis 
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2. Local dependence  

The three scalar measures of dependence described in Chapter 1 use one (linear, 

rank correlation) or two (tail dependence) numerical values to summarise the 

association of two rvs, thought of as constant along the range of their bivariate 

relationship.   

However, a single scalar dependence measure will not always reflect the dependence 

between a pair of continuous variables and will not convey the true dependence 

structure 61. When the dependency structure is not constant (the most common 

scenario), coefficients that evaluate dependence locally, i.e. in smaller areas across 

the ranges of the rvs, should be used instead. The tail dependence coefficient partially 

addresses this by concentrating on the tails of the bivariate association but remains 

quite limited.  

The following sections focus on 2 local dependence functions: the local dependence 

map and the chi-plot 62,63. Details of a specific application with Beta marginals of these 

measures is explored in section 2.3.  

2.1 Local dependence function and local 

dependence map 

Local dependence (LD) 64 measures the correlation between !!	and !" in a 

neighbourhood of any point ($!, $") in the domain of the bivariate density function.  

The local dependence function (LDF), ' was introduced by Holland and Wang and 

focuses on the association of !!	and !" in smaller areas of their range (localisation) 
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rather than their entire range, i.e. global dependence structure. Pearson’s correlation 

coefficient, as seen earlier, is defined as follows:  

(!" =
Cov($!, $")

-!-"
	

=
.(!!!") − .(!!).(!")

(.0!!
"1 − .(!!)")!/"	(.0!"

"1 − .(!")")!/"
 

Localisation can be achieved with the use of kernel methods 65, where the correlation 

of !!	and !" is calculated conditional on !!	and !" being in the neighbourhood of a 

point ($!$, $"$). So, the formula above changes as follows to incorporate the indicator 

function	2%(!!, !"): 

(!"($!$, $"$, ℎ!, ℎ") =

=
.(2%(!!, !")!!!") − .(2%(!!, !")!!).(2%(!!, !")!")

0.02%(!!, !")!!
"1 − .(2%(!!, !")!!)"1

!
"	0.02%(!!, !")!"

"1 − .(2%(!!, !")!")"1
!
"

	

 

Where 	

2%(!!, !") = 4
1, if	(!!, !") ∈ [$!$ ± ℎ!, $"$ ± ℎ"]
0, otherwise

 

is a weight function and ℎ!, ℎ" are smoothing parameters, ℎ! → 0, ℎ" → 0. If 

2%(!!, !") = 1 for all ℎ! and ℎ", the conventional equation of the Pearson’s ( is 

recovered. 

Applying the above notion of localisation on all possible pairs of ($!$, $"$) and 

following the proof provided by Jones 65, the LDF is given by:  

'($!, $") =
D" ln G!"($!, $")

D$!D$"
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=
1

G!"($!, $")
HG!"

!!($!, $") −
G!"
!$($!, $")	G!"

$!($!, $")

G!"($!, $")
I 

Where	G&'($!, $") =
()(+!,+")
(+!#(+"

$  .  

The interpretation of positive and negative values of ' correspond to positive and 

negative dependence in the same way as positive and negative values of Pearson’s 

( do. Values equal to 0 correspond to global (i.e. across all values) independence 

between $!	and $".  

In the case of the bivariate Normal distribution, a global association measure provides 

a very good estimation of the overall dependency between the rvs; hence the local 

dependence function would be constant. In fact, the local dependence function is 

constant if and only if the conditional distribution has an exponential family with its 

canonical parameter being a linear function 66. In the bivariate Normal case the LDF 

is given by: 

'($!, $") =
(

(1 − (")
 

As per Jones 65 “the local dependence function can be used to show how dependency 

can be measured when both the degree and the direction of the dependence is 

different in different regions of the plane”. 

However, the LDF local dependence function can provide too detailed exploration of 

the association, which is contrary to the scalar coefficients that often average out too 

much of the dependence structure, hence neither of them is ideal.  
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Local dependence maps 67 are a compromise between the two; simplifying the 

estimated local dependence structure by identifying regions of (significant) positive, 

(non-significant) zero and (significant) negative local dependence. In essence, the 

local dependence map provides permutational tests of significance, i.e. tests based 

on permutational arguments as opposed to asymptotic distributional assumptions. 

The graphs in Figure 2-1 present the LD map of 3 simulated example data sets (using 

the localgauss R library 68, version 0.35). The palette of colours presented on the 

side of each graph indicates varying levels of local dependence as estimated by the 

Pearson’s correlation coefficient.  

Figure 2-1: Local dependence maps 

Black dots represent simulated data for three different association patterns 

 

 

  

The graphical representation of the LDF is very informative and an improvement to 

the scalar coefficients. Association is evaluated at small neighbourhoods of pairs of 

($!, $") values and this can vary from strong/weak negative to strong/weak positive 

correlation. The last example of Figure 2-1 is a very good representation of the change 

in direction and strength of the correlation. The association at the central part of the 

scatterplot is virtually non-existent whilst this changes towards each of the four tails. 

However, it is essentially a tool only for measuring associations and extensions to 

more than two dimensions and/or incorporation of additional predictor variables would 
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be challenging. Finally, the marginal distributions of the rvs have not been accounted 

for and they could potentially add a great deal of assistance in the exploration of the 

association.  

2.2 Chi-plots 

The chi-plot 62,63 is a data-driven transformation for bivariate observations which 

consists of plotting a rank-based measure of local dependence versus a function of 

the distance between each point and the median-centre of the dataset.  

The chi-plot is a rank-based graphical tool and has characteristic patterns depending 

on whether the variables are independent, have some degree of monotone 

relationship or have more complex dependence structure. It is also a well-suited tool 

for identifying dependencies in the tails of bivariate distributions.  

The chi-plot is a scatterplot of pairs	(M& , N&); M& 	is a measure of the distance of point 

($!& , $"&) from the centre of the data set (i.e. vector of the two medians). A positive M& 

value means that both !! and !" are large relative to their respective medians (or both 

small), i.e. positively correlated, whereas a negative value corresponds to $!& 	and $"& 

being on opposite sides of their respective medians, i.e. negatively correlated. When 

the data are a random bivariate sample from independent continuous marginals, then 

M&~P[−1,1].  

N& is a correlation measurement between the dichotomised !!	and !" values at 

point	($!& , $"&), i.e. below-above/lower-greater than this point as evaluated from 

multiple directions, and its interpretation reduces to the local Pearson correlation 

coefficient. It is equal to 1 (−1) for all sample cut points when !" is a strictly increasing 

(decreasing) function of !!. It is similar to the N" statistic for testing independence in 
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the 2 × 2 table generated by the cut-point ($!& , $"&). In other words, N& approximates 

the failure of the bivariate distribution function to factorise into a product of marginal 

distribution functions at the sample argument ($!& , $"&). It is equal to a scaled 

transformation of the difference S& − T&U&, where S, T and U are the empirical bivariate 

and univariate distributions of $! and $", respectively. Under independence, S& = T&U&, 

hence N& = 0.   

All values of M& and	N& are based on ranked values of the data. Also, they lie in the 

interval	[−1,1], hence the chi-plot is drawn on a [−1,1] × [−1,1] plane. Points for which 

|M&| > 4 Y
!

./!
− 0.5Z

"
 are not plotted on the chi-plot 63 hence only non-extreme values 

are displayed. The plot is approximately horizontal under independence 

	YN&~[ Y0,
!

.
Z and	M&~P[−1,1]Z. In other words, the chi-plot measures dependence 

locally and draws it against the distance of the data point to the data centre.  

The chi-plot can be interpreted depending on the area its points are scattered 

amongst 5 possible sections of the graph between M& and	N&, i.e. horizontal line, left 

and right areas above and below the horizontal line.  Figure 2-2 contains examples of 

simulated data sets with varying dependence structures that aim to show the change 

in the patterns of the chi-plot in each of the aforementioned 5 areas. Each pair of 

graphs shows the scatterplot of the simulated data on the left and the corresponding 

chi-plot on the right: 

- Figure 2-2 (i): the horizontal line à this is the line of independence and is 

usually plotted on the graph along with the “control limits” which define (non-

parametrically, i.e. via Monte-Carlo simulations) the range within which 95% 

of the observation lie under independence. Any scatter around the horizontal 

line and its 95% region is due to sample variability, while deviations from the 
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horizontal line correspond to positive and negative departures from 

independence.  

- Figure 2-2 (ii): positive N and positive M values à positive dependence (N > 0) 

in the lower left and upper right corner and M > 0, i.e. same direction of 

distance from the bivariate centre for both rvs, i.e. all pairs of !! and !"	are 

both above or below the median; positive association is uniform throughout.  

- Figure 2-2 (iii): negative N and negative M values à indicate negative 

dependence (N < 0) in the upper left and lower right corner of the data where 

!! is high/low and !" low/high, respectively. Negative association is evident for 

the most part of this example with some deviations for those pairs of values in 

the middle of the graph where both !! and !" are on the same side of the 

median 

- Figure 2-2 (iv) shows the chi-plot of a U-shape where a mixture of types of 

associations are displayed and are colour coordinated to show the direct 

correspondence of the points on the scatterplot and the chi-plot, summarising 

all the points relating to the different types of association described above. 

 

Figure 2-2: Chi-plot simulated examples 

(i) Independent association 
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 (ii) Positive linear association 

 
 (iii) Negative linear association 

 
 

(iv) Quadratic association 
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Summary 

This section has provided an overview of a variety of methods that enable the 

exploration of bivariate associations in more detail compared to a scalar coefficient. 

The LDF is a localised version of the correlation coefficient and via appropriate maps 

it provides a meaningful alternative to scalar measures. The chi plot is based on 

transformations of the data (and their ranks) and its ultimate goal is to provide a more 

explicit outcome regarding the association between rvs.  

There is not one single best graph that can quantify every single element of 

dependence between rvs in its entirety. The dependency plots shown may prove 

useful in deciding, for example, the parameter of the copula function and/or the copula 

type itself. In the remaining section of this Chapter, the dependency measures will be 

applied to simulated data from a variety of copula types with specified marginals and 

in Chapter 5 they will be utilised in the modelling of characteristics of live births in 

Mexico. 

2.3 Local dependence in bivariate copula 

models with Beta marginals 

Bivariate Beta models provide an interesting framework in which to explore the role 

of the LDF in revealing bivariate structures between rvs bounded in [0,1], since the 

Beta distribution can produce probability density functions (pdfs) in many shapes – U- 

and J-shaped, symmetric, and even uniform. There are many fields of application for 

such joint models, typically involving proportions, e.g. mathematics and language 
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exam marks of students (proportions correct), the percentiles of height and weight, or 

the proportions of household income spent on food and heating. 

There are several models for bivariate Beta distributions: some are derived from 

transformations of three standard 69, non-central and five 70 Gamma-distributed rvs; 

others arise from the relations between the Beta, T and skew-_ distributions 71,72. 

Transformations of Gamma densities impose constraints on the data-generating 

mechanism and when such constraints are not desired alternative processes are 

required. Such alternative process is provided by the class of bivariate distributions 

with Beta marginals constructed via copula functions. 

Some work on this has been done by Gupta 73 where the LDF formula for the FGM 

and AMH copulae with Beta marginals are presented. I did not locate equivalent 

results for other copula functions, therefore I further extended these results by working 

out the expressions of the LDF for 3 additional (to the FGM and AMH) bivariate 

copulas with Beta marginals, Frank, Gumbel and Joe. These results were published 

in 2017 in a peer-reviewed journal 74 found in Appendix 3: Publications. The paper 

also includes an application of the resulting LDF expressions on student exam marks. 

More specifically, this involved joint modelling of the marks of students from a 

theoretical set of statistics questions and the marks from a statistics task performed 

on the Statistics Package for Social Science (SPSS) (this application is not presented 

here). The computational software Mathematica (version 10) 75 and the MathStatica 

extension 76 were used to derive the analytical expressions of the LDFs. Each of the 

following sections is accompanied by illustrations of the copula density, the LDF and 

chi plot with varying parameters.   
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2.3.1 Copula-defined bivariate distributions with Beta marginals 

Let !!, !" be univariate random variables each with a univariate Beta distribution with 

shape parameters `& , a& ≥ 0, c = 1,2 respectively: 

G&(d&) =
0#%#&!(!/0#)'#&!

1(2#,3#)
 and  	T&(d&) =

1(0#,2#,3#)
1(2#,3#)

 

Where e(d; `, a) = ∫ _2/!(1 − _)3/!D_
0

$
 denotes the incomplete beta function, and  

e(`, a) = e(1, `, a). The survival function is denoted as Th(d) = 1 − T(d).  

In each copula section below, the closed form of the LDF is presented along with the 

contours of the copula density function (on the left), the LDF map and the chi plot for 

different marginal and dependence parameters. The parameters of the bivariate 

distribution (`& , a& and i) were randomly chosen and differ between each copula for 

the first pair of graphs (Figure 2-3, Figure 2-5 and Figure 2-7), but are the same for 

the second set of graphs (Figure 2-4, Figure 2-6 and Figure 2-8). The figures illustrate 

how the same copula function can lead to markedly different bivariate structures for 

varying marginal and dependence parameters as well as how the same parameters 

can lead to markedly different bivariate associations for differing copula functions. In 

these examples, the contours have been drawn at the following density levels: 0, 0.2, 

1, 2, 3, 4, 5, 10, 15 and 100. These represent density levels on the left-hand side 

graph and local dependence levels on the right. For both graphs, the d and $ axes 

represent the two rvs, !! and !" respectively.  

2.3.1.1 Frank copula  

The density of the Frank copula (introduced in Section 1.4.3.2) with Beta marginals 

can be written as follows and this corresponds to a five-parameter family of bivariate 

distributions with Beta marginals (for c = 1, 2), where i	 ∈ [−∞,+∞,\{0}]: 
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  G($!, $") = i0o4 − 11[∏ G&($&; `& , a&)& ] 5()!*∑,#)-#..

6∑ 5
(/!*,#)-#.0# /5(∑,#)-#./5(8

" 

The LDF of this copula is equal to: 

  '($!, $") = 2i"0o4 − 11[∏ G&($&; `& , a&)& ] 5()!*∑,#)-#..

6∑ 5
(/!*,#)1-.0# /5(∑,#)-#./5(8

"	

       = 2iG($!, $") 

Notice that the latter has the same sign as i all over the unit square.  

Figure 2-3 presents the pdf and LDF contours of a Frank copula (notice the different 

shape of the Frank copula contours compared to Figure 1-12 driven by different 

marginals/parameters) and the chi plot. 

Figure 2-3: Frank copula PDF and LDF  

Copula Parameters: !! = #, %! = &, !" = #, %" = &, ' = −)& 

   

 
 

Both the pdf and the LDF follow the same general pattern with the only difference 

being the fact that the local dependence function expands more widely to 

accommodate for pairs of d! and d" that have low bivariate density but are locally 

associated with respect to the whole range of values. Notice the negative values of 

the LDF contours, as a result of the negative dependence parameter. 
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The following set of graphs (Figure 2-4) show a Frank copula with different 

parameters. Notice that the general shape of the LDF is again very similar to that of 

the pdf, i.e. local dependence values mirror very well the density values around the 

same areas of the bivariate relationship. 

Figure 2-4: Frank copula PDF and LDF (same parameters, different copula) 

Copula Parameters: !! = *. ,, %! = -, !" = *. ,, %" = -, ' = - 

 
  

2.3.1.2 Gumbel copula  

The Gumbel copula is defined as follows, where i ∈ [1,∞]: 

T(d!, d") = exp Y−s(− lnT!(d!))4 + (− lnT"(d"))4t
!/4
Z 

The density of the copula when the two marginals are Beta distributions and its LDF 

can be written as (for c = 1,2): 

G(d!, d") =uG&(d&; `& , a&)
&

uT&
/!(d&; `& , a&)

&

uv0#
4/!

&

	

∙ xi − 1 +yv0#
4

&

z

!
4

xyv0#
4

&

z

!
4/"

exp	 x−yv0#
4

&

z

!
4

 

where v0# = −ln	(T&(d&)), and 
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'(d!, d") = (i − 1)uG&(d&; `& , a&)
&

uT&
/!(d&; `& , a&)

&

xyv0#
4

&

z

!
4/"

uv0#
4/!

&

	

∙ {i(2i − 1) |(i − 1)02 + 5i(i − 1)1 + xyv0#
4

&

z

"

} + xyv0#
4

&

z

9

~ 

In contrast with the previous copula, there is no linear relationship between the 

dependence parameter i and the LDF for this copula. 

The pdf graph of the copula shown in Figure 2-5 may give the impression of a similar 

positive association for most of their joint range. However, the LDF graph provides a 

more thorough view of the dependence. The correlation is maximal across the main 

positive diagonal whilst it decreases rather quickly off diagonal and becomes minimal 

along the (0, 1) and (1, 0) ranges of the d and $ axes. 

Figure 2-5: Gumbel copula PDF and LDF  

Copula Parameters: !! = #, %! = &, !" = #, %" = &, ' = & 

  
 

 

Figure 2-6 shows another example of the density and dependence functions of a 

Gumbel copula, with same parameters as the example in Figure 2-4. The pdf 

emphasises the high density at the bottom left corner of the bivariate distribution, 

whereas the LDF shows a strong correlation along the central part of the distribution.  
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Figure 2-6: Gumbel copula PDF and LDF (same parameters, different copula)  

 Copula Parameters:!! = *. ,, %! = -, !" = *. ,, %" = -, ' = - 

  
 

2.3.1.3 Joe copula 

Τhe Joe copula with Beta marginals yields the following bivariate distribution, where 

i ∈ [1,∞): 

 .(0#, 0$) = 1 − 3(1 − .#(0#))% + (1 − .$(0$))% − (1 − .#(0#))%(1 − .$(0$))%5
#/% 

The density of the copula when the two marginals are Beta distributions and its LDF 

can be written, respectively, as follows: 

G(d!, d") = G(d!)G(d")Th(d!)4/!Th(d")4/! × sTh(d!)4 − Th(d")40T�0!1t
!
4/"si − T�0!T�0"t 

Where T�0# = Th(d&)4 − 1 for c = 1, 2 and: 

'(d!, d") = G(d!)G(d")i(i − 1)[T(d!)T(d")]4/! 

