M^{a} Ve phenomena
 analysis and numerics

Local well-posedness for the nonlinear Schrödinger equation in the intersection of modulation spaces $M_{p, q}^{s}\left(\mathbb{R}^{d}\right) \cap M_{\infty, 1}\left(\mathbb{R}^{d}\right)$

Leonid Chaichenets, Dirk Hundertmark, Peer Kunstmann, Nikolaos Pattakos

CRC Preprint 2019/27, December 2019

KARLSRUHE INSTITUTE OF TECHNOLOGY

CRC 1173

$M^{a} V e$

phenomena

Participating universities

Universität Stuttgart

Funded by

LOCAL WELL-POSEDNESS FOR THE NONLINEAR SCHRÖDINGER EQUATION IN THE INTERSECTION OF MODULATION SPACES $M_{p, q}^{s}\left(\mathbb{R}^{d}\right) \cap M_{\infty, 1}\left(\mathbb{R}^{d}\right)$

L. CHAICHENETS, D. HUNDERTMARK, P. KUNSTMANN, AND N. PATTAKOS

Abstract

We introduce a Littlewood-Paley characterization of modulation spaces and use it to give an alternative proof of the algebra property, implicitly contained in STW11, of the intersection $M_{p, q}^{s}\left(\mathbb{R}^{d}\right) \cap M_{\infty, 1}\left(\mathbb{R}^{d}\right)$ for $d \in \mathbb{N}$, $p, q \in[1, \infty]$ and $s \geq 0$. We employ this algebra property to show the local wellposedness of the Cauchy problem for the cubic nonlinear Schrödinger equation in the above intersection. This improves BO09 Theorem 1.1] by Bényi and Okoudjou, where only the case $q=1$ is considered, and closes a gap in the literature. If $q>1$ and $s>d\left(1-\frac{1}{q}\right)$ or if $q=1$ and $s \geq 0$ then $M_{p, q}^{s}\left(\mathbb{R}^{d}\right) \hookrightarrow$ $M_{\infty, 1}\left(\mathbb{R}^{d}\right)$ and the above intersection is superfluous. For this case we also obtain a new Hölder-type inequality for modulation spaces.

1. Introduction

In this paper we contribute to the general theory of modulation spaces. Modulation spaces $M_{p, q}^{s}\left(\mathbb{R}^{d}\right)$ were introduced by Feichtinger in Fei83]. Here, we only briefly recall their definition and refer to Section 2 and the literature mentioned there for more information. Fix a so-called window function $g \in \mathcal{S}\left(\mathbb{R}^{d}\right) \backslash\{0\}$. The short-time Fourier transform $V_{g} f$ of a tempered distribution $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ with respect to the window g is defined by

$$
\begin{equation*}
\left(V_{g} f\right)(x, \xi)=\frac{1}{(2 \pi)^{\frac{d}{2}}} \overline{\left\langle f, M_{\xi} S_{x} g\right\rangle} \quad \forall x, \xi \in \mathbb{R}^{d} \tag{1}
\end{equation*}
$$

where $S_{x} g(y)=g(y-x)$ denotes the right-shift by $x \in \mathbb{R}^{d},\left(M_{\xi} g\right)(y)=e^{\mathrm{i} k \cdot y} g(y)$ the modulation by $\xi \in \mathbb{R}^{d}$ and $\langle f, g\rangle=\int_{\mathbb{R}^{d}} \bar{f}(x) g(x) \mathrm{d} x$ for $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right), g \in \mathcal{S}(\mathbb{R})^{d}$. We define

$$
\begin{aligned}
M_{p, q}^{s}\left(\mathbb{R}^{d}\right) & =\left\{f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right) \mid\|f\|_{M_{p, q}^{s}\left(\mathbb{R}^{d}\right)}<\infty\right\}, \text { where } \\
\|f\|_{M_{p, q}^{s}\left(\mathbb{R}^{d}\right)} & =\left\|\xi \mapsto\langle\xi\rangle^{s}\right\| V_{g} f(\cdot, \xi)\left\|_{p}\right\|_{q}
\end{aligned}
$$

