

Local well-posedness for the nonlinear Schrödinger equation in the intersection of modulation spaces $M_{p,q}^s(\mathbb{R}^d) \cap M_{\infty,1}(\mathbb{R}^d)$

Leonid Chaichenets, Dirk Hundertmark, Peer Kunstmann, Nikolaos Pattakos

CRC Preprint 2019/27, December 2019

KARLSRUHE INSTITUTE OF TECHNOLOGY

Participating universities

Funded by

ISSN 2365-662X

LOCAL WELL-POSEDNESS FOR THE NONLINEAR SCHRÖDINGER EQUATION IN THE INTERSECTION OF MODULATION SPACES $M_{p,q}^s(\mathbb{R}^d) \cap M_{\infty,1}(\mathbb{R}^d)$

L. CHAICHENETS, D. HUNDERTMARK, P. KUNSTMANN, AND N. PATTAKOS

ABSTRACT. We introduce a Littlewood-Paley characterization of modulation spaces and use it to give an alternative proof of the algebra property, implicitly contained in [STW11], of the intersection $M_{p,q}^s(\mathbb{R}^d) \cap M_{\infty,1}(\mathbb{R}^d)$ for $d \in \mathbb{N}$, $p, q \in [1, \infty]$ and $s \geq 0$. We employ this algebra property to show the local well-posedness of the Cauchy problem for the cubic nonlinear Schrödinger equation in the above intersection. This improves [BO09, Theorem 1.1] by Bényi and Okoudjou, where only the case q = 1 is considered, and closes a gap in the literature. If q > 1 and $s > d\left(1 - \frac{1}{q}\right)$ or if q = 1 and $s \geq 0$ then $M_{p,q}^s(\mathbb{R}^d) \hookrightarrow M_{\infty,1}(\mathbb{R}^d)$ and the above intersection is superfluous. For this case we also obtain a new Hölder-type inequality for modulation spaces.

1. INTRODUCTION

In this paper we contribute to the general theory of modulation spaces. Modulation spaces $M_{p,q}^s(\mathbb{R}^d)$ were introduced by Feichtinger in [Fei83]. Here, we only briefly recall their definition and refer to Section 2 and the literature mentioned there for more information. Fix a so-called window function $g \in \mathcal{S}(\mathbb{R}^d) \setminus \{0\}$. The short-time Fourier transform $V_g f$ of a tempered distribution $f \in \mathcal{S}'(\mathbb{R}^d)$ with respect to the window g is defined by

(1)
$$(V_g f)(x,\xi) = \frac{1}{(2\pi)^{\frac{d}{2}}} \overline{\langle f, M_{\xi} S_x g \rangle} \qquad \forall x,\xi \in \mathbb{R}^d,$$

where $S_x g(y) = g(y - x)$ denotes the *right-shift* by $x \in \mathbb{R}^d$, $(M_{\xi}g)(y) = e^{ik \cdot y}g(y)$ the *modulation* by $\xi \in \mathbb{R}^d$ and $\langle f, g \rangle = \int_{\mathbb{R}^d} \overline{f}(x)g(x)dx$ for $f \in L^1_{\text{loc}}(\mathbb{R}^d)$, $g \in \mathcal{S}(\mathbb{R})^d$. We define

$$\begin{split} M_{p,q}^{s}(\mathbb{R}^{d}) &= \left\{ f \in \mathcal{S}'(\mathbb{R}^{d}) \middle| \left\| f \right\|_{M_{p,q}^{s}(\mathbb{R}^{d})} < \infty \right\}, \text{ where} \\ \| f \|_{M_{p,q}^{s}(\mathbb{R}^{d})} &= \left\| \xi \mapsto \langle \xi \rangle^{s} \left\| V_{g} f\left(\cdot, \xi \right) \right\|_{p} \right\|_{q} \end{split}$$

for $s \in \mathbb{R}$, $p, q \in [1, \infty]$. As usual in the literature, we set $M_{p,q}(\mathbb{R}^d) \coloneqq M_{p,q}^0(\mathbb{R}^d)$ and often shorten the notation for $M_{p,q}^s(\mathbb{R}^d)$ to $M_{p,q}^s$. It can be shown, that the $M_{p,q}^s(\mathbb{R}^d)$ are Banach spaces and that different choices of the window function glead to equivalent norms.

To state our first result, let us recall the definition of the Littlewood-Paley decomposition. Consider a smooth radial function $\phi_0 \in C_c^{\infty}(\mathbb{R}^d)$ with $\phi_0(\xi) = 1$ for

 $[\]textcircled{C}2019$ by the authors. Faithful reproduction of this article, in its entirety, by any means is permitted for noncommercial purposes.

Date: April 30, 2019.

²⁰¹⁰ Mathematics Subject Classification. 35A01, 35A02, 35Q55, 42B25.

Key words and phrases. Nonlinear Schrödinger equation, modulation spaces, local wellposedness, Littlewood-Paley characterization, Hölder-type inequality.

all $|\xi| \leq \frac{1}{2}$ and $\operatorname{supp}(\phi_0) \subseteq B_1(0)$. Set $\phi_1 = \phi_0\left(\frac{\cdot}{2}\right) - \phi_0$ and $\phi_l = \phi_1\left(\frac{\cdot}{2^{l-1}}\right)$ for all $l \in \mathbb{N}$. The multiplier operators defined by

$$\Delta_l f \coloneqq \frac{1}{(2\pi)^{\frac{d}{2}}} \check{\phi}_l * f = \mathcal{F}^{(-1)} \phi_l \mathcal{F} f \qquad \forall \in \mathbb{N}_0 \, \forall f \in \mathcal{S}'(\mathbb{R}^d)$$

are called *dyadic decomposition operators* and the sequence $(\Delta_l f)_{l \in \mathbb{N}_0}$ is called the *Littlewood-Paley decomposition* of $f \in \mathcal{S}'(\mathbb{R}^d)$. Above, \mathcal{F} denotes the usual *Fourier transform* and $\mathcal{F}^{(-1)}$ its inverse.

Our first result is

Theorem 1 (Littlewood-Paley characterization). Let $d \in \mathbb{N}$, $p, q \in [1, \infty]$ and $s \in \mathbb{R}$. Then

$$\|f\| \coloneqq \left\| \left(2^{ls} \|\Delta_l f\|_{M_{p,q}(\mathbb{R}^d)} \right)_{l \in \mathbb{N}_0} \right\|_q \qquad \forall f \in \mathcal{S}'(\mathbb{R}^d)$$

defines an equivalent norm on $M^s_{p,q}(\mathbb{R}^d)$. The constants of the norm equivalence depend only on d and s.

The above characterization of modulation spaces is new and we shall use it to prove that the intersections $M_{p,q}^s(\mathbb{R}^d) \cap M_{\infty,1}(\mathbb{R}^d)$ are *Banach* *-algebras¹. To state this second result, let us denote by $C_{\rm b}(\mathbb{R}^d)$ the space of bounded complex-valued continuous functions on \mathbb{R}^d , where $d \in \mathbb{N}$. We then have

Theorem 2 (Algebra property). Let $d \in \mathbb{N}$, $p, q \in [1, \infty]$ and $s \geq 0$. Then $M_{p,q}^s(\mathbb{R}^d) \cap M_{\infty,1}(\mathbb{R}^d)$ is a Banach *-algebra with respect to pointwise multiplication and complex conjugation. These operations are well-defined due to the embedding $M_{\infty,1}(\mathbb{R}^d) \hookrightarrow C_b(\mathbb{R}^d)$ Furthermore, if q > 1 and $s > d\left(1 - \frac{1}{q}\right)$ or if q = 1, then $M_{p,q}^s(\mathbb{R}^d) \hookrightarrow M_{\infty,1}(\mathbb{R}^d)$, so in particular $M_{p,q}^s(\mathbb{R}^d)$ is a Banach *-algebra, in that case.