				×
−2i" − T�0!

"
T�0"

"
+ iT�0!T�0"s3 − Th(d!)

4 + T�0!T�0"t

ÄsTh(d!)4 − Th(d")4T�0!tsi − T�0!T�0"tÅ
"  

As with the Gumbel copula, the overall sign of the LDF cannot be determined directly 

from the sign of the i parameter. 
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In Figure 2-7, density is highest at the top right corner whilst the remaining corners 

have lower peaks. The highest levels of local dependence are found in similar 

locations on the LDF graph too, i.e. all corners, with the top right corner having the 

highest level of local dependence, i.e. large values of both Ç! and Ç" rvs are most 

highly correlated. 

Figure 2-7: Joe copula PDF and LDF  

Copula Parameters: !! = *. #, %! = *. ), !" = *. #, %" = *. ), ' = ). # 

  
 

 

The bivariate copula shown in Figure 2-8 has the same parameters as the second 

example of the previous two copulas, Frank (Figure 2-4) and Gumbel (Figure 2-6). 

This illustrates the flexibility of various copula models to capture changing bivariate 

associations/structures given the same parameters. This is mirrored in the LDF 

graphs too, capturing local dependence at all sets of neighbouring points. The LDF in 

Figure 2-8 is an example of how the same amount of local dependence is found at 

two different areas of the bivariate plot, i.e. for low values of Ç! and Ç" and for values 

of Ç! and Ç" within the range of (0.4, 1). 
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Figure 2-8: Joe copula PDF and LDF (same parameters, different copula) 

Copula Parameters: !! = *. ,, %! = -, !" = *. ,, %" = -, ' = - 

  
 

2.3.1.4 More examples and results 

For completeness, examples of the FGM and AMH copulas based on the expressions 

presented by Gupta 73 are presented in Figure 2-9 and Figure 2-10 respectively. 

Notice that, although the general shapes of the two densities are similar, the LDF’s 

are markedly different. The LDF of this FGM model has the highest correlation for d! 

values higher than 0.4 and for low values of d" and similarly for d" values higher than 

0.4 for low values of d!, whilst this pattern was not evident on the density graph. In 

contrast, the AMH copula reaches its highest local dependence close to the bottom 

left corner of the graph, where the highest density is also observed. 

Figure 2-9: FGM copula PDF and LDF  

Copula Parameters: !! = ), %! = &, !" = ), %" = &, ' = *. 6# 
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Figure 2-10: AMH copula PDF and LDF  

Copula Parameters: !! = ), %! = &, !" = ), %" = &, ' = *. 6# 

  
 

 

An interesting result for the FGM copula expresses Pearson’s ( for this bivariate 

model as a function of its five parameters. Since this bivariate distribution is 

constructed as an FGM copula its joint moments reduce to the product of univariate 

integrals in each variable 77,78 hence:  

( = iu

⎣
⎢
⎢
⎢
⎢
⎡2e(2`& + 1, a&) T"9 Ü

`& , 2`& + 1,1 − a&
`& + 1,2`& + a& + 1

á1à

e(`& , a&)e(`& + 1, a&)
− 1

â `&a&
`& + a& + 1

⎦
⎥
⎥
⎥
⎥
⎤

"

&:!

 

Where T"9  is the generalized regularized hypergeometric function 72. It has been 

shown 79  that the absolute value of the correlation coefficient for any FGM copula is 

less than or equal to 1/3. It is easy to see that this bound is reached for this bivariate 

distribution, e.g. if ̀ ! = a! = `" = a" = 1 then ( = i/3. If all the four parameters of the 

univariate Beta distributions in the copula are equal, ( takes values between i/4 (all 

0) and i/3 (all 1) and then decreases very little to stay just above 0.318	i for 

parameter values much larger than 1. It was only possible to extract this result for the 

FGM copula due to the ease of the calculation of the bivariate moments.  
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2.4 Conclusions 

It is important for researchers to realise that correlation coefficients do not always 

convey the relationship between numerical variables in the best possible way. 

Summarising the entire correlation structure in a single constant value does not 

account for changes in the strength of the association across the joint range of !! and 

!". The local dependence function overcomes this problem by producing a detailed 

graphical display of the association between  !! and !" across all values. The LDF 

can produce distinctly different graphs for bivariate density functions that are similar, 

as demonstrated in the contrasting Figure 2-9 and Figure 2-10.    

The flexibility of individual copula types to cover a wide range of bivariate distributions 

with Beta marginals is emphasised via the use of different parameter sets. I have 

presented three LDF formulae, which can be easily programmed to produce LDF 

graphs for bivariate scenarios with Beta marginals. The same principles could be 

applied to marginals other than univariate Beta, for example skew-normal distributions 

80. 

The LDF along with the chi plot comprise a selection of alternative avenues for the 

exploration of bivariate associations.  

In the next Chapter, my focus is on the identification of joint outliers and how this can 

be informed via the use of copula models and enhanced with the inclusion of 

covariates as and where appropriate. 
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3. Bivariate Analogues of 

Centiles (BAC) for convex 

bivariate pdfs 

Population centiles are widely used in medicine to highlight individuals who have 

unusual outcomes 81. For example, height and weight centiles are used to identify 

children who may have growth defects or require intervention; centile charts for 

respiratory function examine the reduction in function of the lung attributable to 

diseases such as cystic fibrosis; lab-based tests of body fluids are commonly 

interpreted with reference to standards provided by the test’s manufacturer. Often this 

procedure is an important aspect of screening programmes which try to identify 

subjects with a particular phenotype or biomedical marker correlated with a disorder. 

These individuals may benefit from further investigation or direct preventive action to 

prevent disability or to improve their quality of life 82.  

It is also common for a patient to undergo a battery of tests and each of these is 

referred to a separate test-specific centile chart with several tests/centile charts 

considered jointly. An individual may be within the normal range on one or more tests 

but outside the normal range for others. If referral is made on the basis of at least one 

test lying below the 5th population centile (a common scenario), then substantially 

more than 5% of patients may be referred leading to increased need for further, 

potentially invasive and/or expensive, investigations 83.  

Where correlations exist between the outcomes of tests and more specifically when 

the magnitude of the correlation is not constant across the bivariate range, 
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considering the multivariate relationship between the outcomes should improve the 

accuracy with which unusual individuals are identified. Hence application of these 

models may decrease the number of false referrals and highlight the number of hidden 

extremes, potentially improving allocation of resources and reducing patient anxiety 

84.  

Most commonly, scatterplots are the first point of call for researchers investigating 

bivariate relationships. The pattern produced in a simple scatterplot can be very 

informative and here I present a way of interpreting this pattern/shape to produce 

inferences in the form of centiles on a bivariate scale without making any distributional 

assumptions about the data. The term bivariate analogue of centile(s) (BAC(s)) will 

be used in the remainder of this Chapter and thesis to refer to an analogue of centiles 

on the bivariate scale. The reason behind using the word ‘analogue’ as opposed to 

simply ‘bivariate centiles’ is the fact that there is more than one way of ordering 

multivariate data and my proposed way is just one of many. The proposed method is 

focused on an ordering procedure based on convex hull peeling, which will be 

discussed in detail later in this Chapter.  

My proposal is non-parametric and has proven to work fast in the examples presented 

in this thesis (and beyond), compared to other existing R functions (more details are 

presented in section 3.6). Its results are also very interpretable for researchers 

(percentile coverage within a bivariate range) as they can be seen as a direct 

analogue of univariate centiles, which are very well understood.  

In this Chapter, I focus on the association between two continuous outcomes. Section 

3.1 presents the results of a literature review on the topic of bivariate centiles. Convex 

hulls are defined in section 3.2 followed by the rationale behind the idea of a sequence 

of convex hulls/convex hull peeling in section 3.3 which will formulate the definition of 
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BACs. Sections 3.4 and 3.5 present two simulation examples, one based on a Gumbel 

copula and another based on a banana-shaped distribution, which is an example of a 

mixture of 3 uncorrelated bivariate Normal distributions 85–87. More specifically, the 

proposed BACs are used to identify subjects who would have been considered to be 

within the normal range via the use of two separate univariate centile charts but are 

flagged up as unusual via this bivariate centile method. In Section 3.6 results from 

existing R libraries (geometry, cxhull, depth and depthProc) are presented 

and, where appropriate, their results are compared with my proposed BAC algorithm 

in terms of each library’s flexibility and interpretability of bivariate analogues of 

centiles. Chapter 3 closes with an overview of the presented results and how these 

relate to gaps that are still pending (section 3.7).   

3.1 Literature review  

An online search was conducted using “The Web of Science” platform 88 in August 

2019. Even though the focus of this Chapter is the application of centiles in bivariate 

scenarios, the search conducted included both “bivariate” and “multivariate” terms to 

ensure that all advances in this field are covered and commented on. 

More specifically, the aim was to capture phrases such as bi/multi-variate reference 

regions/ ranges/ ellipsoids/ intervals/ charts/ models, and bi/ multi-variate tolerance 

regions/ ranges/ intervals. Tolerance regions are regions within which a specified 

proportion of a distribution lies with a fixed probability 89. The following terms were 

also identified as relevant during the preliminary literature search: “trivariate reference 

range/region” and “dimensional reference region/range”. The final list of search terms 

is shown below: 
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• bivariate centile* (0) 

• bivariate reference* (9) 

• bivariate tolerance* (10) 

• multivariate centile* (1) 

• multivariate reference* (20) 

• multivariate tolerance* (20) 

• trivariate reference* (2 + 1 repeat) 

• *dimens* reference region* (1 + 1 repeat) 

• *dimens* reference range* (1 repeat) 

• *non-parametric tolerance* (3) 

(The asterisk * symbol dictates that the space before or after the asterisk is flexible 

and can vary, hence capturing different beginnings and endings of words.) 

The outcome of this search resulted in 66 unique papers. The numbers in the brackets 

above indicate the frequency of each term (additional terms, as per the list at the 

previous paragraph, not included resulted in no publications). No uses of the term 

‘bivariate centile’ were identified and just one paper used the term ‘multivariate 

centile’. Nine results matched the bivariate reference term and another 10 the 

bivariate tolerance. These increased to 20 each with the use of the term multivariate 

instead of bivariate. Two papers were identified when the search phrase included the 

word trivariate and another one for the term dimensional. Finally, the last term 

revealed an extra 3 publications about bivariate and multivariate non-parametric 

tolerance limits/ ranges.  

Several (10) of the results were not relevant to our search as they referred to 

engineering, operational design or financial terms, with no connection to the rationale 

of this Chapter; some of these terms were: bivariate tolerance design/ model/ signals/ 
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techniques. After their removal, there was a remainder of 56 papers for further 

exploration.   

Several additional papers (15) cited in some of the publications above, but not using 

any of the exact search terms listed earlier, were also identified as relevant. These 

were notably older papers (9 published prior to 1956) whose titles were more generic 

and did not explicitly mention the dimensions of the data in question (i.e. multivariate, 

bivariate; which were the focus of this search). These were added to the list of results, 

bringing the total number of papers reviewed to 71, as seen in the flowchart in Figure 

3-1.  

Figure 3-1: Flowchart of literature review results 

 

These 71 results spanned a variety of research fields including general 

statistical/computational methodology, neurology, endocrinology, nutrition, 

biomedicine, forensic sciences and more. Fields with more than 2 papers accounted 

for are summarised in Table 3-1.  

66 results from the 
literature review

Excluded 10: 
- 6 from engineering research
- 4 from operational research

Added 15 new papers 
from relevant citations 

71 final 
papers
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Table 3-1: Papers by science field 

Science Field Papers  

Statistics & Probability 29  

Medical & Laboratory Technology 9  

Endocrinology & Metabolism 5 

Nutrition & Dietetics 5 

Mathematics & Computational Biology 5 

Medicine & Experimental Research 4  

Medical Informatics 4 

 

The first publication in this field appears in 1938, followed by minimal publication 

activity until 1956. A book by Irwin Gutmann 90 in 1970 breaks a 14 year-long silent 

publishing gap and, quite fittingly, it comes to summarise the theoretical 

developments in the field of (mainly) univariate and multivariate tolerance regions 

from a frequentist as well as Bayesian point of view. Since 1975, there is publication 

activity almost every 1 to 2 years adding up to 33 distinct years of 59 publications 

(Figure 3-2). The number of papers varied between 1 and 4 with the last two decades 

having the highest per year publications rate (17 during the 2000’s and 13 since 

2010).  
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Figure 3-2: Publications per year 

  
 
 

In more detail, the inception of the idea of non-parametric tolerance limits came from 

Thompson in 1938 91 and Wilks in 1941 92 and 1942 93. Wilks proved that for 

continuous variables, the percentage of a given tolerance range has a Beta 

distribution (“distribution of the coverage”) and was independent of the distribution of 

the variable of interest but instead was a function of the specific order statistic chosen 

and the sample size. In 1943, Wald 94 extended this idea to multivariate scenarios 

based on successive elimination of multivariate points and in 1947 Tukey 95 published 

an additional extension introducing the term ‘statistically equivalent blocks’. The latter 

report forms the oldest paper of the literature search I conducted based on the terms 

shown earlier and comes as part of a series of 3 heavily technical publications from 

John Wilder Tukey and colleagues at the Annals of Mathematical Statistics. The first 

dealt with non-parametric order statistics 96 whilst the last explored tolerance regions 

for discrete continuous data 97. The 2nd paper of this series proves particularly 

interesting to this thesis as it presents and quotes, for the first time, a polygon as the 

desired tolerance region, i.e. a bivariate analogue to a centile. The means of 

producing such polygon are entirely geographical with instructions from the author to 
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the reader to draw lines crossing the most south-westerly, north-westerly, northerly, 

easterly, southerly and westerly points. Interestingly, our proposal has a direct 

association to Tukey’s idea where lines are drawn through existing data points to form 

the edges of the polygon/centile.  

More mathematical foundations for the computation of non-parametric multivariate 

tolerance regions/centiles were presented by Tukey in 1948 98 as well as other authors 

between 1951 and 1956 99–103. As mentioned earlier, Guttman 90 publishes the first 

book dedicated to (mainly) univariate and multivariate tolerance regions in 1970, 

which contains comprehensive details regarding the publications mentioned in the 

previous two paragraphs.  

Five years later (1975), an abstract for the International Symposium of Prospective 

Biology 104 in French refers to the application of multivariate reference ranges to the 

blood ionogram with no further details of the methodology used. No future citations 

have been identified for this work. In 1977, a publication in German by Abt 105 is 

claimed (as it has not been possible to obtain this publication) to present a method for 

the construction of scale-independent, non-parametric multivariate tolerance regions; 

we will see more from Abt in the coming years, hence mentioned in the next few 

paragraphs.  

In 1978 and 1979, two papers are published quoting trivariate reference regions in 

the field of Clinical Chemistry 106 and Mineral and Electrolyte Metabolism 107, 

respectively, with one author in common. The earlier paper is the first application 

found in the literature of higher than two-dimensional reference regions. The authors 

explore the relationship between 3 outcomes simultaneously with the aim of 

identifying outliers in their sample and calculate Mahalanobis’ distance 108 based on 

the assumption of a trivariate Normal distribution. In this given example, one of the 
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outcomes was logged to comply with the Normal distribution and the final reference 

region result took the form of an ellipsoid shown on a 3-dimensional printout. The 

1979 paper has not been obtainable.  

Whilst dwelling further into the results of this literature review, it soon became evident 

that the use of Mahalanobis’ distance (MD) 108, è", is one of the most commonly used 

methods for the calculation of bivariate or higher dimensional reference/tolerance 

ranges 109,110,119–125,111–118 to date, including the most recent, 2018, results of the 

literature review. So far there have not been any relevant publications in 2019.  

MD is the distance of each multivariate point (!&) from the multivariate mean (ê), 

whilst accounting for the interrelationships of the variables via their covariance (ë&, 

positive definite variance-covariance matrix). In other words, it is the sum of the 

squared normalised distance of each observation from the centre of the distribution. 

Once all distances are calculated and ordered the desired multivariate reference 

value can be identified.  

è" = ($& − ê);ë/!0$& − ê í 1 

where ì denotes the transpose.  

MD is very restrictive in its applications as the variables (or their transformations) 

should follow a multi/bi-Normal distribution. This is an assumption often unrealistic for 

data in the medical and other fields. Hence, the need for non-parametric alternatives.  

The first publication of the 1980’s 126 is an abstract by Kauerz et al at the Joint 

Congress of the Scandinavian and German Societies of Clinical Chemistry. The 

abstract mentions that 95% dispersion ellipsoids were presented based on the 

assumption of normally distributed data.  
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In the same year, the term “multivariate reference range” is quoted at the proceedings 

of another conference 127, organised by the Joint American and Canadian Society of 

Clinical Chemistry. Even though I was not able to identify additional details about this 

presentation/ discussion, the main author, James C Boyd, returns two years later, in 

1982 (and in 2004) with yet further ideas in the field of multivariate reference ranges 

(both discussed below).  

In 1981, Abt joins with Ackermann for a paper in German in the field of Medicine 128, 

which was unfortunately currently unobtainable. Abt publishes again on his own in 

1982 129 in English where he presented the results of his proposed ‘parallelogram 

method’ for the construction of tolerance regions that can be of irregular multiplanar 

shape, but also scale independent, i.e. the regions are invariant with respect to linear 

transformations.  

Boyd and Lacher in 1982 84 dealt with multivariate reference ranges (20 dimensional 

in fact) and their benefits in comparison to 20-fold univariate tests. Their methods 

were solely based on the assumption of Normal distribution via the Mahalanobis’ 

distance statistic. Their results supported the assumption of less falsely abnormal 

reported cases when the multidimensional range is explored but they acknowledged 

the limitation of this application to datasets that are not Normally distributed. 

