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Featured Application: The proposed work provided a structural transducer able to continuously 
measure the strain on linear structures in time and space. The transducer has been realized 
connecting fiber-reinforced tapes and optical fiber sensors. It has been possible, then, to 
overcome some weaknesses of traditional optical fiber sensors, like fragility and critical 
positioning, in actual civil structures. The system has been tested in some real scale examples 
and was shown to satisfy the requirements of easy on-site applications. The feasibility of the 
sensor and the transducer allow for using it in connection with fiber-reinforced tapes as an 
integrated system for smart structural reinforcement as well those which can be used for the 
continuous health monitoring of structures consequent to restoration and repair. 

Abstract: This work describes the application of a new transducer prototype for continuous 
monitoring in both the structural and geotechnical fields. The transducer is synthetically constituted 
by a wire of optical fiber embedded between two fiber tapes (fiberglass or carbon fiber) and glued 
by a matrix of polyester resin. The fiber optical wire ends have been connected to a control unit 
whose detection system is based on Brillouin optical time-domain frequency analysis. Three 
laboratory tests were carried out to evaluate the sensor's reliability and accuracy. In each 
experiment, the transducer was applied to a sample of inclinometer casing sets in different 
configurations and with different constraint conditions. The experimental collected data were 
compared with theoretical models and with data obtained from the use of different measuring 
instruments to perform validation and calibration of the transducer at the same time. Several 
diagrams can compare the transducer and highlight its suitability for the monitoring and 
maintenance of structures. The characteristic of the transducer suggests its use as a mixed system 
for reinforcing and monitoring, especially in the lifetime maintenance of critical infrastructures such 
as transportation and service networks, and historical heritage. 

Keywords: structural safety assessment; experimental monitoring; strain transducers; 
reinforcement; civil engineering; optical fiber sensors; lifetime structural monitoring; Brillouin 

 

1. Introduction 

An increasing number of territories and engineering works are seriously threatened by a 
combination of adverse effects related to natural disasters (e.g., landslides, earthquakes) or human-
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made causes (such as traffic-induced vibrations, degradation of structures, absence of maintenance). 
This problem mainly affects the countries characterized by old infrastructures and old towns of 
historical, artistic, and cultural interest. 

In this context, it becomes essential to develop Early Warning Systems (EWS) to quickly detect 
potentially dangerous events which occurred in specific areas or on engineering works [1] to define 
an appropriate intervention strategy consisting of stabilization works or structural reinforcements. 

Several studies [2–5] and analyses exist in the literature that used conventional transducers, 
among others, for structural and geotechnical EWS or Structural Health Monitoring (SHM). 

Generally, such procedures used local sensors such as strain gauges, accelerometers, laser 
sensors, doppler, and reticles with multicore optical fiber.  

Damaged buildings, monuments, cavities, and infrastructures are significantly increasing due 
to the broader exposed areas to natural hazards and due to the old age of the civil constructions and 
require a strong effort for their surveillance and maintenance. In this context, it becomes essential to 
develop innovative Early-Warning Systems (EWS), as well as Structural Health Monitoring and 
Reinforcement (SHMR), able to detect any anomalous behavior [6–11]. These systems contain 
conventional and unconventional, distributed, and local sensors. These EWSs can collect the 
information and manage it remotely. 

In the following report, two experimental approaches have been described. One concerns the 
development of a New Hybrid Distributed Transducer to be used both for the detection of landslide 
movements and for structural monitoring and reinforcement. The second approach consists of the 
development of a smart system of local sensors based on a wired data acquisition system to collect 
and analyze structural data from different locations in a structure. The measured data are addressed 
toward a central acquisition unit that can be interrogated remotely. The approach exploits the variety 
of low-cost sensors included in a smartphone and a set of libraries of protocols and programming 
tools (API). 

Regarding the first approach, in the laboratories of Department of Engineering of the University 
of Campania, "Luigi Vanvitelli" distributed strain and temperature measurement devices have been 
developed using an optical fiber cable for communications as a sensor. The proposed method is based 
on a technique described in [12]. The acquisition system is based on the device reported in [13]. The 
system allows for measuring temperature and strain as high as 10 με  along with the fiber with a 
spatial resolution of about 0.8m  at a low frequency ( 0.1Hz ). 

