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ABSTRACT

Reactive Oxygen Species (ROS) are essential cellular messengers required for cellular homeostasis and regulate
the lifespan of several animal species. The main site of ROS production is the mitochondrion, and within it,
respiratory complex I (CI) is the main ROS generator. ROS produced by CI trigger several physiological responses
that are essential for the survival of neurons, cardiomyocytes and macrophages. Here, we show that CI produces
ROS when electrons flow in either the forward (Forward Electron Transport, FET) or reverse direction (Reverse
Electron Transport, RET). We demonstrate that ROS production via RET (ROS-RET) is activated under thermal
stress conditions and that interruption of ROS-RET production, through ectopic expression of the alternative
oxidase AOX, attenuates the activation of pro-survival pathways in response to stress. Accordingly, we find that
both suppressing ROS-RET signalling or decreasing levels of mitochondrial H,O, by overexpressing mitochon-
drial catalase (mtCAT), reduces survival dramatically in flies under stress. Our results uncover a specific ROS
signalling pathway where hydrogen peroxide (H»0,) generated by CI via RET is required to activate adaptive
mechanisms, maximising survival under stress conditions.

1. Introduction

ROS are intriguing molecules. When animals age, they accumulate
damaged mitochondria that produce high levels of ROS [1]. However,
clinical trials have shown that in the majority of cases administering
antioxidants is not beneficial [2]. In fact, increasing mitochondrial ROS
levels has been shown to extend lifespan in several animal species
[3-6]. These contradictions serve to emphasise the dual nature of ROS.
They are metabolic by-products that can cause oxidative damage [7],
but ROS are also important messengers required for cellular home-
ostasis [8]. The amount of ROS is important and may explain many of
the contradictory effects of free radicals [9], however the time, location
and nature of the ROS generated are also key in determining their
physiological effects [10]. Only by understanding the relationship be-
tween these factors we will be able to develop effective interventions to
promote the positive effects of ROS, while reducing the negative.

Mitochondrial CI is the main source of ROS [11] and manipulation
of its activity, alters animal lifespan [4,12,13]. Within CI electrons can
flow in either the forward or reverse direction. Normally, electrons flow
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in the forward direction, from CI to CIII via Coenzyme-Q (CoQ).
However, electrons can, in certain conditions, also flow back from
ubiquinol (reduced CoQ or CoQH,) to CI, generating a significant
amount of ROS. This process is known as RET and occurs in several
animal species in physiological and pathological conditions [14]. ROS-
RET depends both on the proton motive force (Ap) and redox state of
the CoQ pool [15], which are linked to ATP generation and electron
flow respectively. Ap determines how much ATP the mitochondrion can
produce, while CoQ acts as crossroads where several metabolic path-
ways, including glycolysis, Krebs cycle, fatty acid oxidation and pyr-
imidine biosynthesis, meet. Therefore, coupling RET to ROS production
is a very efficient way to communicate information from the mi-
tochondrion to other parts of the cell. In fact, ROS-RET signalling is
known to trigger cardiorespiratory adaptations in response to changes
in oxygen levels [16], regulate sleep patterns in flies [17], reprogram
macrophage metabolism in response to bacterial infection [18], alle-
viate impairment caused by interruption of electron flow [19] and
suppress cell death and tissue damage in episodes of ischemia-re-
perfusion [20].
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Abbreviations

