
University College London
UCL

PhD Thesis

Hippocampal Spatial
Representation: Integrating

Environmental and Self-motion
Signals

Author:

Yi Lu

Supervisor:

Dr. Neil Burgess

Dr. Francesca Cacucci

Thesis submitted to UCL for consideration for the degree of Doctor in

Philosophy



Declare

I, Yi Lu, confirm that the work presented in this thesis is my own. Where information

has been derived from other sources, I confirm that this has been indicated in the thesis.

Experiment 1 in Chapter 3 was reported in the paper by Chen, G.∗, King, J. A.∗, Lu,

Y.∗, Cacucci, F., & Burgess, N. (2018). Spatial cell firing during virtual navigation of

open arenas by head-restrained mice. Elife, 7, e34789.

Experiment 2 in Chapter 4 was reported in the paper by Chen, G.∗, Lu, Y.∗, King,

J. A., Cacucci, F., & Burgess, N. (2019). Differential influences of environment and

self-motion on place and grid cell firing. Nature communications, 10(1), 630.

I contributed in data collection, data analysis and manuscript writing in both papers.

Yi Lu

2



Dedication

First I would like to thank my primary supervisor Professor Neil Burgess for giving

me the opportunity to join this PhD program in Cognitive Neuroscience at University

College London, and China Scholarship Council for providing me with generous funding.

And many thanks to both of my supervisors Professor Francesca Cacucci and Professor

Neil Burgess, for always being patient and supportive, and for giving me adequate

training and freedom to explore my research interests.

I also want to thank Dr. Guifen Chen for instructing me on how to conduct animal

experiments, and Professor Tom Wills for discussion and suggestion on data analysis

in the dark trial experiment. Thanks to Dr. Fabio Rodrigues, Dr. Laurenz Mussieg

and Dr. Josh Bassett, who have been my role model and inspiration in struggling

time. Big cheers to all the Cacucci Lab members: Alice O’Leary, Tara O’Driscoll,

Isabella Varsavsky and Megan Powell and the Burgess lab members: Daniel Bush and

Changming Yu. It is a great pleasure to work with you all.

My final gratitude goes to my parents, who encouraged and helped me through many

frustrating and self-doubting moments in my PhD years, like they always did. Love

you dearly and forever.

3



Abstract

Electrophysiological recording in freely-moving rodents has established that place cells

fire when the animal occupies a specific location and grid cells fire when at several

locations, arranged on a regular triangular grid. Experiments and theories suggest that

place cells and grid cells 1) receive inputs reflecting both environmental and self-motion

information, and 2) are functionally connected to each other. Yet it remains elusive how

the environmental and self-motion inputs dictate either place cell or grid cell firing. In a

series of experiments I address this question by manipulating the inputs independently

while simultaneously recording place and grid cells activity.

Firstly, I introduce our visual 2-d virtual reality system, in which mice run on

an air-supported Styrofoam ball with their head held but allowed to rotate in the

horizontal plan. The virtual arena is projected on surrounding screens and on the

floor at a viewpoint that shifts with rotation of the ball. With sufficient training,

mice can navigate freely in the virtual environment and successfully retrieve rewards

from an unmarked location. Electrophysiological data confirms that place, grid and

head-direction cells show characteristic spatial tuning in VR.

In a second experiment, the gain factor that maps mice’s running speed to visual

translation of the virtual environment is manipulated. Results show that place cell

firings are more driven by vision while grid cells incorporate self-motion inputs better.
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The last experiment had mice navigate in darkness. Without visual input co-recorded

place cells and grid cells both suffer disruption in spatial tuning, albeit tuning is better

preserved near to environmental boundaries.

These results demonstrated that environmental and self-motion signals contribute to

place and grid cells’ spatial representation of different significance, and constrain models

with presumptions about how the place cells and grid cells integrate inputs and interact

with each other.
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Impact statement

I presented here our powerful 2-d virtual reality (VR) system which offers advantages

over traditional navigation research paradigms by enabling manipulations that are

impossible in the real-world, i.e. allowing visual projection of an environment that

need not directly reflect a physical reality or the animals’ movements. Such decoupling

of self-motion and external inputs enable us to separate innate network property from

sensory driven representation, and potentially help us understand processes that are

sensory dependent and those that generate across sensory modalities. Providing head

stability of the animal, Our VR setup allows neural recordings such as two-photon

microscopy to be conducted during awake navigation, hugely expanding our research

territory into large-scale network organisation and intracellular subthreshold neural

process that underline the hippocampal spatial representation.

Hippocampus is of no less resemblance of the CPU in our brain than of the GPS in the

brain. It is suggested by many that hippocampus is involved in the more fundamental

aspects of information process, such that the knowledge we gained from studying neural

mechanisms of its spatial representation could potentially enlighten us on a broad

spectrum of cognitive functions. Last but not the least, Hippocampal pathology is

also closely linked to severe neurodegenerative diseases such as Alzheimer’s dementia.

Finer definition of what cognitive process is and what is not hippocampal dependent
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could help develop test batteries that detects and predicts hippocampal pathology at an

early stage to help clinical diagnosis and prognosis of diseases, and potentially improve

life quality of many.
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Chapter 1

Introduction

1.1 What does the hippocampal formation do?

The hippocampus and parahippocampal regions are among the most studied brain

areas both in their basic biological structures and cognitive functions. The rather

clear laminar organization and largely unidirectional signal pathway discovered in the

hippocampus provide an opportunity for close scrutiny of how the specific physiological

structure give rise to function.

It has been long established that the hippocampal formation is crucial for memory

function and spatial navigation. Pathological degradation of hippocampal formation

has been linked to neurodegenerative dementias such as Alzheimer’s Disease (Hyman

et al., 1984; van Hoesen et al., 1991). Cognitive assessment of patients with hippocampal

lesions and animal studies consistently reported correspondence between hippocampal

integrity and memory function (Scoville & Milner, 1957; Parkinson et al., 1988;

Vargha-Khadem et al., 1997). On the other hand, the gradual revelation that

the hippocampal formation contains an elaborate system of ’space’ representation
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1.1. WHAT DOES THE HIPPOCAMPAL FORMATION DO?

(O’Keefe et al., 1971; Taube et al., 1990a; Hafting et al., 2005) and might support

abstract learning of representational structure (Tolman, 1948; Eichenbaum & Cohen,

2014; Constantinescu et al., 2016) has boosted recent interest in the study of

hippocampal function. The hippocampus has also been linked to other functions such

as emotion (Papez, 1937), attention control (Kaada et al., 1953) and novelty detection

(Vinogradova, 1995).

Over the past decades of research, a consensus was yet to be reached regarding the

principal role of hippocampal representation. However, in both memory and navigation

literature, a functional dissociation has been proposed between the hippocampus and

parahippocampal regions. Specifically, hippocampal damage was related to episodic

or contextual memory deficits while lesions in parahippocampal regions were linked to

semantic/non-contextual memory (Vargha-Khadem et al., 1997). Similarly in rodents,

spatial coding in the hippocampus proper (e.g. the spatial tuning of place cells) is

more context-dependent, while medial entorhinal cortex seems to have established a

context-invariant metric representation (O’Keefe et al., 1971; Hafting et al., 2005).

Yet, why this dichotomy exists and how the two systems interact have not been entirely

elucidated, neither do we know about how they are supported by different inputs such as

the environmental cues and self-motion cues. My research focuses on the comparison

between place cells in the hippocampal CA1 and grid cells in the medial entorhinal

cortex (MEC) and how their representations reflect the influence of environmental cues

as well as the self-motion signal.

In this introduction, I will begin with a brief review of the evidence that links

hippocampal formation to memory function and spatial coding, as well as how they

might be related. Then, following accumulated rodent focused neuroscience studies,

I will describe the anatomical structures of the hippocampal formation, concentrating
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CHAPTER 1. INTRODUCTION

on the cytoarchitecture and functional properties of cells in hippocampal CA1 and

MEC emphasizing on their spatial representations. Following this, I will adopt the

perspective of interpreting hippocampal formation as a spatial coding system and

highlight how external environmental cues and self-motion cues could contribute to

its neural representations (for a review also see Evans et al. (2016)). Finally, I will

provide an overview of three experiments that I conducted either in collaboration with

my colleagues or independently, which attempt to shed light on how different types of

information converges in the hippocampal formation and to understand how different

spatial representation arise and interact.

1.1.1 Hippocampal formation and memory

Patients with bilateral medial temporal lobe resections including hippocampal

formation suffered from severe recent (largely anterograde) memory loss (Scoville &

Milner, 1957; Corkin, 2002). These patients have difficulty recalling facts and events

following the operation as well as from months or years before the surgery. In

contrast, they can remember the details of their early life events. Cognitive tests also

confirm their grave memory deficits compared to normal intelligence scores, and their

memory performance is worse if interrupted between learning and retrieval (Scoville &

Milner, 1957). Standard consolidation theory suggests that hippocampus might play

an important role for systems consolidation, which refers to the gradual transferring of

the hippocampal-dependent memory trace (‘engrams’) to stable long-term storage in

neocortical areas (McClelland et al., 1995; Dudai, 2004). Such anterograde amnesia and

temporally-graded retrograded amnesia (TGRA) were consistently reported in clinical

studies (Kapur & Brooks, 1999; Manns et al., 2003), however, more controversially

reported in animal research. Many studies found that both recent and remote memories
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1.1. WHAT DOES THE HIPPOCAMPAL FORMATION DO?

were impaired for rats with hippocampal lesions performing the Morris water maze

task (Bolhuis et al., 1994; Mumby et al., 1999; Sutherland et al., 2001; Clark et al.,

2005; Ocampo et al., 2017). In a context fear conditioning task, both TGRA (Kim &

Fanselow, 1992; Maren et al., 1997; Anagnostaras et al., 1999; Winocur et al., 2009)

and null results (Lehmann et al., 2007; Sutherland et al., 2008; Sparks et al., 2011;

Broadbent & Clark, 2013) were reported in hippocampal lesioned rats.

The hippocampal formation related memory deficit is also content specific, as well as

being sensitive to the time at which the memory is acquired. Patients reported that

they were unable to retain new declarative memory, which indicated by the explicit

recall of events and facts but not perceptual-motor learning (Brooks & Baddeley,

1976) or rule-based skill learning (Cohen & Squire, 1980). Some also reported that in

patients with more restricted damage to the hippocampal area, only context-dependent

episodic memory but not semantic memory which are facts or knowledge that are

context-insensitive was affected (Vargha-Khadem et al., 1997; Tulving & Markowitsch,

1998; Aggleton, 2000; Spiers et al., 2001). In animal studies, it is shown that

hippocampal lesion damaged spatial memory (Parkinson et al., 1988; Murray et al.,

1989; Angeli et al., 1993; Gaffan, 1998), associative memory (Murray & Mishkin, 1985;

Murray et al., 1993), working memory (Olton et al., 1979), temporal memory (Rawlins,

1985) and novel object recognition (Cohen & Stackman, 2015). Bilateral ablations of

the hippocampal formation in monkeys compromised their task performance in learning

object-place associations but not in object recognition (Parkinson et al., 1988) nor

in learning visual-visual paired associations or cross-modal tactile-visual associations

(Murray & Mishkin, 1985).

Such dissociation of hippocampal related amnesia affecting different memory

components leads to the theory proposing the hippocampus as the primary hub for
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CHAPTER 1. INTRODUCTION

forming associations and organizational structures in memory (reviewed by Eichenbaum

(2017)). It is worth noting that both in human and animal memory studies, spatial

memory deficits are consistently reported to accompany hippocampal lesion, leading

to the suggestion that the hippocampal formation could be important for spatial

representation.

1.1.2 Hippocampal formation and spatial coding

Hippocampal formation supports spatial coding

It was first discovered in rats that the hippocampal CA1 principal neurons increase their

firing rates when the animal ran into specific locations in an open-field environment,

they were thus named place cells (O’Keefe et al., 1971; O’Keefe, 1976). Later more

spatially tuned hippocampal neurons such as head direction cells, grid cells, boundary

vector cells/border cells were discovered in the hippocampal formation (Taube et al.,

1990a; Hafting et al., 2005; Lever et al., 2009; Solstad et al., 2008). In studies that

the hippocampus was partially or entirely lesioned by surgical or pharmacological

methods, animal performance decayed in various spatially demanding tasks. Tasks

that require allocentric spatial learning such as the Morris water maze and delayed

matching-to-place (Morris et al., 1982, 1986, 1990; Steele & Morris, 1999), as well as

those involving spatial working memory such as non-matching-to-place (Olton et al.,

1978; Rawlins & Olton, 1982) were most sensitive to the disruption of the hippocampal

function. Spatial associative tasks such as contextual fear conditioning (Selden et al.,

1991; Kim & Fanselow, 1992), object-in-place (Parkinson et al., 1988; Kesner, 1993) and

object-trace-place learning (Hunsaker et al., 2006) are also hippocampal-dependent.
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1.1. WHAT DOES THE HIPPOCAMPAL FORMATION DO?

How does spatial coding benefit memory formation and general cognitive

representation?

What is spatial representation? What do we need it for and what makes it different

from the primary sensory features that our brain is tuned to? Let us consider spatial

representation from three different perspectives.

The most obvious purpose is localization. Instincts demand us to know where the

sources of security (food sources, breeding locations, etc.) and dangers are located.

Location in the world provides a good stable reference in which to represent items

and events for later retrieval (e.g. spatial memory). This stability is derived from

two processes. One is from the high-level abstraction of spatially and temporally

varying multimodal sensory inputs. Locations can be recognized even after substantial

changes in superficial appearance as well as after a long time. For example, food-caching

birds can store food in several locations and later retrieve them (Roth & Pravosudov,

2009). Hippocampal volume and number of hippocampal neurons were found to increase

with environmental harshness and spatial memory demand in these species (Roth &

Pravosudov, 2009). The other derives from allocentric, meaning locations are defined

relative to the external environment other than to the proprioceptive experience of the

observer. A world-centred locational representation could potentially register across

multimodal sensory inputs which are represented in different egocentric frames and

facilitate sensory integration. Its robustness to moment-to-moment changes in subjects’

current states (e.g. body gesture and heading direction) could also support better

long-term encoding and retrieval. Supported by behavioural evidence, experienced

honeybees are able to home from all directions around the hive at a speed comparable

to their counterparts trained on an equally long fixed-route (Menzel et al., 2000).

Understanding how allocentric spatial representation is achieved will help us understand
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how information is organized and stored in long-term memory.

The second perspective of spatial representations is translation. Under a common

reference frame, relationships between locations can be represented as vectors that can

be integrated. Darwin (1873) was the first to describe that diverse species with a fixed

home base are often capable of integration of inertial signals, which he called ’dead

reckoning’ (or ’path integration’), the ability to keep track of displacement from a

home base. Central place foragers like ants and bees use path integration as their

predominant system of navigation (Collett & Collett, 2000). A vector-based path

integration system is complementary and facilitates landmark-based navigation (Cheng

et al., 2007). For example, when familiar landmarks were rotated from its regular place,

desert ants followed them for a short while, then switched to a direct path towards the

home base, suggesting that they kept track of the home vector and switched to a path

integration controlled navigation strategy when landmarks became unreliable (Wehner,

2003). Other than path integration, vectors from stored memory could be summed

with the current path vector, or with another memorized vector, to generate novel

vector relationships between otherwise unconnected locations (Collett & Collett, 2000;

Landau et al., 1984). This flexible and sometimes offline vector-based learning is one

of the most potent arguments for the presence of a general map structure for spatial

representation, also known as the ’cognitive map’ theory (Tolman, 1948).

Interestingly, theories of ’cognitive map’ and ’path integration’ that describe the

organisation of allocentric location and vector-like integration processes were proposed

long before the neural evidence. And since the discovery of place cells and grid cells,

they appear to be fulfilling the purposes (further discussed in Section1.3).

Last but not the least, it is important to acknowledge the tight coupling between

locomotion, location and sensory changes. Translation between locations are the
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direct result of locomotion and in turn, cause sensory perception to change. In

the hippocampus self-motion and sensory inputs intermingle and interact to define

locations. Animals adopt movement-based sensory registration strategy to anchor their

home location. Researchers observed that desert ants took learning walks upon leaving

their nest foraging for food, they circled the nest in bigger and bigger radius while

pausing from time to time and aligning themselves to face the exact direction of the

nest. Based on this observation it was hypothesized that those behaviours allowed

multiple ’snapshots’ of the nest area to be taken and labelled with distances and

orientations according to path integration inputs, ultimately supporting retrieval of

nest location (Müller & Wehner, 2010). The advantage of direct registration between

environmental inputs and locomotion(velocity) signal, instead of error correction at

the level of spatial representation, is that by calibrating the self-motion signal, sensory

cues project influence to a larger spatial and temporal extent (presumably because

of the relatively stable locomotion inputs). It is not yet known whether any general

environmental regularity (e.g. dominant frequency of natural visual scene) can help

transfer the registration over a large territory to continually support accurate velocity

representation. Neverthelss, exploring the possibility could help us understand the

mechanism of long-distance natural navigation.

1.2 The anatomical and physiological properties of

the hippocampal formation

Having laid out the behavioural problem, we are now adopting a bottom-up strategy

to understand how neurons and brain regions are organized and connected, as well

as the implications of such anatomical structure on current theories and models of
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hippocampal function. I will be using the following language and classifications to

discuss the aforementioned questions. Unless specified otherwise, the neuroanatomy

discussed below pertains to the rat brain. The nomenclature used here follows the

logic used by Lavenex and Amaral in ‘The Hippocampus Book’ (Chapter 3, Andersen

et al. (2007)): 1) Hippocampal formation is defined as the functional brain system that

includes hippocampus (CA1, CA2 and CA3), dentate gyrus, subiculum, presubiculum,

parasubiculum and entorhinal cortex (See Figure 1.1); 2) each position within the

hippocampal formation is defined by three axes - the longitudinal axis that extends from

the rostrodorsal portion to the caudoventral portion of the brain (septotemporal axis),

the transverse axis that is orthogonal to the longitudinal axis and the superficial-to-deep

axis that runs perpendicular to the layers of each hippocampal region, with layers

closest to the pial surface being labelled as superficial and those closer to the ventricles

as deep. Hippocampal anatomy is marked by its clear laminar organization, convergent

multi-modal afferent connections and highly divergent and interconnected intrinsic

projections. The description will be specifically focused on hippocampal region CA1

(where place cells are recorded) and entorhinal cortex (where grid cells can be found).
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Figure 1.1: Horizontal section through the rat hippocampus. Nissl-stained

section (A), and section outlined and marked with regions and layers (B). Bar in A =

500 µm and applies to both panels (Source: Adapted from Andersen et al. (2007)).

1.2.1 Hippocampal CA1

CA1 neuron cytoarchitecture and physiological properties

The hippocampus consists of subfields CA1, CA2 and CA3. Their sub-division

is justified by multiple criteria including afferent and efferent projections, neural

morphology and neurochemical markers. Connections within the hippocampal

formation are largely unidirectional (Andersen et al., 1971). CA1 is the last stop in the

information flow and also the output hub in the hippocampus proper.

The principal neuron type in CA1 is the pyramidal cell (Ramon y Cajal, 1911; Lorente

De Nó, 1934; Ishizuka et al., 1995). Pyramidal cells typically present a triangular

cell body, a basal dendritic tree and a main apical dendritic tree (see Figure 1.2).

Pyramidal cells in CA1, in comparison to those in CA2/CA3, have smaller cell bodies

and are more densely packed into a thin layer named pyramidal cell layer (pcl). Their

basal dendrites extend deeply towards the alveus occupying a layer called stratum

oriens (so), whilst their apical dendrites extend superficially towards the hippocampal

fissure passing through two layers, stratum radiatum (sr, proximal apical) and stratum

lacunosum-moleculare (sl-m, distal apical). The orientation of these dendritic trees is

remarkably homogeneous across the whole area making CA1 suitable for generating

large-scale field potentials.

The primary apical dendrites of pyramidal cells branch obliquely into stratum radiatum

and continue to branch after they enter the stratum lacunosum-moleculare forming an
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apical tuft. One of the major excitatory projections to CA1, the perforant pathway

originating in layer III of the entorhinal cortex, innervates the apical tufts in stratum

lacunosum-moleculare (Hjorth-Simonsen & Jeune, 1972). Measuring passive membrane

conductance revealed that CA1 dendrites impose strong filtering and attenuation on

synaptic potentials between its site of origin and site of integration (Pyapali et al., 1998),

advising that distal dendritic inputs such as ones from the perforant pathway were likely

ineffective at the levels of the soma or axon output. Mechanisms such as the membrane

resistance decrease with increased distance from the soma, and dendritic spikes being

initiated by voltage-gated ion channels, were found to compensate. Most interestingly,

it was shown that dendritically generated Na+ and Ca+ spikes are sufficient in inducing

long-term potentiation (LTP) (Golding et al., 2002), and are facilitated when combined

with modest activation of the Schaffer collateral synapses (projections from CA3) in

upper apical dendrites (Jarsky et al., 2005). Together these dendritic properties portrait

pyramidal cells in CA1 as compartmental processors in which input integration happens

when temporal and amplitude criteria are met.
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Figure 1.2: Illustration of cell morphology in hippocampus CA1. Camera lucida

drawing of a CA1 pyramidal neuron (A) and classification of interneurons (B). Bar =

100µm. (Source: Adapted from Andersen et al. (2007)).

Interneurons constitute only a small proportion of cells in hippocampus (∼10%),

however they represent one of the most diverse cell populations (see Figure 1.2).

Unlike pyramidal cells, their cell bodies are scattered in all hippocampal layers.

Interneurons form short-range but divergent projections to either pyramidal cells or

other interneurons and release the inhibitory neurotransmitter GABA on their targets.

Despite their diversity, many identified interneuron types are very specific in their

targeting. For example, basket cells and O-LM cells selectively innervate the vicinity

of the soma and distal apical dendrites of pyramidal cells, respectively. They generate

enormous axonal plexuses that have more than 10,000 synaptic varicosities and are

estimated to innervate 1000+ postsynaptic pyramidal cells. Others interneurons

prefer to target neurons with specific neurochemical properties, for example, the

interneuron selective CR-positive cells innervate the CCK-containing cells but not the

PV-containing cells (Gulyás et al., 1996).

There are also major differences between hippocampal interneurons and pyramidal

cells. Interneurons have more depolarized membrane potential, distinctive topology

and distribution of voltage-gated ion channels (Fraser & MacVicar, 1991; Martina &

Jonas, 1997). As a result, spikes initiated in dendrites of interneurons propagate rapidly

to the soma with high fidelity. Their fast kinetics in action potential generation places

them in a privileged position to pace network sychronization, indeed most interneurons

are phase-locked to oscillatory field potentials (Colom & Bland, 1987). One study

demonstrated that a large population of mutually connected fast-spiking basket cells

generates gamma oscillations, via shunting inhibition, even when faced with highly
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heterogeneous tonic excitatory input (Vida et al., 2006).

Functional properties of the hippocampal CA1

In CA1 cells can be broadly divided into principal neurons (pyramidal cells) and

interneurons as previously mentioned. Their firing properties also distinguish between

each other, I.e. the majority of pyramidal cells are complex spike cells which have on

average lower firing rate (<10 Hz) and tend to fire spikes in short bursts of 2 – 7 spikes

with 1.5 - 6 msec interspike intervals (Ranck, 1973). Those cells when active mostly

show significant spatial tuning by firing only in a restricted region (the ‘place field’) in

an environment, which is the reason they are named place cells (O’Keefe et al., 1971;

O’Keefe, 1976; O’Keefe & Nadel, 1978). Interneurons distinguish from pyramidal cells

by firing at a regular interspike interval and a higher rate (Ranck, 1973), although some

interneurons also have bursty spiking pattern and fire at a lower rate (Csicsvari et al.,

1999). For interneurons, many have a weaker but detectable spatial correlate with more

sensitive measures (Frank et al., 2001), while others attribute their role to network

oscillation (Ranck, 1973; Csicsvari et al., 1999) and speed modulation (McNaughton

et al., 1983). Both cell types displayed speed modulation by increasing their firing rate

as a function of animals’ running speed (McNaughton et al., 1983).

Prominent network oscillations at 5-10 Hz (‘theta’) and 40-100 Hz (‘gamma’) were

found in local field potential (LFP) recorded during paradoxical sleep and wakefulness

all over the rodents’ hippocampal formation including CA1 (Vanderwolf, 1969; Bragin

et al., 1995). And both pyramidal neurons and interneurons tend to fire in phase,

mostly preferred firing at the negative phase of the LFP theta oscillation (Ranck, 1973;

Csicsvari et al., 1999). On top of that, place cells fire at a progressively earlier phase

of LFP theta when animals traverse their place fields (‘phase precession’, O’Keefe &
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Recce (1993)). Evidence suggests that place cells seem to have a broad spectrum

of behavioural correlates including allocentric location which I am going to elaborate

below.

Place cells

Place cells were first described in the hippocampal CA1 field but later recorded in

all subregions of the hippocampal formation (O’Keefe et al., 1971; O’Keefe, 1976).

From the observation that the firing patterns of those place cells did not respond

to any single sensory cues nor distinguishable motional or motivational factors, it

was insightfully proposed that those are units constructing a spatial framework as

in the cognitive map theory, meaning with different cells firing at different locations

the population firing fields ’map’ all the locations within an environment (O’Keefe

et al., 1971; O’Keefe, 1976). Ever since place cells have become a milestone of the

blooming field of navigational research and thus one of our main subjects in the following

experiments.

Evidence supporting the ‘cognitive map’ theory includes that in an open-field

environment many place cells formed omnidirectional compact fields that tiled the whole

environment (O’Keefe & Nadel, 1978; Muller et al., 1987; Wilson & McNaughton, 1993).

Those place fields were often shown to be stable across repeated exposures to the same

environment but drastically ‘remap’ (changing firing rate or firing fields location) across

environments with different configurations and situated in different rooms (Muller &

Kubie, 1987; Thompson & Best, 1990; Bostock et al., 1991; Quirk et al., 1992). It was

likely that cell activities were organised with underlying attractor states representations

for different environments (Hopfield, 1982; Zhang, 1996; Samsonovich & McNaughton,

1997; Wills et al., 2005). Finally, reconstructions of position from place cell activity
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confirmed that with less than 100 cells the computed positions were highly accurate,

with only ∼ 5cm of deviation from the actual positions (Wilson & McNaughton, 1993;

Zhang et al., 1998). Place cells were later recorded in other species such as bats and

human (Ulanovsky & Moss, 2007; Ekstrom et al., 2005).

Contradictory to the holistic view of place cell ensemble representation, it seems that

place cells are rather loosely organized such that individuals respond to different subsets

of cues (O’Keefe & Burgess, 1996; Gothard et al., 1996b,a; Shapiro et al., 1997; Tanila

et al., 1997; Skaggs & McNaughton, 1998; Chen et al., 2013). There is, however,

the consistent ensemble activity pattern of place cells to carry sequential/trajectory

information. For example, place cells often fire differently depending on their start or

end locations (Gothard et al., 1996b,a). Retrospective and prospective coding were

found in place cells firing when rats navigate in a plus maze (Ferbinteanu & Shapiro,

2003). Most convincing evidence is the discovery of ‘replay’, a phenomenon that

is robustly detected during the quiescent or sleeping period after active exploration

when place cells spontaneously reactivated sequentially according to their place

fields contingency during awake navigation but temporally compressed (Wilson &

McNaughton, 1994; Louie & Wilson, 2001; Lee & Wilson, 2002; Foster & Wilson,

2006). Moreover, accumulating evidence suggested that place cell activity also carries

non-spatial information. Relevant to the sequential replay is the encoding of elapsed

time in place cells that can be dissociated from spatial coding (Pastalkova et al., 2008;

MacDonald et al., 2011, 2013; Kraus et al., 2013).

