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Abstract 

In order to meet the demands for ultra-compact and low-power devices for on-chip 

optical interconnect, various types of metal-clad cavity structures have been 

investigated, which offer distinctive advantages to achieve ultra-small device footprint, 

high thermal conductivity, and low-resistance electrical contact. However, since these 

metallic cavities are covered by metal, efficient light extraction and coupling to a 

waveguide has been one of the important issues.  

In this research, I have introduced the detailed design and simulation result of the 

2.3-m-long metal-clad cavity integrated with an InP waveguide. Two essential 

parameters have been optimized through FDTD simulation. By optimizing the length 

of the cavity and thickness of the upper InP cladding, we maximized the Q factor of the 

resonant mode as well as the extinction ratio. We investigated that the extinction ratio 

could be enhanced significantly from 1.98 dB to 4.32 dB. Also, the Q factor enlarged 

from 296 to 535 in 2D FDTD simulation.  

We also improve the fabrication process, especially the condition of HSQ and SiO2 

dry etching. From the transmission characterization, we successfully get the 

measurement of the resonance in the cavity at about 1500 nm, which agrees with the 

simulation result by FDTD. 

To further enhance the Q factor at the resonance wavelength, we also numerically 

investigate a novel structure based on a horn-shaped metal-clad cavity, coupled to an 

InP waveguide. By adjusting the slope angle of the SiO2  insulating layer, we 

demonstrated that the Q factor could be enhanced significantly from 152 to 408. We 

have then demonstrated the applicability of this structure to a compact modulator with 

an internal loss of 1.5 dB and the extinction ratio of 3.2 dB. We expect that the device 

performance could be further improved by optimizing the structure in the width 

dimension. The possibility of high-speed modulation is expected due to the low-

resistance electrical contact of the metallic cavity. In the fabrication part, we 

successfully deposit the horn-shaped SiO2 film by using the EB evaporator. 
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Chapter 1  Introduction 

1.1  Optical interconnect 

In recent years, due to the scale down of electronic device size, the performance of 

LSI has increased, but delays due to electric wiring and an increase in power 

consumption become problems. As means to solve this problem, optical interconnects: 

photonic integrated circuits are studied. It is thought to be able to demonstrate better 

performance without changing the carrier from electricity to light. In one way, the data 

load is multiplied by many orders compared with electric lines, which enables much 

more diverse and complicated applications. In another, the terminal devices are also 

becoming more miniaturized and mobile. [1-4]. Based on their advantages, this 

integrated optical device has been extensively studied in recent years. And as you can 

see from Fig. 1.1, the number of devices per chip increases exponentially from year to 

year. 

 

 

Fig. 1.1 Photonics Moore’s Law of PICs [4] 

 

As described above, data traffic has dramatically increased, but communication by 

electronic wiring between cores on a Si chip and copper wiring at server data centers is 

due to its power consumption and communication delay [5]. As wiring density and 

clock rate of silicon chip increase considerably, high energy consumption and 

propagation delay pose to be roadblocks for further development. This is also well-

known as Interconnect Bottleneck:E ≥ 𝐶𝑉2, where C is the capacitance of the wiring, 

and V is the voltage applied to the wiring. Since it is difficult to reduce the capacitance 

C, further energy saving is difficult when using electrical wiring. Also, the delay of 
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signal propagation is proportional to RC, where R is the resistance, so there is a 

limitation to low delay. 

 

 
Fig. 1.2 Cross-section of hybridized interconnect structure [3] 

 

Among them, the concept of photonic integrated circuit (PIC) was proposed by S. 

E. Miller in 1969 [6]. It is a device that integrates multiple photonic elements to 

achieve complicated. Many devices have been developed by research and 

development, such as optical switch elements and optical modulators. Concerning 

optical devices in PICs and optical interconnects, it is required to use nanoscale as a 

performance index, modulation speed of 10 GHz or more, energy consumption lower 

than 10 fJ / bit [7]. Nano cavities are attracting attention to meet these requirements. 

1.2  History of nano devices 

To meet the demands on small devices for optical interconnect, the metal-clad cavity 

has been greatly studied in recent years, which offers distinct advantages to achieve 

small device footprint, high thermal conductivity, and low-resistance electrical contact 

[8,9]. In addition to the improvement of their performance, miniaturization is also a 

remarkable trend. From Fig. 1.3, we can see the miniaturization of the laser by time. 

In 1960, the first solid laser was made called Ruby Laser [10]. Moreover, the 

Semiconductor Laser was proposed two years later [11]. The vertical-cavity-surface-

emitting laser (VCSL) was born in 1980, which shrank into 100 μm [12]. After that, a 

few micrometers size of microdisk laser demonstrated by using a 1300 nm wavelength 

InGaAsP/InP material for an active layer [13]. Although the dimension of laser is 

successfully shrunk over several micrometers, still larger than diffraction limit and light 

cannot be confined inside a volume which is smaller than its wavelength because of the 

intrinsic characteristic of electromagnetic waves.  
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Fig. 1.3 The miniaturization of the nano devices by time [14] 

 

Also, since 2007, when the metallic cavity semiconductor laser was demonstrated for 

the first time in the world broke the ice [14,15]. Fig. 1.4 (a) shows the structure of the 

metallic laser, which is mainly composed of three parts: semiconductor pillar, insulator 

thin film, and metal coating. The material of pillar from bottom to top is 

InP/InGaAs/InP/InGaAs, which forms a heterojunction. This structure enables lasing at 

near 1550 nm. The diameter of the pillar is about 260nm and the thickness of the active 

layer is 300 nm. Besides, insulators, such as SiN and SiO2, can insulate the n and p 

region. The whole pillar is covered with gold. Light is confined inside the pillar, as 

shown in Figure 1.4(c). Since the skin depth of light is only 10s of nanometers, two 

metallic lasers can operate independently without any coupling even when they are very 

close to each other. 

    

Fig. 1.4 (a) Structure of the cavity formed by a semiconductor pillar encapsulated in gold. (b) Scanning electron 

microscopy (SEM) image of a fabricated pillar without metal. The scale bar represents 103 nm. (c) Simulated 

electric-field intensity of the optical mode in the fabricated pillar [15]. 
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1.2.1  Plasmonic devices 

The metallic devices can be generally divided into two types: plasmonic devices 

and dielectric devices. A plasmonic laser is based on SPP (Surface Plasmon Polariton) 

that confines light beyond the diffraction limit (λ0/ 2n) by using a state in which the 

vibration of an electromagnetic wave and the vibration of an electron on a metal 

surface are coupled [16]. The Plasmonic laser published in 2009 forms a MIM (Metal-

Insulator-Metal) waveguide structure in which a thin semiconductor layer consisting 

of a heterojunction structure of InP and InGaAs is covered with Ag (Fig. 1.5) [17]. In 

the paper, a device with a semiconductor layer about 130 nm thick oscillates at an 

oscillation wavelength of 1470 nm at 78K. The threshold current is approximately 40 

μA. 

 

 

Fig. 1.5 (a) Structure of the MIM(Metal-Insulator-Metal) plasmonic laser. (b) SEM image of the semiconductor 

layer [16]. 

1.2.2  Dielectric devices 

 

Dielectric device mainly uses metal clad as mirrors and plasmonic mode is 

unwanted. Fig. 1.6 shows the disk-shaped laser operating below 140K with a 

threshold current of 50 μA [18]. The metallic-dielectric cavity significantly enhances 

the quality factor (Q > 1500) of the wavelength and subwavelength scale lasers, and 

the pedestal structure significantly reduces the threshold gain (< 400 𝑐𝑚−1). This can 

potentially enable laser operation at room temperature. 
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Fig. 1.6 (a) SEM image of the pillar and cross section |𝐸| profile. (b) Structure of the laser [18]. 

 

Another continuous wave sub-wavelength metallic cavity laser with electrical 

pumping was demonstrated in 2013 at room temperature [19,20]. The structure of the 

device is shown in Figure 1.7. A 1.15 × 1.39 × 1.7 𝜇𝑚3 rectangular laser with an 

(FP) Fabry-Perot like resonating mode in TM polarization. The threshold is 1.2 mA, 

not at μA, which is relatively large and current injection cannot exceed twice the 

threshold due to metal is lossy than expected at room temperature. 

 

 

Fig. 1.7 Structure of sub-wavelength metallic cavity laser with electrical pumping [19]. 

 

From these examples above, we can find common difficulties for metallic cavity 

laser: low Q factor, difficult to extract and diffract (light extraction and diffraction 

become problems as it is emitted toward the substrate as shown on the left). 

 

1.2.3  Metallic cavity coupled to the waveguide 

 

By integrated with waveguide can solve these problems for its high coupling 

efficiency. By now, several coupling schemes have been proposed. 
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Fig. 1.8 Perspective (a) and cross-sectional (b) schematic views of a Si-waveguide coupled metal-clad nanolaser 

cavity. Here, the nanolaser cavity is designed as a cuboid structure with a height (h) of 350 nm, a width (w) of 350 

nm, and a variable length (l) [21]. 

 

Fig. 1.8 shows the rectangular metal-clad nanolaser integrated onto a Si waveguide. 

The actual electromagnetic nanocavity consists of an InGaAsP bulk semiconductor 

cuboid with a height (h) of 350 nm, a width (w) of 350 nm, and a variable length (l) 

[21]. This design choses the SOI waveguide for its superior vertical confinement. 

Since many of the PIC devices are designed only for the fundamental mode, the single 

mode coupling is more preferred. In order to get a higher quality factor and external 

efficiency, further, optimize has been done by adjusting the insulator thickness. The 

emitted light is consumed in three ways: absorbed by the metal (𝛾𝑚𝑒𝑡𝑎𝑙), coupled into 

the waveguide (𝛾𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔) or emitted into the substrate (𝛾𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒). By optimizing the 

insulator thickness, metal absorption (𝛾𝑚𝑒𝑡𝑎𝑙) can be suppressed, but radiation 

(𝛾𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔+𝛾𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒) also increases. For result, it is found out that asymmetric 

thickness of the insulator can help lead the light into the waveguide so that 78% 

coupling efficiency 𝛾𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔/(𝛾𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔+𝛾𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒) can be achieved for a metal-clad 

nanolaser with a modal volume of 0.28 (
𝜆

𝑛
)3 while maintaining a high optical quality 

factor of over 600. Finally, by engineering the bottom InP post height, the total 

external efficiency of the device can also be controlled efficiently. However, this 

structure is difficult to fabricate because the area needs to be changed between the 

core layer and the cladding layer, and the back surface must be thinned and coupled to 

the Si waveguide, so no example has been fabricated yet. Demonstration of the 

waveguide and metal resonator structure is required. 
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1.3  Research objective 

In section 1-4, I have introduced some researches about small light emitters and 

confirm the metallic cavity semiconductor nano-laser to be a light source for on-chip 

optical interconnects. However, as mentioned before, the emitting light to the 

substrate brings extraction and diffraction problems and low Q factor. Coupling to 

waveguide can reduce the overall energy cost but difficult to demonstrate. So further 

investigation should be done to solve these problems. 

1.3.1  Previous work in our laboratory 

 

In our laboratory, we mainly focus on rectangular cavities for their better coupling to 

the waveguide. Moreover, we choose InP waveguide for coupling which can solve the 

fabrication problems. Fig. 1.9 shows the rectangular metallic cavity coupling into the 

InP waveguide [22]. By changing the thickness of D (Thickness of the upper InP 

cladding) can enhance both Q factor and coupling efficiency. As the simulation result 

of transmission, we can see there are two kinds of peak caused by two areas which 

occurred because of resonance with the different refractive index. Electric field 

distribution also shows the same result. Also, on the right is the result of the Q factor 

and extinction ratio of 2D and 3D simulation. Because of these two resonance modes, 

the result of 3D simulation shows low transmission and Q factor. And the resonance in 

the cavity failed to get in a measurement. 
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Fig. 1.9 (a) Schematic view of rectangular cavity coupled to InP waveguide. (b) Transmission spectrum of the 

structure. (c) and (d) electric field distribution of two kinds of peaks [22].  

 

Although previous work has been done to make the metal-clad cavity coupling to InP 

waveguide, low Q factor and transmission cause the resonance in cavity failed to get in 

measurement. So new structure or further optimize of the cavity structure should be 

done to enhance the property of metal-clad cavity coupling to InP waveguide. 