for $s \in \mathbb{R}, p, q \in[1, \infty]$. As usual in the literature, we set $M_{p, q}\left(\mathbb{R}^{d}\right):=M_{p, q}^{0}\left(\mathbb{R}^{d}\right)$ and often shorten the notation for $M_{p, q}^{s}\left(\mathbb{R}^{d}\right)$ to $M_{p, q}^{s}$. It can be shown, that the $M_{p, q}^{s}\left(\mathbb{R}^{d}\right)$ are Banach spaces and that different choices of the window function g lead to equivalent norms.

To state our first result, let us recall the definition of the Littlewood-Paley decomposition. Consider a smooth radial function $\phi_{0} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ with $\phi_{0}(\xi)=1$ for

[^0]all $|\xi| \leq \frac{1}{2}$ and $\operatorname{supp}\left(\phi_{0}\right) \subseteq B_{1}(0)$. Set $\phi_{1}=\phi_{0}(\dot{\overline{2}})-\phi_{0}$ and $\phi_{l}=\phi_{1}\left(\frac{\dot{2}}{2^{i-1}}\right)$ for all $l \in \mathbb{N}$. The multiplier operators defined by
$$
\Delta_{l} f:=\frac{1}{(2 \pi)^{\frac{d}{2}}} \check{\phi}_{l} * f=\mathcal{F}^{(-1)} \phi_{l} \mathcal{F} f \quad \forall \in \mathbb{N}_{0} \forall f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)
$$
are called dyadic decomposition operators and the sequence $\left(\Delta_{l} f\right)_{l \in \mathbb{N}_{0}}$ is called the Littlewood-Paley decomposition of $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$. Above, \mathcal{F} denotes the usual Fourier transform and $\mathcal{F}^{(-1)}$ its inverse.

Our first result is
Theorem 1 (Littlewood-Paley characterization). Let $d \in \mathbb{N}, p, q \in[1, \infty]$ and $s \in \mathbb{R}$. Then

$$
\|f\|:=\left\|\left(2^{l s}\left\|\Delta_{l} f\right\|_{M_{p, q}\left(\mathbb{R}^{d}\right)}\right)_{l \in \mathbb{N}_{0}}\right\|_{q} \quad \forall f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)
$$

defines an equivalent norm on $M_{p, q}^{s}\left(\mathbb{R}^{d}\right)$. The constants of the norm equivalence depend only on d and s.

The above characterization of modulation spaces is new and we shall use it to prove that the intersections $M_{p, q}^{s}\left(\mathbb{R}^{d}\right) \cap M_{\infty, 1}\left(\mathbb{R}^{d}\right)$ are Banach ${ }^{*}$-algebrat ${ }^{1}$. To state this second result, let us denote by $C_{\mathrm{b}}\left(\mathbb{R}^{d}\right)$ the space of bounded complex-valued continuous functions on \mathbb{R}^{d}, where $d \in \mathbb{N}$. We then have

Theorem 2 (Algebra property). Let $d \in \mathbb{N}, p, q \in[1, \infty]$ and $s \geq 0$. Then $M_{p, q}^{s}\left(\mathbb{R}^{d}\right) \cap M_{\infty, 1}\left(\mathbb{R}^{d}\right)$ is a Banach *-algebra with respect to pointwise multiplication and complex conjugation. These operations are well-defined due to the embedding $M_{\infty, 1}\left(\mathbb{R}^{d}\right) \hookrightarrow C_{b}\left(\mathbb{R}^{d}\right)$ Furthermore, if $q>1$ and $s>d\left(1-\frac{1}{q}\right)$ or if $q=1$, then $M_{p, q}^{s}\left(\mathbb{R}^{d}\right) \hookrightarrow M_{\infty, 1}\left(\mathbb{R}^{d}\right)$, so in particular $M_{p, q}^{s}\left(\mathbb{R}^{d}\right)$ is a Banach ${ }^{*}$-algebra, in that case.