Place cells also change their firing according to non-spatial features such as expectancy

of rewards and memory demand (Hölscher et al., 2003; Dupret et al., 2010). Basic

sensory features such as auditory and olfactory cues are also found to be represented by

place cells (Wood et al., 1999; Aronov et al., 2017). The activity of place cells is found

31



1.2. THE ANATOMICAL AND PHYSIOLOGICAL PROPERTIES OF THE
HIPPOCAMPAL FORMATION

to encode both object location and object identity when they are encountered in an

enclosure (Manns & Eichenbaum, 2009; Deshmukh & Knierim, 2013). Taken together,

place cells seem to be representing events-in-context information, i.e. episodic memory,

that evolves sensory features bounded to spatial, temporal and even conceptual context.

The rich representation linked to place cells leads to the questioning of whether

allocentric spatial representation characterizes the function of CA1 pyramidal cells the

best (Eichenbaum et al., 1999; Buzsáki & Moser, 2013). Nevertheless, when spatial

location is the most prominent regularity in a task such as when the animal free-forages

in an open-field enclosure, place cells and a whole battery of hippocampal spatial

cells reliably keep track of the animal’s allocentric location and provide the basis for

vital navigation tasks. Their representation correlates well with animals’ navigational

behaviour (Lenck-Santini et al., 2001) and disruption of place cell representation impede

the memory of goal location (Dupret et al., 2010).

1.2.2 Entorhinal cortex

Entorhinal cortex neuron cytoarchitecture and physiological properties

The entorhinal cortex is the major gateway between the hippocampus and the cortex.

It is widely accepted that there are two subfields of the entorhinal cortex, namely

lateral entorhinal cortex (LEC) and medial entorhinal cortex (MEC), according to their

distinctive cytoarchitecture and connectivity patterns (Blackstad, 1956; Shipley, 1975;

Brodmann, 1909; van Groen et al., 2003; Canto et al., 2008). They are also considered

to be participating in different cognitive functions. Mainly MEC is thought to mostly

involved in spatial representation, while lateral entorhinal cortex plays a bigger role in

non-spatial representation (Fyhn et al., 2004; Hargreaves et al., 2005). I will focus on
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a description of the anatomical organization of the MEC.

The laminar structure of entorhinal cortex is less clear-cut compared to that of CA1.

The currently recognized six-layered division defines layer II, III, V and VI as cellular

layers while layer I and IV are sparse in cell bodies. Layer II is populated with stellate

cells and pyramidal cells. They both project to dentate gyrus and CA3. Layer III

is occupied by a more heterogeneous group of neurons such as pyramidal cells (the

majority cell population), stellate cells, fusiform cells and multipolar cells. They send

projections via perforant and alvear pathways to CA1 and subiculum. Layer V contains

three main classes of neurons: pyramidal cells, small spherical cells and fusiform cells.

The majority of these cells send axons to the white matter in a column-like organisation,

as well as recurrent collaterals to entorhinal cortex superficial layers. Layer V is also the

termination of projection from CA1 and subiculum (reviewed by Canto et al. (2008)).

Stellate cells and pyramidal cells are major principal cell types in the entorhinal cortex.

Stellate cells are most abundant in MEC layer II where they radiate dendrites out to

layer I-III and send collaterals to the dentate gyrus and CA3 (see Figure 1.3A). Stellate

cells are characterised by their resonance and temporal integration properties that are

shaped by different voltage-gated ion channels. Specifically, the membrane-potential

oscillation of stellate cells changes from high frequencies in the dorsal part of MEC to

low frequencies in the ventral part (Giocomo et al., 2007). Studies have shown that

the knockout of hyperpolarization-activated cyclic nucleotide-gated 1 subunit (HCN1)

slows down membrane resonance, along with other temporal-integrative properties, in

layer II cells (Garden et al., 2008) and changes the grid scale (Giocomo et al., 2011).

Pyramidal cells are found in both superficial and deeper layers of MEC. Superficial

pyramidal cells do not share the aforementioned resonance membrane properties of

stellate cells such as the subthreshold membrane oscillation. In contrast, deeper
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layer pyramidal cells do exhibit theta oscillation in subthreshold membrane potential,

although these appear to be independent of Ih current (Dickson et al., 2000). Perhaps

the most intriguing property of layer V pyramidal cells is their ability to integrate

neural activity over a long period. In the presence of the muscarinic AChR agonist

carbachol, pyramidal cells in layer V/VI show sustained action potential firing after

current injection paused and progressive increase in firing rate with repetitive current

injection over several minutes (Egorov et al., 2002). This striking property suggests

they may play an important role in working and long-term memory (Egorov et al.,

2002).

Like in the hippocampus, GABAergic interneurons are also abundant and diversely

populate all strata of the entorhinal cortex, especially the superficial layers. Together

with the excitatory cells they constitute fine-tuned neural circuits and give rise to

various forms of computation.
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Figure 1.3: Neurons in superficial and deep layer of entorhinal cortex. (A)

Camera lucida drawing of a stellate cell(left). Membrane potential oscillation of

the stellate cell held at membrane potential positive to -55 mV (middle bottom).

Autocorrelogram of the membrane potential (middle top) showing rhythmicity. In

the right panel is the voltage response of a stellate cell to step current injection. Notice

here the obvious ’sag’ after current onset, and the rebound spiking after the termination

of current injection. (B) Cameta lucida drawing of principal cells and interneurons in

entorhinal cortex layer V. Bar = 100 µm. (Source: Adapted from Andersen et al.

(2007))

MEC neuron functional properties

MEC hosts a variety of neuronal types each has distinct behavioural correlated but

forms indispensable pieces to our spatial coding system. In the superficial layer (layer

II and III, hippocampal efferent) and deeper layers (layer V, hippocampal afferent

layer) reside different cell populations which stress the importance of understanding

the entorhinal-hippocampal circuit integratively.

Grid cells

Both stellate cells and pyramidal cells in MEC can be grid cells and they are recorded

in all principle cell layers. In contrast to place cells which mostly have one single place

field, a grid cell have multiple firing fields that are arranged in a regular triangular

array (Fyhn et al., 2004; Hafting et al., 2005). There are three important parameters in

describing a grid pattern: scale, orientation and phase. The scale represents the distance

between two neighbouring fields, orientation refers to the smallest angle between the

three symmetric axes of the grid to the horizontal line, and phase depicts the distance
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of shift between grid patterns that have similar scale and orientation. The degree of

‘gridness’ (gridness score) was tested by calculating the difference of correlation between

the autocorrelogram of the cell’s spatial rate map and rotated autocorrelogram at the

expected peaks (60o and 120o) and the expected troughs (30o, 90o and 120o). The

amazing regularity of grid cell firing field organization and that it evenly spanned across

the environment indicate that grid cell could be the solution for a metric representation

which cognitive map theory had been looking for (O’Keefe & Nadel, 1978; Mcnaughton

et al., 1996; McNaughton et al., 2006).

The anatomical and functional organisation of grid cells also fit the prediction of

such a metric system that updates location through tracked movement speed and

direction (Mcnaughton et al., 1996; McNaughton et al., 2006). Grid cells seem to

cluster in modules along the dorsoventral axis of MEC so that cells within a module

are anatomically closer and functionally more similar. Namely, grid cells from the

same module tend to have similar grid scale and orientation, while across different

modules from dorsal-most to a ventral-most portion of MEC, grid cells show discrete

stepwise increased scale ( 30cm – 2m) and less coherent orientation (Hafting et al.,

2005; Barry et al., 2007; Stensola et al., 2012). Interestingly, place cell field sizes were

found continuingly expanding along the dorsoventral axis of CA1 (Jung et al., 1994;

Maurer et al., 2005; Kjelstrup et al., 2008), suggesting some functional connection in

between. Models and simulations proposed that by operating like a modulo system

with different bases the grid cell population are capable of representing vectors between

locations over a range much bigger than the biggest grid scale recorded (Fiete et al.,

2008; Bush et al., 2015).

Like place cells, grid cells are also shown to replay following place cell replay sequence

(Ólafsdóttir et al., 2016). Contradicting to the simplified view of grid cells being the
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perfect allocentric map for space, local grid regularity was shown to be distorted by the

presence of boundary and reward (Stensola et al., 2015; Krupic et al., 2018; Boccara

et al., 2019). Grid firing pattern was shown on non-spatial features such as auditory

and conceptual space (Aronov et al., 2017; Constantinescu et al., 2016). However,

our current definition of grid cells strictly requires regular field-to-field distances and

angles which were solely adopted from navigation studies. It is difficult to construct a

conceptually comparable measure to test whether the grid-like pattern exists in other

non-spatial features.

Head direction cells, speed cells and conjunctive cells

Head direction cells are cells that fire whenever an animal is facing a particular

allocentric direction. They are first recorded in the subicular complex (Taube et al.,

1990a,b), and later discovered widely distributed in subcortical and cortical limbic

areas (Sharp et al., 2001; Taube, 2007). In MEC layer III and V, where the projection

from presubiculum ends head direction cells are also recorded (Sargolini et al., 2006).

The head direction signal is an essential contribution to self-localization as well as to

path integration. The head direction system is by far the most compelling evidence

that a path-integrating continuous attractor network mechanism exists in nature.

Functionally, co-recorded head direction cells fire in a high concordance, the angular

distance between pairs of head direction cells always remained constant even when

their allocentric tuning has shifted or destabilized (Taube et al., 1990a,b; Taube &

Burton, 1995; Muir et al., 2009; Yoder & Taube, 2009). Anatomically, in the Drosophila

melanogaster ellipsoid body, activity of compass neurons track the animal’s heading

direction through a bump of activity in a ring-shaped structure shifted by self-motion

and visual landmarks inputs (Seelig & Jayaraman, 2015; Kim et al., 2017).
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Interestingly, cells with conjunctive representation for both spatial grid patterns and

head direction tuning coexist with head direction cells in layer III, V and VI of MEC.

And together with head direction cells and grid cells, their firing rate increase as a

function of animals’ running speed (Sargolini et al., 2006). According to the continuous

attractor network model, the conjunctive representation of grid firing pattern and

running speed and head direction could serve as ‘shifter cell’ that drive the grid cell

network activity to track displacement via self-motion signals (McNaughton et al.,

2006). Moreover, dedicated speed coding MEC neurons (Kropff et al., 2015), as well as

the speed-modulated local field potential theta frequency (Jeewajee et al., 2008) further

provided plentiful of movement-based signals to support velocity-based localization in

MEC.

Border cells

In MEC there is a group of neurons that fire when animals in close contact with one or

more environmental borders (Solstad et al., 2008). In the boundary vector cell (BVC)

model it was proposed that boundary vector cells serve as the anchor to place fields

by providing direction and distance measures relative to nearby boundaries (O’Keefe &

Burgess, 1996; Hartley et al., 2000; Barry et al., 2006). For grid cells, it was found that

after encountering borders, grid fields accuracy increased in the perpendicular direction

to the border while remained unchanged parallel to the border, coincident with that

border cell firing rates are sharply tuned in the orthogonal direction to the wall and

had low specificity along the direction of the wall (Solstad et al., 2008). It was further

established that boundary representation is highly environment invariant, and when

they do change between different environments their activity is in line with co-recorded

grid cells and head direction cells (Solstad et al., 2008). Taken together, it was strongly
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suggested that border cells, head direction cells and grid cells corporate to establish a

stable allocentric metric representation in MEC.

Other functional cell types

Cells that fired in a certain direction and distance towards multiple objects were also

discovered in MEC (object vector cells, Høydal et al. (2019)). Compare to the classical

spatial cells types that code location in the framework of enclosed environments, object

vector cells have more flexible and less geometrically defined spatial representation. As

moveable objects also constitute an important part of our natural experience, how they

are integrated into our spatial representation calls for future investigation.

Interactions between hippocampal-entorhinal spatial cells

The interaction between different spatial cells is dynamic yet somewhat hierarchical.

Developmental studies In rats have shown that within the hippocampal-entorhinal

system, the head direction cells are among the first to display adult-like tuning

properties as early as age P14 (14 days postnatal) when they just started to navigate

(Wills et al., 2010; Langston et al., 2010; Bjerknes et al., 2015). Place cells catch up later

(from P16) to show spatial selectivity but continue to develop in spatial information

and fields stability, which peaked after the regular firing pattern of grid cells emerge

around P20 (Wills et al., 2010; Langston et al., 2010; Muessig et al., 2015).

Lesion studies probing the head direction system converged on the conclusion that the

generation of head direction signal and their attractor network organization happened

subcortically. Disrupting cortical inputs generally caused none to mild effect on head

direction signal in subcortical regions, while the other way around abolished proper
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head directional signal in the downstream (Blair et al., 1998; Calton et al., 2003; Bassett

et al., 2007; Taube, 2007; Sharp & Koester, 2008; Muir et al., 2009; Yoder & Taube,

2009; Clark & Taube, 2011; Yoder et al., 2011; Clark & Taube, 2012). Except for

the integrity of postsubiculum played an important role in integrating the landmark

control into head directional tuning as well as in orienting other spatial cells (Goodridge

& Taube, 1997; Yoder & Taube, 2009).

Grid cell ensemble firing contingency, as predicted from their attractor network

organization, maintain robust while their regular hexagonal firing pattern being

susceptible to disruption in lack of stable inputs from head direction cells and place

cells (Bonnevie et al., 2013; Winter et al., 2015). Place cells, on the other hand,

consistent with the fact they respond to diverse environmental and idiothetic cues,

maintain but with degraded selectivity of spatial firing with disrupted inputs from

either head direction cells or grid cells (Calton et al., 2003; Brun et al., 2008a; Koenig

et al., 2011; Brandon et al., 2014).

1.2.3 Intrinsic connections in the hippocampal formation

The majority of intrinsic connections in the hippocampal formation are unidirectional

(See Figure 1.4). Principal cells in the superficial layers of the entorhinal cortex

send projections to the dentate gyrus, CA3, CA1 and subiculum via the perforant

Alvear pathways. Specifically, layer II and layer III of MEC and LEC each project to

topographically different parts of hippocampal areas (for review, see Witter (1993)).
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Figure 1.4: Intrinsic connections in hippocampus. (Source: Adapted from

Andersen et al. (2007)).

Axons from entorhinal layer II terminate in the molecular layer of the dentate gyrus and

stratum lacunosum-molecular layer of CA3. Fibres from entorhinal layer III innervate

stratum lacunosum-moleculare of CA1 and the superficial portion of the molecular

layer of the subiculum. In the dentate gyrus, projections from LEC terminate in the

superficial portion of the molecular layer while projections from MEC terminate in the

deeper portion of the molecular layer. LEC and MEC projections to proximal and

distal (according to the proximity to dentate gyrus in transverse axis) parts of CA3,

distal and proximal portions of CA1, and proximal and distal portions of the subiculum,

respectively (Steward & Scoville, 1976; Steward, 1976; Witter et al., 1989).

Granule cells in the dentate gyrus then exclusively project to CA3 through mossy

fibres which terminate in a narrow zone just above the pyramidal cell layer of CA3.

CA3 then sends axon collaterals to CA1 (Schaffer collaterals), CA2 and CA3 (recurrent

collaterals) in stratum radiatum and stratum oriens. The Schaffer collaterals projection
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is also topographically organized. Proximal CA3 neurons tend to project more to CA1

at more septal levels than their locations while distal CA3 neurons more to temporal

levels of CA1. Within the same septotemporal level, proximal CA3 innervates the distal

portion of CA1 and distal CA3 innervates the proximal portion of CA1 (Ramon y Cajal,

1911; Blackstad et al., 1970; Tamamaki et al., 1987; Naber et al., 2001).

As described above, CA3 and entorhinal cortex are the two major intrinsic inputs

to CA1 within the hippocampal formation. The fact that CA3 also receives

input from entorhinal cortex makes connections between CA1 and entorhinal cortex

both monosynaptic and disynaptic (mediated through the Schaffer collaterals). By

comparing the topographic organization of these intrinsic projections we can see that

both the monosynaptic and the disynaptic innervation originate and terminate in the

same EC/CA1 areas. Combined with the sophisticated input integration properties in

CA1 neural circuits, and information cascade emerges in CA1.

CA1 projects to subiculum in its pyramidal layer and deep part of the molecular

layer (Tamamaki et al., 1987). Both of them in turn project back to the deep

layers of EC (Köhler, 1985; Van Groen & Wyss, 1990). Interestingly, such return

projections are again topographically organized and mirror the EC efferent projections.

Specifically, distal CA1 and proximal subiculum project to the lateral entorhinal cortex,

while proximal CA1 and distal subiculum project to the medial entorhinal cortex.

Finally, EC deeper layers send axons that descend into the angular bundle and project

information out of the hippocampal formation, to cortical and subcortical regions,

as well as associative collaterals that ascend into the superficial layers to innervate

superficial EC neurons (Hamam et al., 2000, 2002; Kerr et al., 2007; Canto & Witter,

2012a,b; Witter et al., 2017). Thus the closed-loop pathway within the hippocampal

formation is completed. Such closed-loop projection and highly associative and
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divergent connections within the hippocampal formation suggest that representations

in different regions of hippocampus are associative and reciprocally informative.

1.2.4 Extrinsic connections

The hippocampal formation is connected to a broad set of brain regions, including the

neocortex, amygdaloid complex, forebrain nuclei (medial septum and diagonal band

of broca), thalamus and hypothalamus, and brain stem (medial tegmentum) (Mosko

et al., 1973; Herkenham, 1978; Wyss & Groen, 1992). Through these projections,

sensory input (visual, auditory, olfactory and tactile etc.) and self-motion input are all

converging on the hippocampus. There the spatial representation emerges. Albeit each

of the connections bear its significance, I am going to emphasize neocortical, septal and

vestibular projections for their critical roles in providing hippocampal formation with

sensory and self-motion inputs.

Neocortical connections with the hippocampal formation

Entorhinal cortex is the hub that connects cortex and hippocampus together. Most

of the cortical input to hippocampus proper passes through the entorhinal cortex.

Immediately adjacent to entorhinal cortex lie the perirhinal and postrhinal cortices,

both of which are polysensory convergence areas that receive input from a variety

of unimodal and polymodal sensory cortices (Burwell, 2001). MEC receives its

predominant input from the postrhinal cortex while LEC receives its major inputs

from the perirhinal cortex. Perirhinal cortex also directly projects to distal CA1 in

stratum lacunosum-moleculare and proximal subiculum in its molecular layer. Their

axons co-localize with axons from LEC. Similarly, postrhinal cortex innervates the
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proximal CA1 and distal subiculum, overlapping with medial entorhinal cortex inputs.

To sum up, projections from perihinal and postrhinal cortices to hippocampal formation

follows the topographic organization established in hippocampal intrinsic connections

and forms a continuum (Burwell, 2001).

A quantitative analysis revealed that MEC and LEC receive similar amounts of input

from piriform (MEC 31%, LEC 34%), temporal (MEC 21%, LEC26%) and frontal

cortices (MEC 10%, LEC 11%). However, LEC receives more projections from insular

cortex (MEC 6%, LEC 21%), while MEC receives more input from cingulate (MEC

11%, LEC 3%), occipital (MEC 12%, LEC 2%) and parietal cortices (MEC 9%, LEC

3%) (see Figure 1.5; Burwell & Amaral (1998)). It is noticeable that more visual

information enters the hippocampus through MEC than LEC, potentially contributing

to hippocampal spatial representation.
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Figure 1.5: Pattern and strength of cortical connectivity of the rat

hippocampal formation. The thickness of the solid lines represents relative strength

of the connections based on the densities of retrogradely labeled neurons. Open lines

represent reported connections for which no comparable quantitative data are available.

ACAd and ACAc, dorsal and ventral anterior cingulate cortex; AId/v/p, dorsal,

ventral, and posterior agranular insular cortices; AUD, primary auditory cortex; MOs,

secondary motor area; ORBl/m/vl, orbitofrontal cortex, lateral, medial and ventral

lateral; PL/ILA, prelimbic and infralimbic area of ventromedial prefrontal cortex;

PTLp, posterior parietal cortex; RSPd and RSPv, retrosplenial cortex, dorsal and

ventral; SSp and SSs, primary and supplymentary somatosensory areas; Tev, ventral

temporal area; VISC, visceral granular insular cortex; VISl and VISm, lateral and

medial visual association cortex; VISp, primary visual cortex. (Source: Adapted from

Andersen et al. (2007), who also adapted from Burwell & Amaral (1998)).
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Septo-hippocampal projections

A prominent EEG slow oscillation (theta band oscillation, 4-12 Hz) was recorded

everywhere in the rats’ hippocampal formation except for CA2 (Elazar & Adey,

1967; Mitchell & Ranck, 1980; Alonso & Garćıa-Austt, 1987a,b). Two components

of the local field potential (LFP) theta oscillation were distinguished experimentally

(Vanderwolf, 1969). One increase frequency and amplitude during locomotion, the

other appears related to the arousal and attentional state of the animal in the absence

of translational movement (Kramis et al., 1975). It is clear now that none of these

field theta components are independently generated within the hippocampal formation,

because Lesion or inactivation of the medial septal nucleus and the diagonal band of

Broca (MSDB) completely abolishes the EEG theta oscillation in the hippocampus

(Lawson & Bland, 1993). EC lesions eliminate the former component but not the

latter, which was further abolished by administration of atropine (Kramis et al., 1975).

There are several proposed functions for the hippocampal theta oscillations, which

include network synchronization, spike phase timing and scheduling LTP/LTD

induction. Directly link to spatial representation is the function of spike phase timing.

It is found that interneurons recorded in hippocampus often fire at fixed phases relative

to the LFP theta oscillation (Ranck, 1973). Other than increasing their firing rate in

response to location, place cells and grid cells are also shown to fire at progressively

earlier phases relative to LFP theta oscillation when the animal traverses their firing

fields, an effect known as ’phase precession’ (O’Keefe & Recce, 1993; Hafting et al.,

2008). Interestingly, the phase of spiking is better explained by distance that the animal

traveled through the place field other than time or distance according to environmental

cues (Huxter et al., 2003).

In order to account for phase coding of distance, the oscillatory interference model
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was proposed, suggesting that there exists a slightly higher-frequency oscillator

(intracellularly) whose frequency increases with running speed. As a result, the ’beating’

interference of the two oscillators (theta and the intracellular oscillator) would give

rise to phase precession (O’Keefe & Recce, 1993; Burgess et al., 2007; Burgess, 2008).

Theoretically, the oscillatory interference model could also explain grid cells’ periodic

firing patterns. Thus it is important to understand the generation of both field theta

oscillation and intrinsic theta oscillation, as well as the mechanism of their velocity

controlled frequency. ’Theta cells’ recorded in the hippocampus, medial septum and

anterior thalamus show firing properties resembling the velocity controlled oscillators

proposed in the oscillatory interference model (Welday et al., 2011). Recent study shows

that the locomotion related theta component appears to be initiated by a group of

glutamatergic neurons (VGluT2+) in MSDB, which are also responsible for locomotion

initiation (Fuhrmann et al., 2015). Taken together, the septohippocampal system is

critical for generating theta oscillation and velocity signals.

Vestibular system interactions with the hippocampal formation

Following up on the previous section, speed signal is important for spatial coding

(especially for path integration). In mammals, there are often five sources of

speed information: visual (optical flow), vestibular (angular and linear acceleration),

proprioceptive (feedback information from muscles, tendons, and joints), efferent copy

of locomotor commands and inertial signals from extravestibular gravity receptors

(Mittelstaedt & Mittelstaedt, 1982; Mittelstaedt, 1999). By far the vestibular system is

the most studied source of self-motion input largely because of its critical role in head

directional tuning (Taube, 2007). There are four major pathways through which the

vestibular nucleus projects to the hippocampal formation (see Figure1.6).
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Figure 1.6: The major anatomic pathways through which the vestibular

signals reach the hippocampus and the entorhinal cortex. PPTN:

pedunculopontine nucleus; SMN: supramammilary nucleus; DTN: darsal tegmental

nucleus; LMN: lateral mammilary nucleus; ATN: anterodorsal thalamic nucleus (Source:

Adapted from Jacob et al. (2014)).

The vestibular apparatus detects both angular and linear accelerations of the head,

then pass the acceleration reading to the central vestibular nuclei and transform them

into velocity signals. Take the computation of angular velocity as an example, as this

demonstrates well how self-motion and visual inputs interact to generate an accurate

and stable sense of head rotation. When an animal rotates its head, the semicircular

canals in the inner ear pick up the directional angular acceleration signals, causing

downstream neurons to fire. This firing, as well as angular optic flow input, triggers both

eyes of the animal to rotate to the opposite direction, helping the animal to maintain

stable visual fixation (vestibulo-ocular reflex). Many cells in the mouse vestibular

nucleus respond to both head rotation and eye position (eye sensitive neurons). Their

sensitivity to head rotation is generally higher than those of cells that only respond to

head rotation (vestibular only neurons; Beraneck & Cullen (2007)). Especially during

low frequency angular motion, when the eye position tuning component is regressed out,
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the total head sensitivity of eye sensitive neurons decreased significantly and became

non-distinguishable from the vestibular only cells (Beraneck & Cullen, 2007). Thus

visual input amplifies angular velocity coding and compensates for when acceleration is

small and the vestibular response alone fails to catch up with head rotation. Although

less understood, the vestibular coding of linear acceleration via otolithic input is shown

to benefit path integration in the dark (Yoder et al., 2015).

1.3 Spatial representation based on environmental

cues and self-motion tracking

There are different strategies one can use to adopt locational information. One is

to learn the configuration of different sensory cues in the environment. Salient cues

that been examined carefully in studies include environmental boundaries, distal visual

landmarks, local olfactory or tactile cues and so on. Another important strategy is to

update location through accumulating self-motion which is often referred to as ’path

integration’. In some recent views, path integration comes to have broader connotations,

for example, even including contributions to landmark perception (Savelli & Knierim,

2019). But for simplicity and better resonance with our experimental interests to

examine the effects of dissociation of (virtual) external environmental visual information

from self-motion information, I restrict the definition of path integration in the current

thesis to the updating of self-location derived from self-motion information such as

proprioception, motor efference copy and vestibular inputs.
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1.3.1 Environmental cues

Behavioral experiments

There is no doubt that animals use various sensory cues to self-locate. For example,

insects adopt several sensory localization strategies which include using sun and skylight

to orient, store view-dependent ’snapshots’ of home location and follow landmark

anchored routes (Wehner, 2003). When multiple sensory cues are available, which often

come with different reliability (error distribution), humans often combine them in nearly

optimal fashion to estimate spatial parameters (Deneve & Pouget, 2004). A Bayesian

framework was proposed to predict the integration of different sensory cues, meaning

that the combination of different sources are obtained as the weighed sum proportional

to the inverse of their distribution variance (Deneve & Pouget, 2004). The more stable

and accurate the sensory information is, the higher weight they have. Studies showed

that humans combine visual and auditory cues (Deneve et al., 2001), visual and haptic

cues (Ernst & Banks, 2002) almost exactly following the optimal Bayesian rule.

