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Abstract

Thanks to the involvement of neural network architecture and the increasing amount of
available parallel corpora, it is considered that the quality of sentence-level neural ma-
chine translation has been pushed to an acceptable level in high resourced language pairs
such as English-French. In context-aware machine translation, on the other hand, taking
additional contextual information into account has been proved efficient to improve the
performance. However, how to locate the contextual information preciously is still an
open question.
Recently, transfer learning based on pre-trained language models is evolving rapidly and
attracts more and more attention from the natural language processing research commu-
nity. Deep models trained on large scale datasets such as BERT (Devlin et al., 2019)
renewed the state of the art for various tasks, and methods based on such models have
become the standard approach in a range of subfields of natural language processing.
Given such background, in this research, we first investigate the necessity of locating
contextual sentences for context-aware neural machine translation with a newly created
English-Japanese document-level aligned dataset. Our experiments reveal that most of the
sentences can benefit from taking additional context into account and there is much room
for improvement if we can select the proper contextual sentence for each source sentence
in context-aware machine translation. Furthermore, we attempt to automate contextual
sentence filtering with the help of pre-trained language models in a weakly supervised
way.
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Chapter 1

Introduction

1.1 Motivation
Language is often treated as the symbol of intelligence which seperates human being
from other primates. Thus the objective of building computer systems that can under-
stand human language is one of the steps towards artificial general intelligence. On the
other hand, due to the rapid development of the Internet and social media, there is a hu-
mongous amount of text data being generated every single day. There is also a growing
requirement of developing effective methods to analyze and mining knowledge from such
a huge amount of data. Both of the objectives drive researchers in the area of natural lan-
guage processing (NLP) and make progress rapidly.
Thanks to the highly growing computation power and an increasingly large amount of
available data, various fields in the area of natural language processing (NLP) have archived
significant performance gain with the help of neural networks (NNs). Among them, Ma-
chine Translation (MT), which aims at translating written text from one natural language
into another automatically, is often used as the testbed for novel methodologies. Research
in the field does bring various standard NN based tools into NLP (Sutskever et al., 2014;
Bahdanau et al., 2015; Luong et al., 2015; Vaswani et al., 2017).
MT systems usually translate sentences in isolation, which is called sentence-level ma-
chine translation (Sent-MT). As more and more high-quality parallel corpora are available
for high resourced language pairs, such as English-French, the quality of Sent-MT is con-
sidered to reach an acceptable level of quality. However, taking only a single sentence as
input sometimes can be affected by the ambiguity existing in the source sentences, espe-
cially in some specific languages such as Japanese and Chinese. For example, Japanese
speakers tend to omit some arguments of verbs when they are obvious from the context
during a conversation, which makes it difficult to translate such sentences into other lan-
guages accurately. Therefore, context-aware machine translation or document-level ma-
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chine translation (Doc-MT) is also actively researched (Tiedemann and Scherrer, 2017;
Voita et al., 2018, 2019; Junczys-Dowmunt, 2019). Doc-MT is considered more difficult
mainly due to, firstly, the amount of document-aligned parallel corpora is insufficient on
size in most of the cases, and secondly, Doc-MT models which take longer sequences as
input are more difficult to reach convergence during training.
The main approach for Doc-MT is taking more contextual information into account as
input. As shown in Tiedemann and Scherrer (2017), extending the input by concatenat-
ing the previous sentence with the source sentence brought BLEU (Papineni et al., 2002)
score gain in German-English translation. However, a higher BLEU score can nether tell
whether all the input sentences benefited from the extended context, nor provide evidence
about whether the previous one sentence used as the context is the correct one or not. It
remains an open question to be answered by further experiments. Attempting to answer
part of these questions is the main motivation of this research.

1.2 Research Objectives and Contributions
This thesis studies the problem in Doc-MT regarding the necessity and possibility of fil-
tering contextual sentences automatically. Our main hypothesis of this thesis is:
The previous sentence is not always the contextual sentence for context-aware machine
translation and locating the contextual sentences can improve the performance signifi-
cantly.
First, we trained several baseline concatenation machine translation systems and com-
pared their results. Our results show that at least in the domain of business conversation,
the previous sentence is not always the proper contextual sentence. We also calculated or-
acle BLEU scores based on the baseline systems we trained to estimate the upper bound
for a perfect context-aware MT system which takes one additional contextual sentence
into account can reach. The result shows that there is much room for improvement if a
context-aware MT system can select the correct contextual sentences.
Then, we proposed a multi-task fine-tuning framework based on BERT (Devlin et al.,
2019) to filter contextual sentences inside a window size of 5. A comparison experiment
based on the normal Next Sentence Prediction fine-tuning on BERT is also conducted.
Our result shows that our proposed method works well in EN→ JA translation but not as
expected in JA→ EN. We further analyzed the results and hypothesized possible causes
of such results.



CHAPTER 1. INTRODUCTION 3

1.3 Thesis Outline
In Chapter 2, we provide an overview of background knowledge which is necessary to
understand the contents of this thesis. We introduce the basic framework of machine
translation from both of the traditional perspective of statistical machine translation and
the state-of-the-art neural network-based approaches. We also introduce an automatic
evaluation metric BLEU for machine translation systems. Furthermore, we conduct a
literature view regarding transfer learning in the field of natural language processing,
which is the main methodology used in our experiments.
In Chapter 3, we describe our investigation about the effectiveness of applying transfer
learning on a character-level language model. We use a Japanese specific task, Japanese
Word Segmentation, as our testbed and conduct experiments from both feature-based and
fine-tuning based approaches.
Chapter 4 presents our work on contextual neural machine translation. First, we introduce
a newly constructed clean English-Japanese document-level machine translation dataset.
Then we introduce our experiments to investigate the necessity of contextual sentence
selection in context-aware machine translation. Finally, we propose a method to automate
the contextual sentence filtering procedure by fine-tuning a pre-trained language model
with multiple tasks.
Chapter 5 finally summarizes our findings in the contextual sentence filtering experiments
and provides an outlook into future directions.
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Chapter 2

Background

2.1 Machine Translation
Machine translation (MT), especially Neural Machine Translation (NMT) is the main
testbed where we conduct most of our experiments. In order to introduce basic ideas in
MT field, this section provides a general introduction to several import topics, including
evaluation (Subsec 2.1.1), traditional statistical machine translation (Subsec 2.1.2), neural
network-based machine translation (Subsec 2.1.3).

2.1.1 Evaluation in Machine Translation
Machine Translation, which investigates about how to translate written text or speech
from one natural language into another automatically, is one of the most challenging
tasks in the field of NLP. One of the main obstacles in MT is the difficulty of evaluations
on results because first, it is hard to define what a good translation is, and second, several
alternative translations can be valid for a single source sentence while it is not possible to
collect all of them.
The most reliable and ideal method is to evaluate the translation by human raters based on
both fluency and accuracy. However, human evaluation, especially which is conducted by
professional translators, is extremely expensive and time-consuming since the procedure
has to be repeated every single time the MT system is modified.
To address this issue, several automatic evaluation metrics for text generation, the field
which MT is part of, are proposed. Most of them try to determine the translation quality
based on the distance between a translation result and one or more reference human trans-
lations. Among them, BLEU (Papineni et al., 2002) is the most popular one in the field
of MT, and also the main metric we use to evaluate most of the experiments conducted in
this research.
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Candidate: the the the the the the the.
Reference 1: The cat is on the mat.
Reference 2: There is a cat on the mat.

Figure 2.1: A BLEU example (Papineni et al., 2002) with two references and one candi-
date

BLEU is calculated based on n-gram overlap; they use a so-called modified n-gram preci-
sion instead of the naive one which tends to assign a high score to sentences containing a
lot of repetition of some words in the reference sentences. The modified n-gram precision
is calculated as follows. First, the maximum number of times an n-gram occurs in any
single reference translation is counted. Second, the total count of each candidate n-gram
is clipped by its maximum reference count. Finally, all the clipped counts are summed up
and divided by the total unclipped number of candidate n-gram. In the example shown in
Figure. 2.1, given two references about a cat, a candidate with the only word “the” should
get a modified unigram precision of 2/7.

MNP =
Countclip

Countn-gram in candidate

Countclip = min(Count,Max ref count)

Such modified precisions pn are calculated using n-gram up to a length N , which is a
hyper-parameter of BLEU and is usually set to 4, and then added up with positive weights
wn summing to 1.
Another important component in BLEU is the usage of an exponential brevity penalty
factor. While evaluating the BLEU score on a given test corpus, the geometric mean of
the corpus is calculated and then multiplied by a penalty factor BP which is formalized as
follows, where c is the length of the candidate translation and r is the effective reference
corpus length.

BP =

{
1, if c > r

e1−r/c if c ≤ c

With both exponential brevity penalty factor and geometric mean of modified n-gram
precisions, we can get the final formula of BLEU as follows.

BLEU = BP · exp
( N∑

n=1

wnlogpn

)
Though these metrics can be done automatically, which is preferred during the imple-

mentation process of an MT system, they do have important disadvantages. For example,
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since BLEU ignores not only the semantics of the sentence but also the global structure of
the sentence, a MT system with a high score does not always produce correct translations
in the sense of semantics. Therefore finding a better replacement metric for the evaluation
is still an active research question in the field of MT.

