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Abstract—While nonlinear filtering for circular quantities is
closely related to nonlinear filtering on linear domains, the
underlying manifold enables the development of novel filters that
take advantage of the boundedness of the domain. Previously,
we introduced Fourier filters that approximate the density or its
square root using Fourier series. For these filters, we proposed
filter steps for arbitrary likelihoods and prediction steps for
the identity system model with additive noise. This paper adds
the capability of handling arbitrary transition densities in the
prediction step, which facilitates, e.g., the use of the filters for
nonlinear systems with additive noise. In the evaluation, the new
prediction steps for the Fourier filters outperform an SIR particle
filter, a grid filter, and a nonlinear variant of the von Mises filter.

Index Terms—Directional statistics, Chapman–Kolmogorov
equation, nonlinear filtering, Fourier series, recursive Bayesian
estimation

I. INTRODUCTION

In recursive Bayesian estimation, a lot of research revolves
around derivatives of the Kalman filter, a technique that has
many inherent limitations and underlying assumptions. A strong
assumption of most current filters is the unboundedness of
the domain. The need to properly account for the underlying
manifold in stochastic modeling has been known for a long
time and was mentioned, e.g., in 1953 by Fisher [1]. Recursive
Bayesian estimation is evolving quickly recently and developing
filters that are tailored to special systems and topologies
is a promising means to increase estimation quality while
maintaining real time performance. In this paper, we limit
ourselves to circular manifolds but the concepts can also be
used for multivariate estimation problems on the hypertorus.

Circular topologies occur in a variety of applications. While
stochastic modeling of circular quantities has been popular
for a long time in geology [2], [3] and biology [4], [5], new
applications are emerging in technological applications. For
example, modern signal processing tasks such as phase esti-
mation [6], [7] and speaker tracking [8] feature an underlying
circular domain and can benefit from specialized filters.

Currently, there are few filters that are suited to arbitrary
system functions on periodic domains. One suitable filter is
presented in [9] but it involves approximations using a unimodal
density, which imposes a limit on the performance of the filter.
The limitations of this sample-based filter are similar to that of
nonlinear filters on linear domains such as the UKF [10] that

Figure 1. Visualization of a prediction step for a nonlinear system function.
The density before the prediction step is shown in 2D on the right, the transition
density is shown in 3D, and the result of the prediction step is shown in 2D
on the left. Note that the nonlinear prediction even voids the symmetry of the
distribution.

have inspired the approach. A very universal approach is to
use particle filters [11] adapted to nonlinear domains. However,
particle filters may require many particles to achieve good
results and are thus potentially costly. Furthermore, deriving a
meaningful continuous density from particles without making
any assumptions is no trivial task.

Previously, we have proposed Fourier filters [12] that are
based on the idea of approximating the density or its square root
using a truncated Fourier series. We have further extended this
concept to multivariate estimation problems in [13]. Since using
only a finite number of Fourier coefficients usually induces
an approximation error, approximating the density directly can
lead to an approximation that has negative function values.
Approximating the square root of the density as a means to
provide a valid density in each time step is a concept that
has been previously used by Brunn et al. [14], [15] on linear
domains. Depending on whether we approximate the density
or its square root as a Fourier series, we refer to the filter
as the Fourier identity filter or as the Fourier square root
filter. The filters also build upon the idea of approximating
densities on circular manifolds via Fourier series, which has
been considered, e.g., by Willsky [16], [17] and Fernández-
Durán [18].

The Fourier filters introduced by us allow for the use of
arbitrary likelihood functions in the filter step. However, in
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the version described in [12] and [13], the filters only support
an identity system model with additive noise in the prediction
step. In this paper, we introduce a more sophisticated version
of the prediction steps that can handle transition densities of
highly nonlinear systems, such as the one shown in Fig. 1. As
the transition density is easy to derive for nonlinear system
models with additive noise, these problems are covered as a
special case.

II. GENERAL PREDICTION STEP FOR RECURSIVE
BAYESIAN ESTIMATION

For the prediction step, the most common way to express
one’s knowledge about the behavior of a system over time is in
terms of a system equation based on random variables. Most
generally, we can write such a system equation as

xpt+1 = at(x
e
t , ut,wt) ,

in which the random variable xet ∼ fet (xt|z1, . . . , zt) describes
the state at time step t based on all measurements up to
time step t and xpt+1 ∼ fpt+1(xt+1|z1, . . . , zt) describes the
state at time t+ 1 without incorporating knowledge from the
measurement in time step t+ 1. Finally, ut denotes a known
system input and wt ∼ fwt (wt) the system noise term. As ut
is known, we can include it in the nonlinear function to write

xpt+1 = at(x
e
t ,wt) .

