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Abstract—Manipulation planning and control are relevant
building blocks of a robotic system and their tight integration
is a key factor to improve robot autonomy and allows robots
to perform manipulation tasks of increasing complexity, such
as those needed in the in-store logistics domain. Supermarkets
contain a large variety of objects to be placed on the shelf layers
with specific constraints, doing this with a robot is a challenge
and requires a high dexterity. However, an integration of reactive
grasping control and motion planning can allow robots to
perform such tasks even with grippers with limited dexterity. The
main contribution of the paper is a novel method for planning
manipulation tasks to be executed using a reactive control layer
that provides more control modalities, i.e., slipping avoidance and
controlled sliding. Experiments with a new force/tactile sensor
equipping the gripper of a mobile manipulator show that the
approach allows the robot to successfully perform manipulation
tasks unfeasible with a standard fixed grasp.

Index Terms—Motion and Path Planning; Manipulation Plan-
ning

I. INTRODUCTION

THE use of robots in the logistics domain is rapidly in-
creasing but most of the advancements are today limited

to the fulfillment centers, where, e.g., the use of Kiva mobile
robots improved the efficiency of the packaging process.
However, boxing products is tricky to automate, mainly due to
large differences in size, shape, weight, and fragility of items
in a box. In fact, mobile manipulation solutions are rare on
the market. This led Amazon to launch the famous Amazon
Picking Challenge (APC) [1], which resulted in new insights
on grasping of known and unknown objects, e.g., [2]. As
discussed in detail in the overview paper on the first APC [3],
many challenges are still open before “robots can someday
help increase efficiency and throughput while lowering cost”.
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Fig. 1: Schematic situation where gripper pivoting is manda-
tory to achieve the goal: reachable collision-free pick poses
range between the two gripper poses on the left, while
collision-free goal poses range between the two gripper poses
on the right - no common fixed grasp exist.

In this paper the problem of shelf replenishment in super-
markets is investigated in the context of the REFILLS project
[4]. This scenario poses new challenges in addition to those
seen in the APC. Robots will need a large skill set to execute
fetch and place tasks in this environment because they have
to operate in tight spaces and handle a variety of objects. This
skill set has to include in-hand manipulation to, at least, avoid
time-consuming re-grasping. An example is depicted in Fig. 1.
Suppose that the robot has to pick the red object in the center
of the table to place it in the middle shelf layer in the goal
pose on the right side of the drawing. Clearly, there is no
fixed grasp with a gripper pose that is reachable and collision
free for both pick and place poses. With a standard planning
process [5] only a re-grasp action executed on a buffer tray
could allow the robot to execute the task. However, with the
ability to perform a controlled rotational sliding of the object
by rotating the gripper while keeping the object fixed (the so-
called gripper pivoting), the planner has a bigger search space
and will likely find a feasible path.

Recent papers dealing with in-hand manipulation are [6]
and [7]. The first one solves the planar pushing problem by
making use of the differential flatness concept and the feed-
back linearization technique. The second one deals with the
same application but focuses on planning pushing trajectories
based on the concept of motion cones. However, open loop
approaches, by definition do not react to perception feedback.
Sensor-based control is required to robustly execute the plan
in the uncertain world. In the past we have worked on a
controller that can be parameterized to switch between slipping
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avoidance and controlled rotational slippage of held objects
[8]. Improvement of robot dexterity is achieved through smart
control of the grasping rather than using additional degrees of
freedom, according to the well-known concept of the extrinsic
dexterity [9]. It demonstrated to be reliable enough to handle
a good variety of objects. A review of alternative approaches
can be found here [10].

However, this, on its own, is just one of the aforementioned
skills that a robot will need. To use this new potential with
a higher degree of autonomy, it has to be combined with a
motion planner that has the ability to utilize it.

In the REFILLS project, a knowledge-enabled and plan-
based control architecture, i.e., the competent selection and
execution of plans from a plan library, inspired by [11], is ul-
timately desired. Winkler et al. [12] have already demonstrated
successfully that the paradigm of knowledge-enabled and plan-
based control is well suited for robotic shelf replenishment
tasks in retail environments.