2.1.2 Statistical Machine Translation
Statistical Machine Translation (SMT) used to dominate the research of MT for decades.
Comparing to rule-based MT which requires handcrafted rules to translation from a source
sentence S to a target sentence T , statistical MT relies on probabilistic models learned
from parallel corpora. It has the advantage of robustness while it is also limited by the
requirement of large quantities of training data.
In the most traditional SMT system, given a source sentence S, the most probable trans-
lation T̂ is searched as follow:

T̂ = argmax
T

P (T |S) = argmax
T

P (S|T )P (T )

P (S)
(2.1)

∝ argmax
T

P (S|T )P (T ) (2.2)

The final formula is composed of two components, a translation model P (S|T ) which en-
codes the faithfulness of T as a translation of S, as well as a language model P (T ) which
encodes the fluency of T in the target language. A third component called decoder, or
translation engine then searches the space of possible translation and find the best trans-
lation T in the target language for a source sentence S based on the translation model and
the target language model.
Translation Model A normal translation model relies on translation tables which record
translation probabilities for individual words. It is the initial approach to statistical ma-
chine translation and led to the development of the famous IBM Model (Brown et al.,
1993; Och and Ney, 2000; Brown et al., 1990). Such a translation table, or called word
alignments, can be learned from parallel corpora through Expectation-Maximisation (EM)
algorithm. The basic idea works as:

• Assign uniform translation probabilities to all possible word pairs

• Expectation Step: Apply current probabilities to estimate possible alignments on
the parallel sentences

• Maximisation Step: Revise the translation probabilities based on the estimated sen-
tence alignments
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• Iterate the two steps until a stable solution is archived

Language Model The fluency of a translated sentence T in the target language is es-
timated by a language model. In SMT, the statistical language model used to assign a
probability distribution over sequences of words w1, w2, ·, wn, is typically represented
as n-grams as shown below. The formula stands on the chain rule, which means the
probability of each word depends on the words occurring before it and is simplified by
considering only the N previous words.

P (wn
1 ) =

n∏
k=1

P (wk|wk−1
1 ) ≈

n∏
k=1

P (wk|wk−N+1
k−1 ) (2.3)

Decoder Beyond the translation model and language model, a separate component, namely
decoder, is also required to search for the best translation from the huge space of possible
translations. An algorithm called beam search is deployed to perform an incremental de-
coding process by expanding translation hypotheses gradually. Beam search keeps track
of only a limited number of “good’ hypotheses, which are generated from the transla-
tion table, based on their cost and discards the rest of them. The cost of each hypothesis
is evaluated by transitions between hypotheses and fluency estimated by the language
model. Due to the greedy nature of the beam search, a global optimal result is not always
guaranteed.
The basic mechanism seems straightforward, but there are several limitations to tradi-
tional SMT. For example, the translation models originally rely on translation probabili-
ties for individual words, which can not account for idiosyncratic expressions well. Take
English-Japanese translation as an example, “heavy” and “mental” are usually translated
as “重い” and “金属” individually but “heavy metal” should be translated as “ヘヴィメタ
ル” when it is used to refer to the genre of rock music. To address the issue, the method
of using translation tables for entire phrases instead are proposed:

P (S|T ) =
I∏

i=1

ϕ(si|ti)d(ai − bi− 1) (2.4)

ϕ(si|ti) represents phrase probability given by the translation table and d(ai−bi− 1) rep-
resents distortion probability which shows relative distance between the phrase positions
in the two languages.
However, these improvements don’t change how a system is constructed in SMT. The na-
ture of combining multiple components which have to be trained separately makes SMT
systems hard to design, train, and maintain.
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2.1.3 Neural Machine Translation
As various of tasks in the field of NLP have been boosted by the Neural Networks (NN),
researchers also attempt to improve MT with the power of NN. For a long time, the
improvement was done by integrating NN into SMT systems, e.g. replacing the standard
n-gram LMs with Recurrent Neural Network (RNN) based ones (Cho et al., 2014b). Such
attempts do bring improvement to SMT systems, but the difficulties of training and main-
tenance remain since all the changes are done under the traditional framework of SMT.
On the other hand, Neural Machine Translation, which aims at solving the MT task by
training a single NN in an end-to-end behavior, reduces the effort required for training
and maintaining a machine translation system significantly.

2.1.3.1 Sequence-to-Sequence

The recurrent continuous translation models proposed by (Kalchbrenner and Blunsom,
2013) was the first machine translation model in which the target sentence distribution is
conditioned on a fixed-size representation of the source sentence. The idea gave rise to
a new family of neural network architectures called encoder-decoder, or sequence to se-
quence (Seq2Seq) networks. It was also developed by successors (Sutskever et al., 2014)
and become the de. facto tools in solving verities of NLP tasks. Machine translation sys-
tems using such type of neural networks are so-called neural machine translation systems.
In NMT, given a source sentence X = xN

1 and a target sentence Y = yM1 , the probability
distribution over the target sentences P (Y |X) is factorized into conditionals:

P (Y |X) =
M∏
k=1

P (yk|yk−1
1 , X)

The most traditional Seq2Seq network utilizes two recurrent neural networks (RNN), a
variant of NN whose strength is modeling variable-length sequences of inputs such as
natural language sentences, as the encoder and the decoder respectively. With that, the
probability distribution can be further modeled as:

P (yk|yk−1
1 , X) = f(yk|hk, yk−1, c(X))

where hk is the hidden state of the RNN decoder at time step k and c(X) is the fixed-length
vector compressed from X by the encoder. Furthermore, f(·) is a feedforward network
with a softmax layer at the end which takes the decoder state hk and an embedding of the
previous target token yk−1 as input. Figure. 2.2 shows such a basic Seq2Seq network for
MT.
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Figure 2.2: A simple Encoder-Decoder model in which the encoder compress the input
sequence into a fixed-length vector and pass it to the decoder. Then decoder generate a
sequence conditioned on the fixed vector.

2.1.3.2 Attention

One of the main drawbacks of early NMT models was poor performance while generating
translations for long sequences. The fixed-length source sentence encoding was suggested
by (Cho et al., 2014a) as the main cause. Further, they argued that though a fixed vector is
enough for translating short sentences, it lacks the capability of encoding a long sequence
with complicated structure and meaning. Then a concept called attention was introduced
by (Bahdanau et al., 2015; Luong et al., 2015) to address this issue. Instead of the fixed-
length source sentence encoding, their models can also place their attention on only parts
of the source sentence which is crucial to producing the next token of the target sequence.
Thus the context vector c(X) is replaced by a series of vectors ck(X), which varies at
different decoding steps.
Figure. 2.3 shows a demonstration about how encoder-decoder attention works in a RNN-
based attentional Seq2Seq network. First, the encoder encodes a source sentence into a
fixed-length vector and passes it to the decoder. What is different from the early Seq2Seq
network is that the final hidden state of each encoding step sN1 is also stored. Then at each
decoding step t, a score for each encoder hidden state si is calculated based on a function
score(·) which takes ht and si as inputs. Then all the scores are normalized by a softmax
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function
σ(z)i =

ezi∑K
j=1 e

zj
for i = 1, · · ·, K and z = (z1, · · ·, zK)

to a weight wt. Finally sN1 are summed up by the wt to form the final context vector
cj(X).
Attention can also be abstracted as a mechanism to map m query vectors (hidden stats

Figure 2.3: Demonstration about how attention works.

from decoder) to m output vectors (context vectors) through a mapping table of m key-
value pairs. Following the terminology of (Vaswani et al., 2017), given three lists of vec-
tors that can be stacked into three matrices Q ∈ Rm×d, K ∈ Rn×d, and V ∈ Rn×d, each
output vector is computed as a weighted of the value vectors. Each weight is determined
by a similarity score between the corresponding query and key vectors.

Attention(K,V,Q) = Softmax(score(Q,K))V
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2.1.3.3 Transformer

(Vaswani et al., 2017) proposed an important generalization of attention namely multi-
head attention. The core idea is performing attention operations for N , which is referred
as the number of attention heads, times instead of a single one. The query, key, and value
vectors for each attention head are linear transforms of Q, K, V . The outputs of each
attention head are concatenated to form the final output of the multi-head attention. The
mechanism can be described formally as follows:

MultiHeadAttention(K,V,Q) = Concat(head1, · · ·, headH)WO

headh = Attention(KWK
h , V W V

h , QWQ
h )

(Vaswani et al., 2017) also proposed a so-called self-attention which can be applied in
the Seq2Seq framework. Figure. 2.4 demonstrate how self-attention works with a toy ex-
ample. Inside encoder and decoder, all three components of self-attention (queries, keys,
and values) are derived from encoder or decoder state only respectively. For example,
the decoder conditions on the previous output tokens yk−1

1 by attending to its own states
from previous time steps. Most of the computation of self-attention can be parallelized
and reduce the amount of sequential computation at the encoder side significantly.
Self-attention-based models are also challenged due to the nature of attention that it has
no notion of orders. Positional embeddings are used by (Vaswani et al., 2017) to tackle
the issue. They originally stacked sine and cosine functions of different frequencies to
pass positional information to self-attention:

PEpos(2i) = sin(
pos

10000
2i

dmodel

)

PEpos(2i+ 1) = cos(
pos

10000
2i

dmodel

)

Alternatively, several works (Devlin et al., 2019) utilized a learned embedding matrix
as the positional embedding alongside the normal token embedding layer. A PElearned(n)
usually maps the absolute position n of the token in a sequence. However positional
methods to use relative positional information were also proposed (Shaw et al., 2018).