The latter case of Theorem 2 had been observed already in 1983 by Feichtinger in his aforementioned pioneering work on modulation spaces (cf. [Fei83, Proposition $6.9]$), where he proves it using a rather abstract approach via Banach convolution triples. The case $q>1$ and $s \in\left[0, d\left(1-\frac{1}{q}\right)\right]$ seems to be new, at least as a statement. A different proof of Theorem 2 can be given following the idea of proof of [STW11, Proposition 3.2], see Cha18, Proposition 4.2].

Our third result is a Hölder-type inequality for modulation spaces, which is stated in

Theorem 3 (Hölder-type inequality). Let $d \in \mathbb{N}$ and $p, p_{1}, p_{2}, q \in[1, \infty]$ be such that $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$. For $q>1$ let $s>d\left(1-\frac{1}{q}\right)$ and for $q=1$ let $s \geq 0$. Then there is a $C>0$ such that for any $f \in M_{p_{1}, q}^{s}\left(\mathbb{R}^{d}\right)$ and any $g \in M_{p_{2}, q}^{s}\left(\mathbb{R}^{d}\right)$ one has $f g \in M_{p, q}^{s}\left(\mathbb{R}^{d}\right)$ and

$$
\begin{equation*}
\|f g\|_{M_{p, q}^{s}\left(\mathbb{R}^{d}\right)} \leq C\|f\|_{M_{p_{1}, q}^{s}\left(\mathbb{R}^{d}\right)}\|g\|_{M_{p_{2}, q}^{s}\left(\mathbb{R}^{d}\right)} . \tag{2}
\end{equation*}
$$

The above pointwise multiplication $f g$ is well-defined due to the embedding formulated in Theorem 2. The constant C does not depend on p, p_{1} or p_{2}.

Theorem 3 easily generalizes to $m \in \mathbb{N}$ factors and $p, p_{1}, \ldots, p_{m} \in(0, \infty]$. Hence, it extends the multilinear estimate from BO09, Equation 2.4] to the case $q_{0}=$ $\ldots=q_{m}>1$.

[^1]Here we present a direct proof of Theorem 3, close to the approach found in WZG06, Corollary 4.2] and involving an application of Theorem 2. For a proof avoiding the Littewood-Paley characterization see the proof of Cha18, Theorem 4.3]. A yet another and more abstract proof could be given by invoking [Fei80, Theorem 3] for a specific choice of Banach convolution triples.

Lastly, we employ Theorem 2 to study the Cauchy problem for the cubic nonlinear Schrödinger equation ($N L S$)

$$
\left\{\begin{align*}
\mathrm{i} \frac{\partial u}{\partial t}(x, t)+\Delta u(x, t) \pm|u|^{2} u(x, t) & =0 & (x, t) & \in \mathbb{R}^{d} \times \mathbb{R} \tag{3}\\
u(x, 0) & =u_{0}(x) & x & \in \mathbb{R}^{d}
\end{align*}\right.
$$

where the initial data u_{0} is in an intersection of modulation spaces $M_{p, q}^{s}\left(\mathbb{R}^{d}\right) \cap$ $M_{\infty, 1}\left(\mathbb{R}^{d}\right)$. We are interested in mild solutions u of (3), i.e.

$$
u \in C\left([0, T), M_{p, q}^{s}\left(\mathbb{R}^{d}\right) \cap M_{\infty, 1}\left(\mathbb{R}^{d}\right)\right)
$$

for some $T>0$ which satisfy the corresponding integral equation

$$
\begin{equation*}
u(\cdot, t)=e^{\mathrm{i} t \Delta} u_{0} \pm \mathrm{i} \int_{0}^{t} e^{\mathrm{i}(t-\tau) \Delta}\left(|u|^{2} u(\cdot, \tau)\right) \mathrm{d} \tau \quad \forall t \in[0, T) \tag{4}
\end{equation*}
$$