Ackermann publishes with a different team of authors in 1982 in a German Paediatrics 

journal 130 and also presented at the 18th workshop of Pediatric Research in Germany 

131. According to the workshop abstracts, the authors discussed the range of 

applicability of bivariate tolerance regions, with particular interest in diagnosing 

subclinical rickets based on children located outside the bivariate tolerance region for 

alkaline phosphatase and 25-hydroxycholecalciferol. Additional methodological 
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information of the applications of tolerance regions in this specific field of application 

has not been detected online.  

In 1983, a brief article by D.L. Massart 132 recommends to clinical chemists to consider 

the use of multivariate reference regions in combination with univariate results as per 

Boyd’s 1982 paper. Also, in the same year, Ackermann 133 proposed a new 

construction technique, which unfortunately has not been located.  

In 1984, Ackermann and Abt 134 published their findings regarding sample size 

calculations for multivariate tolerance regions. Their paper essentially contained 

extensive tables for sample size determination for the construction of specific limits, 

inner and outer, of non-parametric multivariate tolerance intervals based on the 

results presented by Tukey in 1947 and Abt in 1982. From a statistical point of view, 

the procedures cited so far and the developments discussed in the above 

publications, are characterised by arbitrariness; they depend on auxiliary ordering 

functions 135 (like any other non-parametric method) and are not necessarily 

asymptotically minimal with respect to a chosen indexing class 136, i.e. produce 

tolerance regions that do not converge to a minimal index (this could be 

volume/density/probability/etc) when compared to another region from the same 

sample.  

During the end of the ‘80s and start of the ‘90s centuries, more publications are seen 

based on MD (109,110,119–125,111–118 cited earlier too) and in 1995 a new approach to 

multidimensional data is brought into the field of tolerance regions. Principal 

Component Analysis (PCA) 137 does not depend on distributional assumptions and is 

routinely employed to reduce the dimensionality of the data but the construction of the 

reference ranges is based on the assumption of normality 138,139.  



   

106 
 

 

Another conference abstract follows in 1996 from Northern Europe 140 producing an 

“innovative graphical method” for the identification of patients with unusual/interesting 

clinical results (i.e. body fluid overload). A similar team of authors published just over 

a year later a detailed paper on their findings about their proposed graphical method, 

the resistance-reactance (RXc) graph 141. Their resulting bivariate ellipsoids are fully 

dependent on the assumption of the normal distribution and the specific formulae they 

are based on is presented in another publication from one of the authors 89. A short 

commentary of this work followed the next year 142, with few more papers following in 

the coming years 143–147, but in none of these publications did the authors make a 

reference to non-normally distributed data. 

At the end of the 1990s, a paper relating to reference ranges for longitudinal data was 

published 148 and a new computer program was introduced for the construction of 

multivariate reference models 149 (no longer available). Both proposed techniques 

were completely dependent on the assumption of the normal distribution. The former 

calculated centiles based on the minor and major component of principal component 

analysis and the authors concluded that “the centiles are no longer in units which are 

meaningful to the practitioner and hence their use becomes mechanistic, without the 

possibility for interaction”. The authors of the latter paper mentioned in their 

conclusions that “the multivariate reference model can be helpful in some cases but 

must be seen as an addition to the univariate reference interval and not a 

replacement”. In this thesis, I will aim to argue the case that they are both useful and 

address different questions, so they could potentially be used in isolation of each 

other.  

In 1999, a paper from an Italian team of researchers, Capitani et al 150, utilised some 

of the early 20th century results of our literature search seen earlier (Wilks, Wald, etc) 

to propose the construction of tolerance hexagons by drawing parallel and non-
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parallel lines around the regression line between the two outcome variables. As the 

authors mention, if there is weak correlation or no dependence at all, it would be better 

for the tolerance region not to be based on the regression line between the two 

variables. However, using a regression line to summarise the relationship between 

two outcome rvs does not make the most of the shape of the cloud of points formed 

when plotting the two rvs against each other.        

The start of the 21st century sees a paper from the forensic sciences mentioning 

bivariate tolerance regions 151 in their attempt to re-certify the National Institute of 

Standards and Technology Standard Reference Material on DNA quality assurance 

methods. They produce several graphical displays of tolerance ellipses, which are all 

based on the assumption of the bivariate normal distribution.  

From 2000 onwards, there were several other publications based on MD and normally 

distributed data (as cited earlier on page 103), while less than two handfuls of papers 

prove interesting for our research and a couple of those are very relevant to the rest 

of this Chapter. The latter two are Bucchianico et al in 2001 135 and Li et al in 2008 

152. Both papers refer to convex hulls and several of their results will be discussed in 

section 3.3.  

In 2003, Petersen 81 describes two new 2-dimensional reference charts, the bivariate 

reference and directional percentile charts. The non-parametric estimator of the 

former is a result of the empirical distribution functions of !! and !". It produces very 

rugged lines due to the discrete nature of the indicator function, î, involved in the 

calculation of the empirical distribution functions of !!, ï!(∙)  and !", ï"(∙):  

ïñ!($) =
!

.
∑ î{=!#>+}
.
&:!    and   ïñ"|!($|$!) =

!

A
∑ î{="#>+}B  
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Where: ò = Äcô!!&>+!Å is the selection of data indices that have a value higher than $ 

and ö = #{c|!!& > $!} is the total number of those indices.  

The directional percentile chart estimates a reference curve in the plane such that, in 

any direction from the centre of the distribution (estimated medians of !! and !"), a 

certain part of the mass of the distribution is outside the curve. The non-parametric 

estimator of the two-dimensional reference curves is based on conditional quantile 

estimation 153,154 and  uses kernel functions. 

In 2008, Amin et al 155 extended a previously presented method, MaxMin Chart to 

multivariate scenarios and utilised information from an Exponentially Weighted 

Moving Average (EWMA) control chart to obtain smoothed tolerance limits. These 

take the form of the minimum and maximum observations of a range with a desired 

percentage coverage. This procedure depends on the multivariate normal distribution 

and the right choice of a smoothing parameter.  

Petersen returns in 2009 156 with an extension of his earlier 2003 work on 

unconditional non-parametric estimators of the bivariate reference curve (discussed 

earlier). It now accounts for covariates which can make the range of tolerance 

intervals more relevant and realistic to real-life situations. The analysis is extended by 

the non-parametric estimator being conditioned on specific values of the explanatory 

variable and, as previously, a kernel estimator of the conditional quantile is minimised. 

However, as the author concludes “…the (proposed) bivariate reference does not give 

a curve that demarcates 95% of the total probability mass (to the right or above) and 

5% (to the left or below). … If one was to insist on giving a boundary region of 

probability content 95%, this could be achieved by identifying the particular bivariate 

percentile with a pre-specified proportion of the reference population outside. This is 
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a topic of further research.” Notice the use of the term bivariate percentile from 

Petersen in a similar context to how it is used here.  

Wellek in 2011 157 proposes the use of rectangular half-spaces whose edges 

determine univariate percentile ranges of the same probability content in each 

marginal distribution. The calculation of such rectangular shapes is based on the 

assumption that the variables follow a bivariate normal distribution.  

In 2015, Willemsen et al 158 focuses on longitudinal growth measurements within a 

Bayesian approach and applies the directional quantile theory as described by Kong 

et al 159 in combination with results from the Multivariate Superimposition by 

Translation and Rotation (MSITAR) model 160. For a direction indicated by a unit vector 

ú, the ù-th directional quantile in the direction of ú corresponds to orthogonal projection 

of the rv on ú. To construct the ù-th directional quantile contour, the direction given by 

the vector ú changes to cover all angles. Each contour defines a half space where 

(100 − ù)%	of the observations lie. By taking the intersection of these half spaces, the 

directional contour is obtained. This application (implemented in R via the modQR 

library 161) is only relevant to longitudinal measurements and goes beyond the remits 

of this thesis.  

I believe that there remains a strong need for a straightforward, data-driven and easy-

to-interpret tool to appropriately construct bivariate standards for non-normal data. 

The rest of this Chapter responds to this need and describes the notions behind my 

proposal. The next two sections describe the tools necessary for my proposed 

method.  
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3.2 Convex hulls 

A polygon is a bounded shape linking data points with straight lines. The lines 

connecting the data can produce interior angles that are either below or above 180°. 

A convex shape is a polygon for which all interior angles are less or equal to 180°; 

contrary to a concave shape which has dents in its perimeter (Figure 3-3).  

 

Figure 3-3: Convex (left) and concave (right) drawings of two random 
variables  

 
 

The selection of points that form the perimeter of a convex shape are also referred to 

as a convex set. The smallest convex set that encapsulates a given selection of points 

is called the convex hull.   

3.3 Sequences of convex hulls 

In a scenario where two outcome variables are investigated simultaneously, there is 

no unique way of jointly ordering these bivariate observations. Convex hulls provide 

an ordering scheme for multivariate observations and can act as the basis for 

distribution-free ways of exploring bivariate associations by utilising the geometry of 

the bivariate scatterplot 135,162. The density of points inside/outside each convex hull 
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and/or the depth of each point can be seen as a non-parametric feature of the 

bivariate distribution in question. The depth of each point is the number of convex 

hulls that contain this point 163, i.e. observations “deeper” inside a clouds of points or 

closer to the centre of the data will have large depth, contrary to the points near the 

outskirts of the dataset. Sufficiently deep contours remain robust to outliers.   

A depth value can be calculated for each value from a given random sample of 

bivariate observations è(!!& , !"') and the data can be ordered according to their 

descending or ascending depth value, è(∙). For example, points further into the centre 

of the cloud of points in Figure 3-4 are deeper into the dataset, hence will have higher 

depth.  

Figure 3-4: Notion of depth  

 

The proposed algorithm, described below, follows the principles of convex hull peeling 

as discussed by Barnett in 1976 164 and Eddy in 1982 165. Convex hull peeling is a 

procedure that works its way through a dataset by peeling away data that form 

consecutive convex hulls. The process starts with the convex hull which encloses all 

sample points. These are then removed, and the next convex hull is constructed. The 

process is repeated, and a sequence of convex hulls is formed. The process ends 

when there are no more convex hulls to be created, i.e. less than 3 points.   
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In 1999, Liu et al 166 wrote a detailed report on multivariate statistics by data depth 

(including convex hull peeling amongst other methods). Of particular interest here is 

the mention of the work of two authors, Rousseeuw and Ruts 162,167 and their work in 

1996 that preceded Liu’s publication. They focused on the calculation of bivariate 

depth and its representation via the bagplot, i.e. bivariate boxplot and contours 

surrounding the data/pockets of the data. However, their methods involve an inflation 

factor chosen to be equal to 3, by which the central bag (as per the authors’ 

terminology) containing 50% of the data is inflated to create a boundary outside which 

outliers lie. According to the authors the choice of value 3 was the result of experience 

and simulation studies. The citation used for these simulations does not seem to have 

been actually published hence has not been obtained.  

In 2001, Di Bucchianico et al 135 proposed a new method for constructing non-

parametric multivariate tolerance regions. However, it requires pre-specifying the 

shape of the tolerance region (i.e. ellipsoid, hyperrectangles or convex sets) and 

resulting regions may not be connected; an unrealistic scenario for many applications 

such as quality control of items that are produced in continuous patches, i.e. several 

quality characteristics of items in a production line might be evaluated together to 

assess their quality, hence separate resulting regions of quality scores would not 

make practical sense.  

In 2007, McDermott et al 168 proposed an alternative method, sequential convex hull 

(CH) peeling, to the computationally expensive convex hull peeling process, which 

the authors note is especially relevant to very large datasets. Their proposal depends 

on an iterative procedure of convex hull peeling on groups of 2 points at a time from 

a dataset of size ü. It does not peel the entire dataset but instead, this algorithm will 

only ever peel 2 points at a time to produce a final ‘average’ convex percentile. They 

take 2 to be between 1000 and 10000, the latter being their recommended value. 
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They give a message of warning for values higher than 10000 due to the increase in 

computation time. The comparison of their proposed method, sequential CH peeling 

against the traditional CH peeling procedure shows superiority of the latter in terms of 

estimation of the bivariate median, but the tables are turned when it comes to 

computational power. The average execution time of their proposed method changes 

linearly with sample size as opposed to quadratically as in other peeling algorithms. 

The authors did not make the code for their proposed method publicly available. 

The most important and relevant publication for this Chapter is Li and Lui’s 152 paper 

from 2008 which builds nonparametric multivariate tolerance regions and discusses 

the construction of statistically equivalent blocks based on the notion of data depth 

and spacings. Multivariate spacings are the gaps between two consecutive convex 

sets. Li and Liu proved that: 

- The coverage probabilities of multivariate spacings follow the same 

distribution as the univariate spacings provided that the depth function is 

continuous  

- The tolerance regions are asymptotically minimal 

- The coverage probabilities are distributed Beta (ü − 2( + 1, 2(), where ü is the 

sample size and ( is a positive integer such that ( < (ü + 1)/2 

Applications of the methods cited above have been made available via the 

implementation of the relevant algorithms in three R libraries; geometry 169, depth 

170 and DepthProc 171. The main disadvantage of the techniques applied in these 

libraries is that they are not fully driven by the data points themselves and the fact that 

they do not equip the user with flexibility regarding the calculation of specific 

percentiles. Findings from Li and Liu’s paper are implemented in the geometry library 

which is the R adaptation of the more generic quickhull algorithm based on 
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Barber’s work 172. Comparison between the results of the relevant functions from the 

libraries above and the suggested algorithm from my work will be presented in section 

3.6. 

My proposed algorithm is a fully non-parametric, exclusively data-driven technique. It 

uses function chull 173 within the grDevices R library. It identifies every convex set 

that surrounds a given data set; from the outer convex hull to the centre of the data, 

providing an intuitive way of ordering the bivariate sequence of points. Exclusion of 

the points that form the outermost convex hull, allows the user to move further/deeper 

into the dataset and create a new convex hull of the subset of data remaining after 

the exclusion; and so on.  

Each convex hull splits the sample of observations in two; those cases outside the 

convex hull (including those on the boundary of the convex polygon itself) and those 

contained within the convex hull. Though bivariate centiles cannot be uniquely 

defined, each convex hull can be thought as an analogue to a centile in the bivariate 

scale, i.e. bivariate analogue of centiles, BAC, in the sense that it approximately 

corresponds to a region limiting a certain percentage of cases outside (including those 

on the hull) and inside this centile.  

The algorithm to obtain BACs performs a repetitive procedure of the following steps:  

i. Take the outermost convex hull of a cloud of points; e†°C: the ù-th BAC 

contour, where 0 < ù ≤ 1 (or 0 < ù% ≤ 100).  

ii. Count/store the number of points that form the convex hull. The number of 

points on and outside this e†°C ù-th convex hull will be approximately equal 

to ü × ù; might be slightly under or over the exact ü × ù value, as ü × ù might 

not be an integer value. Subsequently, the reported BAC level might be slightly 
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under or over ù. For instance, the 61st BAC contour of 410 points should be 

made up by 250.1 points (on and outside the 61st bivariate percentile contour), 

which translates to approximately 250 points. In fact, the true number of points 

forming e†°E!% might be slightly under or over 250, e.g. 249, depending on 

the dependence structure/shape between the two rvs. Therefore, the final 

reported BAC closest to 61% will be 249/410 = 60.7%.   

iii. Reduce the cloud of points by deleting the points that form the perimeter of 

the previously defined BAC, so that the remaining dataset consists of 

approximately (ü − ü × ù) = ü(1 − ù) values and establish the next outermost 

convex hull.  

iv. Re-count the number of points that form the new BAC and append to the 

previous set of points (step ii).  

… repeat until the most central point(s) of the data set has been reached. 

The bivariate centre is a central region determined by the shape of the underlying 

distribution. It might either be a single point (the most central/deep point amongst the 

cloud of points), or the average between the 2 most central points, or the centroid of 

the innermost polygon/convex hull obtained by successively peeling away the 

outermost convex hull layers/defined by the 3 or more points forming it. 

This proposed algorithm makes no approximations around data points as all convex 

sets cross an observed point. It makes no distributional assumptions and is 

independent of numerical/estimation/convergence issues. Most importantly, it allows 

for individual, unique centile lines to be picked out and used for further scientific 

inference. Additionally, it provides the means for a complete exploration of extreme 

observations (e.g. outside the 5th BAC) and how they compare to univariate results. 

There is no other publicly available R algorithm that gives a researcher the tools to 

compare univariate and bivariate extremes.  
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Constructing a convex hull involves sorting of data, leading to at least ¶(ü ln ü) 

operation time. In two dimensions, it is reported that ü × ln	ü is a lower bound on the 

complexity of any algorithm that finds a hull 174. As the data dimension increases, it 

can be expected that the computation complexity will grow faster than ü ln ü.  