1.3.2  Purpose of this research 

In this work, we aim to optimize the cavity structure to maximize the Q factor and 

minimize scattering loss by using a 2D-FDTD method. For further enhancement of Q 

factor, we numerically investigate a novel structure based on a horn-shaped metal-clad 

cavity, coupled to an InP waveguide. Recent work on the horn-shaped metal-clad cavity 

for on-chip light source application showed the possibility of reducing the plasmonic 

losses and improving the mode confinement by optimizing the slope angle [23,24]. We 

implement this concept to a small cavity integrated on an InP waveguide and optimize 

the structure to maximize the Q factor and minimize scattering loss. Then fabrication is 

attempted along with searching for better conditions. Finally, we carry out properties of 

the fabricated device. Analysis is also made between simulation and experimental 

results.    

1.4  Structure of this thesis 

This thesis is divided into 7 chapter: 

In Chapter 1, the brief background of the metal-clad cavity is introduced.  

In Chapter 2, brief principles involved in the metal-clad cavity are introduced 

In Chapter 3, I will show the design and simulation results of metal-clad cavity, 

with comparison to previous ones. 

In Chapter 4, I will explain the fabrication process and discuss important points in 

device fabrication.  
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In Chapter 5, I display the measurement results and evaluate the effectiveness of 

the design.  

In Chapter 6, for further optimization, the design and simulation results of horn-

shaped metal-clad cavity are introduced. Also the fabrication of the horn-shaped 

cavity will be discussed. 

In Chapter 7, I will summarize all the work, and discuss the future improvement. 
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Chapter 2  Basic theory of metal-clad cavity 

2.1  Basic principle of semiconductor laser 

2.1.1  Double heterojunction 

A double heterostructure is formed when two semiconductor materials are grown 

into a "sandwich." One material is used for the outer layers (or cladding), and another 

of the smaller band gap is used for the inner layer. The double heterostructure is a 

beneficial structure in optoelectronic devices and has interesting electronic properties. 

It makes the injected carrier tends to stay in the active layer and promote 

recombination, and it can confine light because it constitutes an optical waveguide. 

 

Fig. 2.1 Band diagram of forward biased double heterostructure [25]. 

As can be seen in Fig. 2.1, When a current is applied to the ends of the pin 

structure, electrons and holes are injected into the active layer from n-doped and p-

doped region, respectively [25]. When electrons and holes meet together, they will 

have spontaneous emission (SPE). Once emitted, SPE photons are also available to 

stimulate other electron-hole pairs, so that stimulated emission (STE) is launched. 

Feedback is provided by cleavage plane or distributed Bragg reflector in convention 

lasers. Due to double heterojunction, carriers injected into the active region will be 

mostly confined and not able to jump over the barrier. Also, since substances with 

significant band gaps have small refractive indices, substances with different 

refractive indices are combined to form the optical waveguide structure described 

later. Therefore, light can be confined not only in the plane direction by the end face 

of the gain medium but also in the layer direction.         
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2.1.2  Lasing Mechanism 

Fig. 2.2 (a) is structure of a typical commercial semiconductor cavity. Fig. 2.2 (b)  

shows Schematic of an active layer in a conventional Fabry-Pérot laser consists of two 

mirrors as optical cavity and gain medium inside the cavity. Semiconductor forms a 

strip waveguide, including a n active layer which can emit light when current injected.  

Emitted light travels in the waveguide back, reflecting at cleaved facets.  

 

 

 

   
Fig. 2.2 (a) Schematic of typical commercial semiconductor cavity (b) Schematic of an active layer in a conventional 

Fabry-Pérot laser consists of two mirrors as optical cavity (length L) and gain medium inside the cavity [26]. 

 

Cleaved facet works as a mirror, whose reflectivity is around 0.3. Assume 𝑃1  is 

optical power inside resonator, 𝑃2 is optical power after one round-trip 

 

𝑃2 = 𝑃1𝑒𝑥𝑝(−𝛼𝑙)𝑅1𝑅2                  (2-1) 

 

The reflectivity of the two mirror surfaces are 𝑅1 and 𝑅2, respectively.𝑙 is length of 

resonator, and the loss factor of the gain medium α [𝑐𝑚−1] Where 𝛼 is average 

distributed loss if 𝛼 > 0, gain if 𝛼 < 0. 
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The loss is 

 

𝑒𝑥𝑝 (−2𝐿 [𝛼 +
1

2𝐿
𝑙𝑛 (

1

𝑅1𝑅2
)]) = 𝑒𝑥𝑝 (−2𝐿 [𝛼 −

𝑙𝑛√𝑅1𝑅2

𝐿
])    (2-2) 

 

We define 

 

                            𝐿 ≡ 𝑔𝑙 + α𝑙 − 𝑙𝑛√𝑅1𝑅2                   (2-3) 

 

Where 𝑔 is the gain. 𝑔 can be regarded as absorption loss when 𝑔 > 0, which is the  

usual case (when 𝑔 > 0, it is a gain; when 𝑔 <0, it is a loss). Some special material for 

which 𝑔 is minus when current injected can amplify the light and used in laser.  

By calculating the Equation 2-1 to Equation 2-3, the power 𝑃2 can be rewritten as 

 

                            𝑃2 = 𝑃1𝑒𝑥𝑝(−2𝐿)                      (2-4) 

 

We set 𝑃2= 𝑃1 because in a working laser, power remains the same. This time requires 

𝐿 =0. So we can get 

 

                          𝑔 = 
1

𝑙
𝑙𝑛√𝑅1𝑅2 − 𝛼 ≡ 𝑔𝑡ℎ                 (2-5) 

 

Where 𝑔𝑡ℎ is threshold gain that compensate all the loss during light oscillation. 

2.1.3  Rate equation 

Laser diode is well described by focusing on carrier density 𝑁 and photon density 

𝑁𝑝 by the rate equations. 

 

𝑑𝑁

𝑑𝑡
=

𝑛𝑖𝐼

𝑞𝑉𝐴
−

𝑁

𝜏
− 𝑅𝑠𝑡                    (2-6) 


𝑑𝑁𝑝

𝑑𝑡
= Γ𝑅𝑠𝑡 + Γ𝛽𝑠𝑝𝑅𝑠𝑝 −

𝑁𝑝

𝜏𝑝
                 (2-7) 

 

Where 𝑛𝑖 is current injection efficiency; 𝐼 is injected current; 𝑞 is charge of one 

electron, 𝑉𝐴 is volume of cavity, 𝛤 is confinement factor,𝑅𝑠𝑝 is spontaneous 

emission rate. 𝑅𝑠𝑡 is stimulated emission rate which is related to the gain factor 𝑔 

mentioned above. 𝛽𝑠𝑝 is spontaneous emission factor representing the ratio of 

spontaneous emission that coupled into resonating mode. 𝜏 is lifetime of carrier and 
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𝜏𝑝 is lifetime of photon in bulk. 
𝑁

𝜏
 is total carrier combination rate, consisting of 

𝑅𝑠𝑝 , 𝑅𝑠𝑡 and non-radiative combination 𝑅𝑛𝑟. 

The 𝑅𝑠𝑡 can be derived in Equation 2-6, where 𝑣𝑔 is the group velocity and 𝑔 is 

the gain per unit length.   

 

𝑅𝑠𝑡 = 𝑣𝑔𝑔(𝑁)𝑁𝑝                      (2-8) 

 

As is known, the laser diode lasing when gain equals the loss, 

 

𝛤𝑣𝑔𝑔𝑡ℎ =
1

𝜏𝑝
                        (2-9) 

 

where 𝑔𝑡ℎ is the threshold gain. Combined with the relation: 𝜏𝑝 = 𝑄 𝜔⁄ , we obtain        

                              𝛤𝑄 =
𝜔

𝑣𝑔𝑔𝑡ℎ
                         (2-10) 

 

Where 𝜔 is the light angular frequency. 𝛤𝑄 is the figure of merit for a laser and 

directly determines the required threshold gain 𝑔𝑡ℎ.  

For a certain current I after lasing, stimulated photon density 𝑁𝑠𝑡 can be obtained by 

combining Equation 2-9 and Equation 2-10: 

 

𝑁𝑠𝑡 =
𝑛𝑖

𝑞𝑣𝑔𝑔𝑡ℎ𝑉
(𝐼 − 𝐼𝑡ℎ)                 (2-11) 

 

The output power is attributed by the radiative portion of photon density 𝑁𝑠𝑡 which 

can be described by Equation 2-11. 

 

𝑃𝑠𝑡 = 𝜂𝑑
ℎ𝑣

𝑞
(𝐼 − 𝐼𝑡ℎ)                   (2-12) 

 

The static characteristics of the laser can be analyzed by solving the time derivative 

component of the above rate equation as 0. By setting 
𝑑𝑁

𝑑𝑡
 = 0 and 

𝑑𝑁𝑝

𝑑𝑡
= 0, we can get 

steady state of a working laser diode as well as dynamic response of laser diode by 

solving the equation numerically. 
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2.14  Q factor 

Q factor is a dimensionless value that describes damping rate of resonator. It is 

defined as 

 

𝑄 =
𝜔𝑃

−𝑑𝑃 𝑑𝑡⁄
                      (2-13) 

 

Where 𝜔 is angular frequency of light, P is stored energy in optical cavity, −𝑑𝑃/𝑑𝑡 is 

power dissipation rate. Solve the P from Equation 2-13, we can get 

 

𝑃(𝑡) = 𝑃(0)𝑒𝑥𝑝(−𝜔𝑡/ 𝑄)                (2-14) 

 

In the frequency domain, 

 

𝑄 = 𝑓𝑐/∆𝑓                      (2-15) 

 

Where ∆𝑓 is half width of spectrum of optical resonator, 𝑓𝑐 is center wavelength of 

peak. High Q value leads to narrow half width. The larger Q value a resonator has, the 

stronger possible it can confine optical power within. On the contrary, Q value 

becomes smaller in the resonator where the loss of light is larger. 

2.2  Analysis of metal-clad cavity coupling to waveguide 

In this section, we describe the analysis method of the equivalent refractive index 

and the intensity distribution of the guided light for a basic symmetric three-layer slab 

waveguide.  

 

 
Fig. 2.3 Schematic of （a）TE mode light propagating in a symmetric three-layer slab waveguide, （b）𝐸𝑦 intensity 

distribution. 
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2.21  Three-layer slab waveguide 

Fig. 2.3 (a) shows TE mode light propagating in the symmetric three-layer slab 

waveguide and its core layer. A material with a high refractive index is used as a core 

layer, and a material with a low refractive index which is used as a cladding layer, 

with the core layer sandwiched between. If the incident angle is larger than the critical 

angle at the interface between the core layer and the cladding layer, the light is totally 

reflected and confined in the core layer and travels through the waveguide. In the 

reflection at that interface, the phenomenon that light leaks into the cladding layer as 

an evanescent wave occurs, causing a phase change in the light. Another guiding 

condition is that the phase delay when reflected twice in the waveguide (after one 

round trip) is an integral multiple of 2π. Fig. 2.3 (b) shows the basic mode of m = 0. 