2.2 Transfer Learning in NLP

2.2.1 Introduction
ImageNet (Deng et al., 2009), which was originally published in 2009, is a dataset for the
task of image classification. It impacted the Computer Vision (CV) as well as the whole
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Figure 2.4: The self-attention mechanism introduced by (Vaswani et al., 2017)

course of machine learning greatly. Due to its humongous size (1.2 million images for
training and 100 thousand for testing) and its variety (1,000 object classes), models pre-
trained with ImageNet show impressive effectiveness in transfer learning. These models
cannot only be deployed as feature extractors for other classification datasets, but also be
fine-tuned to solve a variety of different tasks such as object detection, semantic segmen-
tation, human pose estimation, and video recognition.
On the other hand, the application of pre-trained models in the field of Natural Language
Processing (NLP) is mainly restricted to feature extracting, which is also called embed-
ding, for a long time before 2018. Embeddings are used to convert string-based natural
language tokens into distributional representations such as vectors and matrices. Methods
like Word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014), which can cap-
ture context-independent features with shallow neural network models and large corpora
become a key component in many NLP tasks. Start in 2018, models that pre-trained on
tasks that are sensitive to contextual information like machine translation (CoVe) (Mc-
Cann et al., 2017) and language model (ELMo) (Peters et al., 2018), can utilize context-
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related features and improved state-of-the-art results in many NLP tasks with nearly no
modification to the architecture of task models.
However, although contextualized embeddings show better performance than the classi-
cal context-independent ones, there remains a problem that these embeddings are used as
fixed parameters and the main task models have to be trained from scratch. To address
this issue, CV-like fine-tuning approaches (Alec et al., 2018; Howard and Ruder, 2018;
Devlin et al., 2019) based on pre-trained models on Language Model (LM) are also pro-
posed in 2018 and show great effectiveness in transfer learning for other NLP tasks.

2.2.2 Feature based approaches
The most widely used approach of applying pre-trained models into NLP tasks is through
the feature-based methods, or saying embeddings. Unlike in the CV field where the object
images can be represented as matrices and manipulated by machine learning (ML) models
(e.g. neural networks) directly, inputs of most NLP tasks are string-based natural language
tokens so that they have to be converted into vectors or matrices before got fed to ML
models.
Traditional NLP approach to convert tokens into vectors before the deep learning booming
was designing a rich set of features manually, but an approach was proposed in 2011,
in which features are extracted with pre-trained models(Collobert et al., 2011). When
applying pre-trained models through this approach, the models are first trained on a “fake”
task. Then the parameters of the pre-trained model are fixed and used to extract features
of words, sentences, or documents and input those features to task models, which are
neural networks designed for solving individual NLP tasks.

2.2.2.1 Word2vec

The most classical methods can only capture context-independent information. The most
widely known embedding method is called Word2vec (Mikolov et al., 2013) was one of
the earliest attempts to capture word-level features with neural networks. It shows the
great capability of neural networks in such a task when a large corpus is available. The
features captured by Word2vec brought impressive improvement to a wide range of tasks.
The theory where Word2vec is built on is the so-called Distributional Hypothesis. It
hypotheses that words that occur in the same contexts tend to have similar meanings
(Harris, 1954). To capture word meaning based on the theory, Word2vec algorithm de-
ploys a shallow neural network with only one linear hidden layer and trains it on a task
whose objective is finding representations that are useful for:
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• Predicting nearby words when one word is given. More formally the objective is
predicting wt when wt−c, . . . , wt−1, wt+1, . . . , wt+c are given.

• Or predicting a word when its nearby words are given. More formally the objective
is predicting wt−c, . . . , wt−1, wt+1, . . . , wt+c when wt is given.

The c in these formulas is a windows size used to indicate the size of context during train-
ing time. The first approach is called Continuous Bag-of-Words and the second one is
called Continuous Skip-gram and their architectures are shown in Figure. 2.5 and Figure.
2.6
In the skip-gram model, a word t is first converted into a so-called one-hot vector wt ∈ RN

(N is the size of the vocabulary), which consists of 0s in all cells except a single 1 in a cell
used uniquely to identify the word. Then the one-hot vector is fed to the neural network
and be projected as a vector ht ∈ Rd with a matrix Wh ∈ RN×d where d is the number
of features we want to use to represent a word. ht is fed to a softmax layer to generate a
distribution over the vocabulary. What we need to do during the training procedure is to
maximize the probability of words that appear nearby t, which includes c words before t
and c words after t, in the whole corpus.
Despite the simplicity of the objective for pre-training, Word2vec can capture many lin-
guistic regularities and patterns. Many of these patterns can be represented as linear
translations and simple addition can often produce meaningful results. For example,
vec(“Germany”) + vec(“capital”) is close to vec(“Berlin”), vec(“man”) - vec(“woman”)
is close to vec(“king”) - vec(“queen”).

2.2.2.2 Recurrent Neural Language Model

Language Model is used to evaluate whether a sentence is “nature” or not by calculating
the probability distribution of a given sequence of words or characters. Such a model is
usually trained on a large scale monolingual corpus by optimizing the parameters of a
model to reduce the negative log-likelihood of sequences from the corpus. Modeling the
probability of a given sequence is usually done by the chain rule. In the deep learning era,
the language modeling task is usually tackled by a recurrent neural network, especially
one of its variants called long short-term memory (LSTM) (Hochreiter and Schmidhuber,
1997). A recurrent neural language model estimating the probability distribution of each
token (word or character) with the information of all the tokens before is called a Forward
Language Model, and the one utilizing the information afterward is called Backward
Language Model. The formulation of these two kinds of LM is shown as follows. Given
a sequence of N tokens t1, t2, . . . , tn−1, tn:
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Figure 2.5: Features of contextual words
are summed up to estimated the center word
in continuous bag-of-words (Mikolov et al.,
2013)

Figure 2.6: The feature of the center word is
utilized to predict all the surrounding words
inside a context window (Mikolov et al.,
2013)

• A forward language model computes and maximize the probability of token tk
given history (t1, . . . , tk−1) as follow. In the case that LSTM is used to solve the
language model task, the probability can also be approximated by the below one in
which θf is the parameters of the LSTM and hf

t is the hidden state of the LSTM at
time step t.

p(t1, t2, . . . , tN) =
N∏
k=1

p(tk|t1, t2, . . . , tk−1)

≈
T∏
t=0

p(tk|hf
t ; θ

f )

• Likely, a backward language model computes and maximize the probability of to-
ken tk given future (tk+1, . . . , tn). It can also be approximated with LSTM’s pa-
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rameters and the hidden state at time step t

p(t1, t2, . . . , tN) =
N∏
k=1

p(tk|tk+1, tk+2, . . . , tN)

≈
T∏
t=0

p(tk|hb
t ; θ

b)

2.2.2.3 Language Model-based Feature Extraction

Since Word2vec always converts the same word into a fixed vector without taking any
contextual information into account, it can deal with phenomenons such as polysemous
well. CoVe (McCann et al., 2017) is one of the several attempts to take contextual in-
formation into account during feature extraction with a pre-trained machine translation.
It does bring performance improvement to several tasks, but it is also restricted by its
requirement on parallel MT training data. To address this issue, Embeddings from Lan-
guage Models (ELMo) (Peters et al., 2018) was proposed to utilize a model pre-trained
with the language modeling task. Comparing to parallel corpora needed by the MT task,
monolingual corpora used by language modeling tasks are much larger in size, which pro-
vides a great potential for language model to capture more contextual information than
machine translation can do.
The base model of ELMo is trained as a bi-direction language model. Then ELMo em-
beddings are computed as a task-specific combination of the intermediate layer repre-
sentations in the pre-trained biLM as follows. First, simply feed the sequence of tokens
we are encoding into the LM and get intermediate representations hLM

k,j from all layers
(k stands for the kth layer and j stands for the jth token) which is the concatenation of
forwarding LM intermediate representation

−→
h LM

k,j and backward LM intermediate rep-

resentation
←−
h LM

k,j . Then a task-specific softmax-normalized weights stask and a scalar
parameter γtask are learned tasks specifically to get the final specific context-aware em-
beddings. The formula is as follow and the whole procedure is demonstrated in Figure.
2.7.

ELMotask
k = γtask

L∑
j=0

staskj hLM
k,j

The state-of-the-art results for several tasks, including reading comprehension, textual
entailment, semantic role labeling, co-reference resolution, named entity extraction, as
well as sentiment analysis, were improved significantly by simply replacing normal Word2vec
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Figure 2.7: A 2-layer bi-directional LSTM language model is trained on a large scale
monolingual dataset, then a task-specific weight is learned for each task to combine the
three hidden states extracted by the language model.

embedding layer with ELMo in the task-specific models. Although most of the contex-
tual feature extraction methods are based on word-level, a character-level language model
based contextualized embedding method, called Contextual String Embeddings (Flair)
(Akbik et al., 2018), was also proposed in 2018. Instead of converting words into vectors
and feeding them in the biLMs, Flair encodes and uses characters as the input directly.
And rather than concatenating intermediate representations corresponding to a word from
each layer of the biLM like ELMo does, Flair extracts the output hidden state after the last
character in the word from forwarding LM as well as the output hidden state before the
first character in the word from backward LM and concatenates them into a single vector
to represent the word. The procedure is demonstrated in Figure. 2.8. Flair outperformed
than in tasks such part-of-speech tagging and named entity extraction for both English
and German, which showed the great effectiveness of contextual information captured in
language model at both word-level and character level.

2.2.3 Fine-tuning based approaches
Although pre-trained models for embedding, especially contextualized ones, perform ex-
tremely well in a range of NLP tasks, there remains an issue that only the first layer of
task model benefits from pre-training and the other parts are still needed to be trained from
scratch which requires a huge amount of data and time-consuming. To address this issue,
several methods to directly fine-tune pre-trained language models on new tasks without
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Figure 2.8: Flair embedding is constructed by concatenating the hidden state of the space
before the first character in a word as well as the hidden state of the space after the last
character in a word (Akbik et al., 2018).

task-specific models were proposed in 2018.