A special case regarded very often in recursive Bayesian
estimation is that of additive system noise, i.e.,

xpt+1 = ãt(x
e
t ) + wt . (1)

An important alternative to describing the system behavior
using random variables is to describe it using probability
densities. In this case, we can write the prediction step using
the Chapman–Kolmogorov equation

fpt+1(xt+1|z1, . . . , zt) =

∫
Ωx

fTt (xt+1|xt)fet (xt|z1, . . . , zt)dxt ,

in which Ωx denotes the sample space (e.g., [0, 2π) in the
circular case) and fTt (xt+1|xt) the transition density for the
state from time step t to t + 1. In this paper, we describe
how fpt+1 can be approximated via the Chapman–Kolmogorov
equation when fTt and fet can be adequately represented by a
truncated Fourier series.

It is important to note that solving the Chapman–Kolmogorov
equation also covers nonlinear system models with additive
noise (as shown in (1)) as a special case since we can write
the corresponding transition density as

fTt (xt+1|xt) = fwt (xt+1 − a(xt)) .

Solutions to generate transition densities from a variety of
other system equations exist, such as for an identity system
model with multiplicative noise.

III. BASICS OF DIRECTIONAL STATISTICS
AND FOURIER SERIES

As a brief reminder, we revisit some concepts of directional
statistics and Fourier series. Directional statistics is a wide
field of statistics and we recommend the two popular books by
Mardia and Jupp [19] and Jammalamadaka and Sengupta [20]
for a more detailed overview of the field. While a variety of
circular distributions have been proposed, we only introduce
the von Mises distribution as it is the only distribution used in
this paper. However, the concepts presented can also be used
for other circular distributions as explained in [12].

Regarding Fourier series, we explain one-dimensional Fourier
series and their relationship to trigonometric moments. Fur-
thermore, we introduce the most common definition of two-
dimensional Fourier series as we will later use them to
approximate the transition density. For more information
on Fourier series, the reader is referred to the works of
Zygmund [21].

A. The von Mises Distribution

The von Mises distribution [2], [19, Sec. 3.5] is a popular
circular distribution of which the density fVM can be written
according to

fVM(x;µ, κ) =
eκ cos(x−µ)

2πI0(κ)
,

in which I0(·) is the modified Bessel function of the first kind.
While the von Mises distribution is closed under (normalized)
multiplication, it is not closed under convolution. Thus, a
prediction step with an identity system model does not yield a
von Mises distribution even if all densities involved are von
Mises distributed.

B. Trigonometric Moments

In directional statistics, trigonometric moments serve as a
counterpart to power moments on linear domains. Each trigono-
metric moment consists of two components [19, Sec. 3.4.1] but
can also be written using a single complex value [20, Sec. 2.1]
according to

mk = E(eikx) =

2π∫
0

f(x)eikxdx . (2)

As some distributions such as the von Mises distribution can
be parametrized by the first trigonometric moment, trigonomet-
ric moments are well suited for moment matching. Nonlinear
filters based on samples, such as [9], rely on matching the
resulting trigonometric moment of the samples using a suitable
distribution. For some distributions, moment matching results
in the minimization of the information loss in form of the
Kullback–Leibler divergence [22] as shown in [23] for the von
Mises distribution.

C. One-dimensional Fourier Series

Densities of distributions on the circle are real functions on
[0, 2π). When representing a function using a Fourier series,



the function is represented by a Fourier coefficient vector c
such that

f(x) =

∞∑
k=−∞

ckeikx

holds. As densities are usually square integrable, they lend
themselves well to approximations by Fourier series. A square
integrable function can be represented by a Fourier series with a
square summable coefficient vector [24, Sec. I-5]. This implies
that (at least asymptotically) the Fourier coefficients ck and
thus the effect on the density tends to zero for k → −∞ and
k →∞. As a valid density integrates to one, the square root
of the density is always guaranteed to be square integrable.