The conditional expression for this phase matching is shown in Equation 2-16 

 

2𝑚𝜋 = 2(𝑘0𝑁0𝑐𝑜𝑠𝛼 ∙ 𝑊 − 2𝜑)               (2-16) 

 

Where  𝑘0 = 2𝜋/𝜆 and the propagation constant 𝛽 is defined as 

 

𝛽 ≡ 𝑘0𝑁0𝑠𝑖𝑛𝛼                       (2-17) 

 

And the effective refractive index is  

 

𝑛𝑒𝑓𝑓 ≡
𝛽

𝑘0
= 𝑁0𝑠𝑖𝑛𝛼                     (2-18) 

The phase delay φ is expressed by the Equation 2-19 according to the Fresnel 

equation 

 

𝑡𝑎𝑛𝜑 =
√𝑁0

2𝑠𝑖𝑛2𝛼−𝑁1
2

𝑁0𝑐𝑜𝑠𝛼
                     (2-19) 

 

To know the intensity of light in the waveguide, it is necessary to solve the wave 

equation. The Maxwell's equation is show below 

 

𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡
                        (2-20) 

𝛻 × 𝐻 = 𝑗 +
𝜕𝐷

𝜕𝑡
                       (2-21) 

𝛻 ∙ 𝐵 = 0                          (2-22) 

𝛻 ∙ 𝐷 = 𝜌                          (2-23) 
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And we can rewrite the Maxwell's equation with angular frequency 𝜔 = 𝑒𝑗𝜔𝑡, 

 

𝜕𝐸𝑧

𝜕𝑦
+ 𝑗𝛽𝐸𝑦 = −𝑗𝜔𝜇0𝐻𝑥                   (2-24) 

−
𝜕𝐸𝑧

𝜕𝑥
− 𝑗𝛽𝐸𝑥 = −𝑗𝜔𝜇0𝐻𝑦                   (2-25) 


𝜕𝐸𝑦

𝜕𝑥
−

𝜕𝐸𝑥

𝜕𝑦
= −𝑗𝜔𝜇0𝐻𝑧                   (2-26) 


𝜕𝐻𝑧

𝜕𝑦
+ 𝑗𝛽𝐻𝑦 = 𝑗𝜔𝜖0𝑛

2𝐸𝑥                   (2-27) 

−
𝜕𝐻𝑧

𝜕𝑥
− 𝑗𝛽𝐸𝐻𝑥 = −𝑗𝜔𝜖0𝑛

2𝐸𝑦                 (2-28) 

𝜕𝐻𝑦

𝜕𝑥
−

𝜕𝐻𝑥

𝜕𝑦
= −𝑗𝜔𝜖0𝑛

2𝐸𝑧                 (2-29) 

 

Normally strip waveguide is used as oscillation cavity in semiconductor laser.  

Considering the TE mode only which propagates along z direction, Its Helmholtz 

equation can be written as 

 

𝜕2𝐸𝑦

𝜕𝑥2 + (𝑘0
2𝑛2 − 𝛽2)𝐸𝑦 = 0                 (2-30) 

−
𝛽

𝜇0𝜔
𝐸𝑦 = 𝐻𝑥                      (2-31) 

−
1

𝑗𝜇0𝜔

𝜕𝐸𝑦

𝜕𝑥
= 𝐻𝑧                      (2-32) 

 

Where 𝜔 is angular frequency; 𝑛 is refractive index and 𝑛 =n1 (−𝑇 < 𝑥 < 0), 𝑛 = 𝑛2 

(𝑥 > 0 𝑜𝑟 𝑥 < −𝑇); 𝑛 = √휀𝑟 , 휀𝑟 is relative permittivity. We can solve the equation of 

𝐸𝑦 in three regions for a guided mode 

 

𝐸𝑦 = 𝐶𝑒−𝑞𝑥𝑥 ≥ 0                    (2-33) 

𝐸𝑦 = 𝐶(𝑐𝑜𝑠(ℎ𝑥) −
𝑞

ℎ
𝑠𝑖𝑛(ℎ𝑥))0 ≥ 𝑥 ≥ −𝑇      (2-34) 

𝐸𝑦 = 𝐶(𝑐𝑜𝑠(ℎ𝑇) +
𝑞

ℎ
𝑠𝑖𝑛(ℎ𝑡))𝑒𝑝(𝑥+𝑇)𝑥 ≤ −𝑇     (2-35) 

 

Where C is a normalization constant and ℎ, 𝑞and 𝑝 are given by 

ℎ = [(
𝑛2𝜔

𝑐
)2 − 𝛽2]1/2                    (2-36) 
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𝑞 = [(𝛽2 −
𝑛1𝜔

𝑐
)2]1/2                    (2-37) 

𝑝 = [(𝛽2 −
𝑛3𝜔

𝑐
)2]1/2                    (2-38) 

 

These relationships are obtained from Equation 2-33 into 2-35. 

The boundary conditions require that 𝐸𝑦 be continuous at 𝑥 = 0 and 𝑥 = −𝑇. The 

wavefunction in Equation 2-33 to 2-35 has been chosen such that 𝐸𝑦 is continuous at 

both interfaces as well as 
𝜕𝐸𝑦

𝜕𝑥
 at𝑥 = 0. By imposing the continuity requirements on 

𝜕𝐸𝑦

𝜕𝑥
 at 𝑥 = −𝑇, we get  

 

𝑡𝑎𝑛(ℎ𝑡) =
𝑝+𝑞

ℎ(1−𝑝𝑞 ℎ2)⁄
                        (2-39) 

 

This is the so-called mode condition. The propagation constant 𝛽 of a TE mode 

must satisfy this condition. Given a set of refractive indices 𝑛1, 𝑛2 and 𝑛3of a slab 

waveguide, Equation 2-39 in general yields a finite number of solutions for𝛽 

provided the thickness t is large enough. These modes are mutually orthogonal. 

The normalization constant C is again chosen so that the field represented by Equation 

2-33 to 2-35 carries 1 W of power flow along the z axis in the mode. A mode of 𝐸𝑦 =

𝐴𝐸𝑚(𝑥) will thus correspond to a power flow of |𝐴|2W/m. The normalization 

condition is given by 

 

−
1

2
∫ 𝐸𝑦𝐻𝑥

∗𝑑𝑥 =
𝛽

2𝜔𝜇

∞

−∞
∫ 𝐸𝑚

2 (𝑥)𝑑𝑥 = 1
∞

−∞
             (2-40) 

 

Where m denotes the 𝑚𝑡ℎ confined TE mode and 𝐻𝑥 = −𝑖(𝜔𝜇)−1𝜕𝐸𝑦/𝜕𝑧. 

Substitution of Equation 2-39 for the wavefunction in Equation 2-40 and carrying out 

the integration lead to, after a few steps of algebraic manipulation, 

 

𝐶𝑚 = 2ℎ𝑚(
𝜔𝜇

|𝛽|[𝑡+(
1

𝑞𝑚
)+(

1

𝑝𝑚
)](ℎ𝑚

2 +𝑞𝑚
2 )

)1/2             (2-41) 

 

The orthonormalization of the modes can be written as 

 

∫ 𝐸𝑚𝐸1𝑑𝑥 =
2𝜔𝜇

|𝛽|
𝛿1,𝑚

∞

−∞
                   (2-42) 

 

Where 𝛿1,𝑚 is a Kronecker delta. 
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2.22  Metal-insulator-metal (MIM) waveguide 

Electromagnetic waves couples with the oscillation of electrons at metal surface, 

energy of electromagnetic field exchanges with electronic energy. At the interface 

between metal and semiconductor, surface plasmon polariton (SPP) appears in which 

the collective vibration of free electrons on the metal surface and the electromagnetic 

wave are coupled [27，28]. This has the property of being localized at the interface 

between metal and semiconductor, so the MIM waveguide generates a mode 

distribution different from that of the semiconductor waveguide. Fig. 2.4 and 2.5 

show the schematic and distribution of MIM waveguide.  

 

 

Fig. 2.4 Schematic of（a）metal-insulator-metal waveguide, dielectric is sandwiched between two metal layers.（b）

Distribution of surface plasmon polaritons.  

 

 

 

 

Fig. 2.5 Schematic of（a）metal-insulator-metal waveguide, dielectric is sandwiched between two metal layers.（b）

Distribution of a dielectric mode.  

 

Because TE polarized SPPs doesn’t exist, we only consider TM mode in this 

waveguide. The Helmholtz equation of TM mode can be written as 
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𝜕2𝐻𝑥

𝜕𝑦2 + (𝑘0
2 − 𝛽2)𝐻𝑥 = 0                  (2-43) 

−
𝛽

𝜖0𝜔𝑛2 𝐻𝑥 = 𝐸𝑦                    (2-44) 

1

𝜔𝜖0𝑛2

𝜕𝐻𝑥

𝜕𝑦
= 𝐸𝑧                      (2-45) 

 

Taking consideration of physics meaning, we can solve these equations for each 

area. The different point is that electrical field in core layer is located at x = 0 and x = 

-T, decaying exponentially. The solution for surface plasmon polaritons should be 

 

𝐻𝑦 = −𝐶(
ℎ

�̅�
𝑐𝑜𝑠(ℎ𝑇) + 𝑠𝑖𝑛(ℎ𝑇))𝑒𝑝(𝑥+𝑇)𝑥 ≤ −𝑇       (2-46) 

𝐻𝑦 = 𝐶(−
ℎ

�̅�
𝑐𝑜 𝑠(ℎ𝑥) + 𝑠𝑖𝑛(ℎ𝑥))0 ≥ 𝑥 ≥ −𝑇          (2-47) 

𝐻𝑦 = −
ℎ

�̅�
𝐶𝑒−𝑞𝑥𝑥 ≥ 0                   (2-48) 

 

Where C is a normalization constant and ℎ, 𝑞and 𝑝 are given by equation，and �̅� 

as follows. 

The continuity of 𝐻𝑦 and 𝐸𝑧 at the two interfaces leads, in a manner similar to 

the equation, to the eigenvalue equation 

 

𝑡𝑎𝑛(ℎ𝑡) =
ℎ(�̅�+�̅�)

(ℎ2−�̅��̅�)
                   (2-49) 

 

Where 

 

�̅� ≡
𝑛2

2

𝑛3
2 𝑝 and �̅� ≡

𝑛2
2

𝑛1
2 𝑞                 (2-50) 

 

The normalization constant C is again chosen so that the field represented by 

Equation 2-49 and 2-50 carries 1W of power flow along the z axis per unit width in 

the y axis. We can get 

 

∫ 𝐻𝑦𝐸𝑥
∗𝑑𝑥 =

𝛽

2𝜔

∞

−∞
∫

𝐻𝑚
2 (𝑥)

(𝑥)
𝑑𝑥 = 1

∞

−∞
       (2-51) 

 

Using Equation 2-51, we can get 
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𝐶𝑚 = 2√
𝜔 0

|𝛽|𝑡𝑒𝑓𝑓
                   (2-52) 

 

And the effective waveguide width is 

 

𝑡𝑒𝑓𝑓 =
�̅�2+ℎ2

�̅�2 (
𝑡

𝑛2
2 +

𝑞2+ℎ2

�̅�2+ℎ2

1

𝑛1
2𝑞

+
𝑝2+ℎ2

�̅�2+ℎ2

1

𝑛3
2𝑝

）     (2-53) 

2.3  Fabry-Perot etalon  

The Fabry-Perot etalon, named after its inventors, can be considered as the best 

example of an optical resonator. It consists a plane-parallel plate of thickness l and 

refractive index n that is immersed in a medium of index 𝑛,. Generally, an etalon can 

be obtained by spacing two partially reflecting mirrors which apart the distance l, so 

that 𝑛 = 𝑛, = 1. Another common form of etalon is produced by two-parallel faces 

on a transparent solid and then evaporating a metallic or dielectric layer on the 

surfaces. 

 

Fig. 2.6 The model of Fabry-Perot etalon [29] 
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Fig. 2.7 Path different between the reflection inside the of Fabry-Perot etalon [29]. 

 

As shown in Fig. 2.6, the plane wave incidents on the etalon at an angle 𝜃 , to the 

normal. The problem of transmission of the plane wave can be treated through the 

etalon by considering the infinite number of partial waves produced by multiple 

reflections at the two end surfaces. Fig. 2.7 shows the phase delay between two partial 

waves which is attributable to one additional round trip is given by 

δ =
4𝜋𝑛𝑙𝑐𝑜𝑠𝜃

𝜆
= 2𝑘𝑥𝑙                   (2-54) 

 

where 𝜆 is the vacuum wavelength of the incident wave, 𝜃 is the internal angle of 

the incidence, and 𝑘𝑥 is the x component of the wavevector (x axis is perpendicular 

to the mirrors). At normal incidence, this phase shift is simply 𝛿 = 2𝑘𝑙, where k is 

the wavenumber of propagation in the medium. Thus the phase shift is often called the 

round-trip phase shift.  

