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Interrogating the genetic make-up of schistosome larvae (i.e., eggs, miracidia, and cercariae)

originating from definitive or intermediate snail hosts with molecular DNA methods has, by

noting unexpected interspecies hybrids, started a revolution in our appraisal of African schis-

tosomiasis [1–4]. Here, two dominant species of human schistosome exist, Schistosoma hae-
matobium and S. mansoni, which are transmitted by specific intermediate freshwater snails,

Bulinus spp. for the former and Biomphalaria spp. for the latter. The two schistosomes cause

either urogenital or intestinal schistosomiasis, respectively [5], and depending on local snail

distributions, schistosome transmission zones in the aquatic habitat may or may not overlap

[6]. Within the S. haematobium group, a further eight sister species are described with S. inter-
calatum and S. guineensis of medical importance, causing intestinal schistosomiasis, while oth-

ers, such as S. bovis, S. curassoni, and S. mattheei occur in livestock, with the remaining species

infecting wildlife. S. mattheei is also of medical interest for occasional infection and associated

disease [7]. In contrast, S. mansoni has a single sister species, S. rodhaini, typically found in

small rodents which can hybridize with S. mansoni, if given sufficient opportunity [2].

Across Africa, whilst the continental burden of coinfection with urogenital and intestinal

schistosomiasis is not formally reported, at the local level, it often is [5, 8]. Inside a coinfected

definitive host, an enigmatic but dynamic set of plausible worm-pairings can take place; these

include a combination of both homo-specific (e.g., S. haematobium [♂] and S. haematobium
[♀]) and various hetero-specific (e.g., S. mansoni [♂] and S. haematobium [♀], etc.) worm cou-

plings [9]. Cross-specific couplings depend on worm competition, mating preference, and

anatomical location(s) in the vasculature surrounding hepatoportal, urogenital, and intestinal

systems [9]. As further hybrid variants come to light [2], some hetero-specific worm-pairing

possibilities are of particular significance for currently known genetic introgression (e.g., S.

haematobium and S. intercalatum) or more critically as yet unknown interactions (e.g.,

amongst various S. haematobium-hybrids themselves with or without S. haematobium or S.

mansoni couplings). In contrast with experimental schistosomiasis [9], in which laboratory

manipulation and direct dissection of adult worms can provide a sentry insight into interspe-

cific pairings and hybridization potentials, our understanding of worm-pairing dynamics in

the human host is entirely inferred by genotyping schistosome retrieved ova and/or miracidia

[2]. This opens up biological conjecture on (incomplete) parthenogenesis, genetic
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introgression, and past and present hybridization processes [9]. Furthermore, our understand-

ing of those schistosome pairings whose ova fall below current urine- or stool-detection

thresholds is vague, as is our knowledge, by lack of schistosome-snail experimentation, of their

(un)successful viability in aquatic habitats [10].

Control of schistosomiasis is of global importance and features in the World Health Orga-

nization (WHO) 2021–2030 neglected tropical disease (NTD) road map (see https://www.

who.int/neglected_diseases/Ending-the-neglect-to-attain-the-SDGs–NTD-Roadmap.pdf?ua=

1), with future disease-specific targets being set. Assumptions for successful control of S. hae-
matobium include negligible capacity for viable genetic introgression(s) and maintenance of

transmission in animal reservoirs. Seminal field-based parasitological surveys in Senegal,

molecularly characterizing schistosome populations [1], have questioned these assumptions,

bringing to light novel genetic interactions of S. haematobium and S. bovis [11]. With increas-

ing geographical sampling, broader interspecies interactions with S. curassoni have been

revealed [12], although a recent microsatellite analysis of Senegalese S. haematobium and S.

bovis populations has shown no genetic admixing [13]. Nevertheless, the S. haematobium–

bovis hybrid has been recently flagged in autochthonous transmission of urogenital schistoso-

miasis on Corsica [8]; neither inspected livestock nor rodents appear to sustain transmission

locally, which is most likely of human-origin(s) and imported input(s) alone [14].

