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Abstract 

 

Buildings are one of the significant sources of energy consumption and greenhouse gas emission in 

urban areas all over the world. Lighting control and building integrated photovoltaic (BIPV) are two 

effective measures in reducing overall primary energy consumption and carbon emission during 

building operation. Due to the complex energy nature of the building, accurate day-ahead prediction of 

heating, cooling, lighting loads and BIPV electrical power production is essential in building energy 

management. Owing to the changing metrological conditions (i.e. outdoor air dry-bulb temperature, 

relative humidity, solar radiation and cloud cover), diversity and complexity of buildings, building 

energy load demands and BIPV electrical power production is highly variable. This may lead to poor 

building energy management, extra primary energy consumption or thermal discomfort. In this study, 

three machine learning-based multi-objective prediction frameworks are proposed for simultaneous 

prediction of multiple energy loads. The three machine learning techniques are artificial neural network, 

support vector regression and long-short-term-memory neural network. Since heating, cooling, lighting 

loads and BIPV electrical power production share similar affecting factors such as weather data and 

building operating schedules, it is computational time saving to adopt the proposed multi-objective 

prediction framework to predict multiple building energy loads and BIPV power production. To further 

assess the robustness of three proposed predictive models, they are tested with different heat transfer 

coefficients of windows and walls, as well as window-to-wall ratios. The mean absolute percentage 

error of the three proposed predictive models for all cases is less than 10%. The ANN-based predictive 

model results in the smallest mean absolute percentage error while SVM-based one cost the shortest 

computation time.  
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1.  Introduction 

 

Building operations accounted for 30% of global final energy consumption and 28% of energy-related 

carbon dioxide emissions in 2017 [1]. Global final energy consumption in buildings increased by 5% 

between 2010-2017, while the emission appeared to have levelled off. Utilization of renewable energy 

and adoption of effective energy management are two promising approaches in reducing global final 

energy consumption and help the building sector become carbon natural in the long term. Generally, 

lighting contributes to approximately 17% of the building electricity consumption [2]. Artificial lighting 

should be reduced when daylight is sufficient [3]. As the internal heat gain, lighting also impacts the 

overall building heating and cooling loads [4]. Meanwhile, solar energy is generally considered as the 

most reliable energy source in nature, thus building integrated photovoltaic (BIPV) can be equipped to 

convert solar energy into electricity.  In a nutshell, lighting control and BIPV are two effective measures 

for improving building energy efficiency. With the adoption of lighting control and BIPV, the energy 

nature of the building would become more comprehensive. However, the effective building energy 

management relies on the accurate and reliable prediction of building energy load demands and BIPV 

electrical power production.  

 

1.1 Literature review 

 

The utilization of photovoltaics (PV) has been continuously growing within the power sector and shows 

a phenomenal increase among all renewable energy sources over the last five years [5]. In particular, 

BIPV systems are one of the most promising applications of solar power technologies, which offer 

considerable potential in reducing building energy consumption. Wessam et al. [6] proposed a 

regression tree-based predictive model for probabilistic forecast of electrical power generation of a 

rooftop PV system. Marcelo et al. [7] proposed a quantile regression forests-based predictive model for 

PV power production of different PV plants. Joao et al. [8] proposed a hybrid principal component 

analysis and support vector regression-based predictive model for PV power production within a 

regional scale. The above-mentioned three predictive models were all trained using the historical 

measurements of the real PV systems and weather data. However, the independent PV systems (rooftop 

PV panel, PV plants and regional PV systems) were considered, while the interactive effects of PV 

panel with the building façade was not accounted. Gao et al. [9] compared the performance of the 

artificial neural network (ANN), genetic programming, and adaptive neuro-fuzzy inference system in 

predicting the thermal and electrical performance of BIPV. The effects of different design parameters 

(i.e. duct length, width, depth and air mass flow rate) on the performance of BIPV were evaluated. 

Juwel et al. [10] adopted the SVM algorithm for forecasting the electrical power output of BIPV. The 

input datasets to the predictive model were the mass flow rate, inlet and outlet temperature of the 

working fluid as well as the BIPV surface temperature. Abdulwahab et al. [11] used the ANN algorithm 
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to estimate the thermodynamic performance of the BIPV system. The input datasets to the predictive 

model included the geometry design (i.e. length, depth and width of the channel) and air mass flow rate.  

However, these three BIPV power predictive models were based on a certain value of solar radiation 

and were generally used for system design purposes.  

 

To investigate the relationship between sunlight availability and active occupancy with lighting, 

Palacios et al. [12] proposed a bottom-up stochastic predictive model for lighting’s electricity 

consumption in the residential sector. Meanwhile, Kadir et al. [13] adopted the SVM-based predictive 

model to forecast the daily lighting energy consumption in the office building. Daily average sky cover 

and day type are the input datasets to the SVM algorithm. These two studies are effective at daily 

lighting electricity consumption.  

 
Accurate prediction of multiple energy loads is indispensable in energy system scheduling and supply-

side management [14, 15]. The building heating load was generally estimated based on the load demand 

of district heating systems [16-19] or water source heat pumps (WSHP) [20, 21], the cooling demand 

was evaluated according to the load demand of chilled water systems [22-25] or HVAC systems [26-

34], while the electricity demand was assessed using the electricity consumption of the building  [35-

50]. For building energy loads prediction, the data-driven predictive models were generally trained 

using the historical building operating data. Through the training process, parameters of the predictive 

models could be obtained to reveal the complex relationship between the input and output datasets. The 

widely used machine learning algorithms in building energy load prediction contain multiple-linear 

regression (MLR) [20, 21, 25, 45], Gaussian process regression (GPR) [20], various artificial neuron 

network (ANN) algorithms [16, 20-23, 25-27, 35, 38, 39, 42-44, 47], support vector machine (SVM)  

algorithms [7-19, 23-25, 28, 32-35, 37, 43, 44, 48] and deep learning algorithms [29, 31, 36, 41, 44, 49, 

50]. The commonly adopted input datasets to the predictive models include the outdoor air dry-bulb 

temperature, outdoor air wet-bulb temperature, outdoor air relative humidity, wind speed, relative 

humidity, solar radiation and historical load demands.  
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Table 1. Summary of literature review. 
Ref Input dataset Prediction 

objectivity Prediction algorithm Application area 

6 Cloudiness, dew point, humidity, pressure, 
ambient temperature, wind direction, wind speed 

PV  
Electrical  power 
 

Regression tree Rooftop PV panel 

7 
Ambient temperature, relative humidity, wind 
speed, wind direction, solar radiation and 
precipitation 

Extreme learning 
machine PV Plants 

8 Air temperature, air relative Humidity, cloudiness, 
solar irradiance 

Principal component 
analysis and SVM  Regional scale 

9 Geometry design of PV system (i.e. Length, depth 
and width of the channel) and air mass flow rate 

ANN, adaptive neuro-
fuzzy inference 
system  

BIPVT system 

10 
Mass flow rate, inlet and outlet temperature of the 
working fluid as well as the BIPV surface 
temperature 

SVM BIPV system 

11 Geometry design (i.e. Length, depth and width of 
the channel) and air mass flow rate ANN BIPV system 

12 Sunlight availability and active occupancy  Lighting energy 
consumption 

Stochastic models Residential  
13 Daily average sky cover and day type  SVM Office building 

16 
Outdoor air dry-bulb temperature, wind speed, 
solar radiation, relative humidity, heating 
consumption of the previous day Heating load of 

district heating 
system 
 

ANN and adaptive 
neuro-fuzzy inference 
system 

University campus 

17 Outdoor air dry-bulb temperature, primary/return 
chilled water temperature, flow rate 

SVM with discrete 
wavelet transform District scale  

18 Outdoor air dry-bulb temperature and heating load 
at previous time step 

SVM with different 
kernels District scale 

19 Heat load data, outdoor temperature, primary 
supply/return temperature, and flow rate  

SVM with firefly 
algorithm District scale 

20 Outdoor dry-bulb temperature, wet-bulb 
temperature, solar radiation, wind speed Heating load of 

WHSP 
 

MLR, GPR and ANN Office premises 

21 
Wet-Bulb Temperature, Dry-Bulb Temperature, 
Wind Direction, Solar Radiation, Dew Point 
Temperature, and Wind Speed  

Regression tree, GPR, 
MLR and ANN Office premises 

22 
Outdoor dry-bulb temperature, wet-bulb 
temperature, temperature of water leaving the 
chiller  Cooling load of 

chilled water 
system 
 
 

ANN Office building 

23 Outdoor dry-bulb temperature, solar radiation, 
occupancy 

ANN, SVM 
 Office building 

24 
Direct normal radiation and diffuse horizontal 
radiation, dry bulb temperature, relative humidity, 
wind direction and wind speed.  