If the incident intensity (watts per square meter) is taken as 𝐴𝑖𝐴𝑖
∗, we obtain 

following expression for the fraction of the incident intensity that is reflected by the 

etalon: 

 

𝐼𝑟

𝐼𝑖
=

𝐴𝑟𝐴𝑟
∗

𝐴𝑖𝐴𝑖
∗ =

4𝑅𝑠𝑖𝑛2(
𝛿

2
)

(1−𝑅)2+4𝑅𝑠𝑖𝑛2(
𝛿

2
)
                 (2-55) 

 

Moreover, from  

 

𝐼𝑡

𝐼𝑖
=

𝐴𝑡𝐴𝑡
∗

𝐴𝑖𝐴𝑖
∗ =

(1−𝑅)2

(1−𝑅)2+4𝑅𝑠𝑖𝑛2(
𝛿

2
)
                 (2-56) 

 

For the transmitted fraction. Our basic model contains no loss mechanisms, so 

conservation of energy requires that𝐼𝑡 + 𝐼𝑟 be equal to 𝐼𝑖, as is indeed the case. 
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For the transmission characteristics of a Fabry-Perot etalon. According to Equation 2-

56 the transmission is unity whenever  

 

δ =
4𝜋𝑛𝑙𝑐𝑜𝑠𝜃

𝜆
= 2𝑚𝜋     𝑚 = anyinteger       (2-57) 

 

The condition 2-57 for maximum transmission can be written 

 

𝑣𝑚 = 𝑚
𝑐

2𝑛𝑙𝑐𝑜𝑠𝜃
    𝑚 = anyinteger       (2-58) 

 

Where 𝑐 = 𝑣𝜆 is the velocity of light in vacuum and v is the optical frequency.  

2.4  Ring resonator 

An optical ring resonator is a set of waveguides in which at least one is a closed 

loop coupled to some sort of light input and output. Under optical electronic devices 

can be designed to provide the possibility of switching or modulations. In free space, 

a ring resonator can be formed by using three mirrors oriented in a way beam of light 

can circulate along the triangle by three mirrors. Fig. 2.8 (a) shows the schematic of a 

ring resonator. We consider an input beam of amplitude 𝐴𝑖. At the first coupler, a 

fraction of the input beam will be propagating straight through, while a fraction of 

input beam will be coupled into ring. As the beam circulates inside the ring, multiple 

coupling occurs at the couplers. The simulation is similar to the case of multiple 

reflections in a Fabry-Perot etalon as shown in Fig. 2.8 (b). 

 

 

https://en.wikipedia.org/wiki/Waveguides
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Fig. 2.8 (a) Schematic of the ring resonator and (b) The Fabry-Perot etalon with two mirrors [30] 

 

The linear input-output relationship of the coupler can be written 

 

[
𝐵1

𝐵2
] = 𝑋 [

𝐴1

𝐴2
] = [

𝑡 𝜅∗

𝜅 −𝑡∗] [
𝐴1

𝐴2
]                (2-59) 

 

Where 𝑡 is the straight-through coupling coefficient and 𝜅 is the cross-coupling 

coefficient. Note that the coupling matrix X is Hermitian(X=𝑋†), as a result of the 

choice of |𝑋| = −1. These two coupling coefficients satisfy the following 

relationship.  

 

|𝑡|2 + |𝜅|2 = 1                       (2-60) 

 

Matrix formulation can conveniently be employed to investigate the optical 

properties coupled resonators when several ring resonators are involved. The straight-

through transmission coefficient of the ring resonator can be written 

 

σ ≡
𝐴𝑠

𝐴𝑖
=

𝑡1+𝑡2
, 𝑎𝑒−𝑖𝛿

1−𝑡1
, 𝑡2

, 𝑎𝑒−𝑖𝛿 =
𝑡1+𝑡2

, 𝑎𝑒−𝑖𝛿𝑒−𝛼𝑑

1−𝑡1
, 𝑡2

, 𝑎𝑒−𝑖𝛿𝑒−𝛼𝑑             (2-61) 

 

where 𝑎 = 𝑒𝑥𝑝(−𝛼𝑑), with α being an amplitude attenuation coefficient to account 

for loss due to bending or scattering. If we set 𝜅2 = 0 and 𝑡2 = −1. This resonator 

is illustrated in fig. for this case, the straight-through transmission coefficient becomes 

 

σ ≡
𝐴𝑠

𝐴𝑖
=

𝑡1−𝑎𝑒−𝑖𝛿

1+𝑡1
, 𝑎𝑒−𝑖𝛿 =

𝑡−𝑎𝑒−𝑖𝛿

1−𝑡∗𝑎𝑒−𝑖𝛿                  (2-62) 

 

where 𝛿 is the phase shift inside the ring resonator, and 𝑡1
, = −𝑡1

∗ ≡ −𝑡∗. By taking 

the absolute square of equation, we obtain the intensity transmission  

 

|σ|2 ≡ |
𝐴𝑠

𝐴𝑖
|
2

=
𝑎2−𝑡2−2𝑎𝑡𝑐𝑜𝑠𝛿

1+𝑎2𝑡2−2𝑎𝑡𝑐𝑜𝑠𝛿
                   (2-63) 
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Where, without loss of generality, by taking the t as a real number, the constant phase 

of t can always be lumped with the phase 𝛿. 

 From this relation, as shown in Fig. 2.9, we can get two important features that are 

key for some potential applications. (1) The transmission |σ|2 is zero at a value of 

coupling 𝑎 = 𝑡 = √1 − |𝜅|2, known as the “critical coupling”. (2) For high-finesse 

ring resonators with a low internal loss, the portion of the curve to the left of the 

critical coupling point is extremely steep. Small changes in 𝑎 can control the 

transmission between zero and unity. We can also get high Q factor by controlling the 

transmission. Such a feature is desirable in the design of switching of modulation 

devices with a high modulation depth. 

 

 
Fig. 2.9 Schematic of the ring resonator coupled with a waveguide, where 𝑡 is the straight-through coupling 

coefficient and 𝜅 is the cross-coupling coefficient [30]. 

2.5  FDTD method 

The FDTD (Finite Difference Time Domain) method is one of the numerical 

electromagnetic field analysis methods, and is a widely used analysis method at 

present. The FDTD method belongs in the general class of grid-based differential 

numerical modeling methods (finite difference methods). The time-dependent 

Maxwell's equations (in partial differential form) are discretized using central-

difference approximations to the space and time partial derivatives. The resulting 

finite-difference equations are solved in either software or hardware in a leapfrog 

manner: the electric field vector components in a volume of space are solved at a 

given instant in time; then the magnetic field vector components in the same spatial 

volume are solved at the next instant in time; and the process is repeated over and 

over again until the desired transient or steady-state electromagnetic field behavior is 

fully evolved. 

https://en.wikipedia.org/wiki/Discretization
https://en.wikipedia.org/wiki/Finite_difference_methods
https://en.wikipedia.org/wiki/Maxwell%27s_equations
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Central_difference
https://en.wikipedia.org/wiki/Central_difference
https://en.wikipedia.org/wiki/Partial_derivative
https://en.wikipedia.org/wiki/Finite_difference_method
https://en.wikipedia.org/wiki/Leapfrog_integration
https://en.wikipedia.org/wiki/Electric_field
https://en.wikipedia.org/wiki/Vector_component
https://en.wikipedia.org/wiki/Magnetic_field
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FDTD has turned out to be a very effective method to treat problems of 

electromagnetic wave which can be described by Maxwell’s equations. The method 

discretizes both space and time to store values of electromagnetic components on 

every endpoint of the grid at evolving time points. In 1966, the presentation of Yee’s 

lattice has made FDTD a highly robust way for computations of electromagnetic wave 

[31].  

 

 

Fig. 2.10 Illustration of Yee’s grid for FDTD. (a) and (b) are the 2D figures and (c) is the 3D figure [31]. 

 

As can be seen in Fig. 2.10 (c), electric component E and magnetic component H 

are staggered so that E value can be updated using surrounding H values and the E 

value of the previous time step and vice versa. Similarly, time is also staggered for 

electric and magnetic components. Iterations of the update result in a time-evolving 

process which indicates the development of the electromagnetic wave. Usually, 3D-

FDTD calls for large memory and long calculation time. But the usually low Q factor 

for micro and nano optical devices make it possible to finish calculation in acceptable 

time durations. 
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Chapter 3  Design of metal-clad cavity coupled to InP waveguide 

In previous work, the rectangular metal-clad cavity coupled to InP waveguide was 

proposed. However, the resonance in the cavity failed to get in measurement mainly 

due to the low transmission and Q factor. Thus, in this work, we aim to optimize the 

cavity structure to maximize the Q factor and minimize scattering loss by using a 2D-

FDTD method. For further enhancement of Q factor, we propose the horn-shaped cavity 

structure, which can maximize the Q factor and minimize scattering loss. This will be 

investigated in Chapter 6. 

This chapter will first explain the principle of the metal-clad cavity. Next, the digital 

design of the metal-clad cavity coupled to the InP waveguide will be introduced. The 

2D-FDTD simulation results show the enhancement of Q factor and transmission. The 

calculation of the Q factor is also discussed, as well. Lastly, a brief summary is made. 

 

3.1  Numerical design of metal-clad cavity coupled to InP waveguide 

This time we implement this structure concept to a compact cavity integrated on an 

InP waveguide, and optimize the structure to maximize the transmission and minimize 

scattering loss. Fig. 3.1 shows the schematic of the horn-shaped metal-clad cavity 

considered in this work. The basic layer profile inside the metallic cavity is determined 

based on the results of our previous studies [37]; it consists of 450-nm-thick InGaAs 

(or InGaAsP) active layer sandwiched between the top and bottom InP claddings. The 

entire structure is capped with the SiO2 insulation layer and thick Ag layer. Underneath 

the cavity, we insert a single-mode 350-nm-thick InGaAsP waveguide.  

 

      
Fig. 3.1 (a) 3D Schematic and (b) the cross-sectional view at x-z plane of the metal-clad resonator. 

 

By injecting current into the cavity, it could be used as a compact light source coupled 

to the InGaAsP waveguide [33-38]. Alternatively, it could also be used as a compact 
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photodetector by sending light through the InGaAsP waveguide and collecting the 

photocurrent generated inside the InGaAs active layer at the resonant wavelength. 

Finally, by applying reverse bias to modulate the refractive index and/or absorption of 

InGaAs or InGaAsP active layer, it could also be used as a resonant modulator. In this 

work, for convenience, we investigate this third possibility of using the structure as a 

compact modulator by sending the light from left side of the bottom InGaAsP 

waveguide and simulating the power transmitted to the right side of the waveguide in 

Fig. 3.1 (b). 

Two important parameters that we aim to optimize are the length of the cavity L and 

the thickness of the upper InP cladding D. The device is analyzed by finite-difference 

time-domain (FDTD) method. The coupling mode of this waveguide coupled cavity is 

shown in Fig. 3.2.  

 

 

Fig. 3.2 Coupling mode of waveguide coupled cavity. Where 𝑡 is the transmission coefficient, 𝑎 is the internal 

loss and k is the coupling coefficient [22]. 

 

As talked in 2.22, the coupling mode of waveguide coupled cavity is similar with the 

ring resonator, and the transmission of the cavity can be calculated by  

 

𝑇2 =
𝑎2−𝑡2−2𝑎𝑡𝑐𝑜𝑠𝛿

1+𝑎2𝑡2−2𝑎𝑡𝑐𝑜𝑠𝛿
                      (3-1) 

 

 A TE fundamental mode is excited at the bottom InGaAsP waveguide, and the 

transmittance is obtained from the light transmitted through the cavity. The Q factor is 

derived from the damping rate of the electric field inside the cavity at the resonant 

wavelength. As the active InGaAs(P) layer in Fig. 3.1, we assume a bulk InGaAsP with 

the refractive index of 3.51 and negligible absorption to examine its applicability to a 

compact modulator. 
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3.2  FDTD simulation result 

In this section, we will optimize the cavity structure using FDTD method. Since all 

two parameters have same effect at x-z direction as well as y direction, we will first 

optimize two parameters, L and D, through 2D FDTD simulation at x-z direction as 

shown in Fig. 3.1 (a). This part can save much simulation time because using 3D-FDTD 

will take much more time than 2D-FDTD.  

3.2.1  2D-FDTD simulation (Optimize the length of cavity) 

As shown in Fig. 3.2, both the length of cavity and the thickness of the upper InP 

cladding take great effect on transmission. So first we optimize the length of cavity 

while fixing D and  as D = 200 nm and  = 0. Fig. 3.3 (a) shows the schematic image 

of optimizing cavity length. 