The main contribution of this paper is a method to achieve
a close integration of the low-level reactive control layer with
the motion planner, which is a building block of the REFILLS
architecture. The focus is on the fetch and place phase of the
shelf replenishment task, where a large variety of objects have
to be handled safely, i.e., fetched and placed on a shelf with a
specific pose, potentially different from the grasp pose, while
avoiding object slipping. The method relies on the capability,
offered to the motion planner by the in-hand manipulation
abilities of the grasp controller, to change the kinematic model
of the robot to enlarge the search space, and thus making it
more likely find a solution.

In addition to this, we contribute an improved version
of a force/tactile sensor [13] that is used with the reactive
control algorithm. The sensor has been integrated onto the
fingers of a commercial gripper and has dimensions suitable
to enter the narrow spaces between objects on a shelf. The
PCB design has been improved to enhance the signal-to-noise
ratio through current feeding of LEDs, the use of analogue
buffers to interface the voltage signals to the A/D converters
and the integration on board of a microcontroller with several
possibilities for communication interfaces.

Experiments will demonstrate how manipulation tasks nec-
essary for shelf replenishment, while unfeasible with a fixed
grasp, become feasible by using the additional dexterity pro-
vided by the slipping control. The experiments were performed
on a mobile manipulator (see Fig. 2). It is equipped with a
gripper sensorized with force/tactile sensors (see Fig. 4, but
the cameras were not used in this paper). The five objects
shown in Fig. 7 are used in the experimental trials.

II. THE SENSING APPARATUS

The sensorized fingers used in this work are based on the
technology originally presented in [14]. The developed tactile
sensors are mainly constituted by three components: a Printed
Circuit Board (PCB), a rigid grid and a deformable pad.
A preliminary design of these tactile sensors was presented
in [13]. The main differences with respect to the version used
in this paper concern the Printed Circuit Board (PCB) design.

Fig. 2: Mobile manipulator used in the experiments.

(a) (b)

Fig. 3: Front view (a) and rear view (b) of the new assembled
PCB with the highlighting of the components.

The PCB design: A different version of the PCB has
been designed to improve the following aspects. Each sen-
sible point, called taxel, on the PCB is constituted by a
photo-reflector, manufactured by New Japan Radio (code
NJL5908AR). The PCB integrates 25 taxels, organized in
a 5 × 5 matrix, with a spatial resolution of 3.55mm. In
previous versions the LEDs of photo-reflectors were driven
with a voltage supply and a series resistance. In this case the
LEDs are driven with adjustable current sources (manufacturer
code LM334) to improve the stability of the emitted light,
by reducing its temperature drift. Additionally, in order to
enhance the signal-to-noise ratio and simplify the interrogation
firmware, further improvements have been introduced:

• Analogue buffers (realized by using the low-power op-
erational amplifiers ADA4691) to decouple the photo-
reflector output signals from the A/D acquisition stage.

• Monolithic microcontroller with 12-bit A/D channels
instead of separate A/D converters with SPI interface.

• Microcontroller integrated into a single PCB together
with the other components.

This solution allows avoiding the use of the additional SPI
interface, thus obtaining a fully integrated sensor with a
programmable device usable for sensor data acquisition via
different interfaces. In this paper a standard serial interface
has been exploited through a USB-to-serial commercial ca-
ble. The resulting sampling frequency for all sensor data is
500Hz. Figure 3 reports some pictures of the re-designed and
assembled PCB.

The rigid grid: The grid frame has been slightly modified to
perfectly align the mechanical part with the PCB and the tax-



COSTANZO et al.: MANIPULATION PLANNING AND CONTROL FOR SHELF REPLENISHMENT 3

Fig. 4: Gripper fingers equipped with force/tactile sensors.

els, without using the rigid pins used in the previous version.
The grid is hence bonded to the PCB with a cyanoacrylate-
based glue.

The deformable pad: It has the role to transduce the applied
forces into deformations that can be detected by the taxels.
It has been realized with the same dimensions, material and
molding procedure detailed in [13].

The assembled force/tactile sensor is fixed inside a case
designed to house the sensor and for installation on the WSG-
series flange.

III. IMPLEMENTATION AND ARCHITECTURE

In this section we present the architecture of the integrated
system, depicted in Figure 5. The task executive sends goals
to the motion planner, that are needed to achieve tasks such as
replenishing a shelf. This module has access to a knowledge
base and sets the friction coefficient µ, an object specific
parameter for the slipping controller.