Wavelet-partial least 
squares regression-
SVM model  

Office building 

25 Outdoor dry-bulb temperature, relative humidity, 
wind direction and speed, outdoor luminance 

MLR, regression tree, 
SVM, DNN  Educational building 

26 Historical cooling loads, ambient air temperature, 
solar radiation and room temperature setpoint 

Cooling load of 
HVAC system 
 

ANN with ensemble 
approach 

HVAC in office 
building 

27 
Wet-Bulb Temperature, Dry-Bulb Temperature, 
Wind Direction, Solar Radiation, Dew Point 
Temperature, and Wind Speed. 

ANN Institutional building 

28 
Outdoor dry-bulb temperature, relative humidity 
and global horizontal solar radiations 
 

Wavelet 
decomposition-SVM 

Office building 
 

29 
Outdoor temperature, indoor temperature, energy 
demand from the last time step and solar 
irradiance Q 

LSTM Office building 

30 Dry-bulb temperature, relative humidity  Takagi-Sugeno fuzzy  City scale 

31 Weather data, time of day, and previous 
consumption. LSTM Library  

32 Temperature of supply air, return air and fresh air Rough set-based 
SVM Office building 

33 Temperature, relative humidity and solar radiation  SVM Office building 

34 Historical cooling load Chaos–SVM, wavelet 
decomposition-SVR Commercial building 

35 Temperature, global irradiance, humidity, wind 
velocity, weekday Index 

Electricity 
consumption 

MLR, ANN,  DNN 
SVM 

Administration 
building  
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36 Time series electricity consumption  
 

LSTM Residential 
37 Temperature, relative humidity, solar radiation SVM Hotel building 

38 Dry-bulb/wet-bulb temperature, solar radiation 
clearness index, building envelope designs  ANN Office building 

39 
Historical load, day of the week, type of the day, 
hour of the, temperature, humidity, and wind 
speed 

ANN, Autoregressive 
Integrated Moving 
Average  

Commercial building 

40 Historical electricity consumption Random forest Multiple  

41 Cooling degree-days, total heated area, household 
income, dwelling type DNN Residential buildings 

42 Temperature, moisture content, relative humidity, 
solar radiation, previous electricity consumption 

C-means clustering 
based ANN Office buildings 

43 
Dry-bulb/dew-point temperature, relative 
humidity, pressure, cloud, rainfall, solar radiation, 
evaporation 

Ensemble of MLR, 
SVR, MLP Office building  

44 Historical electricity consumption SVM, ANN, 
RNN and LSTM City scale 

45 
Outdoor air temperature, humidity ratio, wind 
speed, diffuse solar radiation, direct solar 
radiation 

MLR, Gaussian 
mixture regression Office building  

46 Wind speed, solar radiation, humidity ratio, and 
outdoor dry-bulb temperature 

Teaching learning 
based optimization Office building  

47 Temperature, humidity, working day ANN A shopping mall 

48 

Dew point temperature, wind direction, wind 
velocity, outdoor temperature, precipitation 
intensity and quantity, relative humidity, working 
time schedule 
 

SVM 
 

District scale 
 

49 Weather information time of the day, holiday CNN District scale 

50 Historical electricity consumption RNN Commercial/residential 
building 

 

1.2 Research gaps and Contribution 

 

The feasibility of adopting various machine learning approaches in prediction of BIPV power, lighting 

consumption, thermal load demand and electricity consumption were investigated in the literature 

review. The input dataset, prediction objectivity, prediction algorithms and application area is 

summarized in Table 1. It is found that various machine learning techniques, such as MLR, ANN, SVM 

and deep learning algorithms, were identified effective in predicting various energy consumption and 

load demands. However, the following deficits are identified in the literature review: 

• The prediction models for hourly PV power production were developed for a single PV power plant 

or system. There is a lack of study considering the variation of PV power production due to the 

changing thermal performance of building envelop; 

• In those BIPV electrical power predictive models, the prediction was conducted at the design stage 

with the fixed value of solar radiation. However, the hourly BIPV power output should be variable 

due to changing weather and building thermal conditions. There is a lack of study regarding the 

prediction of variable hourly BIPV electrical power production;  

• In those lighting load studies, daily total lighting load was predicted according to the daily average 

value of cloud cover and solar radiation. Nevertheless, the hourly lighting load should be variable 
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due to the changing cloud cover and solar radiation. There is a lack of study regarding the prediction 

of a variable hourly lighting load; 

• In those heating, cooling and electricity load studies, the conventional office or residential buildings 

were set as the reference building. There has been very little work on predicting energy load 

demands with the adoption of BIPV system and lighting control in buidlings.  

• Most of the above-mentioned building energy predictive models were of single-objective, such as 

heating, cooling or electricity load. There is a lack of study predicting a set of different objectives. 

Hence, it may be not able to provide sufficient insights into the complex energy nature of 

sustainable buildings. 

 

In view of the above-discussed research gaps, this paper aims to propose a novel multi-objective 

prediction framework for multiple building energy load demands and electrical power production. The 

proposed multi-objective predictive model will have the following unique features: 

• The target building is adopted with BIPV system and lighting control, which has comprehensive 

energy nature; 

• The heating, cooling, lighting loads and BIPV electrical power output would be predicted 

simultaneously; 

• The variable hourly BIPV electrical power production would be predicted according to the changing 

weather data and building thermal performance; 

• The variable hourly lighting load would be predicted based on the changing cloud cover and solar 

radiation. 

 

Therefore, the present paper aims to leverage the latest developments in big data and machine learning 

to create a multi-objective predictive model with the predicting capabilities of hourly heating, cooling, 

lighting loads and BIPV electrical power production. This research will provide the foundation for 

building management system, designing supply and demand-side management as well as constructing 

fault detection and diagnosis strategies.  

 

The rest of the paper is structured like this: the next section discusses the mathematical models of the 

building with daylighting control and BIPV. The third part illustrates the structure of the historical 

database. The fourth part presents the three proposed predictive models. The fifth part evaluates the 

prediction results. The sixth part expresses the implication for practice and future direction while the 

last section provides the conclusion and main features identified from the study. 
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2. Building with daylighting control and BIPV 

 

To investigate the effects of lighting control and BIPV on building energy loads, thermal models are 

developed for four different cases of building: without BIPV and without daylighting control (nBnL), 

with BIPV but without daylighting control (BnL), without BIPV but with daylighting control (nBL), as 

well as with BIPV and daylighting control (BL). The detailed building information, the thermal model 

of the building, lighting control algorithm and BIPV model are discussed in this section. 

 

2.1  Building information 

 
A generic building is adopted as a baseline reference for the following comparison and evaluation. The 

generic building is incorporated with most of the design features commonly identified in office 

buildings in the UK. The detailed information can be found in Ref. [51-53]. Briefly, the baseline 

reference building is a rectangle (32 m × 16 m) 4-storey office block with curtain wall designs and a 

centralized HVAC system. The floor-to-floor distance is 3.5 m. The 4 floors share the same floor plan, 

and each floor is divided into three zones: zone 1A, zone 1B and zone 2. Zones 1A and 1B are the office 

rooms while zone 2 serves as the corridor. The windows are distributed on the north, west and east-

sided walls, with the window-to-wall ratio of 50%. For building cases with BIPV (i.e. BnL and BL), 

the BIPV is installed on the south-faced walls of zone 1A on each floor. The focus of this study is on 

the building with both BIPV and lighting control (i.e. BL). To keep it consistent, there are no windows 

on the south-faced walls of buildings without BIPV (i.e. BnL and nBnL). 