Such a type of distributed strain measurements can be performed in slopes or along with linear 
infrastructures even over long distances, representing a significant advantage for conventional 
pointwise strain measurements (topographic measurements, inclinometers, strain gauges, among the 
others), which can provide only local data, with the risk of missing critical points, [14]. 

Several applications of optical fiber as strain sensors in the geotechnical field have been 
performed in recent years. Iten and Puzrin [15] used optical fiber embedded in a natural slope 
subjected to extremely slow movement to locate the boundaries of the sliding mass. Examples of 
seepage and strain monitoring systems realized by using optical fiber sensors in embankment dams 
can be found in [16,17], and other applications are available in geosynthetics and reinforced soil 
slopes used on artificial and small-scale physical models [18,19]. 

Optical fibers have also been used for the measurement of soil displacement profiles based on 
the principle of the inclinometer tube [20–22]. The work presented in [23] describes one of the first 
applications in an embankment slope, ad hoc instrumented with inclinometers with optical fiber 
sensors glued on. The described set-up shows the suitability of that array of sensors to detect soil 
strain increasing during rainwater infiltration. However, the cost of such type of monitoring was not 
competitive, and technical problems due to the instrumentation of the inclinometer's tubes made this 
application only a prototype. Moreover, most of these researches were based on the Fiber Bragg 
Grating (FBG) sensing technique [24–28]: with this method, only small portions of the optical cable 
constitute the sensors. The FBG sensors connected and glued onto the surface of a plastic rod for 
measuring bending strains and axial strains give pointwise information along the inclinometer tube. 
In landslide detection, where often the sliding surface localizes in a very narrow shear band, 



Appl. Sci. 2020, 10, 4498 3 of 17 

pointwise measurements can fail to recognize actual soil movements. Consequently, distributed 
sensing results in a more effective tool  

In [29–31], further investigation on landslide monitoring using physical models highlights the 
difficulties in setting up and analyzing the coupling between the soil and the sensor. Moreover, since 
the optical fiber sensor is simply embedded into the soil, it is recognized that the strain transfer 
between the soil and the sensor is not wholly ensured, and also depends on the overburden pressure. 

The qualification and surveillance of structures require testing and monitoring that are usually 
done using pointwise sensors. The acquisition time is limited to the initial lifetime of the structure or 
at the end of manufacturing. Several analyses for SHMR can be found in the literature based on 
ultrasonic testing [32,33], thermography [34,35], and measurements of static deformation and 
dynamic vibrations [36,37]. Moreover, some static stress and dynamic vibration analyses using strain 
gauges, accelerometers [38] or contactless laser Doppler vibrometers, broadband reflection gratings 
with multicore optical fiber [39–41] are often described. However, many research works suggest that 
one of the biggest challenges of SHMR is to prevent the sensor from damage [42–44]. In this respect, 
optical fibers for telecommunications, which are the sensing devices when Brillouin Optical Time 
Domain Analysis (BOTDA) is used, are very robust and do not suffer time or chemical degradation, 
provided the fiber is adequately protected from mechanical injuries, as it is the case of the sensor 
proposed here [45,46]. 

Barrias and Bao describe the evolution of the SHMR with a review of the major experiments and 
results carried out to date and show the effectiveness of the use of optical fiber sensors [47,48]. 

Many works describe embedded sensors for different types of structures: reinforced concrete 
wall, pre-stressed concrete bridge [49], the optical fiber in wind turbine blade [50], integrated optical 
fiber in functionalized carbon structures (FCS) [51] and also for the detection of vibration, surface 
cracking and buckling phenomena [52–54] in reinforced concrete, pre-stressed concrete (PSC) [55], 
and post-tensioned PSC [56], where the effectiveness of distributed sensors is highlighted. 

In [51], an example of the integration of functionalized carbon structure with optical fiber 
sensing is reported, but experimental results concerning integrated reinforcement and sensors are 
not yet present to the authors' knowledge. 

The present paper aims to show a prototype of an improved transducer (New Smart Hybrid 
Transducer (NSHT)) that can overcome the drawbacks of traditional solutions based on pointwise 
sensors [57].  