The motion planner generates joint space trajectories that
achieve the given goals while utilizing the robots’ ability to
pivot grasped objects.

The control modality switch module post-processes the
trajectory, before sending it to the robot. While the trajectory
is executed, the module sends commands to the slipping
controller to switch between the two control modalities.

In the following subsections we detail the slipping con-
troller, the changes to the motion planner and the control
modality switch. The task executive is omitted, because it is
a simple sequence of motion goals in our experiments.

A. Slipping Controller

The slipping control algorithm used is originally described
in [8] and generalized in [10], where the grasp control action
is based on the estimated slipping velocity of the object. It
exploits the Limit Surface (LS) theory [15] that describes the
translational and rotational slippage at the same time. The
algorithm will be briefly described in this section but the
interested reader can find more details in [8] and [10].

The aim of the algorithm is to provide the minimum grasp
force (the component normal to the contact area) that keeps
the object inside the fingers without slippage. The approach
is model-based and needs few parameters of the LS such as
the friction coefficient µ and two additional parameters that
depend on the material of the sensor soft pad and which can be
identified with a simple experimental procedure in the sensor

Fig. 5: Block scheme of the robotic system architecture.

calibration phase. Therefore, only the friction coefficient is ob-
ject dependent and has to be changed as soon as a new object
is being handled. The friction coefficient of new objects can
be easily estimated by following the experimental procedure
described in [16], which consists in rubbing the surface of
the object. The algorithm uses the frictional tangential force
and torsional moment provided by the sensorized fingers to
compute the needed grasp force according to the LS model.
The assumptions are: the object is grasped by a parallel
gripper; the faces of the object in contact with the fingers
are flat and rigid compared to the fingertips so that the object
can be treated as a planar slider.

It is possible to distinguish two control modalities. The first
modality is the slipping avoidance that considers the whole
wrench to compute the grasp force to avoid both translational
and rotational slippage. This force is the superposition of two
components: a first component, called static, that uses only the
LS model and is useful when the variation rate of the forces
is slow; a second component, called dynamic, that exploits a
Kalman filter and is useful in the case of a fast force variation
rate. The symbol fnSA will be used to indicate the grasp
force computed by this control modality. The second modality
is the gripper pivoting. In this modality, the same slipping
avoidance algorithm is used with no dynamic component and
without considering the measured torque, i.e., using a zero
torque as input of the algorithm. The resulting grasp force is
enough to avoid the translational slippage but not the rotational
one. The symbol fnGP will be used to indicate the grasp
force computed by this control modality. During the gripper
pivoting, the object behaves like a pendulum and stays in
its equilibrium orientation, i.e., the vector pointing from the
grasp point to the center of gravity (CoG) is aligned with
gravity. Moreover, the grasp point is important. If it is not
above the CoG, the object will rotate so that the CoG goes to
the equilibrium point below the grasp point. Furthermore, the
grasp point cannot be on the CoG because the gravitational
torque would be zero, making pivoting impossible. Therefore,
we assume to know the CoG of the object, which is another
physical parameter that has to be estimated with an exploration
procedure. Once the friction coefficient has been estimated, the
object can be firmly grasped and the CoG position with respect
to the grasp point can be easily obtained from the measured
wrench by changing the gripper orientation.

B. Motion Planner

We intend to model the pivoting functionality by connecting
the grasped object via a constrained virtual joint to the robot. A
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Fig. 6: Example of timestamp selection for the modality
switching. SA and GP represent the activation time of slipping
avoidance and gripper pivoting respectively.

constraint sampling based planner [17] or trajectory optimiza-
tion [18][19] are standard choices. However, these approaches
don’t scale well with constraints that are too restricting. The
motion planner used in [20] is well suited for this scenario,
because, generally, only the number of constraints influences
the run time. It is based on the eTaSL language and the
eTC Controller from [21]. With this framework, motions are
specified as a composition of constraints on joint velocities.
We control the arm and base simultaneously. The base is
modelled with two translational joints and one rotational joint,
representing its pose relative to the map reference frame, giv-
ing the robot a total of 9 degrees of freedom. The framework
generates joint trajectories T for the whole body, which are
executed in an open loop.