 

The three-dimensional view of the baseline building is presented in Fig. 1, with Fig. 1(a) showing the 

south and west façade, while Fig. 1(b) demonstrating the north and east façade. The front and top views 

of the baseline reference building are shown in Figs. 2 and 3, respectively. On weekdays, the pre-set 

schedules of occupant, lighting and office equipment are presented in Fig. 4, while the heating and 

cooling temperature set-points are shown in Fig. 5. In the legend of Fig. 5, the subscript 1 represents 

the zones 1A and 1B, while 2 stands for zone 2; h and c stands for heating and cooling, respectively. 

On weekends, the building schedules and temperature set points are equal to those at non-working hours 

(i.e. 1st -6th h, and 19th -24th h) on weekdays. The building envelop materials are adopted as in the 

guideline [51] while the heat transfer coefficients of external wall, roof, ground and windows are 

summarized in Table 2. The design criteria of the indoor environment are summarized in Tables 3.  

 

Table 2. Heat transfer coefficients of building envelop.  
Building envelop External wall Roof Ground  Window 
Heat transfer coefficients (W/m2 K) 1.517 0.14 0.14 1.51 
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Table 3. Design criterion of the indoor environment. 
Design items Criteria 

Floor area per person (m²/person) Zones 1A and 1B 14  
Zone 2 8 

Lighting heat gain (W/m2) Zones 1A and 1B 12  
Zone 2 3.4 

Office equipment heat gain (W/m2) Zones 1A and 1B 10  
Zone 2 2 

Fresh air (L/s/person) 10 
Occupant heat gain (W/person) 150 
Infiltration 0.3 

 

 
(a)South and west facade 

 
(b)North and east facade 

Fig. 1. 3D view of the office building 
 

 
Fig. 2. Front view of the building. 

 
 

Fig. 3. Top view of the building. 
 

 
Fig. 4. Operating schedules. 

 
Fig. 5. Temperature set points. 
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2.2  Thermal model of the office building 
 
Thermal load means the total heat that required to be removed from the building in order to bring it to 

the indoor design condition as shown in Fig. 4 [54], which include external and internal heat gains. 

 
2.2.1 External heat gain 
 
External heat gains contain convective heat gain through walls Qwa, convective and solar heat gain 

through windows Qwi, infiltration heat gain Qinf  due to air infiltration through the doors and windows 

as well as ventilation heat gain Qven owing to forced ventilation for fresh air requirement: 

 

Qwa = Uwa Awa CLTDwa                                           (1) 

Qwi  = Uwi  Awi CLTDwi + Awi ´ G ´ SHGF ´ SC                                    (2) 

Qr  = Ur Ar CLTDr                                            (3)  

Qg  = Ug Ag CLTDg                                           (4)  

Qinf   = ra V Cp,a ACHinf (Tdb,oa – Tdb,ia)/3600   + qvap V ra ACHinf (woa – wia)                          (5)  

Qven = ra Cp,a vven (Tdb,oa – Tdb,ia)  + qvap ra vven (woa – wia)                       (6) 

 

where,  

Uwa Uwi Ur Ug:   heat transfer coefficient of walls, windows, roof and ground, respectively (W  

       K-1 m-2) 

Awa Awi Ar Ag:   surface areas of walls windows, roof and ground, respectively (m2) 

Tdb,oa and Tdb,ia:   outdoor and indoor air dry-bulb temperature (K) 

G:  global solar radiation (W m-2) 

CLTDwa and CLTDwi: cooling load temperature differences of walls and windows, respectively (K),  

 which depends on Tdb,oa and Tdb,ia, G, solar time, latitude and month correction 

SHGF: solar heat gain factor 

SC:      shading coefficient of the window 

ra:       density of air (kg m-3) 

V:       volume of thermal zone (m3) 

Cp,a:      specific heat of air (J kg-1 K -1) 

ACHinf:     air change per hour due to infiltration (h-1) 

qvap:      latent heat of air vaporization (J kg-1) 

woa and wia:    humidity ratio of outdoor and indoor air (kg kg-1) 

vven:      volumetric flow rate due to fresh air ventilation (m3 s-1) 

 

Therefore, external thermal gain mainly depends on the outdoor air dry-bulb temperature Tdb,oa, outdoor 

air humidity ratio woa, global solar radiation G, heat transfer coefficient of walls Uwa, windows Uwi, roof  



11 
 

Ur and ground Ug, surface areas of walls Awa, windows Awi, roof Ar and ground Ag, as well as the design 

conditions summarized in Table 3. 

 

2.2.2  Internal heat gain 

 

Internal heat gains are caused by occupants Qo, lighting Ql and office equipment (i.e. computers, printers, 

fax machines and copiers) Qe, which are mainly determined by the corresponding internal load densities 

and loading schedules. 

 

Qo = (qo,sen + qo,lat) ´ No                                         (7) 

Ql = Pl                                              (8) 

Qe = Pe                                              (9)  

 

where, 

qo,sen: sensible heat gain per person (W person-1) 

qo,lat: latent heat gain per person (W person-1)  

No:  quantity of occupants (person)  

Pl:  electrical power consumption of lighting (W)  

Pe:  electrical power consumption of office equipment (W) 

 

2.2.3  Heating and cooling loads 

 

Heating load Qh and cooling load Qc are determined by the sum of various heat gains discussed above: 

 

if Qwa + Qwi + Qr + Qg + Qo + Ql  + Qe  + Qinf  + Qven > 0 then 

Qc = Qwa + Qwi + Qr + Qg + Qo + Ql  + Qe  + Qinf  + Qven   

fi  

if Qwa + Qwi + Qr + Qg + Qo + Ql  + Qe  + Qinf  + Qven < 0 then 

Qh  = Qwa + Qwi + Qr + Qg + Qo + Ql  + Qe  + Qinf  + Qven         

fi 

 
2.3 Lighting control 
 

When daylighting control is not adopted (i.e. for cases nBnL and BnL), artificial lighting is implemented 

as scheduled in Fig. 4. When daylighting control is adopted (i.e. for cases nBL and BL), DAYSIM can 

be used to simulate the daylighting control and determine lighting power consumption [55]. Through 

coupling global solar radiance with daylight coefficient, DAYSIM can be used to calculate the 
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illuminance profile. In other words, in each thermal zone, a set of daylight coefficients are computed 

and adopted to determine the internal illuminance at sensor points with a variable sky luminance 

distribution. Upon determining the daylighting availability, DAYSIM can compute the electrical power 

consumption of artificial lighting when daylight is not sufficient. The lighting power obtained from 

DAYSIM is also used in Eq. (6) to determine the lighting heat gain. There are two sensors in each zone 

1A and 1B, which are located at the middle point of the x direction. One of the sensors is located 2 m 

from the external wall while the other one is situated 1 m from the internal wall, as shown in Fig. 3. On 

each floor, the sensors are installed on 1 m from the floor, as shown in Fig. 2. The daylighting control 

set points are summarized in Table 4. 

 

Table 4. Daylighting control set points. 
Minimum input power fraction for continuous dimming control 0.2 
Minimum light output fraction for continuous dimming control 0.2 
1st illuminance setpoint for switching lighting off 500 lux 
2nd illuminance setpoint for switching lighting on 300 lux 

 

2.4 BIPV model 

 

The BIPV is installed on the south-faced walls of zones 1A on each floor. The mathematical model of 

BIPV is illustrated as Eqs (10-17), while its design parameters are summarized in Table 5.  

 

 
Fig. 6. Schematic diagram of BIPV. 

 

The electrical power production from the BIPV Qb is determined: 

 

Qb = Ab ab GT hb                                          (10) 

hb = hb,N [1+ eT (Tb – Tref)] [1+ eG (GT – Gref)]                                  (11) 
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where, 

hb:    electrical efficiency of BIPV, and: 

Tb:    temperature of BIPV (K), and is determined through Eqs. (12-15)    

 

ℎ!"#$,!"	"𝑇' − 𝑇(',")% + ℎ*)(,!"(𝑇' − 𝑇+) +
,!-,"
."

= 𝑎'𝐺,(1 − ℎ')         (12) 

ℎ!"#$,/"𝑇/ − 𝑇0% + ℎ*)(,0-1(𝑇12 − 𝑇0) =
,!-,"
."