 

 

 

Fig. 3.3 (a) Schematic image and (b) Transmission spectrum for L = 2.1μm, 2.3 μm, and 2.5 μm (D = 200 nm,  

= 0). Two dips emerge when L = 2.1 μm or 2.5 μm. 
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We sweep the L from 1.6 μm to 2.5 μm at InP thickness is 200 nm. To see it clearly, 

we show the transmission spectrum for L = 2.1μm, 2.3 μm, and 2.5 μm (D = 200 nm, 

 = 0) in Fig. 3.3 (b). We can see two dips emerge when L = 2.1 μm or 2.5 μm. These 

dips (red arrow and blue arrow shown in Fig. 3.3 (b)) correspond to two resonant modes 

with different effective refractive indices. Two resonant modes will also drop down the 

Q factor in cavity and make it hard to measure the resonance mode. The electric field 

distributions also show the same result as we can see in Fig. 3.4. It is said that it occurs 

in the cavity core as the blue arrow in the figure, and in the InP clad in the cavity with 

the red arrow in Fig. 3.3 (b).  

    
Fig. 3.4 (a) and (b) Electrical field distribution of two resonance mode show in Fig.3.5 (b). (a) shows the resonance 

mode in the InP clad in the cavity and (b) shows the resonance mode in the cavity core. 

 

By adjusting L, they merge into one and the Q factor is maximized from 296 to 530 

when L is 2.3 μm. Fig. 3.5 shows Q factor of resonant mode as a function of L. 
 

 

Fig. 3.5 Q factor of resonant mode as a function of L. The pick of Q factor get at L is 2.3 μm.  
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3.2.2  2D-FDTD simulation (Optimize the thickness of InP cladding) 

Next part we optimize InP cladding thickness D for L = 2.3 m and  = 0. Fig. 3.6 

shows the Schematic image of optimizing the thickness of InP cladding. Fig. 3.7 (a) 

shows the simulated transmission spectrum for D = 100 nm, D = 300 nm, and D=500nm. 

Similar to Fig. 3.3, two dips converge when D = 300nm, where the Q factor is also 

maximized.  

 

 

Fig. 3.6 Schematic image of optimizing the thickness of InP cladding 

 

The Q factor increased because of two resonance mode merge into one. From the 

above results, we derive the optimized parameters as L = 2.3 μm and D = 300 nm. The 

Q factor in this case is 535. 
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Fig. 3.7 (a) Transmission spectrum for D = 100 nm, 300 nm, and 500 nm (L = 2.3 m,  = 0). (b) Q factor of resonant 

mode as a function of D. 

 

3.5  Summary 

In this chapter, I have introduced the detailed design and simulation result of the 2.3-

m-long metal-clad cavity integrated with an InP waveguide. Two important 

parameters have been optimized through FDTD simulation. By optimizing the length 

of cavity and thickness of the upper InP cladding, we maximized the Q factor of the 

resonant mode as well as the extinction ratio. We investigated that the extinction ratio 

could be enhanced significantly from 1.98 dB to 4.32 dB. Also, the Q factor enlarged 

from 296 to 535 in 2D FDTD simulation.  

 

 

 

 

 

 

 

 

 



32 

 

Chapter 4  Fabrication of metal-clad cavity coupled to 

waveguide 

4.1  Fabrication process flow 

The layer structure of used wafer is shown in Table 4-1. The 350 nm thick InGaAsP 

layer is used as waveguide core which is expected to offer good confinement of light. 

The fabrication process flow of waveguide coupled metal-clad cavity is shown in Fig. 

4.1. We first list the main steps used in the fabrication process below and describe them 

in detail in the next section.   

 

 

 

 

Table 4-1 Layer structure of wafer 

No. Layer Material Thickness (nm) Doping (𝒄𝒎−𝟑) 

1 P-contact P-InGaAs 100 > 1 × 10−19 

2 Upper clad P-InP 480 5 × 1017 

3 Etch stop U-InGaAsP 8 
 

4 Buffer U-InP 20 
 

5 Active core U-InGaAs 450 
 

6 Bottom clad N-InP 400 5 × 1017 

7 Waveguide core N-InGaAsP 350 5 × 1017 

8 Bottom clad N-InP 200 5 × 1017 

9 Bottom clad N-InP 250 5 × 1018 

10 Etch stop N-InGaAsP 100 >5 × 1018 

11 Buffer N-InP 50 >5 × 1018 

12 Substrate N-InP 
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 InGaAs             SiO2          Ag 

        InP                Cr 

InGaAsP           HSQ 

                     
(a) Wafer cleaning                                            (b) SiO2 deposition 

                     
(c) Cr deposition                                             (d) Spin coat HSQ resist 

                      

(e) EB exposing and develop                                    (f) Dry etch Cr    
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(g) Dry etch SiO2                                       (h) Dry etch InP and InGaAsP to develop cavity 

                       
(i) Spin coat HSQ resist again                                    (j) EB exposing and develop again  

 

                         

(k) Dry etch InP and InGaAsP to develop waveguide               (l) Remove hard mask and surface cleaning 
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  (m) SiO2 deposition                                            (n) Ge&Agdeposition 

 

(a) Wafer cleaning. Wafer cleaning is made by acetone, isopropyl alcohol (IPA) and 

ethanol. We first dipped the wafer into acetone for 10 seconds, and then rinsed by 

(IPA) and ethanol for 1 minute, respectively. After that, put wafer on 200℃ hotplate 

for 10 minutes to dissipate any liquid molecule remains on wafer. 

(b) SiO2 deposition. 400 nm thick SiO2 as the hard mask during dry etching is 

deposited by plasma enhanced chemical vapor deposition (PECVD) during 350℃. 

It is said that SiO2 deposited by PECVD is more robust than that formed by 

sputtering or vacuum evaporation, so that pattern degrades less during dry etching 

process. And thicker SiO2 layer can meet our needs since we have to etch the InP 

more than 1.2 μm. Table 4-2 is the condition of SiO2 deposition. 

(c) Cr deposition. 30 nm thick Cr layer which can increase dry etching selectivity 

ratio is deposited on SiO2. In our comparison experiment, the Cr layer either 

deposited by sputtering or vacuum evaporation shows similar robustness. This 

time we use vacuum evaporation to deposit for its high evacuation. Table 4-3 is 

the condition of Cr deposition by sputtering.  

 

Table 4-2 Condition of SiO2 deposition 

 

Gas flow (sccm) 5%Si𝐻4/𝑁20 (170.0/710.0) 

Chamber pressure (Pa) 134.0 

RF power (W) 20 

Temperature (℃) 350 

Deposition rate 1 nm/s 
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Table 4-3 Condition of spin coating HSQ 

 

 Step 1 Step 2  

(for cavity EBL) 

Step 2  

( for waveguide EBL) 

Rotation per minute(rpm) 500 3000 4000 

Ramp-up time (second) 5 5 5 

Holding time (sec) 5 60 60 

 

(d) Spin coat HSQ resist. This time we use HSQ as the resist for EB lithography. 

Although HSQ is a negative resist, the side walls are said to be smoother in dry 

etching than other resists. So HSQ is a good choice for state-of-the-art fabrication 

[39]. It is reported that the sub 10 nm nano-wire patterning by HSQ has the good 

edge roughness [40]. Wafer is cut into 10 mm × 10 mm pieces for HSQ spin coat. 

Spin coat condition for HSQ is set as Table 4-4. 3 of 4 drops of HSQ resist are 

dripped onto center of sample immediately after rotation rate reach 500 rpm. It is 

worth noting that HSQ is very sensitive to operation condition. Any changes in the 

parameters and condition in Table 4-4 would cause unexpected affect in resist 

thickness and uniformity, which result in negative consequence during lithography 

[41]. After spin coating, HSQ is baked under 150℃ for 2 minutes. The ideal 

thickness of HSQ should be 120 ~200 nm under spin coating condition. 

(e) EB exposing. The EBL is done by F7000S-VD02 from Advantest company. 

Electron acceleration voltage is fixed to 50 kV. Dosage for 1 μm × 2 μm pattern is 

around 1800 μC/𝑐𝑚2 for the cavity and 2000 μC/𝑐𝑚2 for the waveguide. The 

drawing pattern used a general GDS file converted to the bef20 format by the 

conversion software BEAMER. In the bef20 format, GDS-defined patterns are 

converted to fill rectangular stamps of various sizes, enabling high-speed and fine-

grained drawing. 

Developing resist. After exposure, we use NaOH / NaCl / H2O as developer with 

solution ratio of (1%:4%:95%) [41] [42]. we dipped the sample chip into it under 

room temperature for 25 to 40 seconds (which depends to the number of cavities 

on one chip). And then put the sample into rinse 1 (DI water) for 20 seconds and 

rinse 2 (DI water) for 30 seconds to remove the developer clean. We can check the 

pattern by microscope carefully. Completion degree of develop may be different 

from area to area. If develop is not completely done, we can develop sample for 

another 5 seconds. After that we check the pattern by scanning electron 

microscope again to make sure no residues remain. We can also measure the 

patterns by step profiler after develop. Fig. 4.2 shows the SEM image of cavity 

after developing resist. 
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Fig. 4.2 Scanning electron microscope (SEM) image after develop 

(f) Cr dry etching. We dry etching the Cr by ICP-RIE CE-S model from Ulvac 

company. Table 4-5 shows the condition of Cr dry etching. 

(g) SiO2 dry etching. We use RIE-10NR from Samco company to dry etching the 

SiO2 layer. Table 4-5 shows the condition of SiO2 dry etching. Different from 

previous recipe, we enlarge the RF power. Therefore, physical etching is 

intensified which can leave impurities on the surface by repelling the surface 

product more strongly. 

(h) Dry etch InP and InGaAsP to develop cavity. This time we use PlasmaPro10 from 

Oxford company to do the InP and InGaAsP dry etching. Because it’s the main 

process for cavity etching, we use H2/CH4 to dry etch the InP vertically which 

shows better result than Cl2[43]. We set the recipe for 1 minute a cycle and after 5 

cycle, we set several minutes for cooling down and restart etch. The etching rate 

of InP is about 80 nm/min and 50 nm/min for InGaAsP. Table 4-6 shows the dry 

etching condition of InP and InGaAsP. And Fig. 4.5 show the SEM image of 

developed cavity after dry etching. 

 

Table 4-5 Condition of Cr and SiO2’s dry etching 

 

Etching material Cr SiO2 

RF poIr (W) 400 120 

Pressure (Pa) 5.0 2.0 

Gas (sccm) Ar/O2/Cl2 

(10/25/40) 

CHF3/Ar 

(20/10) 

Time 60 seconds 15 minutes 

Etching rate 60 nm/s 27 nm/s 
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Table 4-6 Condition of dry etching for InP/InGaAs 

 

Etching material InP/InGaAs O2cleaning O2 oxidization 

Pressure (mTorr) 15.0 75.0 75.0 

Gas (sccm) H2/CH4 (45/15) O2（50） O2（50） 

RF power (W) 120 40 80 

ICP power (W) 100 0 0 

Temperature (℃) 60 60 60 

Etching rate InP: 80 nm/min 

InGaAs: 50 nm/min 

  

 

 

Fig. 4.3 Scanning electron microscope (SEM) image of the developed cavity 

 

 
Fig. 4.4 Waveguide coupled device after electron beam lithography and dry etching. 
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Fig. 4.5 Waveguide coupled device after surface treatment.  

 

(i) Spin coating again. This time we use HSQ again as the resist for EB lithography. 

The condition of spin coating HSQ is shown in Table 4-5. Although after several 

steps of process, surface of sample is not clean as at beginning and spin coating of 

resist may not good, it is not recommended to remove resist and spin coat again 

even if part of sample is not well-distributed coated with resist. One should note 

that this time we set rotation per minute as 4000 rpm, which is larger than we set 

for cavity EBL.  

(j) EB exposing and develop the waveguide. Since we should aim the cavity at the 

waveguide, we set some marks to do the alignment. The mark alignment is done 

through operation of controlling software. By recognizing marks on sample and 

setting alignment manually, the waveguide is draw under the cavity accurately.  

(k) Dry etch InP and InGaAsP to develop waveguide. The thickness of waveguide is 

750 nm, as shown in Table 4-1, from layer 6 to layer 9. About 120nm thick HSQ 

is capable to work as hard mask in this step. The condition of dry etching is the 

same as shown in Table 4-6. The SEM image after develop is shown in Fig. 4.4. 