3.4 Simulations Application 

A bivariate sample of 1500 values was simulated from a Gumbel copula with i = 1.5 

and !!~Normal (ê = 1, - = 0.4) and !"~Weibull	(ê = 5, - = 25) marginals. Figure 3-5 

shows the simulated data along with the corresponding contours of the bivariate 

distribution function.  Seventy one convex hulls surround the entire dataset starting 

from the outer convex hull moving towards the centre of the data, i.e. 71 BACs ranging 

from 0% to 100% coverage of the data, as shown in Figure 3-6.  Each BAC is uniquely 

defined as there could not be another convex polygon connecting a given selection of 

observed points.  
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Figure 3-5: Simulated data from Gumbel bivariate copula 

 

Figure 3-6: All convex sets of Gumbel simulated bivariate copula 

 

The lines shown on Figure 3-7, from the outer to the inner part of the scatterplot, 

represent the proposed 2.5th, 5th, 50th, 95th and 97.5th BACs. Table 3-2 shows the 

exact bivariate coverage of these percentiles. The middle line is a bivariate analogue 

to the median and in this case is very well approximated; a 50.7-49.3% middle split 

amongst the observed sample. A total of 81 points would be considered as bivariate 

extremes in this example (i.e. an extreme observation based on both !! and !" 

variables), falling on or outside the 5% BAC, red convex set. 
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Figure 3-7: Specific convex sets simulated from a Gumbel bivariate copula 

BAC levels: 2.5th, 5th, 50th, 95th, 97.5th 

 

 

Table 3-2: Exact level of percentage coverage of BACs for 
simulated Gumbel copula 

Desired percentile level Exact bivariate coverage 

2.5% 2.6% 

5% 5.4% 

50% 50.7% 

95% 94.7% 

97.5% 97.3% 

 

Table 3-3 shows how many of the 81 bivariate extremes would have been considered 

as within-the-normal-range observations based on the univariate centile ranges of the 

!! and !" variables separately. Figure 3-8 and Figure 3-9 graphically display the 

results of Table 3-3; these have been colour coordinated to facilitate visual 

representation of the observed differences between univariate centiles and BACs. For 

the purpose of this example, values outside the 5% centile in the bivariate scale are 
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labelled as ‘extreme’, and similarly values lower than the 2.5% and higher than the 

97.5th levels for the univariate scale (but these can in fact be changed to any desired 

level). The 5% univariate centiles, in lines 1 and 2 of the table, have, as expected, 5% 

of the data for each rv accounted for as ‘extreme’. The 5th BAC is best approximated 

by level 5.4 (Table 3-2). 

The biggest drop comes in the next two lines, where the number of extremes is almost 

halved (3.1-2.7%) by simultaneously considering the centile structure of the two rvs. 

A further reduction (down to 1.5 and 1.2%) is seen on the next two lines of the table 

which proves the point that a lot less cases would be thought of as ‘extreme’ when 

the univariate and bivariate analogues of centiles are concurrently reviewed, hence 

potentially reducing the number of false extremes. 

Additionally, based on this algorithm, users are able to identify potential false positives 

and hidden extremes. False positives (shown in pink in the last subgraph of Figure 

3-9) are cases identified as unusual based on the assessment of multiple univariate 

criteria but are not flagged up as extreme when the numerous criteria are treated 

multivariately. In this sample, 29 (1.93%) and 34 (2.27%) cases are extreme based 

on univariate criteria for each of the two outcome variables (below the 2.5th and above 

the 97.5th centiles), with 5 shared cases, resulting to 58 unique potential false 

positives (3.87%). 

Hidden extremes are cases that are not thought of as extreme based on univariate 

criteria but are highlighted as extreme based on the bivariate convex hull criteria. In 

this sample, there were 12 (0.8%) such cases (shown in blue in the middle subgraph 

of Figure 3-9). 



   

120 
 

 

Table 3-3: Number (%) of cases classified as non-normal based on univariate 
and bivariate criteria 

Univariate – below the 2.5th and 
above the 97.5th centiles 

BAC (ßF, ßG) – 
outside 5th convex 

hull centile	

Number (%) of 
cases 

!! !" 

þ   75	(5.0%) 

 þ  75	(5.0%) 

  þ 81	(5.4%) 

þ  þ 46	(3.1%) 

 þ þ 41	(2.7%) 

þ þ  23	(1.5%) 

þ þ þ ®©	(®. ™%) 

CONSISTENT EXTREMES 

ý ý þ ®™	(´. ©%) 

HIDDEN EXTREMES 
 

 

Figure 3-8: Outliers according to univariate and bivariate criteria 
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Figure 3-9: Consistent, hidden and false positive extremes 

   

 

Figure 3-10 displays the relationship between the univariate centiles and BACs with 

the two vertical and one horizontal line representing the 2.5th and 97.5th univariate 

centiles and the 5th BACs, respectively. This graph illustrates the direct 

correspondence of the 3 sets of centile values (two univariate and the bivariate 

analogue), which in fact is approximated very well by an inverted U-shape (iU) 

function. The boundary of the iU shows: 

- the cases towards the top of the iU shape correspond to the bivariate central 

cases, i.e. the cases deeper into the dataset, closer to the bivariate and 

univariate medians  

- the degree of differences between univariate and BACs can only vary within 

the boundary of the iU shape, i.e. the differences are capped so can only vary 

by a certain degree, defined by the boundary of the iU. For example, there 

cannot be a univariate centile at 2.5% level which corresponds to a value 

above, approximately, the 25th BAC as estimated by reviewing the iU plot, i.e. 

this is the highest $ axis value that corresponds to the vertical line drawn at 

2.5%  
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- the small squares on either side at the bottom of the graph contain the 

consistent extreme values as defined by matching the results of the univariate 

centile and BAC analysis 
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Figure 3-10: Univariate centiles versus BACs  

 

 

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

Y1 variable

Univariate centiles 
 Vertical lines: 2.5th & 97.5th univariate centiles 

  Horizontal line: 5th bivariate centile

Bi
va

ria
te

 C
en

til
es

●
●

●

●

●

●

●●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●●

●

●
●

●
●●

●● ●●●

●

●

●
●

●
●●

●

●
●

●

●

●
●

●

●

●

●
●●

● ●

●
●

●
●

●

●
●

●●

●●

●

●

● ●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●
●

●●

●
●

●●
●
●

●●
●

●

●
●

●

●

●

●

●
●

●

●●
●

●
●●
●

●●

●

●

●

●

●●
●●

* *** ** ***** *

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

Y2 variable

Univariate centiles 
 Vertical lines: 2.5th & 97.5th univariate centiles 

  Horizontal line: 5th bivariate centile

Bi
va

ria
te

 C
en

til
es

●
●

●

●

●

●

● ●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●●

●

●
●

●
● ●

● ● ●● ●

●

●

●
●

●
●●

●

●
●

●

●

●
●

●

●

●

●
●●

● ●

●
●
●

●

●

●
●

●●

●●

●

●

● ●

●

●

●●
●

●
●

●
●

●

●
●

●

●

●
●●

●
●●

●

●
●

●
●

● ●●

●
●

●

●

●

●
●●

● ●

● ●
●
●

●●
●

●
●

●
●

** ** *** *** **



   

124 
 

 

The blue points at the bottom sections of the two graphs in Figure 3-10 represent 

hidden extremes based on a comparison against univariate centiles alone (35 and 40 

respectively). But only 12 of those are bivariate extremes, i.e. fall outside the 5th BAC 

but within the 2.5th and 97.5th for both response variables (shown as orange asterisks).  

To quantify the precision of the BAC obtained, a convex hull envelope of the 50th BAC 

is presented in  Figure 3-11. The black line is based on the first simulated data as 

introduced in Figure 3-5 Gumbel copula and the remaining red lines are a result of 

500 bootstrap samples.  

Figure 3-11: Bootstrap envelope of convex hulls 

 
 

The convex hull envelope can act as a measure of precision of a given BAC, in this 

case the bivariate median. As it is not possible to order each of the centiles/convex 

hulls in relation to one another, i.e. from the ‘smallest’ to the ‘largest’, it is not possible 

to chop off the lowest and highest 2.5% to produce a 95% confidence region of 

centiles. However, the envelope alone can visually assist researchers when 

evaluating the fit of the proposed method on a given dataset. 
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3.5 Further Application 

Wei 85 demonstrated how her proposed approach worked for a banana-shaped 

dataset following a reviewer’s suggestion on her manuscript. Wei’s method is based 

on the idea of connecting pairs of opposite points and defining a central interval 

according to the bivariate distribution of the outcomes conditional on the line 

connecting the two points (it has not been possible to replicate these results as Wei’s 

algorithm is not publicly available). In Figure 3-12 the results from my proposed 

algorithm are presented for a banana-shaped scatterplot based on 5000 simulations. 

This is an interesting example from a family of distributions whose marginals and 

bivariate density are not normal, though their conditional probabilities in both 

directions are univariate normal 86. 

Figure 3-12: BACs (5th, 50th, 95th) for a banana-shaped data cloud 

BAC levels: 2.5th, 5th, 50th, 95th, 97.5th 

 

The algorithm produced the BACs seen in Figure 3-12 and Table 3-4 shows the exact 

bivariate coverage for 5 selected percentile levels (162 BAC levels in total). As 

expected, the percentages given in Table 3-4 correspond quite closely to those 

desired, but Figure 3-12 shows that the fit is not good. 
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Table 3-4: Exact level of percentage coverage of BACs for 
banana shaped dataset 

Desired percentile level Exact bivariate coverage 

2.5% 2.7% 

5% 5.1% 

50% 49.8% 

95% 94.9% 

97.5% 97.5% 
 

 

Table 3-5 shows the frequency of outliers as identified according to univariate and 

bivariate criteria. The true 5% coverage for this sample, i.e. the closest percentage to 

the goal of 5%, is 5.06%. There are 257 (5.14%) false positives (shown in red and 

green in Figure 3-13 for the !! and !" rvs, respectively) and 26 (0.52%) hidden 

extremes (shown in blue). If the univariate centiles were the only classification tool 

(the red horizontal and vertical lines represent the univariate 2.5th and 97.5th centile 

levels), 5.1% and 0.5% of cases would have been potentially falsely identified and 

missed as extremes, respectively. The respective iU shape and the convex hull 

envelope of the 50th BAC are shown in Figure 3-14 and Figure 3-15, respectively.  

Table 3-5: Number (%) of cases classified as non-normal based on univariate 
and bivariate criteria 

Univariate – outside 2.5th and 97.5th 
centile 

BAC (7!, 7") – 
outside 5th convex 

hull centile	

Number (%) of 
cases 

9# 9$ 

þ   251 (5.0%) 

 þ  251 (5.0%) 

  þ 253 (5.1%) 

þ  þ 118 (2.7%) 

 þ þ 127 (2.5%) 
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þ þ  23 (0.5%) 

þ þ þ 22 (0.4%) 

Consistent EXTREMES 

ý (inside) ý (inside) þ 30 (0.6%) 

Hidden EXTREMES 

 

Figure 3-13: Potential false positives for a banana-shaped distribution 

 

 

Figure 3-14: Banana-shaped distribution, univariate versus BACs 
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Figure 3-15: Bootstrap envelope of the 50th BAC for the banana shape  

 
 

The BACs seen above do not provide a good fit for the banana density due to the 

non-convexity of its shape. An alternative algorithm that would incorporate concave 

elements may be more appropriate in this example. 

To the best of my knowledge an appropriate convexity index does not already exist 

and creation of one goes beyond the remit of this thesis. Some theoretical work has 

been in this area by Porzio and Ragozini 175. They propose a split of the data between 

inner and outer observations depending on how close or far they are from the bulk or 

the boundary of the data respectively. To identify which are the closest observations, 

they firstly consider for each convex hull vertex (starting from the outer one) the 

distances to the remaining points along a radial projection. Then, along each of these 

directions, they look at the univariate ordering of the points from the closest to the 

furthest. The presence of gaps, if any, in these univariate orderings will highlight any 

empty space in the data structure, splitting the outer observations from the inner ones.  
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3.6 Results from existing R libraries 

I have identified four libraries in R containing functions to obtain and display convex 

hulls.  

i. library: geometry, function: convhulln (also applicable to higher than 2 

dimensions)  

ii. library: cxhull, function: cxhull  

They are both based on the quickhull algorithm (qhull.org) 172. The indices of the 

outermost convex hull are given – these are alternatives to the results of the chull 

function used throughout this Chapter and produce identical results. However, the 

latter function, chull, is more straight forward to use due to the nature of the resulting 

index (vector), which corresponds directly to data indices, unlike a rather involved list 

object with mixed order of indices, resulting from either of the above functions. 

- library: depth, function: isodepth 

The isodepth function is based on Ruts and Rousseeuw’s 1996 paper 162. It draws 

convex shapes around data points that satisfy certain conditions regarding the depth 

of the data included in the convex shape (which do not relate to the percentage of 

points included/excluded from each contour) and are dependent on an ‘arbitrary’ 

inflation factor, as discussed on page 112. This is contrary to my method which draws 

those convex shapes exactly on data points.  

In Figure 3-16, all the depth contours of the 1500 values of the simulated Gumbel 

copula as introduced in Figure 3-6 are presented as per the algorithm of isodepth 

function. The two graphs look very similar but a closer look highlights that the 

isodepth function does not draw the CHs directly on observed data points, unlike 
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the BAC method. The isodepth function took more than 10 minutes to run for this 

1500-case long dataset, followed by warning messages, in contrast to my proposed 

BAC procedure which took less than 5 seconds. The warnings imply that it was not 

possible to draw exact contours for all depth values.  

To draw contours of specific depth, the user is asked to define a positive integer, e.g. 

75, that corresponds to a contour of specific depth, i.e. 75/1500 = 0.05. The right-

hand side graph of Figure 3-17 displays contours of depth 20, 50, 200, 500, 700	via the 

isodepth function. Even though there were analytical results for depth level 

700/1500, i.e. d and $ coordinates of the points forming this level of depth, there was 

no graphical output for this level, hence only four depth contours are displayed on the 

graph on the right of Figure 3-17. The graph on the left-hand side of Figure 3-17 shows 

all 5 contours of the equivalent BAC levels from my proposed algorithm as listed 

below, where the number of points are ‘translated’ into percentile coverage: 

 20/1500 = 0.013, exact % BAC coverage 1.6% 

50/1500 = 0.03, exact % BAC coverage 4% 

200/1500 = 0.13, exact % BAC coverage 14%	 

500/1500 = 0.33, exact % BAC coverage 33.6% 

700/1500 = 0.46, exact % BAC coverage  47.1%  
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Figure 3-16: Depth contours based on the depth R library  

 

 

Figure 3-17: Comparison of the BAC algorithm and isodepth function results 

  

 

- library: DepthProc (depth procedure), function: depthContour 

The DepthProc library calculates the depth of bivariate data and produces the 

relevant contour plots based on several different methods: Tukey’s, Projection 176, 

Mahalanobis, Local 177, vC and Euclidean 166,178–180. The first two are based on 
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approximate calculations and the rest use exact calculations. There are six rows of 

graphs in Figure 3-18. Each of the six rows represent the results of the 

depthContour function according to the six different definitions of depth mentioned 

above. The graphs shown on the left-hand side column of  Figure 3-18 are based on 

the default graphical options of the depthContour function which does not offer 

much flexibility in terms of the size and colour of the data points and their transparency 

in relation to the drawn contour lines. The colour gradient shown next to each graph 

serves as a visual representation of depth, from the outer (fewer deep points) to the 

inner (deeper) ones towards the centre of the scatterplot. To facilitate the graphs’ 

interpretation, I subsequently, redrew these plots and these are presented on the 

right-hand side column. The data points were assigned different colours according to 

their depth, matching the depth ranges and colour gradient shown on the graphs on 

the left, which were assigned by the function by default.  

Additionally, the depthContour function requires the definition of the number of !! 

and !" points to be used for each depth contour as well as the number of depth levels 

to be drawn. The first one dictates the shape of the contours, from square-ish shapes 

for smaller number of points to polygons for larger number of points. The larger the 

number of levels, the more separate sections of depth the data set is split into. But 

neither of these two factors relate to the percentage of points included/excluded from 

each contour. For this example (Figure 3-18), the number of levels were set to 30 and 

the number of points was set to 40 (empirically chosen as values below 40 led to very 

rigid contours and values over 40 to extremely smooth contours). 
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Figure 3-18: Contours from depthContour function (library: DepthProc)  

(levels= -*, : = ;*) 
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Table 3-6 shows that the resulting bivariate median (50th BAC) from my proposed 

BAC method approximates very well the results from the two other existing functions. 

It is exclusively data-driven and does not depend on axillary factors and/or a variety 

of definitions of the depth function. 

Table 3-6: Bivariate median results based on different 
algorithms/libraries 

50th BAC 1.02	, 4.85 

depthMedian (library: DepthProc) 1.02	, 4.91 

ctrmean (library: depth) 1.01	, 4.89 
 

Whilst the previously existing libraries provide ways of calculating the convex hull 

and/or specific depth contours, they do not allow the user to request specific level 

BACs in terms of percentile coverage and plot these against their equivalent 

univariate centiles for each rv.  

3.7 Conclusions 

Convex hulls utilise the shape of a bivariate association to form analogues to 

distribution-free centiles in bivariate dimensions. The latter provide an estimate of the 

bivariate median 181 as well as the means to identify extreme cases according to 

concurrent measurements on two variables. 

My research was motivated by the work of others 158,182,183 and the aim was to produce 

a robust, transparent, flexible, distribution free and exclusively data-driven tool that 

clinicians/researchers can use with direct interpretation to their observed sample data.  

The number of cases in a sample identified as unusual might be considerably more 

than 5% when several tests are evaluated independently, depending on the strength 
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of the association between these multiple tests, and values that are multivariately 

abnormal might be missed. By exploring the bivariate behaviour between rvs, truly 

unusual cases may be more easily identified.   

Despite the numerous papers published in the field of bivariate depth and appropriate 

contours, the results of the literature review presented at the beginning of this 

Chapter, show that the use of the term ‘bivariate centile’ is virtually non-existent. A 

readily available, freely accessible and easy to use algorithm that produces a 

straightforward comparison between univariate centiles (with which many researchers 

are already very familiar) and bivariate analogue to centiles (BACs), may facilitate 

better use of bivariate data within the data analytics field. The use of a term that 

researchers can see as an extension of something already familiar to them, i.e. 

extending univariate to bivariate, feels like the appropriate way forward in order to 

increase the term’s visibility in papers, subsequently its understanding from the 

readers.      

The inclusion of covariates will further enhance the results presented in this Chapter, 

together with the incorporation of copula models to further characterise the 

relationships highlighted.   
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4. Copula Models and 

Bivariate Analogues of 

Centiles  

This Chapter applies copula models introduced in Chapter 1 to the BAC methodology 

of Chapter 3. Copula models are used in this Chapter to enhance the applicability of 

the BACs for convex shapes with and without covariates. The results presented here 

are based on a simulated example dataset and will lay the necessary foundations 

(together with previous Chapters) for Chapter 5, where the theories demonstrated in 

this thesis will be applied to a real dataset.  