The corresponding Fourier coefficients can be calculated via
the integral

ck =
1

2π

2π∫
0

f(x)e−ikxdx .

Due to the close relationship to (2), we can see that trigono-
metric moments are also matched when approximating the
(non-rooted) density for the Fourier identity filter. While it is
possible to solve this integral analytically in special cases (as
we have shown for some distributions on the circle in [12]),
a more general solution to approximate arbitrary functions
is necessary for a truly versatile filter. To approximate the
Fourier coefficients of arbitrary functions, we use the efficient
way proposed in [25], which has since become popular as the
fast Fourier transform (FFT) [26] for the related problem of
calculating the discrete Fourier transform [27, Ch. 2]. If we
wish to approximate a density using Fourier coefficients from
−kmax to kmax, we need to evaluate the function at n = 2kmax+1
equidistantly spaced points to obtain the desired number of n
Fourier coefficients via the FFT.

D. Two-dimensional Fourier Series

As an intuitive two-dimensional extension of a Fourier series,
we represent the function of the vector x =

[
x1 x2

]>
by a

series

f(x) =

∞∑
k1=−∞

∞∑
k2=−∞

ck1,k2eik1x1eik2x2 ,

which is a special case of the Fourier series for the arbitrary
dimensional case presented in [21, Ch. XVII]. The Fourier
coefficients are then calculated according to

ck1,k2 =
1

(2π)2

∫
[0,2π)2

f(x)e−ik1x1e−ik2x2dx .

To approximate the Fourier coefficients of a function of a two-
dimensional vector argument, we can use a two-dimensional
variant of the FFT used in the one-dimensional case.

IV. PREDICTION STEPS FOR FOURIER FILTERS

In this chapter, we first explain the prediction steps for
identity system models with additive noise, which we have
introduced in [12]. Afterwards, we present the new prediction
steps that allow for the use of arbitrary transition densities.

While we only present the novel prediction steps for the
univariate case, they can also be extended to the multivariate
case. To model the transition density for d-variate problems,
we need to use a 2d-dimensional Fourier series. As we have
already proposed the filter steps for arbitrary likelihoods in [12],
[13], we do not explain or evaluate the filter steps in this paper.

A. Prediction Steps for Identity System Models

In the case of an identity system model with additive noise,
the Chapman–Kolmogorov equation reduces to

fpt+1(xt+1|z1, . . . , zt) =

∫
Ωx

fwt (xt+1−xt)fet (xt|z1, . . . , zt)dxt

and it is thus sufficient to calculate the convolution of fwt and
fet . Convolving two functions in a Fourier series representation
is computationally easy. The Fourier coefficients of the result of
the convolution can be obtained by calculating the Hadamard
(entrywise) product of the Fourier coefficient vectors. Thus,
the prediction step is trivial for the Fourier identity filter.

For the Fourier square root filter, a more sophisticated
prediction step is necessary since naïvely calculating the
Hadamard product of the coefficient vectors would yield the
coefficient vector of

√
fet ∗

√
fwt instead of

√
fet ∗ fwt . In our

proposed approach, we first square
√
fet and

√
fwt individually.

Functions represented as a Fourier series can be multiplied (and
thus also be squared) by calculating the discrete convolution
of the Fourier coefficient vectors. Thus, using two discrete
convolutions, we can obtain the Fourier coefficient vectors of fet
and fwt and both functions represented by the coefficient vectors
are guaranteed to be nonnegative. From these coefficient vectors,
the coefficient vector of fet ∗ fwt can be calculated using the
Hadamard product and, as no error is made in the convolution
operation, the resulting density is also nonnegative. As long as
only prediction steps are performed, the next prediction step
can be performed by squaring

√
fwt+1 via a discrete convolution

again and then using the Hadamard product to perform the
next convolution.

To restore the square root representation for the next filter
step, we use an efficient way to approximate the Fourier
coefficients of the square root of a function when the function is
given by its Fourier coefficients. As sketched in Fig. 2, we use
the inverse FFT to calculate the function values of the density
on an equidistant grid. Then, we calculate the square root of
all function values. Based on these values, we can use the FFT
to approximate the Fourier coefficient vector representing the
square root of the density.