The latter case of Theorem 2 had been observed already in 1983 by Feichtinger in his aforementioned pioneering work on modulation spaces (cf. [Fei83, Proposition 6.9]), where he proves it using a rather abstract approach via Banach convolution triples. The case q > 1 and $s \in \left[0, d\left(1 - \frac{1}{q}\right)\right]$ seems to be new, at least as a statement. A different proof of Theorem 2 can be given following the idea of proof of [STW11, Proposition 3.2], see [Cha18, Proposition 4.2].

Our third result is a Hölder-type inequality for modulation spaces, which is stated in

Theorem 3 (Hölder-type inequality). Let $d \in \mathbb{N}$ and $p, p_1, p_2, q \in [1, \infty]$ be such that $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2}$. For q > 1 let $s > d\left(1 - \frac{1}{q}\right)$ and for q = 1 let $s \ge 0$. Then there is a C > 0 such that for any $f \in M^s_{p_1,q}(\mathbb{R}^d)$ and any $g \in M^s_{p_2,q}(\mathbb{R}^d)$ one has $fg \in M^s_{p,q}(\mathbb{R}^d)$ and

(2)
$$\|fg\|_{M^s_{p,q}(\mathbb{R}^d)} \le C \|f\|_{M^s_{p_1,q}(\mathbb{R}^d)} \|g\|_{M^s_{p_2,q}(\mathbb{R}^d)}.$$

The above pointwise multiplication fg is well-defined due to the embedding formulated in Theorem 2. The constant C does not depend on p, p_1 or p_2 .

Theorem 3 easily generalizes to $m \in \mathbb{N}$ factors and $p, p_1, \ldots, p_m \in (0, \infty]$. Hence, it extends the multilinear estimate from [BO09, Equation 2.4] to the case $q_0 = \ldots = q_m > 1$.

¹For us, a Banach *-algebra X is a Banach algebra over \mathbb{C} on which a continuous *involution* * is defined, i.e. $(x + y)^* = x^* + y^*$, $(\lambda x)^* = \overline{\lambda} x^*$, $(xy)^* = y^* x^*$ and $(x^*)^* = x$ for any $x, y \in X$ and $\lambda \in \mathbb{C}$. We neither require X to have a unit nor C = 1 in the estimates $||x \cdot y|| \leq C ||x|| ||y||$, $||x^*|| \leq C ||x||$.

Here we present a direct proof of Theorem 3, close to the approach found in [WZG06, Corollary 4.2] and involving an application of Theorem 2. For a proof avoiding the Littewood-Paley characterization see the proof of [Cha18, Theorem 4.3]. A vet another and more abstract proof could be given by invoking [Fei80, Theorem 3] for a specific choice of Banach convolution triples.

Lastly, we employ Theorem 2 to study the Cauchy problem for the cubic nonlinear Schrödinger equation (NLS)

(3)
$$\begin{cases} i\frac{\partial u}{\partial t}(x,t) + \Delta u(x,t) \pm |u|^2 u(x,t) = 0 & (x,t) \in \mathbb{R}^d \times \mathbb{R}, \\ u(x,0) = u_0(x) & x \in \mathbb{R}^d, \end{cases}$$

where the initial data u_0 is in an intersection of modulation spaces $M^s_{p,q}(\mathbb{R}^d) \cap$ $M_{\infty,1}(\mathbb{R}^d)$. We are interested in *mild solutions u* of (3), i.e.

$$u \in C\left([0,T), M^s_{p,q}(\mathbb{R}^d) \cap M_{\infty,1}(\mathbb{R}^d)\right)$$

for some T > 0 which satisfy the corresponding integral equation

(4)
$$u(\cdot,t) = e^{\mathrm{i}t\Delta}u_0 \pm \mathrm{i} \int_0^t e^{\mathrm{i}(t-\tau)\Delta} \left(|u|^2 u(\cdot,\tau) \right) \mathrm{d}\tau \qquad \forall t \in [0,T).$$

Our last result is stated in

Theorem 4 (Local well-posedness). Let $d \in \mathbb{N}$, $p \in [1, \infty]$, $q \in [1, \infty)$ and $s \ge 0$. Set $X = M_{p,q}^s(\mathbb{R}^d) \cap M_{\infty,1}(\mathbb{R}^d)$ and $X(T) = C([0,T],X), X_*(T) = C([0,T],X)$ for any T > 0. Assume that $u_0 \in X$. Then, there exists a unique maximal mild solution $u \in X_*(T_*)$ of (3) and the blow-up alternative

$$T_* < \infty \qquad \Rightarrow \qquad \limsup_{t \to T_*^-} \|u(\cdot, t)\|_X = \infty$$

holds. Moreover, for any $T' \in (0, T_*)$ there exists a neighborhood V of u_0 in X, such that the initial-data-to-solution-map $V \to X(T')$, $v_0 \mapsto v$ is Lipschitz continuous.

As already stated in Theorem 2 one has that, if q > 1 and $s > d\left(1 - \frac{1}{q}\right)$ or if q = 1, then $M_{p,q}^s(\mathbb{R}^d) \hookrightarrow M_{\infty,1}(\mathbb{R}^d)$ and so $X = M_{p,q}^s(\mathbb{R}^d)$, in that case. In the case $q = \infty$ excluded in Theorem 4, the situation is more subtle. Following

our proof, one obtains local well-posedness in the larger space

$$L^{\infty}([0,T), M^s_{n,\infty}(\mathbb{R}^d) \cap M_{\infty,1}(\mathbb{R}^d)).$$

The missing continuity in time is due to the properties of the free Schrödinger evolution and we refer to the remarks after Theorem 10.

The precursors of Theorem 4 are [WZG06, Theorem 1.1] by Wang, Zhao and Guo for the space $M^0_{2,1}(\mathbb{R}^d)$ and [BO09, Theorem 1.1] due to Bényi and Okoudjou for the space $M_{p,1}^s(\mathbb{R}^d)$ with $p \in [1,\infty]$ and $s \geq 0$. In fact, Theorem 4 generalizes [BO09, Theorem 1.1] to $q \ge 1$: Although our theorem is stated for the cubic nonlinearity, this is for simplicity of the presentation only. The proof allows for an easy generalization to *algebraic nonlinearities* considered in [BO09], which are of the form

(5)
$$f(u) = g(|u|^2)u = \sum_{k=0}^{\infty} c_k |u|^{2k} u,$$

where q is an entire function. Also, [BO09, Theorems 1.2 and 1.3], which concern the nonlinear wave and the nonlinear Klein-Gordon equation respectively, can be generalized in the same spirit. The reason for this is that the proof of these results is based on the well-known Banach's contraction principle, on the fact that the free propagator is a C_0 -group, and on the algebra property of the spaces under

consideration. Although the ingredients seem to be known in the community, the results to be found in the literature (e.g. [WHHG11, Theorem 6.2]) are not as general as Theorem 4. In this sense, it closes a gap in the literature.

Let us remark that local well-posedness results in the case of modulation spaces that are not Banach *-algebras are [Guo16, Theorem 1.4] for $u_0 \in M_{2,q}(\mathbb{R})$ with $q \in [2, \infty)$ and [CHKP19, Theorem 6] with $u_0 \in M_{p,q}^s(\mathbb{R})$ with either $p \in [2, 3]$, $q \in [1, \frac{3}{2}]$ and $s \geq 0$ or $p \in [2, 3]$, $q \in (\frac{3}{2}, \frac{18}{11}]$ and $s > \frac{2}{3} - \frac{1}{q}$ or $q \in (\frac{18}{11}, 2]$, $p \in \left[2, \frac{10q}{7q-6}\right)$ and $s > \frac{2}{3} - \frac{1}{q}$ (see also [Pat18, Theorem 4]).