The gripper pivoting functionality is modelled as a virtual
continuous rotational joint between the fingertips and the
grasped object, thus adding an additional degree of freedom.
During planning, we simulate the pivoting mode by adding a
high priority constraint to all goals that minimizes the angle
between the gravity vector g and the vector pointing from the
grasp point to the center of mass of the object c:

cos−1

(
c · g
|c||g|

)
.

As a result, the grasped object is always vertical during
the planning process. If the planner receives Cartesian goals
for the grasped object, it will change the angle between the
object and gripper to avoid collisions, while keeping the object
vertical. If a specific angle is required, an additional constraint
on the joint position of the virtual joint can be added. The
motion planner avoids self and external collisions for all
robot links, grasped objects and environment objects known
to the motion planner. For this paper we assume that the shelf
positions are known.

For comparison, these motion planning problems have about
100 constraints. Most of them are used for collision avoidance
and the exact number depends on how many objects are
close to the robot. To model the gripper pivoting, we need
an additional free variable for the new joint as well as one
constraint to enforce the vertical orientation.

C. Control Modality Switch

When the gripper pivoting is active, the grasp force is low.
To improve robustness, the gripper pivoting mode should only
be active when needed. Thus, we implemented a ROS node
that switches to the slipping avoidance mode during periods
of the planned motion where the virtual joint is not used.

Fig. 7: Objects used in the experiments.

This node checks the velocity of the virtual joint against
a threshold of 0.01 rad/s, selected to avoid switches due to
numerical noise, and stores switching events with timestamps
in a vector. A velocity below the threshold requires slipping
avoidance, otherwise the gripper pivoting is needed. The
threshold generates a pivoting angle error smaller than the
error due to the CoG position estimation; however, this error
is recovered as soon as a new pivoting is triggered. The
trajectory is then sent to the robot and the control modality
switch starts listening to its joint states. At each modality
switch event, the node sends the corresponding command
s to the slipping controller. Figure 6 shows a conceptual
example, vj is the planned velocity of the virtual joint, SA
and GP indicate activation timestamps of slipping avoidance
and gripper pivoting, respectively. In every plot of this paper, a
gray area indicates the time interval where the gripper pivoting
mode is active.

IV. EXPERIMENTAL EVALUATION

This section describes the experimental evaluation done
with the objects of Fig. 7. Three sets of experiments are
described. The first evaluates the angle of the object during
the pivoting; the second evaluates the feasibility of a simple
pick-and-place task with and without the pivoting; the third is
a complete pick-and-place experiment with different objects
and obstacles.

A. Stability Experiment

In the first experiment we investigate the reliability of
both slipping avoidance and gripper pivoting algorithms by
performing motions while an object is being grasped. For
the tests we used object E and placed into the gripper by
hand. The initial angle between the object and the fingers
was measured using a manual digital inclinometer. The angle
ranged from −0.028 rad to 0.060 rad. The robot was then
commanded to execute simple motions along and about the
three axes of the tool frame. During all experiments, the
modality switch is active. This means that the gripper pivoting
mode is automatically activated only during the rotation about
the pivot axis; all other motions are executed in the slipping
avoidance mode.

The experiment was repeated 12 times, six with low accel-
eration and six with high acceleration. Afterwards, the final
angle was measured again. Results are shown in Table I.
Some slippage is unavoidable because of noise and uncertain
contact model. The robot never dropped the item, showing
both that the modality switch occurs at the right time and



COSTANZO et al.: MANIPULATION PLANNING AND CONTROL FOR SHELF REPLENISHMENT 5

TABLE I: Mean and maximum deviations for 12 repetitions
of the stability experiment.

Slow Motion Fast Motion

Mean Deviation 0.104 rad 0.112 rad
Maximum Deviation 0.181 rad 0.194 rad

TABLE II: Planning times (in seconds) of the desk experiment
in simulation: table height 0.2m. Start (αs) and goal (αg)
angles (radian) in parentheses are computed by the planner
while the others are specified by the user. An angle of 0
corresponds to a vertical gripper orientation. Fig. 1 depicts
the case of negative angles. Missing table entries correspond
to planning requests failed due to collisions. Gray cells are
options that are possible without the gripper pivoting since
they correspond to equal start and goal angles.