(l) Remove hard mask and surface cleaning. After dry etching by ICP-RIE, the cavity 

side is rough, which will increase the nonradiative radiation recombination 

efficiency on the surface proceeds. To avoid this, surface treatment of the cavity 

and waveguide is performed. At the same time, the mask is also peeled off. There 

are 5 steps in surface cleaning. 

(1) O2  plasma oxidization. An O2  plasma oxidization is generated by the RIE 

apparatus, thereby oxidizing the cavity surface. The condition of O2 plasma 

oxidization is listed in Table 4-5. The lasting time is set as 1 minute. 

(2) Oxide removal. The oxide removal is done by diluted phosphoric acid 

(H2PO4:H2O = 1:10) for 1minute. And use HCl :H2O (1:20) to rinse for 
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about 10 seconds because InP will get oxidized even in DI water. It is 

recommended that this Step should be performed in dark environment where 

light does not strike the sample as much as possible in order to avoid 

unnecessary chemical reactions on the surface, making cavity surface rough.  

The (1) and (2) should repeat for 3 times. 

(3) Cr and SiO2 hard masks removal. we remove Cr and SiO2 hard masks by 

buffered HF (BHF) solution. 3 minutes are enough to remove 400 nm thick 

SiO2. After this rinse the sample into in DI water for 1 minute. 

(4) Slight InGaAs etching. We slightly wet-etch the InGaAs surface to remove 

impurities from the side of the active layer, InGaAs. Then we immerse for 5 

seconds in dilute sulfuric acid H2SO4:H2O2:H2O (1:8:5000). At last we 

rinse with DI water for 15 seconds and for another 60 seconds in another 

beaker. 

(5) Ultrasonic cleaning. After InGaAs etching, the ultrasonic cleaning in acetone 

is done to remove remaining Cr, which is not dissoluble in BHF and sticky to 

sample surface. The condition is same as step (a). 

(6) (NH4)2S solution. We use 20% (NH4)2S solution ( (NH4)2S : H2O = 1:4) 

to fill the dangling bond with S to prevent further oxidization by O2. 30 

minutes are enough for (NH4)2S solution, and then rinse the sample into DI 

water. Fig. 4.5 shows the SEM image before and after surface treatment. 

(m) SiO2 deposition. As same as step (b). We first do the ultrasonic cleaning to 

clean the surface of sample. After that we deposit 30 nm thick SiO2 insulator 

layer by PECVD. 

(n) Ge&Agdeposition. The Ge and Ag are deposited by EB evaporator. Since the 

silver layer and SiO2 layer shows weak adhesion, we deposit 2 nm thick Ge layer 

to enhance the relationship. Then we deposit thick silver film which is related to 

optical loss in cavity. To get better silver film, higher vacuum and deposition rate 

are needed. We deposit the silver when pressure in chamber is less than 3 × 10−5 

Pa. On the other hand, the target (Ag) is heated by EB in high vacuum, and is 

melted into plasma and flies to the substrate upon the target, where a film is 

formed. Naturally, the evaporated material goes up straight in the vacuum, and 

thus, only the top of a 3D structure can be deposited effectively, while the 

sidewalls are free from evaporation. For better silver film, one should set the 

sample oriented at 45 ° to the axis of rotation of the holder because especially in a 

cavity with a rectangular shape such as a rectangle, metal is not deposited on the 

corner. Then the sample holder is rotated to deposit from a direction inclined 45 to 

60 °, so that the cavity is oriented at 45 ° to the axis of rotation of the holder. In 

addition, target sample sets both Ge and Ag. Firstly, we deposit 2nm thick Ge 

with ±45 ° of the evaporation orientation. Then, we deposit 500nm thick Ag for 2 

times at ±45 ° of the evaporation orientation. After that we rotate the sample 
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direction 90° with respect to the holder rotation axis and do another evaporation 

of 500nm thick Ag at ±45 ° of the evaporation orientation. 

After deposition, RTA (Rapid Thermal Annealing) is done which can help increasing 

the grain size of Ag and reduces light scattering at the metal interface [44]. In this 

annealing, the temperature is raised to 400 ℃ for 8 minutes, and then heated for 1 

minute. The SEM image of the waveguide coupled cavity structure after Ag 

deposition and RTA is shown in Fig. 4.6. we can see that Ag is also deposited on the 

corners. 

 

 
Fig. 4.6 Scanning electron microscope image （SEM）of fabricated waveguide-coupled metal-clad cavity. 

4.2  Optimization of fabrication 

4.2.1  Condition of HSQ 

As talked before, the HSQ is very sensitive to operation condition. Any changes in 

the parameters and condition would cause unexpected affect in resist thickness and 

uniformity, which result in negative consequence during lithography. For example, the 

number of drips used in spin coating is very important and too much resist dripped onto 

the chip may cause difficulties in resist spreading. On the other hand, the rotation also 

has the effect on the thickness of HSQ. For we need to do another EB exposure of 

waveguide after dry etching the cavity, the thickness of HSQ takes great part. This time 

we should do the alignment by some marks set on the sample. The mark alignment is 

done through operation of controlling software. Thick HSQ may make it hard to 

alignment the waveguide accurately. We checked the resist thickness by Dektak and 

found that the thickness is about 250 nm at 3000 rotation per minute and 120 nm at  
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Fig. 4.7 (a) Mis matching of the marks. (b) and (c) Scanning electron microscope image （SEM）of waveguide-

coupled cavity spin coat with 3000 rpm and 4000rpm (where the thickness of HSQ is 250 nm and 120 nm). 

 

4000 rotation per minute. Fig. 4.7 (a) shows the mismatching of the alignment. Fig. 4.7 

(b) and (c) shows the waveguide coupled device at different thickness of HSQ. It can 

be clearly seen that the waveguide and the cavity mismatched at the thickness of HSQ 

is 250 nm, and the waveguide is draw under the cavity accurately at the thickness of 

HSQ is 120 nm.  

Also, the developing time of removing HSQ should be confirmed correctly. Too short 

time can’t remove the resist clean. Fig. 4.8 shows the waveguide coupled cavity by 

putting the sample into the developer for 40 seconds. We can see the resist on the profile 

sides of the cavity and waveguide haven’t been removed clean. More time should be 

done to clearly remove the resist because the resist adheres to the connect part of the 

waveguide and cavity is hard to remove. This time we put the sample into developer 

for 2 minutes to clearly remove the resist.  
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Fig. 4.8 Scanning electron microscope（SEM）image of waveguide-coupled cavity etching with remaining resist 

on profile sides. 

4.2.2  Condition of 𝐒𝐢𝐎𝟐 dry etching 

Table 4-7 Condition of Cr and SiO2’s dry etching 

 

Etching material SiO2(before) SiO2(after) 

RF power (W) 80 120 

Pressure (Pa) 2.0 2.0 

Gas (sccm) CHF3/Ar 

(20/10) 

CHF3/Ar 

(20/10) 

Time 19 minutes 15 minutes 

Etching rate 22 nm/s 27 nm/s 

 

Table 4-7 shows the condition of SiO2’s dry etching we used before and we used 

after. As shown in Fig. 4.9 (a), the SiO2 dry etching is performed using the previous 

condition. After etching, some polymers were formed on the chip surface as a reaction 

product. Therefore, if the next InP / InGaAs dry etching is performed while leaving it, 

the polymer will become a mask and it will be a problem that many pillars will be 

formed around the cavity. If a pillar-like structure remains around the cavity, 

subsequent metal deposition will not be successful which must be avoided. Therefore, 

in the previous research [32], sureface treatment was performed by removing the 

polymer attached to the InGaAs surface by wet etching the InGaAs layer on the 

surface by a small amount with sulfuric acid. In this study, the InP / InGaAs dry 

etching was performed after the surface treatment with sulfuric acid addition after the 



44 

 

dry etching of SiO2. However, due to the large polymer remaining on the chip surface 

which can’t be removed during surface treatment, some pillars have been formed on 

the surface as a result of InP / InGaAs dry etching as shown in Fig. 4.9 (a). Generally,  

by using sulfuric acid hydrolysis can remove impurities such as organic substances 

when the surface is a material with low reactivity to sulfuric acid hydrolysis such as 

InP [44]. While InGaAs is the sulfuric acid which will be removed easily, and this 

method should be avoided in this case.  

To solve this problem, we use the new condition which enlarges the RF power as 

well as intensifying the physical etching. By repelling the surface product more 

strongly can etch the SiO2 cleanly and no impurity on the surface. It is better to dry 

etching 2 more minutes to completely dry etching the SiO2 film. After that, InP / 

InGaAs dry etching is performed as step (h) and the result is shown in Fig. 4.9 (b). 

The surface is clean and no pillars around the cavity.  

 

 
Fig. 4.9 (a) and (b) Scanning electron microscope（SEM）image of cavity with previous recipe and optimized 

recipe. 

4.3  Summary 

In this Chapter, we have performed the fabrication of the proposed waveguide 

coupled metal-clad cavity. Process flow and conditions of fabrication steps are 

investigated and improved, especially the condition of HSQ and SiO2 dry etching. In 

order to accurately align the waveguide on the cavity, we set the rotation per minute 

to be 4000 rpm to form a 120 nm-thick HSQ film on the sample. To improve the 

surface condition after SiO2 dry etching and InP/InGaAs dry etching, we decided the 

RF power to be 120 W, which can intensify the physical etching. By repelling the 

surface product more strongly can etch the SiO2 cleanly and no impurity on the 

surface. 
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Chapter 5  Transmission characterization 

In this Chapter, the transmission characterization of the fabricated waveguide 

coupled metal-clad cavity in Chapter 4 is measured. 

In the following sections, we first introduce the setup of transmission measurement. 

Then the measurement results are given and analyzed in detail, which proves the 

numerical simulation in Chapter 3. At last, a brief summary is made. 

5.1  Measurement setup 

Fig. 5.1 shows the schematic of the experimental setup. A wavelength-tunable laser 

is used to generate continuous-wave light from 1477 nm to 1563 nm. The light passes 

through the polarization controller and is injected into the InP device via a lensed fiber . 

The output light is coupled to another lensed fiber and detected by a photodetector. For 

the measurement, the sample is cleaved into 1-mm-long devices and mounted on the 

copper plate. 

We utilize a CCD camera to find the position of the waveguide and align it with the 

input and output fibers. First, we use a red laser pointer to input light from the input 

fiber. Through the camera, we can see the light hit the surface of the chip. We adjust the 

vertical position of the fiber, so that the red light illuminates exactly at the top edge of 

the waveguide facet. After that, we repeat the same procedure at the output fiber to 

make sure preliminary alignment is done. 

 

 

 

Fig. 5.1 Schematic of the experimental setup 
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Fig. 5.2 Measurement setup of waveguide-coupled cavity 

 

 

Fig. 5.3 Measured spectrum of the monitored input light to the device 

 

Fig. 5.3 shows the measured spectrum of the input light to the device. Since the 

monitored power shown in Fig. 5.3 is 10% of the actual input power to the device, 

the actual input power is around 3 dBm.  
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5.2  Measurement result 

 

Fig. 5.4 Measured spectrum from output waveguide (waveguide structure without cavity)  

 

 

 

Fig. 5.5 Measured spectrum from output waveguide (waveguide coupled cavity structure) 
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Fig. 5.6 Measured spectrum of the Fabry-Perot resonance 

 

Fig. 5.4 shows the measured spectrum of the optical power from the output 

waveguide (waveguide structure without cavity). Fig. 5.5 shows the measured 

spectrum of the optical power from the output waveguide (waveguide coupled cavity 

structure). The waveguide structure without cavity shows a similar spectrum to the 

input light. Compare with the structure without the cavity; we can see a clear 

resonance pick as shown in Fig. 5.5.  

To see it clearly, we amplify one part of the measured spectrum in Fig. 5.5. As 

shown in Fig. 5.6, we can confirm a finer oscillation with a period of 0.4 nm, which is 

mainly because the reflectivity at each facet between the waveguide and air is about 

0.35. Thus, the waveguide itself can be seen as a Fabry-Perot resonator. 

The measured transmission spectrum of the fabricated waveguide-coupled metal-

clad cavity is shown in Fig. 5.7. Fig. 5.7 (a) shows the measured transmission 

spectrum for cavity length is 2.1 μm. The resonance pick is at 1485 nm, and the 

extinction ratio is 1 dB. Fig. 5.7 (b) shows the measured transmission spectrum for 

cavity length is 2.3 μm. We can see an obvious resonance pick at about 1500 nm. 