Interspecies hybrids are now being described in Malawi, Central Africa, where both S. hae-
matobium–bovis and S. haematobium–mattheei combinations have been identified from ova

retrieved from infected children [15]. This situation again challenges our current model of

transmission, raising questions on how these hybrids first appeared and their current epidemi-

ological infection cycles (see Fig 1). For example, the current transmission model of S. haema-
tobium has discrete and nonoverlapping cycles with livestock schistosomes and also overlooks

the importance of urogenital and intestinal schistosomiasis coinfection (Fig 1A). The presence

of S. mattheei and S. bovis is currently inferred from its hybrid forms, as excreted from people,

Fig 1. Reconciling schistosome hybridization with epidemiological models of schistosomiasis transmission. (A)

The current model of urogenital schistosomiasis in Malawi involves discrete transmission cycles and does not formally

take into account the importance of multi-species coinfections. (B) A revised model of urogenital schistosomiasis with

overlapping transmission potentials with schistosome worms also being influenced or interacting with other species

present (e.g., S. mansoni within coinfected people or S. bovis in cattle). Note �S. mansoni–intestinal schistosomiasis is

now emerging along the Lake Malawi shoreline and is transmitted by Biomphalaria (which is not depicted here for

brevity), �B. africanus has now been detected in the lake (MH Al-Harbi personal observation) and is a known

intermediate host of several other S. haematobium group species, which might drive novel environmental transmission

opportunities.

https://doi.org/10.1371/journal.pntd.0008201.g001
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for there is neither formal reporting nor ad hoc inspections of bovine schistosomiasis. A

revised transmission model of S. haematobium is therefore needed (see Fig 1B) with putative

zoonotic transmission facilitated perhaps by the novel presence of other compatible snail spe-

cies now being shown to occur in Lake Malawi.

Even though phenotypic suggestion of S. haematobium–mattheei hybrids (i.e., by egg mor-

phology) was first reported over 70 years ago [16], being later confirmed biochemically and

genetically in the laboratory [17, 18], it was then judged rare and not against a background of

coinfection with S. mansoni. The latter species could be a cryptic infection driver altering

worm behaviours by promoting mate exchange, for here in Malawi, intestinal schistosomiasis

is emerging and appears very recent, being first noticed two years ago, driven by first colonisa-

tion of Bi. pfeifferi within the lake [19]. With these new aspects, novel epidemiological oppor-

tunities arise for multi-species coinfections (i.e., S. haematobium, S. haematobium–mattheei
and bovis, and S. mansoni), driving plausible schistosome interactions, as meshed with ongo-

ing environmental change. This includes regular or sporadic natural or manmade events such

as cyclonic flooding, human migration, over-fishing, and increased pisciculture, where there

have been significant, albeit largely unexplained, saltatory changes in snail fauna and schisto-

some-snail host ranges [19]. This clearly calls for further genetic scrutiny of schistosome infec-

tions in all definitive hosts locally, especially where multi-species coinfections are suspected as

well as stepped-up environmental surveillance of infections in local snails for expanded schis-

tosome-snail host ranges.

From our targeted epidemiological surveys of Malawian school children, an initial genetic

analysis of a selection of schistosome eggs revealed an allopatric, geographically separated, dis-

tribution of S. haematobium–mattheei and S. haematobium–bovis hybrids although each

hybrid was sympatric, geographically synonymous, with S. haematobium and S. mansoni [15].

Egg-patent prevalence of urogenital schistosomiasis was 25.6% (95% CI 16.7–34.4), some 10%

of infected children shed atypical (i.e., morphologically unusual) S. haematobium eggs in

urine. Egg-patent S. mansoni was also noted in several children’s stools as well as ectopic excre-

tion in children’s urine, with the general prevalence of intestinal schistosomiasis increasing

(more than 50% by urine-CCA testing), enabling coinfections to surge [15, 19]. Inspection of

other demographic groups upon general surveillance of male genital schistosomiasis in fisher-

men, a urine egg-patent prevalence of S. haematobium (with typical egg morphology) was

17.1% (95% CI 4.8–22.2) although atypical S. haematobium eggs or S. mansoni eggs in urine

were not found [20]. Upon real-time PCR analysis of semen with a genus-specific Schistosoma
DNA probe, infection prevalence was much higher at 26.5% (95% CI 18.4–34.6), and, upon

using urine-CCA tests, prevalence of intestinal schistosomiasis was 3.8% (95% CI 3.1–4.5)

[19], indicative of coinfection in other community members. A targeted collection of stool

from four fishermen led to the discovery of an atypical terminal-spined egg (S. mattheei?)

which has not yet been subjected to molecular analyses, although a S. mattheei infection has

been detected locally in B. globosus by molecular methods [20].