2.2.3.1 ULMFiT

Several attempts to perform transfer learning in NLP tasks via the fine-tuning based ap-
proach were conducted by researchers before. Unfortunately, the methods proposed by
Dai and Le (Dai and Le, 2015) are limited in usefulness due to its requirement on millions
of in-domain documents when trying to achieve good performance. However, (Howard
and Ruder, 2018) argued that not the idea of fine-tuning pre-trained LM itself, but the lack
of knowledge of how to perform the procedure has been hindering wider adoption. The
fine-tuning methods, as well as novel training techniques proposed in ULMFiT, showed
that fine-tuning over pre-trained LM can achieve CV-like transfer learning in a range of
classification tasks.
Similar to ELMo and Flair, ULMFiT uses the same pre-training objective, which is lan-
guage modeling, with a 3-layer bidirectional LSTM. After the pre-training, instead of
computing embeddings based on hidden state outputs of the biLM by fixing all its pa-
rameters, ULMFiT first perform a procedure called target task LM fine-tuning. The mo-
tivation for adding such a procedure is the fact that no matter how diverse the data used
for pre-training is, the data of the target will likely come from a different distribution.
After the LM adapted to the idiosyncrasies of the target data, two additional blocks used
for the target classification tasks are appended at the end of the pre-trained model and
trained from scratch. These blocks take the pooled last hidden layer states as the input
and produce a distribution over different labels used for classification. The whole proce-
dure is shown in Figure. 2.9. Experiments are conducted on a variety of text classification
tasks, including sentiment analysis, question classification, and topic classification, with
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6 different datasets. The results showed that ULMFiT outperformed state-of-the-art on
all datasets. The error rates were reduced by ranging from 8.3% to 22% relatively on
smaller datasets and ranging from 2.0% to 23.7% on larger ones. It shows that not only
the embedding layers can but also the other part can benefit from the knowledge.

Figure 2.9: The fine-tuning procedure of ULMFiT for classification tasks, which includes
a LM pre-training on large scale unlabeled data, LM fine-tuning on target dataset, and the
fine step to adapte the whole model on the target task. (Howard and Ruder, 2018)

2.2.3.2 OpenAI GPT

Although ULMFiT shows impressive improvement over several classification tasks, the
fine-tuning framework proposed by it is limited and difficult to be used on tasks other than
classification. To provide a more general framework of LM-based fine-tuning, OpenAI
GPT (Alec et al., 2018) was proposed then by replacing LSTM LM used in ULMFiT with
a transformer-based (Vaswani et al., 2017) one and extending the framework to adapt a
pre-trained LM to a target task.
The pre-trained procedure is quite similar to the one used by ULMFiT. The only a dif-
ference worth noting is that unlike the bidirectional LSTM based LM used in ULMFiT,
ELMo, and Flair, OpenAI choose to build a forward only LM with transformer, in which
only left-to-right contextual information can be captured.
The biggest difference between OpenAI GPT and ULMFiT is the procedure to adapt the
pre-trained LM for target tasks. Since OpenAI GPT was designed to solve tasks for both
tasks in which the input is a single sentences as well as tasks that take sentences pairs as
input. Solution for classification tasks is quite straightforward, which is feeding the last
transformer block’s hidden state to a softmax layer to generate a distribution over labels.
For other tasks, a so-called traversal-style strategy is taken as:
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• First, the several structured inputs are converted into a single order sequence which
can be handled by the pre-trained language model. Randomly initialized special
token [start] and [extractor] to mark the begin and end of the sequence are also
included in the transformed sequence.

• Textual entailment: In this task, the model needs to read a pair of sentences and
judge the relationship between them from one of entailment, contradiction or neu-
tral. While fine-tuning for textual entailment, the two sentences are concatenated
with a delimiter [delim] between. The remain parts work the same as classification
tasks.

• Sentences similarity: Semantic similarity tasks involve predicting whether two
sentences are semantically equivalent or not. Since there is no inherent ordering
of the two sentences being compared, the input sequences are fed to the LM twice
in different orders. Then before the two representations from the last transformer
block are added element-wise before being fed into the softmax layer.

• Question answering: In this task, the model needs to choose the best answer while
an English passage with associated one question and several answer candidates are
given. To solve it with the LM, the passage and question are concatenated with each
possible answer with a delimiter between the question and the answer in a way like
[p; q; $; ak] (p represents the passage, q represents the question, $ represents the
delimiter and ak represents the kth answer candidate.). Each of the transformed
sequences is processed independently and then normalized via a softmax layer to
generate a distribution over possible answers.

Experiments showed that the performance of a variety of task, such as question answering,
can be improved significantly through LM pre-training and fine-tuning. The performance
improvement can be as large as 8.9%. The more general framework provided by OpenAI
GPT, showed the great potential of CV-like fine-tuning methodology in the field of NLP.

2.2.3.3 BERT

OpenAI GPT shows the great effectiveness of the LM fine-tuning method in a range of
tasks, however, the forward-only language model used in it restricted its ability to consider
contextual information behind a word. Such restrictions are sub-optimal for sentence-
level tasks and could be devastating when applying fine-tuning based approaches to token-
level tasks such as SQuAD question answering dataset (Rajpurkar et al., 2016). The
SQuAD contains more than 100 thousand crowdsourced question-answer pairs where the
answer is a span in a given context. The objective of finding both start and end for an
answer makes it crucial to incorporate context from both directions.
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To complete the bidirectional language modeling lacked in OpenAI GPT, Bidirec-
tional Encoder Representations from Transformers (BERT) (Devlin et al., 2019) is pro-
posed to pre-train a transformer-based language model with two novel objectives. Unlike
the bidirectional LM used in ULMFiT, in which hidden states from forwarding LM and
backward LM are concatenated to produce a vector including both left-to-right and right-
to-left contextual information, BERT uses a task so-called masked LM. Consider the case
to train a language with the sentence “my dog is hairy”. In normal bidirectional LSTM
language models, saying we want to model the word “is”, the forward LM will maximize
the probability when “my” and “ dog” is given, while the backward LM will maximize
the probability when “hairy” is given. On the other hand, the masked LM will replace the
“is” with a special toke [MASK] and let the model predict what it should be. This forces
the model to consider contextual information from both sides simultaneously, which can
produce a “deep” bidirectional LM.

The representation of the input for BERT is similar to OpenAI GPT, a special token
[CLS] is used to mark the start of a sequence of tokens and another token [SEP] is used to
separate two sequences when packing them together. [SEP] is also used to mark the end
of a sequence. For a given token, its input representation is constructed by summing the
corresponding token, segment and position embeddings as demonstrated in Figure. 2.10.
Also, target tasks such as question answering and textual entailment need some kinds of

Figure 2.10: The embedding of BERT is consisted of three parts, 1) normal token embed-
ding, 2) learned position embedding, 3) token type embedding to indicate which sequence
the token is from. (Devlin et al., 2019)

understanding regarding the relationship between two text sentences. In order to train
a model that can capture sentence relationships, a binary next sentence prediction task
similar to the method proposed in (Kiros et al., 2015) that can be trivially generated from
any monolingual corpus is also used to train the biLM. When choosing the sentences A
and B for each pre-training example, 50% of the time B is the actual next sentence that
follows A, and 50% of the time it is a random sentence from the corpus.

The fine-tuning procedure is shown in Figure. 2.11. For example, in classification
tasks whose input is one sentences e.g. sentiment analysis or two sentences e.g. textual
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entailment, the hidden state of [CLS] token from the last layer of BERT are fed to a
softmax layer to generate a distribution over labels.

Figure 2.11: Different strategy is deployed while fine-tuning BERT on different tasks
(Devlin et al., 2019)

In the experiments conducted with fine-tuned BERT, the state-of-the-art of GLEU, a
benchmark consisting of diverse natural language understanding tasks was improved by
4.7% absolute accuracy. BERT also outperforms the top leaderboard system of SQuAD
by +1.5 F1 score which makes it +1.5 higher than human beings. The novel objective of
masked LM and next sentence prediction shows a great improvement over ULMFiT and
OpenAI GPT, as well as ELMo.
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Chapter 3

Experiments on Japanese Word
Segmentation

As we introduced in the last chapter, transfer learning based on language models, shows
promising effectiveness at the word level. On the other hand, flair embedding (Akbik
et al., 2018) also show that character-level language model can work even better on sev-
eral tasks. However, most of the research is conducted on languages such as English and
German. A question arises naturally is that how such language model-based methodolo-
gies fit language like Japanese and Chinese as well as their specific NLP tasks. In this
chapter, we introduce trial and errors shown in our experiments which tackle the task of
Japanese Word Segmentation (JWS) by language model-based transfer learning.

3.1 The Problem
Unlike languages such as English and German in which space exists between words,
there is no explicit bound between words in the text of Japanese. While applying NLP to
Japanese text, segment the whole input sentence into words is a necessary preprocessing
before feeding them into any machine learning models. So that errors that happened at
this phase may propagate and affect all the phases afterward. For example, the phrase ”
この先生きのこるには”, where the correct word segmentation should be ”この先/生き
のこる/には”, means ”How to survive from now on”. However, it can also be segmented
as ”この先生/きのこ/る/には”, which is just a word list of ”this teacher, mushroom, to”
and meaningless as a sentence. This kind of error will significantly change the results of
tasks such as machine translation therefore high precision is required in the task of word
segmentation.
The most widely used approach to solve JWS is modeling the task as a sequence labeling
task which aims at assigning a proper label to each character in a sequence, then train-
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ing machine learning models with supervised learning (Kitagawa and Komachi, 2017).
However, since training data has to be collected and labeled manually by native speakers,
most of the available JWS datasets are limited on size. It makes the trained model hard to
handle unknown words which didn’t show in the training data.
Considering the impressive performance of character-level LM shown in English and Ger-
man (Akbik et al., 2018) and the character level labeling nature of JWS, we conduct ex-
periments to investigate the possibility to solve the JWS task with a character-level trained
on large unlabeled data from both feature-based and fine-tuning based approaches.