Our last result is stated in
Theorem 4 (Local well-posedness). Let $d \in \mathbb{N}, p \in[1, \infty], q \in[1, \infty)$ and $s \geq 0$. Set $X=M_{p, q}^{s}\left(\mathbb{R}^{d}\right) \cap M_{\infty, 1}\left(\mathbb{R}^{d}\right)$ and $X(T)=C([0, T], X), \quad X_{*}(T)=C([0, T), X)$ for any $T>0$. Assume that $u_{0} \in X$. Then, there exists a unique maximal mild solution $u \in X_{*}\left(T_{*}\right)$ of (3) and the blow-up alternative

$$
T_{*}<\infty \quad \Rightarrow \quad \limsup _{t \rightarrow T_{*}-}\|u(\cdot, t)\|_{X}=\infty
$$

holds. Moreover, for any $T^{\prime} \in\left(0, T_{*}\right)$ there exists a neighborhood V of u_{0} in X, such that the initial-data-to-solution-map $V \rightarrow X\left(T^{\prime}\right), v_{0} \mapsto v$ is Lipschitz continuous.

As already stated in Theorem 2 one has that, if $q>1$ and $s>d\left(1-\frac{1}{q}\right)$ or if $q=1$, then $M_{p, q}^{s}\left(\mathbb{R}^{d}\right) \hookrightarrow M_{\infty, 1}\left(\mathbb{R}^{d}\right)$ and so $X=M_{p, q}^{s}\left(\mathbb{R}^{d}\right)$, in that case.

In the case $q=\infty$ excluded in Theorem 4, the situation is more subtle. Following our proof, one obtains local well-posedness in the larger space

$$
L^{\infty}\left([0, T), M_{p, \infty}^{s}\left(\mathbb{R}^{d}\right) \cap M_{\infty, 1}\left(\mathbb{R}^{d}\right)\right)
$$

The missing continuity in time is due to the properties of the free Schrödinger evolution and we refer to the remarks after Theorem 10.

The precursors of Theorem 4 are WZG06, Theorem 1.1] by Wang, Zhao and Guo for the space $M_{2,1}^{0}\left(\mathbb{R}^{d}\right)$ and [BO09, Theorem 1.1] due to Bényi and Okoudjou for the space $M_{p, 1}^{s}\left(\mathbb{R}^{d}\right)$ with $p \in[1, \infty]$ and $s \geq 0$. In fact, Theorem 4 generalizes [BO09, Theorem 1.1] to $q \geq 1$: Although our theorem is stated for the cubic nonlinearity, this is for simplicity of the presentation only. The proof allows for an easy generalization to algebraic nonlinearities considered in BO09, which are of the form

$$
\begin{equation*}
f(u)=g\left(|u|^{2}\right) u=\sum_{k=0}^{\infty} c_{k}|u|^{2 k} u \tag{5}
\end{equation*}
$$

where g is an entire function. Also, BO09, Theorems 1.2 and 1.3], which concern the nonlinear wave and the nonlinear Klein-Gordon equation respectively, can be generalized in the same spirit. The reason for this is that the proof of these results is based on the well-known Banach's contraction principle, on the fact that the free propagator is a C_{0}-group, and on the algebra property of the spaces under
consideration. Although the ingredients seem to be known in the community, the results to be found in the literature (e.g. WHHG11, Theorem 6.2]) are not as general as Theorem 4. In this sense, it closes a gap in the literature.