4.1 Copula bivariate analogues of centiles 

(CBAC) 

As detailed in Chapter 1, copula models are very flexible in quantifying multivariate 

distribution functions, in particular bivariate relationships, which has been the focus of 

the thesis from the start.  

Having found the best fitted copula for a bivariate scenario, bivariate analogues of 

centiles (BACs) can be produced on simulated data from this copula. These BACs 

should match closely with the BACs fitted to the raw data (from which the copula 

would have resulted) and/or might be smoother versions of the former depending on 

the goodness of fit of the copula model. This latter point will be explored further in 

Chapter 5 when a real dataset will be available, and the copula modelling procedure 
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will yield simulated data that can be compared to the raw data.  This Chapter will focus 

on simulated data alone. 

Figure 4-1 presents 3000 simulated data points from a Clayton copula with parameter 

i = 2.2 and two identical Sinh-Arcsinh (SHASH) 184 marginal distributions; 

SHASH(ê = 20, - = 1.1, ¨ = 1.5, ≠ = 3) for the !! (d-axis) and !" ($-axis) variables, 

respectively. The blue lines forming the central cross represent the median of each 

variable plus and minus one quartile on either side. The purple lines in Figure 4-2 

represent the contours of the Clayton copula from which the dataset is simulated.     

Figure 4-1: Simulated bivariate Clayton copula with SHASH identical marginals  
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Figure 4-2: Contours of Simulated bivariate Clayton copula 

 

Figure 4-3 shows all 55 BACs produced via my proposed algorithm in grey with the 

5th, 50th and 95th BACs represented by the blue, red and green convex hulls 

respectively. The use of the copula models at this stage provides a basis for the next 

section which will involve the inclusion of covariates in all the copula’s parameters, 

hence yielding differing BACs for given values of the covariate(s).  

 

Figure 4-3: BACs of simulated copula 
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4.2 Copula regression models 

The investigation of the association between two or more outcome variables will often 

require conditional modelling both in the marginals and in the dependence parameter. 

For example, the relationship between the noise and CO2 emissions of cars may be 

better understood/explained if the size of the car is also taken into account and 

perhaps other related features. If the model residuals are not Normally distributed with 

equal variance for all predictor variables, then transformations may be considered or 

alternative distributional forms. The class of Generalized Additive Models for Location 

Scale and Shape (GAMLSS) 185 incorporates many different distributional forms and 

allows spread, skewness and other distributional parameters to vary according to one 

or more predictors. For example, if the outcome is log-Normally distributed regression 

models for the mean and SD of the logged values may be used; if an outcome variable 

has a Beta distribution, regression models may similarly be fitted, one for each shape 

parameter. Hence a comprehensive approach is taken to understanding the way 

predictors influence an outcome whilst ensuring the fitted model has Normally and 

homoscedastically distributed residuals.  

Copulas can extend the GAMLSS approach even further by allowing not only the 

parameters of the marginals but also the dependence parameter i of the copula to 

vary according to one or more predictors.   

For example, in the case of a copula with a single i, Normal [(êH , -H) and Gamma 

U†	(êI , -I) marginals, all or some of i, êJ , -J , êI , -I could be regressed on predictors. 

More specifically, each of the parameters can be equal to Æ(Ç&Ø&) where Æ is a link 

function, Ç some predictor(s) (design matrix) and Ø the regression coefficients. 
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Ü
!!
!"
à~Copula Ü

Normal	[(êH , -H)
Gamma	U†	(êI , -I)

; ià	

Ü
!!
!"
à~Copula ¥

Normal	[0ÆK2(Ç&Ø&), ÆL2(ÇMØM)1

Gamma	U†	0ÆK3(Ç'Ø'), ÆL3(ÇNØN)1
; Æ4(ÇOØO)µ 

Depending on which parameters need to be adjusted, the shape, location and 

dependence structure of the resulting predicted copula distribution can change 

making copula results very flexible with the ability to represent a wide variety of real-

life scenarios. 

The choice of which one of the parameters (including i) will be allowed to vary by 

specific predictors should reflect expected or evident association patterns and/or 

knowledge about the context of the research question. If, for example, there is no 

evidence or reason to believe that the variability of the Normal marginal varies 

according to a predictor, then the framework allows for formal investigation of this 

notion and/or to allow -J to remain constant. 

The optimum model may be selected via comparison of maximum likelihoods or BIC 

and AIC statistics.  

4.3 Conditional Copula Bivariate Analogues of 

Centiles (CCBAC) 

Conditioning statistical results on changing levels/values of confounding variables 

provides researchers with adjusted estimates that realistically reflect variability in a 

population.  

Given the predicted copula distribution for a specific value of a confounding variable, 

it will be beneficial for the Conditional Copula Bivariate Analogues of Centiles 
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(CCBAC) to be computed. For example, in investigating the relationship between 

weight and height adjusted for age, the conditional copula BAC of a given centile level 

(i.e. 95, 90, 10, etc.) will inform researchers of the expected distribution for a subject 

of a given age. Using this adjustment, clinicians will be able to consult the CCBAC of 

height and weight for a child of a given age and hence compare their values to the 

general population used for the creation of the BACs. 

In order for the above to be possible, simulated data will need to be drawn from a 

copula conditioned on a specific value of the confounder variable, followed by the 

application of the BAC algorithm introduced in Chapter 3. The list of steps below 

details the necessary procedure that would make the above possible: 

- Exploration of a variety of copulas for a given dataset 

- Choice of the best fitted copula based on numerical criteria such as the BIC 

- Adjustment of the appropriate parameters of the fitted copula for covariates  

- Prediction of the copula distribution for a set covariate value 

- Simulation of bivariate data from the predicted copula distribution  

- Implementation of BAC algorithm for a given centile level along with its 

resulting confidence envelope 

- Draw conclusions regarding the predicted bivariate behaviour of a subject with 

regards to the given percentile values and the confidence region around them 

For the remainder of this Chapter, the simulated data presented in Figure 4-1 from a 

Clayton copula with identical SHASH marginals will be extended to allow the 

incorporation of covariates, as per Jun Yan’s 2006 paper 186.  

Each of the SHASH parameters and the copula parameter, i, will be investigated in 

turn. Each parameter will be modified by the addition of a parameter shift to reflect a 
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subgroup of the data (such as a binary covariate). For the SHASH parameters, the 

shift will vary for !! and !". Hence, two additional model coefficients for changes in 

each of the SHASH parameters and one for the copula parameter will be estimated 

in turn in the fitting process. 

The results of this fitting process are presented in a series of tables (Table 4-1 to 

Table 4-5)  and graphs (Figure 4-4 to Figure 4-8) where the marginal and copula 

parameters are regressed in turn upon the levels of a simulated binary covariate. 

Estimates of the copula model parameters are presented with 95% confidence 

intervals (based on standard error calculations from the estimated Hessian matrix) 

along with contour plots for each fitted copula. Three BAC levels are presented in all 

graphs, 5th, 50th and 95th in blue, brown and purple, respectively. 

The first section of each set of results in the following pages contains a table that 

explicitly describes the starting bivariate copula distribution which the presented data 

are simulated from. For example, in Table 4-1, the mean of each of the two marginals, 

changes by 0.994 and 1.04, respectively. The following equation represents an 

ordinary, non-adjusted copula function, whereas the second one represents the 

adjusted version of the former on ê	with a dummy covariate, Ç:	{0,1}.  

Ü
!!
!"
à~Clayton Ü

!!~ïS†ïS(ê! = 20, -! = 1.1, ¨! = 1.5, ≠! = 3)
!"~ïS†ïS(ê" = 20, -" = 1.1, ¨" = 1.5, ≠" = 3)

, i = 2.2à 

Ü
!!
!"
à~Clayton¥

!!~ïS†ïS0ê! = 20 + ØK! ∗ π{$,!}, -! = 1.1, ¨! = 1.5, ≠! = 31
!"~ïS†ïS(ê" = 20 + ØK" ∗ π{$,!}, -" = 1.1, ¨" = 1.5, ≠" = 3)

, i = 2.2µ 

 

The next part of each table lists the estimates of the copula distribution. The graphs 

presented at the end of each example in the following pages present: 
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- A scatterplot of the originally simulated values i.e. simulated values from a 

bivariate copula distribution whose parameters differ between the levels of a 

binary covariate by the selected factors  

- The BAC contours as calculated for the originally simulated values split 

amongst the levels of the dummy variable representing the binary covariate in 

red and green points 

- The fitted copula contours 

- The CCBACs for each example. These are expected to match very closely 

with the BACs based on the originally simulated data but might highlight some 

adjustments/changes as a result of the fitting algorithm which updates all the 

parameters of the conditional copula via an optimisation procedure. The use 

of the CCBAC will be more informative in Chapter 5 as it will be the result of 

simulated data from the best fitted copula of an observed dataset.   

Table 4-1 and Figure 4-4 display the results of the analysis described above for 

changes in the ê parameter which mirror a shift in the overall location of the data cloud 

amongst the levels of the binary covariate.  

Table 4-2 and Figure 4-5Table 4-2: Conditional copula on ∫ – parameter estimates 

show changes in the - parameter reflecting a narrower distribution for one of the two 

subgroups of data. 

Table 4-3 and Figure 4-6 show an example of changes in the ¨ parameter which 

represent a shift in the shape of the lower tail of the bivariate distribution amongst the 

levels of the binary covariate.  

Changes in the upper tail of the bivariate distribution are reflected via a shift in the ≠ 

parameter and the results of this analysis are presented in Table 4-4 and Figure 4-7.  
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Finally, Table 4-5 and Figure 4-8 show the results of possibly one of the most 

interesting aspects of the analysis described in this Chapter, as the copula 

dependence parameter, i, is allowed to differ between the levels of the binary 

covariate. The correlation between the two response variables was defined to be a lot 

stronger in one of the subgroups compared to the other (green vs red points); change 

in i by 11 units, ≠ = 0.52 for the red points and ≠ = 0.87 for the red points (as per the 

formula connecting the i and ≠ for the Clayton copula, seen in Table 1-1).  

In all examples, it is evident via the fitted copula contours and the proximity of the 

BAC and CCBAC contours that the conditional copula modelling procedure was able 

to capture the tailored shifts in each of the parameters successfully.   
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Table 4-1: Conditional copula on B – parameter estimates 

C
9#
9$
D~Clayton M

9#~NOPNOQR# = 20 + S'! ∗ U{),#}, V# = 1.1, W# = 1.5, X# = 3Z
9$~NOPNO(R$ = 20 + S'" ∗ U{),#}, V$ = 1.1, W$ = 1.5, X$ = 3)

, [ = 2.2\ 

 9# variable (change in R# by 0.994) 9$ variable (change in R$ by 1.04) 

R 20.02	(20.00	, 20.03) 20.02	(20.01	, 20.04) 

S' −0.09	(−0.07	, −0.10) 1.01	(0.99	, 1.03) 

V 1.23	(1.01	, 1.50) 1.14	(0.98	, 1.32) 

W 1.62	(1.39	, 1.89) 1.51	(1.35	, 1.70) 

X 3.46	(2.85	, 4.19) 3.22	(2.79	, 3.72) 

[ 2.21	(2.11	, 2.32) 
 

Figure 4-4: Conditional copula on B – BAC and copula contours 
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Table 4-2: Conditional copula on _ – parameter estimates 

C
9#
9$
D~Clayton M

9#~NOPNOQR# = 20, V# = 1.1 + S,! ∗ U{),#}, W# = 1.5, X# = 3Z
9$~NOPNO(R$ = 20, V$ = 1.1 + S," ∗ U{),#}, W$ = 1.5, X$ = 3)

, [ = 2.2\ 

 9# variable (change in V# by 1.2) 9$ variable (change in V$ by 1.3) 

R 20.01	(19.99	, 20.02) 20.01	(20.00	, 20.03) 

V 1.06	(0.92	, 1.22) 1.17	(1.01	, 1.36) 

S, 0.22	(0.18	, 0.26) 0.36	(0.31	, 0.43) 

W 1.45	(1.30	, 1.61) 1.56	(1.39	, 1.75) 

X 2.93	(2.56	, 3.35) 3.26	(2.83	, 3.76) 

[ 2.21	(2.10	, 2.31) 
 

Figure 4-5: Conditional copula on _ – BAC and copula contours 
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Table 4-3: Conditional copula on ` – parameter estimates 

C
9#
9$
D~ClaytonM

9#~NOPNOQR# = 20, V# = 1.1, W# = 1.5 + S-! ∗ U{),#}, X# = 3Z
9$~NOPNO(R$ = 20, V$ = 1.1, W$ = 1.5 + S-" ∗ U{),#}, X$ = 3)

, [ = 2.2\ 

 9# variable (change in a# by 1.1) 9$ variable (change in a$ by 1.3) 

R 20.00	(19.99	, 20.01) 20.01	(19.99	, 20.02) 

V 1.34	(0.97	, 1.86) 1.82	(1.03	, 3.22) 

W 1.72	(1.33	, 2.22) 2.21	(1.34	, 3.62) 

S- 0.22(0.16	, 0.33) 0.82	(0.44	, 1.51) 

X 3.62	(2.67	, 4.93) 4.94	(2.83	, 8.60) 

[ 2.31	(2.18	, 2.44) 
 

Figure 4-6: Conditional copula on ` – BAC and copula contours 
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Table 4-4: Conditional copula on b – parameter estimates 

C
9#
9$
D~ClaytonM

9#~NOPNOQR# = 20, V# = 1.1, W# = 1.5, X# = 3 + S.! ∗ U{),#}Z
9$~NOPNO(R$ = 20, V$ = 1.1, W$ = 1.5, X$ = 3 + S." ∗ U{),#})

, [ = 2.2\ 

 9# variable (change in X# by 1.5) 9$ variable (change in X$ by 1.5) 

R 19.95	(19.94	, 19.96) 19.97	(19.96	, 19.98) 

V 0.99	(0.82	, 1.18) 1.51	(1.14	, 2.01) 

W 1.39	(1.22	, 1.58) 1.92	(1.52	, 2.43) 

X 2.63	(2.25	, 3.09) 3.89	(2.97	, 5.11) 

S. 1.49	(1.17	, 1.91) 1.71	(1.27	, 2.31) 

[ 2.42	(2.30	, 2.54) 
 

Figure 4-7: Conditional copula on b – BAC and copula contours 
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Table 4-5: Conditional copula on ' – parameter estimates 

C
9#
9$
D~Clayton C

9#~NOPNO(R# = 20, V# = 1.1, W# = 1.5, X# = 3)
9$~NOPNO(R# = 20, V# = 1.1, W# = 1.5, X# = 3)

, [ = 2.2 + S% ∗ U{),#}D 

 Change in [ by 11 units 

 9# variable 9$ variable 

R 20.02		(20.01, 20.35) 20.03	(20.01	, 20.04) 

V 1.08	(0.94	, 1.24) 1.12	(0.97	, 1.29) 

W 1.41	(1.28	, 1.57) 1.44	(1.30	, 1.61) 

X 3.10	(2.72	, 3.53) 3.22	(2.82	, 3.68) 

[ 4.42	(1.23	, 4.60) 

S% 10.85	(5.40	, 17.32)	

 

Figure 4-8: Conditional copula on ' – BAC and copula contours 
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4.4 Conclusions 

The univariate marginals can be incorporated into the calculation of BACs via the use 

of copula models and these can be further extended to account for numeric (example 

shown in Chapter 5) or categorical predictors (as shown earlier in this Chapter). The 

proposed algorithm equips researchers with the means of performing a 

straightforward comparison between outliers based on univariate vs bivariate criteria.  

 A search of the literature regarding ‘bivariate centiles’ highlighted a gap that the 

proposed algorithm for bivariate analogues of centiles, goes some way to addressing. 

This is via a copula which incorporates covariate-adjustment extensions via linear 

predictors in the marginals’ and the copula parameter.  

The performance of the proposed algorithm has been satisfactory in terms of run-time 

(produces results quicker than other existing algorithms, e.g. isodepth as seen in 

section 3.6). A follow-on step from here is to evaluate the identified outliers in terms 

of their clinical and scientific relevance.   

The results of the fitting algorithm are such that they can reflect changes in all copula 

parameters (marginal and dependent). Small changes are likely to be indicative of 

clinical scenarios, for example, the right and left eyes might not be expected to be 

distributed much differently between healthy boys and girls. Relatively small changes 

were selected for the simulated examples and these were identified successfully via 

the proposed conditional copula optimisation algorithm.   
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5. Application 

5.1 Introduction 

This Chapter applies all the methods described in the earlier Chapters to a real 

dataset. All live births registered in Mexico City in 2017 (132,363) were obtained via 

the country’s official national health open data resource. The dataset is freely 

available on the following website (accessed in June 2019): 

https://datos.gob.mx/busca/dataset/nacimientos-ocurridos/resource/92e42070-e148-

44c7-9ed7-917f4c3bb04f 

My focus will be on the relationship between baby’s birthweight (in kilograms) and 

length (in metres) and how this relationship varies according to maternal age, 

gestational age and baby’s gender. The flowchart in Figure 5-1 summarises the 

dataset and prevalence of missing data. Complete data was available from 109,890 

single and term births.  
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Figure 5-1: Flowchart with sample size changes for live birth data 

 

Birthweight was measured to the nearest gram and length to the nearest centimetre, 

hence there was some bunching of the data displayed despite underlying continuums 

(Figure 5-2). To counteract this, and any effect such bunching may have on the fitting 

algorithm, a very small amount of noise (Normal(0,0.03)) was added to both outcome 

variables (birthweight and length), with adequate variance to eliminate the effect of 

rounding but also not to cause to much distortion in the observed data.  