3.2 Japanese Word Segmentation
There are mainly two approaches to model the task of JWS, including

• Lattice based: In this approach, a lexicon that lists a pair of a word and its corre-
sponding part-of-speech is assumed available. The lexicon is used to build a lattice,
which represents all candidate paths. Every path consists of a candidate sequence
of tokens where each token denotes a word as well as its part-of-speech. Then
the objective is to find the best candidates path in the constructed lattice. Figure.
3.2 shows an example taken from (Kudo et al., 2004) which demonstrates how the
lattice-based method works.

• Character based： Another straightforward method to solve JWS is modeling it
as a simple sequence labeling task, in which every character is assigned a label
indicating whether there is a word boundary or not. (Neubig et al., 2011) is one of
the most widely used JWS tools which deploys such an algorithm.

Recently, due to the involvement of deep learning and the outstanding performance shown
by neural networks, methods for integrating neural networks into JWS algorithms are
also actively researched. (Morita et al., 2015) proposed a method that deploys a recurrent
neural network language model to evaluate the likely-hood of a word sequence and then
weighted sum the score to the normal lattice-based score to form a final score for each
candidate path. Such an approach archive F-1 score gains range from 0.2 to 0.6 on several
benchmark datasets. Furthurmore, (Kitagawa and Komachi, 2017) propose a method
which utilizes an LSTM to tackle the JWS task in the sequence labeling approach without
taking any external knowledge, e.g. manually collected lexicon used in (Kudo et al., 2004;
Morita et al., 2015), into account as (Neubig et al., 2011) does and outperform it with an
F1-score of 98.43.
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3.3 Proposed Methods
While treating JWS as a sequence labeling task, there are mainly two types of strategies
to assign labels to each character. The first one is called Begin/Inside/End (BIS) tagging
in which each character is assigned a tag to indicate whether it is the beginning of a word,
inside a word, or the end of a word. Another simpler setting is assigning a label from 0, 1
to each character to indicate whether a word boundary exists or not. Figure. 3.2 shows an
example to demonstrate how 0/1 labeling works with a real example. In this experiment,
we follow the second strategy as (Neubig et al., 2011) does and propose a methodology
to solve the task by transferring a pre-trained LSTM based bi-directional LM.

Figure 3.1: This figure shows how the lattice-based method works for JWS. A lattice is
constructed with a lexicon (dictionary) and every path is scored. Then one single path
with the highest score is selected from all the candidates (Kudo et al., 2004).

Figure 3.2: Segment a Japanese sentence by inferring whether a word boundary exists for
each character.
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We first train a bi-directional LSTM-based LM with unlabeled monolingual data from
Wikipedia. From the feature-based approache, we extract hidden states responding to a
character in a sequence from both of the forward and backward LM and concatenate them
to form a feature embedding for that character. The method is shown in Figure. 3.3. The
embedding is then fed to another LSTM-based sequence labeling model which is trained
with a manually labeled word segmentation dataset. On the other hand, from the fine-
tuning based approach, we simply replace the output layer of the LM with one for the 0/1
labeling task and train the LSTM network with JWS dataset.

Figure 3.3: Feature extraction from a bi-directional character-level LM

3.4 Experiments

3.4.1 Datasets
For the experiment, we use the dump data of Japanese Wikipedia (wiki-dump) 1 Kyoto
University Web Document Leads Corpus (KWDLC) 2 for LM pre-training and word seg-
mentation model training. Sentence extraction from wiki-dump is done with wikiextrac-
tor 3, which yields a monolingual corpus with 9,112,239 Japanese sentences. No further
preprocessing is applied. Sentences are segmented by character and fed to the LM. For
KWDLC, we split the dataset into train, validation and test subsets randomly, which has
10,742, 2,000, 2,000 sentences respectively.

1https://dumps.wikimedia.org/jawiki/20181120/
2http://nlp.ist.i.kyoto-u.ac.jp/index.php?KWDLC
3https://github.com/attardi/wikiextractor
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3.4.2 Model and Hyper-parameter

Experiment Setting Embedding LSTM
1-layer LSTM + fastText 100 256
1-layer LSTM + LM features 2048 256
1-layer LSTM + fastText + LM fatures 2148 256
2-layer LSTM + fastText 100 256
1-layer LSTM LM fine-tuning 1024 1024
2-layer LSTM LM fine-tuning 1024 1024

Table 3.1: Hyper-parameter setting up in the Japanese word segmentation experiments,
include the embedding dimension and the hidden state dimention of LSTM

To compare with the proposed methods, we set up a baseline in which a fastText
(Bojanowski et al., 2017) embedding is learned on the same Wikipedia data and used as a
feature extractor to train a JWS model. In our preliminary experiments, we test different
dimension choices (100, 200, 1024) for fastText embedding training but no significant
performance difference is observed. Therefore we only report the experiment results with
a 100-dimension fastText embedding. For the word segmentation model, we use a bi-
directional LSTM as the LM. We also test the effection of the hidden state dimension
choices (256, 512, 1024) on the performance. Similarly, there is no significant difference
is observed so that all the experiments below are conducted with a fixed LSTM hidden
state of 256 dimensions.
We trained a 1-layer as well as a 2-layer bi-directional LM for the pre-training. Due to
the humongous size of the wikidump data, we split the whole training into 37 splits to
make sure the data can be loaded into memory. We follow hyper-parameter settings of
(Akbik et al., 2018), the optimization is done with Stochastic gradient descent (SGD)
optimizer for 10 epochs over all the 37 splits. A learning rate scheduler with an initial
learning rate of 20.0 is deployed. Performance on a validation set is monitored and the
scheduler is responsible to reduce the learning rate by a factor of 0.25 while there is no
improvement on the validation data for 25 training splits. During fine-tuning LM on the
word segmentation dataset, we choose Adam (Kingma and Ba, 2014) as the optimizer.
The fine-tuning strategy called discriminative fine-tuning (Howard and Ruder, 2018) is
also deployed, therefore we set a learning rate of 0.005 for the LSTM part and one of
0.01 for the new appended 0/1 labeling projection layer.
The optimization of the LSTM based word segmentation model is proceeded with Adam
optimizer and early stopping. Specifically, the initial learning rate is set to 0.01 and
the learning rate is decayed with a factor of 0.5 while there is no improvement on the
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validation set for 3 epochs. The training procedure will be stopped when the learning rate
gets lower than 0.0001.
Detailed hyperparameters for each experiment settings are shown in Table. 3.1

3.4.3 Results and Analysis
In the word segmentation experiments, we report the F1-score on both validation and test
subset, as well as the number of epochs it takes to reach the score for each setting in
Table. 3.2. The first two lines in the table show the baselines where LSTM and fastText
embedding trained on Wikipedia data are used to perform the word segmentation task.
The 3rd and the 4th line show the results of using the pre-trained LM as the only feature
extractor as well as combining it with a normal fastText embedding layer respectively.
The last two lines show the results of fine-tuning character-level LMs directly to fit the
word segmentation task.
As we can tell from the results, the transfer learning of LM through feature-based ap-
proaches does not yield any performance boosting over the baseline with a fastText em-
bedding. Furthermore, lowe performance is observed while combining the features ex-
tracted from the LM and the fastText layer. The humongous size of input features may be
considered as the cause. On the other hand, though performance increase is not observed
during the 1-layer LSTM LM based fine-tuning experiment, the 2-layer LSTM LM based
experiment shows the highest F1-score among all the experiment settings, including its
baseline of 2-layer LSTM + fastText setting, with much less training epochs. It is consid-
ered that useful knowledge for word segmentation is learned during the pre-training on
the LM objective.

Experiment Setting F1-score (Valid) F1-score (Test) Epoch
1-layer LSTM + fastText 97.04 96.70 114
2-layer LSTM + fastText 97.06 97.10 114
1-layer LSTM + LM features 97.07 96.66 148
1-layer LSTM + fastText + LM features 96.86 96.49 139
1-layer LSTM LM fine-tuning 96.03 95.53 4
2-layer LSTM LM fine-tuning 97.37 97.13 7

Table 3.2: F1-score (on validation and test data) and the number of epochs for each ex-
periment setting
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3.5 Summary
In this research, we investigate the possibility to transfer a character-level LM trained on
unlabeled Wikipedia data to tackle the task of Japanese Word Segmentation through both
feature-based and fine-tuning based methods. The proposed method does outperform
several baselines we set in our experiments, however, the performance gain does not meet
our expectations. For the further work, there are mainly two ideas:

• Further error analysis to try to explain the reason for the performance decreasing
happen while using the character-level in the feature-based approach.

• Due to the limited computation resource during the period of this research, we
only attempt to train an LSTM-based bi-directional language model with Wikipedia
dump data. Beyond that, we are also planning to train a Transformer based language
model with a Masked Language Model task as BERT (Devlin et al., 2019) propose.
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Chapter 4

Contextual Sentence Filtering for
Context-Aware Machine Translation

4.1 Context-Aware Machine Translation
Recently, due to the success researchers archived at Sent-MT with the power of NNs,
context-aware becomes one of the most actively researched subfields of MT. (Tiedemann
and Scherrer, 2017) is one of the earliest attempts on context-aware machine translation
by using extended context information under the normal attention-based NMT frame-
work. They took two approaches to extend the context while training NMT models. The
first one is the extended source, which means including previous sentences as context to
improve the encoder part of the network only. The other approach is to extend translation
units, in which both the input of the encoder and the decoder are increased to include
more segments. When the size of the extended contextual unit is restricted to 1, the ex-
tended source and the extended translation units are also called Model 2+1 and Model
2+2, or 2-to-1 and 2-to-2 respectively. Their experiments on German-English translation
with subtitle data shows that NMT framework can handle wider context and is also able
to distinguish information coming from different segments and discourse history. The
extended context can also help the model to archive higher scores on several metrics in-
cluding BLEU, chrF3, precision, and recall.
Beyond such kind of context-aware MT systems that uses limited contextual units, re-
cently another approach is getting noticed in which contextual units are fed to the NMT
system as long as they fit into memory. (Junczys-Dowmunt, 2019) experimented with se-
quences of up 1000 subword segments with a deep Transformer based model. They used
given document boundaries to concatenate parallel sentences into document sequences.
The result document pairs are assured that there is the same number of sentences on both
the source and the target sides. Specifically, they add special symbols for document start
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(< BEG >) and end (< END >), as well as for sentence separators (< SEP >). An-
other two special symbols (< BRK >) and (< CNT >) are used instead of (< END >)
for the end of a sequence and (< BEG >) for the next sequence respectively, in cases
where documents exceed their length limit of 1000 sub-word tokens.
The idea of including more contextual information does show performance, in the sense
of BLEU score, in context-aware machine translation. However, there remain several
open questions. In this research, we attempt to answer two of them with our experiments
in English-Japanese translation, which are

• whether concatenating previous sentences that are selected in a fixed way (e.g.
always picking the one before) is a proper approach for

• whether all the sentences benefit from

taking additional contextual information into account.