Let us remark that local well-posedness results in the case of modulation spaces that are not Banach *-algebras are Guo16. Theorem 1.4] for $u_{0} \in M_{2, q}(\mathbb{R})$ with $q \in[2, \infty)$ and CHKP19, Theorem 6] with $u_{0} \in M_{p, q}^{s}(\mathbb{R})$ with either $p \in[2,3]$, $q \in\left[1, \frac{3}{2}\right]$ and $s \geq 0$ or $p \in[2,3], q \in\left(\frac{3}{2}, \frac{18}{11}\right]$ and $s>\frac{2}{3}-\frac{1}{q}$ or $q \in\left(\frac{18}{11}, 2\right]$, $p \in\left[2, \frac{10 q}{7 q-6}\right)$ and $s>\frac{2}{3}-\frac{1}{q}$ (see also Pat18, Theorem 4]).

The remainder of our paper is structured as follows. We start with Section 2 providing an overview over modulation spaces and the free Schrödinger propagator on them. In Section 3 we apply methods from the Littlewood-Paley theory to prove Theorem 1. In the subsequent Section 4 we prove the algebra property from Theorem 2, notice the resulting similar property for weighted sequence spaces in Lemma 12 and deduce the Hölder-type inequality stated in Theorem3. Finally, we prove Theorem 4 on the local well-posedness in Section 5

Notation. We denote generic constants by C. To emphasize on which quantities a constant depends we write e.g. $C=C(d)$ or $C=C(d, s)$. Sometimes we omit a positive constant from an inequality by writing " \lesssim ", e.g. $A \lesssim_{d} B$ instead of $A \leq C(d) B$. By $A \approx B$ we mean $A \lesssim B$ and $B \lesssim A$. Special constants are $d \in \mathbb{N}$ for the dimension, $p, q \in[1, \infty]$ for the Lebesgue exponents and $s \in \mathbb{R}$ for the regularity exponent. By p^{\prime} we mean the dual exponent of p, that is the number satisfying $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.

We denote by $\mathcal{S}\left(\mathbb{R}^{d}\right)$ the set of $S c h w a r t z$ functions and by $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ the space of tempered distributions. Furthermore, we denote the Bessel potential spaces or simply L^{2}-based Sobolev spaces by $H^{s}=H^{s}\left(\mathbb{R}^{d}\right)$. For the space of smooth functions with compact support we write C_{c}^{∞}. The letters f, g, h denote either generic functions $\mathbb{R}^{d} \rightarrow \mathbb{C}$ or generic tempered distributions and $\left(a_{k}\right)_{k \in \mathbb{Z}^{d}}=\left(a_{k}\right)_{k}=\left(a_{k}\right)$, $\left(b_{k}\right)_{k \in \mathbb{Z}^{d}}=\left(b_{k}\right)_{k}=\left(b_{k}\right)$ denote generic complex-valued sequences. By $\langle\cdot\rangle=$ $\sqrt{1+|\cdot|^{2}}$ we mean the Japanese bracket.

For a Banach space X we write X^{*} for its dual and $\|\cdot\|_{X}$ for the norm it is canonically equipped with. By $\mathscr{L}(X, Y)$ we denote the space of all bounded linear maps from X to Y, where Y is another Banach space, and set $\mathscr{L}(X)=\mathscr{L}(X, X)$. By [$X, Y]_{\theta}$ we mean complex interpolation between X and Y, if (X, Y) is an interpolation couple. For brevity we write $\|\cdot\|_{p}$ for the p-norm on the Lebesgue space $L^{p}=$ $L^{p}\left(\mathbb{R}^{d}\right)$, the sequence space $l^{p}=l^{p}\left(\mathbb{Z}^{d}\right)$ or $l^{p}=l^{p}\left(\mathbb{N}_{0}\right)$ and $\left\|\left(a_{k}\right)\right\|_{q, s}:=\left\|\left(\langle k\rangle^{s} a_{k}\right)\right\|_{q}$ for the norm on $\langle\cdot\rangle^{s}$-weighted sequence spaces $l_{s}^{q}=l_{s}^{q}\left(\mathbb{Z}^{d}\right)$. If the norm is apparent from the context, we write $B_{r}(x)$ for a ball of radius r around $x \in X$.