ROS reactive oxygen species

CI complex I

CIII complex III

CoQ coenzyme-Q

RET reverse electron transport

FET forward electron transport
NDI1 NADH dehydrogenase internal 1

AOX alternative oxidase

ETC electron transport chain

mtCAT  mitochondrial catalase

SOD2 superoxide dismutase 2

H>0, hydrogen peroxide

FCCP carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone
ROT rotenone

Ap proton motive force

ATP adenosine triphosphate

Considering how implicated CI is in human ageing and age-related
diseases, it is important to understand how ROS-RET signalling operates
in vivo and if it has a role in the determination of longevity. We have
previously shown that inducing ROS-RET through the expression of the
NADH dehydrogenase internal 1 (NDI1) preserves mitochondrial
function and extends lifespan in Drosophila melanogaster [13]. Here, we
extend this work demonstrating that ROS-RET signalling occurs phy-
siologically in the brain of wild type Drosophila melanogaster flies in
response to heat stress. Furthermore, to study the role of ROS-RET in
stress adaptation, we took advantage of alternative oxidase (AOX),
which is not present in the electron transport chain (ETC) of humans or
fruit flies, but is expressed in plants, fungi and many animal species
[21]. AOX reduces the generation of ROS by preventing the over-re-
duction of the ubiquinone pool [22,23]. Here we demonstrate that ec-
topic expression of AOX prevents the activation of ROS-RET resulting in
the downregulation of a pro-survival transcriptional response that in
turn causes a negative effect on the survival of flies under different
types of stress. We show that the ectopic expression of mtCAT within
the mitochondrial matrix phenocopies the effects of AOX expression,
whereas the overexpression of Superoxide dismutase (Sod2) has a po-
sitive effect on longevity. We extend the significance of our discoveries
showing that adaptation to other stresses such as different levels of
oxygen also requires a mitochondrial H,O, signal. Finally, we dissect
the nature of this ROS-RET signal and identify and implicate mi-
tochondrial H,0, in lifespan regulation. Our results validate the ma-
nipulation of ROS produced by CI in vivo as a strategy to maximise
survival under stress conditions and advise against implementing an-
tioxidant strategies that completely suppress mitochondrial H>O, sig-
nalling.

2. Material and methods
2.1. Fly stocks and lifespan experiments

All UAS transgenes and GAL4 driver lines were backcrossed for at
least six generations into our white Dahomey (WDAH) background [24]
unless otherwise stated. UAS-AOX flies have previously been described
in Ref. [25]. UAS-mito-Catalase (mtCAT) flies were a kind gift from
Professor Rajindar Sohal (Bayne et al., 2005), UAS-Sod2 and daugh-
terless-GAL4 (daGAL4) were obtained from the Bloomington Droso-
phila Stock Center (BDSC). The RNAI line against ND-75 (100733/KK)
and the control w'*!® strain were obtained from the Vienna Drosophila
Resource Center (VDRC) and were used without backcrossing into
wDAH.

Flies were maintained on standard media (1% agar, 1.5% sucrose,
3% glucose, 3.5% dried yeast, 1.5% maize, 1% wheat, 1% soya, 3%
treacle, 0.5% propionic acid, 0.1% Nipagin), collected using CO5 an-
aesthesia within 24 h of eclosion and then maintained at a density of 20
flies per vial at the desired temperature (25 °C, 29 °C or 32 °C). Flies
were transferred to fresh vials every 2-3 days. Lifespan experiments
were performed with a minimum of 100 flies per genotype and repeated
at least twice. For experiments performed in hypoxia and hyperoxia
conditions, flies were cultured at 5% and 50% oxygen levels respec-
tively at 25 °C and transferred to fresh vials once every seven days

(hypoxia) or four days (hyperoxia) to avoid detrimental effects due to
reoxygenation. The number of dead flies was recorded every 2-3 days,
and the median lifespan was calculated for each experiment. Flies be-
tween 2 and 5 days (experiments in Figs. 1-2B) or 10-15 days old
(Fig. 2C-G and Fig. 3C-H) were used in all experiments unless other-
wise stated. Inhibitors of ETC dissolved in ethanol were added to the fly
food at a final concentration of 600 uM ROT (Sigma) and 600 uM FCCP
(Sigma).

2.2. Measurement of ROS in Drosophila brains

MitoSOX and 2’,7’-dichlorofluorescein (H,DCF) were used to detect
either mitochondrial matrix superoxide or total levels of peroxides,
respectively. Brains were dissected in phosphate-buffered saline (PBS).
Following dissection, brains were incubated in either 20 uM MitoSOX
or 30 uM H,DCF for 10 min, washed three times with PBS 1X and
imaged immediately. Images were acquired using a Leica SP8 confocal
digital Light Sheet (Leica microsystem) or LSM510 confocal micro-
scopes (Zeiss) both equipped with a 10x 0.3 NA objective as z stacks
throughout the sample, using either a 543 nm HeNe laser or a 488 nm
line of an Argon laser to excite MitoSOX and H,DCF respectively. The
total average fluorescence intensity of each brain imaged was quanti-
fied using ImageJ.