Also, in order to combine multimodal inputs it is important to solve the issue of

registration between different reference frames. For example, visual cues are represented

in retina-centre reference frame, and auditory cues are perceived in a head-centred

reference frame. However it seems the cross-modal combination of sensory cues are

implemented in a common spatial frame for that the posture change that causes

reference frame of different modalities to change (e.g. change of eye position) do

not affect the combined distribution (Deneve & Pouget, 2004). Interestingly, similar

principles are discovered in electrophysiological recordings in behaving animal.
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Electrophysiological recordings in behaving animal

Place fields recorded in a familiar environment can be very stable across days (Muller

et al., 1987; Thompson & Best, 1990), although changes in firing patterns also develop

over longer period (Lever et al., 2002; Ziv et al., 2013). When perceived environmental

changes are salient enough , place cells changes their firing field locations drastically,

and active cells drop in and out as if a new map is generated (’global remap’, Muller &

Kubie (1987); Leutgeb et al. (2005)). Minor environmental changes lead to changes in

place cell firing rates without disturbing their spatial selectivity (’rate remap’, Muller &

Kubie (1987); Leutgeb et al. (2005)). Efforts made to ’disrupt’ established firing fields

suggested that several factors contribute to place cells’ tuning to specific locations.

Visual cues are among the first that were tested, when distal visual cues are rotated

they often dominate the orientational anchoring of place cells, head direction cells and

grid cells causing them to rotate together in accordance (O’Keefe & Nadel, 1978; Muller

& Kubie, 1987; Taube et al., 1990b; Hafting et al., 2005). Removing subset of cues and

scale the size of cue cards have minimum effect on the majority of place cell and head

direction cell firing (O’Keefe & Nadel, 1978; Muller & Kubie, 1987; Taube et al., 1990b).

Unlike the concordant response reported above, conflict cue control experiments find

that when locals cues (local visual and tactile patterns) are rotated as well as distal

cues but to the opposite direction (’double rotation’), some place cells follow the distal

cues, some follow local cues and some stop firing or form new fields whose locations can

not be predicted by the rotation of either cues (Shapiro et al., 1997; Knierim, 2002). In

their results, Knierim (2002) also find when the discrepency between distal and local

cues is small (45o), more place cells rotate by an angle as if a compromise between

the two sets of cues was taken. Similarly in another study when two cue cards (one is

white, another is black) on the inside of environmental walls are rotated so that the
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angular distance between them are either decreased or increased by 45o, place cells show

combined influence from both cue cards (Fenton et al., 2000).

Getting rid of visual cues yields mixed effects on place cells, often depending on the

animals’ preceding experience (attribute to path integration, details in Section 1.4.2;

Quirk, Gregory et al. (1990); Markus et al. (1994)). For grid cells, when rats free-forage

in a familiar open field in darkness, it is reported that many of them remain their spatial

firing regularity despite minor decrease in firing stability (Hafting et al., 2005). On the

other hand, without visual input mice navigate in the dark fail to form regular periodic

grid firing patterns (Chen et al., 2016; Perez-Escobar et al., 2016). One explanation to

such different results is the non-visual environmental cues are handled differently (e.g.,

whether or not the environment floor was wiped). As crepuscular creatures, rodents

exploit non-visual local cues, such as olfactory and tactile cues, to support localization.

Blind rats have place cells that display normal place fields (Save et al., 1998). In the

absence of visual input, Olfactory cues stablize place cells (Save et al., 2000). Even

spatially organized constellation of olfactory cues can be learnt so that their rotation

controls place cell population to rotate accordingly, and their spatial shuffling cause

place cells to ’remap’ (Zhang & Manahan-Vaughan, 2015).

Environmental configuration also affects place cell firing. Place cell and grid cell

firing patterns are mostly omnidirectional in a 2D open field (Muller et al., 1987)

but their place fields expand in size and become more directional when environmental

configuration constrain the animal to relatively stereotyped trajectories, such as 1-d

linear track (Gothard et al., 1996a; Brun et al., 2008b; Navratilova et al., 2012),

circular track (Battaglia et al., 2004), zigzaged tracks (Derdikman et al., 2009) and

multi-armed mazes (McNaughton et al., 1983; Thompson & Best, 1989). When

animals are transferred from a square shaped open field to a circular shaped one, place
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cells often ’remap’ (Muller & Kubie, 1987; Wills et al., 2005), and the divergence of

spatial population vector representation increases with experience between the two

environments (Lever & Burgess, 2012). When an environment is scaled, i.e.with walls

stretched or compressed in a square environment, place cell field sizes and grid cell

scales changed accordingly (O’Keefe & Burgess, 1996; Gothard et al., 1996a; Barry

et al., 2007; Diba & Buzsáki, 2008), and this change seems to be reduced if the animals

spend enough time familiarizing the scaled environment (O’Keefe & Burgess, 1996;

Barry et al., 2007). It is worth noting that in all the environmental manipulations,

unlike the heterogeneous responses observed in place cells, grid cells from the the same

modules changed coherently and the phase offset among them remained fixed (Stensola

et al., 2012). Simultaneous recording of place cells and grid cells found that global

remapping in place cells is often accompanied by phase shift or rotation in grid cells

while rate remapping is not (Fyhn et al., 2007).

Last but not the least, as stated in the behavioral studies, when considering multimodal

sensory integration an important issue is how to register different reference frames.

Sensory inputs are by nature egocentric and centred in their receptor organs. For

example, visual receptive fields are retinotopic, in order to transform them from an

eye-centered coordinate to a head-centered coordinate, neurons in posterior parietal

cortex (PPC) show visual sensitivity that can be described by the product of retinal

receptive field profile and a function of eye position (’gain field’, Andersen et al. (1985)).

Many neurons in PPC show gain field tuning for visual and auditory stimulus thus

potentially support flexible coordinate transformations (Xing & Andersen, 2000).
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Models of sensory integration

In summary, there are several important aspects to sensory integration. First, rigid

changes of environmental cues (such that no cues move relative to the others) and

removal of subset of cues do not affect the cell-to-cell spatial firing relationships,

as if a stable map structure exists for the whole place cell population. Second,

when the cues are changed relative to each other, and discrepancy between different

cues are small, weighted sum of cues are taken. Last, the influence vector of cues,

representing both direction and strength of influence, often have a spatial distribution

(Fenton et al., 2000). It recognized that models that adopt error distributions (e.g.

Gaussian distribution) and degrade cue influence with increased distance perform well

in accounting experimental data.

One of the most successful example is the boundary vector model (BVC) model

(O’Keefe & Burgess, 1996; Hartley et al., 2000). The BVC model predicts that place

fields are determined as a thresholded sum of a set of boundary vector cells input

whose tuning is a Gaussian distribution peaked at a specific distance to a specific

environment boundary. By showing prediction of place cell field change when the walls

of square box are compress and/or stretched, the model’s prediction closely matches

the experimental observation of place field changes (O’Keefe & Burgess, 1996; Barry

et al., 2006; Hartley et al., 2000). The predicted boundary vector cells were discovered

in the subiculum (Lever et al., 2009). The BVC model provides substantial explanation

as to the environmental anchoring/resetting process of hippocampal spatial responses

and supports the general sensory summation model.
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1.3.2 Path integration

Path integration as a navigation process was first proposed by Darwin: he observed that

diverse species displaying a fixed home base are often capable of integration of inertial

signals, a capability he called ’dead reckoning’ (Darwin, 1873). Many species (birds,

insects and mammals etc.) take a tortuous outbound path in search for food and return

home via a direct path once the food is located. It is proposed that animals keep track of

their movement from a reference point (’home’) and continuously update their current

location without relying on external cues, such process was named ’path integration’

(Mittelstaedt & Mittelstaedt, 1980). In its original definition, path integration means

to keep a linear and angular tracking of the subject’s home location (‘home vector’).

Now it is broadly used to describe a mechanism of transforming movement into

position information. Here I restrict the definition of path integration to the updating

of self-location derived from self-motion information such as proprioception, motor

efference copy and vestibular inputs. Path integration is important for animals because

in natural environments external landmarks are often too sparse or take too much time

to sample for effective navigation. In this section, I will summarise what we know about

path integration at the behavioural, cognitive and computational levels.

Can animals path integrate?

There have been lots of behavioral studies trying to determine animals’ skills at path

integration and what factors may affect it. The difficult task of estimating the role

of path integration experimentally is to make sure that the observed effects are not

mediated by the presence of external sensory cues. There are two major ways that

experimenters achieve this. The first one is to manipulate external cues so that their

effects are either minimal or in conflict with self-motion cues. The second way is
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to manipulate self-motion input directly and estimate the corresponding change in

behaviour.

A classical behavioral paradigm is the ’two-leg route’ task in which the animals followed

an outbound path that comprised two direct paths joined by an angle, and then returned

to the starting position. Studies on ants (Muller & Wehner, 1988), hamsters (Séguinot

et al., 1993) and humans (Loomis et al., 1993) show that despite small errors, all these

animals were able to find direct paths towards the starting location. Notice that in the

experiments, ants were allowed to use the sun and skylight compass, while hamsters

and humans were deprived of visual, auditory, olfactory and tactile spatial references.

Observations also suggested that errors tend to increase with bigger turns in between

the two legs and longer traveling distance. Interestingly, errors were not randomly

distributed, instead they systematically shifted towards the direction of outbound

path (Muller & Wehner, 1988). It was proposed that animal may use rather simple

incremental approximation instead of a rigorous Euclidean vector summation algorithm

to integrate movements step by step(Muller & Wehner, 1988).

An animal’s ability to maintain a ‘home vector’ representation independently from

landmarks was nicely demonstrated by dislocating the desert ants at their feeding

location. The experimenter captured the ants after they set out from the home base

and found food. Before staring their inbound journey, the ants were manually carried to

a distant novel location and released (to ensure there is no prominent sensory beacon

for homing). Ants’ homing trajectory were immediately recorded and shown to be

following the route as if they were to return home from the old feeding location (Wehner

& Wehner, 1986).

Another experimental paradigm is the food hoarding experiment, where golden hamster

have to leave their nest box on the periphery of a circular platform, search for a food
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source placed somewhere in the center of the arena, and return back directly to the nest

box. Golden hamsters are capable of following the right direction even when visual,

auditory, olfactory and tactile cues are eliminated (Etienne et al., 1986). The error

between the animals’ estimated home location and the real location, and in particular

the angular error, increases with the amount of rotation the animal makes (Etienne

et al., 1988).

When the golden hamsters are provided with conflicting information between the

external cues (distal visual landmarks and local olfactory cues) and their path

integration input, their behaviour reflect both sources of information. When the conflict

is small (90o degree deviation) visual cues, if familiar, dominates over path integration

inputs, while, if the difference is large (180o deviation), and self-motion input was

uninterrupted, animals typically follow a route based on path integration, albeit some

are disoriented (Etienne et al., 1990). Time also plays a role in determining the influence

of distal visual cues. If familiar visual cues are presented during the food hoarding stage

of the task, when the animals are in the center of the environment, they drive animal’

homing direction to a closer match to themselves than when the visual cues are available

during the outbound journey (Etienne et al., 1990).

In order to manipulate the self-motion input directly, researchers changed the leg length

of desert ants, and found that they overestimate their travel distance when their leg

lengths are shortened and underestimate travel length when leg lengths are elongated,

suggesting that ants use a stride integtator to track their linear displacement (Wittlinger

et al., 2007). A study compared bees foraging at higher altitude with those foraging at

ground level found that the higher altitude route led to underestimation of distance,

leading to the suggestion that bees use retinal image motion perceived from the ground

to estimate the distance flown (Esch & Burns, 1996).
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Summing up, animals can utilize many self-motion cues to keep track their angular

and linear displacement from a reference point - a vector representation. Such tracking

depending on introspective cues alone are prone to accumulative errors when travel

distance and duration increase. External sensory cues are required to correct for errors

in path integrator. When path integrator and landmark inputs are not matched, their

integration depends on the amount of discrepancy between them (Etienne et al., 1990;

Cheng et al., 2007).

Do hippocampal spatial cells perform path integration?

Several studies found that place cells, head direction cells and grid cells were able

to maintain their normal spatial tuning (in some cases degraded) when visual input

was eliminated (Quirk, Gregory et al., 1990; Markus et al., 1994; Save et al., 1998;

Goodridge et al., 1998; Gothard et al., 1996a; Hafting et al., 2005), suggesting the

spatial representation may be sustained via path integration. Besides, place cell firing

fields were more stable between light-on and light-off conditions if rats were allowed

undisrupted exploration when the light was turned off (Quirk, Gregory et al. (1990)).

Allowing rats to travel between the otherwise divided compartmental environments

also induced a more coherent global representation in grid cells across compartments

(Carpenter et al., 2015; Wernle et al., 2018).

However, recent studies found that grid cells recorded in mice lost their firing fields’

regularity when no reliable visual cues were available (Chen et al., 2016; Perez-Escobar

et al., 2016), even though pre-exposure in the light condition with undisrupted

navigation before and after switching off the light helped stabilize their firing patterns

for a few minutes, before they deteriorate rapidly in the dark (Chen et al., 2016). These

mixed results could be coming from experimental methods (e.g. whether olfactory
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cues were cleaned between trials, or the degree of darkness, animals’ familiarity with

environments, and so on), or reflecting some innate between-species difference in how

visual cues and self-motion cues support localization.

Further efforts were made to establish that place cells were truly able to track distance,

independently of environmental cues, with self-motion inputs. The influence of local

environmental cues and time coding aspects of place cells were carefully isolated,

examined and excluded. Place cells were recorded on a linear track where at one end

is a movable box that was randomly dislocated when the rats left and a fixed reward

location at the other end. Rats were encouraged to shuttle from end to end. Place

fields close to the movable box fired at fixed distances to it at varying positions on the

track in both light and dark conditions (Gothard et al., 2001). On the other hand,

rats driving a car, or stationary but with rotated visual cues on a circular track, had

diffuse place fields, suggesting the importance of vestibular input (Terrazas et al., 2005).

Last, by recording from preweaning rats at an age before grid cells were functionally

developed in the same linear track with varied starting locations, it was shown that

place cells, without the influence of grid cells, can encode distance from self-motion

inputs (Bjerknes et al., 2018).

Another important question is whether the hippocampal spatial representation is

necessary for the animal to do path integration. Using genetic manipulation techniques,

researchers specifically targeted and shut down the cell function of neuron populations

and revealed that disrupting spatial tuning in MEC grid cells compromised both angular

and linear path integration when mice were tested in L-maze task in a swimming pool,

and the level of disruption in grid cells firing (assessed by spatial information and

gridness score) was positively correlated with task deficit (Gil et al., 2018). Inactivation

of MEC stellate cells also rendered mice incapable of estimating distance on a running
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wheel and recognizing object locations in the dark (Tennant et al., 2018).

The development of virtual reality techniques allows researchers to dissociate

environmental cues and animals’ self-motion cues dissect their contributions separately

(Chen et al., 2013; Saleem et al., 2013; Seelig & Jayaraman, 2015; Tennant et al., 2018).

Changing the gain factor that mapped animals self-motion to visual projection resulted

in the joint influence of visual and self-motion cues on place cells’ firing fields (Chen

et al., 2013). In Drosophila melanogaster ellipsoid body where the neural activity

bump shifts and tracks its head direction relative to the visual scene, changing the

angular visual-motion gain lead the activity bump to follow the visual angular velocity

mainly (Seelig & Jayaraman, 2013). Here it needs to be considered that head-fixation

limits vestibular input thus reduced the significance of self-motion cues. As shown in

Aghajan et al. (2015), place cells’ spatial selectivity was impaired in a 2-d environment

without vestibular input. Recordings from speed modulated V1 neurons show best

speed correlates to a weighted combination of visual and locomotion speed when

their relative gain was changed (Saleem et al., 2013). Meanwhile, a close relationship

between hippocampal place cells and V1 neurons activity was repeatedly found, so it is

reasonable to assume optic flow may play a role in speed coding in the hippocampus.

In their proposed models, Raudies & Hasselmo (2015) stressed the importance of

external cues (e.g. landmarks, optic flow, etc.) on path integration by pointing out the

overlooked difference between head direction signal versus movement direction signal

that prevailed in the hippocampal system. Using the latter to update self-motion

velocity would result in errors in the path integration. The fact that the directional

system is aligned in the head-centre frame makes it suitable for integrating many sensory

derived motion signal (e.g. optic flow, whisker tracking, etc.). It was also suggested

that topographic organization in the visual cortex, such as ventral versus dorsal visual
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pathway and dorsal versus ventral visual field sensitivity, could explain the observed

gradient in grid spacing along the dorsoventral axis of MEC (Stensola et al., 2012) and

how different grid modules respond to environment stretch differently (Barry et al.,

2007; Raudies & Hasselmo, 2015).

Computational models that could be implemented by the hippocampal

formation for path integration

Continuous attractor neural network (CANN) model

Researchers notice that head direction cells (Taube et al., 1990a; Mizumori & Williams,

1993; Chen et al., 1994; Sargolini et al., 2006; Taube, 2007) always rotate similarly

together either in repsonse to cue rotation (Knierim et al., 1995) or spontaneous drifting

(Mizumori & Williams, 1993). The cell-to-cell angular phase offset hold constant among

the head direction cell population across different environments. Similar coherent

properties are found in co-recorded grid cells (Hafting et al., 2005; Stensola et al., 2012).

grid cells from the same module respond to environmental manipulations similarly

(Fyhn et al., 2007; Stensola et al., 2012). Even when the spatial patterns of grid cell

firing are disrupted, the co-firing relationship between cell pairs are preserved (Yoon

et al., 2013; Chen et al., 2016; Perez-Escobar et al., 2016). Such robust functional

connectivity suggests a continuous attractor network organisation in head direction

cells and grid cells, given the local velocity-driven excitatory input, the CANN could

reliably track accumulative displacement.

A ring attractor network model is proposed to account for how the consistent directional

coding is realized in the head direction system (Skaggs et al., 1995). It was proposed

that head direction cells are mutually connected with strongest excitatory connection
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between cells that had similar preferred tuning direction. A ring structure is adopted

so that a bump of activity would emerge and be smoothly shifted around when local

asymmetrical input are imposed. It is proposed that this ’shift’ cells are controlled by

both self-motion cues and external cues (Sharp et al., 1996; Stackman & Taube, 1998;

Bassett & Taube, 2001; Sharp et al., 2001).

In the search of a translational path integrator, researchers adopted the ring attractor

network structure of a rotational integrator and extended it into a 2D network

(McNaughton et al., 2006; Burak & Fiete, 2009). In the proposed CANN model grid

cells with the same scales and orientations are organized in a 2D neural sheet so that

cells with similar phase have the strongest mutual inhibition. A local inhibition and

broad-field excitation connection allow periodic patterns to generate. Velocity sensitive

shift cells then drive the activity bump to move. Conjunctive cells that have similar

spatial grid tuning but also respond to running direction and speed were discovered

in the deeper layers of the medial entorhinal cortex (Sargolini et al., 2006). However,

there is no direction evidence yet that grid cell firing patterns perform path integration

as proposed by CANN models.

Oscillatory inteference (OI) model

As discussed in Section1.2.1, Speed modulated EEG theta oscillation are recorded in

hippocampal formation and ’phase precession’ is discovered in place cells and grid cells.

Such speed and distance coding shown in frequency and phase raise the possibility that

distance tracking can be accomplished by the interference pattern of velocity driven

oscillators, proposed by Oscillatory interference model (Burgess et al., 2007; Burgess,

2008; Bush & Burgess, 2014). Based on the solid observation that place cell firing

modulation in theta band was higher than the field theta oscillation, it was proposed
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that 1) there exists ’velocity controlled oscillators’ (VCO) whose frequency increase from

a baseline as a function of animals’ running speed in preferred direction; 2) their phase

relative to baseline oscillation tracks displacement in that direction; 3) inputs from

several VCOs with different directional preferences converge to track displacement in

different direction. In such model, periodic firings emerge naturally in the interference

pattern envelop such that grid cell periodicity could be accounted by converged VCOs

with preferred directions different by multiples of 60o.

Supporting the OI model, many theta cells recorded in hippocampus, anterior thalamic

nuclei and medial septum indeed show increased direction and speed modulated burst

frequency (Welday et al., 2011). The oscillatory inteference model predicted periodic

spatial firing pattern such as the periodicity observed in grid cells (Hafting et al., 2005).

The step-wise increase in grid scales are accompanied by the decrease of membrane

oscillatory frequency in dorsoventral axis of medial entorhinal cortex (Brun et al., 2008b;

Stensola et al., 2012; Giocomo et al., 2011). Evidences against OI model argue that,

in its original form, OI model is built on stable theta oscillation while grid patterns

are also recorded in bats whose hippocampal local field potential does not show any

regular oscillatory activity (Yartsev et al., 2011). However, it was discovered later

that hippocampal phase coding are robust even without regular field oscillation (Eliav

et al., 2018). Another doubt is that periodic patterns are generate in single cell level

instead of from network connection in OI model, making it at odds with many network

properties discovered in grid cell population. Modifications to accommodate recurrent

network connections show improved stability in grid patterns suggesting that the two

mechanisms may act as complimentary to each other (Bush & Burgess, 2014).
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1.4 Rationale for experiments in this thesis

Both sensory information and self-motion information are thought to determine spatial

firing patterns of place and grid cells. However it has not been shown how these two

types of information combine to drive place and grid cells’ firing, and in what proportion.

Often changes in self-motion are accompanied by changes in environmental sensory

information, but this can be avoided in virtual reality. In the first two experiments we

developed and used a novel virtual reality system in mice, to be able to independently

manipulate self-motion and visual motion. The work I presented in these two chapters

is a result from highly collaborative effort, which I have participated from an early stage

of behavioral pilot until published recently. My contribution to the two experiments

emphasis on conducting training and experiments to collect data, supporting formal

data analysis and results visualization, and revision during peer review. In the final

experiment we looked at the effect of removing visual inputs on hippocampal spatial

representations. The work in this chapter is conducted by me independently.
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General Methods

2.1 Animals

Subjects (in total twenty-four male C57Bl/6 mice) were aged 11-14 weeks and weighed

25-30 grams at the time of surgery. Mice were housed under 12:12 inverted light-dark

cycle, with lights on at 10 am. All work was carried out under the Animals (Scientific

Procedures) Act 1986 and according to Home Office and institutional guidelines.

In total, we recorded from twenty-four mice, among which ten mice were surgically

implanted by my colleague Dr. Guifen Chen and fourteen were implanted by me.

Twelve mice were trained in the virtual reality system (for experiment 1 & 2), nine

of them were trained and recorded by me. See Table 2.1 for details about the exact

number of animals reused across experiments. In general, there is large subjects overlap

between experiment 1 & 2 but much less between experiments 1/2 and experiment 3.

Sessions in experiment 1 were always recorded before the gain manipulation sessions in

experiment 2.
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Table 2.1: Number of animals resused across multiple experiments

Animal number Experiment 1 Experiment 2 Experiment 3

Experiment 1 11 8 2
Experiment 2 7 9 2
Experiment 3 2 2 15

Note: numbers in the diagonal cells show the subject counts in each
experiment, and those in the other cells show the number of mice that had
been recorded in both the experiments indicated by row label and column
label.

2.2 Surgery

Mice were group-housed (2-4 mice housed in one cage) until surgery, after which they

were single-housed to prevent wound infection and damage to implants from group

interactions. During surgery, mice were initially anaesthetized with 3% isoflurane

(Abbott; Maidenhead, UK) in O2. Throughout the surgery, the concentration of

isoflurane was lowered to 1.5 - 2.5%. Analgesia was given pre-operatively with 0.1 mg/20

g Carprofen and post-operatively with 0.1 mg/20 g Metacam for three consecutive

days. Custom-made microdrives (AXONA, UK) loaded with 17 um platinum-iridium

tetrodes were implanted and affixed to the skulls using dental cement (Kemdent Simplex

Rapid), providing buffer amplification. Two mice were implanted with 8 tetrodes in

CA1 (ML: 1.8 mm, AP: 2.1 mm posterior to bregma), three mice with 8 tetrodes in

dorsomedial entorhinal cortex (dMEC, ML: 3.1 ∼ 3.4 mm, AP: 0.2 ∼ 0.3 mm anterior

to the transverse sinus, angled 4 degrees posteriorly), and nineteen mice with 4 tetrodes

in both sites.

For mice used in virtual reality experiments, a circular head-plate made of plastic

(Stratasys Endur photopolymer) is chronically attached to the skull, with a central

opening allowing the implant of tetrodes for electrophysiological recording (see Figure
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2.1). After surgery, mice were relocated to a heated chamber and returned to their home

cage after awakening. One week of recovery in the home cage was allowed before any

behavioural training and cell screening began, until when they had ad libitum access

of water and food. Their body weights were monitored and recorded weekly before

the surgery and daily after surgery. After the training began, mice were maintained at

90% (> 85%) of their free-feeding body weight through food restriction.

2.3 Behavioural paradigm

We conducted three experiments which can be broadly divided into two paradigms. One

is to have the mice navigate in our two-dimensional virtual reality (VR) environment

and try to manipulate the visual environmental feedback independently from the

animals’ physical movement. The other one is to deprive mice navigating in a real

environment of the visual input, by turning off the light sources in the lab and track

animals’ movements via infrared LEDs. During these experiences, we recorded neural

spatial coding in the hippocampal CA1 and MEC to see how they are affected by

environmental and self-motion inputs. Before training, mice were handled carefully

10-30 mins each day for 2-3 days after recovery from electrode implantation.

2.3.1 VR method

The virtual reality system described below was built by Professor Neil Burgess and

Professor John King, Dr. Guifen Chen developed the training protocol and I helped

test the setup and trained and recorded mice for the VR experiments.
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Figure 2.1: Virtual reality setup. (A) Schematic of the VR setup. (B) A rotating

head-holder. (C) A mouse attached to the head-holder.

Virtual reality setup

The surgically attached head-plate on mice makes a self-centring joint with a holder

mounted in a bearing (Kaydon reali-slim bearing KA020XP0) and is clipped into place

by a slider. The bearing is held over the centre of an air-supported Styrofoam ball. Four

LCD screens placed vertically around the ball and two projectors onto a horizontal floor

provide the projection of a virtual environment. The ball is prevented from yaw rotation

to give the mouse traction to turn its head while preventing any rotation of the ball

about its vertical axis, following Aronov & Tank (2014) (See Figure 2.1).
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The virtual environment runs on a Dell Precision T7500 workstation PC running

Windows7 64-bit on a Xeon X5647 2.93GHz CPU, displayed using a combination

of four Acer B236HL LCD monitors mounted vertically in a square array plus two

LCD projectors (native resolution 480 x 320, 150 lumens) mounted above to project

floor texture. The head-holder is at the centre of the square and 60mm from the

bottom edge of the screens and 9500mm below the projectors. The LCD panels

are 514mm x 293mm, plus bezels of 15mm all around. These six video feeds

are fed by an Asus AMD Radeon 6900 graphics card and combined into a single

virtual display of size 5760 x 2160px using AMD Radeon Eyefinity software. The

VR is programmed using Unity3d v5.0.2f1 which allows virtual cameras to draw on

specific regions of the virtual display, with projection matrices adjusted (see Kooima,

2008. http://csc.lsu.edu/ kooima/articles/genperspective/index.html) to the physical

dimensions and distances of the screens and to offset the vanishing point from the

centre. For example, a virtual camera facing the X-positive direction renders its output

to a portion of the virtual display which is known to correspond to the screen area of

the physical monitor facing the X-negative direction.

Translation in the virtual space is controlled by two optical mice (Logitech G700s

gaming mouse) mounted with orthogonal orientations at the front and side of a 200mm

diameter hollow polystyrene sphere, which floats under positive air pressure in a

hemispherical well. The optical mice drive X and Y inputs respectively by dint of

their offset orientations, and the gain can be controlled within the Unity software.