αs

αg

−π/2 −π/4 0.0 π/4 π/2 (-0.78)

−π/2 - - - - - -
−π/4 14.3 12 11.1 12.4 - 11.9
0.0 11.8 10.4 9.1 10.4 - 10.1
π/4 13.8 12.5 10.4 11.8 - 12.2
π/2 - - - - - -
(0.35) 12.1 9.9 9.3 10 - 9.9

that the slipping avoidance is effective. Deviations lower than
0.2 rad are acceptable for a large class of objects, while they
are critical for thin objects that easily fall over.

B. Desk Experiment

With this experiment we test the interplay between the
motion planner and modality switch in simple pick-and-place
task using fixed and non-fixed start/goal angles. The task
consists of placing the object E of Fig. 7 on a desk by picking it
from the floor with a given angle between the finger approach
axis and the vertical direction. The experiment is first executed
in a simulated environment using different desk heights and
then on the real robot using a 0.72m high desk.

Table II shows the results for a 0.2m desk height in the
simulated environment. Various experiments have been carried
out with different start and goal angles. The values inside show
the planning time measured in seconds. No value indicates
that the motion planner was not able to find a solution. The
last row and the last column are a special case: the start
and/or goal angle is not specified and the planner is free to
choose the angle, the value in parentheses is the angle chosen
by the planner. Note that the values on the diagonal (except
the last one) are equivalent to not using the gripper pivoting
functionality because the start and goal angles are the same.
The planner fails to find a solution in the first and the fifth rows
because the robot is not able to grasp the object on the floor
with these initial angles. The same happens in the case of the
fifth column, because the robot is not able to place the object
on the desk with that angle. From the difference between the
gray and non gray cells, we can see that the added constraint
and new free variable do not significantly increase the planning
time. Instead, there is a high correlation between the planning
time and length of the final trajectory. This explains why the

TABLE III: Planning times (in seconds) of the desk experiment
in simulation for different start and goal angle combinations:
table height of 1.31m.

αs

αg

−π/2 −π/4 0.0 π/4 π/2 (-1.76)

−π/2 - - - - - -
−π/4 - - - - - 17.9
0.0 - - - - - 16.7
π/4 - - - - - 18.1
π/2 - - - - - -
(0.35) - - - - - 17
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Fig. 8: Desk experiment.The desired start and goal angles are
both equal to −π/4. The top plot shows the actual grasp force
(black), the slipping avoidance grasp force (red) and the grasp
force needed for gripper pivoting (light black). The bottom
plot reports the joint velocity of the virtual joint.

cases where both angles are chosen by the motion planner are
among the fastest.

Table III shows the results for a 1.31m desk height in the
simulated environment. In this case no solution with fixed
angles exists. The planner was able to find a solution only
for a free goal angle (last column). No solution was found in
the first and the fifth elements of the last column for the same
reason as the previous case.

The experiment is finally executed on the real robot with a
0.72m desk height. The results are shown in Tab. IV. Figure 8
shows a case in which the start and goal angles are the same,
thus no pivoting is needed. The top plot shows the grasp force
computed by the slipping avoidance algorithm fnSA, the grasp
force needed for the gripper pivoting fnGP and the actuated
measured grasp force fn. The bottom plot shows the velocity
of the virtual joint vj7. Note that in this case no gripper
pivoting is needed because the velocity is almost zero, thus
fn follows fnSA and not fnGP . In the last part of the plot,
around 16 s, the forces drop because the object is released.

Figure 9 shows the case in which the planner automatically
chose the start and goal angles. In this case, the velocity of the
virtual joint is different from zero and the pivoting is needed.
The gray area highlights the time interval when the gripper
pivoting is active, and in this case fn follows fnGP .
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Fig. 9: Desk experiment. Both the initial and final angles
are chosen by the planner and are 0.35 rad and −1.38 rad
respectively. The gray area represents the time interval where
the gripper pivoting is active.

TABLE IV: Planning times (in seconds) of the desk experi-
ment for different start and goal angle combinations.

αs

αg

−π/2 −π/4 0.0 π/4 π/2 (-1.38)

−π/2 - - - - - -
−π/4 12.8 13.5 14 - - 13.5

0.0 11 11.8 12.6 - - 12
π/4 13.9 14.2 13.9 - - 13.6
π/2 - - - - - -

(0.35) 11.3 11.7 12.1 - - 11.6

C. Shelf Experiment

In the last experiment, we test the whole algorithm in a
complex real case scenario where the gripper pivoting ability
may be mandatory due to obstacle positions.