4.2 Dataset

4.2.1 Statistics
Although there are several large enough sentences aligned English-Japanese parallel cor-
pora public available 4, there does not exist open document aligned corpus with sufficient
size. In this research, we used a dataset that builds upon our previous work (Rikters et al.,
2019), which introduced the initial smaller version of Bussiness Conversation Corpus
(BSD). We extended it with the translated versions of the AMI Meeting Corpus (AMI)
and the English part of OntoNotes 5.0 (ON) corpus. In the current version, we added
more data to the BSD corpus, increasing its size by 1.5 (from 955 scenarios, 30,000 par-
allel sentences to 1462 scenarios, 44,800 parallel sentences), and combined all three parts
into one conversation corpus of considerable size. Detailed statistics for the whole BSD
is shown in Table 4.1, and that for the translated version AMI and OntoNotes are shown
in Table 4.2.
The conversation corpus alone is not large enough to train real-world NMT sytems so
that we supplemented it with a much larger in-house training dataset, which consists of
document-aligned parallel news articles. The news corpus provides 298,597 sentence
pairs and all the four corpora give us a total training data of 478,138 sentence pairs.
For validation and test data, we use the development and evaluation splits for BSD, which
have 2051 and 2120 sentence pairs respectively, since it is the least noisy part of the
conversation corpus. Table 4.3 shows an example of the corpus.

4http://www.phontron.com/japanese-translation-data.php
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Scene Scenarios Sentences
JA→ EN

face-to-face 257 7,654
phone call 128 3,741

general chatting 149 4,806
meeting 146 4,943
training 26 989

presentation 9 267
sum 715 22,400

EN→ JA
face-to-face 237 7,161
phone call 154 4,525

general chatting 159 4,457
meeting 148 4,651
training 23 700

presentation 26 906
sum 747 22,400

Table 4.1: Statistics for the full version of BSD, where JA → EN represents scenarios
which are written in Japanese then translated into English and EN→ JA represents sce-
narios constructed in the reverse way.

4.2.2 Analysis
In order to identify the main issues of Doc-MT on conversation data, and considering
that the full version of the corpus (all three parts) contains scenes other than business
ones, we first extend the analysis conducted in Section 3 of (Rikters et al., 2019) to
AMI and ON. However, in contrast to the original analysis, which mainly focuses on
Japanese→English translation, we investigate the contextual information requirements
for English→Japanese machine translation. To make the results comparable to the origi-
nal work, we use Google Translate 5 to produce automatic translations for the analysis.
Since a single scenario in AMI and ON is much longer than the ones in BSD, instead of
sampling based on scenarios, we randomly sample 200 and 100 sentence pairs from ON
and AMI respectively. In the case of ON, half of the pairs are from BC and the other
half are from Tele. Then we translate the English sentences into Japanese with Google
Translate and check the translations for fatal translation errors, ignoring fluency or minor
grammatical mistakes.
Unlike the results shown in Japanese→English translation, in which more than a half of

5https://translate.google.com/ (Nov 2019)
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Dataset Scene Scenarios Sentences
AMI meeting 171 110,483

OntoNotes BC 27 14,354
Tele 46 14,075

Table 4.2: Statistics for translated version of AMI and ON corpora contained in this work.
BC stands for broadcasting and Tele stands for telephone conversation.

Scene: general chatting about the welcome party for new colleagues
Japanese English

Speaker Content Speaker Content
... ... ... ...
大東 となると、またいつもの居酒屋です

か？。
Oohigashi Then should we go to the sama Izakaya

as always?
高田 たまには別のところがいいな。 Takada We could try somewhere else for a

change.
大東 とういうジャンルにしますか？。 Oohigashi What kind of food should we choose?.
市田 中華料理とかどう？。 Ichida How about Chinese?
市田 円卓囲めば、より一層親睦を深めら

れそうだ。。
Ichida We could bond much easier if every-

body sits facing one another at a round
table.

大東 中華料理ですか、結構こってり系で
すね。

Oohigashi Chinese food, it’s a little heavy.

市田 若い社員がメインだからね。。 Ichida We have mostly young employees.
... ... ... ...

Table 4.3: An example of the Japanese-English business conversation parallel corpus.

the errors are due to Zero Anaphora6, there are mainly two types of causes for errors we
detected in this analysis, namely phrase ambiguity (PA) and absence of world knowledge
(AWK). Detailed results are shown in Table 4.4.
As we can tell from the results, most of the errors (15 out of 18) are caused by phrase
ambiguity, for which taking a context sentence(s) into account can be considered as a
possible solution. On the other hand, the scenarios in ON-BC contain a variety of named
entities (an example from our analysis is Shia, one of the two main branches of Islam) and
abbreviations (such as CPC, which stands for Communist Party of China in one example
we meet). To solve such an issue, a more broad variety of training data would be required
or other additional mechanisms that take world knowledge into account.

6A grammatical phenomenon happened in Japanese, in which some arguments of verbs are often omitted
from the phrases when they are obvious from the context.
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Dataset Scene PA AWK
AMI meeting 6 0

OntoNotes BC 5 3
Tele 4 0

Table 4.4: Two types of causes for fatal errors detected in the English→Japanese machine
translation error analysis.

4.3 The One Sentence Before is not Always the Contex-
tual One

To answer the first question, we start by identifying whether one sentence before is
the best choice for extending the context. In our setting, given a document pair Ds =
XM

1 and Dt = Y M
1 where Xi and Yi are aligned parallel sentences. With this definition,

a normal 1to1 system takes Xi and Yi as source and target respectively. Then a simple
2-to-1 system used by (Tiedemann and Scherrer, 2017) can be defined as a system takes
Xi−1 and Xi for source and the correspond target Yi of Xi for target.
To compare with the normal 2-to-1 system, we furthermore trained 5 additional systems
which take Xi−2, Xi−3, Xi−4, Xi−5 as the extended context input respectively for both
EN→ JAand JA→ EN directions. We concatenate the context sentence and the source
sentence with a special symbol “@@CONCAT@@” and feed them into a single encoder.
An example should look like “I am a master student . @@CONCAT@@ And I am work-
ing on NLP .”. For the first k-th sentences where the bias of the context sentence is set
to k, we concatenate them with the special symbol only which yields an example looks
like “@@CONCAT This is an example.”. We then uses DataXi−k

to denote the data where
Xi−k and Xi (k = 1, ···, 5) are concatenated as the source sequence. Model that is trained
with DataXi−k

can therefore be denoted as ModelXi−k
.

We used Transformer architecture based encoder-deocder model. What is worth to note
here is that, in the original paper of (Vaswani et al., 2017), after each operation such
as multi-head attention and feed-forward projecting, three types of regularization meth-
ods are applied in the order of Dropout (Srivastava et al., 2014), residual connection (He
et al., 2016), and layer normalization (Lei Ba et al., 2016). However, in the reference
implementation code released as tensor2tensor 7, they suggested that moving the layer
normalization before each operation as a preprocessing and postprocessing the output
with dropout and residual connection only is more robust during learning. In our experi-
ments, we followed the approach taken in the released code.
We used the fairseq toolkit (Ott et al., 2019) to conduct all our MT experiments. The

7https://github.com/tensorflow/tensor2tensor
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data was tokenized by a single Sentencepiece (Kudo and Richardson, 2018) that is jointly
learned on the training data in both English and Japanese. The shared vocabulary size was
set to 32,000. For hyperparameter, we followed (Rikters et al., 2019). Both the encoder
and the decoder consist of 6 multi-head self-attention layers, each layer has 8 attention
heads. We set the dimension of word embeddings and hidden layers to 512 and apply
a dropout of 0.2. The maximum sentence length is restricted to 128 symbols for both
1-to-1 and 2-to-1 systems. Thanks to the half-precision training supported by fairseq, we
were able to use a larger batch size of 2048 words and a checkpoint frequency of 4000
updates. To train every model until they reach convergence, we used a scheduler to decay
the learning rate by a factor of 0.7 while there is no improvement on the validation split
for 10 times. The initial learning was set to 0.0001.
During the evaluation, we use a beam search size of 6 to generate output from the source
sentences. The output is retokenized with Sentencepiece and the Japanese sentences are
further tokenized into words with Mecab (Kudo et al., 2004). The BLEU scores for each
system is computed with sacreBLEU 8 on both validation and test splits. In Table 4.5, we
report the BLEU when evaluating ModelXi−k

with DataXi−k
with the best models bolded.