B. New Prediction Steps for Arbitrary Transition Densities

Finding an exact solution to the Chapman–Kolmogorov
equation is only possible in special cases. In this section, we
show how to provide an approximate result for densities given
in a Fourier series representation. Instead of approximating
fwt (xt+1 − xt) or its square root using a one-dimensional
Fourier series, we now represent fTt (xt+1|xt) or its square
root using a two-dimensional Fourier series. By calculating the
function values of the transition density (or the square root of
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Figure 2. Illustration of the algorithm to approximate the Fourier coefficients
of the square root of a density, given the Fourier coefficients of the density.

the function values) on a grid of values of xt+1 and xt, we
can use the two-dimensional FFT to approximate the Fourier
coefficient matrix. If only a system equation is available, we
need to convert it into a transition density, which is, e.g., easily
possible for the frequently used case of a nonlinear system
model with additive noise (see Sec. II). We will first lay out
the procedure for the Fourier identity filter and then explain
the changes necessary for the Fourier square root filter.

1) Fourier Identity Filter: The basic idea is to calculate the
joint density

f jt+1(xt+1, xt|z1, . . . , zt) = fTt (xt+1|xt)fet (xt|z1, . . . , zt)

and then to obtain the desired predicted density fpt+1 via a
marginalization

fpt+1(xt+1|z1, . . . , zt) =

∫ 2π

0

f jt+1(xt+1, xt|z1, . . . , zt)dxt .

We visualize this for an example in Fig. 3. First, we multiply
fet shown in Fig. 3a with the transition density fTt shown in
Fig. 3b. Multiplying these two functions in every point, we
obtain the joint density f jt+1 shown in Fig. 3c. In the second
step, we marginalize this function to obtain the predicted density
fpt+1 that is shown in Fig. 3d.

To numerically calculate the Fourier coefficient matrix
Cid of f jt+1, we calculate the discrete convolution of the
coefficient vector aid of fet with the coefficient matrix Bid of fTt .
Afterwards, we marginalize xt out of f jt+1(xt+1, xt|z1, . . . , zt),
which is possible very efficiently. We can calculate the Fourier
coefficients of fpt+1 with

fpt+1(xt+t|z1, . . . , zt) =

∫ 2π

0

f jt+1(xt+1, xt|z1, . . . , zt)dxt

from the individual Fourier coefficients ck1,k2 of Cid by using

∫ 2π

0

kmax∑
k2=−kmax

kmax∑
k1=−kmax

ck1,k2eik2xt+1eik1xtdxt

=

kmax∑
k2=−kmax

eik2xt+1

kmax∑
k1=−kmax

ck1,k2

∫ 2π

0

eik1xtdxt

and since the integral is always zero for k1 6= 0

=

kmax∑
k2=−kmax

eik2xt+1c0,k2

∫ 2π

0

1 dxt

=

kmax∑
k2=−kmax

2πc0,k2eik2xt+1 .

Thus, we get n Fourier coefficients of fpt+1 by building a
vector out of the entries ck1,k2 of Cid for which k1 = 0 and
k2 ∈ {−kmax, . . . , kmax} hold and then multiplying all entries
by 2π.

If aid is a vector containing n Fourier coefficients, we use
an n× n Fourier coefficient matrix for Bid by default in our
implementation and the required convolution of an n×1 vector
with an n× n matrix is in O(n2 log n). The marginalization
is possible in O(n). Thus, in total, the prediction step has an
asymptotic run time complexity of O(n2 log n). Step by step
instructions of the algorithm are shown in Algorithm 1.
Remark 1. For the implementation, it is advantageous to
combine the convolution with the marginalization. This allows
us to calculate fewer entries of the convolution result, yielding
a significantly improved run time.

Algorithm 1: Prediction step for the Fourier identity filter.
For an efficient implementation, all steps can be combined
into one. One simply only calculates the required elements
of the convolution result and multiplies them by 2π.

Input: aid ∈ Rn×1: Fourier coefficient vector of fet ,
Bid ∈ Rn×n: Fourier coefficient matrix of fTt

Output: did ∈ Rn×1: Approximation of the Fourier
coefficient vector of fpt+1

Cid ← convolve(aid,Bid);
C̃id ← truncate(Cid);
did ← 2π · getCentralRow(C̃id)>;

2) Fourier Square Root Filter: For the Fourier square root
filter, we ensure the nonnegativity of the pdf in every processing
step. For this, we approximate

√
fTt using a two-dimensional

Fourier series with coefficient matrix Bsqrt. Afterwards, we use
the discrete convolution of the coefficient matrix with itself to
obtain a Fourier series representation of fTt that is nonnegative
for any xt and xt+1. As in the prediction step for the identity
system model, we also square

√
fet using its coefficient vector.