132363 births

128483 singles

117589 term births (gestation ≥ 37)

missing weight: 6510

missing length:1627

missing gestational age: 128

missing maternal age: 123

missing sex: 101

109,890 complete cases (790 joint missing data 
on the above variables) 

3494 twins 162 triplets or 
more 224 unknown
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Figure 5-2: Distributions of original birthweight and length variables 

  

Figure 5-3 shows the scatterplot of the data with the empirical density of the marginal 

distributions of each response variable. The central lines forming a cross represent 

the median of each variable and they extend to one quartile on either side. Summary 

statistics are presented in Table 5.1. There is positive correlation between the two 

measures as indicated by all 3 types of correlation coefficients. The weight variable is 

slightly skewed to the right (skewness coefficient just above 0) and a bit more skewed 

than length, whose value is much closer to 0.  Length has thinner tails compared to 

weight (since kurtotic coefficient is higher than 3). Mardia’s statistics (based on a 

random sample of 5000 cases, as dictated by the capacity of the R function mvn 187, 

from the original dataset) imply incompatibility of the observed pattern with the 

bivariate Normal distribution, i.e. bivariate skewness and kurtosis significantly 

different to the ‘target’ Normal values. These significant results are dominated by the 

large sample size, but the fitting of the marginals presented in section 5.4 also follows 

the same direction, i.e. non-Normal marginals. More specifically, based purely on 

mathematical criteria (BIC) the best fitted marginals for weight and length respectively 

are GIG and BCPEo.  
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Figure 5-3: Bivariate scatterplot and initial marginal shapes 

 

 

Table 5-1: Descriptive statistics for birthweight and length 

 Weight Length Correlation: 

Min, Max 1.96, 5.27 0.39, 0.63 Pearson: 0.564, 95% CI (0.560, 0.568) 
Spearman: 0.550, 95% CI (0.545, 0.554) 
Kendall: 0.39, 95% CI (0.37, 0.41) 

Mean 3.12	 0.50	

Median 3.10	 0.50	

IQ Range 2.86, 3.35	 0.49, 0.51	 Tail dependence: Lower: 0.14, Upper: 0.10 

SD 0.37	 0.02	 Mardia’s bivariate Normal statistics: 

Skewness 0.30 −0.01 127.9 (d	 < 	0.001)	) 

Kurtosis 3.09 3.44 9.8 (d	 < 	0.001) 
 

According to the algorithm introduced in Chapter 3, there are 1536 BACs within the 

original dataset. The 5th, 50th and 95th BACs are shown in Figure 5-4 in blue, brown 

and purple, respectively. Exact percentage coverage for these levels is 

4.99%, 49.98%	and 95.00%, respectively. 
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Figure 5-4: 5th, 50th, 95th BACs for birthweight and length 

 

The graphs in Figure 5-5 show all bivariate extremes (on or outside the 5th BAC) in 

orange on the first graph and these are subsequently superimposed by different 

extreme classifications as noted in the subtitles of each graph in brown, grey, green 

and red, respectively. The ‘False positives’ subgraph in Figure 5-5 shows in green 

and blue the univariate extremes for weight and length respectively (below the 2.5th 

or above the 97.5th univariate centiles) that are not classed as extreme bivariately 

according to the BAC algorithm (potential false positives). There are 2638 cases for 

weight, 2599 cases for length and 237 shared cases (shown in pink), adding up to 

5000 (4.55%) unique false positive extreme results. There are 920 cases (0.84%) that 

would have been considered as ‘normal’ according to their birthweight and length 

(Table 5-2), but in fact when the bivariate association of these two variables is taken 

into account, they are flagged up as unusual (hidden extremes, shown as red in the 

‘Hidden extremes’ subgraph).  The last graph of Figure 5-5 reaffirms the inverted-U 

shape formed between univariate centiles and their bivariate analogues as discussed 

in Chapter 3. 
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Figure 5-5: Bivariate outliers, hidden and consistent extremes for weight and 
length 

   

   

Table 5-2: Number (%) of cases classified as non-normal based on univariate 
and bivariate criteria 

Univariate – below the 2.5th 
and above the 97.5th centiles 

BAC (Weight, Length) – 
outside 5th convex hull 

centile	

Number (%) of 
cases 

Weight Length 

þ   5495	(5.00%) 

 þ  5495	(5.00%) 

  þ 5488	(4.99%) 

þ  þ 2857	(2.60%) 

 þ þ 2896	(2.63%) 

þ þ  1422	(1.29%) 

þ þ þ )),#	(). *,%) 

CONSISTENT EXTREMES 

ý ý þ f&*	(*. ,;%) 

HIDDEN EXTREMES 
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5.2 Local dependence  

This section includes the local dependence map and chi plot as described in Chapter 

2. Due to the large size of the original dataset, neither of the two R functions 

(localgauss 68 and chi.plot 188) were able to produce results for the whole 

dataset. The graphs in Figure 5-6 present the resulting plots of a random subsample 

of 10,000 cases from the original dataset. There are no reasons to believe that the 

equivalent plots for the entire dataset would not follow a similar pattern; this is of 

positive correlation throughout the entire range of the association between weight and 

length as indicated by both plots. The linear correlation according to the local 

dependence map spans values from 0.5 to 0.6 and the chi-plot shows in more detail 

the changes in the correlation strength. It varies from no correlation for few pairs of 

points (close to/on the horizontal line) to weak (stronger) correlation on the left (right) 

above the horizontal line.  

Figure 5-6: Local dependence plots 

Local dependence map 
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5.3 Covariate-related BACs 

This section explores the descriptive characteristics of the 3 covariates mentioned at 

the start of this Chapter (sex – binary, gestational age – discrete numeric and maternal 

age – continuous) and demonstrates the flexibility of the proposed BAC algorithm for 

a dataset over 100,000 cases long.  

Sex 

Figure 5-7 shows the bivariate distribution between weight and length whilst 

accounting for the baby’s sex (coded as 0 for boys and 1 for girls). There were 

57,031	(51.90%) boys and 52,859	(48.10%)	girls. The overall pattern of the 

association of weight and length appears to be similar for boys and girls and this is 

evident from the BACs in Figure 5-8 too. There is minimal change in the length values 

between the two sexes. There were 939 and 902 BACs obtained from the data for 

boys and girls with 0.84% and 0.79% hidden extremes, respectively, as seen in Table 

5-3.  

Table 5-3: BAC results by sex 

Sex 
No. of BAC 

levels 

Exact BAC coverage 
Hidden 

extremes 
ª%	 ª´%	 ºª%	

Girls 939 5.03	 50.07	 94.97	 480	(0.84%)	

Boys 902 5.05	 50.05	 95.02	 418	(0.79%)	
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Figure 5-7: Relationship between birthweight and length for boys and girls 

 

 

Figure 5-8: Sex-related BACs between birthweight and length 

 

Gestational age 

The two graphs in Figure 5-9 show the individual relationship between each of the 

response variables and gestational age (Table 5-4). There is an increase in both 

weight and length for higher gestational ages with minimal change in the variation 

within each gestation group, with the exceptions of weeks 40 and 42 for weight and 

week 42 for length.  
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Table 5-4: Distribution of gestational ages 

Gestation -6	 -,	 -f	 ;*	 ;)	 ;&	 ;-	

Frequency 
11849	
(11%)	

27245	
(25%)	

30548	
(28%)	

31350	
(29%)	

7310	
(7%)	

1568	
(1%)	

20 
(0.002%)	

 

Figure 5-9: Gestational age vs birthweight and length 

  

Figure 5-10 introduces the gestational age into the bivariate distribution, where 

different colours represent different gestational ages, from completed week 37 to 

completed week 43. The concurrent increase in weight and length is apparent with 

the increase in gestational age.  

The vertical lining visible on the lower bound for weight within each gestational age 

group is the result of the original rounded values of weight despite the addition of 

random noise. It was never intended to remove the original bunching entirely, but 

instead to dilute it to eliminate potential issues with optimisation algorithms used in 

the later sections of this Chapter. 
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Figure 5-10: Birthweight and length by gestational age  

 

Figure 5-11 displays the fitted BACs according to gestational age. The same colour 

has been used for all 3 levels (5th, 50th and 95th from the outer to the inner, 

respectively). There are no BAC convex hulls drawn for the oldest gestational group 

of 43 weeks as it contained just 20 data points and yielded only 3 BACs, capturing 

45%, 75% and all of the bivariate data, which are not comparable to the 5th, 50th and 

95th levels of the other gestation groups, hence not plotted. The next oldest gestational 

age of 42 weeks is the most variable group, where its 5th BAC reaches all the way 

down to the 5th BAC of the 39 weeks’ gestation group.   
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Figure 5-11: Gestational age-related BACs between birthweight and length 

Weeks 37 38 39 40 41 42 43 

BACs 297 556 595 614 213 74 3 
 

 

Table 5-5 presents the results of the BAC algorithm in terms of total number of 

percentile levels identified in this dataset, exact coverage for the commonly used 

levels of 5, 50 and 95% and the frequency of potential false and hidden extremes 

within each gestational group. The algorithm estimates the presented percentile levels 

closely and, as expected, it does better with larger sample size.  
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Table 5-5: BAC results by gestational age 

Gestational 
age 

Sample 
size 

No. of 
BAC 

levels 

Exact BAC coverage Hidden 
extremes 

#%	 #*%	 f#%	

37 weeks 11849 297 4.87 49.91 94.98 85	(0.72%) 

38 weeks 27245	 556	 5.05	 49.92	 94.95	 179	(0.62%)	

39 weeks 30548	 595	 4.98	 50.02	 94.98	 213	(0.70%)	

40 weeks 31350	 614	 4.94	 50.00	 94.96	 233	(0.70%)	

41 weeks 7310	 213	 4.95	 49.90	 94.95	 45	(0.61%)	

42 weeks 1568	 74	 5.16	 49.55	 95.41	 9	(0.57%)	

 

Maternal age 

Maternal age was reported to the closest year, but the dataset also contained date of 

birth of each child and date of mother’s birth, so these were used to give more 

accurate values. The IQR spanned ages 22 to 32 with minimum age of 9 and 

maximum of 55 years. Figure 5-12 shows the relationship between maternal age and 

birthweight in purple and length in grey; there is no pattern emerging between weight 

or length and maternal age. This is evident in the BACs shown in Figure 5-14 too; 

these are calculated for each quartile boundary of maternal age, i.e. ages below 9.01, 

between 21.96 and 26.74, between 26.74 and 32.09 and above 32.09. The results 

from the 4 different groups are very close for each BAC level, indicating minimal 

differences in the joint behaviour of weight and length by maternal age. This message 

is reinforced by the results in Table 5-6, which change very slightly between each 

quartile range of maternal ages.  
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Figure 5-12: Birthweight (in purple) and length (in grey) by maternal age 

 Min 1st Qu. Median Mean 3rd Qu. Max 

Maternal 
age 

9.01 21.96 26.74 27.25 32.09 55.19 

 

 

 

Figure 5-13: Maternal age-related BACs for birthweight and length 
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Table 5-6: BAC results by maternal age 

Maternal age 
(years) 

Sample 
size 

No. of 
BAC 

levels 

Exact BAC coverage Hidden 
extremes 

#%	 #*%	 f#%	

≤ &). fh   27480 569 5.08 49.89 95.04 216 

> 	&). fh	&	
	≤ &h. 6;   

27472 564 4.97 49.93 94.94 242 

> 	&h. 6;	&		
≤ -&. *f   

27469 551 4.95 49.99 94.96 207 

> 	-&. *f 27469 538 5.07 49.93 95.07 248 

 

Summary 

The exploratory analysis conducted in this section has been explicitly data driven and 

applied to the entirety of the original dataset; except a small number of results which 

were based on a random subsample from the original dataset; the multivariate Normal 

characteristics, the local dependence map and the chi plot. The results have been 

informative in terms of emerging patterns between the bivariate outcome of weight 

and length and the 3 covariates and has allowed me to identify hidden extremes for 

each covariate level in a non-parametric way. The covariates were selected to cover 

a range of data types: binary, discrete and continuous numeric to illustrate the fitting 

of each.        

The next sections focus on fitting copulas after deciding on the best fitted marginal 

distributions for weight and length. The copula will then be extended to incorporate 

the 3 covariates and copula-based BACs for each covariate will be produced. The 

ultimate aim is to be able to generate an adjusted BAC (CCBAC) for children with 
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specific characteristics, for example, for boys born at 38 weeks whose mothers were 

25 years old.    

Despite the fact that the BAC algorithm has performed well so far for the entirety of 

the live-births dataset, i.e. produced results fast (0-10 seconds in a computer with 

processor characteristics: 2.5 GHz Intel Core i7 and memory: 16 GB 1600 MHz 

DDR3), this is not the case for the optimisation algorithm used for the conditional 

copula models. Therefore, to facilitate computation for the remainder of this Chapter, 

a random subsample of 20,000 cases from the original dataset will be analysed. All 

the results shown in the coming sections relate to this smaller unbiased selection from 

the original sample.  

5.4 Marginal distributions  

The gamlss library 185 in R was utilised for the investigation of the best fitted 

distribution for each of the two variables. Table 5-7 shows the BIC results of several 

univariate marginals.  Weight was found to be best described with a Generalised 

Inverse Gamma distribution, GIG (ê = exp(1.14) = 3.13, - = exp(−2.12) = 0.12, ¨ =

21.86); ln link function for ê and - (identity for ¨). Length was best approximated by a 

Box-Cox Power Exponential-original distribution, BCPEo (ê = exp(−0.70) =

0.50 , - = exp(−3.30) = 0.04, ¨ = 1.20, ≠ = exp(0.5) = 1.65); ln link functions for ê, - 

and ≠ (identity for ¨). The fitted marginals are shown in Figure 5-14, where the red 

lines represent the density of the best fitting marginals superimposed over the true 

density of each rv.   
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Table 5-7: Marginal distribution comparison [ranks] 

Distribution BIC – Weight BIC – Length 

Generalised Inverse Gamma 16306	[1] −102791	[3] 

SHASH 16309	[2] −102446	[4] 

Box Cox Power Exponential original 16318	[3] −102951	[1] 

Normal 16628	[4] −102794	[2] 

Gumbel 22039	[5] −98972[5] 

 

There is minimal change in the fit of each of these marginals on the two response 

variables. The choice of the best fitted marginal is purely based on the BIC. The GIG 

has three parameters and is able to capture the slight skewness of weight to the right 

satisfactorily. The BCPEo has four parameters and is able to capture the kurtotic 

pattern in length, i.e. thinner tails on both sides.  

Figure 5-14: Fitted marginal distributions for birthweight and length 
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5.5 Copulas 

Using the marginal distributions found to best fit the data in Section 5.4, copulas of 

varying shapes were considered. The investigations in sections 5.1 and 5.2 did not 

support the bivariate Normal distributional assumption, whose marginals are 

univariate Normal, but the overall pattern of the bivariate association has thus far not 

deviated from a symmetric shape. The Normal copula with GIG and BCPEo marginals 

for weight and length respectively is found to be the best fitted copula according to 

the comparison of BIC values, Table 5-8 yielding an elliptical copula. 

Table 5-8: Comparison of copula functions 

Copula: BIC: 

Normal -94380 

Frank -93831 

t-EV -93741 

Gumbel -93733 

AMH -93349 

Clayton -93020 
 

The updated complete copula function can now be written as follows and the fitted 

contours are shown in Figure 5-15: 

Equation 5-1: 

Ü
Weight
Lengthà~Normal Ü

GIG(ê = 3.12, - = 0.12, ¨ = −1.57)
BCPEo(ê = 0.50, - = 0.04, ¨ = 1.00, ≠ = 1.63)

; i = 0.6à 
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Figure 5-15: Contours of best fitted copula for birthweight and length 

 

The Normal copula is able to capture the symmetric ellipsoid nature of the bivariate 

pattern. 

5.6 Copula BACs (CBAC - unadjusted) 

Simulated data are drawn from a Normal copula with GIG and BCPEo marginal 

distributions with the estimated parameters as shown in Equation 5-1. Figure 5-16 

shows the correspondence between the BACs of the original subsample (dashed 

lines) and the simulated data. The difference in the outer BAC is most noticeable, not 

surprisingly as the edges of any distribution are the most difficult to estimate; 

nevertheless, the 50th and 95th BACs virtually coincide. 
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Figure 5-16: Copula BACs for birthweight and length  

 

5.7 Conditional Copula BACs 

The covariate-related BACs seen earlier are now enhanced via copula regression 

modelling of the location parameter ê of both marginals. 

The location parameter for the GIG and BCPEo marginals is conditioned on sex, 

gestational age, maternal age and their combination. Hence, four conditional copula 

models are fitted. Each set of results shown in the following pages contains tables of 

the estimated copula parameters and the frequency of false and hidden extremes 

based on the BAC results as well as graphical displays of the conditional copula 

BACs.  

The starting point for each of the conditional copulas is the copula model detailed in 

Equation 5-1.  

Table 5-9 and Figure 5-17 show minimal effect of sex on the bivariate distribution of 

weight and length. The drawn BACs virtually coincide and so does the prevalence of 

potential false and hidden extremes, i.e. the sex coefficient for both marginal 
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parameters is very small. The parameter estimates for the sex variable are both 

significant, although confidence intervals are narrow with both limits close to zero. 

Table 5-10 and Figure 5-18 show small changes in the location parameter for each 

gestational age group and a similar pattern like that seen in Figure 5-11.  

Table 5-11 and Figure 5-19 show the change in the location parameter by changes in 

maternal age. The estimates and confidence intervals of the coefficient for the location 

parameter both for birthweight and length is very close to 0. 

Finally, Table 5-12 shows the results of the conditional copula model with multiple 

covariates. The two sets of convex hulls in Figure 5-20 display the predicted 5th, 50th 

and 95th BACs for a boy and girl, respectively, born at 37 weeks with maternal age at 

25 years old.  