Gain is adjusted such that real-world rotations of the sphere are calibrated so that

movement on the ball couples with realistic visual translation in the VR projected to

the animal. Mouse pointer acceleration is disabled at the operating system level to

ensure movement of the sphere is detected in a linear fashion independent of running

speed. An effort was made to minimize the effect of real-world visual cues by isolating
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the VR setup with light-shutting black curtains. The mouse can freely rotate in the

horizontal plane, which does not affect the VR display (but brings different screens into

view). Rotation is detected and recorded for later analysis using an Axona dacqUSB

tracker which records the position of two LEDs mounted at 25mm offset to left and

right of the head stage amplifier. Rotation is sampled at 50Hz by detection of the LED

locations using an overhead video camera, while the virtual location is sampled and

logged at 50Hz.

Behaviour is motivated by the delivery of milk rewards (SMA, Wysoy) controlled by a

Labjack U3HD USB Data Acquisition device. A digital-to-analogue channel applies 5V

DC to a control circuit driving a 12V Cole-Parmer 1/16” solenoid pinch valve, which is

opened for 100ms for each reward, allowing for the formation of a single drop of milk

(5uL) under gravity feed at the end of a 1/32” bore tube held within licking distance

of the animal’s mouth. Control of the Labjack and reward locations in the VR is via

UDP network packets between the VR PC and a second experimenter PC, to which

the Labjack is connected by USB. Software written in Python 2.7 using the Labjack,

tk (graphics) and twistd (networking) libraries provides a plan-view graphical interface

in which the location of the animal and reward cues in the virtual environment can be

easily monitored and reward locations manipulated with mouse clicks (See Figure 2.1).

Training protocol

Behavioural training in VR started while tetrodes were approaching target brain areas.

Among the twelve mice that had been recorded in our VR experiments, I have trained

and collected data from nine of them. Each training trial lasted 20 - 40 minutes

depending on the training phases (training in the VR linear tracks often lasted 30

minutes, while training in the square VR environments lasted 40 minutes per trial) and
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animals’ behaviour (e.g. if they were not motivated to run then trials ended earlier). In

general, animals were trained for one to two trials per day with an inter-trial interval of

at least half an hour. Behavioural training involved four phases which were described

below(see Figure 2.2).

1) Linear track - Narrow

Firstly, mice experienced an infinitely long 10cm-wide virtual linear track with 5 µL

milk drops delivered as rewards (lateral movement of the mice was not registered in

this phase). The wall was patterned and reward locations were indicated by virtual

beacons (high striped cylinders with a black circular base, see 2.2A), which were evenly

placed along the track (see Figure 2.2C). When the mouse contacted the area of the

base, milk was released and the beacon disappeared (mice were teleported back to the

start location with the beacon reappearing in the reward location, this quick change of

environment frames do not change the appearance of the virtual environment because

of its periodicity and gave a sense of an infinite long track). The aim of this training

phase was to habituate the mice to being head-restrained, train them to run confidently

on the air-cushioned ball and to form the association between running into beacons

and receiving milk rewards. Once an animal ran straightly forward and continuously

received rewards in roughly every 10 seconds, it was recognised to pass the training

phase. It took three days, on average, for mice to achieve the criterion and move to the

next training phases.

2) Linear Track - Wide

During the second training phase, mice experienced a similar virtual linear track (see

Figure 2.2B), which was wider and longer in reward-to-reward distance than the narrow

linear track. In the wide track, reward beacons were evenly spaced along the long axis

of the track, as before, but placed pseudo-randomly in one of three pre-defined positions
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on the lateral axis (middle, left or right). This training aimed to further strengthen

the association between rewards and visual beacons and to train animals to navigate

towards rewarded locations via appropriate bodily rotations on top of the ball. The

training was considered completed when animal learned to properly align their path

towards the reward cue and got rewards at an interval of ∼ 10 seconds. The second

training phase also took three days, on average.

3) Square – Random Foraging

During the third training phase mice were introduced into a virtual square arena placed

in the middle of a larger virtual room. Distinct visual patterns were placed both on

one side of the arena wall and one side of the wall in the large room. The floor was

patterned with hexagonal tiles and there was one balloon floating above the arena (see

Figure 2.2E-F). The virtual arena had a size of 60x60cm or 90x90cm for different mice.

Reward beacons had a base of the diameter that equalled to 10% of the arena width.

Mice were trained on a ‘random foraging’ task, during which visible beacons were placed

in the square box at random locations. At the early stage of training, multiple rewards

were positioned proximal to the animal in order to encourage them to run. Following

training, the rewards were reduced to one at a time and located at computer-generated

random locations that tile the environment evenly. Animals graduate from the training

when they showed smooth linear and angular movement, consistently turned away

when reaching the virtual walls of the arena and were continuously receiving rewards

at ∼10secs interval in 90x90cm square arena and ∼7secs interval in 60x60cm arena. It

normally took 2 - 7 days in this training phase.

4) Square – Fading Beacon

The last training phase was the ‘fading beacon’ task. The arena used in this task was the

same as random foraging task, however, the reward positions were different. During this
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task, every fourth beacon occurred in a fixed location and was rewarded by two drops of

milk at contact (the three intervening beacons being randomly placed within the square

enclosure and was rewarded by one drop of milk, beacons are presented one at a time

like at the end of random foraging phase; see Figure 2.2G-H). At the beginning of this

training phase the ‘fixed location beacon’ slowly faded from view over 10 contacts with

decreasing opacity. The beacon would remain invisible as long as mice could find it,

but would become visible again if mice could not locate it after roughly 2 min of active

searching. Once mice showed consistent navigation towards the fading fixed beacon,

they were moved to the ‘faded beacon’ phase of the task where the ‘fixed location

beacon’ was invisible from the start of the trial and remained invisible throughout the

trial. This trial phase, therefore, requires mice to navigate to an unmarked virtual

location from different starting points (random locations where the 3rd visible beacon

was placed). As such, the ‘fading beacon’ task serves as a continuous version of a

Morris Water Maze task (Morris et al., 1982), combining reference memory for an

unmarked location with a foraging task designed to optimise environmental coverage

for the assessment of spatial firing patterns. The training was completed when animals

were able to navigate to the unmarked reward location consistently throughout the

trial and were hitting rewards at ∼10secs interval in 90x90cm square arena and ∼7secs

interval in 60x60cm arena. This training phase often took 3 - 7 days which varied across

animals.
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Figure 2.2: Virtual environments and example trajectory maps in the four

training phases. (A, B, E & G) A view of the virtual narrow linear track (A), wide

linear track (B), fading beacon environment (E) and random foraging environment (F).

The fading beacon arena and random foraging arena are visually similar but different

in reward arrangement. (C, D, F & H) Trajectory maps in a typical narrow linear track

trial (C), a wide linear track trial (D), a fading beacon trial (F) and a random foraging

trial (H). Note the different trajectory patterns in (F) and (H). Triangles mark the

start positions, and circles the reward positions. Red and blue label positions in the

northward runs and the southward runs, respectively.

2.4 Data collection

Mice were put in a real-world square box to screen for the place cells and grid cells

everyday (∼20min per day) either right after habituation or after VR training was

accomplished. Boxes were either a 60x60cm square box sat on a black Trespa ’Toplab’

surface (Trespa International B.V., Weert, Netherlands) or an 80x80 cm square box on

a black prism vinyl flooring (used only in the dark experiment when recordings were

also done in an 80x80 cm square box). Screening boxes were placed in the middle

of an enclosure surrounded by a circular set of black curtains. A white cue-card (A0,

84x119cm), illuminated by a 40W lamp was positioned higher up attached to the curtain

to provide the only intentional distal cue. The recording boxes were visually patterned

asymmetrically (see Figure 2.3). Mice were encouraged to freely forage in the recording

box for milk droplets (SMA Wysoy infant 0-3 month) while neural activity was recorded

using a the DACQ data acquisition system (AXONA Ltd., UK). Tetrodes were lowered

by no more than 62.5um each day until stable recordings of well-isolated place cells

or grid cells in the pyramidal layer of CA1 or MEC were obtained on a majority of
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tetrodes.

Figure 2.3: Top view of the 60x60cm (left) and 80x80cm (right) recording

boxes.

Signals were amplified (10-20 K) and band-pass filtered (300-7 kHz) and whenever a

signal exceeded a set certain tetrode specific threshold (typically about 65-75% of the

maximum signal amplitude on a given channel/tetrode) it was recorded. Each tetrode

channel was monitored at 48 kHz and individual action potentials/signals were stored

as 50 points across a 200 µs pre- and 800 µs post-threshold time period. Whenever

a signal exceeded the threshold on any tetrode channel the signal was recorded on all

tetrode channels.

The hippocampal EEG was recorded by band-pass filtering the signal between 0.1-500

Hz and a 50 Hz notch filter at a sample rate of 250 Hz. EEG signals were typically

amplified 8-15K. EEG was recorded in both CA1 and MEC tetrodes. The position

and head orientation data was recorded via a camera positioned above the middle of

the environment using two different size LEDs attached to the head of the animal at a

fixed distance (5cm) and a fixed orientation relative to the animal’s head. This allowed

tracking of position as well as heading direction. Positions were sampled continuously
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at 50Hz.

2.4.1 Histology

After experiments ended, all the implanted mice were killed with an overdose of

sodium pentobarbital and perfused transcardially with saline followed by formalin

solution. Brains were stored in formalin at least overnight before being transferred

to 30% sucrose solution for two days. Slicing was then performed coronally for the

CA1 implanted hemisphere and sagittally for the dMEC implanted hemisphere into

30-um-thick sections, which were mounted and stained using a Cresyl-violet/Thionin

solution with standard protocol. See Figure 2.4 for the implant trace locations.
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Figure 2.4: Histology and implant traces in CA1 and MEC.. (A-B) Nissles

stained sagittal slices (A) and coronal slices (B) from two double-implanted mice

showing the tetrode traces in MEC and CA1. Bar = 1mm applies to all the slices

in (A-B). The array of red arrows indicate the track and the red dot indicates the its

termination. (C-D) All the estimated tetrodes’ tip locations are marked with red dots

on an example sagital slice for MEC (C) and an coronal slice for CA1 (D). The MEC

area and sublayers are outlined in (C). Note the clustering of implants at the superficial

layer of dMEC and the dorsal CA1.

2.4.2 Firing rate map construction and spatial cell

classification

Spike sorting was performed offline using an automated clustering algorithm

(KlustaKwik, Kadir et al. (2014)) followed by a manual review and

editing step using an interactive graphical tool (waveform, Daniel Manson,

http://d1manson.github.io/waveform/). After spike sorting, firing rate maps

were constructed by binning animals’ positions into 1.5 x 1.5cm bins, assigning spikes

to each bin, smoothing both position maps and spike maps separately using a 5x5

boxcar filter, and finally dividing the smoothed spike maps by the smoothed position

maps.

Cells were classified as place cells if their spatial information in baseline trials exceeded

the 99th percentile of a 1000 shuffled distribution of spatial information scores calculated

from rate maps where spike times were randomly offset relative to position by at least

20 seconds. Cells were classified as grid cells if their gridness scores in baseline trials

exceeded the 99th percentile of a shuffled distribution of 1000 gridness scores (Sargolini

et al., 2006). Place and grid cells additionally required a peak firing rate above 2 Hz for
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clarity of classification. Cells were classified as head direction cells if their directional

information in baseline trials exceeded the threshold of the 99th percentile population

shuffling.

Speed-modulated cells were classified from the general population of the recorded cells

following McNaughton et al. (1983). Briefly, the degree of speed modulation for each

cell was characterised by first defining the instantaneous firing rate of the cell as the

number of spikes occurring in each position bin divided by the sampling duration (0.02

s). Then a linear correlation was computed between the running speeds and firing rates

across all position samples in a trial, and the resulting r-value was taken to characterise

the degree of speed modulation for the cell. To be defined as speed-modulated, the

r-value for a cell had to exceed the 99th percentile of a distribution of 1000 r-values

obtained from spike shuffled data.

When assessing the directional modulation of place and grid cell firing, apparent

directional modulation can arise in binned firing rate data from heterogenous sampling

of directions within the spatial firing field Burgess & Hitch (2005); O’Keefe & Recce

(1993). Accordingly we fit a joint (‘pxd’) model of combined place and directional

modulation to the data (maximising the likelihood of the data Burgess & Hitch (2005))

and perform analyses on the directional model in addition to the binned firing rate

data.

Theta modulation of cell firing during the main experiment were computed using

Maximum likelihood estimation of the distribution of lags, following Climer et al. (2015).

Cells with theta index higher than the confidence interval of 95% were classified as

theta rhythmic cells. Among that population, two-dimensional phase precession was

estimated for cells that were also classified as place cells or grid cells, following Climer

et al. (2015). In brief, each running trajectory passing through the defined place
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field was normalized and mapped radially on an unit circle so that the proportional

distance of the animal between the field edge and peak was preserved and so that the

average running direction was zero (from left to right). The distance of the animal from

the peak projected onto the instantaneous running direction (‘Pdcd’) was calculated,

representing the distance the animal has travelled through the field (range -1 to 1). The

theta phase of each spike was computed using the Hilbert transform of the smoothed

LFP.
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Chapter 3

Spatial cell firing during virtual

navigation of open arenas by

head-restrained mice

3.1 Introduction

Virtual reality (VR) is a powerful technique that can be used for constructing and

presenting highly controlled sensory stimuli, as well as for pairing with various

behavioural and neuronal recording techniques that require restrained motion of the

subject thus prohibiting use in awake behaving animals (this is especially true for

navigation research). First developed for insects, the rudimentary design of the early

VR system has been validated and inherited ever since. It combines body-tethering

an animal, a ball that rotates effortlessly on which animal can rest or walk, sensors

that track movement of the animal (walk, fly, vibration etc.) and stimuli generators

that present sensory inputs registered (or not) to the animal’s movement (Carrel, 1972;
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Dahmen, 1980; Gray et al., 2002).

VR systems were later adapted for rodents and shown adequate in engaging natural

navigational behaviour (Hölscher et al., 2005; Lee et al., 2007), as well as eliciting

normal spatial tuning properties in rodents’ hippocampal-entorhinal circuit (Harvey

et al., 2009; Dombeck et al., 2010; Domnisoru et al., 2013; Schmidt-Hieber &

Hausser, 2013; Heys et al., 2014; Aronov & Tank, 2014). On the other hand,

many VR studies adopt strict head fixation in the mouse to accommodate recording

techniques such as intracellular recordings and two photon microscopy during awake

navigation. Findings from large-scale neural network organisation to subthreshold

membrane depolarization and oscillation significantly advanced our understanding of

the mechanisms of hippocampal function (Harvey et al., 2009; Dombeck et al., 2010;

Domnisoru et al., 2013; Schmidt-Hieber & Hausser, 2013; Heys et al., 2014; Gu et al.,

2018). Virtual reality also allows the construction of any sensory ’space’ in which animal

could freely explore while their underline neural activity stucture being checked (Saleem

et al., 2013; Constantinescu et al., 2016; Aronov et al., 2017; Ayaz et al., 2019).

Despite recent success in applying VR techniques in neuroscience research, there is a

balance to be made for researchers applying the VR techniques between the degree of

restriction and ecology to the animal. It was shown that when restricted of vestibular

input as in the head-fixed mice, the proportion of cells in the hippocampal CA1 to

display high spatial selectivity was reduced. Cells that are active, instead of responding

to the allocentric location, fire in relation to the relative distance or temporal order of

events. And Their activity are more modulated by animal’s head direction compared to

when they are allowed free foraging in the open field (Ravassard et al., 2013; Aghajan

et al., 2015; Acharya et al., 2016). Head fixation also limits the sensory experience

of virtual navigation to stereotypical trajectories such as following the linear track or
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armed mazes which also contributes to their altered functional properties in the VR

(Harvey et al., 2009; Dombeck et al., 2010; Domnisoru et al., 2013; Schmidt-Hieber &

Hausser, 2013; Heys et al., 2014).

In this study we provide a solution of the state-of-art VR system that initiates the

hippocampal 2D spatial representation and provides high head stability to potentially

accomodate two photon microscopy. The mechanical details of our VR setup as well

as our behavioral training protocol are described in Section2.3.1. Here I am focusing

on animals’ behavioral performance and the extracellar recording we obtained from

mice hippocampal CA1 and MEC during virtual navigation. We show that mice are

able to remember an unmarked reward location in our virtual environment and flexibly

navigate to it from random locations. Place cell, grid cells and head direction cells are

also active and displaying characteristic 2D spatial representation in the VR.

3.2 Materials and methods

3.2.1 Animals

Eleven male C57Bl/6 mice were used in this experiment. Two were implanted with

eight tetrodes in the hippocampal CA1, three with eight tetrodes in the dorsomedial

entorhinal cortex, and six mice received a dual implant with one microdrive in right

CA1 and one in left dmEC (each mircrodrive carried 4 tetrodes).

84



CHAPTER 3. SPATIAL CELL FIRING DURING VIRTUAL NAVIGATION OF
OPEN ARENAS BY HEAD-RESTRAINED MICE

3.2.2 Recording procedure

Comparison between VR and R trials

After being through all four training stages, mice were recorded in both VR and R

environments for comparison. Each recording day consisted of at least one 40-min

random-foraging trial in a virtual reality (VR) square environment. For seven mice the

virtual environment had size 60x60 cm and for four mice 90x90 cm. After one (or more)

40-min random foraging trial(s) in the virtual square, mice were placed in a real-world

square (‘R’, 60x60cm square, similar to the screening environment, see Figure 3.8A)

for a 20-min random-foraging trial in the real-world environment. For each animal, the

first days they showed well isolated spatial tuning cells in both VR and R environments

were included for analysis (when multiple trials were recorded on the same day for

either condition the first one were chosen). In general, even with good task behaviour

in the fading beacon tasks, often further training sessions were needed for place cells

and grid cells to show stable spatial tuning. Only one VR-R trial pair was included for

each animal. To check the exact trial arrangement on the experimental day, and details

of their pre-recording training experince are listed in Table 3.1.

To control for sequential effect between VR and R trials, we performed additional

recordings from 4 mice (3 new to the experiment, one that had performed the main

experiment). On one day they experienced a trial in the R square before a trial in the

VR square (60x60cm) environment. On the next day, the VR trial preceded the R trial.

To further establish the difference between VR and R trials were not

environment-specific, we also introduced those 4 mice to a novel cylindrical VR and

cylindrical R environment which shared similar wall and floor visual patterns. Four

trials were recorded on the same day in the order: VR cylinder, VR square, R cylinder
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Table 3.1: Trial information

Mouse
id

Implant
typea

Trials on the
recording day

Size
(cm)

Train-
ingb

(Days)

Trial
dur.
(mins)

Rwd.
per
trial

Grid
cell
No.

Place
cell
No.

449 E VRc–VR-Rd 90 13 30 404 18 0
598 C VRc–VR-Rd 90 9 30 199 0 20
864 E VRc–VR-Rd 60 9 40 394 2 0
969e CE VRc(D1)-Rd(D2) 90 20 40 377 0 14
984 C VRc–VR-Rd 90 22 40 487 0 33
986 E VRc–VR-Rd 60 11 40 593 16 0
987 CE VRc–VR-Rd 60 25 40 596 13 26
1014 CE VRc–VR-Rd 60 20 40 632 4 0
1015 CE VRc–VR-Rd 60 16 40 516 2 25
1060 CE VRc–VR-Rd 60 16 40 385 2 12
1061 CE VRc–VR-Rd 60 23 40 705 4 24

aE: implant in left MEC; C: implant in left CA1; CE: implant in right CA1 and left
MEC
b Number of days trained in the ’fading beacon’ task before recording (see Section 2.3.1)
cVR trial included in analysis
dR trial included in analysis
e R trial was recorded on the next day of VR trial in mice #969

and R square. All VR trials were 40 minutes and R trials 20 minutes in length (see

Figure 3.8 and Figure 3.10).

Rotation of VR environment

Additionally, 4 mice also underwent a virtual cue rotation experiment, which consisted

of two 40-min random-foraging VR trial (one baseline VR trial and one rotated VR

trial) and one 20 min R trial. Two mice navigating 60x60cm VR squares and two

90x90cm squares participated in this experiment. In the rotated VR trials, all cues

in the virtual reality environment rotated 180 degrees compared to the baseline trial,

as was the entry point mice were carried into the VR rig from. Mice were purposely
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disoriented with passive rotation before introduced to each VR trial.

3.2.3 Behavioral analysis

During electrophysiological recording in the real environment (R), the mouse’s position

and head orientation were tracked by an overhead camera (50Hz sampling rate) using

two infra-red LEDs attached to the micro-drive at a fixed angle and spacing (5 cm

apart). Brief losses of LED data due to cable obstruction (typically affecting a single

LED for less than 500ms) were corrected with linear interpolation between known

position values. Interpolation was carried out for each LED separately. The position

values for each LED were then smoothed, separately, using a 400ms boxcar filter.

During electrophysiological recording in VR, head orientation was tracked as in R,

the path, running speed and running direction was inferred from the VR log at 50Hz

(movements of VR location being driven by the computer mice tracking the rotation of

the ball, see above).

Path excess ratio was defined as the ratio between the length of the actual path that

an animal takes to run from one reward location to another, and the distance between

the two reward locations. All training trials in the VR square and the real (R) square

environments from the 11 mice in the main experiment were included in the behavioural

analyses in Figure 3.3.

3.2.4 Statistical analysis

In behavioural analyses, each animal’s running speed, the directionality of path and

angular velocity were tested with two-way repeated measure ANOVA (rmANOVA) on

two factors each with two levels, environment (R vs VR) and experience (early-stage
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vs late-stage). For the fading beacon task only, the entire VR environment was divided

into four quadrants in which one contains the location of fixed unmarked goal location

(area 1). The main effect of dwell time in different quadrates was tested with one-way

repeated measure ANOVA with four levels. Post hoc paired t test was calculated for

comparisons between area 1 and the rest of quadrates with Bonferroni correction. In

electrophysiology data analysis, tests of difference between R and VR environments in

cells’ spatial tuning properties were done with paired t test. In all figures * = significant

at the 0.05 level, ** = significant at the 0.01 level, *** = significant at the 0.001 level.

For all the statistical test results see Table 3.2.

Table 3.2: Statistical test results

Comparison Test Results Fig.

Average running speed rmANOVA:

VR(2) by

training(2)a

Training: F(1,10)=40.11, p<.001 Fig.3.1C

Path vector length VR: F(1,10)=4.82, p=0.053 Fig.3.3F

Path direction change VR: F(1,10)=300.93, p<.001 Fig.3.1I

Path direction change Training: F(1,10)=26.82, p<.001 Fig.3.1I

Occupancy in each quadrantb

of the arena

rmANOVA:

quadrant(4)

F(3, 30) = 39.03, p<0.001 Fig.3.3B

post hoc

paired t test,

Bonferroni

1vs2: p<.001 Fig.3.3B

1vs3: p<.001 Fig.3.3B

1vs4: p<.001 Fig.3.3B

PC, spatial info. paried t test,

VR-Rc

t(153)=8.90, p<.001 Fig.3.5D

PC, directional info. t(153)=6.45, p<.001 Fig.3.5E

PC, directional info. (’pxd’

model)

t(153)=7.61, p<.001 Fig.3.5E

PC, field size t(153)=4.38, p<.001 Fig.3.5F

PC, VR(60cm), spatial info. t(86)=7.31, p<.001 Fig.3.6A

Continued on next page
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Table 3.2 – continued from previous page

Comparison Test Results Fig.

PC, VR(60cm), directional

info.

t(86)=-4.71, p<.001 Fig.3.6A

PC, VR(60cm), field size t(86)=-3.06, p<.001 Fig.3.6A

PC, VR(90cm), spatial info. t(66)=5.20, p<.001 Fig.3.6B

PC, VR(90cm), directional

info.

t(66)=-4.52, p<.001 Fig.3.6B

PC, VR(90cm), field size t(66)=-3.13, p<.01 Fig.3.6B

GC, VR(60cm), mean firing

rate

t(42)=3.19, p<.01 Fig.3.6C

GC, VR(60cm), grid scale t(42)=-11.53, p<.001 Fig.3.6C

GC, VR(60cm), spatial info. t(42)=2.41, p<.05 Fig.3.6C

GC, VR(90cm), grid scale t(17)=-22.72, p<.001 Fig.3.6D

GC, VR(90cm), directional

info.

t(17)=2.62, p<.05 Fig.3.6D

GC, VR(90cm), directional

info. (’pxd’ model)

t(17)=2.76, p<.05 Fig.3.6D

PC, spatial info. rmANOVA:

VR(2) by

configuration(2),

post hoc

paired t test,

Bonferroni

VR:F(1,89)=25.20, p<.001 Fig.3.8B

interaction:F(1, 89)=34.99, p<.001 Fig.3.8B

PC, directional info. VR:F(1,89)=12.16, p<.001 Fig.3.8B

PC, field size VR:F(1,89)=22.11, p<.001 Fig.3.8B

interaction:F(1,89)=4.24, p<.05 Fig.3.8B

GC, gridness score interaction:F(1,8)=13.35, p<.01 Fig.3.8C

VR-R (configuration = square):

t(8)=-2.87, p<.05

Fig.3.8C

GC, grid scale VR:F(1,8)=63.74, p<.001 Fig.3.8C

GC, grid scale paried t test,

VR-R

t(60)=15.52, p<.001 Fig.3.9E

GC, spatial info. t(60)=4.12, p<.001 Fig.3.9F

Continued on next page
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Table 3.2 – continued from previous page

Comparison Test Results Fig.

GC, directional info. t(60)=2.04, p<.05 Fig.3.9G

GC, gridness score rmANOVA:

VR(2) by trial

order(2), post

hoc paried t

test,

Bonferroni

VR:F(1,19)=34.82, p<.001 Fig.3.10C

GC, grid scale VR:F(1,19)=74.41, p<.001 Fig.3.10C

GC, first 20 mins, gridness

score

VR:F(1,19)=102.90, p<.001 Fig.3.10D

GC, first 20 mins, grid scale VR:F(1,19)=75.91, p<.001 Fig.3.10D

GC, first 20 mins, directional

info.

VR:F(1,19)=9.58, p<.01 Fig.3.10D

GC, first 20 mins, directional

info. (’pxd’ model)

VR:F(1,19)=8.18, p=.01 Fig.3.10D

PC, spatial info. VR:F(1,84)=72.61, p<.001 Fig.3.10A

PC, directional info. VR:F(1,84)=33.25, p<.001 Fig.3.10A

interaction:F(1,84)=6.44, p<.05 Fig.3.10A

PC, directional info. (’pxd’

model)

VR:F(1,84)=25.90, p<.001 Fig.3.10A

interaction:F(1,84)=17.95, p<.001 Fig.3.10A

PC, field size VR:F(1,84)=38.50, p<.001 Fig.3.10A

PC, first 20 mins, spatial info. VR:F(1,84)=47.04, p<.001 Fig.3.10B

PC, first 20 mins, directional

info.

VR:F(1,84)=44.82, p<.001 Fig.3.10B

interaction:F(1,84)=3.92, p=0.05 Fig.3.10B

PC, first 20 mins, directional

info. (’pxd’ model)

VR:F(1,84)=36.50, p<.001 Fig.3.10B

interaction:F(1,84)=13.01, p<.001 Fig.3.10B

PC, first 20 mins, field size VR:F(1,84)=20.74, p<.001 Fig.3.10B

PC, cue rotation paired t test:

VR-R

t(122)=19.44, p<.001 Fig.3.13D

PC, cue rotation t(17)=9.41, p<.001 Fig.3.13E

HD, cue rotation t(16)=24.77, p<.001 Fig.3.13F

Continued on next page
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Table 3.2 – continued from previous page

Comparison Test Results Fig.