In total, we get the Fourier coefficient matrix for f jt+1 via

Cid = asqrt ∗ asqrt ∗Bsqrt ∗Bsqrt .

We can now marginalize xt out of f jt+1 as done in the case
of the Fourier identity filter. Afterwards, we can obtain the
Fourier coefficients of the square root of the density using the
Fourier coefficients of the density via the approach sketched
in Fig. 2. The entire algorithm is laid out in Algorithm 2.
Remark 2. For the implementation, we use

asqrt ∗ asqrt ∗Bsqrt ∗Bsqrt = (asqrt ∗Bsqrt) ∗ (asqrt ∗Bsqrt) .



(a) Visualization of fet (xt|z1, . . . , zt) when plotted as a function of xt and
xt+1. While fet only depends on xt, it it shown depending on xt and xt+1

to allow for a more comprehensive visualization of how the joint density is
generated.

(b) Transition density fTt (xt|xt+1).

(c) Joint density fjt+1(xt+1, xt|z1, . . . , zt).
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(d) fpt+1(xt+1|z1, . . . , zt) as obtained from marginalization in comparison
with fet (xt|z1, . . . , zt) shown in 2D.

Figure 3. Visualization of the densities multiplied for the generation of the joint density, the resulting joint density, and the predicted density for an example
with a nonlinear system equation.

Calculating Cid this way has multiple advantages. First, we only
need to calculate two discrete convolutions as the intermediate
result Csqrt = asqrt ∗Bsqrt can simply be convolved with itself.
Second, we can truncate Csqrt and still ensure that the Fourier
series described by Cid = Csqrt∗Csqrt is nonnegative. Since the
end result has to be truncated anyways, truncating Csqrt helps
to reduce computational costs. First, because the truncated
entries do not have to be calculated and second, because the
resulting coefficient matrix Cid used in future operations is
reduced in size.

V. EVALUATION

In our evaluation, we compared multiple filters regarding
their performance after a single prediction step for a nonlinear
system model. We chose the nonlinear system function

ac(x) = π ·
(

sin

(
sign(x− π)

2

|x− π|c

πc−1

)
+ 1

)
,

which has been used for evaluation purposes in [28] as
a nonlinear measurement function. Using c, the degree of
nonlinearity can be influenced. To evaluate a system function
with significant nonlinearity, we chose c = 2 for the main part
of our evaluation. However, we also did some tests with higher
c that lead to similar results. As our system noise, we used

Algorithm 2: Prediction step for the Fourier square root fil-
ter. If convolve is followed by truncate or getCentralRow,
the discarded entries can be omitted to save computation
time.
Input: asqrt ∈ Rn×1: Fourier coefficient vector of

√
fet ,

Bsqrt ∈ Rn×n: Fourier coefficient matrix of
√
fTt

Output: d̃sqrt ∈ Rn×1: Approximation of the Fourier
coefficient vector of

√
fpt+1

Csqrt ← convolve(asqrt,Bsqrt);
C̃sqrt ← truncate(Csqrt);
Cid ← convolve(C̃sqrt, C̃sqrt);
did ← 2π · getCentralRow(Cid)>;
gid ← IFFT(did);

gsqrt ←
√
gid;

dsqrt ← FFT(gsqrt);
d̃sqrt ← truncate(dsqrt);

an additive noise w ∼ VM(w;µ = 0, κ = 10). The resulting
transition density, shown in Fig. 3b, can be seen to have the
highest degree of nonlinearity around 0 and π.

We initialized our filter using a von Mises distributed prior



x0 ∼ VM(x0;µ0, κ = 5), which we deem to be a reasonably
concentrated density before a prediction step. It is important
to note that µ0 has a profound influence on how the system
function influences the prediction result. For a more thorough
investigation, we performed our evaluation for both µ0 = π

2
and µ0 = π. This can also be seen as evaluating the approach
for varying degrees of nonlinearity.