Clearly, multispecies schistosome coinfections are occurring here in Malawi with an under-

lying set of putative homo- and hetero-specific worm-pair coupling that enable new opportu-

nities for known, but more importantly, as yet unknown, genetic interactions. The presence of

the S. haematobium–bovis hybrid is particularly intriguing as the literature notes an absence of

S. bovis greater than 10o south of the equator. This demonstrates a more itinerant nature of

this hybrid form outside the known range of S. bovis [8]. Since movement of infected livestock

over such large distances is doubtful, more reasonable, like in the Corsica setting, is the intro-

duction(s) of this hybrid from infected human migrants with autochthonous transmission in

local snails which is, as of yet, to be formally observed. Better surveillance of schistosomiasis in

local snails and livestock, particularly in cattle, is therefore needed.
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Whilst genomic analysis of this S. haematobium–bovis hybrid is yet to take place, analysis of

West African S. haematobium–bovis hybrids reveals several large 100 kb identical chromo-

somal regions, which is indicative of a single or very limited number of hybridization events

given putative multiple rounds of subsequent meiosis [21]. An ancestral isolated genetic intro-

gression event may not hold true for these Central African hybrid forms. Rather, we speculate

it is contemporary, ongoing, and expanding with growing opportunities for interspecific cross-

ings arising in coinfected people and associated livestock; thereby generating new genetic

diversity over and above what is currently known regionally for S. haematobium. In terms of

the epidemiology of S. haematobium–bovis, in Senegal it was noted that the frequency of

hybrids, by village, was not associated with the prevalence of urogenital schistosomiasis but

oddly was with the prevalence of intestinal schistosomiasis [11]. Referencing the Malawian S.

haematobium–mattheei hybrid, we surmise that with increasing epidemiological opportunities

for multi-species coinfections, both pre- (e.g., geography, host specificities, and anatomical

sites) and post- (e.g., genetic factors and altered snail compatibility) zygotic species barriers are

breaking down, allowing perhaps even broader schistosome species barriers to become

eroded.

As the reproductive biology of the schistosome is unusual [4, 9], mention of JBS Haldane’s

rule is worthy here as a biological framework to help decipher the directionality of hybridiza-

tion (i.e., its mating asymmetry), for if only one sex of a species hybrid is inviable or sterile that

sex is more likely to be the heterogametic one. By contrast to other trematodes, the schisto-

some is dioecious, not hermaphrodite, with the female, not the male, being the heterogametic

sex (ZW[♀] and ZZ[♂]) [9]. It is also schistosome eggs, not the worms that stimulate inflam-

matory and fibrotic disease [5], hence any altered traits in eggs, and their anatomical sites of

deposition, as well as in miracidia, could be important in terms of disease and environmental

transmission. Notably, at least in the laboratory, viable offspring arise from all S. haematobium
and S. mattheei combinations so far attempted, but this phenomenon did not spark increased

public health vigilance even though heterosis in worm fecundity (i.e., increased egg-laying)

was observed [9]. The newly reported S. haematobium group hybrids and assorted coinfection

permutations in Malawi is now of fresh concern by enhancing future hybridization and disease

potentials. For example, upon various plausible schistosome pairings such as S. haematobium–

mattheei (♂) and S. mansoni (♀) or any back crossing of viable variants thereof could these

worms with more eroded species-specific barriers now introgress? Of particular note, from

experimental schistosomiasis is that viable progeny from S. mansoni (♂) and S. mattheei (♀)

pairings has already been reported but were then thought, although not proven, to be parthe-

nogenetic matriclonal lineages [9]. If not, could such introgressed progeny that arise in nature

with altered disease then disperse, akin to S. haematobium–bovis migration, and subsequently

intermingle with other populations? We should now be especially mindful of more distant spe-

cies variants, particularly given ancestral genomic signatures [22] as well as more obvious

recent ones, have been brought to light by detection of S. mansoni–haematobium hybrids in a

migrant boy, even though the viability of their progeny was not determined [23]. Of recent

note also is the report of an infection cluster of prepatent S. haematobium–mattheei hybrids,

with evidence of S. mansoni infection, as detected in returned Belgium travellers from South

Africa that were subjected to a more in-depth diagnostic investigation with molecular methods

than usual routine practice [24].

It is an unfortunate situation that where schistosomiasis transmission occurs, there is typi-

cally only rudimentary parasitological surveillance and formal epidemiological inspection of

animals is very rare [5, 25]. This is largely due to bottlenecks in adopting a “OneHealth

approach.” Whilst atypical eggs, unusual in morphology, can alert, a precise inference of

hybrids upon egg shape is fallible. Moreover, upon comparison with molecular methods, it

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008201 July 2, 2020 4 / 8

https://doi.org/10.1371/journal.pntd.0008201


grossly underestimates the true prevalence and the exact type of hybrids [26]. Nonetheless, our

abilities to separate and identify unusual schistosomes, albeit adult worms or various larvae,

with current molecular markers is also imperfect. Development of low-cost species and hybrid-

specific DNA screening assays is now important to enable more rapid detection of hybrid schis-

tosomes or the detection of genetic signatures of nonhuman schistosomes within clinical sam-

ples [26], particularly in relation to any changes in pathology or treatment efficacy. Current

molecular identification and separation methods typically analyze eggs, miracidia, or cercariae,

individually and, despite being extremely insightful, are often prohibitively expensive and very

labour intensive and inspect only a few genetic loci at a time [2]. On the other hand, population

genomics is the key to understanding hybridization events in time and space, with species-level

studies essential to answer key questions in relation to public health (e.g., related pathology,

transmission dynamics, drug efficacy, host specificity, and potential zoonoses) and to better

understand schistosome evolution, hybridization, introgression, and reproductive biology.