The remainder of our paper is structured as follows. We start with Section 2 providing an overview over modulation spaces and the free Schrödinger propagator on them. In Section 3 we apply methods from the Littlewood-Paley theory to prove Theorem 1. In the subsequent Section 4 we prove the algebra property from Theorem 2, notice the resulting similar property for weighted sequence spaces in Lemma 12 and deduce the Hölder-type inequality stated in Theorem 3. Finally, we prove Theorem 4 on the local well-posedness in Section 5.

Notation. We denote generic constants by C. To emphasize on which quantities a constant depends we write e.g. C = C(d) or C = C(d, s). Sometimes we omit a positive constant from an inequality by writing " \leq ", e.g. $A \leq_d B$ instead of $A \leq C(d)B$. By $A \approx B$ we mean $A \leq B$ and $B \leq A$. Special constants are $d \in \mathbb{N}$ for the *dimension*, $p, q \in [1, \infty]$ for the *Lebesgue* exponents and $s \in \mathbb{R}$ for the *regularity* exponent. By p' we mean the *dual* exponent of p, that is the number satisfying $\frac{1}{p} + \frac{1}{p'} = 1$.

We denote by $S(\mathbb{R}^d)$ the set of *Schwartz functions* and by $S'(\mathbb{R}^d)$ the space of tempered distributions. Furthermore, we denote the *Bessel potential spaces* or simply L^2 -based Sobolev spaces by $H^s = H^s(\mathbb{R}^d)$. For the space of smooth functions with compact support we write C_c^{∞} . The letters f, g, h denote either generic functions $\mathbb{R}^d \to \mathbb{C}$ or generic tempered distributions and $(a_k)_{k \in \mathbb{Z}^d} = (a_k)_k = (a_k)$, $(b_k)_{k \in \mathbb{Z}^d} = (b_k)_k = (b_k)$ denote generic complex-valued sequences. By $\langle \cdot \rangle = \sqrt{1 + |\cdot|^2}$ we mean the Japanese bracket.

For a Banach space X we write X^* for its dual and $\|\cdot\|_X$ for the norm it is canonically equipped with. By $\mathscr{L}(X, Y)$ we denote the space of all bounded linear maps from X to Y, where Y is another Banach space, and set $\mathscr{L}(X) = \mathscr{L}(X, X)$. By $[X, Y]_{\theta}$ we mean complex interpolation between X and Y, if (X, Y) is an interpolation couple. For brevity we write $\|\cdot\|_p$ for the p-norm on the Lebesgue space $L^p =$ $L^p(\mathbb{R}^d)$, the sequence space $l^p = l^p(\mathbb{Z}^d)$ or $l^p = l^p(\mathbb{N}_0)$ and $\|(a_k)\|_{q,s} := \|(\langle k \rangle^s a_k)\|_q$ for the norm on $\langle \cdot \rangle^s$ -weighted sequence spaces $l_s^q = l_s^q(\mathbb{Z}^d)$. If the norm is apparent from the context, we write $B_r(x)$ for a ball of radius r around $x \in X$.

We use the symmetric choice of constants for the Fourier transform and also write

$$\begin{split} \hat{f}(\xi) &\coloneqq (\mathcal{F}f)(\xi) = \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{-\mathrm{i}\xi \cdot x} f(x) \mathrm{d}x, \\ \check{g}(x) &\coloneqq \left(\mathcal{F}^{(-1)}g\right)(x) = \frac{1}{(2\pi)^{\frac{d}{2}}} \int_{\mathbb{R}^d} e^{\mathrm{i}\xi \cdot x} g(\xi) \mathrm{d}\xi. \end{split}$$

2. Preliminaries

As already mentioned in the introduction, modulation spaces were introduced by Feichtinger in [Fei83] in the setting of locally compact Abelian groups. A thorough introduction is given in the textbook [Grö01] by Gröchenig. A presentation incorporating the characterization of modulation spaces via *isometric decomposi*tion operators, which we are going to use below, is contained in the paper [WH07, Section 2, 3] by Wang and Hudzik. A survey on modulation spaces and nonlinear evolution equations is given in [RSW12].

A convenient equivalent norm on modulation spaces which we are going to use is constructed as follows (cf. [WH07, Proposition 2.1]): Set $Q_0 \coloneqq \left[-\frac{1}{2}, \frac{1}{2}\right)^a$ and $Q_k \coloneqq Q_0 + k$ for all $k \in \mathbb{Z}^d$. Consider a smooth partition of unity $(\sigma_k)_{k \in \mathbb{Z}^d} \in$ $(C_c^{\infty}(\mathbb{R}^d))^{\mathbb{Z}^d}$ satisfying

- $\exists c > 0 : \forall k \in \mathbb{Z}^d : \forall \eta \in Q_k : |\sigma_k(\eta)| \ge c,$ $\forall k \in \mathbb{Z}^d : \operatorname{supp}(\sigma_k) \subseteq B_{\sqrt{d}}(k),$ $\sum_{k \in \mathbb{Z}^d} \sigma_k = 1,$ $\forall m \in \mathbb{N}_0 : \exists C_m > 0 : \forall k \in \mathbb{Z}^d : \forall \alpha \in \mathbb{N}_0^d : |\alpha| \le m \Rightarrow \|D^{\alpha} \sigma_k\|_{\infty} \le C_m$

and define the isometric decomposition operators $\Box_k := \mathcal{F}^{(-1)}\sigma_k \mathcal{F}$. We need the following often used (cf. [WH07, Proposition 1.9])

Lemma 5 (Bernstein multiplier estimate). Let $d \in \mathbb{N}$, $\sigma \in \mathcal{S}(\mathbb{R}^d)$ and $r, p_1, p_2 \in [1, \infty]$ such that $1 + \frac{1}{p_2} = \frac{1}{r} + \frac{1}{p_1}$. Consider the multiplier operator $T_{\sigma} : \mathcal{S}'(\mathbb{R}^d) \to \mathcal{S}'(\mathbb{R}^d)$ with symbol σ defined by

$$T_{\sigma}f = \mathcal{F}^{(-1)}\sigma\mathcal{F}f = \frac{1}{(2\pi)^{\frac{d}{2}}}\check{\sigma}*f \qquad \forall f \in \mathcal{S}'(\mathbb{R}^d).$$

Then, for any $f \in \mathcal{S}'(\mathbb{R}^d)$, every derivative of $T_{\sigma}f \in C^{\infty}(\mathbb{R}^d)$ (including $T_{\sigma}f$) has at most polynomial growth. Furthermore $||T_{\sigma}f||_{p_2} \leq \frac{||\hat{\sigma}||_r}{(2\pi)^{\frac{d}{2}}} ||f||_{p_1}$ for any $f \in L^{p_1}(\mathbb{R}^d)$.

Putting r = 1 and $p_1 = p_2 = p$ in Lemma 5, shows that $\Box_k f \in C^{\infty}(\mathbb{R}^d)$ for $f \in \mathcal{S}'(\mathbb{R}^d)$ and $\|\Box_k\|_{\mathscr{L}(L^p(\mathbb{R}^d))}$ is bounded independently of k and p. The aforementioned equivalent norm for the modulation space $M_{p,q}^s(\mathbb{R}^d)$ is given by (see [WH07, Proposition 2.1])

(6)
$$\|f\|_{M^s_{p,q}} \approx \left\| \left(\langle k \rangle^s \left\| \Box_k f \right\|_p \right)_{k \in \mathbb{Z}^d} \right\|_q.$$

Choosing a different partition of unity (σ_k) yields yet another equivalent norm.