2.3. Next-generation sequence data acquisition and analysis

RNA was extracted from fly heads (20 heads per sample, five re-
plicates for each genotype or condition). Heads were homogenised in
TRI Reagent (Sigma) by using a motorised pestle and following the
manufacturer's instructions. RNA was treated with DNase I (Thermo
Fisher Scientific) at 37 °C for 60 min and precipitated overnight with
3 M sodium acetate and 95% ethanol. After centrifugation, pellets were
dissolved in an appropriate volume of DNase/RNase free water. The
RNA quality was confirmed using an Agilent 2100 Bioanalyzer (Agilent
Technologies, CA, USA). Detailed experimental protocols and raw data
were deposited in ArrayExpress under accession E-MTAB-7952. Briefly,
NGS data acquisition was performed using the TruSeq Stranded mRNA
kit (Illumina) following the manufacturer's instructions. Raw data were
acquired using an Illumina sequencer (NextSeq500) and processed
using Partek Flow (Partek Inc. Missouri, USA). RNA reads were nor-
malised using the default method (total count, add 0.0001) and aligned
to Reference Index BDGP6 using STAR 2.4. d.

To select transcripts that were up- or down-regulated in AOX ex-
pressing flies for GO Analysis, we filtered transcripts whose Fold change
(FC) expression was *+2, discarding those whose FDR was above 5%.
These selected transcripts were analysed using DAVID [26]. The GO-
TERM_BP_DIRECT in the Gene Ontology section of the Annotation
Summary Results was used to retrieve the list of GOTERM.

2.4. RNA extraction, cDNA synthesis and qPCR

RNA extraction was performed from fly heads as described pre-
viously. cDNA synthesis and qPCR was performed as described in Ref.
[27]. Briefly, cDNA synthesis was achieved using the High-Capacity
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Fig. 1. Heat stress induces ROS production through the activation of Reverse Electron Transport. A) Schematic representation of electron flow through CI during
Forward Electron Transport (FET) at 25°C and Reverse Electron Transport (RET) at 32°C. B) Time course analysis of mitochondrial ROS (MitoSOX quantification) in
fly brains from flies exposed to heat stress (32°C). Measurements were taken at six time points. Results are expressed in relation to control flies maintained at 25°C. C)
Schematic representation of how Sod2 and mtCAT modulate ROS levels in the mitochondrial matrix. D) Analysis of mitochondrial ROS (H,DCF) in fly brains from
controls (Ctrl = 2>daGAL4, 25 °C), control flies exposed to heat stress (32°C, 3 h) (2>daGAL4) or flies overexpressing mtCAT (mtCAT > daGAL4) or Sod2
(Sod2>daGAL4) exposed to heat stress. E) Analysis of mitochondrial ROS (MitoSOX) in fly brains from controls (Ctrl = 2>daGAL4, 25°C) or control flies exposed to
heat shock (32°C, 3 h) (2>daGAL4) or flies overexpressing Sod2 (Sod2>daGAL4). F) Analysis of mitochondrial ROS (MitoSOX) in fly brains from controls
(Ctrl = 2>daGAL4, 25°C), control flies exposed to heat stress (32°C, 3 h) (2>daGAL4) or flies overexpressing mtCAT (mtCAT > daGAL4). G) Analysis of mi-
tochondrial ROS (MitoSOX) in brains from controls (25°C) or flies exposed to heat stress (32°C, 3 h) in the presence or absence of the indicated mitochondrial
inhibitor. H) Analysis of mitochondrial ROS (MitoSOX) in brains from controls (25°C) flies exposed in the presence or absence of the indicated mitochondrial
inhibitor during 3 h. I) Analysis of mitochondrial ROS (MitoSOX) in brains from control (Ctrl = ND75-IR > 3, at 25°C) or flies exposed to heat stress (32°C, 3 h) with
normal (Ctrl = ND75-IR > 3) or reduced levels of respiratory CI (CI KD = ND75-IR > daGAL4). J) Analysis of mitochondrial ROS (MitoSOX) in fly brains from