We use the symmetric choice of constants for the Fourier transform and also write

$$
\begin{aligned}
& \hat{f}(\xi):=(\mathcal{F} f)(\xi)=\frac{1}{(2 \pi)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} e^{-\mathrm{i} \xi \cdot x} f(x) \mathrm{d} x \\
& \check{g}(x):=\left(\mathcal{F}^{(-1)} g\right)(x)=\frac{1}{(2 \pi)^{\frac{d}{2}}} \int_{\mathbb{R}^{d}} e^{\mathrm{i} \xi \cdot x} g(\xi) \mathrm{d} \xi
\end{aligned}
$$

2. Preliminaries

As already mentioned in the introduction, modulation spaces were introduced by Feichtinger in Fei83 in the setting of locally compact Abelian groups. A thorough introduction is given in the textbook Grö01 by Gröchenig. A presentation
incorporating the characterization of modulation spaces via isometric decomposition operators, which we are going to use below, is contained in the paper WH07, Section 2, 3] by Wang and Hudzik. A survey on modulation spaces and nonlinear evolution equations is given in RSW12.

A convenient equivalent norm on modulation spaces which we are going to use is constructed as follows (cf. WH07, Propostition 2.1]): Set $Q_{0}:=\left[-\frac{1}{2}, \frac{1}{2}\right)^{d}$ and $Q_{k}:=Q_{0}+k$ for all $k \in \mathbb{Z}^{d}$. Consider a smooth partition of unity $\left(\sigma_{k}\right)_{k \in \mathbb{Z}^{d}} \in$ $\left(C_{c}^{\infty}\left(\mathbb{R}^{d}\right)\right)^{\mathbb{Z}^{d}}$ satisfying

- $\exists c>0: \forall k \in \mathbb{Z}^{d}: \forall \eta \in Q_{k}:\left|\sigma_{k}(\eta)\right| \geq c$,
- $\forall k \in \mathbb{Z}^{d}: \operatorname{supp}\left(\sigma_{k}\right) \subseteq B_{\sqrt{d}}(k)$,
- $\sum_{k \in \mathbb{Z}^{d}} \sigma_{k}=1$,
- $\forall m \in \mathbb{N}_{0}: \exists C_{m}>0: \forall k \in \mathbb{Z}^{d}: \forall \alpha \in \mathbb{N}_{0}^{d}:|\alpha| \leq m \Rightarrow\left\|D^{\alpha} \sigma_{k}\right\|_{\infty} \leq C_{m}$
and define the isometric decomposition operators $\square_{k}:=\mathcal{F}^{(-1)} \sigma_{k} \mathcal{F}$. We need the following often used (cf. [WH07, Proposition 1.9])

Lemma 5 (Bernstein multiplier estimate). Let $d \in \mathbb{N}, \sigma \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ and $r, p_{1}, p_{2} \in$ $[1, \infty]$ such that $1+\frac{1}{p_{2}}=\frac{1}{r}+\frac{1}{p_{1}}$. Consider the multiplier operator $T_{\sigma}: \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right) \rightarrow$ $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ with symbol σ defined by

$$
T_{\sigma} f=\mathcal{F}^{(-1)} \sigma \mathcal{F} f=\frac{1}{(2 \pi)^{\frac{d}{2}}} \check{\sigma} * f \quad \forall f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)
$$

Then, for any $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$, every derivative of $T_{\sigma} f \in C^{\infty}\left(\mathbb{R}^{d}\right)$ (including $T_{\sigma} f$) has at most polynomial growth. Furthermore $\left\|T_{\sigma} f\right\|_{p_{2}} \leq \frac{\|\hat{\sigma}\|_{r}}{(2 \pi)^{\frac{d}{2}}}\|f\|_{p_{1}}$ for any $f \in L^{p_{1}}\left(\mathbb{R}^{d}\right)$.