Lemma 6 (Continuous embeddings). Let $s_1 \ge s_2$, $1 \le p_1 \le p_2 \le \infty$, $1 \le q_1 \le$ $q_2 \leq \infty, q > 1$ and $s > \frac{d}{q'}$. Then

(1) $M_{p_1,q_1}^{s_1}(\mathbb{R}^d) \subseteq M_{p_2,q_2}^{s_2}(\mathbb{R}^d)$ and the embedding is continuous, (2) $M_{p_1,q}^{s}(\mathbb{R}^d) \subseteq M_{p_1,1}(\mathbb{R}^d)$ and the embedding is continuous,

...

- (3) $M_{p_{1,1}}(\mathbb{R}^d) \hookrightarrow C_b(\mathbb{R}^d).$

Lemma 6 is well-known (cf. [WH07, Proposition 2.5, 2.7]), but for convenience we sketch a

Proof. (1) One can change indices one by one. The inclusion for "s" is by monotonicity and the inclusion for "q" is by the embeddings of the l^q spaces. For the "p"-embedding consider $\tau \in C_c^{\infty}(\mathbb{R}^d)$ such that $\tau|_{B_{\sqrt{d}}} \equiv 1$ and $\operatorname{supp}(\tau) \subseteq B_d$. For every $k \in \mathbb{Z}^d$, consider the shifted symbol $\tau_k = S_k \tau$, define the corresponding multiplier operator $\tilde{\Box}_k = \mathcal{F}^{(-1)} \tau_k \mathcal{F}$ and observe, that $\hat{\tau}_k = M_k \hat{\tau}$. Hence, by Lemma 5, the family $(\tilde{\Box}_k)_{k \in \mathbb{Z}^d}$ is bounded in $\mathscr{L}(L^{p_1}(\mathbb{R}^d), L^{p_2}(\mathbb{R}^d))$. So, $\|\Box_k f\|_{p_2} = \|\widetilde{\Box}_k \Box_k f\|_{p_2} \lesssim_d \|\Box_k f\|_{p_1}$ for any $k \in \mathbb{Z}^d$. Recalling (6) completes the argument.

(2) By Hölder's inequality we immediately have

$$\begin{split} \|f\|_{p_{1},1} &\approx \sum_{k \in \mathbb{Z}^{d}} \|\Box_{k}f\|_{p_{1}} \leq \left(\sum_{k \in \mathbb{Z}^{d}} \langle k \rangle^{-sq'}\right)^{\frac{1}{q'}} \left(\sum_{k \in \mathbb{Z}^{d}} \langle k \rangle^{sq} \|\Box_{k}f\|_{p}^{q}\right)^{\frac{1}{q}} \\ &\approx \left(\sum_{k \in \mathbb{Z}^{d}} \langle k \rangle^{-sq'}\right)^{\frac{1}{q'}} \|f\|_{M^{s}_{p_{1},q}} \end{split}$$

and the first factor is finite for $s > \frac{d}{q'}$ by comparison with the integral $\int_{\mathbb{R}^d} \langle x \rangle^{-sq'} dx$.

(3) By part (1) it is enough to show that $M_{\infty,1} \hookrightarrow C_b$. For any $f \in M_{\infty,1}$ we have $\sum_{|k| \le N} \Box_k f \to f$ in \mathcal{S}' as $N \to \infty$. But simultaneously, the series

 $\sum_{\substack{k \in \mathbb{Z}^d \\ \text{(see [Fei83, Thm. 6.1 (B)]), we have } f = g.} \sum_{\substack{k \in \mathbb{Z}^d \\ \text{(see [Fei83, Thm. 6.1 (B)]), we have } f = g.}$

For the proof of Theorem 2 we will need the following (cf. [BO09, eqn. (2.4)])

Lemma 7 (Bilinear estimate). Let $d \in \mathbb{N}$ and $1 \leq p \leq \infty$. Assume $f \in M_{p,q}(\mathbb{R}^d)$ and $g \in M_{\infty,1}(\mathbb{R}^d)$. Then

$$\|fg\|_{M_{p,q}(\mathbb{R}^d)} \lesssim \|f\|_{M_{p,q}(\mathbb{R}^d)} \|g\|_{M_{\infty,1}(\mathbb{R}^d)}$$

where the implicit constant does not depend on p or q.

For convenience, and because we will generalize Lemma 7 to Theorem 3, we present a proof close to the one of [WZG06, Corollary 4.2].

Proof. We use (6) to estimate the modulation space norm of the left-hand side. Fix a $k \in \mathbb{Z}^d$. By the definition of the operator \Box_k we have

$$\Box_k(fg) = \frac{1}{(2\pi)^{\frac{d}{2}}} \mathcal{F}^{(-1)}\left(\sigma_k(\hat{f} * \hat{g})\right) = \frac{1}{(2\pi)^{\frac{d}{2}}} \sum_{l,m \in \mathbb{Z}^d} \mathcal{F}^{(-1)}\left(\sigma_k((\sigma_l \hat{f}) * (\sigma_m \hat{g}))\right).$$

As the supports of the partition of unity are compact, many summands vanish. Indeed, for any $k, l, m \in \mathbb{Z}^d$

$$\sup \left(\sigma_k \left((\sigma_l \hat{f}) * (\sigma_m \hat{g}) \right) \right) \subseteq \sup (\sigma_k) \cap (\operatorname{supp}(\sigma_l) + \operatorname{supp}(\sigma_m)) \\ \subseteq B_{\sqrt{d}}(k) \cap B_{2\sqrt{d}}(l+m)$$

and so $\sigma_k\left((\sigma_l \hat{f}) * (\sigma_m \hat{g})\right) \equiv 0$ if $|(k-l) - m| > 3\sqrt{d}$. Hence, the double series over $l, m \in \mathbb{Z}^d$ boils down to a finite sum of discrete convolutions

$$\Box_{k}(fg) = \frac{1}{(2\pi)^{\frac{d}{2}}} \mathcal{F}^{(-1)} \left(\sigma_{k} \sum_{m \in M} \sum_{l \in \mathbb{Z}^{d}} (\sigma_{l}\hat{f}) * (\sigma_{k-l+m}\hat{g}) \right)$$
$$= \Box_{k} \sum_{m \in M} \sum_{l \in \mathbb{Z}^{d}} (\Box_{l}f) \cdot (\Box_{k+m-l}g),$$

where $M = \left\{ m \in \mathbb{Z}^d \ |m| \le 3\sqrt{d} \right\}$ and $\#M \le \left(6\sqrt{d} + 1\right)^d < \infty$. That was the job of \Box_k and we now get rid of it,

$$\left\|\Box_k(fg)\right\|_p \lesssim \sum_{m \in M} \sum_{l \in \mathbb{Z}^d} \left\|\left(\Box_l f\right) \cdot \left(\Box_{k+m-l} g\right)\right\|_p,$$

using the Bernstein multiplier estimate from Lemma 5.

Invoking Hölder's inequality we further estimate

(7)
$$\|\Box_k(fg)\|_p \lesssim \sum_{m \in M} \left(\left(\|\Box_l(f)\|_p \right)_l * \left(\|\Box_{n+m}(g)\|_\infty \right)_n \right) (k)$$

pointwise in $k \in \mathbb{Z}^d$, where * denotes the convolution of sequences, and hence obtain

$$\|fg\|_{M_{p,q}} \lesssim \left\| \left(\|\Box_l f\|_p \right)_l \right\|_q \left\| \left(\|\Box_n g\|_\infty \right)_n \right\|_1$$

by Young's inequality.

Lemma 8 (Dual space). For $s \in \mathbb{R}$, $p, q \in [1, \infty)$ we have

$$\left(M_{p,q}^{s}(\mathbb{R}^{d})\right)^{*} = M_{p',q'}^{-s}(\mathbb{R}^{d})$$

(see [WH07, Theorem 3.1]).