Figure 5-21 and Figure 5-22 show the 5th BACs for girls born at 37 and 41 weeks, 

respectively, with the same maternal age (32 years old) along with a bootstrap 

envelope based on 500 simulations. New born girls, whose mothers’ age is equal to 

32 years, with observed weight and length laying outside the relevant 5th BAC, 

depending on their gestational age, would be classed as unusual and might require 

targeted interventions or follow up. 

The conditional copula BACs with a single covariate have been found to be very close 

to their equivalent covariate-related BACs, illustrating the appropriate fit of this model 

form. The conditional copula BACs with multiple covariates has provided a direct 

extension of univariate centiles for varying levels/values of several predictors.   
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Table 5-9: Conditional Copula BAC results for sex 

!
Weight
Length*~Normal 2

GIG56 = 8. :; + =4! ∗ Sex{6,8::;<=>}, B = C. :;, D = −:. FG

BCPEo56 = C. LC + =4" ∗ Sex{6,8::;<=>}, B = C. CM, D = :. CC, N = :. F8G
; P = C. FQ 

 Birthweight Length 

B 3.12	(3.11, 3.13) 0.499	(0.498, 0.500) 

m/ 0.2 × 1001	(0.8 × 1002, 0.01) 0.2	 × 1003(0.2	0	1002, 0.5	 × 1004) 

_ 0.118	(0.117, 0.119) 0.037	(0.036, 0.038) 

` 1.88	(1.21, 2.13)	 0.98	(0.68, 1.28) 

b  1.64	(1.59, 1.68) 

' 0.57	(0.56, 0.58) 

BIC −94406.61 
 

Figure 5-17: Conditional Copula BAC graph for sex 

Sex Girls Boys 

Hidden extremes 168 (0.84%) 179 (0.89%) 

False extremes 971 (4.58%) 963 (4.81%) 
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Table 5-10: Conditional Copula BAC results for gestational age 

!
Weight
Length*~Normal 2

GIG56 = 8. :; + =4! ∗ RSTUVWS, B = C. :;, D = −:. FG

BCPEo56 = C. LC + =4" ∗ RSTUVWS, B = C. CM, D = :. CC, N = :. F8G
; P = C. FQ 

 Birthweight Length 

B 0.68	(0.60, 0.76) 0.36	(0.35, 0.37) 

m/ 0.063	(0.061, 0.065) 0.003	(0.003, 0.004) 

_ 0.112	(0.111, 0.113) 0.036	(0.035, 0.036) 

` 0.31(0.20, 0.64)  0.89	(0.57, 1.20) 

b  1.65	(1.61, 1.70) 

' 0.53	(0.52,0.54) 

BIC −96875.48 
 

Figure 5-18: Conditional Copula BAC graph for gestational age 

Weeks 37 38 39 40 41 42 

Hidden 
extremes 

154 
(0.77%) 

160 
(0.80%) 

152 
(0.76%) 

151 
(0.75%) 

174 
(0.87%) 

174 
(0.87%) 

False 
extremes 

1004 
(5.02%) 

983 
(4.91%) 

1005 
(5.02%) 

985 
(4.92%) 

979 
(4.89%) 

984 
(4.92%) 
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Table 5-11: Conditional Copula BAC results for maternal age 

!
Weight
Length*~Normal 2

GIG56 = 8. :; + =4! ∗ XYUSZ[VWS, B = C. :;, D = −:. FG

BCPEo56 = C. LC + =4" ∗ XYUSZ[VWS, B = C. CM, D = :. CC, N = :. F8G
; P = C. FQ 

 Birthweight Length 

B 3.04	(3.02, 3.05) 0.498	(0.497, 0.499) 

m/ 0.003	(0.003, 0.004) 0.3 × 1003(0.2 × 1002, 0.5	 × 1001) 

_ 0.118	(0.116, 0.119) 0.037	(0.036, 0.038) 

` 0.345	(0.27, 3.42) 0.95	(0.65, 1.25) 

b  1.63	(1.59,1.68) 

' 0.57	(0.56, 0.58) 

BIC −94500.95 
 

Figure 5-19: Conditional Copula BAC graph for maternal age 

Age 
centiles 

5th 25th 50th 75th 95th 

Hidden 
extremes 

179 
(0.89%) 

162 
(0.81%) 

168 
(0.84%) 

156 
(0.78%) 

186 
(0.93%) 

False 
extremes 

964 
(4.82%) 

975 
(4.87%) 

962 
(4.81%) 

979 
(4.89%) 

957 
(4.78%) 
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Table 5-12: Conditional Copula BAC results for sex, gestational age (GA) and 
maternal age (MA) 

5
Weight
Length

>~Normal F
GIGI/ = K. !" + N#!

S ∗ PQR + N#!
GA ∗ ST + N#!

MA ∗ UT, V = W. !", X = −!. Z[

BCPEoI/ = W. `W + N#"
S ∗ PQR + N#"

GA ∗ ST + N#"
MA ∗ UT, V = W. Wa, X = !. WW, b = !. ZK[

; d = W. Ze 

 Birthweight Length 

B 0.44	(0.35, 0.55) 0.409	(0.402, 0.415) 

m/f  0.10	(0.09, 0.11) 0.0046	(0.0039, 0.0053) 

m/gh 0.061	0.059	0.064 0.0020	(0.0018, 0.0022) 

m/ih 0.009	(0.008, 0.011) 0.0004	(0.0003, 0.0005) 

_ 0.114	(0.112, 0.116) 0.037	(0.036, 0.038) 

` −0.437	(−0.8, −0.2 × 1003) 4.31	(3.59, 5.02) 

b  1.57	(1.48, 1.68) 

' 0.52	(0.50, 0.55) 

BIC −23555.17 
 

Figure 5-20: Conditional Copula BAC graph for sex, gestational age and 
maternal age 
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Figure 5-21: Conditional Copula BAC graph with bootstrap envelope, 38 weeks 
gestation 

Girls born at 38 weeks and maternal age equal to 31 years old 

 

 

Figure 5-22: Conditional Copula BAC graph with bootstrap envelope, 41 weeks 
gestation 

Girls born at 41 weeks and maternal age equal to 31 years old 
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5.8 Conclusions 

The techniques described in Chapters 2 to 4 of this thesis have allowed me to analyse 

birth data from Mexico City in a comprehensive way. The relationship between 

birthweight and length was of interest and it was enhanced over and above the 

conventional use of correlation measures.  

A fitted copula model represented the bivariate distribution between weight and length 

based on their best fitted marginals and an estimate of the dependence parameter.  

These results were then adjusted for three covariates (sex, gestational age and 

maternal age). The relationship between birthweight and length was symmetric 

across all values of these covariates. In fact, sex and gestational age do not contribute 

statistically in the model, however clinically they are often regarded as important 

confounders. Therefore, they have been retained in the final model as an example of 

the flexibility of the copula model and the proposed BAC algorithm. 

Covariate-related and conditional copula adjusted bivariate analogues of centiles 

were calculated along with hidden and false extremes at each stage. There was 

minimal change in the bivariate relationship between weight and length for boys and 

girls and changing values of maternal age, whilst there was a small shift in the location 

of the bivariate distribution for later gestational ages.   

Generating adjusted BACs for multiple covariates has been possible via the novel 

combination of copulas and the proposed BAC algorithm. Graphs such as those 

shown in Figure 5-21 and Figure 5-22 have the potential to become a tool for everyday 

use for clinicians and may subsequently improve the course of a patient’s care and 

ultimately their quality of life. 
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The weight and length values of a new born baby can be mapped against the bivariate 

distribution of weight and length from a given population and the BAC level to which 

it lays closer to, will be informative of the ranking of this baby within the population 

that the BACs were based on. This ranking may vary between children of the similar 

weight and length depending on their other relevant characteristics, such as 

gestational and maternal ages. 

BAC contours have the potential to change the way bivariate associations are 

explored and understood in an epidemiological setting (and beyond). The resulting 

percentile coverage within a bivariate distribution, which can shift depending on 

covariate values, may lead to significant changes in a clinician’s decision-making 

process and understanding of joint associations of related clinical outcomes.   
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6. Discussion 

In this thesis, I have shown how copula models can be usefully applied to the analysis 

of health data. The exploration of bivariate associations has been the focus of my 

work; this started by reviewing some of the principles of scalar correlation measures 

and copula functions. The former are not always adequate measures of complicated 

bivariate relationships that can change both in strength and direction (as discussed at 

the first half of Chapter 1) whereas the latter (copulas) provide great flexibility in 

modelling bivariate distribution functions.  

There is a wide selection of copula functions in the literature and some of the most 

commonly used models were described in Chapter 1. They can accommodate a 

variety of shapes for bivariate associations depending on the choice of marginal 

distributions and the value of their dependence parameter.   

Moving from scalar coefficient measures to localised equivalent measures such as 

the local dependence function shown in Chapter 2, granted benefits in the analysis of 

the relationship between two rvs. This extended to graphical displays too with the 

local dependence map and the chi-plot complimenting the conventional scatterplot. 

The chi-plot is a scatterplot of transformed values from any given dataset and focuses 

on the strength and direction of the observed association, which might be often 

missed or overlooked within a scatterplot. Similarly, the local dependence map 

addresses the gaps in the assessment of bivariate associations that cannot be 

adequately summarised via single scalar values; and does this by assessing 

correlation in smaller sections of the data. A specific application of the local 

dependence function for three copulas with Beta marginals was presented and I 
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believe that the resulting LDF results presented in this thesis go some way in enabling 

further applicability of local dependence. 

In Chapter 3, I turned my focus to ways of calculating centiles for bivariate data 

enabling the creation of bivariate analogues of centiles (BACs). Several other ways 

exist in the literature and claim to also produce such centiles, however my proposed 

BAC method is unique in that it is completely data driven, with no kernel, inflation or 

smoothing parameters involved. A natural progression is the novel application of the 

identification of hidden extremes and potentially falsely identified extremes, which can 

result to better targeted treatments. The proposed algorithm produced results fast 

when applied to a dataset just under 110,000 cases long, hence providing a concrete 

start for future work on large datasets.  

In Chapter 4, I explored how the combination of copulas and bivariate analogues of 

centiles can produce informative results for researchers for the classification of 

unusual cases in a bivariate setting. In most medical examples, the use of covariates 

is imperative in the investigation of relationships between several outcomes. The BAC 

algorithm can produce covariate-related bivariate analogues of centiles (equivalent to 

the univariate covariate-related centiles), but when the number of covariates 

increases, this process becomes cumbersome. Introducing copula models in the 

analysis allowed the proposed BACs to be adjusted for several covariates 

simultaneously. 

In Chapter 5, all previous findings of this thesis were applied to observed data from 

term, live births during 2017 in Mexico City. Initial exploration of the bivariate 

association between birthweight and length based on correlation coefficients was 

limited, whereas the local dependence map and chi-plot were more informative. 

These two plots indicated small deviation from positive correlation, which at certain 
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areas was a lot weaker than others. The BAC algorithm produced covariate-related 

centiles for sex, maternal age and gestational age. The latter covariate was the only 

one associated with small changes in the bivariate association of birthweight and 

length. These results were further explored via conditional copulas models whose 

fitted values matched the already observed patterns.  

A further advancement of the covariate-related BACs came via multiple-covariate 

adjustment of the copula distribution. Being able to extend copula models to adjust 

for covariates is very relevant to epidemiological studies. Copula models allow for the 

adjustment of all marginal parameters as well as the copula dependence parameter 

which controls the strength and/or direction of the bivariate association. I was able to 

produce an extension of univariate centiles to the bivariate scale, which has the 

potential of becoming a very useful tool for clinicians (and other researchers) in the 

identification of unusual observations.  

It has been possible for each BAC level to be presented with a bootstrap envelope of 

BACs of the same level and such results can certainly improve a study’s statistical 

inference properties.  

Collectively, I believe that the methods and results presented in this thesis provide an 

important step towards the exploration of a significant clinical task; flexible, straight 

forward and data-driven exploration of bivariate associations. Several of the results 

described in this thesis were presented at various conferences and events in the UK 

during the course of this PhD, as shown in Appendix 2, and attracted attention for 

their applicability within research areas where clinicians (and others) are very familiar 

with their univariate equivalents, i.e. univariate centiles. In 2007, Schweizer 28 pointed 

out that the research community had not yet reached a point of acceptance and 



   

185 
 

 

appropriate recognition of joint outcomes. I hope that the results presented in this 

thesis will assist the future progression of this recognition process.  

6.1 Limitations 

This thesis has evolved around bivariate relationships and has not explored the 

extension of the results to higher than two dimensions. This is a very interesting field 

for further research as the R copula library can accommodate copulas for higher than 

2 dimensions. There are examples in epidemiological research where it is desirable 

to model concurrently more than 2 outcomes. For example, lung function is commonly 

assessed via a battery of measures (FEV, FVC, LCI etc). Joint behaviour of a suite of 

outcomes can be treated as a multivariate distribution function.  

I have also only dealt with numerical continuous outcome measurements in this thesis 

and it would be of interest to explore the compatibility of these results for discrete 

and/or categorical variables. An extensive description of copulas for different types of 

data are discussed in great detail by Genest and Nelsehova 189,190 and include binary, 

ordinal categorical and count data.  

Moreover, the BAC results presented here are only applicable to convex shapes. A 

natural next step forward, is to enable the algorithm to work both for convex and 

concave shapes. Such work would start with the creation of a convexity index which 

could potentially inform the algorithm when to create a concave shape, instead of 

convex. However, shapes that look concave at their boundaries might actually 

become convex in more central areas, i.e. the deeper into the bivariate scatterplot we 

move. Nevertheless, the identification of extremes will be affected by those 

boundaries, either to a greater or smaller extent depending on the actual data pattern. 
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Finally, the necessary theory is not yet in place for some of the theoretical properties 

of convex hulls, hence there are no standard errors available for the estimated BACs.  

More work needs to be done to develop inferential methods for these estimators; 

methods such as the bootstrapping, as applied on the proposed BACs, might go some 

way in addressing this issue.  

6.2 Future work 

Areas that I would wish to concentrate on for future work are the extensions to higher 

than 2 dimensions, the application of the proposed methods to other types of copulas; 

such as vine copulas (which facilitate the construction of models for higher than 2 

dimensions) and rotated copulas 191 (which allow modelling negative dependences in 

copulas, such as the  Clayton and Gumbel) as well as to investigate extensions to 

concave bivariate shapes.  

I would also like to see the implementation of the proposed algorithm in more clinical 

settings and evaluate its usefulness in the eyes of a clinician in terms of assessing 

how good it is in identifying clinically-interesting extreme cases. The results presented 

here can be viewed as a stepping stone for a straightforward and data-driven tool that 

clinicians and other researchers can easily relate to and view as an extension of 

something already familiar to them (univariate centiles).  

As there is not a single unique way of ordering bivariate data, with the proposed BAC 

method being one of the possible answers, it is important to allow for comparisons 

between newly proposed techniques. An example of this is the future implementation 

of the methodologies therein this thesis to a Bayesian framework. Stander et al 192 

recently published findings regarding identification of unusual visual acuity 

measurements in children based on the bivariate posterior predictive distribution of 
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two rvs which forms an interesting clinical example for comparison. Normally 

distributed priors and a variety of copulas were used, and outliers were identified 

according to the order of their posterior predictive density values.  

6.3 Conclusions 

The work presented in this thesis paves the way for better understanding of bivariate 

associations in epidemiological research and practice. This has been achieved by 

acknowledging the limitations of conventional correlation coefficient measures then 

addressing those via local dependence measures and copula models. Identifying 

extreme observations between two joint clinical outcome variables and how these 

might differ according to covariates is a natural consequence of improved exploration 

of bivariate relationships. Their comparison with extreme cases identified via 

univariate analysis will ensure improved and better targeted treatments for patients.    
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Four regression models are fitted. All contained one single predictor but they differed in the nature of the outcome.  
 
• The first two are univariate models (i.e. each response is modelled independently). 
•  The third model is a Normal bivariate regression model (i.e. the two responses are assumed to be Normally distributed and are jointly modelled).  
• The final model is based on the bivariate copula distribution, where the two responses are jointly modelled and additionally the association between them is quantified via an estimated copula  parameter.  

Copulas: A useful tool within paediatric research  
Eirini Koutoumanou, Mario Cortina-Borja, Angie Wade 

UCL Institute of Child Health and Great Ormond Street Hospital, Centre for Paediatric Epidemiology and Biostatistics, London, WC1N 1EH 
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• Copulas or copula distributions/models [1,2,3] are tools that describe the joint behaviour between two or 
more numerical response variables.  
 
• They are multivariate distribution functions, bivariate being the simplest format. 
 
• The univariate marginal distributions of each of the variables are coupled via the copula function.  
Combined with the copula parameter, which depends on a measure of association between the variables, 
these lead to a copula distribution. 
 
• Copulas have been widely used in financial and actuarial settings with very limited applications within  
general health and, specifically, paediatrics.  
 
• We illustrate how copulas can enhance our understanding of underlying multivariate relationships beyond 
the corresponding commonly applied univariate analyses. 
 
 
 

 
• Ultrasound [4] 
At the University Hospital of Zurich, 7,801 fetuses were examined. Of interest was the relationship between 
head and abdominal circumference ultrasound measurements and gestational age at the time of ultrasound. 
Their average gestational age was 39.71wks (range: 37 – 43 wks).  
  
• Visual acuity [5] 
Right and left eye visual acuity measurements (Sonksen logMAR test) were taken from 2,801 children in  
Cambridge, UK. Their average age was 5.25 years (range: 2.3, 8.6 years) and 50% were boys.  
 
• Association between two numerical variables can be measured via Kendall’s correlation coefficient. Values 
of -1 or +1 indicate perfect positive or negative association, respectively. The closer it is to 0, the weaker the 
association. 
 
 
 
 
The marginal distributions that best fit the data is determined using the Bayesian Information Criterion (BIC),  
for which lower values indicate a better fit.  
 