                (13) 

𝑚/𝐶3,/(𝑇/,"04 − 𝑇/,5#) = ℎ/"𝑇0 − 𝑇/% + ℎ/"𝑇12 − 𝑇/%              (14) 

ℎ/"𝑇/ − 𝑇12% + ℎ*)(,0-1(𝑇0 − 𝑇12) =
,#$-,#%

.#
                 (15) 

𝜀+ = 0.711 + 0.005 4,&'
266
5 + 7.3 × 10-7 4,&'

266
5
8
+ 0.013 cos 42𝜋 4

89
5         (16) 

𝑇+ = 𝑇(',")(𝜀+ + 0.8(1 − 𝜀+)𝜉)6.87                   (17) 

 

where, 

hrad,co:   radiative heat transfer coefficient of the cover surface and channel surface (W K -1 m-2) 

hrad,u-l:   radiative heat transfer coefficient of the channel surface (W K -1 m-2) 

hconv,co:  convective heat transfer coefficient of the cover surface (W K -1 m-2) 

hconv,f:   convective heat transfer coefficient of the working fluid (W K -1 m-2) 

mf:    volume flow rate of the working fluid (kg m-2 s -1) 

𝑔u and 𝑔l:  thermal conductivity of the upper and lower air channel surface (K W -1 m-2) 

Cp,f:   specific heat of working fluid (J kg-1 K -1) 

Tl2:   temperature of the south-side building wall (K) 

Ts: sky temperature (K), which is determined by the Tdb,oa, 𝑤 and the cloud cover ratio 𝜉. 

 
Table 5. Design parameters of the BIPV [56]. 

Surface area Ab (m2) 448 
Absorption ratio of BIPV surface ab 0.8 
Emissivity of PV surface 0.9 
Substrate resistance (h m2 K/kJ) 0.01 
Channel emissivity 0.9 
Back resistance (h m2 K/kJ) 1.0 
Channel height (m) 0.0508 
BIPV nominal electrical efficiency hb,N 0.12 
Reference temperature Tref  (K) 298 
Reference radiation Gref (kJ /h m2) 3600 
Correction coefficient of temperature eT -0.005 
Correction coefficient of temperature eG 0.000025 
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3. Formulation of the database for machine learning-based prediction framework 

 

For the machine learning-based prediction framework, the input database mainly includes weather 

profiles, building operating schedules, building thermal performance, while the output dataset is the 

heating, cooling, lighting loads as well as BIPV power production.  

 

3.1  Generation of database 

  

Owing to the year-round changing weather condition, transient simulation is desired to acquire the 

yearly profile of heating, cooling, lighting loads and BIPV power production at the time step of one 

hour. The TRNSYS program is a flexible simulation tool in replicating the transient performance of 

thermal energy systems, which was developed and is being continuously updated by the Solar Energy 

Laboratory at the University of Wisconsin since 1975 [57]. The thermal models of building and various 

energy-related components in TRNSYS have been validated in a variety of studies [58-63]. Therefore, 

in this study, TRNSYS 18 is implemented as a dynamic simulation platform:  

 

• The built-in Type 56 multi-zone building analytical model can solve the coupled differential 

equations using matrix inversion techniques and provide a more efficient approach to calculate the 

interaction between two or more zones. In Type 56, the building envelopes are modelled according 

to the ASHRAE transfer function approach to determine the heating and cooling loads [64].  

• Moreover, TRNSYS 18 also integrates dynamic daylight simulation based on DaySIM into Type 

56, in which the 3D geometries of the building model can be used to calculate illuminance levels 

for sensor points.  

• In addition, the built-in component Type 568 is intended to model the BIPV performance. It can be 

connected with building thermal model Type 56, where Type 56 provides the temperature of the 

back surface of the BIPV Tl2 and Type 568 shows the surface temperature of the lower flow channel 

Tl1.   

 
3.2  Characteristics of heating, cooling, lighting loads and BIPV power production 
 

To make the simulation data of heating, cooling, lighting loads and BIPV electrical power output closer 

to the practical case, the historical weather data recorded at London Heathrow Airport in the years 2017 

and 2018 is adopted as inputs to the TRNSYS simulation model. The historical weather data includes 

outdoor air dry-bulb temperature, outdoor air dew-point temperature, global solar radiation, wind speed 

and cloud cover ratio.  
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(a) Heating 

 
(b) Cooling 

 
(c) Lighting 

 
(d) BIPV electrical power 

Fig. 7.  Energy loads and production of different building types. 
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To investigate the effects of lighting control and BIPV on the building heating and cooling loads, the 

peak and year-around total value of heating, cooling, lighting loads and BIPV electrical power 

production are summarised in Table 6. The heating load, lighting load and BIPV electrical power 

production of the 2nd week of the year are shown in Figs. 7 (a), (c) and (d), while the cooling load of 

the 30th week of the year is shown in Fig.  7(b). The trend of heating, cooling, lighting loads and BIPV 

electrical power production should be similar in each week so the two weeks are selected randomly. 

 

The building heating load with lighting control is larger than that without lighting control. On the 

contrary, the building cooling load with lighting control is smaller than that without lighting control. It 

is because that the lighting energy also contributes to the building internal heat load. When the daylight 

is not sufficient (e.g. the 31st, the 40th - 42nd h of the week), artificial lighting load is at its maximum 

value to provide sufficient illuminance. However, when the daylight is sufficient (e.g. the 32nd - 39th h 

of the week), artificial lighting load can be greatly reduced when lighting control is adopted. As a result, 

68.4% of the year-round lighting energy consumption can be reduced.  

 

The building heating load with BIPV is smaller than that without BIPV. On the contrary, the building 

cooling load with BIPV is larger than that without BIPV. It is because that BIPV absorbs a certain 

amount of solar radiation. With the implementation of BIPV, there exists a peak electrical power 

production during the middle of each day, while the yearly electrical energy production from the BIPV 

is 0.3 GJ/m2.    

 

Table 6. Peak and year-round building energy loads. 

 
Heating Cooling Lighting BIPV 
Year-
around (GJ) 

Peak 
(MJ/h) 

Year-
around (GJ) 

Peak 
(MJ/h) 

Year-
around (GJ) 

Peak 
(MJ/h) 

Year-
around (GJ) 

Peak 
(MJ/h) 

nBnL 325 620 272 218 114 

74.5 134 104 nBL 380 670 231 217 42 
BnL 187 510 856 299 114 
BL 344 670 424 280 42 

 

3.3  Structure of the historical database  
 
Based on the analysis in Section 2, the affecting factors of building energy loads and BIPV electrical 

power production contain weather data of outdoor air dry-bulb temperature, outdoor air humidity ratio, 

global solar radiation and cloud cover ratio as well as indoor schedules of occupants, lighting and office 

equipment. To generate the historical database, these affecting factors, along with indoor air dry-bulb 

temperature and BIPV temperature at previous 24 hours, as well as heating load, cooling load, lighting 

load and BIPV electrical power production, are consolidated as database X for input variables to the 

proposed predictive models. Meanwhile, the heating, cooling, lighting loads and BIPV electrical power 

production at the current time step, are consolidated as database Z for output variables expected from 
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the predictive model.  The time step of above-mentioned variables is 1 hour. The data elements in 

database X and Z are summarized in Table 7. In this study, the TRNSYS simulation model is developed 

to represent the real building. Namely, the calculated results of heating, cooling, lighting loads and 

BIPV power production from the TRNSYS simulation model are taken as the baseline values to 

compare with the predicted values from the proposed machine learning-based prediction frameworks. 

 
Table 7. Detailed information regarding the historical database. 

Variables 

 
This study 

Practical  
application 

Training 
case 

 
Testing 

case 

Training and 
testing cases 

X 

Outdoor air dry-bulb temperature 𝑇(',"),5 Weather 
data in 
2017 Weather 

data in 
2018 

Weather data 
recorded at 

local or 
weather 
station 

 

Outdoor air humidity ratio 𝑤5 
Global horizontal radiation 𝐺5 
Cloud cover ratio 𝜉5 

Schedule of occupants in zones 1A and 1B  𝑆"2,5  
Pre-set schedules as 

shown in Fig. 4. 
 