Theorem 9 (Complex interpolation). For $p_1, q_1 \in [1, \infty)$, $p_2, q_2 \in [1, \infty]$, $s_1, s_2 \in \mathbb{R}$ and $\theta \in (0, 1)$ one has

$$\left[M_{p_1,q_1}^{s_1}(\mathbb{R}^d), M_{p_2,q_2}^{s_2}(\mathbb{R}^d)\right]_{\theta} = M_{p,q}^s(\mathbb{R}^d),$$

with

$$\frac{1}{p} = \frac{1-\theta}{p_1} + \frac{\theta}{p_2}, \quad \frac{1}{q} = \frac{1-\theta}{q_1} + \frac{\theta}{q_2}, \quad s = (1-\theta)s_1 + \theta s_2$$

Theorem 6.1 (D)]

(see [Fei83, Theorem 6.1 (D)]).

We are now ready to state and prove the following

Theorem 10 (Schrödinger propagator bound). There is a constant C > 0 such that for any $d \in \mathbb{N}$, $p, q \in [1, \infty]$ and $s \in \mathbb{R}$ the inequality

(8)
$$\|e^{it\Delta}\|_{\mathscr{L}(M^s_{p,q}(\mathbb{R}^d))} \le C^d (1+|t|)^{d\left|\frac{1}{2}-\frac{1}{p}\right|}$$

holds for all $t \in \mathbb{R}$. Furthermore, the exponent of the time dependence is sharp.

The boundedness has been obtained e.g. in [BGOR07, Theorem 1] whereas the sharpness was proven in [CN09, Proposition 4.1]. If $q < \infty$, then $(e^{it\Delta})_{t \in \mathbb{R}}$ is a C_0 -group on $M_{p,q}^s$, i.e.

$$\lim_{t \to 0} \left\| e^{it\Delta} f - f \right\|_{M^s_{p,q}} = 0 \qquad \forall f \in M^s_{p,q}$$

(see e.g. [Cha18, Proposition 3.5]). This is not true for $q = \infty$ and we refer to [Kun19] for this more subtle case.

Theorem 10. By definition, we have

$$(V_g e^{\mathrm{i}t\Delta} f)(x,\xi) = e^{-\mathrm{i}t|\xi|^2} (V_{e^{\mathrm{i}t\Delta}g} f)(x+2t\xi,\xi)$$

for any $f \in \mathcal{S}'(\mathbb{R}^d)$, any $(x,\xi) \in \mathbb{R}^d \times \mathbb{R}^d$, and any $t \in \mathbb{R}$, i.e. the Schrödinger time evolution of the initial data can be interpreted as the time evolution of the window function. The price for changing from window g_0 to window g_1 is $\|V_{g_0}g_1\|_{L^1(\mathbb{R}^d \times \mathbb{R}^d)}$ by [Grö01, Proposition 11.3.2 (c)]. For $g(x) = e^{-|x|^2}$ one explicitly calculates

$$\left\| V_{e^{-\mathrm{i}t\Delta}g}g \right\|_{L^1(\mathbb{R}^d \times \mathbb{R}^d)} = C^d \left(1 + |t|\right)^{\frac{d}{2}},$$

which proves the claimed bound for $p \in \{1, \infty\}$. Conservation for p = 2 is easily seen from (6). Complex interpolation between the cases p = 2 and $p = \infty$ yields (8) for $p \in [2, \infty]$. The remaining case $p \in (1, 2)$ is covered by duality.

Optimality in the case $p \in [1, 2]$ is proven by choosing the window g and the argument f to be a Gaussian and explicitly calculating $\|e^{it\Delta}f\|_{M^s_{p,q}} \approx (1+|t|)^{d\left(\frac{1}{p}-\frac{1}{2}\right)}$. This implies the optimality for $p \in (2, \infty]$ by duality.

3. LITTLEWOOD-PALEY THEORY

In this section we extend some ideas of the Littlewood-Paley decomposition from Sobolev spaces $H^s(\mathbb{R}^d)$ to modulation spaces $M^s_{p,q}(\mathbb{R}^d)$. The inspiration for this was [AG07, Chapter II].

Observe, that for any $\xi \in \mathbb{R}^d$ one has

8

$$\sum_{l=0}^{\infty} \phi_l(\xi) = \phi_0(\xi) + \lim_{N \to \infty} \sum_{l=1}^{N} \left[\phi_1\left(\frac{\xi}{2^l}\right) - \phi_1\left(\frac{\xi}{2^{l-1}}\right) \right] = \lim_{N \to \infty} \phi_0\left(\frac{\xi}{2^N}\right) = 1,$$

i.e. $\{\phi_0, \phi_1, \phi_2, \ldots\}$ is a smooth partition of unity. Moreover, $\operatorname{supp}(\phi_l) \subseteq A_l$ for any $l \in \mathbb{N}_0$, where

$$A_0 \coloneqq \left\{ \xi \in \mathbb{R}^d | |\xi| \le 1 \right\} \quad \text{and} \quad A_l \coloneqq \left\{ \xi \in \mathbb{R}^d | 2^{l-2} \le |\xi| \le 2^l \right\} \qquad \forall l \in \mathbb{N}.$$

The symbols of the dyadic decomposition operators satisfy

$$\left\| \hat{\phi}_{l} \right\|_{1} = \left\| \mathcal{F} \left[\phi_{1} \left(\frac{\cdot}{2^{l-1}} \right) \right] \right\|_{1} = \left\| 2^{l-1} \hat{\phi}_{1} (2^{l-1} \cdot) \right\|_{1} = \left\| \hat{\phi}_{1} \right\|_{1} \le 2 \left\| \hat{\phi}_{0} \right\|_{1}$$

for all $l \in \mathbb{N}$. Applying Lemma 5 shows that for any $l \in \mathbb{N}_0$ and any $f \in \mathcal{S}'(\mathbb{R}^d)$ one has that $\Delta_l f \in C^{\infty}$ and any of its derivates has at most polynomial growth. Furthermore, $\|\Delta_l\|_{\mathscr{L}(L^p(\mathbb{R}^d))}$ is bounded independently of $l \in \mathbb{N}_0$ and $p \in [1, \infty]$.

Theorem 1. We start by gathering some useful facts. Fix $l \in \mathbb{N}_0$ and $k \in \mathbb{Z}^d$. Recall, that $\operatorname{supp}(\phi_l) \subseteq A_l$ and $\operatorname{supp}(\sigma_k) \subseteq B_{\sqrt{d}}(k)$. Hence,

(9)
$$\Box_k \Delta_l \neq 0 \Rightarrow k \in A'_l \coloneqq \left\{ k' \in \mathbb{Z}^d | 2^{l-2} - \sqrt{d} \le |k'| \le 2^l + \sqrt{d} \right\}$$

On A'_{l} the Japanese bracket can be controlled. In fact, for all $t \in \mathbb{R}$ we have

(10)
$$\langle k \rangle^t \approx 2^{lt},$$

where the implicit constant does not depend on l.

Finally, observe that $k \in A'_l$ is satisfied for only finitely many $l \in \mathbb{N}_0$, whose number is independent of $k \in \mathbb{Z}^d$, i.e.

(11)
$$\sum_{l=0}^{\infty} \mathbb{1}_{A'_l}(k) \lesssim 1,$$

where the implicit constant depends on d only.