GC, field size rmANOVA:

VR(2) by

running

speed(3)

VR:F(1,60)=21.28, p<.001 Fig.3.16A

speed:F(2,120)=7.06, p<.01 Fig.3.16A

PC, field size VR:F(1,153)=3.50, p=0.06 Fig.3.16B

speed:F(2,306)=11.13, p<.001 Fig.3.16B

GC, phase precession slope paried t test:

VR-R

t(19)=-2.55, p<.05 Fig.3.17D

GC, phase precession slope t(37)=-2.19, p<.05 Fig.3.17E

arepeated measure ANOVA: factor(s)(Number of levels in each factor)

bquadrant 1 contains the reward zone.

cpaired t test between condition1 and condition2
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3.3 Results

3.3.1 Navigation in VR
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Figure 3.1: Behavior in VR compare to R. (A-C) Average running speeds of all

trained mice (n = 11) across training trials in real (‘R’; A) and virtual reality (‘VR’;

B) environments across training trials. (C) Comparisons of the average running speeds

between the first 5 trials and the last 5 trials in both VR and R environments. (D-F)

Average Rayleigh vector lengths of running direction across training trials in R (D) and

VR (E). (F) Comparisons of the average Rayleigh vector lengths of running direction

between the first 5 trials and the last 5 trials in both VR and R. Note that unimodel

directionality of path was marginally higher in VR than in R and did not change

significantly with experience. (G-I) Average changes of running direction (absolute

angular difference in between downsampled positions) across training trials in R (G)

and VR (H). (I) Comparisons of the changes of running direction between the first 5

and last 5 trials in both R and VR. Positions were sampled at 2.5Hz with 400ms boxcar

smoothing in (I-N). All error bars show s.e.m.

Eleven mice were trained in the virtual reality system (see Figure 2.1 and Figure

2.2, and Materials and Methods). All training trials in the VR and the real square

environments from the eleven mice were included in the behavioural analyses below.

The mice displayed an initially lower running speed when first experiencing the

real-world recording environment (a 60x60cm square), but reached a higher average

speed after 20 or so training trials. The increase in running speed with experience

was similar in the virtual environments (Figure 3.1A-C). Running speeds did not differ

between the 60cm and 90cm virtual environments used for recording in seven and four

of the mice respectively (12.01 ± 2.77 in 60cm VR, 14.33 ± 4.19 cm/s in 90cm VR,

p = 0.29). Running directions in the VR environment showed a marginally greater

unimodal bias compared to the real environment (R; Figure 3.1D-F). Mice displayed a

greater tendency to run parallel to the four walls in VR, a tendency which reduced with

experience (Figure 3.2). They also took straighter, less tortuous, paths in VR than in
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R, as would be expected from their head-fixation (Figure 3.1G-I).

In the fading beacon task, performance steadily improved across 2-3 weeks of training

(Figure 3.3D). They learned to approach the fixed reward location and could do so even

after it became completely unmarked (fully faded, see Figure 3.3 and the Supplementary

video of a mouse performing the task, and Materials and Methods for details of the

training regime).

Figure 3.2: Running direction distribution. Polar plots of mice’ running directions

in the virtual square arena (B, D) and real-world square box (A, C) in the early (A,

B) and late (C, D) training stages. Each color line indicates one animal (n=11). Path

direction distribution was average over the first 5 training trials as the early stage and

the last 5 training trials as the late stage.
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Figure 3.3: Performance on the ‘fading beacon’ task. (A) An example heat

map showing the overall dwell time of the animal at each spatial bin to reach the

fixed reward location from the last random reward location in a 40-min trial (mouse

#987, trial #l24). The dotted circle in quadrant #1 shows the location of the fixed

reward. (B) Average time spent (as in percentage of the total trial length) in each

quadrant (numbered in A). (C) Average duration of reaching the fixed reward location

from the last random reward location plotted against training trials (means ± s.e.m).

(D) Average path excess ratios between the fixed reward location and the last random

reward location plotted against training trials (means ± s.e.m). Trials when the fixed

reward location was visible (i.e. marked by a visual beacon) were colored gray and

those when the fixed reward location was invisible were colored blue.

3.3.2 Electrophysiology

We recorded a total of 231 CA1 cells from 7 mice, 179 cells were classified as place

cells in the real environment, 185 cells in the virtual environment, and 154 cells were

classified as place cells in both real and virtual environments.

We recorded 141 cells in dorsomedial Entorhinal Cortex (dMEC) from 8 mice, 82 of

them were classified as grid cells in the real environment, 65 of them grid cells in

the virtual environment, and 61 were classified as grid cells in both real and virtual

environments. Among these 141 recorded cells, 16 cells were quantified as head-direction

cells (HDCs) in R, 20 cells were HDCs in VR, with 12 cells classified as HDCs in both

real (‘R’) and virtual reality (‘VR’) environments. All cells were recorded while animals

randomly foraged in both R and VR environments (methods for cell classification was

described in Section 2.4.2. For threshold distribution see Figure 3.4).
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Figure 3.4: Spatial cell classification. Distribution of thresholds (99th percentile

of the shuffled distribution in each cell) of spatial information for CA1 units (A) and

gridness score for MEC units (B). Vertical line indicates the group median.

Place cells recorded from CA1 showed spatially localized firing in the virtual

environment, with similar firing rates in the virtual and real square environments.

Place cells had larger firing fields in VR than in R, by a factor 1.44 (field sizeV R /

field sizeR). The spatial information content of firing fields in VR was lower than in R.

In addition, the firing of place cells was more strongly directionally modulated in VR

than in R. See Figure 3.5. Similar results were seen irrespective of whether recordings

took place in the 60x60cm or 90x90cm VR environments (e.g., the place field expansion

factor being 1.44 in 90cm VR, 1.43 in 60cm VR, p = 0.66, see Figure 3.6).
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Figure 3.5: Place cell firing in real and virtual environments. (A-B) The same

five place cells recorded in a 60x60cm virtual square (A) and in a 60x60cm real square

(B, one cell per column). Top row: 40-min running trajectory (black line) with red dots

showing the locations of spikes; 2nd row, firing rate maps, maximum firing rate (Hz)

shown at top right, spatial information rate (bits/spike) bottom right; 3rd and 4th row:

polar plots of directional firing rates (3rd row: standard binning; 4th row: after fitting

a joint ‘pxd’ model to account for inhomogeneous sampling), maximum firing rate top

right, directional information bottom right. (C-F) Comparison between R (grey bars)

and VR (blue bars) in Mean firing rates (C), Spatial information rates (D), directional

information rates (E) using standard (solid bars) and pxd binning (open bars) and Field

sizes (F, bins with firing above 50% of peak firing rate, as a proportion to the size of

the test environment).
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Figure 3.6: Spatial cell firing properties in 60x60cm and 90x90cm virtual

environments. (A-B) Place cell properties in the 60x60cm VR (A) and the 90x90cm

VR (B) compared to the 60x60cm R. (C-D) Grid cell properties in the 60x60cm VR

(C) and the 60x60cm VR (D) compared to the 60cm R. In the plots of the directional

information rates, solid bars stand for standard directional binning and open bars stand

for binning with the ’pxd’ model fitting. (E) Head direction cell properties in the 60cm

VR and 60cm R.

Figure 3.7: Directional information of place cell firing (bits/spike) as a

function of the distance from the nearest wall.

One possible contribution to apparent directionality in place cell firing could be

inhomogeneous sampling of direction within the (locational) firing field. This can be

controlled for by explicitly estimating the parameters of a joint place and direction

(‘pxd’) model from the firing rate distribution (Burgess & Hitch, 2005). However,

using this procedure did not ameliorate the directionality in firing (see Figure 3.5).

Further analyses showed that firing directionality increased near to the boundaries

in both virtual and real environments (where sampling of direction is particularly

inhomogeneous), but that the additional directionality in VR compared to R was

apparent also away from the boundaries (See Figure 3.7). We investigated further
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whether the increased directionality of place cell firing in VR was specific to the square

VR environment, by performing additional recordings of both place and grid cells while

animals foraged in (visually similar) cylindrical and square R and VR environments

(in 4 mice, 3 new to the experiment, yielding a total of 90 place and 9 grid cells).

The increased directionality of place cells but not grid cells in VR was present in both

cylinder and square environments, supporting the generality of the result (see Figure

3.8).
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Figure 3.8: Comparison between VR and R trials in square and cylindrical

environments in additional data from 4 mice. (A) Photos of the recording

environments (see Figure 2.2 for the ’VR square’ environments). (B-C) Comparison

of place cell properties (B) and grid cell properties (C) between virtual and real

environment as well as between cylinder (C) and square (S) enclosures.

Grid cells recorded in dmEC, showed similar grid-like firing patterns in VR as in R,

with similar firing rates and ‘gridness’ scores. The spatial scale of the grids was larger

in VR than in R, with an average increase of 1.42 (grid scaleV R / grid scaleR, n=6

mice). The spatial information content of grid cell firing was lower in VR than R, as

with the place cells. Unlike the place cells, the grid cells showed a slight decrease in

directionality from R to VR, although this appears to reflect inhomogeneous sampling

of directions within firing fields, as the effect was not seen when controlling for this in

a joint ‘pxd’ model. See Figure 3.9. Similar results were seen irrespective of whether

recordings took place in the 60x60cm or 90x90cm VR environments (e.g., the grid

scale expansion factor being 1.43 in 60cm, 1.36 in 90cm, p=0.78), although there were

minor differences (the reduction in spatial information only reaching significance in

the 60x60cm VR and that in directional information only reaching significance in the

90x90cm VR), see Figure 3.6. It is possible that low directional modulation of the firing

of a grid cell could reflect directionally modulated firing fields with different directional

tuning. Accordingly, we checked the directional information in the firing of each field,

without finding any difference between R and VR (Figure 3.9H).
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Figure 3.9: Grid cell firing in real and virtual environments. (A-B) The same

five grid cells simultaneously recorded in a 60x60cm virtual square (A) and in a 60x60cm

real square (B, one cell per column). Top row: 40-min running trajectory (black line)

with red dots showing the locations of spikes; 2nd row, firing rate maps, maximum

firing rate (Hz) shown top right, spatial information (bits/spike) bottom right; 3rd

row: spatial autocorrelations, gridness scores top right; 4th and 5th rows: polar plots of

directional firing rates (4th row: standard binning; 5th row: ‘pxd’ binning to account

for inhomogeneous sampling), maximum firing rate top right, directional information

bottom right. (C-H) Comparison between R (grey bars) and VR (blue bars) in mean

firing rates (C), gridness scores (D), grid scales (E), spatial information (F) in bits/spike,

directional information (solid bar for standard binning and open bar for ’pxd’ binning)

(G) and directional information in individual grid firing fields (H).

To check whether any differences between R and VR could reflect the trial order (VR

before R), we recorded additional data from place and grid cells in R and VR on

days in which R trials both preceded and followed VR trials (in 4 mice, 3 new to the

experiment). We also included analysis of the first 20 mins of VR trials (matching the

length of R trials), see Figure 3.10. Under these conditions, the differences in firing

properties between R and VR are similar to those shown in Figures 3.5 and 3.9, again

indicating generality. However, the 20 grid cells in this group did show lower gridness

scores in VR than R, and 43 cells were classified as grid cells in R but only 24 as

grid cells in VR. Thus grid cell firing patterns can be sensitive to the use of VR and

the inherent conflict between virtual and uncontrolled cues to translation. The extra

sensitivity in the second group of animals might reflect their greater age at test (mice

with grid cells, main experiment: n = 8, age = 25.4 ± 4.3 weeks; additional experiment:

n = 3, age = 40.1 ± 11.2 weeks; t(9) = -3.34, p < .01) but this would require further

verification.
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Figure 3.10: Trial order and trial length effects on comparing cell firing

properties in real and virtual environments in additional data from 4 mice.

(A-B) Place cell firing properties comparing 20min R trials with 40min VR trials (A)

and the first 20 minutes of the VR trials (B). (C-D) Grid cell firing properties comparing

20min R trials with 40min VR trials (C) and the first 20 minutes of the VR trials (D).

Solid bars stand for standard binning and open bars stand for ’pxd’ binning)

We also recorded head-direction cells in the dMEC, as previously reported in rats

(Sargolini et al., 2006) and mice (Fyhn et al., 2008). These cells showed similar firing

rates in VR and R, with similar tuning widths. See Figure 3.11. The relative differences

in the tuning directions of simultaneously recorded directional cells was maintained

between R and VR, even though the absolute tuning direction was not (see Figure

3.12).
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Figure 3.11: Head direction cell firing in real and virtual environments. (A-B)

Polar plots of the same five HD cells in dMEC simultaneously recorded in R (A) and VR

(B, one cell per column). Maximum firing rates are shown top right, Rayleigh vector

length bottom right. (C-F) Comparisons of basic properties of HD cells in dMEC

between R and VR.
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Figure 3.12: Eleven directional cells recorded in dMEC. (A) Polar plots (left

column) and firing rate maps (right column) of seven cells found in mouse 1. (B) Two

conjunctive grid cells found in mouse 2. (C) Two cells found in mouse 3. Numbers on the

top right show maximum firing rates, and on the bottom show Rayleigh vector length

(left columns) and spatial information (right columns). (D) The relative directional

tuning difference of simultaneously recorded head-direction cells between VR and R:

Mouse 1 (blue), 337.71 ± 8.28; Mouse 2 (red), 138.0 ± 0.00; Mouse 3 (green), 258.00

± 16.97. The dots represent the relative directional tuning difference of individual cells

between VR and R. The lines represent the mean tuning difference within the animals.

Each dot represents one cell, and each colour represents one animal.

The translational movement defining location within the virtual environment purely

reflects feedback (visual, motoric and proprioceptive) from the virtual reality system,

as location within the real world does not change. However, the animal’s sense of

orientation might reflect both virtual and real-world inputs, as the animal rotates in

both the real and virtual world. To check for the primacy of the controlled virtual

inputs versus potentially uncontrolled real-world inputs (e.g. auditory or olfactory), we

performed a 180o rotation of the virtual environment and the mouse’s entry to it between

trials. Note that the geometry of the apparatus itself (square configuration of screens,

overhead projectors on either side) would conflict with rotations other than 180o. In

separate trials, we observed a corresponding rotation of the virtual firing patterns of

place, grid and head-direction cells, indicating the primacy of the virtual environment

over non-controlled real world cues. See Figure 3.13. While all the grid and head

direction cells followed the rotation of VR cues (and entry point), a small percentage of

place cells (7/141; 5%) did not. These place cells show much lower spatial information

scores in both the R and VR conditions (see Figure 3.14), indicating that their lack of

rotation might be the result of their weaker or less stable spatial tuning to the proximal
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environmental cues that were rotated.
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Figure 3.13: Effect of rotating the virtual environment on spatial firing

patterns. (A-C) Three simultaneously recorded CA1 place cells (A), dmEC grid

cells (B) and dmEC head-direction cells (C). Upper rows show firing patterns in

baseline trials, lower rows show the rotated probe trials. Schematic (far let) shows

the manipulation: virtual cues and entry point were rotated 180o relative to the real

environment (marked by a red star). Maximum firing rates are shown top right, spatial

information (A), gridness (B) or Rayleigh vector length (C) bottom right. (D-E)

Comparison of correlations between cells’ spatial rate maps in probe and baseline

trials and correlations between 180o-rotated rate maps in probe trials and baseline

trials in place cells (D) and grid cells (E). (F) Comparison of correlations between

cells’ directional rate vectors in probe and baseline trials and correlations between

180o-rotated rate vectors in probe trials and baseline trials in head direction cells.

The animal’s running speed is known to correlate with the firing rates of cells, including

place cells, grid cells and (by definition) speed cells (Sargolini et al., 2006; McNaughton

et al., 1983; Kropff et al., 2015), and with the frequency of the local field potential theta

rhythm (McFarland et al., 1975; Rivas et al., 1996; S lawińska & Kasicki, 1998). So these

experimental measures can give us an independent insight into perceived running speed.

We found that the slope of the relationship between theta frequency and running speed

was reduced within the VR compared to R, while this was not the case for the firing

rates of place, grid and speed cells. See Figure 3.15. However, the changes in grid

scale and theta frequency in virtual versus real environments did not correlate with

each other significantly across animals. There was an effect of running speed on the

sizes of place and grid fields that was similar in R and VR, but was not the monotonic

relationship that would be predicted by an effect of (speed-related) theta frequency on

field size (see Figure 3.16).

Finally, an important aspect of place and grid cell firing is the temporal coding seen
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in the theta phase precession of firing in 1-d (O’Keefe & Recce, 1993; Hafting et al.,

2008) and 2-d (Climer et al., 2015; Jeewajee et al., 2014) environments. We calculated

the theta-band frequency modulation of firing of theta-modulated cells (see Section

2.4.2) and compared it to the LFP theta frequency in R and VR. This analysis shows

that, despite the lower overall frequencies in VR, theta modulated firing frequency is

slightly higher than the LFP frequency in both R and VR, consistent with theta phase

precession (See Figure 3.17A). In addition, we directly analysed phase precession in

place and grid cells with clear theta-modulation, finding normal 2-d phase precession in

both VR and in R (as in 1-d VR reported by Harvey et al. (2009)). The phase precession

slope is lower in VR, consistent with larger firing fields overall in VR environments, but

correlations between slope and field size only reached significance for place cells in R

(n = 38, r = 0.46, p < .01; all other p > .3, See Figure 3.17). These results indicate

that theta phase precession in place and grid cells is independent of linear vestibular

acceleration signals and the absolute value of theta frequency.

Figure 3.14: Spatial information of place cells that did not follow the

180o-rotation of VR environment. n = 7, spatial information were 0.32 ± 0.23,

0.14 ± 0.07, 0.15 ± 0.07 and 0.16 ± 0.09 in R, VR control, VR rotated and VR control

trials respectively.
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Figure 3.15: Effect of running speed on theta frequency and firing rates in

real and virtual environments. Relationship between running speed in VR (blue)

and R (black) on instantaneous LFP theta frequency in CA1 (A, n = 6), instantaneous

LFP theta frequency in dMEC (B, n = 5), firing rates of place cells in CA1 (C, n =

154), firing rates of grid cells in dMEC (D, n = 61), speed-modulated cells in CA1 (E,

n = 55), firing rates of speed-modulated cells in dMEC (F, n = 26). Lines show the

mean (± s.e.m) in each speed bin (2.5cm/s to 30cm/s).
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Figure 3.16: Spatial cell field size was modulated by running speed in a similar

way in real and virtual environments. Comparison of grid cell field size (A) and

place cell field size (B) when sampled in different speed ranges.
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Figure 3.17: Theta phase precession. (A) Theta frequency modulation of firing

rate versus LFP theta frequency (175 theta modulated cells recorded from EC and

CA1, including 20 grid cells and 38 place cells). (B) Example of a grid cell’s theta

phase precession in real (left) and virtual environments (right), showing the detection

of peaks in the smoothed firing rate map (above), division of data into separate firing

fields (middle) and firing phase with respect to LFP theta plotted against distance

through field along the current direction of motion (pdcd). (C) Example of a place

cell’s theta phase precession in real (left) and virtual environments (right), shown as

in B). (D-E) Comparison of grid cell (D) and place cell (E) theta phase precession in

R and in VR. Precession slope (left) and hase-pdcd correlation strengths (right) were

statistically tested between R and VR trials.

3.4 Discussion

Mice could be trained to navigate smoothly and perform a spatial memory task in our

2-d VR system. Their average running speeds were no different to that observed in

the real-world environment, and they displayed natural behaviours such as stop or turn

when a visual wall approached, indicating their good understanding and acceptance

of the virtual environment. In the meantime, their average angular velocity was

significantly lower in VR. In (Aronov & Tank, 2014), he found that body-tethered

rats run in much more straight paths and make sharp turns at the onset of trials. He

further suggested this behaviour pattern was induced by a distal landmark anchored

navigation strategy. In our case, since there is also no informative local cues, and with

mice head-restraint possibly making it harder to make angular movements, it could be a

combined influence of both. Further research was needed to tell how exactly navigation

strategy changed behaviour and possibly further affected spatial representation.
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About 80% of CA1 active units were classified as place cells in VR during free foraging

(77% in R), which is higher than previously reported (∼12%) when mice were to

navigate in a 2D virtual open field but with the head fixed to prevent angular rotation

(Acharya et al., 2016). Assuming the only difference between the two VR systems

was angular motion, it suggests that angular vestibular input was very important

for hippocampal position coding in 2D open field. In contrast, the lack of linear

vestibular signal was possibly compensated by motor efference copy or proprioception.

For example, a study showed that mice had coupled stride pace and whisking frequency

during navigating in tactile virtual reality, thus providing registration of self-motion

signal and sensory input (Sofroniew et al., 2014).

Similar to results from Acharya et al. (2016), we also observed increased directional

tuning in place cells when mice were foraging in 2D VR versus R. Acharya et al. (2016)

attributed such directionality to distal visual landmarks and the lack of proximal cues

that could be repetitively paired with distal landmark cues through plasticity. The

theory may partially explain the elevated directional tuning in spatial cells between

VR and R environment since the lack of proximal cues and attention on visual

landmarks were the most prominent contrast between the two conditions. However,

it does not explain the increased directionality in linear tracks or zigzag mazes versus

open fields, where both proximal cues and visual landmarks are present (McNaughton

et al., 1983; Derdikman et al., 2009). Enlightened by the fact that omnidirectional

spatial representation was difficult in environments that only allows sharp spot turns,

coordinated smooth angular and translational motion may be needed for non-directional

spatial representation. Future modelling and experimental works are needed.

We also recorded a dozen head direction cells in the medial entorhinal cortex, their

selectivity for head direction tuning had no difference between VR and R environments.
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In our VR system animals make physical head rotation which brings rotated views

of both real-world and visual scenes naturally, so the conflict between sensory and

self-motion input in the angular domain was minimal, which could be the reason why

head direction information was well preserved. Also because both the physical cues

and virtual cues were informative of subjects’ head direction, we rotated the virtual

presentation by 180 degrees, while also introducing the animal from a correspondingly

rotated position and angle, to check individual influences of the two sources by putting

them into conflict. Results showed a consistent reorientation in the majority of place

cells, head direction cells and grid cells firing fields which indicated that combined with

rotated the starting orientation, our virtual visual cues dominate and stabilise head

direction tuning in the hippocampal formation over external real-world cues.

Interestingly, we did not find the same directionality in grid cell firing. Neither their

whole-map spiking activity nor spiking within individual grid fields expressed higher

directional tuning in VR than R environments. Two implications could be made in the

case of this dissociation between grid cells and place cells. One is that the formation

of grid cell firing patterns was under less influence of individual visual cues. Another is

that in this particular case of 2D virtual navigation, it is more likely that the information

flow was from place cells to grid cells rather than the other way around.

In VR both place cells and grid cells had bigger field sizes, for grid cells bigger grid scales

too. One possible reason was that in VR, neither translational vestibular signals nor

local cues were informative of the subject’s virtual location and thus were in conflict with

the virtual environmental cues. Such absent or conflicted inputs increased ambiguity

of spatial coding which then could lead to increased field sizes and grid scale (Barry

et al., 2012; Towse et al., 2014). The increased ambiguity theory was also supported

by the decreased spatial information that we observed in VR place cells.
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Speed modulation of LFP theta frequency, but not the firing rate of spatial cells and

speed cells, also dropped during navigating in VR. The reduction likely reflected the

effects of lacking linear vestibular signal in mice running with head restrained, which on

the other hand did not seem to affect the speed modulation of cell firing rates. Previous

researches and computational models suggested that speed modulation in the intrinsic

firing frequency is linked to spatial scales of hippocampal cells’ firing patterns (Maurer

et al., 2005; Burgess et al., 2007; Burgess, 2008; Jeewajee et al., 2008; Giocomo et al.,

2011). Though both expected trend of changes were observed in VR, we found no linear

relationship between the degree of reduction in speed modulation and the increase in

place field sizes or grid scales across subjects.

Phase precession for both place cells and grid cells was intact in VR, shown by higher

frequency in cell firing theta modulation than local field potential theta frequency,

as well as a comparable phase to position-in-field correlation coefficients in VR and

R environments. This result was consistent with previous research (Aghajan et al.,

2015). Moreover, we found that the phase precession slope was shallower in VR with

place field sizes normalised to unit distance. Possibly due to decreased excitatory

dendritic input, in our case the self-motion inputs from the medial entorhinal cortex,

the phase precession would be slower according to the soma-dendritic interference model

(Kamondi et al., 1998; Magee, 2001; Harris et al., 2002). Or it could also be an artefact

of low signal-to-noise ratio in spatial selectivity which resulted in higher spiking rate

threshold for field definition in VR. Further confirmation is needed.

In conclusion, our experiment established that we now had a functioning 2D

virtual reality system that allowed freedom of 2D navigation and generated virtual

environments that whose spatial layout was perceived by mice. Our virtual 2D system

also engaged the 2D spatial representations found in the hippocampal formation. Place
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cell, head direction cells and grid cells all displayed comparable spatial tuning properties

in VR and R environments. Last but not least, our VR setup could be adapted for

fine control and manipulation of the sensory feedback, and potentially compatible with

recording techniques such as intracellular recording, two-photo imaging and so on.
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Chapter 4

Differential influences of

environment and self-motion on

place and grid cell firing

4.1 Introduction

Recent studies have pointed out the importance of visual input in spatial coding,

especially in linear path integration (Raudies & Hasselmo, 2015; Saleem et al., 2013;

Chen et al., 2013). Place field locations were decided by a combination of self-motion

and visual cues when the two were dissociated from each other (Chen et al., 2013).

Firing rates of speed modulated V1 neurons are best predicted by weighed summation

of in-conflict locomotion and visual velocity (Saleem et al., 2013). Also, hippocampal

place cells encode linear track position in high consistency with position coding in v1

neurons (Saleem et al., 2018). Grid cells, on the other hand, are considered to be the

path integrator in the brain that updates current location from self-motion tracking,
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for which external inputs seem to be dispensable (Hafting et al., 2005; McNaughton

et al., 2006). Since studies also show that their activity is in close link to that of place

cells (Solstad et al., 2006; Fyhn et al., 2007; Brun et al., 2008a; Bonnevie et al., 2013;

Ólafsdóttir et al., 2016), it would be interesting to examine whether grid cells would

respond to the manipulation of external and self-motion inputs in coherence with place

cells.

By stretching or compressing walls along one or both axes of a familiar environment,

previous studies were able to show that both place fields and grid spacing deformed

accordingly (O’Keefe & Burgess, 1996; Barry et al., 2007; Stensola et al., 2012).

Although such deformation is experience-dependent for grid cells (Barry et al., 2007),

i.e. a regular field spacing was recovered after exposure to the new configuration for a

few days, it was surprising to many to observe a clear external-anchored grid pattern

deformation. Environmental boundaries are considered to be important to ‘anchor’

grid fields location, like for place cells. In a real-world environment, boundaries can

provide many distinct sensory cues, including local ones like tactile and olfactory cues,

and distal ones such as static visual landmark and optic flow. It is interesting to check

in a virtual environment where the boundaries are only indicated visually, would it be

potent to drive grid cells to fire.

Virtual reality techniques allow us to better dissociate environmental cues from

self-motion cues without confounding factors such as uncontrolled local cues. Previous

studies that dissociated environmental cues from self-motion using virtual reality

technique was all conducted in linear track (Chen et al., 2013; Saleem et al., 2013).