controls (Ctrl = ND75-IR>3) and flies with reduced levels of respiratory CI (CI KD = ND75-IR > daGAL4).
Values shown represent means + SEM of between 6 and 9 biological replicates. *p < 0.05, **p < 0.01, ***p < 0.001.
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Fig. 2. AOX inhibits the generation of ROS-RET. A) Schematic representation of how AOX prevents production of ROS-RET. B) Analysis of mitochondrial ROS
(MitoSOX) in fly brains from control (Ctrl = 2>daGAL4) and AOX (AOX > daGAL4) flies cultured at 25°C or exposed to heat stress (32 °C, 3 h). C) Analysis of
mitochondrial ROS (MitoSOX) in fly brains from control (Ctrl = AOX> 3) and AOX flies (AOX > daGAL4) cultured at 29°C for 10 days. D) Analysis of mitochondrial
ROS (H,DCF) in fly brains from control (Ctrl = 2>daGAL4) and AOX (AOX > daGAL4) flies cultured at 29°C for 10 days. E) Analysis of mitochondrial ROS
(MitoSOX) in fly brains from control (Ctrl = 2>daGAL4) and mtCAT flies (mtCAT > daGAL4) cultured at 29°C for 10 days. F) Analysis of mitochondrial ROS
(MitoSOX) in fly brains from controls (Sod2 > 3) and Sod2 flies (Sod2 >daGAL4) cultured at 29 °C for 10 days. G) Analysis of mitochondrial ROS (H,DCF) in fly brains

from control (Ctrl = 2>daGAL4), mtCAT (mtCAT > daGAL4) and Sod2 flies (Sod2>daGAL4) cultured at 29 °C for 10 days. Values shown represent means = SEM
of between 9 biological replicates. *p < 0.05, **p < 0.01, ***p < 0.001.

cDNA Reverse Transcription Kit (Fisher Scientific, Applied Biosys-

tems™; 4368814). qPCR: qPCR was carried out using QuantiNova GCATACTCCG). act5c was used as internal standard (forward primer:
SYBR® Green PCR Kit (Cat.no. 208056, QIAGEN), and the following GAGGAAGCAGCAGCGAAAGT, reverse primer: TTTTGTTGTGCTGCAC
primers were used: CG32523 (forward primer: AGTGAATCCGCGATA TCCAA).

GAGCC, reverse primer: CCACGTAGACGCAGGGAAAT), CG8329 (for-
ward primer: CAATGGAGGATTGGCCGACT, reverse primer: CCACCG
ATCCGTATGACCTG), CG7829 (forward primer: CATGAATGGTCCTCC
CTCGG, reverse primer: CCGATCCGTCACAGTTTTGC), hsp70 (forward The data were analysed using GraphPad Prism 6 software using
primer:, reverse: primer), def (forward primer: AGCCACATGCGACCTA either the unpaired Student's t-test or One-way ANOVA with Dunnett's
CTCT, reverse primer: GTTGCAGTAGCCGCCTTTGA), im23 (forward post-test where appropriate unless otherwise stated. Lifespan data were

primer: GTGCCTGATTCTGTCCTTTGC, reverse primer: TGCAATCCTG

2.5. Statistical analysis
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Fig. 3. Abolishing ROS-RET diminishes the transcriptional stress response and shortens survival under stress. A) Volcano Plot showing transcripts up- (red) or down-
regulated (blue) by AOX expression. B) GO Analysis showing biological pathways enriched with genes downregulated by AOX. Arrows point to pathways belonging
to stress response. C) CG32523 mRNA level in heads of control (Ctrll = 2>daGAL4) and AOX flies (AOX > daGAL4) normalised to Act5C mRNA. Three biological
replicates per group. Student t-test. Error bars represent standard error of the mean (SEM). * denotes p < 0.05. D) CG8329 mRNA level in heads of control
(Ctrll1 = 2>daGAL4) and AOX flies (AOX > daGAL4) normalised to Act5C mRNA. Three biological replicates per group. Student t-test. Error bars represent standard
error of the mean (SEM). ** denotes p < 0.01. E) CG7829 mRNA level in heads of control (Ctrll = 2>daGAL4) and AOX flies (AOX > daGAL4) normalised to Act5C
mRNA. Three biological replicates per group. Student t-test. Error bars represent standard error of the mean (SEM). *** denotes p < 0.001. F) Hsp70 mRNA level in
heads of control (Ctrll = 2>daGAL4) and AOX flies (AOX > daGAL4) normalised to Act5C mRNA. Three biological replicates per group. Student t-test. Error bars
represent standard error of the mean (SEM). G) Def mRNA levels in heads of control (Ctrll = 2>daGAL4) and AOX flies (AOX > daGAL4) normalised to Act5C
mRNA. Three biological replicates per group. Student t-test. Error bars represent standard error of the mean (SEM). ** denotes p < 0.01. H) Im23 mRNA level in
heads of control (Ctrll = 2>daGAL4) and AOX flies (AOX > daGAL4) normalised to Act5C mRNA. Three biological replicates per group. Student t-test. Error bars
represent standard error of the mean (SEM). * denotes p < 0.05. I) Survival of control (Ctrll = 2>daGAL4 and Ctrl2 = AOX>3) and AOX flies (AOX > daGAL4)
cultured at 32°C. J) Survival of control (Ctrll = 2>daGAL4 and Ctrl2 = AOX>3) and AOX flies (AOX > daGAL4) cultured at 29°C. K) Survival of control
(Ctrll = mtCAT>3 and Ctrl2 = 2>daGAL4) and mtCAT flies (mtCAT > daGAL4) cultured at 32°C. L) Survival of control (Ctrl]l = mtCAT>3 and
Ctrl2 = 2>daGAL4) and mtCAT flies (mtCAT > daGAL4) cultured at 29°C. M) Survival of control (Ctrll = 2>daGAL4 and Ctrl2 = Sod2>3) and Sod2 flies