• \gtrsim : Consider $q < \infty$ first. By (6), (9), Bernstein multiplier estimate, (10) and (11) we have

$$\begin{split} & \left\| \left(2^{ls} \left\| \Delta_l f \right\|_{M_{p,q}} \right)_l \right\|_q \\ \approx & \left(\sum_{l=0}^{\infty} 2^{lsq} \sum_{k \in \mathbb{Z}^d} \left\| \Box_k \Delta_l f \right\|_p^q \right)^{\frac{1}{q}} \lesssim \left(\sum_{l=0}^{\infty} \sum_{k \in A'_l} 2^{lsq} \left\| \Box_k f \right\|_p^q \right)^{\frac{1}{q}} \\ \approx & \left(\sum_{l=0}^{\infty} \sum_{k \in \mathbb{Z}^d} \mathbb{1}_{A'_l}(k) \langle k \rangle^{qs} \left\| \Box_k f \right\|_p^q \right)^{\frac{1}{q}} \lesssim \left\| f \right\|_{M_{p,q}^s}. \end{split}$$

Similarly, for $q = \infty$, we have

$$\begin{split} \left\| \left(2^{ls} \left\| \Delta_l f \right\|_{M_{p,\infty}} \right)_l \right\|_{\infty} &= \sup_{l \in \mathbb{N}_0} 2^{ls} \sup_{k \in \mathbb{Z}^d} \left\| \Box_k \Delta_l f \right\|_p \\ &\lesssim \sup_{l \in \mathbb{N}_0} \sup_{k \in A'_l} \langle k \rangle^s \left\| \Box_k f \right\|_p \approx \| f \|_{M^s_{p,\infty}} \,. \end{split}$$

• \lesssim : Again, consider $q < \infty$ first. By (6), $f = \sum_{l=0}^{\infty} \Delta_l f$ in \mathcal{S}' and (9) we have

$$\|f\|_{M^{s}_{p,q}} \lesssim \left(\sum_{k \in \mathbb{Z}^{d}} \langle k \rangle^{qs} \left(\sum_{l=0}^{\infty} \|\Box_{k} \Delta_{l} f\|_{p} \right)^{q} \right)^{\frac{1}{q}} \\ \lesssim \left(\sum_{k \in \mathbb{Z}^{d}} \langle k \rangle^{qs} \left(\sum_{l=0}^{\infty} \mathbb{1}_{A_{l}'}(k) \|\Box_{k} \Delta_{l} f\|_{p} \right)^{q} \right)^{\frac{1}{q}}$$

For each $k \in \mathbb{Z}^d$ the sum over l contains only finitely many non-vanishing summands and their number is independent of k by (11). Hölder's inequality estimates the last term against

$$\left(\sum_{k \in \mathbb{Z}^d} \langle k \rangle^{qs} \sum_{l=0}^\infty \mathbb{1}_{A_l'}(k) \left\| \Box_k \Delta_l f \right\|_p^q \right)^{\frac{1}{q}} \approx \left(\sum_{l=0}^\infty 2^{lsq} \sum_{k \in \mathbb{Z}^d} \mathbb{1}_{A_l'}(k) \left\| \Delta_l \Box_k f \right\|_p^q \right)^{\frac{1}{q}} \\ \leq \left\| \left(2^{ls} \left\| \Delta_l f \right\|_{M_{p,q}} \right)_l \right\|_q,$$

where we additionally used (10). The proof for $q = \infty$ is along the same lines.

The individual parts of the Littlewood-Paley decomposition had their Fourier transform supported in almost disjoint dyadic annuli. Theorem 1 characterized elements of modulation spaces by the decay of these parts. The following lemma provides a sufficient condition for the case of non-disjoint balls.

Lemma 11 (Sufficient condition). Let $1 \leq q \leq \infty$ and s > 0. For $m \in \mathbb{N}_0$ let $f_m \in \mathcal{S}'(\mathbb{R}^d)$ be such that

$$\operatorname{supp}(\hat{f}_m) \subseteq B_m \coloneqq \left\{ \xi \in \mathbb{R}^d \,\middle| \, |\xi| \le 2^m \right\} \qquad \forall m \in \mathbb{N}_0.$$

Set $f \coloneqq \sum_{m=0}^{\infty} f_m$ in $\mathcal{S}'(\mathbb{R}^d)$. Then

$$\|f\|_{M^s_{p,q}(\mathbb{R}^d)} \lesssim \left\| \left(2^{ms} \|f_m\|_{M_{p,q}(\mathbb{R}^d)} \right)_{m \in \mathbb{N}_0} \right\|_q,$$

where the implicit constant depends on d and s only.

Proof. Observe, that $A_l \cap B_m = \emptyset$ if l > m + 2. Hence, we have

$$\begin{split} \|f\|_{M_{p,q}^{s}} &\approx \left\| \left(2^{ls} \left\| \Delta_{l} f \right\|_{M_{p,q}} \right)_{l} \right\|_{q} \lesssim \left\| \left(2^{ls} \sum_{m=l}^{\infty} \left\| \Delta_{l} f_{m} \right\|_{M_{p,q}} \right)_{l} \right\|_{q} \\ &\lesssim \left\| \left(2^{ls} \sum_{m=l}^{\infty} \left\| f_{m} \right\|_{M_{p,q}} \right)_{l} \right\|_{q}, \end{split}$$

where we additionally used Theorem 1 and Bernstein multiplier estimate. From now on, we assume $q \in (1, \infty)$, as the proof for the other cases is easier and follows the same lines. Hölder's inequality and geometric sum formula estimates the last term against

$$\begin{split} &\left(\sum_{l=0}^{\infty} \left(\sum_{m=l}^{\infty} 2^{ls} \|f_m\|_{M_{p,q}}\right)^q\right)^{\frac{1}{q}} \\ &= \left(\sum_{l=0}^{\infty} \left(\sum_{m=l}^{\infty} 2^{\frac{(l-m)s}{q'}} \times 2^{\frac{(l-m)s}{q}} 2^{ms} \|f_m\|_{M_{p,q}}\right)^q\right)^{\frac{1}{q}} \\ &\leq \left(\sum_{l=0}^{\infty} \left(\sum_{m=l}^{\infty} 2^{(l-m)s}\right)^{\frac{q}{q'}} \left(\sum_{m=l}^{\infty} 2^{(l-m)s} 2^{msq} \|f_m\|_{M_{p,q}}^q\right)\right)^{\frac{1}{q}} \\ &\approx \left(\sum_{m=0}^{\infty} \sum_{l=0}^{m} 2^{(l-m)s} 2^{msq} \|f_m\|_{M_{p,q}}^q\right)^{\frac{1}{q}} \\ &\approx \left\| \left(2^{ms} \|f_m\|_{M_{p,q}}\right)_m \right\|_q, \end{split}$$

finishing the proof.

4. Algebra property and Hölder-type inequality

Main goal of this section is to prove Theorem 2, which was inspired by the fact that $H^s(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d)$ is a Banach *-algebra with respect to pointwise multiplication for $s \geq 0$.

Theorem 2. Parts 2 and 3 of Lemma 6 prove the claimed embedding. Continuity of complex conjugation is obvious from (6). Continuity of multiplication follows by the paraproduct argument

$$fg = \left(\sum_{l=0}^{\infty} \Delta_l f\right) \left(\sum_{m=0}^{\infty} \Delta_m g\right) = \sum_{l=0}^{\infty} \underbrace{\left(\Delta_l f \sum_{m=0}^{l} \Delta_m g\right)}_{=:u_l} + \sum_{m=1}^{\infty} \underbrace{\left(\Delta_m g \sum_{l=0}^{m-1} \Delta_l f\right)}_{=:v_m}.$$

Observe, that for any $l, m \in \mathbb{N}_0$ we have $\operatorname{supp}(\hat{u}_l) \subseteq B_{l+1}$ and $\operatorname{supp}(\hat{v}_m) \subseteq B_m$ by the properties of convolution. Hence, Lemma 11 could be applied. Bilinear estimate from Lemma 7 and Theorem 1 show

$$\left\| \left(2^{ls} \| u_l \|_{M_{p,q}} \right)_l \right\|_q \leq \left\| \left(2^{ls} \| \Delta_l f \|_{M_{p,q}} \right)_l \right\|_q \sum_{m=0}^{\infty} \| \Delta_m g \|_{M_{\infty,1}} \approx \| f \|_{M_{p,q}^s} \| g \|_{M_{\infty,1}}.$$

The same argument yields $\|\sum_{m=1}^{\infty} v_m\|_{M^s_{p,q}} \lesssim \|f\|_{M_{\infty,1}} \|g\|_{M^s_{p,q}}$ and finishes the proof. \Box

The analogon of Theorem 2 for sequence spaces is stated in

Lemma 12 (Algebra property). Let $1 \leq q \leq \infty$ and $s \geq 0$. Then $l_s^q(\mathbb{Z}^d) \cap l^1(\mathbb{Z}^d)$ is a Banach algebra with respect to convolution

(12)
$$(a_l) * (b_m) = \left(\sum_{m \in \mathbb{Z}^d} a_{k-m} b_m\right)_{k \in \mathbb{Z}^d},$$

which is well-defined, as the series above always converge absolutely.