At first, one must specify that NSHT is a transducer, which is a complex system of which the 
sensor is only one of the constituents. 

The system allows for the continuous monitoring of engineering works and terrestrial portions, 
even for lengths of hundreds of meters, while providing information about mechanical deformations 
and thermal variations. 

NSHT can be assembled in implants and safely transported thanks to its design features that 
also can avoid breaking during transportation and installation, overcoming the drawbacks of existing 
solutions based on distributed sensors. [58–63] 

In this paper, we propose two examples of the application of NSHT: the first as a smart 
inclinometer and the second as a Structural Health Monitoring and Reinforcement device (SHMR). 
In these two applications, we analyze the accuracy and the reliability of the NSHT transducer using 
a conventional optical acquisition system. 

In this work, the experimental analysis is presented describing the application of NSHT made 
of a BOTDA optical fiber sensor joined to mechanical support, suited ad hoc designed to fulfill safety 
and secure handling during installation and lifetime. The proposed experiments consider the 
effectiveness of the system. Moreover, the correlation between the hard measures and mechanical 
interpretation of structural behavior is proposed as well. The central aspect here considered is 
focused on the following point solution: 

− The connection systems between the sensor and the element under observation do not realize 
a fully coupled stress transfer, making the strain measurements only qualitative; 
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− The use of glue to fix the fiber on the structural element does not assure the possibility of 
performing long-time observations, as it is unstable from a thermomechanical point of view 
and disconnections of the fiber in many points along the element can occur, which reduce 
the efficiency of the system; 

− When the sensor must be used in hard environments, such as slopes and rail tracks, where 
repeated long-time measurements must be done, it is necessary to realize appropriate coating 
of the fiber to avoid damage; 

− Monitoring over long distances (in the order of several tens of meters) requires appropriate 
technical solutions for transporting and assembling the distributed transducer. 

In subsequent sections, laboratory tests, results, and discussion of the application of NSHT in a 
simple beam structure and inclinometer tube are reported. 

2. Materials and Methods 

Three different types of tests were carried out to validate the accuracy and reliability of the 
transducer measurements. The transducer is synthetically constituted by a wire of optical fiber 
embedded between two fiber tapes and glued by a matrix of polyester resin. Two kinds of sensors 
were made, the first merging two glass fiber tapes (GG) (Figure 1) and the second pairing the glass 
tape with a carbon one (CG) (Figure 2). In Figure 3, top view of the embedded transducer is depicted 

The fiber filament runs along with the support with a U-shaped path to determine an Inner 
segment and an Outer one, whose endpoints were connected to the control unit. There are fastening 
elements every 50 cm, to ensure perfect adhesion to the substrate. The configurations of the sensors 
are shown in the pictures below. 

 
 

a) b) 

Figure 1. Glass fiber tapes (GG) Transducer a) axonometric view, b) cross-section. 

 

a) b) 

Figure 2. CG Transducer a) axonometric view, b) cross-section. 

 
Figure 3. Transducer top view. 
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This system was applied to the specimen constituted in an inclinometer casing (Cross-section 
depicted in Figure 4) by a structural glue to ensure the perfect splinting of the elements. 

 
Figure 4. Cross-section of inclinometer casing. 

The data acquisition is performed by control units with different levels of accuracy, whose 
detection system is based on Brillouin optical time-domain frequency analysis (BOTDA). 

In the following paragraphs, both the materials used, then the methods of data acquisition, are 
described. 

2.1. First Test: Supported Beam Equipped with GG 

The tests aimed to evaluate the accuracy of the transducer by comparing experimental strain 
measures with the analytical results from beam theory. 

The transducer was installed over a specimen that consists of an inclinometer casing. The 
structural scheme and the mechanical and geometrical properties are reported in Figure 5 and Table 
1. 

Table 1. First test: Geometrical parameters. 

Length 
[mm] 

Radius 
[mm] 

Thickness 
[mm] 

Inertia 
[cm4] 

7600 80 3 56.4871 
 

 
Figure 5. First test – structural scheme. 

The pipe was equipped with two sensors located at 90 degrees. The experimental set-up is 
described in Table 2. 

Table 2. First test: Specimen parameters. 