First of all, we can tell most of the 2-to-1 systems outperform the 1-to-1 baseline which
re-confirm the fact that taking additional information into account does improve the per-
formance in most cases. Additionally, we can tell from the results that the most widely
used setting of ModelXi−k

did not give out the best score on both EN→ JA and JA→ EN
translation directions. It turns out that ModelXi−5

and ModelXi−4
archive the best scores

in EN→ JA and JA→ EN respectively. We can observe that the best-performed models
take sentences which locate rather far from the source sentence. Such a result is surpris-
ing since it does not match the intuition that sentences closed to each other should be
more relevant to each other. It shows that at least in the domain of business conversation,
context-aware machine translation needed to consider contextual information more than
the one-sentence before.
We furthermore conducted a so-called cross-evaluation to confirm our observation. Other
than test DataXi−a

which in the same format as the training data that ModelXi−a
is trained

with, we feed all variant of test data DataXi−k
where k = 1, · · ·, 5 to ModelXi−a

and eval-
uate BLEU scores on the generated translations. This can be considered as a robustness
test that can be used to identify the best one among the five 2-to-1 systems for each di-
rection. The results for EN→ JA and JA→ EN are reported in Table 4.6 and Table 4.7
in which each column represents different models and each row represent the variants of
data format. We also report the mean of scores that a single model archives on different
variants of data.
From the cross-evaluation results, we can tell that ModelXi−5

and ModelXi−4
archives

most highest BLEU scores and the highest average score on the five variants of data in
8https://github.com/mjpost/sacreBLEU
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Models Model1-to-1 ModelXi−1
ModelXi−3

Data Subset valid test valid test valid test
EN→ JA 15.11 14.65 14.82 15.33 14.94 15.20
JA→ EN 16.90 17.10 17.13 17.21 17.31 17.46

ModelXi−3
ModelXi−4

ModelXi−5

valid test valid test valid test
15.01 14.98 14.69 15.38 15.46 15.43
17.14 16.89 17.51 17.46 16.73 17.15

Table 4.5: BLEU scores of baseline models on validation and test splits of BSD

EN→ JA ModelXi−1
ModelXi−2

ModelXi−3
ModelXi−4

ModelXi−5

DataXi−1
15.33 15.41 15.31 15.31 15.46

DataXi−2
15.08 15.20 15.40 15.53 15.44

DataXi−3
15.00 15.45 14.98 15.37 15.43

DataXi−4
15.18 15.41 15.22 15.38 15.50

DataXi−5
14.92 15.01 14.94 15.24 15.43

Mean 15.10 15.30 15.17 15.37 15.45

Table 4.6: BLEU scores of 2-to-1 cross evaluation for EN→ JA translation

EN → JA and JA → EN respectively. Such a result confirms the observation acquired
from the normal evaluation. Moreover, it reveals the fact that the model achieves the best
result also owns the robustness to handle data in other formats, sometimes even outper-
form the model that is trained on that data format. The fact imposes that selecting proper
contextual sentences during training is crucial not only for performance improvement but
also for the robustness of the resulted model.

4.4 Contextual Sentence Filtering by Fine-tuning BERT
Considering the facts observed in the experiments as described above, the question about
how to identify the proper context sentences arises naturally. We then investigate the nec-
essary by applying transfer learning on pre-trained language model BERT.
At first, we calculate the oracle BLEU scores based on our 2-to-1 NMT models to show
how far a perfect contextual sentence filtering model can archive if it can locate the correct
context for each sentence. For each example in the validation and test set, we compute
sentence-level BLEU for the output of all the give 2-to-1 models corresponding to the
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JA→ EN ModelXi−1
ModelXi−2

ModelXi−3
ModelXi−4

ModelXi−5

DataXi−1
17.21 17.21 16.99 17.30 17.31

DataXi−2
17.00 17.46 16.98 17.57 17.18

DataXi−3
17.07 17.31 16.89 17.13 17.24

DataXi−4
17.11 17.24 16.86 17.46 17.04

DataXi−4
16.92 17.47 16.98 17.41 17.15

Mean 17.06 17.34 16.88 17.37 17.18

Table 4.7: BLEU scores of 2-to-1 cross evaluation for JA→ EN translation

example and select the one which achieves the highest score as the oracle example. Then
we get a list of oracle translation which is generated by the best one of our models for
each sentence and recalculate the corpus BLEU of this oracle output.
The additional contextual sentence used by a 2-to-1 model also brings randomness which
a 1-to-1 does not have. To omit such randomness, we trained a noised 2-to-1 model
in which a random sentence sampled from another corpus (JESC 9 is used in our ex-
periments) is taken as the contextual sentence. Such a 2-to-1 model should treat the
additional sentence as noise and omit it while generating the target. During oracle score
calculation, we first feed DataXi−k

to the noised 2-to-1 model to get a base score, namely
Scorebase Xi−k

, in which Xi−k should be treated as noise only. Then DataXi−k
is fed to

ModelXi−k
to acquire a normal score ScoreXi−k

. When selecting oracle sentences that
get the highest score among all the models, we use a so-called Scorereal, which keeps
the same as the normal score for Model1-to-1 and is calculated as follows for all the other
models:

Scorereal = ScoreXi−k
− (Scorebase Xi−k

− Score1-to-1)

We show the final results in Table 4.8. The numbers reveal the upper bound performance
of such a context sentence filtering based approach.
We also illustrate the distribution of the “correct” contextual sentences’ location in Figure
4.1 and Figure 4.2. From the graph, we can tell several facts about the context information
requirement in context-aware machine translation:

• Different language has different needs for contextual information. As our data
shows, EN → JA tends to refer to sentences that have a distance as far as 5 sen-
tences before (on test split). On the other hand, JA → EN tends to refer to the
sentences that short distance such as 2 or 3.

• The requirements on the contextual information even vary for the same language
on a different subset of data. For example, in JA → EN translation on BSD data,

9https://nlp.stanford.edu/projects/jesc/index ja.html
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Valid Test
EN→ JA 21.13 20.84
JA→ EN 23.26 23.44

Table 4.8: Oracle scores on validation and test data if there exists a perfect model that can
always select the correct contextual sentence.

sentences in the validation split tend to benefit from the information for the sentence
2 sentences before while the number is 3 for the test split.

The results showed that the contextual information requirement can be so complicated
that a rule-based context selector is not enough in most cases. Such a fact imposes that
an ML model may be needed to address the issue of contextual sentence filtering for MT
systems.

Figure 4.1: The distribution of contextual sentences’ location in the oracle results in
EN → JA . Figure on the left is for the validation split and the one on the right is for
the test split. Label 1 to 5 means that distance between the source sentence and the con-
textual sentece which yield the oracle score. Label 0 stands for sentences archive best
BLEU without taking additional information into account. For each graph, the left y-axis
represents average sentence BLEU scores and the right y-axis represents count for each
contextual sentence distance.
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Figure 4.2: As same as Figure 4.1 but for JA→ EN

4.4.1 Next Sentence Prediction Fine-tuning
The problem of contextual sentence filtering can be treated as a sequence pair classifica-
tion task. For each source sentence Xi, we fed it with one sentence before it Xi−k within
a context window w and output a label from {0, 1} to indicate whether Xi−k is the contex-
tual sentence for Xi. Under such a setting, BERT (Devlin et al., 2019) which utilized the
task called Next Sentence Prediction (NSP) during pre-training was chosen as our start
point.
We first fine-tune BERT with NSP objective with the same training data as that used in
MT experiments for 2 epochs. During fine-tuning, the pair of Xi−1 and Xi are treated as
a positive example and the pair consists of Xia sampled sentence among all the sentences
before it are treated as a negative exmaple. Then we take an approach similar to (Sun
et al., 2019), feed every Xi−k along with Xi and score it with the output of BERT. The
difference between (Sun et al., 2019) and our method is that we used the hidden state
corresponding to label “1” before the softmax function instead of the probability corre-
sponding to “1” after the softmax. After the scoring procedure, we select the Xi−k with
the highest score as the contextual sentence for Xi. The scoring and selection are per-
formed on the whole training, validation, and test to form a novel data format which can
be denoted as Datafiltered. A 2-to-1 NMT system is then trained and validated with the
filtered data.
We used the uncased BERT-Base for EN → JA. For JA → EN, instead of using the
multi-lingual BERT released by Google, we use a Japanese-only BERT model released
by Tohoku University 10. During fine-tuning, we use AdamW optimizer (Loshchilov and
Hutter, 2017) with a learning rate of 0.00005. We set the window size w to 5 for the con-
textual sentence filtering procedure. For 2-to-1 NMT model training, we used the same

10https://github.com/cl-tohoku/bert-japanese
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BERT FT
Filtered

Best from
the baselines

Data subset Valid Test Valid Test
EN→ JA 14.70 15.28 15.46 15.43
JA→ EN 17.40 17.97 17.51 17.46

Table 4.9: BLEU score from normal evaluation for the BERT Fine-tuning (FT) based
contextual sentences filtering.

hyperparameter as all the baselines and report the BLEU score the final NMT model in
Table 4.9.
As we can tell from the results, 2-to-1 systems trained with the BERT filtered data out-
performed the best of the baselines in both JA→ EN by a margin as large as 0.51 BLEU
score. On the other hand, the same result did not hold on the validation split. In the
case of EN→ JA, the decrease of BLEU score reached 0.73 and 0.48 on validation and
test splits resepctively. Such a result reveals that the NSP fine-tuning does provide some
knowledge for contextual sentence filtering for JA→ EN but it does not generalize well
on different languages and different subsets of data.