Moreover, the extinction ratio is 1.5 dB. Obviously, the optimized one shows a better 

result, which also agrees with the simulation results in Chapter 3. For comparison, 

Fig. 5.8 shows the simulated transmission spectrum. The resonance wavelength of the 

simulation result is at 1495 nm, which agrees with the measurement result. Thus, we 

can confirm that the light is coupled to the cavity at the resonance wavelength. 
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Fig. 5.7 (a) Measured transmission spectrum of the fabricated waveguide-coupled metal-clad cavity (L = 2.1 μm). 

 

 

Fig. 5.7 (b) Measured transmission spectrum of the fabricated waveguide-coupled metal-clad cavity (L= 2.3 μm). 
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Fig. 5.8 Simulated transmission spectrum 

The reduction in extinction ratio compared with the simulation result is attributed to 

several reasons. First, we have deposited a thick silver film to reduce the optical loss 

in the cavity, which may also have led to large metal loss to the input and output light. 

Second, the extra scattering in the lateral direction should reduce the extinction ratio.  

5.3  Summary 

In this Chapter, we use the sample fabricated in Chapter 4 to evaluate the 

transmission characteristic of the waveguide coupled cavity. We demonstrate that the 

light coupled to the cavity at the resonance wavelength of 1500 nm, which agrees with 

our FDTD simulation results. For comparison, we measured the transmission 

characteristic of waveguide coupled cavities with different cavity lengths. The 

optimized structure shows better results than the previous one. The measured extinction 

ratio is 1.5 dB. The decrease in the extinction ratio compared with simulation result is 

attributed to the metal loss and the extra scattering. For further optimization, firstly, we 

need to adjust the widths of the cavity and waveguide to minimize the scattering. 

Secondly, the fabrication process needs to be improved. Last but not least, a new 

structure of the waveguide coupled metal-clad cavity should be discussed to optimize 

the transmission characterization further. 
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Chapter 6  Design and fabrication of horn-shaped metal-clad 

cavity coupled to InP waveguide 

As talked before, the resonance in the cavity failed to get in measurement mainly due 

to the low transmission and Q factor in previous work. For further optimization, we 

propose the horn-shaped cavity structure, which can maximize the Q factor and 

minimize scattering loss by using a 3D-FDTD method.  

This chapter will first explain the principle of the horn-shaped metal-clad cavity. 

Next, the digital design of the metal-clad cavity coupled to the InP waveguide will be 

introduced. The 2D-FDTD simulation results show enhancement of Q factor and 

transmission and 3D-FDTD simulation results show similar answers as 2D-FDTD 

results. The calculation of the Q factor is also discussed, as well. After that, the 

modulator performance will be briefly introduced. Lastly, the fabrication of the horn-

shaped cavity will be discussed. 

6.1  Effect of insulator thickness to quality factor 

Firstly, we studied the effects of SiO2  insulator thickness on cavity performance 

[32]. The size of cavity is fixed to L = 1.6 µm, W = 1 µm, L/R = 1.25 and the coated 

metal is silver. It is said that the thickness of SiO2 is another important factor that 

affects device’s performance remarkably. In Fig. 6.1 (a), we can see Q factor is sensitive 

to the SiO2  thickness. This time the refractive index of SiO2  is 1.45, which is far 

below 3.53 of InGaAs. Along longitude direction, the interface of SiO2 and InGaAs in 

front of silver mirror reflects light which can decrease the metal absorption. On the 

other hand, thick SiO2 causes extra scattering, which increases the loss of the cavity.  

      
Fig. 6.1 (a) Quality factor and resonating wavelength as a function of thickness of SiO2. (b) Fraction of 1/𝑄 =

1/𝑄𝑚𝑒𝑡𝑎𝑙 + 1/𝑄𝑑𝑖𝑠, corresponding to metal absorption and radiation loss, respectively, as a function of SiO2  

thickness [32]. 
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SiO2 thickness also has great effect to Q factor. The quality factor can be written as 

1/𝑄 = 1/𝑄𝑚𝑒𝑡𝑎𝑙 + 1/𝑄𝑑𝑖𝑠 , where 1/𝑄𝑚𝑒𝑡𝑎𝑙  and 1/𝑄𝑑𝑖𝑠  relate to metal-absorbed 

loss and radiation loss, respectively. Fig. 6.1(b) shows the fraction of 1/𝑄𝑚𝑒𝑡𝑎𝑙 

(corresponding to metal absorption loss) and 1/𝑄𝑑𝑖𝑠 (corresponding to radiation loss) 

as a function of SiO2 thickness. The height of column relates to power dissipation rate. 

The higher, the more lossy. We can see clearly the loss is almost induced by metal when 

SiO2 is very thin which also shows low quality factor. As talked before, SiO2 layer 

works like a half mirror which reflects the light, decreasing the metal absorption and its 

reflectivity increases at the range. Therefore, both absolute value and fraction of metal 

(green part of column) induced loss go down. On the other hand, inside the SiO2 layer, 

there is no refractive index difference in vertical direction, meaning that no confinement 

in vertical direction. So the guided mode escapes to the bottom. As we can see, the 

radiation loss goes up as the thickness of SiO2 becomes larger. 

So there still need some methods to both decrease the metal loss and the radiation 

loss by the effect of SiO2 thickness to the cavity performance. 

6.2  Horn-shaped metal-clad cavity 

Fortunately, recent work on horn-shaped metal-clad cavity for on-chip light source 

application showed the possibility of reducing the plasmonic losses and improving the 

mode confinement by optimizing the slope angle of the SiO2 insulator layer [33]. Fig 

6.2 shows the schematics of the proposed horn-shaped metal-clad resonator.  

 

       

Fig. 6.2 (a) Schematics of the proposed horn-shaped metal-clad resonator. (b), (c) The properties of the horn-

shaped metallic-clad cavity for different slope angles α. (b) Quality factor (𝑄: total, 𝑄𝑎𝑏𝑠: absorption,𝑄𝑟𝑎𝑑: 

radiation). (c) overlap factor Γ [34]. 
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The Q factor can be decomposed into the metal absorption and radiation loss (𝑄−1 =

𝑄𝑎𝑏𝑠
−1 + 𝑄𝑟𝑎𝑑

−1 ) [34,35]. This can be observed in Fig. 6.2 (b). The stable current density 

distribution at the metallic layer near the cavity indicates the energy absorption 𝑄𝑎𝑏𝑠 

due to the spatial spread of the mode. 𝑄𝑟𝑎𝑑 is indicated by the leaky electric field under 

the cavity that causes energy to radiate into the InP substrate through the dielectric 

passage. The wider cladding region near the cavity reduces optical absorption, and the 

narrowing passage near the bottom enhances the vertical confinement [36]. By 

adjusting the parameter α for the sloping angle provides another leverage to affect the 

𝑄𝑎𝑏𝑠 and 𝑄𝑟𝑎𝑑, which will lead to further enhancement of the overall 𝑄 factor. 

As shown in Fig. 6.2 (b), 𝑄𝑟𝑎𝑑 and 𝑄𝑎𝑏𝑠 increase due to the higher confinement of 

energy in the cavity. The position of the resonance mode moves upward toward the 

wider cladding region in the cavity and reduces the leakage as well as metallic 

absorption. Fig. 6.2 (c) shows the overlap factor Γ. Γ was shown to decrease slightly for 

α > 8° because the mode spreads into a larger cladding region. By increasing the 

cladding slope angle from 0 to 16°, the Q factor increased from 50 to 900 and Purcell 

factor increased from 18 to 135, respectively. This approach can serve as a design guide 

toward implementing ultra-compact and cost-efficient on-chip metal-clad devices [45]. 

6.3  Numerical design and simulation result of horn-shaped metal-

clad cavity coupled to InP waveguide 

We implement this horn-shaped structure concept to a compact cavity integrated on 

an InP waveguide, and optimize the structure to maximize the Q factor and minimize 

scattering loss. Fig. 6.3 shows the schematic of the horn-shaped metal-clad cavity 

considered in this work. The primary layer profile is the same as Chapter 3.  

 

    
Fig. 6.3 (a) 3D Schematic and (b) the cross-sectional view at x-z plane of the horn-shaped metal-clad resonator. 
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This time we mainly focus on the slope angle  of SiO2 as an important parameter. 

The device is analyzed by the finite-difference time-domain (FDTD) method. Since the 

slope angle also has the same effect at x-z direction as well as y-direction, we will first 

optimize the slope angle  through 2D FDTD simulation at x-z direction as shown in 

Fig. 3.3 (a). This part can save much simulation time because using 3D-FDTD will take 

much more time than 2D-FDTD. Then we confirm the performance of the optimized 

structure by full 3D simulation. In the 3D simulation part, we will also focus on the 

calculation of Q factor. Usually, the calculation of high Q factor cavities cost a long 

time, but if we can figure out the decay rate of the certain mode, we can interrupt the 

calculation halfway. In this research, the calculation is carried out precisely in this way. 

In detail, we will also calculate the 𝑄𝑚𝑒𝑡𝑎𝑙 and 𝑄𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 extracted by integrating 

the Poynting vector at the metallic boundaries and compare it with the 2D-FDTD 

simulation result. 

6.3.1  2D-FDTD simulation (Optimize the slope angle) 

In Chapter 3, we maximized the Q factor from 296 to 535 as well as the extinction 

ratio from 1.98 dB to 4.32 dB. We start from the optimized structure and investigate the 

effect of nonzero slope angle . As previous research purposes, by optimizing the slope 

angle of SiO2  insulator layer, the possibility of reducing the plasmonic losses and 

improving the mode confinement.  
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Fig. 6.4 (a) Schematic image and (b) Transmission spectrum for various values of  (L = 2.3 m, D = 300 nm). 

The resonance wavelength shifts with the increase in , while the peak transmission remains nearly constant. 

 

The transmission spectra for various values of  are plotted in Fig. 6.4 (b) for L = 2.3 

m and D = 300 nm as optimized in previous section. We can see that the resonant 

wavelength shifts with the increase in , while the peak transmission remains nearly 

constant. The reason why peak transmission remains is that the cavity structure doesn’t 

change (only adjusting the slope angle of SiO2  insulator layer) while the resonant 

wavelength shifts because of the resonance mode shifting with slope angle. Fig. 3.10   

shows the Q factor as a function of 𝛼. The maximum Q factor of 1054 is obtained at  

= 15. One maybe confused why Q factor doesn’t keep increasing with the slope angle 

but get maximum at 15. The explanation will be shown in 3D-FDTD simulation. 

 

 
Fig. 6.5 Q factor of resonant mode as a function of . 
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Fig. 6.6 (a) Transmission spectrum for L = 2.3 m, D = 300 nm, and  = 15. (b) Electric field distribution at 

resonance wavelength (1554 nm) (c) Electric field distribution at non-resonance wavelength (1618 nm) 

 

Fig. 6.6 (a) shows the transmission spectrum for the optimized case: L = 2.3 m, D = 

300 nm, and  = 15. In this case, the extinction ratio of 6.4 dB and Q factor of 1054 is 

obtained. Fig. 6.6 (b) and (c) show the simulated electric field distributions at a resonant 

wavelength (1541 nm) and a non-resonating wavelength (1618 nm), respectively. We 

can see that at the resonant wavelength (1541 nm), the incident light is trapped inside 

the cavity and eventually absorbed by Ag, while the light is transmitted through at non-

resonance wavelength (1618 nm). 

6.3.2  3D-FDTD simulation 

The 3D FDTD simulation is carried out for the optimized structure (L = 2.3 m, D = 

300 nm). As shown in Fig. 6.3 (a), we set the cavity width to be W1 = 1 m and 

waveguide width to be W2 = 1.5 m.  