(Sod2>daGAL4) cultured at 32°C. N) Survival of control (Ctrll = 2>daGAL4 and Ctrl2 = Sod2>3) and Sod2 flies (Sod2 > daGAL4) cultured at 29°C.
Lifespan data were analysed using the log-rank Mantel Cox Test.*p < 0.05, **p < 0.01, ***p < 0.001.

analysed using the Kaplan Meier Log-Rank Test.
3. Results and discussion
3.1. Heat stress modifies CI ROS production

We have previously reported that induction of ROS-RET signalling
through ectopic expression of yeast-derived NDI1 improved mi-
tochondrial function and increased lifespan [13]. Here, we wanted to
understand if ROS-RET signalling could be induced physiologically and
if so, how and which role its activation plays in the determination of
longevity. Since RET requires a highly reduced CoQ pool and heat in-
creases mitochondrial oxygen consumption (data not shown), we
decided to study whether heat stress modified the production of ROS
from mitochondria. We observed that exposing flies to heat stress
(32 °C) led to increased ROS in the fly brain after 3 h (Fig. 1A and B). To
confirm that this increase in ROS was mitochondrial in origin, we
overexpressed two different mitochondrial antioxidants, Sod2 and
mtCAT, which detoxify superoxide and H,O, respectively (Fig. 1C). We
found that overexpression of either Sod2 or mtCAT attenuated the le-
vels of ROS produced in response to heat stress (Fig. 1D and E) con-
firming that mitochondria are the primary source of ROS. We observed
that Sod2 overexpression improved the detoxification of superoxide and
in the process increased H,0, (Fig. 1D and E). Conversely, mtCAT
overexpression did not have any effect on superoxide level (Fig. 1F) but
decreased the level of H,DCF under stress (Fig. 1D).

To test whether this ROS increase was as a result of RET, we fed flies
with either rotenone (ROT) or carbonyl cyanide-4-(trifluoromethoxy)
phenylhydrazone (FCCP). ROT is a CI inhibitor that binds to the qui-
none binding site preventing electrons from flowing backwards,
whereas FCCP dissipates the Ap also required for RET [14,15]. Sup-
porting our hypothesis, we found that both treatments were sufficient
to prevent increased ROS production in response to heat stress
(Fig. 1G). While, in flies not exposed to heat stress, feeding with either
ROT or FCCP for 3 h at 25°C resulted in increased levels of ROS com-
pared to vehicle fed controls (Fig. 1H), indicating FET through CI. Fi-
nally, to implicate CI as the source of ROS-RET, we expressed dsRNA
against a catalytic subunit of CI: ND-75 [4]. Knock-down of ND-75 did
not alter ROS levels at 25°C (Fig. 1J) but suppressed the RET derived
ROS increase in response to heat stress (Fig. 1I). Together this data
demonstrates that RET can be induced physiologically in the fly brain
leading to ROS production via CI.

3.2. The alternative oxidase AOX inhibits the generation of the ROS-RET
signal

To test the hypothesis that ROS-RET could have a leading role in
triggering the response to stress adaptation and in doing so have a
primary role in determination of longevity, we decided to study the