 

Recorded 
building-

related data 
 

 

Schedule of occupants in zone 2 𝑆"8,5 
Schedule of office equipment 𝑆;,5 

Indoor air dry-bulb temperature 𝑇(',5),5-2 Simulated 
building 
operating 

data in 
2017 

Simulated 
building 
operating 

data in 
2018 

Temperature 
sensor 

measurement 
data 

 

BIPV temperature at last time step 𝑇',5-2 
BIPV temperature at same time step of last day 𝑇',5-89 

Heating load at the last time step 𝑄<,5-2  
 
 
 

Simulated 
building 
energy 
data in 
2017 

Simulated 
building 
energy 
data in 
2018 

 
Energy meter 
measurement 

data 
 

Heating load at time step i-2 𝑄<,5-8 
Heating load at time step i-3 𝑄<,5-= 
Heating load at time step i-4 𝑄<,5-9 
Heating load at same time step of last day 𝑄<,5-89 
Cooling load at the last time step 𝑄!,5-2 
Cooling load at time step i-2 𝑄!,5-8 
Cooling load at time step i-3 𝑄!,5-= 
Cooling load at time step i-4 𝑄!,5-9 
Cooling load at the same time step of last day 𝑄!,5-89 
Lighting load at the last time step 𝑄1,5-2 
BIPV power production at the last time step 𝑄',5-2 

Z 

Heating load at the current time step 𝑄<,5 Simulated 
energy 
data in 
2017 

 

Simulated 
energy 
data in 
2018 

Energy meter 
measurement 

data 
 
 

Cooling load at the current time step 𝑄!,5 
Lighting load at the current time step 𝑄1,5 
BIPV power production at current time step 𝑄',5 

  

In summary, there are Nin = 22 input variables and 4 output variables at each time step, while the total 

time step is Nt = 365 ´ 24 = 8760. And 
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𝐗 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑥2,2
𝑥8,2
…
𝑥5,2
⋯
𝑥>(,2

		

𝑥2,8
𝑥8,8
…
𝑥5,8
…
𝑥>(,8

	

⋯
⋯
…
⋯
	

𝑥2,?
𝑥8,?
…
𝑥5,?
⋯
𝑥>(,?

⋯
⋯
…
⋯

𝑥2,>)*
𝑥8,>)*
…
𝑥5,?
⋯

𝑥>(,>)*⎦
⎥
⎥
⎥
⎥
⎤

 

𝐙 = 	 O

𝑄<,2
𝑄<,8
…

𝑄<,>(

		

𝑄!,2
𝑄!,8
…
𝑄!,>(

	

𝑄1,2
𝑄1,8
…
𝑄1,>(

	

𝑄',2
𝑄',8
…

𝑄',>(

P 

where, 𝑥5,2 =	𝑇(',"),5 , 𝑥5,8 = 𝑤5 , 𝑥5,= =	𝐺5 , 𝑥5,9 = 𝜉5 , 𝑥5,7 = 𝑆"2,5  𝑥5,@ = 𝑆"8,5 , 𝑥5,A = 𝑆;,5 , 𝑥5,B =

𝑇(',5),5-2, 𝑥5,C = 𝑇',5-2, 𝑥5,26 = 𝑇',5-2, 𝑥5,22 = 𝑄<,5-2, 𝑥5,28 = 𝑄<,5-8, 𝑥5,2= = 𝑄<,5-=, 𝑥5,29 = 𝑄<,5-9,

𝑥5,27 = 𝑄<,5-89, 𝑥5,2@ = 𝑄<,5-2, 𝑥5,2A = 𝑄<,5-8, 𝑥5,2B = 𝑄<,5-=, 𝑥5,2C = 𝑄<,5-9, 𝑥5,86 = 𝑄<,5-89, 𝑥5,82 =

𝑄1,5-2, 𝑥5,88 = 𝑄',5-2. 

 

4. Machine learning-based prediction framework 

 

The schematic diagram of the three proposed predictive models is presented in Fig. 8. In each predictive 

model, ANN, SVM or LSTM algorithm is adopted. 

 

 
Fig. 8. Schematic diagram of the proposed predictive model 

 

Because the datasets of each parameter do not follow the normal distribution, the min-max scaling 

approach is adopted to normalize the historical database X, for each j: 

 

𝑦5,? =
D),,	- EFG

%-)-.(	
D),,	

EHI
%-)-.(

D),,- EFG
%-)-.(

D),,
                       (18) 
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4.1  ANN-based predictive model 

 

The ANN algorithm consists of three layers: the input layer, the hidden layer and the output layer [65]. 

The elementary component in the ANN algorithm is the artificial neuron which is aligned in layers and 

connected to neurons in other layers through synaptic weights. The values of the weights are decided 

through the training process. The diagram of the ANN-based predictive model is shown in Fig. 9. As 

illustrated in Table 7, there are Ni = 22 input variables 𝒀𝒋	(𝑗 = 1, 2, … ,22) and 4 output variables (Qh, 

Qc, Ql and Qb) to the ANN predictive model:  

 

𝒀𝒋 = [𝑦2,?; 𝑦8,?; … ; 𝑦5,?; … ; 𝑦>(,?]  

𝑸𝒉 = [𝑄<,2; 𝑄<,8; … ; 𝑄<,5; … ; 𝑄<,>(]  

𝑸𝒄 = [𝑄!,2; 𝑄!,8; … ; 𝑄!,5; … ; 𝑄!,>(]  

𝑸𝒍 = [𝑄1,2; 𝑄1,8; … ; 𝑄1,5; … ; 𝑄1,>(]  

𝑸𝒃 = [𝑄',2; 𝑄',8; … ; 𝑄',5; … ; 𝑄',>(]  

The quantity of neurons in the hidden layer N is tested within the range {2-50} in view of both algorithm 

effectiveness and computation time.  

 

 
Fig. 9. Diagram of the ANN-based predictive model. 

 

In the ANN-based predictive model, the lth neuron Hl in the hidden layer is defined as: 

 

 𝑯𝒍 = 𝑓(∑ (𝑤?1𝒀𝒋))
?O>)*
?O2                         (19) 

 

where wjl is the weight of the connection of the jth input to the lth neuron, and f is the Sigmoidal transfer 

function. 𝑸\𝒉 , 𝑸\𝒄 , 𝑸\𝒍  and 𝑸\𝒃  are the predicted heating, cooling lighting loads and BIPV power 

production, respectively:  
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𝑸\𝒉 = 	𝑓"∑ (𝑤12𝑯𝒍)
1O>0)
1O2 %                       (20) 

𝑸\𝒄 = 	𝑓"∑ (𝑤18𝑯𝒍)
1O>0)
1O2 %                       (21) 

𝑸\𝒍 = 	𝑓"∑ (𝑤1=𝑯𝒍)
1O>0)
1O2 %                       (22) 

𝑸\𝒃 = 	𝑓"∑ (𝑤19𝑯𝒍)
1O>0)
1O2 %                        (23) 

 

The aim of the training process is to minimize the squared error ED,ANN between predicted energy loads 

(𝑸\𝒉, 𝑸\𝒄, 𝑸\𝒍 and 𝑸\𝒃) and the TRNSYS simulated energy loads (𝑸𝒉, 𝑸𝒄, 𝑸𝒍 and 𝑸𝒃): 

 

𝐸P,Q>> =	∑[(𝑸\𝒉 −𝑸𝒉)8 +(𝑸\𝒄 −𝑸𝒄)8 + (𝑸\ 𝒍 −𝑸𝒍)8 + (𝑸\𝒃 −𝑸𝒃)8]         (24) 

 

Levenberg-Marquardt approach is adopted to minimize ED,ANN, thus various weights of the ANN 

predictive model (i.e. wkl, wl1, wl2, wl3 and wl4) can be determined.  

 

4.2  SVM-based predictive model 

 

In SVM algorithm, kernel functions are used to implicitly map the input features in the original low-

dimensional input space into a high-dimensional output feature space [66]. The schematic diagram of 

the SVM predictive model is shown in Fig. 10. The format of input dataset to the SVM-based predictive 

model is different from that to the ANN-based predictive model. The input dataset is consolidated as 

𝑌5 = _𝑦5,2	𝑦5,8…	𝑦5,? …𝑦5,>)*`  and 𝐘 = _𝑌2; 	𝑌8; … ;	𝑌5; … ; 𝑌>(` . Meanwhile, the output dataset is 

consolidated as 𝐐\𝐢 = [𝑄c<,5 	𝑄c!,5 	𝑄c1,5 	𝑄c',5].  