Hippocampal tuning property has been shown different between linear track navigation

and open field exploration (O’Keefe & Nadel, 1978; McNaughton et al., 1983; Hafting

et al., 2005; Brun et al., 2008b; Derdikman et al., 2009). Head-fixation limits
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any angular movement as well as the proprioceptive sense of linear acceleration

which disables normal vestibular function and possibly causing unnormal hippocampal

representation (Aghajan et al., 2015; Acharya et al., 2016). Thus it is important to

probe the integration of inputs under 2D open-field navigation with the underline 2D

spatial representation intact and to draw a more general implication on the hippocampal

spatial system.

In this experiment, we exploited the 2-d virtual reality system we established in a

previous experiment (Chen et al., 2018) and manipulated the gain factor (G) between

self-motion and virtual (visual) translation on one axis of the environment while

recording from both hippocampal CA1 and dorsomedial entorhinal cortex (dMEC) at

the same time. In the baseline condition (G = 1), mice travel 60cm on the air-cushioned

styrofoam ball to get from side to side in the virtual environment. In the gain increase

condition (G>1), the virtual unit distance was kept constant and animals needed to

cover less on the ball surface to traverse the virtual environment. In this case, the motor

size of the environment on the manipulated axis is less than 60cm while the visual size

is the same. On the contrary, in the gain decreased condition (G<1), the motor size of

the manipulated axis is bigger than 60 cm and visual size remained the same.

By dissociate the environmental input and self-motion signal, we were able to show that

simultaneously recorded grid cells and place cells were affected by gain manipulations

differently. Place cells fired under dominant influence of the VR visual input, while

grid cell firing continued to be largely driven by self-motion input. Consequently, place

cells and grid cells diverge in their spatial representations and together they might be

complementary to form a flexible hippocampal representaion that reflect the influence

of both the environmental and self-motion inputs.
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4.2 Methods

4.2.1 Animal

Nine male C57Bl/6 mice were used in this experiment. One were implanted with

8 tetrodes in hippocampal CA1, Two with 8 tetrodes in the dorsomedial entorhinal

cortex, and six mice received a dual implant with one microdrive in right CA1 and one

in left dMEC (each mircrodrive carried 4 tetrodes).

4.2.2 Manipulating the gain of visual motion vs physical

motion

After the animals had been trained in the ‘fading beacon’ task in VR, they ran in

a 60x60cm VR square as their baseline environment. A probe session consisted of

a 40-min random-foraging baseline trial followed by a 40-min random-foraging probe

trial and a final 20-min real world (R) trial. In the probe trial, the ball-movement to

visual-movement gain setting on one of the axes was either double for the gain increase

manipulation (Gain = 2; i.e. animals only run half of the distance on the ball to move

the same distance in the visual VR on the manipulated axis compared to the baseline

trial) or 2/3 for the gain decrease manipulation (Gain = 2/3; i.e. animals had to

run 1.5x the distance on the ball to cover the same distance in the visual VR on the

manipulated axis compared to the baseline trial).
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Table 4.1: Trial information

Mouse

id

Implant

typea

Number

of grid

firing

patterns

recordedb

Number

of place

firing

patterns

recordedb

Gain

increase

(G=2)c

Baseline:

60x60cm

Probe:

30x60cm

Gain

decrease

(G=2/3)c

Baseline:

60x60cm

Probe:

90x60cm

Number

of grid

patterns

per

sessiond

Number

of place

patterns

per

sessiond

864 E 2(2) 0 1 0 2.0 0.0

984 C 0 21(12) 1 1 0.0 6.0 ± 0.0

986 E 17(17) 0 1 0 17.0 0.0

987 CE 29(29) 83(48) 2(1)e 1 9.7 ± 2.8 24.0 ± 3.0

1014 CE 7(7) 0 1 1 2.5 ± 0.5 0.0

1015 CE 3(3) 53(27) 1 1 1.5 ± 0.5 13.5 ± 3.5

1060 CE 6(6) 38(30) 2 1 2.0 ± 0 10.0 ± 0.6

1061 CE 43(42) 178(105) 3 2 8.4 ± 1.6 21.0 ± 2.5

1176 CE 15(12) 124(53) 2 2 3.0 ± 0.7 13.3 ± 0.6

aE: implant in left mEC; C: implant in left CA1; CE: implant in right CA1 and left mEC

bNumbers in brackets indicate compact non-remapping firing patterns

cNumber of whole-day recording sessions for each type of manipulation, environment size given in

motor coordinates. Multiple recording sessions were included for the same animal when sessions are

conducted at least one month apart and animals were regularly trained in the baseline gain condition.

Brackets indicate one session without compact non-remapping place firing patterns

dMean ± s.e.m of number of compact non-remapping place and grid firing patterns analysed per session

per animal

e Tetrodes advanced between of the two recording sessions.

The location in virtual environments can be plotted in motor coordinates or visual

coordinates. In baseline trials (where Gain = 1) these locations and the size of
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the virtual environment is the same in both coordinates. In probe trials, where the

ball-to-vision gain changed (Gain = 2 or 2/3), environment size is different to the

60x60cm baseline when measured in motor coordinates (i.e. 30 x 60cm or 90 x 60cm)

but is the same in visual coordinates. We did not use Gain = 1/2 probe trials, as

large environments - 120cm or more across in motor coordinates - become impractical

in terms of getting good coverage and also produce less stable grid cell firing patterns

near to the centre, presumably reflecting the absence of local cues and large distance

and low parallax of visual cues to location.

4.2.3 Data analysis

Rate map construction

In VR probe trials, relative virtual visual positions were different from relative physical

positions on the ball due to the changing gain between visual movement and physical

movement. Rate maps in a visual coordinate were constructed by binning animal’s

virtual (visual) locations. Then rate maps in a motor coordinate were reconstructed by

linear interpolation of the existing rate maps according to the applying gain ratio.

Cell and firing field classification

Place cell, grid cell and head direction cell were classified with the standard protocol

(for threshold distribution see Figure 4.1). To check that grid-like responses were not

generated by visual input from the hexagonal floor tiles we plotted the scales and phases

of grid cell firing patterns relative to the floor pattern – finding no correspondence (see

Figure 4.2).
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Figure 4.1: Spatial cell classification. Distribution of thresholds (99th percentile

of the shuffled distribution in each cell) of spatial information for CA1 units (A) and

gridness score for MEC units (B). Vertical line indicates the group median.
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Figure 4.2: Comparison of grid firing patterns with hexagonal virtual floor

tiling pattern. (A) A rate map of an example grid cell. (B) A rate map of an ideal grid

cell whose pattern matched the floor pattern. (C) Cross-correlation of the rate maps

between (A) and (B). (D) The distribution of phase differences. (E) The distribution

of grid scales. The red line indicates the grid scale of the floor pattern.

Cells in MEC were defined as spatial non-grid cells, using similar criteria to place cells, if

their spatial information in the baseline trial exceeded the 99th percentile of the shuffled

distribution of spatial information and their gridness scores in the baseline trial did not

exceed the 99th percentile of the shuffled gridness score distribution.

Remapping of firing patterns

We calculated the spatial correlation between a baseline firing rate map and the

best-matching (stretched and offset) probe rate map (described above). We defined

a remapped cell as having a spatial correlation between the two maps below 0.3. Only

non-remapped place cells and grid cells were included in further analysis, leaving 425

out of 497 place cells and 118 out of 122 grid cells that were quantified as non-remapping

cells. The proportions of place cells remapping between baseline and probe conditions

did not differ between gain increase and gain decrease sessions (Figure 4.3).

For place cells, we then identified firing fields at 30% peak firing rates, and considered

those cells whose fields covered more than 50% of either probe or baseline environments

as too diffuse for analyses, leaving 275 out of 497 compact non-remapping place cells

for further analysis.
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Figure 4.3: Proportion of ‘remapped’ place cells. There is no difference in the

proportion of place cells remapping between baseline and probe trials when comparing

gain increase and gain decrease sessions.

Grid scales along different axes

To compare scale changes along different axes, we fit an ellipse circumscribing the six

peaks nearest to the centre on the autocorrelogram of a cell. The grid was not included

in the analysis if the number of nearest peaks was less than six. We then measured

the diameters of the ellipse along manipulated and un-manipulated axes. The ratios

of the diameters in probe trials to those in baseline trials were calculated based on the

autocorrelograms generated in visual coordinates and motor coordinates.

Motor influence score for firing patterns

A set of 20 transformed probe trial firing rate maps were generated via linearly

interpolating firing rate maps plotted in a visual coordinate by stretch factors ranging

from 1 to the applied gain ratio in 20 steps. Correlations between the transformed

probe maps and baseline rate maps were then calculated with offsets of 1.5cm intervals
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along the manipulated axis between the smaller to the larger map, keeping the largest

(O’Keefe & Burgess, 1996). A stretch factor (F) was defined as the factor that produced

the largest spatial correlation. The visual gain G is the ratio distance moved by the

viewpoint in VR divided by the distance moved by the mouse on the ball surface. The

‘motor influence’ score was defined as MI = (F-1)/(G-1) for the probe trials, so that

MI = 1 if the stretch factor is equal to the visual gain (i.e. F = G) and MI = 0 if the

stretch factor is unity despite non unity visual gain (F = 1, G 6= 1).

Motor influence score for population vectors

For each session containing more than one cell, we compute one population vector.

First, we combined all simultaneously recorded place cells / grid cells in a vector. For

each cell, we calculated the spatial correlation values between the baseline rate map and

the transformed probe map with stretch factors ranging from 1 to the applied gain ratio

in 20 steps. Then we calculated the average spatial correlation values over all cells for

each stretch factor, with offsets of 1.5cm intervals along the manipulated axis between

the smaller to the larger map. The offset and stretch factor for the population vector

(Op, Fp) was defined as the pair with the highest average correlation over cells. The

motor influence score for the population vector was defined as MIp = (Fp-1)/(G-1).

Firing field sizes along different axes

To compare field size changes along different axes, we defined firing fields based on the

rate maps of the cells. For each rate map, we first excluded the bins with firing rates

lower than 30% of peak rates. Then firing fields were found by fitting ellipses around

sets of contiguous bins containing firing. Fields which were smaller than 5% or bigger

than 50% of the total area were excluded in further analysis.
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To find matching fields in the probe trial, we calculated the centroid position C(x,y)

for each field in the baseline trial. We then calculated the matching centroid in a probe

trial by shifting the x position of the baseline centroid by the best fitting stretch factor

F. A matching field was defined as a field which included the matching centroid.

We excluded grid fields near the edge of the environment as they appear to be occluded

by the edges – causing significant changes in field shape between baseline and probe

trials (e.g. circular to semi-circular). Perhaps because they are largely motor driven,

environmental edges simply prevents further sampling of grid field. By contrast, place

fields near to the edge seem to retain their location and shape (albeit potentially

stretched), perhaps because they are largely driven by vision (and, indeed, the distance

to the boundary (O’Keefe & Burgess, 2005)). Place fields were processed similarly to

grid fields for ease of comparison (i.e. setting the rate map outside of the field to zero

and excluding place fields near to the edge).

Motor influence score for individual firing fields

For each field that we identified with the method described above, we constructed a

new rate map including the field and zero spikes for the remaining position bins. Then

we computed the motor influence score from the rate map constructed for that field.

4.2.4 Statistical analysis

Wilcoxon rank sum test (non-parametric test) was conducted for comparisons of MI

scores in different conditions. Parametric statistical tests including student’s t-test

and ANOVA were used on other behavioral and neuronal measures. In all figures * =

significant at the 0.05 level, ** = significant at the 0.01 level, *** = significant at the
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0.001 level. For all the statistical test results see Table 4.2.

Table 4.2: Statistical test results

Comparison Test Results Fig.

proportion of ’remapped’ cell independent t

test, Gin-Gde
a

t(16)=-0.14, p=0.89 Fig.4.3

PC, peak firing rates paired t test,

VRbaseline -

VRprobe

t(274)=3.68, p<.001 Fig.4.6A

GC, peak firing rates t(117)=2.42, p<.05 Fig.4.6B

GC, gridness score t(117)=8.09, p<.001 Fig.4.6C

PC, Gin, visual coord., all field size paired t test,

X-Y axisb

t(172)=-14.35, p<.001 Fig.4.7E

PC, Gin, visual coord., distal field size t(111)=-12.22, p<.001 Fig.4.7E

PC, Gin, motor coord., all field size t(172)=0.29, p=0.77 Fig.4.7F

PC, Gin, motor coord., distal field size t(111)=-0.03, p=0.98 Fig.4.7F

PC, Gde, visual coord., all field size t(121)=1.07, p=0.29 Fig.4.8E

PC, Gde, visual coord., distal field size t(83)=-0.45, p=0.65 Fig.4.8E

PC, Gde, motor coord., all field size t(121)=9.77, p<.001 Fig.4.8F

PC, Gde, motor coord., distal field size t(83)=7.71, p<.001 Fig.4.8F

PC, Gin, rate map corr. paired t test,

VRbaseline -

VRprobe,stretched

t(165)=-1.05, p=0.30 Fig.4.9D

GC, Gin, rate map corr. t(78)=0.63, p=0.53 Fig.4.9D

PC, Gde, rate map corr. t(108)=2.06, p<.05 Fig.4.9H

GC, Gde, rate map corr. t(38)=4.37, p<.001 Fig.4.9H

GC, Gin, visual coord., grid scale paired t test,

X-Y axis

t(71)=9.68, p<.001 Fig.4.12E

GC, Gin, motor coord., grid scale t(71)=-5.61, p<.001 Fig.4.12F

GC, Gin, visual coord., all field size t(116)=2.90, p<.01 Fig.4.12G

GC, Gin, visual coord., distal field size t(82)=6.27, p<.001 Fig.4.12G

GC, Gin, motor coord., all field size t(116)=-8.09, p<.001 Fig.4.12H

GC, Gde, motor coord., distal field size t(82)=-12.14, p<.001 Fig.4.13H

GC, Gde, visual coord., grid scale t(34)=-6.31, p<.001 Fig.4.13E

GC, Gde, motor coord., grid scale t(34)=3.00, p<.05 Fig.4.13F

Continued on next page
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Table 4.2 – continued from previous page

Comparison Test Results Fig.

GC, Gde, visual coord., all field size t(49)=3.96, p<.001 Fig.4.13G

GC, Gde, visual coord., distal field size t(31)=2.11, p<.05 Fig.4.13G

GC, Gde, motor coord., all field size t(49)=9.49, p<.001 Fig.4.13H

GC, Gde, motor coord., diatal field size t(31)=6.42, p<.001 Fig.4.13H

MI score per cell Wilcoxon rank

sum test,

PC-GC

z=-7.83, p<.001 Fig.4.13K

Median MI score per session t(15)=-5.66, p<.001 Fig.4.13L

Population vector MI score per session z=-5.17, p<.001 Fig.4.13M

GC, Gde, directional offset paired t test,

X-Y axis

t(38)=6.34, p<.001 Fig.4.14E

GC, Gde, directional offset t(78)=3.08, p<.05 Fig.4.14F

GC, directional offset paired t test, x

axis

Gde-baseline

t(38)=4.59, p<.001 Fig.4.14G

GC, directional offset independent

t test, x axis

Gde-Gin

t(116)=5.11, p<.001 Fig.4.14H

GC, Gd, visual coord., all field size

(directional)

paired t test,

X-Y axis

t(64)=0.71, p=0.48 Fig.4.14I

GC, Gi, visual coord., all field size

(directional)

t(64)=7.72, p<.001 Fig.4.14J

GC, directional info. paired t test,

VR-R

t(117)=1.12, p=0.27 Fig.4.14K

PC, directional info. t(274)=-10.20, p<.001 Fig.4.14L

PC, Gin, MI score by wall distance Pearson

corrcoef.,

one-sample t

test

r=-0.62, p=0.18 Fig.4.15A

PC, Gde, MI score by wall distance r=-0.38, p=0.45 Fig.4.15B

GC, Gin, MI score by wall distance r=-0.01, p=0.97 Fig.4.15C

GC, Gde, MI score by wall distance r=0.55, p=0.25 Fig.4.15D

Gin, MI score per field, PC vs GC Wilcoxon rank

sum test

z=-5.01, p<.001 Fig.4.15E

Continued on next page
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Table 4.2 – continued from previous page

Comparison Test Results Fig.

Gde, MI score per field, PC vs GC z=-3.23, p<.05 Fig.4.15F

Gin, MI score per cell, MEC non-grid

spatial cells vs grid cells

z=1.59, p=0.11 Fig.4.16A

Gi, MI score per cell, MEC non-grid

spatial cells vs place cells

z=-4.33, p<.001 Fig.4.16A

Gd, MI score per cell, MEC non-grid

spatial cells vs grid cells

z=2.74, p<.01 Fig.4.16B

Gd, MI score per cell, MEC non-grid

spatial cells vs place cells

z=-5.79, p<.001 Fig.4.16B

slope difference (X-Y axis) of LFP theta

speed modulation

repeated

measure

ANOVA:

gain(3)

F(2,43)=5.47, p<.01 Fig.4.17A

slope difference (X-Y axis) of speed cell

speed modulation

independent

ANOVA:

gain(3)

F(2,381)=1.10, p=0.33 Fig.4.17B

aGin means the gain increased condition, Gde means the gain decreased condition

b X axis is the gain manipulated axis, Y axis is the un-manipulated axis
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Figure 4.4: Simultaneously recorded place and grid cells in mouse #987. Firing

rate maps from baseline and probe trials on a gain increase day and on a gain decrease

day, with peak rate in Hz below.
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Figure 4.5: Simultaneously recorded place and grid cells in mouse #1061. As

in Figure 4.4
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4.3 Results

4.3.1 Place cells under gain manipulation

We examined the spatial firing patterns of place cells from hippocampal region CA1

and grid cells from medial Entorhinal Cortex (mEC) in 2-d VR, focusing on probe

trials in which the visual ‘gain’ (G) applied to one axis of virtual movement was both

increased (G = 2) and decreased (G = 2/3) compared to the baseline condition (G

= 1). An experimental day comprised a baseline (G = 1) VR trial, a probe (G 6= 1)

trial and a real-world trial. Under non-unity gain, firing rates can be plotted against

the animal’s location according to vision (in visual coordinates) or physical movement

(in motor coordinates). These plots are identical for baseline trials. See Methods for

details and Figures 4.4 and 4.5 for examples of simultaneously recorded place and grid

cell firing patterns. Overall, we found that there were no significant differences in mean

firing rates and spatial information between the baseline and probe conditions, although

decreases in peak firing rates and gridness scores were observed in the probe conditions

(Figure 4.6).

We first compared place cell firing patterns between probe and baseline trials. Figures

4.7 and 4.8 show firing patterns for place cells plotted against visual or motor location

under increases (G = 2) and decreases (G = 2/3) in visual gain, respectively. Firing

fields had similar sizes along the manipulated dimension in probe trials compared

to baseline trials when plotted in visual coordinates (Figures 4.7E and 4.8E), but

different sizes when plotted in motor coordinates (Figures 4.7F and 4.8F), indicating

predominantly visual coding. Field sizes along the un-manipulated dimension did not

change between probe and baseline trials (paired t tests, t(111) = 1.04, p = 0.30 for

gain increase; t(83) = 1.55, p = 0.13 for gain decrease).
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Figure 4.6: Place and grid cell firing properties in VR baseline and gain

manipulated trials. (A) Comparison of place cell peak firing rate, mean firing rate

and spatial information between VR baseline and probe trials. (B) Comparison of grid

cell peak firing rate, mean firing rate and spatial information between VR baseline

and probe trials.(C) Comparison of grid cell gridness score, grid orientation and grid

pattern offset in y axis between VR baseline and probe trials. Probe trial analyses are

performed with the best-fitting stretched rate maps.
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Figure 4.7: Place cell firing patterns under visual gain increase. (A-D) Three

place cells simultaneously-recorded in a 60x60cm square box (A), a 60x60cm virtual

square environment (B), and a probe trial where visual gain was increased along the

x axis (G = 2) plotted in visual coordinates (C) and motor coordinates (D). Firing

rate maps shown with max rate below (Hz) and spatial information above (bits/spike),

stretch factor F mapping visual plots to baseline shown in red, all three trials recorded

on the same day. (E-F) Change of place field size (ratio relative to baseline) was

significantly larger on the manipulated than un-manipulated axis when plotted in motor

coordinates (F; n = 173 for all fields and n = 112 for fields distal to boundaries),

but not when plotted in visual coordinates (E), reflecting strong visual influence.

(G-H) Distribution of motor influence scores ‘MI’ based on firing rate maps (G) or

on population vectors (H).

We can quantify the relative influence of physical motion versus visual input on a

cell’s spatial firing pattern (i.e. the firing rate map, plotted in visual coordinates) by

comparing it to a stretched version of the baseline firing rate map, and finding the

stretch factor (F) giving the best fit (allowing for all offsets of the smaller to the larger

map; see Methods). For probe trials (i.e., G 6= 1), the ‘motor influence’ score MI =

(F-1)/(G-1) varies from 0 for firing patterns that resemble baseline patterns (i.e. F =

1; no effect of having to run more or less than expected from vision), to 1 for firing

patterns that show stretching corresponding to the gain manipulation (i.e. F = G; the

pattern in visual coordinates appears to stretch according to the gain relating vision to

movement).
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Figure 4.8: Place cell firing patterns under visual gain decrease. (A-B) Three

place cells simultaneously-recorded in a 60x60cm square box (A), a 60 x 60cm virtual

square (B), and a probe trial where visual gain was reduced along the x axis (G = 2/3)

plotted in motor coordinates (C) and visual coordinates (D). Layout as Figure 1C-F,

stretch factor F mapping visual plots to baseline shown in red. (E-F) Change of place

field size was significantly larger on the manipulated than un-manipulated axis when

plotted in motor coordinates (F; n = 122 for all fields and n=84 for fields distal to

boundaries), but not when plotted in visual coordinates (E), reflecting strong visual

influence. (G-H) Distribution of motor influence scores ‘MI’ based on firing rate maps

(G) or population vectors (H; see Methods and Figure 4.7).
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Place cell firing patterns can ‘remap’ (Muller & Kubie, 1987) or become diffuse, making

comparisons difficult (e.g. if a cell fires over most of the arena, the field shape largely

reflects the shape of the arena). Accordingly, we confined our analyses to compact firing

patterns that did not remap between baseline and probe (occupying less than 50% of

the arena and having a spatial correlation higher than 0.3 between baseline and the best

fitting probe firing rate map, i.e. taking account of any gain-related offset and stretch),

leaving 275/497 firing patterns (166/282 for gain increase, 109/215 for gain decrease, see

Methods and Figure 4.9). The percentage of remapping varies across sessions (median:

12%, inter-quartile range: 16%) but did not differ between gain increase and decrease

sessions (Figure 4.3). The results from both types of gain manipulation show an overall

greater visual than motor influence on place cell firing (Median = 0.21, inter-quartile

range (IQR) = 0.53 for MI scores in the gain increase, and Median = 0.37, IQR = 0.59

in the gain decrease, see Figures 4.7G, 4.8G and 4.10).

We also analysed the population vector responses of all simultaneously recorded place

cells, finding the best single offset and stretch factor for each population (in 18 trials

with multiple place and grid cells), again finding greater visual than motor influence

on place cell populations (MI score in gain increase: Median=0.08, IQR=0.11; in gain

decrease: Median=0.21, IQR=0.21, see Figures 4.7H, 4.8H and 4.11).

141



4.3. RESULTS

142



CHAPTER 4. DIFFERENTIAL INFLUENCES OF ENVIRONMENT AND
SELF-MOTION ON PLACE AND GRID CELL FIRING

Figure 4.9: Place cells and grid cells with compact non-remapping firing

patterns. To enter the main analyses, spatial correlations between probe and baseline

firing rate maps (taking account of the effect of the gain manipulation) had to exceed

0.3, and place firing patterns had to cover less than 50% of baseline and probe

environments, here we illustrate the properties of the excluded cells relative to the

compact non-remapping cells. (A) Five place cells which remapped in the gain increase

probe trial (bottom row, in visual coordinates) compared to the baseline trial (top

row) and two place cells which had diffuse fields. Firing rate maps shown with

spatial information (bits/spike) in black, correlation coefficients between baseline and

best-fitting probe in red (above), and max rates (Hz, below). (B-C) Distribution of

correlation coefficients between baseline and best-fitting (stretched and offset) probe

rate maps in gain increase trials for place (B) and grid cells (C). (D) Fisher’s Z scores

of the correlation coefficients between baseline and best-fitting gain increase rate maps

were similar to those between 1st and 2nd halves of baseline trials for both place and grid

firing patterns. (E) Five place cells which remapped in the gain decrease probe trial

(bottom row, in visual coordinates) compared to the baseline trial (top row) and two

place cells which had diffuse fields. (F-G) Distribution of correlation coefficients between

baseline and best-fitting probe rate maps in gain decrease trials for place (F) and grid

cells (G). (H) Fisher’s Z scores of the correlation coefficients between baseline and

best-fitting gain decrease rate maps were lower than those between 1st and 2nd halves of

the baseline trials, for both place and grid firing patterns. NB Fisher’s Z-transformation

of correlation coefficient r, to increase Normality, was: Z = 1
2
ln((1+r)/(1-r)).
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Figure 4.10: Distribution of motor influence (MI) score per animal. Note the

overall weighting towards visual influence for place cell firing patterns (Figures 4.7G,

4.8G) and to intermediate or motor influence for grid cell firing patterns (Figures 4.12I,

4.13I).

Figure 4.11: Distribution of MI score for population vector per animal. Note

the overall weighting towards visual influence for place cell population vectors (Figures

4.7H and 4.8H) and to intermediate or motor influence for grid cell population vectors

(Figures 4.12J and 4.13J).
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4.3.2 Grid cells under gain manipulation
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Figure 4.12: Grid cell firing patterns under visual gain increase. (A-D) Three

grid cells simultaneously-recorded in the baseline 60x60cm square box (A), a 60x60cm

virtual square environment (B) and a virtual probe trial where the gain of visual motion

compared to physical motion on the ball was increased along the x axis (gain G = 2),

plotted in visual coordinates (C) and motor coordinates (D). Firing rate maps (and

max rates) shown above, spatial autocorrelograms (and gridness scores) below, one cell

per column, stretch factor F mapping visual plots to baseline shown in red, all three

trials recorded on the same day. (E-F) Change of grid scales was significantly larger on

the manipulated than un-manipulated axis when plotted in visual coordinates (E; n =

72) or motor coordinates (F). (G-H) Change of firing field size was significantly larger

on the manipulated than un-manipulated axis when plotted in both visual coordinates

(G; n = 117 for all fields and n = 83 for distal fields) and in motor coordinates (H). (I-J)

Distribution of motor influence scores ‘MI’ based on firing rate maps (I) or population

vectors (J; see Methods or Figure 4.7).

Figure 4.12 shows firing patterns for grid cells plotted against visual or motor location

under increases in visual gain (G = 2). Again we restricted analyses to grid patterns

that remained similar between baseline and probe, giving 79/80 cells in gain increase

days and 39/42 in gain decrease days. Firing patterns appear elliptical in probe trials

when plotted in visual coordinates (increased in scale along the manipulated axis, as

movement in visual space requires less physical movement) and in motor coordinates

(decreased in scale, as physical movement produces greater visual movement), as shown

by the changes in grid scale (Figure 4.12E-F). Equally the motor influence scores for

firing rate maps and population vectors (Median = 0.58, IQR = 0.21, Figure 4.12I, and

Median = 0.63, IQR = 0.25, Figure 4.12J) indicate a balance between motor and visual

influence, weighted towards motor.