Type Structural glue Fiber 
Length 
[mm] 

Optical 
fiber Resin 

Control 
unit 

Resolution 
[mm] 

GG 

ADEKIT 140 
by Axon (bi-
component 
epoxy resin) 

Glass 
– 

Glass 
7400 

G.657 
single-
mode 
optical 
fibers 

POLIPLAST 
M608 M11 R  

OPTO 
SENSING  400 
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During the experiment, the structure was subjected to increasing constrained displacement in 
the middle span section. The transducer has recorded the strain along with the structure at the 
following load steps: 
• 0v = ; 
• 2.5v cm= ; 
• 4.5v cm= ; 
• 6.5v cm= . 

2.2. Experimental Interpretation Through Flexure Beam Theory 

In this section, the analytical solution of the bending beam is briefly recalled, and it is used to 
relate the measured strain with the expected deflection of the structure. The theoretical model of the 
beam is its axis, i.e., the straight line of the centroids of the cross-sections. The z  axis of the reference 
frame coincides with the beam axis. The beam deforms into a line belonging to the vertical yz  plane. 
The y  coordinate of the curved line is the bending displacement ( )v z . 

Starting from the measured strains ε  and knowing the aluminum tube radius,  R , it was 
possible to calculate the beam curvature χ  

d
ds
ϕχ =  (1) 

Recalling that under the Bernoulli's hypothesis of plane sections that remain perpendicular to 
the beam's deformed axis, and the assumption that the displacements are infinitesimal, 

, ,ds dz dv d dzϕ→ → − ⋅  one obtains the curvature-displacement linear law 

2

2   d d v
dz ydz
ϕ εχ = =− =  (2) 

By a first numerical integration of the χ  function, one gets the rotation function of the beam (

( )'  iv z ), 

( ) ( )1
16' '

2 10
i i

i i iv z z v z
R

με με −
−

+ = − Δ + ⋅ 
 (3) 

where 

The factor 6

1
10

 is the conversion factor from με  to ε ; 

0.041?R m=  is the radius of the tube-sensor system, given by the sum of the radius of the 
aluminum tube 1 0.04?R m=  and an estimate of half the sensor radius set equal to 2 0.001?mR =  

1 i i iz z z −Δ = −   (4) 

Moreover, by a second numerical integration, one obtains the displacement function 

( ) ( ) ( ) ( )1
1

' '
Δ

2
i i

i i i

v z v z
v z z v z−

−

+ 
= + 
 

 (5) 

The integration requires the knowledge of the initial value of displacement and its derivative, 
which must be evaluated by imposing the following boundary condition: 

( )
( )
0 0

0
v
v l

 =
 =

 (6) 

2.3. Second Test: Horizontal Inclinometer Equipped with GG Transducer 
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The tested specimen consisted of an inclinometer casing tube equipped with standard 
displacement transducers. The tube (with the same cross-section as the previous experiment) 
consisted of three segments joined to form the whole cylinder. The three segments were fastened, 
employing two collars that caused a little disturbance to the alignment of the transducer. The optical 
fiber-based transducers instrumented the inclinometer casing. The transducer was fastened to the 
cylinder along its generatrix. Table 3 below reported the geometry data of the structure used for the 
test and the experimental set-up is described in Table 4. 

Table 3. Second test: geometrical parameters. 

Length 
[mm] 

Radius 
[mm] 

Thickness 
[mm] 

Inertia 
[cm4] 

7500 80 3 56.4871 

 

Table 4. second test: transducer parameters. 

Type 
Structural 

glue Fiber 
Length 
[mm] 

Optical 
fiber Resin 

Control 
unit 

Resolution 
[mm] 

GG 

ADEKIT 140 
by Axon (bi-
component 
epoxy resin) 

Glass – 
Glass 

(mat220 
fiberglass 
polyester 

composite) 

6500 

G.652 
single-
mode 
optical 
fibers 

BIRESIN® 
CR80 

(AXSON) 

OPTO 
SENSING 

50 

The GG transducer is made according to the scheme reported in Figure 6. The inclinometer 
measures, in terms of displacements, have been converted into strains by numerical derivation, then 
they were compared with the transducer output. The inclinometer, indeed, furnishes displacement 
measures that must be elaborated in order to convert them into strain by means of derivation with 
respect to the length coordinate. 