 

 
Fig. 10. Diagram of the SVM predictive model. 
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The principle of SVM is to solve the nonlinear prediction problem in a multidimensional function space 

via the nonlinear transformation	𝜑(∙), thus the parameters of the SVM algorithm are determined to fit 

the relationships between Y and Qi:    

 

𝐐\ 𝐢 = 𝑓(𝑌5) = 𝑊 ∙ 𝜑(𝑌5) + 𝑏                         (24) 

 

where W and b are the coefficients of the SVM model. The aim of training the SVM predictive model 

is to determine W and b to minimize the squared error ED,SVM between the prediction result 𝐐\ 𝐢 and 

TRNSYS simulation result 𝐐𝐢: 

 

𝐸P,STU =	∑(𝐐𝐢 − 𝐐\ 𝐢)8                        (25) 

 

4.3  LSTM neural network-based predictive model 

 

LSTM is a special variant of recurrent neural networks. Its learnable gates can modulate the flow of 

information. The persistent cell state has minimal interactions and provides an easy path for gradient 

flow during back-propagation [67]. The schematic diagram of the LSTM neural network predictive 

model is shown in Fig. 11. The input dataset to the LSTM neural network is  𝑌5 =

_𝑦5,2	𝑦5,8…	𝑦5,? …𝑦5,>)*` while the output dataset is 𝐐\𝐢 = [𝑄c<,5 	𝑄c!,5 	𝑄c1,5 	𝑄c',5], which is the same as those 

to the SVM algorithm. Taking both algorithm effectiveness and computation time into consideration, 

the quantity of hidden units is tested within the range {2-20}, while other training parameters are 

summarized in Table 8.  

 

 
Fig. 11. Diagram of the LSTM neural network-based predictive model. 
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Table 8. Parameters of LSTM neuron network. 
Maximum number of epochs 1000 
Size of mini-batch 20 
Initial learning rate 0.001 
Gradient Threshold 1 

 
There are three gates utilized within an LSTM: input gate Ii, forget gate Fi and output gate Oi: 𝐹5 defines 

the proportion of information to be preserved in 𝐶5. It adopts the sigmoid function as the activation 

function and outputs a value between zero and one based on 𝑌5 and 𝐐𝐢-𝟏: 

 

𝐹5 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑	(𝑤WX𝑌5 +𝑤YX𝐐𝐢-𝟏 + 𝑏X)                     (26) 

 

where 𝐵X is the bias, 𝑤WX and 𝑤YX are weight matrices for 𝑌5 and 𝐐𝐢-𝟏, respectively. The input gate 𝐼5 

defines the proportion of new information to be added for 𝐶5. And: 

 

𝐼5 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑	(𝑤WZ𝑌5 +𝑤YZ𝐐𝐢-𝟏 + 𝑏Z)                    (27) 

 

where 𝑏Z is the bias, 𝑤WZ and 𝑤YZ are weight matrices for 𝑌5 and 𝐐𝐢-𝟏, respectively. The tanh activation 

function is then used to create a candidate for updating 𝐶5, and: 

 

𝐶, = 𝑡𝑎𝑛ℎ	(𝐹5°𝐶5-2 + 𝐼5°"tanh"𝑤W[𝑌5 +𝑤Y[𝐐𝐢-𝟏 + 𝑏[%%)               (28) 

 

where ° is the pointwise multiplications, 𝑤W[  and 𝑤Y[  are weight matrices for 𝑌5 and 𝐐𝐢-𝟏, respectively.  

The output gate 𝑂5 is specified as: 

 

𝑂5 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑	"𝑤W\𝑌5 +𝑤Y\𝐐𝐢-𝟏 + 𝐵\%                 (29) 

 

where 𝐵\ is the bias, 𝑤W\ and 𝑤Y\ are weight matrices for 𝑌5 and 𝐐𝐢-𝟏, respectively. The hidden state 

is calculated as: 

 

𝐻5 = 𝑂5°	𝑡𝑎𝑛ℎ(𝐶5)                           (30) 

 

Adam optimization is used in determining the various weight matrices (i.e 𝑤WX ,

𝑤YX , 𝑤WZ , 𝑤YZ , 𝑤W[ , 𝑤Y[ , 𝑤W\ , 𝑤Y\) in the LSTM neuron network [68]. 
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4.4  Performance assessment index  
 

According to Fig. 7, the value range among heating, cooling, lighting load and BIPV power production 

is quite different. Therefore, the mean absolute percentage error (MAPE) is adopted to assess the 

performance of the proposed three predictive models: 

 

𝑀𝐴𝑃𝐸 =	 2
>(
∑ (]Ŷ0,)-Y0,)]

Y0,)
+ ]Ŷ1,)-Y1,)]

Y1,)
+ ]Ŷ#,)-Y#,)]

Y#,)
+ ]Ŷ!,)-Y!,)]

Y!,)
)5O>(

5O2 × 100%         (31) 

 

5. Results and discussion 

 

The machine learning-based prediction framework is developed using MATLAB and conducted on a 

computation tool used for this research is a desktop with a processor of 2.7 GHz Intel Core i5. To 

evaluate the performance of the proposed machine learning-based multi-objective prediction, its 

performance for the baseline case is compared to conventional single-objective predictive models. 

Moreover, to investigate the robustness of the proposed prediction framework, mean absolute 

percentage error and computational time of each predictive model is assessed at different heat transfer 

coefficients of windows Uwin, heat transfer coefficients of walls Uwall as well as window-to-wall ratios 

Rwin.  

 

5.1  Performance evaluation of the proposed prediction framework 

 

To select the optimal architecture of ANN and LSTM-based predictive model, the quantity of neurons 

in the hidden layer in ANN and the quantity of hidden units in LSTM is tested in the range {2-50} and 

{2, 20}, respectively. The result is shown in Fig. 12. It is found that the optimal quantity of neurons in 

the hidden layer in ANN is 14 while the optimal quantity of hidden units in LSTM is 8. 

  

(a) ANN (b) LSTM 
Fig. 12. MAPE at different ANN/LSTM architecture. 



24 
 

  

To investigate the advantage of the proposed multi-objective prediction framework over conventional 

single-objective prediction model, the conventional single-objective ANN, SVM and LSTM predictive 

model is developed for heating, cooling, lighting load and BIPV electrical power production, 

respectively. To keep it consistent, the same input database is adopted in the conventional single-

objective ANN, SVM and LSTM model. The prediction performance, represented by MAPE value and 

computational load, is summarized in Table 9. 

 
Table 9. MAPE value and computational time of multi-objective and single-objective predictive models. 
Load type Heating load Cooling load Lighting load BIPV power 

 
Overall 
 
 

Performance MAPE (%) Time 
(s) 

MAPE (%) 
 

Time 
(s) 

MAPE (%) 
 

Time 
(s) 

MAPE (%) Time 
(s) 

MAPE (%) 
 

Time 
(s) 

Train Test  Train Test  Train Test  Train Test  Train Test  
m-ANN 

N.A. 
6.29 8.66 86 

m-SVM 9.56 9.70 0.49 
m-LSTM 8.52 9.06 2328 
s-ANN 6.35 8.54 23 6.19 8.80 26 6.21 8.71 24 6.19 8.57 25 6.24 8.66 98 
s-SVM 9.50 9.82 0.14 9.62 9.49 0.14 9.48 9.52 0.13 9.51 9.58 0.15 9.53 9.60 0.56 
s-LSTM 8.56 9.01 595 8.49 9.10 601 8.60 9.08 610 8.50 9.02 592 8.54 9.05 2398 

 

Compared to the total computational time (98s, 0.56s and 2398s) of heating, cooling, lighting and BIPV 

power production from the conventional single-objective ANN, SVM and LSTM-based prediction 

models, the computational time (86s, 0.49s and 2328s) of the proposed multi-objective prediction model 

is shorter. The MAPE value from the proposed multi-objective prediction framework is similar to that 

from the conventional single-objective prediction model in both training and testing cases.  