effect of the long-term inhibition of this signal. To avoid unintended
metabolic consequences of CI inhibition with ROT (e.g. acidosis), we
chose to allotopically express the alternative oxidase (AOX) from Ciona
intestinalis (Fig. 2A). AOX prevents RET in cells, flies, and mice without
interrupting electron flow [13,18,22]. Furthermore, in standard culture
conditions (25 °C) AOX expression does not alter survival [28]. We
confirmed that AOX abolishes ROS-RET signalling in flies exposed to
heat stress and detected no significant changes to ROS levels in stan-
dard conditions (Fig. 2B). Since we were interested in the role of ROS-
RET activation in longevity, we chose a moderate level of stress over
severe, as the former has been used as a model for accelerated ageing
[29] and flies are still able to mate and fertilised eggs develop normally
at this temperature (29 °C). We confirmed that after 10 days of mod-
erate heat stress ROS levels were decreased in AOX flies compared to
controls (Fig. 2C and D). This indicates that AOX activity is maintained
at this temperature, preventing the generation of ROS-RET. Further-
more, overexpression of Sod2 or mtCAT was able to attenuate the levels
of ROS produced in response to long-term heat stress (Fig. 2F and G).

3.3. Suppression of the ROS-RET signal attenuates the transcriptional heat
stress response essential for survival under stress

To further understand the long-term consequences of suppressing
ROS-RET, we performed a transcriptomic analysis of brains from con-
trol and AOX expressing flies exposed to moderate heat stress (29 °C)
for ten days. Using RNA sequencing analysis, we identified 84 different
transcripts whose expression was significantly altered by AOX (Fig. 3A;
Table 1). Gene ontology (GO) analysis showed that genes down-
regulated in AOX flies were included within GO terms associated with
stress response (Fig. 3B black arrows). In addition, we observed a re-
duction in the expression of genes belonging to stress response path-
ways related to the immune response against both bacteria and fungi
(GO0008063, GO0045087, GO050830, GO0009620, GO0019731). The
reduction we observed in the pathogen response is not unexpected as
ROS generally [30] and ROS-RET specifically [18] are instrumental in
the activation of the immune response in mammals. We confirmed the
RNAseq data selecting representative genes for the stress response
pathway and immune response and checked their level by quantitative
PCR (Fig. 3C-H). Next, we analysed the survival of AOX flies under
severe (32 °C) and moderate (29 °C) heat stress. In line with the re-
quirement of ROS-RET signalling for stress adaption, AOX expression
dramatically shortened survival under severe and moderate heat stress
(Fig. 3I and J). A similar situation is observed when AOX is expressed
“to correct” the increase in mitochondrial ROS found in COX15 (a CIV
subunit) knockout (KO) mice [19]. COX15 KO mice live much shorter
than controls, and lifespan of these mice is further shortened when AOX
is expressed. Besides reducing ROS levels, AOX also prevents the ex-
pression of many stress response genes in COX15 KO mice [19]. These
results suggest that ROS-RET signalling is necessary for adaptation to
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several stressors in flies and mice and that this adaptation is at least
partially coordinated at the transcriptomic level.

To confirm that shortened survival under stress was a result of lower
ROS levels and not secondary effects of AOX expression; we decreased
the concentration of ROS by overexpressing antioxidants. We manipu-
lated the levels of mitochondrial superoxide and H,O, independently
by overexpressing Sod2 and mtCAT, respectively. This strategy also
allowed us to determine if a particular ROS had a leading role in stress
signalling. Overexpression of mtCAT decreased mitochondrial H;O,
without altering superoxide levels (Fig. 2E, G). Like AOX expression,
mtCAT dramatically shortened survival under severe and moderate
heat stress (Fig. 3K and L). However, overexpression of Sod2 did not
reduce lifespan, and in fact, a modest but significant extension was
observed (Fig. 3M, N). It is worth noting that Sod2 decreases superoxide
levels and in the process increases H,O, (Figs. 2G and 1D). This data
suggests that H,O, is acting as the messenger ROS and is required for
survival under stress conditions.

Our results demonstrate that interruption of ROS-RET signalling
diminishes the response to long-term heat stress compromising the
survival of flies under continuous heat stress.