We also analysed the shapes of pairs of individual firing fields that remained similar
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between probe and baseline trials (showing spatial correlation higher than 0.3 after

accounting for gain-related offsets and stretches and setting the rest of the map to

zero) and that were sufficiently centrally placed to avoid occlusion by the edge of the

environment (115/167 grid fields). The changes in sizes of individual fields showed

a similar pattern of both visual and motor influence to the overall grid patterns (see

Figures 4.12G-H, and Methods for details).

Figure 4.13 shows grid cell firing patterns under visual gain decrease (G = 2/3). Grid

scale and firing patterns show an even stronger weighting towards motor influence than

for gain increase trials (Median MI score = 0.89, IQR = 0.30 for firing rate maps, Figure

4.13I, and Median = 0.71, IQR = 0.26 for population vectors, Figure 4.13J), with grid

scale along the manipulated axis unchanged when plotted in motor coordinates and

decreased when plotted in visual coordinates (because a given visual distance reflects

greater physical distance, Figures 4.13E-F). It is possible that increasing visual gain

increases the salience of (now increased) optic flow, and vice versa when decreasing

gain, explaining the greater visual influence during gain increase (Figure 4.12), discussed

below.
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Figure 4.13: Grid cell firing patterns under visual gain decrease. (A-D) Three

grid cells simultaneously-recorded in a 60x60 cm square box (A), a 60x60 cm virtual

square (B) and a probe trial where visual gain was reduced along the x axis (G = 2/3)

plotted in visual coordinates (C) and motor coordinates (D), on the same day, layout as

Figure 4.12A-D, stretch factor F mapping visual plots to baseline shown in red. (E-F)

Change of grid scales was significantly larger on the manipulated than un-manipulated

axis when plotted in visual coordinates (E; n = 35), with a smaller effect when plotted

in motor coordinates (F). (G-H) Change of firing field size was significantly larger on

the manipulated than un-manipulated axis when plotted in visual coordinates (G; n

= 50 for all fields and n = 32 for distal fields) and even more strongly when plotted

in motor coordinates (H). (I-J) Distribution of motor influence score (MI) based on

firing rate maps (I) or population vectors (J; see Methods or Figure 4.7). (K) Median

MI scores of non-remapped place and grid cell firing patterns (Median (red line)=0.26,

interquartile range (IQR, q1- q3, blue box) = 0.58 for place cells, Median = 0.63, IQR

= 0.42 for grid cells). (L) Mean of the median MI scores of simultaneously recorded

place cell and grid cells per trial (0.34 ± 0.05 for place cells, 0.72 ± 0.05 for grid cells,

average difference of medians: 0.38 ± 0.07). (M) Median population vector MI scores

between place cell and grid cell firing patterns (Median = 0.11, IQR = 0.26 for place

cells, Median = 0.63, IQR = 0.24 for grid cells; dashed lines cover q1 - 1.5 × IQR to q3

+ 1.5 × IQR including all data points).
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Figure 4.14: Direction dependent offsets of grid patterns. (A) Example grid cell

showing grid fields shifting forwards in running direction along the manipulated axis of

a gain decrease trial. (B) Example grid cell showing grid fields moving backwards

against the running direction along the manipulated axis of a gain decrease trial.

Rate maps are shown in visual coordinates for the whole trial (top left); filtered by

running direction (arrow above plot, right column, westwards above and eastwards

below). Max firing rates shown below the rate maps. The spatial cross-correlogram

of the two direction-filtered rate maps (bottom left) shows the offset from the centre

(x). (C-D) Distribution of absolute offsets in gain decrease (C) and gain increase (D)

trials (red) and their baselines (grey). (E-F) Directional-offsets in probe trials along

the manipulated (x) axis were greater than along the non-manipulated (y) axis in gain

decrease (E) and gain increase trials (F). (G-H) The offset along the x axis in gain

decrease trials was greater than baseline trials (G) and gain increase trials (H). (I)

Change of grid field sizes, found separately for eastward and westward runs and then

averaged, was similar on the manipulated (x) and un-manipulated (y) axes in gain

decrease trials, unlike Figure 4.13G. (J) Change of grid field sizes, found separately for

eastward and westward runs and then averaged, was greater along the x than y axes

in gain increase trials as in Figure 4.12G. (K) The directionality of grid cell firing was

similar in R and VR. (L) Place cell firing was more direction modulated in VR than R,

precluding directional offset analyses.

However, changes in the shapes of individual grid firing fields shows the opposite effect

to the scale of grid patterns (field size increased along the manipulated axis when plotted

in visual coordinates, Figure 4.13G, while grid scale decreased, Figure 4.13E), giving

broader firing fields in probe trials plotted in visual coordinates (Figures 4.13C, 4.4 and

4.5). If grid cell firing locations are reset by environmental inputs (Hardcastle et al.,

2015) in disparate locations, but otherwise strongly driven by motor inputs, changes

to gain will cause offsets between firing locations when running in opposing directions
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along the manipulated axis. This directional-offset effect was present in grid cell firing

during visual gain decrease, explaining the broader firing fields in whole-trial firing rate

maps, and more so than in gain increase trials perhaps because of the greater visual

influence during gain increase (Figure 4.14). The directional modulation of firing of

place cells (but not grid cells) in VR precluded a similar directional-offset analysis of

place fields, see Figure 4.14 and (Chen et al., 2018).

The analysis of individual fields also allowed us to assess the dependence of motor

influence score on distance to the nearest environmental boundary, but we found no

significant effect in place or grid fields (Figure 4.15). However, virtual boundaries are

entirely visual and proximity to physical boundaries in real environments may have

greater influence on firing (Hardcastle et al., 2015).

We also recorded cells in mEC with spatially modulated firing that was not grid-like,

see Methods. These spatial cells showed motor influence scores similar to grid cells, but

with lower scores in gain decrease conditions (a little more like place cells, see Figure

4.16).
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Figure 4.15: Analysis of individual firing fields and distance to the nearest

boundary. (A-B) Motor influence (MI) distributions for place fields distal to

boundaries under gain increase and decrease separately (note similarity to the MI for

firing rate maps in Figs 4.7 and 4.8, but here the rate map outside the field is set to

zero and only distal fields used, to match the grid field analysis). Distance to nearest

boundary had no clear effect on the motor influence in place fields. (C-D) Motor

influence (MI) distributions for grid fields distal to boundaries under gain increase and

decrease separately (note similarity to MI Figures 4.12 and 4.13). Distance to nearest

boundary had no significant effect on motor influence in grid fields. (E-F) Median

motor influence scores of these place fields were lower from those of grid fields in both

gain increase and gain decrease trials.
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Figure 4.16: MI score for spatial cells in MEC. (A) Median MI scores of grid cells,

entorhinal spatial cells and place cells in gain increase trials. Median (red line) = 0.58,

interquartile range (IQR, blue box) = 0.21 for grid cells, median = 0.58, IQR = 0.54

for spatial cells, median = 0.21, IQR = 0.53 for place cells. (B) Median MI scores of

grid cells, entorhinal spatial cells and place cells in gain decreased trials. Median =

0.89, IQR = 0.30 for grid cells, median = 0.68, IQR = 0.67 for EC spatial cells, median

= 0.37, IQR = 0.59 for place cells.

During natural foraging, the animal’s running speed is reflected in increases in the

frequency of theta rhythmicity in the local field potential (S lawińska & Kasicki, 1998),

and in increases in the firing rates of spatial cells (McNaughton et al., 1983; Sargolini

et al., 2006) - most clearly seen in speed cells, by definition (Kropff et al., 2015). When

running along the manipulated axis, there were effects of increasing or decreasing the

visual gain on the speed dependence of LFP theta frequency and firing rates compared

to the un-manipulated axis (which controls for non-specific changes in theta frequency).

The effects on LFP theta frequency speed dependence (i.e. the slope of the plots in

Figure 4.17) are as expected from the animal’s perception of speed reflecting visual

input in addition to physical motion, while effects on firing rate were qualitatively
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similar but noisier and not significant.
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Figure 4.17: Speed modulation of LFP theta frequency and speed cell firing

rates. (A-D) Lines show mean ( ± s.e.m) theta frequency (A-B) or speed cell firing rate

(C-D; normalised by each cell’s overall firing rate) in each running speed bin (1.5cm/s

to 15cm/s). (E) The slope difference of the LFP theta frequency versus running speed

relationship between manipulated and un-manipulated axes in baseline, gain increase

and gain decrease trials. (F) The slope difference of speed cell firing rate versus running

speed relationships in between manipulated and un-manipulated axes in baseline, gain

increase and gain decrease trials. Slope was calculated as the gradient of the regression

line fitted to the frequency–speed and the firing rate-speed data points.

4.4 Discussion

By decoupling the animal’s physical motion and feedback from the virtual

environmental input, we were able to show that spatial coding in place cells and

grid cells are under influence of both self-motion and environmental inputs. However,

place cell firing patterns are more similar to those if they were to use only visual

cues for localization (Figure 4.7C-F, Figure 4.8A-D), while grid cells fired more in

register with a self-motion updated spatial representation (Figure 4.12A-D, Figure

4.13A-D). it was further established by the motor influence (MI) score, which quantified

self-motion influence, grid cell were under a greater influence of self-motion input (less of

environmental inputs) than place cells (Figure 4.13k). There was no significant change

in spatial firing patterns on the un-manipulated axis thus precluding any uncontrolled

task effects such as novelty, attention and so on.

MI scores in place cells had a wide distribution even within animal (Figure 4.11).

This is consistent with a previous study that found dispersed weights to combine

self-motion versus visual inputs that best described the response of place cells to
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gain decrease on a virtual linear track (Chen et al., 2013). Together our results fit

the prediction of the predominant view that emphasizes the role of place cells being

anchoring towards different sets of environmental cues while grid cells being updating

location from self-motion signal. Note that the non-grid spatial cells in dMEC also

showed higher MI scores, suggesting the difference may be anatomically rather than

functionally originated.

We also found that visual input seems to exert a bigger influence on grid patterns under

gain increase manipulation than under gain decrease manipulation. If we consider

visual influence in the static visual landmark, increased visual gain means smaller

environmental size thus bigger confliction between distance estimated from the last

anchoring point and future landmark, as (Gothard et al., 2001) demonstrated in their

linear track task. A shortened track caused place fields to rapidly switch from aligning

with start location to aligning with distal visual landmarks. Another possibility is that

in the gain increase condition, visual velocity perceived from the optic flow is higher

than in gain decrease condition, which may lead to more potent visual control over the

speed signal. We found the slope of LFP theta speed modulation changed in the same

trend with changes in place fields size when mice ran in the direction of the manipulated

axis, while speed cells did not show any effects on gain manipulation. However we did

not observed higher visual influence in speed modulation under gain increase than under

gain decrease.

Last, we found grid patterns to show directional offsets along the manipulated axis

under gain decrease condition, which also caused grid fields to expand, giving rise to

the opposite effect of field size change in grid cells under gain decrease. The offset

was like to be caused by the visual boundary in VR resetting the grid patterns when

accessible, as demonstrated by Hardcastle et al. (2015). In the meantime, no boundary
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effect in MI score was observed, which predicted higher self-motion influence as the

animal moves away from the walls. It could be due to the lack of local cues, such as

tactile inputs, in our VR environment.

In conclusion, in this study, we found that when self-motion and environmental

cues were put into conflict, place cells and grid cells received both inputs while

combining them with a different bias. Place cell representation was weighted towards

environmental visual cues and grid cells towards self-motion inputs. These results

suggested that instead of one being derived from the other, place cells and grid cells

may each serve different roles and together supporting a dynamic hippocampal spatial

representation.
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Chapter 5

Absence of Visual Input Affects

Place and Grid Cell Activity

5.1 Introduction

Animals rely on external sensory cues to navigate in a familiar environment. Despite

the dominance of visual landmarks in controlling firing fields orientation of place

cells, grid cells and head direction cells (O’Keefe & Nadel, 1978; Taube et al., 1990a;

Hafting et al., 2005), removal of visual input only slightly reduced spatial selectivity

in spatial cells whilst their charasteristic spatial tuning patterns were largely preserved

(O’Keefe & Recce, 1993; Hafting et al., 2005). When vision is intact but motor related

self-movement cues are eliminated by having rats passively transported by a clear cart,

although head direction cells’ characteristic tuning are spared, both grid cell firing

patterns and the speed modulation in LFP theta are disrupted (Winter et al., 2015).

Those results call into question how much visual input contributes to spatial navigation,

specifically to translational path integration.
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Recent studies showed that grid cell spatial firing in the mouse was heavily disrupted

while head direction tuning remained stable when visual cues were not available (Chen

et al., 2016; Perez-Escobar et al., 2016). Velocity signals including the speed modulation

of local field potential theta oscillation and speed modulation of speed cells firing

rate were both reduced in darkness(Chen et al., 2016; Perez-Escobar et al., 2016).

In contrary to previous views, these results suggest that visual input may play an

important role in velocity coding and path integration (Chen et al., 2016; Perez-Escobar

et al., 2016). However, it is not known from the previous studies whether the disruption

of grid cells in darkness is due (wholly or in part) to disruption in place cell firing

(Bonnevie et al., 2013).

Environmental boundaries are also important external cues for spatial representations

(O’Keefe & Burgess, 1996; Hartley et al., 2000; Barry et al., 2006; Lever et al., 2009).

Stretching or compressing a familiar rectangular environment causes both place and grid

cells’ firing patterns to deform accordingly (O’Keefe & Burgess, 1996; Barry et al., 2007;

Hartley et al., 2000; Stensola et al., 2012). It was proposed that boundary input serves

as a reset mechanism whenever animals run into contact with them (Hardcastle et al.

(2015); reviewed by Evans et al. (2016)). However, when tested in normal lighting,

reset potentially happened at any point via visual input such as distal landmarks

(Taube et al., 1990a,b) and optic flow (Saleem et al., 2013) not necessarily depending

on boundary input (Hardcastle et al., 2015). Thus we predict that, in the absence of

visual input and minimized local olfactory cues, the boundary reset effect would be

more salient.

In the current research we co-recorded place cells and grid cells while mice navigated in

complete darkness. The floor was cleaned after every trial to mix up any residual odours.

We found that, consistently with previous studies in the mouse (Chen et al., 2016;
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Perez-Escobar et al., 2016), both place and grid cells show decreased spatial information.

Grid cells show heavily disrupted fields’ regularity. Place fields proximal to the walls

are less expanded and shift less compared to those recorded under light condition. On

average both place cells and grid cells show a higher similarity in responses between

the dark and light trials when the animal is closer to walls than when it is further from

them.

5.2 Methods

5.2.1 Animals

Fifteen male C57Bl/6 mice were used in this experiment. One was implanted with 8

tetrodes in CA1, and fourteen received a dual implant with one microdrive aimed at

the right CA1 and one in the left dmEC (each microdrive carried 4 tetrodes).

5.2.2 Behavioural training

Cells were screened and recorded whilst animals locomoted in the same square

environment (eight mice in a 60 X 60cm sized box, and seven in a 80 X 80cm sized box).

Two trials were recorded on each day with half an hour break, each trial lasted for 20

minutes. Once cells displayed stable spatial firing patterns across trials (after 16.6 ± 8.3

days), dark probe trials started. For dark trials, recordings were performed in the same

environment but x minutes before mice were introduced in the environment and until

mice were taken out of the environment all room lights were turned off. A dark probe

session consisted of one dark trial followed by one light trial in the same environment as

control. To track the evolution of spatial representations in darkness, dark sessions were
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recorded for each animal (for 5.1 ± 3.3 days depending on anatomical and functional

stability of the recorded cell populations). The floor was carefully wiped with 70%

ethanol before every trial to mix up and minimise any local olfactory traces. Mice were

always introduced to the environment from the southeast corner facing towards the

north.

5.2.3 Data analysis

Definition of ’boundary’ and ’centre’ regions

In order to assess whether boundary contact helped self-localizing in darkness, the

environment was divided into a boundary region and a centre region according to the

accessibility to boundary input (Hardcastle et al., 2015). The boundary region includes

locations within 12 cm distance from the nearest wall (criteria close to that used in

Hardcastle et al. (2015)). The centre region is the inner square area co-centred with

the environment, and its perimeter is decided so that it has comparable area size with

the boundary region.

Place cell firing fields definition

In the rate map any bins with firing rate smaller than 30% of peak firing were set to

zero. Bins that have local maximum firing rates were detected. Fields were defined

as the area made up of continguous bins that surrounded local peak firing rate bins.

Fields with less than eight bins were removed. Field sizes were calculated by multiply

fields bin counts and unit bin size. Field locations were defined as the coordinates of

peak firing rate bins in each field. To match place fields between the two trials on the

same day, distance between a field location in one trial and a field location in another
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trial was calculated for all possible field pairs. The field pair with the smallest distance

was defined as a match across trials.

Statistical tests

For repeated measure data set, repeated-measure ANOVA (rmANOVA) was done to

estimate null hypothesis probability in main effects and interactions. If main effects

were tested significant, for factors with more than two levels, post-hoc paired t-tests

were done. If interactions were tested significant, post-hoc paired t-tests were done.

P-values for the post-hoc paired t-test were corrected for multiple comparisons with

Bonferroni-Holm correction (Holm, 1979). For between subject comparison, mixed

ANOVA was done instead of rmANOVA and independ t-test was used instead of paired

t-test. Specifically, significance between the dark and light trials were confirmed by

1) significant interation between two days and two trials in a two-way ANOVA; 2)

significant difference of group means in t-test between the dark and light trial on day

two, and non-significant difference (or smaller difference) of group means between two

light trials on day one. Correlation coefficient scores were normalized following Fisher’s

z-transformation (Fisher, 1915).

5.3 Results

5.3.1 Navigation in the dark

On average, the animals’ running speeds in the dark trials were not different from

the speeds in the light trials (interaction, F(1, 14) = 0.01, p = 0.92, see Figure

5.1A). However, the histogram of instant running speeds showed different probability
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distribution between the dark and light trials. Mice in the dark are less likely to either

stay still (0 - 5cm/s; t(14) = -3.50, p < .01, corrected p < .05) or reach some high speed

range (30 - 35cm/s; t(14) = -2.54, p < .05, corrected p = 0.14) compared to the light

trials recorded on the same day. Instead they spend significantly more time running at

medium speed ranges in the dark (5 - 10cm/s, t(14) = 5.33, p < .001, corrected p <

.01; 10 - 15cm/s, t(14) = 5.09, p < .001, corrected p < .01; 15 - 20cm/s, t(14) = 3.78,

p < .01, corrected p < .05).
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Figure 5.1: Running speed and occupancy in boundary and centre region. (A)

Average running speed of animals in dark and in light trials. Each thin line represented

one individual animal, the thick line represented the average speed, mean ± sem. (B)

Histogram of instant running speed, binned from 0 to 50 cm/s with 5 cm/s stepwise.

(C) Stacked bar ploted for animals dwell time in percentage in either boundary or

centre region. *** denotes significance at p < 0.001, ** at p < 0.01, * at p < 0.05,

same notation applies to all the figures.

To compare the dwelling time in the boundary region and the center region in proportion

(see Methods) between dark and light trials. We found that in general animals visit the

center region more than the boundary region both in dark and light trials (main effect,

F(1, 14) = 46.82, p < .001). There was no significant difference in such center preference

between dark and light trials (interaction, F(1, 14) = 0.28, p = 0.61). Paired-t tests

again confirmed that the proportional dwelling time in boundary/center regions was

comparable between dark and light trials (t(14) = 0.52, p = 0.61). Together the dwelling

pattern suggest no sampling bias would contribute to spatial representational difference

between boundary and center regions.

5.3.2 Electrophysiology

A total of 372 units were isolated in 13 mice with tetrodes implanted in the medial

entorhinal cortex (MEC); of these, 83 units were qualified as grid cells (for threshold

distribution see Figure 5.2). Four trials per animal were included in the analysis, two

trials on day one (D1) with room lights on and another two on day two (D2) with lights

off for first trial and lights on for the second trial.
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Figure 5.2: Spatial cell classification. Distribution of thresholds of spatial

information for CA1 units A) and gridness score for MEC units B). Vertical line

indicates the group median.

We first measured whether grid cells’ spatial properties were disrupted in the absence of

visual input. Results showed that both spatial information indices (interaction, F(1,82)

= 69.29, p < .001; dark vs light, t(82) = -8.79, p < .001, corrected p < .001; light

vs light t(82) = 0.78, p = 0.44) and gridness score (interaction, F(1,82) = 61.76, p <

.001; dark vs light, t(82) = -8.28, p < .001, corrected p < .001; light vs light t(82)

= 0.10, p = 0.92) were significantly reduced in the dark trials compared to the light

trials (see Figure 5.3BC). These results suggest that grid cell firing patterns became less

predictive of the animals location in the dark, and that their characteristic hexagonal

firing patterns were disrupted.
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Figure 5.3: Comparison of grid cell firing patterns between dark and light

trials. (A) Three example grid cells recorded over two days, two light trials on day

one (D1) and one dark trial followed by one light trial on day two (D2). The number

on the top right side of each rate map stands for gridness score. (B-E) Bar graph and

individual scatter plot for dark-light comparison of cell spatial information (B), gridness

score (C), intra-trial stability (D) and inter-trial stability. different colours of dots in

scatter plot stand for different animals the cells were recorded from.

Next, I tested the stability of grid cell firing by computing the correlation coefficients

between the first and second halves of a whole trial (intra-trial stability). Statistical

testing revealed that within a trial the stability of grid cell firing was significantly lower

in darkness (interaction, F(1,82) = 205.67, p < .001; dark vs light, t(82) = -17.06, p

< .001, corrected p < .001; light vs light t(82) = -0.67, p = 0.51, see Figure 5.3D).

Inter-trial stability of firing patterns were calculated by correlate rate maps between

trials on the same day, e.g. on D1 calculate the correlation coefficient between the two

light trials and on D2 between the dark trial and the light trial. Decrease in stability

was observed from D1 to D2 (main effect, F(1, 82) = 254.55, p < .001, see Figure 5.3E).

250 out of 681 cells recorded from CA1 implants in 15 mice were classified as place

cells. Similarly to grid cells, a decrease in spatial information (interaction, F(1,249) =

71.90, p < .001; dark vs light, t(249) = -9.82, p < .001, corrected p < .001; light vs

light t(249) = -0.98, p = 0.33), intra-trial stability (interaction, F(1,249) = 60.20, p <

.001; dark vs light, t(249) = -11.57, p < .001, corrected p < .001; light vs light t(249)

= -3.28, p < .01, corrected p < .01) and inter-trial stability (main effect, F(1,249) =

256.24, p < .001) were observed in the average of place cell populations between dark

and light trials (see Figure 5.4BDE). However, the average ratio of spatial information

decrease was significantly smaller in place cells than in grid cells (PC, 0.18 ± 0.02;

GC, 0.44 ± 0.02; t(331) = - 6.30, p < .001). The cumulative density distribution also
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confirmed that there were more grid cells than place cells whose spatial information,

intra-trial stability and inter-trial stability were lower in the dark trial than in the light

trial (see Figure 5.6). There was no correlation in such proportional spatial information

reduction between place cells and grid cells across individual animal (n = 13, r = 0.34,

p = 0.25). In place cells, removal of visual input also resulted in higher directional

information (interaction, F(1,249) = 9.86, p < .01; dark vs light, t(249) = -5.96, p <

.001, corrected p < .001; light vs light t(249) = -0.92, p = 0.36; see Figure 5.4C).

We then set out to check whether it is degradation in head directional tuning that

lead to disrupted spatial representation in place cells and grid cells. We detected

33 head direction cells in recordings from the medial entorhinal cortex. There was

mild disruption in their directional tuning properties as shown by decreased directional

information between the dark and light trial (interaction, F(1,32) = 9.28, p < .001; dark

vs light, t(32) = -3.77, p < .001, corrected p < .01; light vs light t(32) = -0.64, p = 0.52,

see Figure 5.5B), but preserved vector lengths (interaction, F(1,32) = 0.10, p = 0.75, see

Figure 5.5C). Similarly for firing stability, intra-trial stability were comparable between

dark and light trials (interaction, F(1,32) = 1.93, p = 0.17, see Figure 5.5D) while

inter-trial stability (main effect, F(1,32) = 9.95, p < .01, see Figure 5.5E) decreased.
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Figure 5.4: Comparison of place cell firing patterns between dark and light

trials. (A) Three example place cells recorded over two days, two light trials on D1

and one dark trial followed by one light trial on D2. The number on the top right side

of each rate map stood for spatial information. (B-E) Bar graphs and individual scatter

plots for dark-light comparison of cells’ spatial information (B), directional information

(C), intra-trial stability (D) and inter-trial stability. Different colours of dots in scatter

plots refer to different animals.
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Figure 5.5: Comparison of head direction cell firing patterns between dark

and light trials. (A) Three example head direction cells recorded over two days, two

light trials on D1 and one dark trial followed by one light trial on D2. The numbers

on the top left and right side of each polar plot stood for peak firing rate and spatial

information, respectively. (B-E) Bar graphs and individual scatter plots for dark and

light trial comparison of head direction cell directional information (B), Rayleigh vector

length (C), intra-trial stability (D) and inter-trial stability. Different colours of dots in

scatter plots refer to different animals.

Figure 5.6: Cumulative density function of spatial tuning reduction in place

cells and grid cells from the light to dark trials. Probability distributions (with

normalized standard deviation) of difference between the light and dark trial (light

trial minus dark trial) for spatial information A), Inter-trial stability B) and Intra-trial

stability c). Note how a smaller proportion of grid cells had negative values compared

to place cells.

During the dark trial mice still have access to boundary inputs when they were near

walls. We performed a set of analyses aimed at understanding whether wall proximity

helps spatial localization in place cells and grid cells. For place cells, we first defined

place fields for each cell in each trial and calculated field sizes and peak firing locations

(see Methods). Place fields were split into three categories according to their distances

towards the nearest wall. Mixed ANOVA was done for comparison across fields. Field
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size increased significantly in dark trials compare to light trials (F(1,443) = 21.09, p <

.001), but no main effect was found for field-wall distances (F(2,443) = 0.27, p = 0.76)

nor was significant interaction (F(2,443) = 2.17, p = 0.11) obeserved (see Figure 5.7B).

Shift distances of place fields between the dark and light trial were significantly longer

than between the two light trials (F(1,443) = 32.29, p < .001). Moreover, interaction

between visual inputs and field-wall distance was also significant (F(2,443) = 4.33, p <

.05). Simple F-test revealed that only field shift distances between the dark and light

trial varied with field-wall distance (F(2,221) = 4.06, p < .05, corrected p < .05), and

those between the two light trials were not affected by field-wall distance (F(2,222) =

1.35, p = 0.26).
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Figure 5.7: Place cell field size and stability are modulated by its distance

towards the nearest wall. (A) Rate maps of one place cell recorded in four trials,

trial conditions were specified on top of the rate map (’Light’ vs ’Dark’), yellow line

indicates the edges of detected place fields, black cross indicate the field location. Field

size changes and field location drift were compared between two light trials (’L’) and

between a dark and a light trial (’D’) recorded on the same day. Average field size

changes (B) and field location shift distances (C) were ploted as a function of fields’

distance towards the nearest wall.