 

It is also found that the multi-objective ANN-based predictive model results in the smallest MAPE value 

with the average computational time; the multi-objective SVM-based predictive model resulted has the 

largest MAPE value with the shortest computational time. On the contrary, the multi-objective LSTM-

based predictive model results in the medium MAPE value with the longest computational time.  

 

5.2  Evaluation of robustness of the prediction framework  

 

To investigate the robustness of the proposed prediction framework, it is implemented on buildings 

with different building materials and architectural features. Compared to the building roof, building 

walls and windows generally occupies larger surface, thus results in larger effects on building thermal 

performance. Therefore, the different thermal properties of walls, thermal properties of windows and 

window-to-wall ratios are investigated.   
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5.2.1  Effect of heat transfer coefficient of windows 

 

The building heating and cooling loads at different heat transfer coefficients of windows (i.e. Uw = 0.74, 

1.51 and 2.72 W·m-2 K-1) during the 2nd and the 30th week of the year are shown in Fig. 13, while heat 

transfer coefficient of walls Uwa = 1.517 W·m-2 K-1 and window-to-wall ratio Rwin = 50%. It is seen that 

the lower heat transfer coefficient of windows results in lower heating and cooling load. 

 

  
(a) Heating (b) Cooling 

Fig. 13. TRNSYS simulated heating and cooling loads at different Uwin. 
 
The prediction results from two random days in the heating season and cooling season are shown in Fig. 

14. Although the heating, cooling, lighting loads and BIPV electrical power production varies among 

different heat transfer coefficients of windows, the prediction results from the ANN, SVM and LSTM 

neural network based-predictive models are close to those obtained from the baseline TRNSYS 

simulation model. 

• For heating load prediction, the ANN-based predictive model has the closest result to the TRNSYS 

simulation model, while the result from LSTM neuron network is closer to the TRNSYS simulation 

model than that from the SVM model;  

• For cooling load prediction, the ANN-based predictive model has the closest result to the TRNSYS 

simulation model, while the result from SVM model is closer to the TRNSYS simulation model 

than that from the LSTM neuron network;  

• For lighting load prediction, the three proposed predictive models can correctly predict the time-

period when the artificial lighting is needed, while there exists a little difference between the 

predicted heating load values and the TRNSYS simulation results;  

• For BIPV electrical power prediction, the results from the ANN-based and SVM-based predictive 

model are closer to the TRNSYS simulation model than those from the LSTM neuron network-

based predictive model. 

 

The MPE of the three predictive models for building energy prediction under different heat transfer 

coefficients of windows is summarized in Table 10. Generally, the MAPE of ANN-based predictive 

model is the smallest, while the MAPE of SVM and LSTM neuron network-based predictive models 

are similar. Moreover, the MAPE of testing cases is generally a little larger than that of training cases. 
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(a) Training case, heating day 

 
(b) Testing case, heating day 
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(c) Training case, cooling day 

 
(d) Testing case, cooling day 

Fig. 14. Prediction results of building energy loads and BIPV power production at different Uwin. 
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Table 10. MAPE of prediction results at different heat transfer coefficients of windows. 

Uwa = 1.517 W·m-2 K-1, Rwi = 50% Uwi (W·m-2 K-1) 
2.72  1.51 0.74 

ANN 
Optimal quantity of neurons in the hidden layer 39 13 33 

MAPE (%) Training case 5.44 6.29 6.69 
Testing case 8.43 8.66 8.63 

SVM MAPE (%) Training case 7.22 9.56 6.50 
Testing case 8.91 9.70 6.10 

LSTM neuron 
network 

Optimal quantity of hidden units 16 8 15 

MAPE (%) Training case 6.46 8.52 7.72 
Testing case 6.67 9.06 8.02 

 

5.2.2  Effect of heat transfer coefficients of walls 
 
The weekly building heating and cooling loads at different heat transfer coefficients of walls (i.e. Uwall 

= 2.297, 1.517 and 0.598 W·m-2 K-1) are illustrated in Fig. 15, while heat transfer coefficient of windows 

Uwin = 1.51 W·m-2 K-1 and window-to-wall ratio Rwin = 50%. It is found that the lower heat transfer 

coefficient of walls resulted in lower heating load but higher cooling load. 

 

 
(a) Heating 

 
(b) Cooling 

Fig. 15. TRNSYS simulated heating and cooling loads at different Uwall 

 

The prediction results from one heating day and one cooling day are shown in Fig. 15. Although the 

heating, cooling, lighting loads and BIPV electrical power production varies among different heat 

transfer coefficients of windows, the prediction results from the ANN, SVM and LSTM neural network 

based-predictive models are close to those obtained from the baseline TRNSYS simulation model. 

 

To compare the prediction performance of the ANN, SVM and LSTM neuron network predictive model, 

the year-round MAPE of the three predictive models for building energy prediction at different heat 

transfer coefficients of walls are summarized in Table 11. It is seen that the MAPE of ANN-based 

predictive model is the smallest, while the values of MAPE of SVM and LSTM neuron network-based 

predictive models are similar. 
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(a) Training, heating day 

 
(b) Testing, heating day 
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(c) Training, cooling day 

 
(d) Testing, cooling day 

Fig. 16. Prediction results of building energy loads and BIPV power production at different Uwall. 
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Table 11. MAPE of prediction results at different Uwa. 

Uwi  = 1.51 W·m-2 K-1, Rwi = 50% Uwa (W·m-2 K-1) 
2.297  1.517 0.598 

ANN 
Optimal quantity of neurons in the hidden layer 35 13 11 

MPE (%) Training case 5.85 6.29 1.65 
Testing case 7.51 8.66 4.03 

SVM MPE (%) Training case 8.78 9.56 9.24 
Testing case 9.91 9.70 9.61 

LSTM neuron 
network 

Optimal quantity of hidden units 17 8 5 

MPE (%) Training case 5.52 8.52 7.70 
Testing case 9.43 9.06 8.60 

 

5.2.3  Effect of window-to-wall ratio  
 
The weekly building heating and cooling load at different window-to-wall ratios Rwin (i.e. 25%, 50% 

and 75%) are illustrated in Fig. 17, while the heat tranfer coefficients of windows and walls are kept at 

Uwall  = 0.598 W / (m2 K) and Uwin = 1.51 W / (m2 K). Rwin is calculated as the ratio between the surface 

area of the window and the wall. Since the heat transfer coefficient of window is larger than that of wall, 

lower window-to-wall ratio results in lower heating and cooling loads. 

 

  
(a) Heating (b) Cooling 

Fig. 17. Simulated heating and cooling loads at different Rwin. 
 
The prediction results from the two days in the heating and cooling seasons are shown in Fig. 18. 

Although the heating, cooling, lighting loads and the electrical power production of BIPV are different 

among different window-to-wall ratios, the prediction results from the ANN, SVM and LSTM neuron 

network based-predictive model are close to those obtained from the baseline TRNSYS simulation 

model.  

 

To further compare the prediction performance among the ANN, SVM and LSTM neuron network-

based predictive models, the MAPE of the three predictive models for building energy prediction under 

different window-to-wall ratio are summarized in Table 12. It is seen that the MAPE of ANN-based 

predictive model is the smallest, while the MAPE of SVM and LSTM neuron network-based predictive 

model is similar. 
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(a) Training, heating day 

 
(b) Testing, heating day 
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(c) Training, cooling day 

 
(d) Testing, cooling day 

Fig. 18. Prediction results of building energy loads and BIPV power production at different Rwin. 
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Table 12. MAPE of prediction results at different Rwi. 