Furthermore, if q > 1 and $s > d\left(1 - \frac{1}{q}\right)$ or q = 1, then $l_s^q(\mathbb{Z}^d) \hookrightarrow l^1(\mathbb{Z}^d)$, so in particular $l_s^q(\mathbb{Z}^d)$ is a Banach algebra, in that case.

Although this result is certainly not new, we could not find a suitable reference. A proof can be given using the same techniques as for the proof of Theorem 2, i.e. by proving analoga of Theorem 1 and Lemma 11 for the weighted sequence spaces. Another approach is to notice that by definition

$$\left\|\sum_{k\in\mathbb{Z}^d} a_k e^{\mathrm{i}kx}\right\|_{M^s_{\infty,q}} \approx \|(a_k)\|_{l^s_s}$$

and hence, by Theorem 2, one has

$$\begin{split} & \|(a_k)*(b_k)\|_{l^q_s} \\ \approx & \left\|\left(\sum_{k\in\mathbb{Z}^d} a_k e^{\mathrm{i}kx}\right)\cdot\left(\sum_{k\in\mathbb{Z}^d} b_k e^{\mathrm{i}kx}\right)\right\|_{M^s_{\infty,q}} \\ \lesssim & \left\|\sum_{k\in\mathbb{Z}^d} a_k e^{\mathrm{i}kx}\right\|_{M^s_{\infty,q}} \left\|\sum_{k\in\mathbb{Z}^d} b_k e^{\mathrm{i}kx}\right\|_{M_{\infty,1}} + \left\|\sum_{k\in\mathbb{Z}^d} a_k e^{\mathrm{i}kx}\right\|_{M_{\infty,1}} \left\|\sum_{k\in\mathbb{Z}^d} b_k e^{\mathrm{i}kx}\right\|_{M^s_{\infty,q}} \\ \approx & \|(a_k)\|_{l^q_s} \|(b_k)\|_{l^1} + \|(a_k)\|_{l^1} \|(b_k)\|_{l^q_s} \,. \end{split}$$

We are now ready to give a

Theorem 3. We arrive, as for equation (7) in the proof of Lemma 7, at

$$\left\|\Box_{k}(fg)\right\|_{p} \lesssim \sum_{m \in M} \left(\left(\left\|\Box_{l}(f)\right\|_{p_{1}}\right)_{l} * \left(\left\|\Box_{n+m}(g)\right\|_{p_{2}}\right)_{n} \right)(k)$$

pointwise in $k \in \mathbb{Z}^d$. By the algebra property from Lemma 12, it follows that

$$\|fg\|_{M^s_{p,q}} \lesssim \left\| \left(\|\Box_l f\|_{p_1} \right)_l \right\|_{q,s} \left(\sum_{m \in M} \left\| \left(\|\Box_{n+m} g\|_{p_2} \right)_n \right\|_{q,s} \right)$$

and the first factor is already $\|f\|_{M^s_{p,q}}$. Finally, we remove the sum over m in the second factor

$$\sum_{n \in M} \left\| \left(\left\| \Box_{n+m} g \right\|_{p_2} \right)_n \right\|_{q,s} \lesssim \|g\|_{M^s_{p_2,q}}$$

applying Peetre's inequality $\langle k + l \rangle^s \leq 2^{|s|} \langle k \rangle^s \langle l \rangle^{|s|}$ (see e.g. [RT10, Proposition 3.3.31]).

Let us finish the proof remarking that the only estimate involving "p"s we used was Hölder's inequality and thus the implicit constant indeed does not depend on p, p_1 or p_2 .

5. PROOF OF THE LOCAL WELL-POSEDNESS, THEOREM 4.

Theorem 2 immediately implies that X(T) is a Banach *-algebra, i.e.

$$\begin{aligned} \|uv\|_{X(T)} &= \sup_{0 \le t \le T} \|uv(\cdot, t)\|_X \lesssim \left(\sup_{0 \le s \le T} \|u(\cdot, s)\|_X \right) \left(\sup_{0 \le t \le T} \|v(\cdot, t)\|_X \right) \\ &= \|u\|_{X(T)} \|v\|_{X(T)} \,. \end{aligned}$$

For R > 0 we denote by $M(R,T) = \left\{ u \in X(T) \middle| ||u||_{X(T)} \le R \right\}$ the closed ball of radius R in X(T) centered at the origin. We show that for some R, T > 0 the right-hand side of (4),

(13)
$$(\mathcal{T}u)(\cdot,t) \coloneqq e^{\mathrm{i}t\Delta}u_0 \pm \mathrm{i} \int_0^t e^{\mathrm{i}(t-\tau)\Delta} \left(|u|^2 u(\cdot,\tau) \right) \mathrm{d}\tau \qquad (\forall t \in [0,T]),$$

defines a contractive self-mapping $\mathcal{T} = \mathcal{T}(u_0) : M_{R,T} \to M_{R,T}$.

To that end, let us observe that Theorem 10 implies the homogeneous estimate

$$\left\| t\mapsto e^{\mathrm{i} t\Delta} v \right\|_X \leq C_0 (1+T)^{\frac{d}{2}} \left\| v \right\|_X \qquad (\forall v\in X),$$

which, together with the algebra property of X(T), proves the *inhomogeneous es*timate

$$\begin{split} \left\| \int_0^t e^{\mathbf{i}(t-\tau)\Delta} \left(|u|^2 \, u(\cdot,\tau) \right) \mathrm{d}\tau \right\|_X \\ &\leq C_0 (1+T)^{\frac{d}{2}} \int_0^t \left\| |u|^2 \, u(\cdot,\tau) \right\|_X \mathrm{d}\tau \leq C_0 C_1 T (1+T)^{\frac{d}{2}} \left\| u \right\|_X^3, \end{split}$$

holding for $0 \le t \le T$ and $u \in X(T)$.

Applying the triangle inequality in (13) yields

$$|\mathcal{T}u||_X \le C_0 (1+T)^{\frac{a}{2}} (||u_0||_X + C_1 T R^3)$$

for any $u \in M(R,T)$. Thus, \mathcal{T} maps M(R,T) into itself for $R = 2C_0C_1 \|u_0\|_X$ and T small enough. Furthermore,

$$|u|^{2} u - |v|^{2} v = (u - v) |u|^{2} + (\overline{u}u - \overline{v}v)v = (u - v)(|u|^{2} + \overline{u}v) + (\overline{u} - \overline{v})v^{2}$$

and hence

$$|\mathcal{T}u - \mathcal{T}v||_{X(T)} \lesssim T(1+T)^{\frac{a}{2}}R^2 ||u - v||_{X(T)}$$

for $u, v \in M(R,T)$, where we additionally used the algebra property of X(T) and the homogeneous estimate. Taking T sufficiently small makes \mathcal{T} a contraction.

Banach's fixed-point theorem implies the existence and uniqueness of a mild solution up to the guaranteed time of existence $T_0 = T_0 (\|u_0\|_X) \approx \|u_0\|_X^{-2} > 0.$ Uniqueness of the maximal solution and the blow-up alternative now follow easily by the usual contradiction argument.