The experiment consisted of the application of a constrained displacement at the first end of the 
structure, while the opposite end was kept clamped; namely, neither displacement nor rotations were 
allowed. The applied displacement ran from 0  to 0.014 m. 

 

Figure 6. Second test: Structural scheme. 

2.4. Third Test: Vertical Inclinometer Equipped with GG and CG Transducer 

One of the most critical aspects regarding the evaluation of the experimental results is structural 
identification. That means determining a numerical model suitable for providing accurate predictions 
of the behavior of the structural element subjected to specific stresses. The identification of the 
structural model consists of applying inverse calculation techniques to correlate the test results to the 
actual stresses or displacements. This approach consists of the identification of mechanical properties, 
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modifying their values appropriately, and minimizing a suitable functional norm of the difference 
between the experimental results and the expected theoretical ones. Therefore, based on experimental 
data and reliable information on geometry and materials, it is possible to define a predictive model 
that represents the behavior of the tested elements. 

The third experiment has been designed to apply structural identification techniques to the 
measured data. To the scope, the inclinometer has been disposed vertically and fixed to support using 
flexible collars; the structure was subjected to prescribed displacements at some of the supports 
whilst the remainder was kept fixed. The inclinometer pipe was instrumented with the proposed 
transducer and with its traditional displacement acquisition system. 

Figure 7 represents the structural model of the third experiment. Prescribed displacements acted 
on the structure. In particular, the displacements 1δ  and 2δ  are the prescribed displacements of 
magnitude 2.5?cm  that were applied to the pipe. The displacements 3δ  4δ  are unknown, due to the 
flexibility of the supporting devices. The displacement depended on the fastening devices that 
evidenced rewardable mobility. The structural identification consisted of finding the minimal 
difference norm between the measured and calculated strain along the beam. As design variables, we 
chose, besides the constraint displacements { }1 4, i iδ ∈ …， ， , the span measures 1 2 3 4 5,? ? ? ?L L L L L  (Figure 
7). 

 

Figure 7. Third test: structural identification. 

The tested specimen was equipped with two kinds of transducers, as shown in Table 5. 
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Table 5 third test – geometrical parameters. 

Length 
[mm] 

Radius 
[mm] 

Thickness 
[mm] 

Inertia 
[cm4] 

7600 80 3 56.4871 

The test set-up is represented in Figure 8, where the inclinometer cylinder has been schematically 
represented as a one-dimensional beam subjected to prescribed boundary displacements. 

Like in the previous example, the procedure consists of comparing the strain obtained from 
displacement measurements via space derivation to the strain measured with the NSHT. 

The measured strain using the CG and the GG transducers was acquired according to two 
different set-ups. The first set-up concerned a CG transducer that was fastened to the cylinder starting 
at a depth of 250?mm , see Figure 8 a). The second set-up is described in Figure 8 b). Both experimental 
set-ups are described in Table 6 

Table 6 third test: specimen parameters. 

Type Structural 
glue 

Fiber Length 
[mm] 

Optical 
fiber 

Resin Control 
unit 

Resolution 
[mm] 

GG 
ADEKIT 
140 by 
Axon 

Glass – Glass 
(mat220 

fiberglass 
polyester) 

4000 

G.652 
single-
mode 
optical 
fibers 

BIRESIN® 
CR80 

(AXSON) 

OPTO 
SENSING 

OSD-1" 
400 

CG 
ADEKIT 
140 by 
Axon 

Carbon – Glass 
(biaxial 200 
carbon fiber 

composite and 
two mat100 
fiberglass 
polyester 

composite) 

5250 

G.657 
single-
mode 
optical 
fibers 

BIRESIN® 
CR80 

(AXSON) 

OPTO 
SENSING 

OSD-1" 
400 
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a) b) 

Figure 8. structural schemes of vertical inclinometer. 

3. Results and discussion 

The results of the measurements and calculations obtained from the tests are reported in 
diagrams in order to make a better comparison both in quantitative and qualitative terms. 