Uwa  = 0.598 W·m-2 K-1, Uwi = 1.51 W·m-2 K-1 Rwi 
25% 50% 75% 

ANN 
Optimal quantity of neurons in the hidden layer 4 11 5 

MPE (%) Training case 2.66 1.65 3.71 
Testing case 3.02 4.03 5.05 

SVM MPE (%) Training case 9.95 9.24 8.34 
Testing case 9.73 9.61 9.01 

LSTM neuron 
network 

Optimal quantity of hidden units 3 5 4 

MPE (%) Training case 6.12 7.70 4.38 
Testing case 8.25 8.60 5.03 

 

6. Implication for practice and future direction 

 

In this study, the recorded weather data from Heathrow Airport and pre-set building operating schedules 

are adopted as input to the validated TRNSYS simulation model to generate building operating and 

energy data. The dataset that should be adopted in the practical application is summarized in the last 

column of Table 7. The weather data recorded at the local or nearest weather station (i.e. outdoor air 

dry-bulb temperature, outdoor air humidity ratio, global horizontal radiation and cloud cover ratio), 

recorded building-related data (i.e. occupancy ratio and office equipment usage ratio), temperature 

sensor measurement data (i.e. indoor air dry-bulb temperature and BIPV temperature) as well as energy 

meter measurement data (heating, cooling, lighting power consumption and BIPV power production) 

are consolidated as historical database to train the machine learning-based prediction framework. After 

that, the day-ahead forecast of the weather profile and real-time temperature sensor measurement can 

be supplied as input datasets to the well-trained predictive models for day-ahead prediction of building 

heating, cooling, lighting loads and BIPV electrical power output.  

 

The proposed multi-objective prediction framework can achieve accurate and reliable prediction of day-

ahead heating, cooling, lighting load and BIPV electrical power production. It is of high practical value, 

as the day-ahead building load demands and electrical power production is the foundation for many 

building energy management tasks. It can be used to develop demand-side management programs, 

system control and operation strategies as well system fault detection and diagnosis algorithms.  

 

In the future direction, through modifying the variables in the database, the applicability of the proposed 

machine learning-based multi-objective prediction framework can span on other types of buildings such 

as hotels, residential buildings and hospitals. The variables in the database should be modified 

according to the different characteristics, design requirements and usage patterns among different types 

of buildings. 
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7. Conclusion 

 

To help reduce energy consumption through effective utilization of solar radiation and daylighting, 

BIPV can be installed to produce electricity while lighting control can be adopted to reduce lighting 

load when daylighting is sufficient. However, owing to the varying weather data during a different time 

of the day and different day of the year, the adoption of BIPV and lighting control would result in 

complicated building energy management. To serve a foundation for building energy management, the 

accurate and reliable machine learning-based multi-objective prediction framework is proposed in this 

study to simultaneously predict the heating, cooling, lighting loads and BIPV electrical power output. 

The investigated machine learning algorithms include artificial neuron network, support vector machine 

and long-short-term-memory neural network. Owing to the fact that these output variables share the 

same affecting factors including outdoor air dry-bulb temperature, outdoor air humidity ratio, global 

solar radiation, cloud cover ratio, schedules of occupants and office equipment, indoor air dry-bulb 

temperature and BIPV surface temperature, it is computational time-saving to conduct the multi-

objective prediction. To further investigate the effectiveness of the three proposed predictive models, it 

is tested on the reference office building with different heat transfer coefficients of windows, heat 

transfer coefficients of walls and window-to-wall ratios. The main features identified from the proposed 

machine learning-based multi-objective prediction framework is summarised as follows: 

 

• Compared to conventional single-objective ANN, SVM and LSTM predictive models, the proposed 

multi-objective ANN, SVM and LSTM predictive model has 87.8%, 87.5% and 97.1% reduction 

of computational time, respectively; 

• For the baseline case, the ANN-based predictive multi-objective model results in the smallest 

MAPE value (i.e. 6.29% for training and 8.66% for testing) with the average computational time 

(86s); the SVM-based multi-objective predictive model results in the largest MAPE value (i.e. 9.56% 

for training and 9.70% for testing) with the smallest computational time (86s); while the LSTM-

based multi-objective predictive model results in the medium MAPE value (i.e. 8.52% for training 

and 9.06% for testing) with the largest computational time (2328s). Therefore, the ANN-based 

multi-objective predictive model should be adopted when considering both prediction accuracy and 

computational time. 

• For heating load prediction, the ANN-based predictive model has the closest result to the TRNSYS 

simulation model, while the result from LSTM neuron network-based model is closer to the 

TRNSYS simulation model than that from the SVM-based model;  

• For cooling load prediction, the ANN-based predictive model has the closest result to the TRNSYS 

simulation model, while the result from SVM-based model is closer to the TRNSYS simulation 

model than that from the LSTM neuron network-based model;  
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• For lighting load prediction, the three proposed three predictive models can correctly predict the 

time period when the artificial lighting is needed, while there exists a little difference between the 

predicted heating load values and the TRNSYS simulation results;  

• For BIPV electrical power prediction, the results from the ANN-based and SVM-based predictive 

model are closer to the TRNSYS simulation model than those from the LSTM neuron network-

based predictive model; 

• For most of the cases in different heat transfer coefficient of windows, different heat transfer 

coefficient of walls and window-to-wall ratios, different optimal quantity of neurons in the hidden 

layer and optimal quantity of hidden units are determined in ANN and LSTM neuron network 

predictive model, respectively. Therefore, in practical application, the architecture of the machine 

learning-based predictive model should be optimized through parameter analysis; 

• The MAPE value of the three proposed predictive models is lower than 10% for both training and 

testing cases.  For most of the cases in different heat transfer coefficient of windows, different heat 

transfer coefficient of walls and window-to-wall ratios, ANN-based, LSTM-based and SVM-based 

predictive model has the smallest, medium and largest MAPE, respectively. 
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Nomenclature 
 
A   Surface area (m-2) 
ACH  Air change per hour (h-1) 
b   Coefficients in SVM model 
B   Coefficients in LSTM neuron network model 
CLTD  Cooling load temperature difference (K) 
Cp   Specific heat (J kg-1 K -1) 
E   Squared error of two variables 
G             Global solar radiation (W m-2) 
H   Neurons in the hidden layer 
m   Volumetric mass flow rate (kg m-2 s-1) 
N   Quantity  
Nt   Total quantity of time steps 
R   Window-to-wall ratio 
S   Schedule 
SC   Shading coefficient 
SHGF  Solar heat gain factor 
th   Hour of the day 
T   Temperature (K) 
P   Electrical power consumption (W) 
q   Unit energy (J kg-1 or J person-1) 
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Q   Vector of Q 
Q   Energy rate (kJ h-1) 
𝑄c    Predicted energy rate (kJ h-1) 
U   Heat transfer coefficient (W K-1 m-2) 
V   Volume of thermal zone (m3) 
v   Volumetric flow rate (m3 s-1) 
w   Weighting factor in ANN and LSTM neuron network model 
W    Weighting factor in SVM model 
X   Database of input variables 
x   Element in matrix X 
Y   Normalized database of input variables 
Y, Y  Vector in matrix Y 
y   Element in matrix Y 
Z   Database of output variables 
‖	‖   Euclidean distance 
r   Density (kg m-3) 
w   Humidity ratio (kg kg-1) 
e   Correction coefficient 
𝜉   Cloud cover ratio 
g   Thermal conductivity (K W-1 m-2)  
 

Subscripts 
 
a   Air 
b   BIPV 
c   Cooling 
db   Dry-bulb 
e   Office equipment 
f   Working fluid 
g   Ground 
G   Solar radiation 
h   Heating or hidden layer 
i   Time step 
ia   Indoor air 
in   Inlet or input 
inf   Infiltration 
j   Number of input variables 
k   Number of the neuron in input layer of ANN model 
l   Lighting or number of neurons in the hidden layer of ANN 
l1, l2  Lower air channel surface 
N   Nominal 
o   Occupant 
oa   Outdoor air 
out   Outlet 
r   Roof 
s   Sky 
T   Temperature 
u   Upper air channel surface 
vap  Vaporization 
ven  Ventilation 
wa   Wall 
wi   Window 
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Abbreviations 
 
ANN  Artificial neuron network 
BIPV  Building integrated photovoltaic 
BL   Building with BIPV and daylighting control 
BnL  Building with BIPV but without daylighting control 
CNN  Convolutional neural network 
GPR  Gaussian process regression 
HVAC Heating, ventilation and air conditioning system 
LSTM Long-short-term-memory 
MAPE Mean absolute percentage error 
MLR  Multiple-linear regression 
nBL  Building without BIPV but with daylighting control 
nBnL  Building without BIPV and without daylighting control 
PV   Photovoltaics 
RNN   Recurrent neural network 
SVM  Support vector machine 
WSHP Water source heat pump 
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