Having established that distance to the nearest wall affected place field shifts in the

dark trial relative to the light trial, we now proceeded to separate every rate maps

into a ’boundary’ rate map and a ’centre’ rate map and characterized their stability

across trials separately. For place cells, we found that firing similarity was much higher

for boundary rate maps than for centre rate maps across the dark and light trials

(interaction F(1, 249) = 25.08, p < .001; Dark-light (DL) inter-trial stability, t(249) =

5.57, p < .001, corrected p ¡ .001; Light-light (DL) inter-trial stability, t(249) = 0.48, p

= 0.63; see Figure 5.8AB). On the other hand, grid cell firing patterns displayed double

dissociation between boundary-vs-centre and DL-vs-LL stability. The interaction was

significant (F(1,82) = 27.95, p < .001), as well as boundary rate maps showed higher

stability in DL comparison (t(82) = 2.38, p < .05, corrected p < .05) and centre rate

maps were more similar in LL comparison (t(82) = -4.25, p < .001, corrected p < .001).
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Figure 5.8: Place cell and grid cell firing in the boundary and centre region.

Rate maps of a place cell (A) and a grid cell (C) were shown, trial conditions were

labeled on the left side of rate maps (’Dark’ vs ’Light’), from left to right were the whole

rate maps, the boundary rate maps and the centre rate maps, respectively. Boundary

rate map inter-trial stability and centre rate map inter-trial stability in place cells (B)

and grid cells (D) between dark trial and light trial (’DL’) and between two light trials

(’LL’) are shown.
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5.4 Discussion

5.4.1 Speed distribution in darkness

No systematic change in animals’ average running speed between the dark and light trial

was found. Similarly, there was no difference in the animals’ dwelling pattern between

the light and dark conditions in terms of preference to boundary or centre regions.

However, distinct speed distributions were observed: when locomoting in the dark,

animals displayed significantly less quiescent or extremely high speed moments. In a

previous study with ’tilted’ mice whose otolith function was disrupted, shorter duration

of stops during their outbound exploration journey was observed (Yoder et al., 2015).

This suggests that the observed speed change in darkness in our wild type mice may

be a reflection of altered linear speed computation in the dark.

5.4.2 Spatial cell properties in the dark

Mouse head direction cells were only mildly affected by the removal of visual input, as

evinced by slightly decreased directional information but intact Rayleigh vector length.

Place and grid cells, on the other hand, displayed significant deficits in spatial selectivity.

Specifically, they both displayed lower spatial information and spatial firing stability

within and across trials in the dark condition. Comparison between place cells and grid

cells found that overal the ratio of spatial information decrease was higher in the latter.

Also, about 20% ∼ 30% of place cells showed no decrease (light trial measures minus

dark trial measures equal or higher than zero) in spatial properties (including spatial

information, intra-trial and inter-trial stability), whilst less than 4% of grid cells had

equal or higher spatial selectivity in the dark. The characteristic six-fold symmetry of
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grid cells’ firing patterns was severely reduced. It thus seems that grid cells suffered

most in their spatial representation in the dark while head direction cells were the best

preserved, and the impact of visual deprivation fell in the middle range and with large

variation for place cells.

By comparing changes in spatial information between light and dark trials across

animals, we found no significant correlation between place cells and grid cells across

individual mouse. This results is at odds with the proposal that grid cell may

play a more important role in supporting place cells firing and hippocampal spatial

representation in general in darkness (?). Grid cells are considered to be the neural

substrates of path integration, and their firings are thought to be more dependent on

directional and speed signals. While place cells are widely accepted to be integrating

from a large variety of inputs which includes both external sensory inputs and

self-motion inputs. The fact that grid cells were affected more than place cells suggested

that visual inputs were important for velocity estimation, at least in mice. The observed

heterogeneous responses under visual deprivation in place cells are in line with the

proposed flexible cue integration function. However, no obvious bimodal distribution

was observed in their responses. worth noticing that insufficient sampling (especially

for place cells) in some of the animals may reduce the power of this analysis and its

related conclusions.

5.4.3 Boundary effects in the dark

Influence from boundary inputs were obvious in the dark. Place cell firing fields close

to boundaries drifted less and remained more compact in the dark trials. This was also

true for grid cells. When we analysed separately each cell’s boundary and centre maps,

both place and grid cells’ boundary maps displayed higher stability compared to centre
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maps. This boundary over centre advantage was positively correlated across different

animals in the dark trials but not in the light trials for both place and grid cells . This

suggests that boundary input helps to stabilize local place fields and grid cell fields and

this effect likely originates in either place or grid cells and is then projected to the the

other cell class. Considering that the effect size was bigger in the former it is more

likely that place cells relayed boundary input to the grid cell population in darkness

rather than vice versa.

In summary, spatial selectivity in place and grid cells firing was largely reduced in the

absence of visual input, while head direction cells remained robust in their directional

tuning. Overall firing of grid cells suffered worse disruption than place cells despite

its proposed function of path integration. Proximity to walls increased spatial firing

similarity between the dark and light trials confirmed the influence of boundary input.

179



Chapter 6

General discussion

6.1 Difference between place cells and grid cells in

combining external and self-motion inputs

We consistently observed the difference in responses between place cells and grid cells in

our experiments. When mice navigated in our 2D virtual reality systems, place cells had

increased directionality while grid cell did not (Chapter3). Changing the gain that maps

an animal’s physical movement into the visual translation of a virtual environment leads

to higher weight towards visual input in place cells and higher self-motion influence in

grid cells (Chapter4). Last, visual input deprivation compromised the spatial tuning

property in grid cells more than that observed in place cells (Chapter5).

While the increased directional tuning in place cells (Acharya et al., 2016), the combined

influence of visual input and self-motion input in place cells (Chen et al., 2013), and

in grid cells (Campbell et al., 2018) were separately discovered in other studies. Our

experiments are the first to establish a direct and quantitative comparison between
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place cells and grid cells, leading to the conclusion of partial independence between

place cells and grid cells in establishing spatial representation based on visual inputs

and self-motion inputs.

Highly integrated relationships between grid cells and place cells have been proposed,

such as place cells being generated from a linear summation of grid cells (Solstad et al.,

2006), and grid cells’ firing pattern arising from the non-negative principal component

analysis of place cell inputs (Dordek et al., 2016). However, it is unlikely that linear

summation of non-directional grid fields would result in highly directional place fields or

that eigendecomposition of place cell population vector that has strong environmental

bounding characteristics in our gain manipulation experiment (Chapter 4) and our dark

trial (Chater 5) would generate grid cell firing as we observed (future simulation work

needed). Our results seem to contradict those model predictions and suggest (at least

when the environment is novel) place cells and grid cells are supported by external

inputs and self-motion inputs in different ways. It would be interesting to see, in future

works, how navigation behaviours are shaped by these discrepant spatial representations

in the hippocampal-entorhinal system. By combining spatial memory task, such as the

Morris water maze task, we could examine during gain manipulation and dark trials

whether population vectors of place cells’ or grid cells’ firing rates reflect the animals’

reward searching/expectation behaviours better.

We showed that, in our gain manipulation experiment, place cells are more weighed

towards visual inputs than grid cells. However, in the dark experiment when the visual

input was eliminated, place cells seemed less disrupted in their spatial tuning than grid

cells. These seemingly contradictory results could be due to some experimental factors.

First, uncontrolled local cues (e.g. tactile, olfactory) could help to stabilize place fields

in the dark. Second, the stability measure in the dark trial is more sensitive to changes
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in the field location, while the MI score in gain manipulation experiment is to capture

changes in the field size. Alternatively, it could be that a constant relationship between

velocity signals from self-motion inputs and optic flow, albeit scaled, is sufficient to

stabilize the path integrator. Future experiments to check the firing of place cells and

grid cells with the visual projection turned off in the VR setup would be better to

decide the visual influence in hippocampal spatial representation.

6.2 Possible causes of discrepancy between place

cells and grid cells

6.2.1 Velocity versus static cues

There are two ways that the external cues could act on spatial representation in our

VR gain manipulation paradigm (and others’ as well). One is through velocity coding

and another is through anchoring towards static visual landmarks. When the gain

between animal’s locomotion and visual projection was changed, both the perceived

visual landmark location and speed of optic flow were changed to disagree with those

derived from self-motion signals. There is a wealth of velocity signals in MEC including

theta field potential oscillation (Jeewajee et al., 2008), speed cells (Kropff et al., 2015)

and conjunctive cells (Sargolini et al., 2006), as well as in hippocampus (McNaughton

et al., 1983; O’Keefe & Recce, 1993), which could be used to drive grid cell activity

(Mcnaughton et al., 1996; McNaughton et al., 2006; Burgess & O’Keefe, 2011). Both

static landmarks and optic flow has been established to be effective in affecting spatial

cells’ firing and velocity coding in rodents (see reviews in section XX).

In our experiment, we checked the slope of speed modulation in theta-band local field
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oscillations and the firing rate of speed cells in CA1 and MEC under gain manipulations.

Our results showed that LFP theta frequency, but not the firing rates of speed cells,

seemed to be a more sensitive measure of speed signals that reflected the changes

in spatial scales represented in place cells’ and grid cells’ firing patterns, which is

consistent with results found in rats travelling in a circular track (Jacob et al., 2019).

But no significant quantitative correlations between the speed measures and the spatial

representation was detected when compared across animals. In Campbell et al. (2018),

they tested the effect of gain manipulation on mice grid cells’ activity on a virtual

linear track and found grid cell firing patterns to offset and stretch under the combined

influence of both visual inputs and self-motion inputs. They also reported a coherent

change in the firing rate modulation of MEC speed cells that showed a general bias

towards self-motion inputs but with higher visual influence under gain increase than

gain decrease conditions.

In our experiments, we found clear offsets when animals are travelling in the opposite

direction in the gain decreased axis, showing possibly boundary driven reset of grid firing

patterns. While stretching and offsetting of the grid cells firing patterns were reported

under gain decrease manipulations and gain increase manipulations respectively. Such

results could be caused by task difference, for example, we know that place cells respond

to distance rather than allocentric locations on the linear track (Gothard et al., 1996a).

Nevertheless, both studies showed the combined effects of landmark anchoring and

speed signal modulation.

Future experiments could try to isolate the influence of optic flow from visual landmarks

by constructing a virtual environment that emphasises the visual motion yet with little

spatial specificity in the visual scenes at any ‘pose’ state (a combination of position and

orientation, Heinze et al. (2018)) in the environment, similar to that in Saleem et al.
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(2013).

6.2.2 Distal versus proximal cues

Within the domain of static visual cues, the distinction between its proximal and distal

influence is also important. By definition, distal cues radiate influence over a long

distance while proximal cues have restricted effects around its vicinity. For example,

tactile patterns are only available when they are within the touch of the animal, while

visual cues are accessible both distally and proximally. While distal visual cues were

long-established to have a strong influence in controlling the orientation of hippocampal

spatial representation (Muller1987; Shapiro1997), it is only recently that VR techniques

could finally remove all non-visual local influences and found that the presence of

proximal visual cues (3D visual objects) increased the proportion of active place cells

and sharpened their spatial tuning around them (Bourboulou et al., 2019).

First, it is important to understand the influential radius of different cues and sensory

modalities to validate any navigation models that are based upon those inputs, as well

as to estimate to what degree those models could be transferred to natural navigation.

Animals in the wild often navigate over thousands of miles with high accuracy. And

some studies stressed the importance of vision, such as optic flow and storage of

panoramic landscape at home location, e.g. in helping bees to navigate between

home and feeder (Wehner, 1981; Esch & Burns, 1996). It is rather a multi-scaled

spatial representation than a single-scale one that is more plausible to support natural

navigation. Indeed both place cells and grid cells along the dorsoventral axis of CA1

and MEC have different field/spacing sizes (Jung et al., 1994; Maurer et al., 2005;

Kjelstrup et al., 2008; Barry et al., 2007; Stensola et al., 2012). Considering that

different grid scales are incommensurable and they often respond to experimental
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manipulations differently (Barry et al., 2007; Stensola et al., 2012), it is likely they

receive environmental influence independently. For example, distal visual cues may not

be informative in distance anchoring to grid cells and place cells with smaller fields, but

they could be vital to cells with wider tuning.

We observed similar MI scores in our gain manipulation experiment no matter the

spatial fields are further away or close to the boundaries, suggesting both distal and

proximal influence of visual inputs in place cells and grid cells. Future experiments

could add a comparison of manipulating VR gain factor in environments of larger sizes,

as well as recording from cells tuned to different spatial scales. Parametric estimation

of the effect of sensory input with different acuity on spatial representation at different

scales could potentially help us to build a more comprehensive model of multi-scale

spatial representation in hippocampus.

Secondly, in the physical world, distal cues are often sensory only, while proximal cues

are likely to affect behaviour. An object or a boundary, when approached, not only

gives you a rich sensory experience but also signals a change in behaviour (‘policy’)

such as to turn away or manoeuvre around. It has been observed that changing the

environmental configuration (O’Keefe & Burgess, 1996; Barry et al., 2007; Krupic et al.,

2015), allowing to travel between the otherwise divided portions of the environment

(Carpenter et al., 2015; Wernle et al., 2018) and the presence of a fixed-location reward

(Boccara et al., 2019) shifted grid cells fields. All those changes were both sensory

and behavioural and could be explained by behavioural changes only within something

like a successor representation model (Stachenfeld et al., 2017). The effect observed

with the 3D objects in the VR linear track could also be triggered by the behavioural

policy change that is often associated with a normal object (Bourboulou et al., 2019).

In our virtual reality, movement of mice would not be stopped by the wall because
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sudden stops of the ball from rotating would startle the animal and affect behaviour

in general. At the end of the training, mice learned not to run into walls too much

yet the movement impedance aspect of the boundary could be compromised. Future

experiments could pair tactile VR (Ayaz et al., 2019) with visual VR to test the effects

of boundary and object configurations on hippocampal representation.

6.2.3 Novel versus familiar environments

Experience also plays an important role in hippocampal representation, as well as in

plasticity and memory functions that have been attributed to the hippocampus. It

was found that when the boundaries of a physical square enclosure were stretched or

compressed, grid cells first respond by changing their field spacings in proportion to the

manipulation, but gradually relaxed towards their original spacings after familiarizing

with it over a few sessions (Barry et al., 2007). It would be interesting to record

long-term follow-up of the firing patterns of place cells and grid cells when the animal

gets repeated exposure to the same gain manipulation. There are many questions to

ask for such a followup recording. Do place cells and grid cells firing patterns become

more visual driven or more self-motion driven? Do they form one stable and coherent

representation or they settle to different representations that are biased towards either

visual input or self-motion inputs? If place cells and grid cells converge in their

representation, is there one party leading the other, and is that replay/ sharp-wave

ripple dependent?
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6.3 Future direction

Our results strengthened the idea that the activity of place cells and grid cells,

albeit both tuned to subjects’ allocentric location, are governed by different inputs

and computations. It is important thus to understand the dynamics within the

hippocampal-entorhinal circuit. It has been proposed since the discovery of place cells

that they might form a cognitive map representation to support further experience

organized and retrieved based on the map structure (O’Keefe & Nadel, 1978).

Sequential (Wilson & McNaughton, 1994) and low dimensional attractor manifold

(Chaudhuri et al., 2019) organization were discovered in place cell population activity

vectors, but it is not yet understood what is the cause of such activity structure, and

what roles the inputs from grid cells and MEC play.

Place cells were shown to rapidly detect changes in the environment and form orthogonal

representations of multiple ‘maps’ (Muller & Kubie, 1987). Grid cells, on the other

hand, maintain coherence among firing fields of individual cells and across different

cells that are functionally connected. The ability to rapidly obtain and associate a

large amount of input (‘one-shot’ learning), as well as the stability and continuity of our

cognitive experience possibly supported by the internal-driven network structure, are

both essential to human cognition. How they strike a balance and how they interact and

shape information structure at the population vector level needs future experimental

and computational effort.

Taken together, our experiments established that 1) Our VR system possesses a

good potential for accessing neuronal spatial representations under highly controlled

external cue manipulations, such as changing the speed of visual motion without altered

self-motion cues; 2) Place cells and grid cells integrate visual input and self-motion cues

differently. Place cells resolve the discrepancy between visual input and self-motion
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input by leaning towards visual motion while grid cell weigh self-motion cues more

strongly. In the absence of visual input, place cell displayed better preserved spatial

tuning in a portion of cells; And 3) Boundary inputs stabilize the local firing fields of

both place cells and grid cells in the absence of visual input. Our results shed new light

on how we should consider maybe a more complementary role between hippocampal

and parahippocampal area.
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S lawińska, U., & Kasicki, S. (1998). The frequency of rat’s hippocampal theta rhythm

is related to the speed of locomotion. Brain Research, 796 (1-2), 327–331.

Sofroniew, N. J., Cohen, J. D., Lee, A. K., & Svoboda, K. (2014). Natural

whisker-guided behavior by head-fixed mice in tactile virtual reality. Journal of

Neuroscience, 34 (29), 9537–9550.

Solstad, T., Boccara, C. N., Kropff, E., Moser, M.-B., & Moser, E. I. (2008).

Representation of Geometric Borders in the Entorhinal Cortex. Science, 322 (5909),

1865–1868.

219



BIBLIOGRAPHY

Solstad, T., Moser, E. I., & Einevoll, G. T. (2006). From grid cells to place cells: a

mathematical model. Hippocampus , 16 (12), 1026–1031.

Sparks, F. T., Lehmann, H., Hernandez, K., & Sutherland, R. J. (2011). Suppression

of neurotoxic lesion-induced seizure activity: Evidence for a permanent role for the

hippocampus in contextual memory. PLoS ONE , 6 (11).

Spiers, H. J., Maguire, E. A., & Burgess, N. (2001). Hippocampal Amnesia. Neurocase,

7 (5), 357–382.

Stachenfeld, K. L., Botvinick, M. M., & Gershman, S. J. (2017). The hippocampus as

a predictive map. Nature Neuroscience, 20 (11), 1643–1653.

Stackman, R. W., & Taube, J. S. (1998). Firing Properties of Rat Lateral Mammillary

Single Units: Head Direction, Head Pitch, and Angular Head Velocity. Journal of

Neuroscience, 18 (21), 9020–9037.

Steele, R. J., & Morris, R. G. (1999). Delay-dependent impairment of

a matching-to-place task with chronic and intrahippocampal infusion of the

NMDA-antagonist D-AP5. Hippocampus , 9 (2), 118–136.

Stensola, H., Stensola, T., Solstad, T., Frøland, K., Moser, M.-B. B., & Moser, E. I.

(2012). The entorhinal grid map is discretized.

Stensola, T., Stensola, H., Moser, M. B., & Moser, E. I. (2015). Shearing-induced

asymmetry in entorhinal grid cells. Nature, 518 (7538), 207–212.

Steward, O. (1976). Topographic organization of the projections from the entorhinal

area to the hippocampal formation of the rat. Journal of Comparative Neurology .

Steward, O., & Scoville, S. A. (1976). Cells of origin of entorhinal cortical afferents to

220



BIBLIOGRAPHY

the hippocampus and fascia dentata of the rat. Journal of Comparative Neurology ,

169 (3), 347–370.

Sutherland, R. J., O’Brien, J., & Lehmann, H. (2008). Absence of systems

consolidation of fear memories after dorsal, ventral, or complete hippocampal

damage. Hippocampus , 18 (7), 710–718.

Sutherland, R. J., Weisend, M. P., Mumby, D., Astur, R. S., Hanlon, F. M., Koerner,

A., Thomas, M. J., Wu, Y., Moses, S. N., Cole, C., Hamilton, D. A., & Hoesing,

J. M. (2001). Retrograde amnesia after hippocampal damage: Recent vs. remote

memories in two tasks. Hippocampus , 11 (1), 27–42.

Tamamaki, N., Abe, K., & Nojyo, Y. (1987). Columnar organization in the subiculum

formed by axon branches originating from single CA1 pyramidal neurons in the rat

hippocampus. Brain Research, 412 (1), 156–160.

Tanila, H., Shapiro, M. L., & Eichenbaum, H. (1997). Discordance of spatial

representation in ensembles of hippocampal place cells. Hippocampus , 7 (6), 613–623.

Taube, J. S. (2007). The Head Direction Signal: Origins and Sensory-Motor Integration.

Annual Review of Neuroscience, 30 (1), 181–207.

Taube, J. S., & Burton, H. L. (1995). Head direction cell activity monitored in a novel

environment and during a cue conflict situation. Journal of Neurophysiology , 74 (5),

1953–1971.

Taube, J. S., Muller, R. U., & Ranck, J. B. (1990a). Head-direction cells recorded from

the postsubiculum in freely moving rats. I. Description and quantitative analysis.

Journal of Neuroscience, 10 (2), 420–435.

221



BIBLIOGRAPHY

Taube, J. S., Muller, R. U., & Ranck, J. B. (1990b). Head-direction cells recorded from

the postsubiculum in freely moving rats. II. Effects of environmental manipulations.

Journal of Neuroscience, 10 (2), 436–447.

Tennant, S. A., Fischer, L., Garden, D. L., Gerlei, K. Z., Martinez-Gonzalez, C.,

McClure, C., Wood, E. R., & Nolan, M. F. (2018). Stellate Cells in the Medial

Entorhinal Cortex Are Required for Spatial Learning. Cell Reports , 22 (5), 1313–1324.

Terrazas, A., Krause, M., Lipa, P., Gothard, K. M., Barnes, C. A., & McNaughton, B. L.

(2005). Self-motion and the hippocampal spatial metric. Journal of Neuroscience,

25 (35), 8085–8096.

Thompson, L. T., & Best, P. J. (1989). Place Cells and Silent Cells in the Hippocampus

Rats of. Journal of Neuroscience, 9 (7), 2382–2390.

Thompson, L. T., & Best, P. J. (1990). Long-term stability of the place-field activity

of single units recorded from the dorsal hippocampus of freely behaving rats. Brain

Research, 509 (2), 299–308.

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review , 55 (4),

189–208.

Towse, B. W., Barry, C., Bush, D., & Burgess, N. (2014). Optimal configurations

of spatial scale for grid cell firing under noise and uncertainty. Philosophical

Transactions of the Royal Society B , 369 (1635).

Tulving, E., & Markowitsch, H. J. (1998). Episodic and declarative memory: Role of

the hippocampus. Hippocampus , 8 (3), 198–204.

Ulanovsky, N., & Moss, C. F. (2007). Hippocampal cellular and network activity in

freely moving echolocating bats. Nature Neuroscience, 10 (2), 224–233.

222



BIBLIOGRAPHY

van Groen, T., Miettinen, P., & Kadish, I. (2003). The entorhinal cortex of the mouse:

Organization of the projection to the hippocampal formation. Hippocampus , 13 (1),

133–149.

Van Groen, T., & Wyss, J. M. (1990). Extrinsic projections from area CA1 of the rat

hippocampus: Olfactory, cortical, subcortical, and bilateral hippocampal formation

projections. Journal of Comparative Neurology , 302 (3), 515–528.

van Hoesen, G. W., Hyman, B. T., & Damasio, A. R. (1991). Entorhinal cortex

pathology in Alzheimer’s disease.

Vanderwolf, C. H. (1969). Hippocampal electrical activity and voluntary movement in

the rat. Electroencephalography and Clinical Neurophysiology , 26 , 407–418.

Vargha-Khadem, F., Gadian, D. G., Watkins, K. E., Connelly, A., Van Paesschen, W.,

& Mishkin, M. (1997). Differential effects of early hippocampal pathology on episodic

and semantic memory. Science, 277 (5324), 376–380.

Vida, I., Bartos, M., & Jonas, P. (2006). Shunting inhibition improves robustness

of gamma oscillations in hippocampal interneuron networks by homogenizing firing

rates. Neuron, 49 (1), 107–117.

Vinogradova, O. S. (1995). Expression, control, and probable functional significance of

the neuronal theta-rhythm.

Wehner, R. (1981). Spatial vision in arthropods .

Wehner, R. (2003). Desert ant navigation: How miniature brains solve complex tasks.

Journal of Comparative Physiology A, 189 (8), 579–588.

Wehner, R., & Wehner, S. (1986). Path Integration in desert ants — approaching

223



BIBLIOGRAPHY

a long-standing puzzle in insect navigation. Monitore Zoologico Italiano - Italian

Journal of Zoology , 20 (3), 309–331.

Welday, A. C., Shlifer, I. G., Bloom, M. L., Zhang, K., & Blair, H. T. (2011). Cosine

directional tuning of theta cell burst frequencies: Evidence for spatial coding by

oscillatory interference. Journal of Neuroscience, 31 (45), 16157–16176.

Wernle, T., Waaga, T., Mørreaunet, M., Treves, A., Moser, M. B., & Moser, E. I.

(2018). Integration of grid maps in merged environments. Nature Neuroscience,

21 (1), 92–105.

Wills, T. J., Cacucci, F., Burgess, N., & O’Keefe, J. (2010). Development of the

Hippocampal Cognitive Map in Preweanling Rats. Science, 328 (5985), 1573–1576.

Wills, T. J., Lever, C., Cacucci, F., Burgess, N., & O’Keefe, J. (2005). Attractor

Dynamics in the Hippocampal Representation of the Local Environment. Science,

308 (May), 873–876.

Wilson, M., & McNaughton, B. (1993). Dynamics of the hippocampal ensemble code

for space. Science, 261 (5124), 1055–1058.

Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of Hippocampal Ensemble

Memories During Sleep. Science, 265 (5172), 676–679.

Winocur, G., Frankland, P. W., Sekeres, M., Fogel, S., & Moscovitch, M. (2009).

Changes in context-specificity during memory reconsolidation: Selective effects of

hippocampal lesions. Learning & Memory , 16 (11), 722–729.

Winter, S. S., Mehlman, M. L., Clark, B. J., & Taube, J. S. (2015). Passive Transport

Disrupts Grid Signals in the Parahippocampal Cortex. Current Biology , 25 (19),

2493–2502.

224



BIBLIOGRAPHY

Witter, M. P. (1993). Organization of the entorhinal—hippocampal system: A review

of current anatomical data. Hippocampus , 3 (1 S), 33–44.

Witter, M. P., Doan, T. P., Jacobsen, B., Nilssen, E. S., & Ohara, S. (2017).

Architecture of the entorhinal cortex a review of entorhinal anatomy in rodents with

some comparative notes. Frontiers in Systems Neuroscience, 11 (June), 1–12.

Witter, M. P., Groenewegen, H. J., Lopes da Silva, F. H., & Lohman, A. H. (1989).

Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal

region.

Wittlinger, M., Wehner, R., & Wolf, H. (2007). The desert ant odometer: A stride

integrator that accounts for stride length and walking speed. Journal of Experimental

Biology , 210 (2), 198–207.

Wood, E. R., Dudchenko, P. A., & Eichenbaum, H. (1999). The global record of memory

in hippocampal neuronal activity. Nature, 397 (6720), 613–616.

Wyss, J. M., & Groen, T. V. (1992). Connections Between the Retrosplenial Cortex

and the Hippocampal Formation in the Rat: A Review. Hippocampus , 2 (1), 1–12.

Xing, J., & Andersen, R. A. (2000). Models of the posterior parietal cortex which

perform multimodal integration and represent space in several coordinate frames.

Journal of Cognitive Neuroscience, 12 (4), 601–614.

Yartsev, M. M., Witter, M. P., & Ulanovsky, N. (2011). Grid cells without theta

oscillations in the entorhinal cortex of bats. Nature, 479 (7371), 103–107.

Yoder, R. M., Clark, B. J., Brown, J. E., Lamia, M. V., Valerio, S., Shinder, M. E.,

& Taube, J. S. (2011). Both visual and idiothetic cues contribute to head direction

225



BIBLIOGRAPHY

cell stability during navigation along complex routes. Journal of Neurophysiology ,

105 (6), 2989–3001.
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