To highlight, in outline, the real epidemiological implications of these knowledge gaps in

the detection and transmission of hybrids, an epidemiological postulate is provided in Fig 2, as

based upon available survey information from Malawi [15, 19, 20]. Our inability to identify the

presence and then tally the intensity of hybrid schistosome infections across a community

severely hampers our appraisal of their epidemiological importance [10]. For example, we are

currently unable to quantify if certain demographical groups are at more risk of hybrid infec-

tion and disease than others; or do the same or different demographic groups facilitate hybrid

transmission or act as refugia; and most importantly, are hybrid parasites, as being boosted by

zoonotic inputs, more resilient to preventive chemotherapy (PC), for example, by having

altered life-history traits permitting more successful environmental transmission or are more

tolerant to current praziquantel treatment regimens? Urogenital schistosomiasis, as detected

by terminal-spined schistosome eggs in urine, typically commences in early childhood then

rises to peak prevalence in teenage years, thereafter urine egg-patent infection wanes in older

ages [25] as within host worm burdens decline or as worm-pair fecundities reduce. This “clas-

sic” curve gives rise to a well-known age-profile peak resultant from a variety of dynamic and

interacting factors e.g., water contact, partial immunity, host and/or schistosome mortality,

etc. [25]. We presently do not know if there is, or is not, a “classic” age-prevalence profile for

hybrid coinfections, i.e., occurrence of a hybrid nested within a patent S. haematobium and/or

S. mansoni infection. However, we can envisage two likely scenarios as outlined by the dashed

red lines: H1—the age-profile of hybrid coinfection follows that of a “classic” monospecific

infection but is reduced in amplitude in line with diminishing ova-shedding, an accepted fea-

ture of schistosomiasis—or H2—the age-profile is constant (or sporadic) across ages and does

not track a “classic” monospecific infection, perhaps by being a less facultative transmission

process in local snails. In H1, there is also the possibility of an epidemiological “peak-shift”

where the age-profile maximum prevalence is either advanced or retarded in reference to the

monospecific infection (red arrow). If so, there could be many reasons for this; for example,

hybrid worms may have a faster environmental transmission dynamic (i.e., a left-shift) or

hybrid worms live longer (i.e., a right shift). A similar age-prevalence argument based upon

“peak-shift” [25] highlights a parallel knowledge gap that is pertinent to a OneHealth perspec-

tive for the age-prevalence burden of schistosomiasis in livestock is unknown. For example,

although Savassi et al. [27] recently demonstrated domestic cattle as natural hosts of S. haema-
tobium and S. haematobium-S. bovis in Benin, they did not comment on the age of their cattle

examined but they did observe altered shedding times of schistosomes from infected snails,

noting their importance as environmental transmission drivers.

To close, for a more thorough surveillance of hybrid schistosomes in Africa, we strongly

advocate a OneHealth approach. Where possible, this could include noninvasive larval
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Fig 2. Highlighting knowledge gaps in the epidemiology and distribution of hybrid coinfections across a “typical’

community as current age-prevalence profiles are not known. This hypothetical scenario raises important

epidemiological questions in the short- and long-term infection dynamics and needs for any future targeting of preventive

chemotherapy control to any specific demographic groups (e.g., preschool-aged children) where hybrids may be, for

example, more common. PZQ treatment campaigns typically commence in primary school, where the youngest children to

receive treatment are usually older than five years of age. Thereafter, provision of PZQ treatment then follows either annual

or biennial administration cycles. PZQ, praziquantel.

https://doi.org/10.1371/journal.pntd.0008201.g002
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sampling of schistosomes from livestock with spatial tracking of sentinel animals within

mobile infected herds for real-time monitoring of infection dynamics, with better snail surveil-

lance at well-noted animal water contact sites. Upon postmortem inspection of animals at

slaughter or upon selected cull, we should also be on guard for any ectopic worms in the vascu-

lature of either urogenital or intestinal systems as well as how ova-contaminated water from

carcasses might cycle back into aquatic habitats from abattoir effluents. Without doubt, the

search for emergence of further schistosome hybrid combinations in humans, alongside our

growing ability to detect them, is increasing; to help us in this quest, simply put, can all S. hae-
matobium hybrids please stand-up!
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