A. Evaluation Methodology

In the evaluation, we compared a total of five approaches.
The first two are the Fourier identity filter and the Fourier square
root filter, both used with up to 1001 Fourier coefficients. Third,
we used a von Mises filter with its nonlinear extension using
deterministic sampling [9]. The von Mises filter only aims
to match the first trigonometric moment and approximate the
result using a von Mises distribution—no additional parameters
can be used to match the pdf or cdf more closely. The fourth
is the discrete filter already used in the evaluation of [12]. For
this filter, we approximate the function using grid points with
weightings assigned to them relative to the function value at
the respective grid point. The fifth filter evaluated is an SIR
particle filter [11] adjusted to the periodic manifold. The last
two filters were evaluated using up to 5000 grid points or
particles, respectively.

We generated an approximate ground truth using a discrete
filter with a significantly higher number (20000) of grid points.
While tests showed that the Fourier filters can achieve far better
performance in only a fraction of the time, we have decided
against using a Fourier filter for approximating the ground truth
to prevent any unintended advantages of the Fourier filters in
the comparison. While the utilized choice of the ground truth
may give the discrete filter a bit of an advantage (the result
of a discrete filter using 20000 grid points would be exactly
identical to the ground truth used), we believe that this effect
does not significantly influence our verdict about the Fourier
filters.

To evaluate how closely our result matches the (approximate)
ground truth, we calculated the L2-distance

‖Ffilter − Fgt‖2 =

√∫ 2π

0

(Ffilter(x)− Fgt(x))2 dx

between the cdf provided by the filter Ffilter and the cdf Fgt
used as ground truth. We chose to perform the evaluation using
the cdf instead of the pdf due to the lack of an intuitive or
established way to convert the result of the particle filter to a
pdf. For the cdf, the intuitive way is to cumulate all probability
mass represented by the particles. On circular domains, it is
necessary to specify a starting point for the integration. Since
the comparison of two cdfs is sensitive to shifts of probability
mass beyond the starting point of integration, we have chosen
µ + π—a point of low probability density—as the starting
point.

To be able to evaluate the approaches fairly, we also
measured the run time. This is not only important for comparing
the Fourier approaches with other approaches, but also for a
more comprehensive comparison of the Fourier filters with

each other. In comparisons performed in [13], the Fourier
square root filter showed better estimation results than the
Fourier identity filter but was slower when compared on a per
coefficient basis. Thus, neglecting the risk of negative values
and the theoretical disadvantages, the Fourier identity filter can
perform better when comparing configurations of equal run
time. All filters were implemented in Matlab and the source
code is available as part of libDirectional [29], a library for
directional estimation. We encourage readers to evaluate the
filters on their own nonlinear filtering problems on the circle.
All run times were measured on a laptop with an Intel Core
i7-5500U CPU, 12 GB of RAM, running Windows 10 and
Matlab 2016a.

We performed 200 evaluation runs of all filters. As the
Fourier filters, the von Mises filter, and the discrete filter are
deterministic and return the same result in each run, multiple
runs were performed merely to allow for reliable statements
about the run times by calculating the average. For the particle
filter, the L2-distance was calculated in each run and the average
over all runs of each configuration was used for comparison
with the other filters.

B. Evaluation Results

The resulting L2-distances and run times are shown using
logarithmic scales for µ0 = π

2 in Fig. 4 and for µ0 = π in
Fig. 5. As can easily be seen, the results for the chosen two
µ0 (and thus for varying degrees of nonlinearity) differ only
little. For the run times, the results are so remarkably similar
that even some unexpected non-monotonic parts are present
in both evaluated scenarios. The most prominent difference
between the two scenarios is the quality of the von Mises filter
which can handle the second scenario better as the resulting
predicted density is symmetric.

In both scenarios, we can see that all filters (except the
von Mises filter) show convergence to the approximation of
the ground truth. The reason why the Fourier filters stop
improving is that the evaluation is limited by the accuracy of the
approximation of the ground truth used. Once the filter results
become significantly closer to the actual ground truth than the
approximation of the ground truth used, the improvement will
not show when calculating the distance to the approximation.