In order to find out the proportion of power that coupled into waveguide for this horn-

shaped cavity, we look into the detailed component of overall Q factor. Considering 

steady lasing state of a cavity. The loss during the resonating is consist of two part, as 

shown in Fig. 6.7. 
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𝐸𝑙𝑜𝑠𝑠 = 𝐸𝑚𝑒𝑡𝑎𝑙 + 𝐸𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑛                      (6-1) 

 

Where 𝐸𝑚𝑒𝑡𝑎𝑙, 𝐸𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑛 represents absorption by metal and radiation into waveguide, 

respectively. From the calculated Q factor, contributions from the metallic loss and  

 

Fig. 6.7 Energy loss from cavity 

 

radiation loss are extracted by integrating the Poynting vector at the metallic boundaries 

and using [38] 

 

1

𝑄
=

1

𝑄𝑚𝑒𝑡𝑎𝑙
+

1

𝑄𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛
                    (6-2) 

 

And the Q factor of a resonant cavity is defined as 

 

𝑄 =
2𝜋𝑓0𝐸

𝑃
                         (6-3) 

Where the 𝐸 is the stored energy inside the resonator, 𝑃 = −𝑑𝐸/𝑑𝑡  is the power 

dissipation rate,𝑓0 is the resonant frequency. From this equation, the optical energy E 

can be written as a function of time t. 

 

𝐸(𝑡) = 𝐸(0)𝑒
−

2𝜋𝑓0
𝑄

𝑡
                     (6-4) 

 

The loss of energy 𝐸𝑙𝑜𝑠𝑠 is written as 

 

Eloss = E(0) − E(t) =
2πf0

Q
t ∙ E(0)          (6-5) 
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By combining Equation 6-4 and Equation 6-5, we get  

 

𝐸𝑙𝑜𝑠𝑠 =
2𝜋𝑓0
𝑄

𝑡 ∙ 𝐸(0) = (
1

𝑄
𝑚𝑒𝑡𝑎𝑙

+
1

𝑄
𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛

)2𝜋𝑓0𝑡 ∙ 𝐸(0) 

≡ 𝐸𝑚𝑒𝑡𝑎𝑙 + 𝐸𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑛                  (6-6) 

 

The 𝐸𝑚𝑒𝑡𝑎𝑙  and 𝐸𝑟𝑎𝑑𝑖𝑎𝑡𝑜𝑛  can be calculated through 3D-FDTD simulation. As 

shown in Fig. 6.8, we set the cube 𝑆1 cover the whole cavity, which is a bit larger than 

silver coatings. Similarly, the cube 𝑆2 is set inside cavity which is smaller than silver 

coatings. The pointing vector is calculated by �⃗� = �⃗� × 𝐻∗⃗⃗ ⃗⃗  . Surface integrals of vector 

field �⃗�  represents the power passes through the cube. 

 

 

Fig. 6.8 Schematic of energy loss calculation 

 

The calculated results are shown in Fig. 6.9. We can see both 𝑄𝑚𝑒𝑡𝑎𝑙 and 𝑄𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 

increase with increasing angle due to the higher confinement inside the cavity as talked 

before. The optical absorption also reduces by adjusting . When  exceeds 15, 

however, the vertical confinement becomes lower, and the extra scattering becomes 

even stronger. 𝑄𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 reduces rapidly due to the extra scattering. And the 𝑄𝑚𝑒𝑡𝑎𝑙 

almost keep stable. A trade-off point between 𝑄𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 and 𝑄𝑚𝑒𝑡𝑎𝑙 is obtained at  

= 15, where the maximum Q factor reaches 408. The maximum Q factor also agrees 

with the result of the 2D simulation. 
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Fig. 6.9. Total Q, Qmetal, and Qradiation as a function of , derived from 3D FDTD simulation (L = 2.3 m, D = 300 

nm). 

 

 

Fig. 6.10. Transmission spectrum of the best case: L = 2.3 m, D = 300 nm, W1 = 1 m, W2 = 1.5 m, and  = 

15. The extinction ratio is 3.9 dB.  

 

Fig. 6.10. shows the transmission spectrum for the best case: L = 2.3 m, D = 300 nm, 

W1 = 1 m, W2 = 1.5 m, and  = 15. In this case, the extinction ratio is 3.9 dB, and 

Q factor is 408. The reduction in Q factor compared with the 2D result may attribute to 

the extra scattering in y-direction. For further optimization, we need to adjust the widths 

of the cavity and waveguide to minimize the scattering. 
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6.3.3  Application to modulator 

By applying a reverse bias to modulate the refractive index of the InGaAsP active 

layer inside the cavity, it could be used as a resonant modulator. To study the 

applicability to a waveguide modulator, we investigate the resonant wavelength shift 

under the refractive index change in the active InGaAsP layer. Fig. 6.11 (a) shows the 

simulated transmission spectrum for different values of the refractive index of the 

InGaAsP layer. As a result, input light at 1502 nm can be modulated by 3.2 dB with the 

internal loss of 1.5 dB. Fig. 6.11 (b) and (c) show the simulated electric field intensity 

distributions at 1502 nm for the cases of n = 3.50 and 3.51, respectively. We can see 

that at the resonant wavelength, the incident light is trapped inside the cavity and 

eventually absorbed by Ag. 

 

 

 

Fig. 6.11Transmission spectrum when the refractive index of the active InGaAsP layer n is 3.50, 

3.51 and 3.52 (a), and electric field distribution at 1502 nm for the case of n = 3.50 (b) and 3.51 

(c). 
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6.4  Horn-shaped 𝐒𝐢𝐎𝟐 layer deposition 

This part focus on forming the horn-shaped SiO2 layer. This time we use the EB 

evaporator to deposit the horn-shaped SiO2 film as an insulator layer in the proposed 

design. The target (SiO2) is heated by EB in high vacuum below 6.7 × 10−5 Pa as 

possible, which is melted into plasma and flies to the substrate upon the target, where 

a film is formed [46]. As the nature of this process, the evaporated material goes up 

straight in the vacuum because of the long mean-free path of a few tens of 

centimeters. Thus, only the top of a 3D substrate can be deposited, while the profiles 

are free from evaporation. Fig. 6.12 can schematically illustrate this feature. As we 

can see, the dashed line directs the shadow area where cannot be deposited with the 

target material.  

 

 

Fig. 6.12 Oriental feature of EB evaporation. The black arrows indicate the direction of evaporation. And the 

dashed line directs the shadow area. 

 

          
Fig. 6.13 Schematic of horn-shaped 𝐒𝐢𝐎𝟐 layer deposition. 
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This time we utilize this feature to deposit the horn-shaped SiO2 layer. As shown 

in Fig. 6.13, we first deposit the target material to some degree to ultimately form the 

SiO2 film either on top of the structure or on profile sides. Then we slope the deposit 

angle to form a thicker SiO2 film on sidewalls of the fabric to make the horn-shaped 

SiO2 layer. One should note that the deposit angle needs to be changed gently to 

develop the SiO2 film smoothly. Too fast may cause the insulator layer formed 

worse. Fig. 6.14 shows the SEM image of the cavity after SiO2 deposition. After the 

SiO2 deposition, about 300 nm thick SiO2 formed on the top of the cavity, so we 

should dry etching the top of the SiO2 layer as shown in step (g) in Chapter 4. As 

shown in Fig. 6.14 (a), the horn-shaped SiO2 film formed at both sidewalls after the 

deposition, and the thick SiO2 formed on the top of the cavity. Fig. 6.14 (b) shows 

the SEM image of the cavity with horn-shaped SiO2 film after top SiO2 dry etching. 

 

 

Fig. 6.14 (a) The SEM image of the cavity after SiO2 deposition. The top of the structure has thick SiO2 layer. 

(b) The SEM image of the cavity with horn-shaped SiO2 film after top SiO2 dry etching. 
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6.5  Summary 

In this chapter, I have introduced the detailed design and simulation result of the 2.3-

m-long horn-shaped metal-clad cavity integrated with an InP waveguide. Two 

essential parameters have been optimized through FDTD simulation. By adjusting the 

slope angle of the SiO2 insulating layer, we demonstrated that the Q factor could be 

enhanced significantly from 152 to 408 in 3D FDTD simulation. Then we have shown 

the applicability of this structure to a compact modulator with an internal loss of 1.5 dB 

and the extinction ratio of 3.2 dB. We expect that the device performance could be 

further improved by optimizing the structure in the width dimension. The possibility of 

high-speed modulation is expected due to the low-resistance electrical contact of the 

metallic cavity. In the fabrication part, we successfully deposit the horn-shaped SiO2 

film by using the EB evaporator.   
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Chapter 7  Conclusion 

In this research, we find new structures and further optimize the cavity structure to 

enhance the property of metal-clad cavity coupling to InP waveguide. The simulation 

results by the FDTD method shows the maximum of the Q factor and the transmission. 

Base on these results, we proposed an optimized design of the metal-clad cavity 

coupling to InP waveguide. 

We first introduced small light emitters and confirmed the metallic cavity 

semiconductor nano-laser to be a light source for on-chip optical interconnects. 

However, as mentioned before, the emitting light to the substrate brings extraction and 

diffraction problems and low Q factor. The necessity of the waveguide coupled metal-

clad cavity which can solve the common problems of metallic cavity laser has been 

reviewed. Although previous work has been done to make the metal-clad cavity 

coupling to InP waveguide, low Q factor and transmission cause the resonance in the 

cavity failed to get in a measurement. So this research is exactly focused on enhancing 

the property of metal-clad cavity coupling to InP waveguide to relived the problems. 

We introduced the detailed design and simulation result of the 2.3-m-long metal-

clad cavity integrated with an InP waveguide. Two essential parameters have been 

optimized through FDTD simulation. By optimizing the length of the cavity and 

thickness of the upper InP cladding, we maximized the Q factor of the resonant mode 

as well as the extinction ratio. We investigated that the extinction ratio could be 

enhanced significantly from 1.98 dB to 4.32 dB. Also, the Q factor enlarged from 296 

to 535 in 2D FDTD simulation.  

We also improve the fabrication process, especially the condition of HSQ and SiO2 

dry etching. In order to accurately align the waveguide on the cavity, we set the rotation 

per minute to be 4000 rpm to form a 120 nm-thick HSQ film on the sample. To improve 

the surface condition after SiO2 dry etching and InP/InGaAs dry etching, we decided 

the RF power to be 120 W, which can intensify the physical etching. By repelling the 

surface product more strongly can etch the SiO2 cleanly and no impurity on the surface. 

The transmission characterization shows very good agreement between simulation and 

experiment.  

We successfully get the measurement of the resonance in the cavity for the first time. 

We also demonstrate the optimized one shows a better result than the previous one. The 

resonance in the cavity of the optimized case is at 1500 nm, which agrees with the 

simulation result by FDTD. The measured extinction ratio is 1.5 dB. 

To further enhance the Q factor at the resonance wavelength, we also numerically 

investigate a novel structure based on a horn-shaped metal-clad cavity, coupled to an 

InP waveguide. By adjusting the slope angle of the SiO2 insulating layer, we 

demonstrated that the Q factor could be enhanced significantly from 152 to 408. We 
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have then demonstrated the applicability of this structure to a compact modulator with 

an internal loss of 1.5 dB and the extinction ratio of 3.2 dB. We expect that the device 

performance could be further improved by optimizing the structure in the width 

dimension. The possibility of high-speed modulation is expected due to the low-

resistance electrical contact of the metallic cavity. In the fabrication part, we 

successfully deposit the horn-shaped SiO2 film by using the EB evaporator. 

However, this research has several important issues to promote in the future. 

 

⚫ Measurement of the horn-shaped metal-clad cavity  

Although we successfully deposit the horn-shaped SiO2 film, we have not done the 

measurement of the fabricated structure due to the time-limited. The simulation results 

show significant enhancement of the Q factor and the extinction ratio. Also, the 

possibility of high-speed modulation is expected due to the low-resistance electrical 

contact of the metallic cavity. Further improvement of the fabrication of the horn-

shaped SiO2  deposition could be done in the future. The measured transmission 

characterization may show better results than the rectangular cavity. 

 

⚫ Further optimization of waveguide coupled cavity structure 

As shown in 3D FDTD results, the reduction in Q factor compared with the 2D result 

may attribute to the extra scattering in the y-direction. For further optimization, we need 

to adjust the widths of the cavity and waveguide to minimize the scattering. Topology 

Optimization of Metal-clad Cavity Structure [44] also shows enhancement in Q factor. 

The new cavity structure can be discussed in the future. 
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