4.4.2 Multi-Tasked Fine-tuning
We blame the poor generalization of NSP fine-tuning to the absence of knowledge related
to MT during the procedure of fine-tuning. Therefore BERT only learned about how to
distinguish sentence pairs with are adjacent to each other from those are not. We then
hypothesized that to make sure the fine-tuned BERT be able to identify contextual sen-
tences that can provide information crucial to translation, MT related knowledge should
also be learned during fine-tuning of BERT. Therefore we extend the standard fine-tuning
framework by comprehending it with a single layer LSTM based decoder. As illustrated
in Figure 4.3, comparing to the normal NSP fine-tuning method in which the hidden state
of [CLS] is only fed to the classifier, we also use that vector as the initial hidden state
of the LSTM decoder and feed the target sentence to the decoder. Additionally, we also
concatenate the hidden state of [CLS] to the token embedding at the target side before
feeding them into the decoder as (Artetxe and Schwenk, 2019) suggested.
We use the same hyperparameter as the NSP fine-tuning experiments except that we apply
a larger learning rate of 0.001 for the decoder. The window size setting at inference time
keeps the same as 5. The BLEU scores on the 2-to-1 NMT models trained with the data
filtered with our proposed method are reported in Table 4.10.
By adding the decoder into the fine-tuning framework, significant improvements of 0.21
and 0.57 BLEU is observed on the validation and test splits respectively are observed in
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Multi-task
FT Filtered

Best from
the baselines

Data subset Valid Test Valid Test
EN→ JA 14.94 15.52 15.46 15.43
JA→ EN 17.10 17.33 17.51 17.46

Table 4.10: BLEU score from normal evaluation for the proposed filtering method.

EN→ JA translation. However, the performance on the validation split is still lower than
the strongest baseline model. Furthermore, in JA → EN translation, the introduction of
decoder brought a drop of 0.3 and 0.64 on the two subsets. Such a result reveals that our
multi-task modification to the fine-tuning framework still can not solve the poor general-
ization issue. There drives us to the next reform.

Figure 4.3: Illustrations about the proposed multi-task fine-tuning on BERT.

4.4.3 Better Negative Examples
In the basic multi-task fine-tuning framework we proposed, the same target sentence is fed
to the decoder for both the positive and the negative example for a source sentence. Such
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Multi-task FT +
Translated

Source

Best from
the baselines

Data subset Valid Test Valid Test
EN→ JA 15.47 15.58 15.46 15.43
JA→ EN 17.68 17.72 17.51 17.46

Table 4.11: BLEU score from normal evaluation for the proposed filtering method with
translated source as target for negative examples.

a setting did not improve the generalization capability of NSP fine-tuing. Therefore we
hypothesized that the sentence on the target side can not provide enough teacher signal to
the source side BERT so that the crucial knowledge to identify contextual sentences can
not be acquired during the fine-tuning. Some types of penalties should be introduced to
help BERT distinguish between good contextual sentences and bad ones. Our idea here
is instead of feeding the same target which is the correct one to decoder for both positive
and negative examples, we feed a pseudo target sentence which is translated from the
source sentence by a sentence-level NMT model. We hypothesized such an approach can
provide more teacher signals to BERT and therefore help it acquire knowledge that is
crucial for contextual sentence filtering.
For the pseudo target sentence generation, we used the base model that is released by
NTT which is trained with JParaCrawl 11. All the other hyperparameter settings are kept
the same as the basic multi-task fine-tuning experiment. The BLEU scores of the resulted
2-to-1 NMT models are reported in Table 4.11.
As we can tell from the table, in both EN→ JA and JA→ EN , the performance of the
sentence filtering based NMT model is boosted by the multi-tasked fine-tuning framework
and the refined negative examples. The BLEU scores exceed all the baselines models on
both validation and test splits. However, the score on the test split for JA→ EN did not
exceed the one yielded by the NSP fine-tuning based filtering model.
The results reveal that the full version of our proposed method, including the multi-task
fine-tuning framework and the idea of using a translated source as the target sentence for
negative examples, did show significant improvement in both EN→ JA and JA→ EN ,
as well as solved the generalization issue among different subsets of data. But it did not
beat the NSP fine-tuning baseline in all experiment settings.

11http://www.kecl.ntt.co.jp/icl/lirg/jparacrawl/
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4.4.4 Analysis
The results of our experiments reveal that the NSP fine-tuning and our proposed multi-
task fine-tuning have different behavior and they have strength at different translation
directions. A natural question arises here is what is the differences between the contextual
sentences selected by the two kinds of models. We collect the filtered results on the
test split for our best performed multi-task fine-tuning based model and normal NSP
fine-tuning based one. The graph on the left of Figure 4.4 illustrates the distribution of
the selected contextual sentences’ relative positions selected by both of the models for
EN→ JA . And the green histograms in the graph on the right side also shows the number
of cases in which our proposed method picks the different contextual sentences from the
NSP fine-tuning based one. The observation can be mainly summarized as:

• Even being comprehended by a decoder, the fine-tuning procedure in our proposed
method is still highly relevant to the normal NSP. As we can tell from the graph,
both the proposed method and the NSP only method produce a context filter that
similarly picks contextual sentences. Especially both of them are most likely to
pick the sentence before. The proposed method even picked one sentence before
more often.

• On the other hand, as we can tell the graph on the right side, these two methods are
picking different contextual sentences for the same sentence in many cases even
they share a similar overall distribution. This fact reveals that even they are highly
related, they are still filtering contextual sentences in significant different behaviors.

Figure 4.5 shows the same graphs for JA→ EN. What is confusing here is that the NSP
fine-tuning based filter model decide that the source sentence does not require a contextual
sentence mostly, regardless the fact that it is trained with a objective to select the one
sentence before. We do not have a proper hypothesis to explain this for now. Further
exploration is still necessary.
With the positions of the oracle sentences, which are identified as described at the start
of this section, as ground truth of the position of the contextual sentences, we also exam
how many does each of the two methods select correctly for the test split. We report the
results in 4.12. From this point of view, the high performance of JA→ EN test split can be
caused by this high accuracy. On the other hand, the accuracy does not vary significantly
in EN→ JA for both our proposed method and the NSP fine-tuning based approach.
It is deserving to note that the NSP fine-tuning based filter does produce a distribution of
the contextual sentences’ positions which is similar to the oracle one in JA→ EN. Such
similarity could also be the reason for the high score of the NSP fine-tuning approach on
the test split for JA→ EN. However, such effectiveness does not seem robust since it could
not generalize well even the distribution of the valid split in JA→ EN is more similar to
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Multi-task FT +
Translated

Source

BERT NSP
FT

EN→ JA 241 / 2120 246 / 2120
JA→ EN 274 / 2120 339 / 2120

Table 4.12: Precision of two types of filters we experimented on the test split, with the
oracle examples as the ground truth.

that of filtered contextual sentences’ positions. Further exploration is required to confirm
whether the cause for the high performance on JA→ EN test split is randomness or not.

Figure 4.4: The left shows the distribution of contextual sentences filtered by our pro-
posed method and the normal NSP fine-tuning for EN→ JA on the test split. The figure
on the right also shows the number of cases in which the two methods picked different
contextual sentence for the same sentence.
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Figure 4.5: As same as Figure 4.4 but for JA→ EN
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Chapter 5

Conclusion

5.1 Summary of Findings
This research investigates the effectiveness of applying transfer learning based on lan-
guage models on two tasks. Over the course of this thesis, we present both our prelimi-
nary example about applying transfer learning on character-level language model to solve
the Japanese Word Segmentation task, as well as our main experiments to investigate
the necessity and possibility of contextual sentence filtering for context-aware machine
translation. Our main findings can be mainly summarized as:

• Additional information is usually required to acquire accurate translations in context-
aware machine translation. As we can tell from the analysis of our 12 baseline con-
centration machine translation systems, most of the sentences can acquire higher
BLEU scores by taking previous sentences into account. Another fact revealed by
our experiment that selecting proper contextual sentences is not only crucial for
performance but also the robustness of the final model.

• Different language has different requirements for contextual information. It is
shown by the oracle sentence distributions on our test set for both EN → JA and
JA→ EN translation. For oracle results we computed based on our baseline models,
context-aware translation for EN→ JA benefits most from taking the first previous
sentence or the sentence before that one. On the other hand, JA → EN transla-
tion sometimes requires further context sentences as far as a previous fifth one (the
window size we set in our experiments) at least in business scene conversations.

• The proposed multi-task based fine-tuning on BERT shows effectiveness and ro-
bustness in both EN → JA and JA → EN by beating all the baselines with fixed-
distance contextual sentences. Translated source sentences on the target side pro-
vide more teacher signals and become the key element for the performance-boosting.
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However, it does not outperform the NSP fine-tuning based filtering model on test
split in JA→ EN , which requires more exploration to identify whether the reason
is randomness or not.

5.2 Future Work
Although the proposed multi-task fine-tuning method shows effectiveness in contextual
sentence filtering in EN→ JA translation, there remains a variety of questions require to
be answered by further investigation.
First, for the reason why the same methodology does not work in JA→ EN direction, one
of the possible explanations in our mind is that Japanese requires sentences further than
the one before as contextual information. The property or features of such contextual
sentences is not well learned since we use the previous sentence as a positive example
during the fine-tuning. However, more analysis is required to verify the real cause of the
difference.
Second, as mentioned above, we use the previous one sentence as a positive example
during fine-tuning which is oversimplified and can be considered problematic. Better
methodology to label the training data for our contextual sentence filtering model is re-
quired to improve the performance further. One possible approach in our mind is fully
utilizing the 12 baseline models to generate positive labels based on metrics such as BLEU
scores and the negative log-likelihood loss.
Third, in this thesis, we only experiment with simple concatenation context-aware ma-
chine translation systems. Beyond that, we are planning to train document-level systems
with a limited size of crucial contextual information filtered by our proposed method and
compare it with systems utilizing the whole document.
Forth, all the evaluation in our MT experiments is conducted with BLEU, which some-
times can be irrelevant to the semantics of a sentence. As the next step, we want to
perform human evaluation to identify whether NMT systems trained with the proposed
methods can produce better translation than baselines in the sense of semantics.
Last but not least, we only test our proposed method on limit sized English-Japanese data
in news and conversation domains. Further experiments to investigate the effectiveness
of the proposed method on other language pairs, as well as on larger datasets and datasets
from other domains.
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