For the proof of the Lipschitz continuity, let us notice that for any $r > ||u_0||_X$, $v_0 \in B_r(0)$ and $0 < T \leq T_0(r)$ we have

$$\begin{aligned} \|u - v\|_{X(T)} &= \|\mathcal{T}(u_0)u - \mathcal{T}(v_0)v\|_{X(T)} \\ &\lesssim (1 + T)^{\frac{d}{2}} \|u_0 - v_0\|_X + T(1 + T)^{\frac{d}{2}} R^2 \|u - v\|_{X(T)} \,, \end{aligned}$$

where v is the mild solution corresponding to the initial data v_0 and R = 2Cr, similar to the above. Collecting terms containing $||u - v||_{X(T)}$ shows Lipschitz continuity with constant L = L(r) for sufficiently small T, say $T_l = T_l(r)$. For arbitrary $0 < T' < T_*$ put $r = 2 \|u\|_{X(T')}$ and divide [0, T'] into n subintervals of length $\leq T_l$. The claim follows for $V = B_{\delta}(u_0)$ where $\delta = \frac{\|u_0\|_X}{L^n}$ by iteration. This concludes the proof. \square

ACKNOWLEDGMENTS

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through CRC 1173.

References

- [AG07] Alinhac, Serge and Patrick Gérard: Pseudo-differential Operators and the Nash-Moser Theorem, volume 82 of Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island, 2007, ISBN 978-0-8218-3454-1.
- [BGOR07] Bényi, Árpád, Karlheinz Gröchenig, Kasso Akochayé Okoudjou, and Luke Gervase Rogers: Unimodular Fourier multipliers for modulation spaces. Journal of Functional Analysis, 246(2):366-384, 2007, ISSN 0022-1236. https://doi.org/10.1016/j.jfa. 2006.12.019.
- [BO09] Bényi, Árpád and Kasso Akochayé Okoudjou: Local well-posedness of nonlinear dispersive equations on modulation spaces. Bulletin of the London Mathematical Society, 41(3):549-558, 2009, ISSN 0024-6093. https://doi.org/10.1112/blms/bdp027.

- [Cha18] Chaichenets, Leonid: Modulation spaces and nonlinear Schrödinger equations. PhD thesis, Karlsruhe Institute of Technology (KIT), 2018. https://doi.org/10.5445/IR/1000088173.
 [CHKP19] Chaichenets, Leonid, Dirk Hundertmark, Peer Christian Kunstmann, and Nikolaos
- Pattakos: Nonlinear Schrödinger equation, differentiation by parts and modulation spaces. Journal of Evolution Equations, 2019, ISSN 1424-3202. https://doi.org/10. 1007/s00028-019-00501-z.
- [CN09] Cordero, Elena and Fabio Nicola: Sharpness of some properties of Wiener amalgam and modulation spaces. Bulletin of the Australian Mathematical Society, 80(1):105 – 116, 2009, ISSN 0004-9727. https://doi.org/10.1017/S0004972709000070.
- [Fei80] Feichtinger, Hans Georg: Banach convolution algebras of Wiener type. Functions, Series, Operators, 35:509 - 524, 1980. https://www.univie.ac.at/nuhag-php/bibtex/ open_files/fe83_wientyp1.pdf.
- [Fei83] Feichtinger, Hans Georg: Modulation spaces on locally compact abelian groups. University Vienna, 1983. https://www.univie.ac.at/nuhag-php/bibtex/open_files/120_ ModICWA.pdf.
- [Grö01] Gröchenig, Karlheinz: Foundations of time-frequency analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, 2001, ISBN 978-0-8176-4022-4. https: //doi.org/10.1007/978-1-4612-0003-1.
- [Guo16] Guo, Shaoming: On the 1D cubic NLS in an almost critical space. Journal of Fourier Analysis and Applications, 23(1):91 – 124, 2016, ISSN 1531-5851. https://doi.org/ 10.1007/s00041-016-9464-z.
- [Kun19] Kunstmann, Peer Christian: Modulation type spaces for generators of polynomially bounded groups and Schrödinger equations. Semigroup Forum, 2019, ISSN 1432-2137. https://doi.org/10.1007/s00233-019-10016-1.
- [Pat18] Pattakos, Nikolaos: NLS in the modulation space $M_{2,q}(\mathbb{R})$. Journal of Fourier Analysis and Applications, 2018, ISSN 1531-5851. https://doi.org/10.1007/s00041-018-09655-9.
- [RSW12] Ruzhansky, Michael, Mitsuru Sugimoto, and Baoxiang Wang: Modulation spaces and nonlinear evolution equations. In Evolution equations of hyperbolic and Schrödinger type, volume 301, pages 267-283. Springer, Basel, 2012, ISBN 978-3-0348-0453-0. https://doi.org/10.1007/978-3-0348-0454-7_14.
- [RT10] Ruzhansky, Michael Vladimirovich and Ville Turunen: Pseudo-Differential Operators and Symmetries. Number 2 in Pseudo-Differential Operators. Birkhäuser, Basel, 2010, ISBN 978-3-7643-8513-2. https://doi.org/10.1007/978-3-7643-8514-9.
- [STW11] Sugimoto, Mitsuru, Naohito Tomita, and Baoxiang Wang: Remarks on nonlinear operations on modulation spaces. Integral Transforms and Special Functions, 22(4 - 5):351 - 358, 2011, ISSN 1065-2469. https://doi.org/10.1080/10652469.2010. 541054.
- [WH07] Wang, Baoxiang and Henryk Hudzik: The global Cauchy problem for the NLS and NLKG with small rough data. Journal of Differential Equations, 232(1):36-73, 2007, ISSN 0022-0396. https://doi.org/10.1016/j.jde.2006.09.004.
- [WHHG11] Wang, Baoxiang, Zhaohui Huo, Chengchun Hao, and Zinhua Guo: Harmonic Analysis Method for Nonlinear Evolution Equations, I. World Scientific, 2011, ISBN 978-981-4360-73-9. https://doi.org/10.1142/8209.
- [WZG06] Wang, Baoxiang, Lifeng Zhao, and Boling Guo: Isometric decomposition operators, function spaces E^{\lambda}_{p,q} and applications to nonlinear evolution equations. Journal of Functional Analysis, 233(1):1-39, 2006, ISSN 0022-1236. https://doi.org/10.1016/ j.jfa.2005.06.018.

14 L. CHAICHENETS, D. HUNDERTMARK, P. KUNSTMANN, AND N. PATTAKOS

LEONID CHAICHENETS, DEPARTMENT OF MATHEMATICS, INSTITUTE FOR ANALYSIS, KARLSRUHE INSTITUTE OF TECHNOLOGY, 76128 KARLSRUHE, GERMANY *Email address*: leonid.chaichenets@kit.edu

DIRK HUNDERTMARK, DEPARTMENT OF MATHEMATICS, INSTITUTE FOR ANALYSIS, KARLSRUHE INSTITUTE OF TECHNOLOGY, 76128 KARLSRUHE, GERMANY *Email address*: dirk.hundertmark@kit.edu

PEER CHRISTIAN KUNSTMANN, DEPARTMENT OF MATHEMATICS, INSTITUTE FOR ANALYSIS, KARLSRUHE INSTITUTE OF TECHNOLOGY, 76128 KARLSRUHE, GERMANY *Email address*: peer.kunstmann@kit.edu

NIKOLAOS PATTAKOS, DEPARTMENT OF MATHEMATICS, INSTITUTE FOR ANALYSIS, KARLSRUHE INSTITUTE OF TECHNOLOGY, 76128 KARLSRUHE, GERMANY *Email address*: nikolaos.pattakos@kit.edu