3.1. Test 1: Beam Deflection and Imposed Deformation 

As described in the previous section, the experiment concerned a three-supports beam subjected 
to the central support settlement. The curved line of the beam centroids was calculated by the beam 
theory, and it was obtained from the experimental results through numerical integration of the 
curvature, calculated from the measured strain. In the pictures below (Figures 9–11), the data 
comparison related to the 2.5 , 4.5 , and 6.5?cm  displacements is shown. 

 
Figure 9. Centerline deformation imposed at 2.5 cm. 
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Figure 10. Centerline deformation imposed at 4.5 cm. 

 
Figure 11. Centerline deformation imposed at 6.5 cm. 

The difference shown in the graph between the measured values and the theoretical model could 
undoubtedly be attributed to the fact that the theoretical values refer to the axis of the pipe, while the 
measured ones refer to the fiber positioned at the boundary of the cross-section. 

3.2. Test 2: Horizontal Inclinometer Measurement and GG Transducer 

In Figure 12, the GG transducer strain measures from NSHT are compared with the strain 
calculated from the displacement derivative of the inclinometer measurements. 
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Figure 12. Strain diagram GG transducer. 

The diagram shows the agreement of the strain measurements from the GG transducer and the 
calculated strain from the inclinometer measurements. The percentage differences between the two 
sets showed picks of 20% in correspondence with the metallic collars that fastened the inclinometer 
pipe. If we considered only smooth points, the average difference percentage was 1%. 

3.3. Test 3: Vertical Inclinometer Measurement and GG and CG Transducers 

In the following, Figure 13 shows the comparison of the strain measures obtained using CG and 
GG transducers with the strain arising from the derivative of the displacement obtained by the 
inclinometer cylinder. In the figures below, the transducer measures refer to two pickup phases, 
namely fiber 1 and fiber 2; subsequently, the two measures were averaged, resulting in the fiber 
average dataset. Furthermore, in the diagram, the strain obtained by the inclinometer displacement 
measure is drawn as well. 
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a) b) 

Figure 13. Experiment 3 strain diagram: a) CG transducer, b) GG transducer. 

From the comparison of Figure 13, it can be seen that the strain obtained using the CG transducer 
presents fewer errors due to the quality of the used fiber and the transducer building technique 
compared to the GG transducer. The GG transducer, indeed, was realized with G.652 fiber that suffers 
a more significant loss of signal in the presence of relatively high curvatures. The CG transducer was 
made of G.657 fiber that presents less loss of signal in the presence of curvatures of the fiber. 
Moreover, the manufacturing process in the case of the GG transducer has suffered some little, but 
not negligible, localized curvatures of the fiber. Henceforth, the diagrams show recognizing that the 
CG transducer, equipped with ITU (International Telecommunication Union) G.657 fiber, furnishes 
a better strain map than the GG transducer equipped with G.652 fiber. The worst result, at the GG 
transducer, is obtained at a position near to the collar joining the cylinder segments, at a point about 
1250?mm  from the inclinometer casing top. 

4. Conclusions 

The present paper showed the feasibility of using optical fiber sensors in the behavior evaluation 
and monitoring of structures and craftworks; the purpose of the NSHT application is to have feasible 
and robust continuous measurements of structural stress in time and space. Indeed, the transducer 
can monitor the strain and, consequently, the stress, directly. The proposed sensor and the techniques 
used in the experimental activity showed that continuous measures of strain are useful to reconstruct 
the structure's displacement. Moreover, the tests directly give the strain and stress measures 
correlated to the structure's safety factor. The proposed transducer showed its peculiarities during 
the application and set-up. Indeed, it does not suffer a hazardous environment due to the coupling 
to a fiber-resins-based composite. Moreover, it furnished the continuous, in-space strain pattern 
along with the structure. 

The proposed experiment has focused on the inverse method devoted to reconstructing the 
displacement field upon the strain measures that could evaluate the complete response of the 
structure under the loading path. 
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The fitting between theoretical and experimental results showed that the strain measurements 
are reliable for displacement calculation. The measured strain was revealed to have low error and 
uncertainty thanks to NSHT. Finally, the proposed sensor allowed the user to read displacements 
and all related structural information along the axis of the structure instead of the section strain. 
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