• Both of the ultrasound measurements are best described by a Normal distribution, which is  
characterised by 2 parameters: μ and σ. 
 
• The Sinh-Arcsinh distribution [6] (SHASH) was found to have the best fit to the visual acuity variables.   
SHASH is a four-parameter distribution, where μ and σ are the location and scale of the distribution.  
Parameters ν and τ are skewness and kurtosis measurements of the distribution, respectively.   
 
Copulas are categorised in two main families, Archimedean and elliptical. Archimedean copulas such as  
Clayton, Gumbel, Frank are more common in practice than elliptical copulas as they are more flexible.  
Here we only consider Archimedean copulas.   
 
• Copulas types differ as per the association pattern that they impose between the variables of interest. 

 
• The copula distribution function is formed after taking into account the marginal distributions, the copula  
type and its parameter (copula parameter - transformed Kendall’s correlation coefficient).   
 
 
 

 
 

• Chi-plot: a scatterplot of the data is presented along with the univariate distributions of each variable.  
The outer line surrounding the scatterplot is the convex hull of the dataset (this is the smallest convex set that  
contains all the data points). The cross represents the mean of each variable and the line extending around  
the mean is the interval within which 95% of the values lie.  
 
• Contour and 3D surface plots: these display the joint copula density distribution function in 2D and 3D, 
respectively. 
 
 
 
 
 
 
 

 
 
 
• More precise estimates of regression coefficients compared to standard regression.  
• Increased flexibility in modelling the bivariate distribution of variables that have different and/or skewed and kurtotic univariate distributions. 
• Different copula types to choose from improve flexibility of the models that can be fitted. 
• Exploration of more complex relationships can be achieved via higher-dimensional copulas. 
 

Univariate (marginal) distributions: HC: Normal (μ=339.2 , σ=15.5) ; AC: Normal (μ=336.9 , 
σ=21.1) ;  Kendall's correlation = 0.22; Copula function: Gumbel ; Copula parameter= 1.2 

Univariate (marginal) distributions – same for both outcomes: 
SHASH (μ=-0.02, σ=0.09, ν=0.9, τ=0.6) ; Kendall's correlation= 0.7;   
Copula function: Clayton ; Copula parameter= 3.05  
 
 

1. INTRODUCTION 

4. GRAPHICAL DISPLAYS 

3. MARGINAL DISTRIBUTIONS & COPULAS 

2. DATA DESCRIPTION & ASSOCIATIONS 

6. ULTRASOUND DATASET 7. VISUAL ACUITY DATASET 

8. CONCLUSIONS 

5. REGRESSION MODELS 

Regression analysis results – predictor: gestational age in weeks 
Outcome:  Head circumference Abdominal circumference 

Intercept Slope Intercept Slope BIC Residual 
correlation 

Residual 
covariance 

Univariate 222.5  
(211 to 233) 

2.9 
(2.6 to 3.2) 

124.02 
(109 to 138) 

5.3  
(5.0 to 5.7) - - - 

Outcome  Head and Abdominal circumference (modelled jointly)  

Normal 
bivariate 

222.5 
(211 to 233) 

2.9  
(2.6 to 3.2) 

124.02  
(109 to 138) 

5.3 
(5.0 to 5.7) 134,155 0.2913 

 
88.76 

 

Copula 226.403  
(215 to 237) 

2.8575 
 (2.50 to 3.13) 

126.930  
(112 to 141) 

5.31525  
(4.9 to  5.6) 134,084 - 

 
- 

 
** Regression coefficients are presented with 95% confidence intervals 
** In this example, the only parameter of the marginal distributions that is allowed to differ by age is μ (via copula analysis 
covariates can be also added on the σ parameter – in this it has been kept constant across different ages). 

Regression analysis results – predictor: age in years 
Outcome:  Right eye visual acuity  Left eye visual acuity  

Intercept Slope Intercept Slope BIC Residual 
correlation 

Residual 
covariance 

Univariate 0.30 
(0.28 to 0.32) 

-0.057  
(-0.060 to 0.054) 

0.29  
(0.27 to 0.31) 

-0.058  
(-0.060 to -0.054) - - - 

Outcome  Right and left eye visual acuity (modelled jointly)  

Normal 
bivariate 

0.30 
(0.28 to 0.32) 

-0.057  
(-0.060 to 0.054) 

0.29  
(0.27 to 0.31) 

 
-0.058  

(-0.060 to -0.054) 
 

-7,000 0.71 0.012 

Copula 0.28  
(0.26 to 0.29) 

-0.055 
(-0.057 to -0.052) 

0.26 
(0.24 to 0.27) 

-0.052 
(-0.055 to -0.049) 

 
 - - 

** Regression coefficients are presented with 95% confidence intervals 
** In this example, the only parameter of the marginal distributions that is allowed to differ by age is μ (σ, ν and τ are kept 
constant across different ages - however copulas can introduce covariates in these parameters as well) . 

 
• The predicted values of head and 

abdominal circumferences for 
fixed gestational ages based on 
the copula distribution function are 
presented on the graph on the left. 
 

• Gestational ages 37 and 43 weeks 
are respectively represented in 
this graph via the red and purple 
contour lines.  

 
 

 
• The predicted values of right and 

left eye visual acuity for fixed ages 
based on the copula distribution 
function are presented on the 
graph on the left. 
 

• Ages 2.3 and 8.6 years are 
respectively represented in this 
graph via the red and purple 
contour lines.  
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A2.2 Copulas and their use within paediatric 

research  

2012 Research Students Conference, Southampton, UK – Talk (a sample of slides 

shown below) 
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A2.3 Applications of copula regression 

models in paediatric research  

2013 Royal Statistical Society, Newcastle, UK – Talk (a sample of slides shown 

below) 
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A2.4 Local dependence in bivariate copula 

models with Beta marginals and its 

applications 

2014 Joint Statistical Meetings, Boston, USA – Contributed Poster Presentation

 

Copulas

Copulae are functions that couple univariate cumulative distribution
functions (cdf) into a multivariate cdf as predefined by
Sklar (1959):

where denotes the dependence parameter that defines the strength of the
association between and . Copula functions used here are (Nelsen,
1999):

Frank:

Gumbel:

Joe:

Eirini Koutoumanou, Angie Wade, Mario Cortina-Borja
Population, Policy and Practice Programme, UCL Institute of Child Health, London, WC1N 1EH, UK

Introduction

Often scalar measures of correlation
are not enough to adequately describe
the dependence structure of bivariate
random variables (rvs) with
continuous joint density function .

Local dependence measures allow a
thorough exploration of the nature of
the joint variation

The local dependence function (LDF)
as defined by Holland and Wang
(1987) is:

This LDF can be seen as a localization
of the Pearson correlation coefficient
for , Jones (1996)

Bivariate Beta models provide an
interesting framework in which to
explore the role of the LDF in
revealing bivariate structures between
rvs bounded in

Bivariate distributions with Beta
marginals can be easily constructed
with the use of copula functions.

LDFs for bivariate copulae with Beta marginals

We obtained the LDF expressions for all copulas above. Below are
examples of the contours of the FGM copula with Beta marginals,

, for and .

Application

We analyse the association between postgraduate
students’ grades for a practical SPSS task and a set of
multiple-choice questions (MCQ) of a statistics module
exam. Summary statistics and the BIC values for 3
copula models are presented below:

Copula BIC
Frank
Gumbel
Joe,
best model

The Joe copula bivariate distribution provided the best fit
with the following maximum likelihood estimates for each
of the marginals: SPSS: MCQ:

with dependence parameter

Acknowledgments: The UCL Institute of Child Health receives a proportion of funding from the Department of Health’s National Institute for Health Research Biomedical Research Centres funding scheme.
References: Holland, P. W. & Wang, Y. J. 1987. Dependence function for continuous bivariate densities. Communications in Statistics-Theory and Methods, 16, 863-876, Jones, M. 1996. The local dependence function. Biometrika, 83, 899-904, Sklar, A. 1959. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ.
Paris, 8, 11, Nelsen, R. 1999. An introduction to copulas, Springer-Verlag.Wolfram Research, I. 2014. Mathematica. In: ` (ed.) 10.0 ed. Champaign, Illinois: Wolfram Research, Inc. Rose, C. & Smith, M. 2013 Mathematical Statistics with Mathematica, Springer, New York.

Median SPSS
Median MCQ
Pearson’s
Kendall’s

Contours of pdf Contours of LDF

Contours of pdf Contours of LDF

The LDF contours mirror the dependence between the rvs in all areas of the
graph whilst changing strength at different parts as dictated by the data

Conclusions
• We have achieved better exploration and understanding
of the association between students’ grades based on
different tasks compared to or

• An extension of this work is to use LDFs as a
diagnostic tool to check distributional assumptions of
the residuals for bivariate beta regression models

• The LDF is consistently positive, i.e. good performance
in one task meant good performance in the other one too

• The association is strongest for SPSS marks above 75%
and MCQ marks above 40%

LDFPDF
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A2.5 Multivariate centiles via convex sets 

and their extension via copula models 

2015 Research Students Conference, Leeds, UK (a sample of slides shown below) 
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A2.6 Hidden extremes. A novel non-

parametric approach for the construction of 

bivariate centiles 

- 2017 Open day of the UCL Great Ormond Street Institute of Child Health – 

Poster Presentation 

- 2018 Young Statisticians Meeting, Oxford, UK 

 

¾ Each convex hull splits the sample of observations into two; 
those outside the convex hull (including those on the 
convex polygon itself) and those contained within the 
convex hull 

¾ Convex hull centiles Æ identify the convex hull outside 
which a certain % of values lie Æ based on the joint 
relationship between two numerical variables Æ bivariate 
centiles

¾ Distribution-free approach for 2 numerical variables.
Fast, flexible and computationally efficient.

¾ If there are two variables, a method for fully exploiting their  
relationship can improve the accuracy of identifying 
unusual children and reduce the number of false referrals. 

¾ If the relationship is not taken into account, are we 
missing out on some extreme cases? 

¾ Extension to two dimensions is complex as there is no 
unique way to jointly order bivariate observations, such as 
right and left eye visual acuity

¾ Approximately 2.5% of the 
data are outside the pink and 
inside the blue convex hulls 
Æ 95% of data are contained 
within these two convex hulls 

¾ Approximately 50% of the 
data are outside (and inside) 
the brown convex hull 

¾ Size and Lung Function in Children (SLIC) Study: London 
primary schools

¾ Average age of 1821 children: 8.2 years (range 5-12), 45% 
girls, 4 ethnic groups (White, Black, S Asian, Other/mixed 
race)

¾ FVC (forced vital capacity) measures the volume of air in 
the lungs exhaled following a deep inhalation  

¾ It is often clinically useful to identify children with 
unusually large or small values relative to the majority of the 
population

¾ Population centiles commonly enable this for a single 
variable Æ each centile identifies the value below which a 
given % of children lie, e.g. a child on the 12th weight centile 
is heavier than 12% of the population

Convex Æ no dents in the 
perimeter, i.e. all interior angles 

are less than 180q

Hidden extremes
A novel non-parametric approach for the construction of bivariate centiles 

Eirini Koutoumanou¹, Mario Cortina-Borja¹, Sooky Lum², Angie Wade¹
UCL GOS Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK 

¹Population, Policy and Practice Programme, 
²Respiratory Medicine, Infection, Immunity, Inflammation Programme

Concave Æ dents in the 
perimeter of the polygon, i.e. 
interior angles can be greater 
than 180q

¾ Convex hull: outer convex polygon 
encapsulates all observed points

Red points: HIDDEN 
EXTREMES – by looking 

at FEV1 and FVC 
separately,  

28 children (1.5%) would 
have been treated as 

normal using only 
univariate centiles

¾ We have developed a method for identifying extreme 
cases based on the joint relationship between two numerical 
variables

¾ Distribution-free approach Æ fast and computationally 
efficient with very large datasets

¾ Extensions: i) to account for predictor variables in the 
analysis, (such as age, gender, etc), ii) increase dimensions 
and iii) make readily available via R library

¾ Repetitive process Æ moving 
from the outer convex hull to the 

next one further inside the data, 
until the centre of the data is 

reached Æ unique joint ordering

Supported by the Wellcome Trust 
[WT094129MA]

The problem Sequence of Convex hulls

Methods

Example

Solution

Conclusions & Future Work

Reference: Eddy, W. F. (1977) Algorithm 523. CONVEX, A new convex hull algorithm for planar 
sets[Z].ACM Transactions on Mathematical Software, 3, 411–412.

Scan this to 
see some 
statistical 
aRT using 

convex hulls

Bivariate centiles: enable us to perform more thorough 
investigation into extreme values in the population

¾ Geometry (and a bit of R coding)
¾ Polygon Æ a bounded shape linking points with straight 

lines with varying degrees of angles

Breakthrough idea

¾ Both the green and blue circles on 
the graph on the right, contain 30% 
of the data as there is more than one 
way of defining regions that contain 
a certain % of the data

¾ FEV1 (forced expiratory volume-one 
second) measures how much air can 
be exhaled in one second following a 
deep inhalation
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A2.7 Three Minute Thesis (3MT) Competition 

Runner up at the 2018 ICH 3MT competition (single, static slide shown below) 

 

Present day: Body Mass Index 
standards for body growth 

The Future: Explicit relationship between 
Weight and Height

Bivariate Centiles

Hidden 
Extremes

People are all different 
shapes and sizes
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A2.8 Bivariate centiles from convex hulls 

and copulas 

2018 Royal Statistical Society, Cardiff, UK – Poster  

 

 

  

BIVARIATE CENTILES FROM CONVEX HULLS AND COPULAS
Eirini Koutoumanou, Prof Mario Cortina-Borja, Prof Angie Wade
Population, Policy Practice Programme, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK

Email: e.koutoumanou@ucl.ac.uk

Fig. 1: FEV1 vs FVC respiratory measures 

Fig. 2: Bivariate centiles via convex hulls Fig. 4: Non-parametric vs Parametric Bivariate Centiles 

Convex hulls

• Convex hull is the outer convex polygon that
encapsulates a set of points in the Euclidean 
plane 

A planar polygon is convex iff it contains all line 
segments connecting any pair of its points OR all 

its interior angles are less than  180°

• Sequence of convex hulls: moving from the outer 
convex hull to the next one further inside the data, 
until less than 2 points remain à unique joint 
ordering

• Each convex hull splits the sample of 
observations in two; those outside the convex hull 
(including those on the convex polygon itself) and 
those contained within the convex hull 

• Convex hull centiles à identify the convex hull 
outside which a certain % of values lie à
bivariate centiles à each of the lines shown in 
Fig.2 approximates a bivariate centile

Copulas
• Copulas/copula distributions/models are tools that describe 

the joint behavior between two (or more) numerical 
response variables, !" and !#

$ !", !#; ' = ) *" !" , *# !#

• They are multivariate distribution functions, and our 
focus is on the bivariate case, $ !", !#; '

• The copula parameter ' depends on the strength of the 
association between variables !" and !#

• The univariate marginal distributions of each of the 
variables, *" !" , *# !# are coupled via the copula function, 
)

The copula distribution function is formed after taking into 
account the marginal distributions, the dependence 

parameter and the copula type

• Various marginal distributions and copula types were 
compared against each other and the one with the lowest 
BIC value is shown in the table below with its contours 
shown in Fig. 3

Comparison of centiles

• Data points (1827) were simulated from the best fitted 
copula distribution and their centiles were calculated via our 
proposed convex hull algorithm 

• The 5th, 25th and 50th centiles in red from Fig. 2 are plotted 
against the same centile levels of the simulated data (in 
blue) in Fig. 4

• The table below shows the exact % of points excluded by 
each of the bivariate centiles shown:

• Our proposed bivariate centile algorithm performs well in 
terms of % of points excluded by each centile based on the 
original and simulated data from the copula

• Although the % excluded accord, it is apparent from Fig. 4 
that the estimated 5th centile polygons are not co-incident

• We are currently developing methods of goodness-of-fit for 
bivariate centiles that will resolve the problem of non co-
incidence despite overall % exclusion agreement. We aim 
to find an algorithm that will allow detection of the best 
fitting parametric approximation from the fitted copula

Bivariate Centiles

• Population centiles/quantiles +(-) of a set of independent 
observations {0", 0#,⋯02}, are widely used to highlight 
individuals who have unusual values:

4 5 = 678{9: ;(9) ≥ 5}, where

0 < - < 1 : proportional quantile level
* : distribution function of 0", 0#,⋯02
@: sample size

• The red lines below are the 95th univariate centiles for the 
FEV1, forced expiratory volume at 1 second, and FVC, 
forced vital capacity, of 1827 healthy 8-year-old children 

• Often, interest lies in jointly considering more than one 
response variables

What’s the 95th bivariate centile that accounts for the 
bivariate distribution between two response 

variables?

• Bivariate centiles cannot be uniquely defined

• There are many regions containing a specified mass of 
the joint probability distribution function 

• Both the purple and blue areas in Fig. 1 contain 95% of 
the sample values, but is one better than the other and 
which one should be chosen?

Fig. 3: Contours of the copula model

Copula parameters 
(Skewed Normal Type 2 marginal distributions, A copula, df=4)
Univariate Marginal, FEV1 BCD@ = 1.38 , HI = 0.35, K = 1.35

Univariate Marginal, FVC BCD@ = 1.59, HI = 0.42, K = 1.34

Copula parameter ' = 0.96

Scan this to see 
some accidental 

statistical aRt
using convex hulls

Bivariate centile level 5th 25th 50th

Original data 4.60 24.09 49.45

Copula simulated data 4.27 24.31 48.9

95th univariate centiles
Polygons containing 95% of data

Outer to inner: 
5th, 25th, 50th centiles

Outer to inner: 5th, 25th, 50th centiles
Original data
Simulated data
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Appendix 3: Publications 

Local dependence in Bivariate Copulae with 

Beta Marginals 

Journal: Revista Colombiana De Estadística, 2017 

(omitted) 
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