To validate this supposition, we did an additional test for
the Fourier filters. We defined a function that calculates the
function value of fpt+1 from fTt and fet (for µ0 = π

2 ) via
numerical integration for every xt+1 the function is evaluated
at. We then used this function as a ground truth and calculated
the L2-distance to the result of the Fourier square root filter
via numerical integration. Despite obvious limitations of the
numerical integration performed by Matlab, we believe the
calculated L2-distances in the order of 10−8 for 101 coefficients
and in the order of 10−12 for 1001 coefficients indicate that
further improvement is achieved by the Fourier filters. While
we deem the ground truth using numerical integration to be
more precise, we were unable to use it as the ground truth
for the entire evaluation as this would have resulted in very
long run times, rendering us unable to evaluate all filters for
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(b) Time taken by the individual filters.

Figure 4. Results for µ0 = π
2

for the individual filters using different
configurations shown on logarithmic scales. Only one configuration is possible
for the von Mises filter and it is therefore shown as a straight line.

that many configurations and to average over that many runs,
which is particularly important for the particle filter.

In both scenarios, the discrete filter shows faster convergence
than the particle filter. While the particle filter is faster with a
comparable quality for low numbers of particles, it performs
significantly worse for higher numbers of particles. Compared
on a run time basis, the discrete filter clearly outperforms
the particle filter for higher numbers of grid points. It is also
important to note that the quality depicted for the particle filter
is an average. Due to the nondeterministic behavior of the
particle filter, the resulting estimation quality varies, especially
when using only few particles. When comparing the von Mises
filter with the configurations of the discrete filter and the particle
filter of comparable run time, the von Mises filter outperforms
both in the second scenario and loses only to the discrete filter
in the first scenario.

When comparing the Fourier filters with the other approaches
for very low number of coefficients, the particle filter and
discrete filter achieve a comparable estimation quality with
lower run times. However, the Fourier filters converge rapidly
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Figure 5. Results for µ0 = π for the individual filters using different
configurations shown on logarithmic scales. The von Mises filter is shown as
a straight line again.

and reach a quality that we deem to be optimal for the utilized
ground truth for about 23 to 27 Fourier coefficients. Using
such low numbers of coefficients, both Fourier filters provide
a better approximation of the cdfs than the discrete filter does
using 5000 grid points and the particles filter does using 5000
particles while featuring a run time that is lower by over one
order of magnitude. Based on this, we assess both Fourier filters
to be clearly superior to the other filters evaluated. However, it
is hard to declare a clear winner among the two Fourier filters.
For the very low numbers of coefficients that are necessary in
this scenario, the run time and quality of the Fourier square root
filter is very similar to that of the Fourier identity filter. Based
on this, we recommend using the Fourier square root filter
due to its advantageous property of providing a valid density
in every time step. For multivariate estimation problems, a
trade-off may arise between the run time advantage of the
Fourier identity filter and the advantageous properties of the
Fourier square root filter, as was observed for the multivariate
Fourier filters using the prediction steps for identity models
with additive noise [13].



VI. CONCLUSION

The novel prediction steps for nonlinear system equations
proposed in this paper make our Fourier filters applicable to
a variety of new scenarios. While the nonlinear prediction
step of the Fourier square root filter ensures a valid probability
density, the prediction step of the Fourier identity filter features
lower run times for high numbers of coefficients. Thus, our
proposed approaches add versatility to the Fourier filters while
preserving the strengths of the individual filters. We observed
promising performance that is reminiscent of the results we
have previously obtained when evaluating the Fourier filters
over multiple time steps [12], using the filter steps for arbitrary
likelihoods and the prediction steps for identity models with
additive noise. We see this as an indicator that the new
prediction scheme can handle nonlinearity well and allows
for similar estimation results as the alternative for identity
system models, only at the cost of a moderate increase in run
time.

In the evaluated scenarios, the Fourier filters show rapid
convergence. Even in configurations in which the Fourier filters
outperform the expensive approximation of the ground truth
used, they are still fast enough for real time applications. All in
all, the Fourier filters surpass the other filters when comparing
the quality of the cdf for configurations of comparable run
time. While the other filters also showed performance suitable
for most real-time applications, the differences in run times
for results of comparable estimation quality are expected to
scale with the number of variates, allowing only for the use of
the most efficient filters for multivariate estimation problems
in real time applications.

One possible area of future work is to inspect the perfor-
mance of the filters more closely, e.g., with regard to the cyclic
version of the Bayesian Cramér–Rao lower bound [30]. Further-
more, inspecting and evaluating other possible transformations
than the square root may lead to further insights and to new
variants of the filter that are particularly suited to certain classes
of scenarios.
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