We consider a shelf replenishment task: objects A-D, de-
picted in Fig. 7, were chosen for their variety in weight
and surface properties and are picked up from the floor and
placed on different layers on a shelf system. The experiment
is first executed in simulation. The same combinations of
start and goal angles as in the previous experiment are tested,
but the proximity of shelves greatly decreases the number of
possible goal angles. The results are shown in Table V. Rows
and columns that failed for all shelves are omitted to save
space. The gripper pivoting proves very useful in this scenario,
because the planner only found solutions for fixed angles on
two shelves and only for one angle. On the shelf at height
0.6m, the shelf above is too close and the shelf at 1.31 is too
high for that configuration.

The experiment is executed on the real robot for the case of
free start and goal angles and can be seen in the accompanying
video. Fig. 10 shows the shelf filled at the end of the
experiment. Fig. 11 shows a plot of the forces and virtual
joint speed when object A is placed on the bottom shelf. The
start and goal angles chosen by the planner are 0.16 rad and
−0.95 rad respectively. In the figure as well as the video it is
clear that the pivoting is activated in two phases, after the lift

Fig. 10: Shelf filled with objects at the end of the experiment.

Fig. 11: Shelf experiment. In this case the object A is placed
on the bottom shelf. Note the gray areas where the planner
activates the gripper pivoting mode.

to reach the shelf and inside the shelf to avoid collisions.

D. Sensitivity Experiment

To assess the sensitivity of the algorithm to the friction
coefficient, the last experiment has been repeated with different
values of µ. In particular, for object B, instead of the estimated
value 0.9, an underestimated one has been used, i.e., 0.25 (that
means about 72%). The result is a failure of the task because
the gripper pivoting was not executed properly, such that the
object did not rotate and fell over. Values higher than 0.25 did
not result in a failure. That means that the pivoting algorithm is
quite robust against underestimated values for µ, at least when
the effect of the torsional moment dominates the effect of the
tangential force, i.e., when the grasp point is far from the CoG,
as for object B. Finally, the placing of object D was repeated
with 0.85. That equals a 18% overestimation with respect to
0.72, which was estimated for that object. This resulted in a
grasping force that was too low, making the object slip out of
the fingers. This can be deduced by Fig. 12, where the grasp
force suddenly goes to zero at about 13 s. Both failures are
reported in the accompanying video.
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TABLE V: Planning times (in seconds) of the shelf experiment for different start and goal angle combinations.

αs

αg shelf at 0.2m shelf at 0.6m shelf at 0.93m shelf at 1.31m
−π/2 −π/4 (-0.95) −π/2 −π/4 (-1.38) −π/2 −π/4 (-1.58) −π/2 −π/4 (-1.82)

−π/4 20.5 18.3 22.1 17.7 - 18.9 - 22.5 21.5 - - 25.5
0.0 23.5 19 21.1 18.5 - 17.9 20.8 21.7 19.9 - - 24.1
(0.16) 23.2 19.7 22.3 17.1 - 18.7 20.2 21.7 21.1 - - 25.5

Fig. 12: Shelf experiment. The pick and place of object D is
repeated with an overestimated friction coefficient.

V. CONCLUSION

This paper shows how a tight integration of grasping control
with a motion planner allows a mobile manipulator to solve
complex manipulation tasks in a realistic logistic scenario. In-
hand manipulation abilities provided by the low-level slipping
control layer are exploited by the planning algorithm to solve
fetch and place tasks in confined spaces. This has been
achieved by a novel switching method between two differ-
ent grasp control modalities: slipping avoidance and gripper
pivoting. Gripper pivoting allows the robot to change the grasp
configuration without re-grasping the object, effectively adding
a degree of freedom. The slipping controller needs an object
specific friction parameter to work, which is currently esti-
mated in advance and saved in a knowledge base. In the future,
we plan to integrate this into a knowledge-enabled and plan-
based control architecture proposed for the REFILLS project
to autonomously replenish shelves in supermarkets. Then, we
desire an autonomous estimation of the object specific friction
parameter through tactile exploration of unknown objects.
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