Redox Biology xxx (xxxx) xxxx

3.4. ROS-RET is required for survival under hypoxic and hyperoxic
conditions

Our transcriptomic data suggest that the general response to stress
could be impaired upon disruption of ROS signalling. For example,
several genes associated with “Response to hypoxia” (GO0001666)
were downregulated in AOX flies (Fig. 3B). To test whether abolishing
the ROS-RET signal could compromise the capacity of flies to respond
to other types of stress, we either decreased (hypoxia) or increased
(hyperoxia) the concentration of the oxygen. AOX expression severely
shortened the lifespan of flies under hypoxia (Fig. 4A). Survival was
also shortened by AOX expression under hyperoxia but to a lesser de-
gree (Fig. 4B). As with AOX expressing flies, the survival of flies over-
expressing mtCAT was severely shortened under hypoxia and more
modestly shortened under hyperoxia (Fig. 4C and D). In line with sur-
vival under heat stress, overexpression of Sod2 extended survival under
hyperoxia, and had a positive but modest effect in hypoxic conditions
(Fig. 4E and F). We have previously shown that co-expression of mtCAT
and NDI1 abolishes the lifespan extension conferred by NDI1 expression
[13]. Indicating that elevated concentrations of mitochondrial H,O, are
necessary for the lifespan extension effects of NDI1. The work presented
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Fig. 4. Survival under hypoxic and hyperoxic condition require ROS-RET activation. A) Survival of control (Ctrll = AOX>3 and Ctrl2 = 2>daGAL4) and AOX
(AOX > daGAL4) flies cultured under hypoxia (5% O,). B) Survival of control (Ctrll = AOX>3 and Ctrl2 = 2>daGAL4) and AOX (AOX > daGAL4) flies cultured
under hyperoxia (50% O,). C) Survival of control (Ctrll = mtCAT >3 and Ctrl2 = 2>daGAL4) and mtCAT (mtCAT > daGAL4) cultured under hypoxia (5% O,). D)
Survival of control (Ctrll = mtCAT>3 and Ctrl2 = 2>daGAL4) and mtCAT flies (mtCAT > daGAL4) cultured under hyperoxia (50% O). E) Survival of control
(Ctrll = Sod2>3 and Ctrl2 = 2>daGAL4) and Sod2 flies (Sod2>daGAL4) cultured under hypoxia (5% O,). F) Survival of control (Ctrll = Sod2>3 and
Ctrl2 = 2>daGAL4) and Sod2 flies (Sod2>daGAL4) cultured under hyperoxia (50% O,).

Lifespan data were analysed using the log-rank Mantel Cox Test.*p < 0.05, **p < 0.01, ***p < 0.001.
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here further demonstrates that H,O, is the ROS required for stress
signalling and that it is upstream of adaptations coordinated at the
transcriptomic level in response to stress. Within the mitochondrial ROS
signalling pathway, we have demonstrated that Sod2 has a central role
transforming superoxide into H,O,, which allows diffusion of the signal
directly [31] or through peroxiredoxin-mediated signalling [32]. Im-
portantly, our work explains why antioxidant therapies have failed to
extend lifespan [2]. Although antioxidants can protect against oxidative
damage (as Sod2 does under hyperoxia, Fig. 4F), suppression of ROS
signalling mediated by H,O, has negative consequences since it pre-
vents full deployment of the adaptive stress response at the tran-
scriptomic levels. Therefore, strategies which aim to reduce oxidative
damage must also preserve ROS signalling if they are to be of benefit to
health span and lifespan.

4. Conclusion

In recent years, several independent laboratories have provided
evidence that ROS are not just by-products of metabolism which cause
oxidative stress and underlie disease. ROS are essential messengers
involved in deciding the developmental fate of cells and instrumental in
tissue homeostasis [33]. It is these two opposing effects of ROS which
make it extremely difficult to assert whether increased ROS levels are,
the cause of a specific pathology, a consequence or conversely a redox
distress signal intended to communicate and activate a cellular re-
sponse. Here we show that exposure to heat stress leads to an increased
ROS within the fly brain produced through RET via CI. Within a few
hours of this initial increase, ROS levels return to normal suggesting
that this is a specific signal in response to heat stress. In support of this
hypothesis, the long-term disruption of the ROS-RET signal using ex-
pression of AOX diminishes the stress response, preventing the upre-
gulation of many genes required to establish a pro-survival response
resulting in a negative effect on the fly lifespan. Interestingly, mtCAT
expression produces the same effect on longevity clarifying a major role
of ROS and specifically H,O, in stress adaptation and invites us to de-
velop strategies where stimulation of ROS signalling could aid in the
prevention, delay or reversal of ageing and age-related diseases. We
propose the ROS-RET signal is likely required broadly for survival
under stress. Also, our results strongly advise against the indiscriminate
use of antioxidants that can lead to an abolition of ROS signalling and
contribute to a reduction in the capacity to deal with stress. This is
particularly relevant in the case of anti-ageing therapies since the main
characteristic of ageing is the loss in the capacity to confront stress.
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