Putting $r=1$ and $p_{1}=p_{2}=p$ in Lemma 5, shows that $\square_{k} f \in C^{\infty}\left(\mathbb{R}^{d}\right)$ for $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ and $\left\|\square_{k}\right\|_{\mathscr{L}\left(L^{p}\left(\mathbb{R}^{d}\right)\right)}$ is bounded independently of k and p. The aforementioned equivalent norm for the modulation space $M_{p, q}^{s}\left(\mathbb{R}^{d}\right)$ is given by (see WH07, Proposition 2.1])

$$
\begin{equation*}
\|f\|_{M_{p, q}^{s}} \approx\left\|\left(\langle k\rangle^{s}\left\|\square_{k} f\right\|_{p}\right)_{k \in \mathbb{Z}^{d}}\right\|_{q} \tag{6}
\end{equation*}
$$

Choosing a different partition of unity $\left(\sigma_{k}\right)$ yields yet another equivalent norm.
Lemma 6 (Continuous embeddings). Let $s_{1} \geq s_{2}, 1 \leq p_{1} \leq p_{2} \leq \infty, 1 \leq q_{1} \leq$ $q_{2} \leq \infty, q>1$ and $s>\frac{d}{q^{\prime}}$. Then
(1) $M_{p_{1}, q_{1}}^{s_{1}}\left(\mathbb{R}^{d}\right) \subseteq M_{p_{2}, q_{2}}^{s_{2}}\left(\mathbb{R}^{d}\right)$ and the embedding is continuous,
(2) $M_{p_{1}, q}^{s}\left(\mathbb{R}^{d}\right) \subseteq M_{p_{1}, 1}\left(\mathbb{R}^{d}\right)$ and the embedding is continuous,
(3) $M_{p_{1}, 1}\left(\mathbb{R}^{d}\right) \hookrightarrow C_{b}\left(\mathbb{R}^{d}\right)$.

Lemma 6 is well-known (cf. WH07, Proposition 2.5, 2.7]), but for convenience we sketch a

Proof. (1) One can change indices one by one. The inclusion for " s " is by monotonicity and the inclusion for " q " is by the embeddings of the l^{q} spaces. For the " p "-embedding consider $\tau \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that $\left.\tau\right|_{B_{\sqrt{d}}} \equiv 1$ and $\operatorname{supp}(\tau) \subseteq B_{d}$. For every $k \in \mathbb{Z}^{d}$, consider the shifted symbol $\tau_{k}=S_{k} \tau$, define the corresponding multiplier operator $\tilde{\square}_{k}=\mathcal{F}^{(-1)} \tau_{k} \mathcal{F}$ and observe, that $\hat{\tau}_{k}=M_{k} \hat{\tau}$. Hence, by Lemma 5, the family $\left(\tilde{\square}_{k}\right)_{k \in \mathbb{Z}^{d}}$ is bounded in $\mathscr{L}\left(L^{p_{1}}\left(\mathbb{R}^{d}\right), L^{p_{2}}\left(\mathbb{R}^{d}\right)\right)$. So, $\left\|\square_{k} f\right\|_{p_{2}}=\left\|\tilde{\square}_{k} \square_{k} f\right\|_{p_{2}} \lesssim_{d}\left\|\square_{k} f\right\|_{p_{1}}$ for any $k \in \mathbb{Z}^{d}$. Recalling (6) completes the argument.
(2) By Hölder's inequality we immediately have

$$
\begin{aligned}
\|f\|_{p_{1}, 1} & \approx \sum_{k \in \mathbb{Z}^{d}}\left\|\square_{k} f\right\|_{p_{1}} \leq\left(\sum_{k \in \mathbb{Z}^{d}}\langle k\rangle^{-s q^{\prime}}\right)^{\frac{1}{q^{\prime}}}\left(\sum_{k \in \mathbb{Z}^{d}}\langle k\rangle^{s q}\left\|\square_{k} f\right\|_{p}^{q}\right)^{\frac{1}{q}} \\
& \approx\left(\sum_{k \in \mathbb{Z}^{d}}\langle k\rangle^{-s q^{\prime}}\right)^{\frac{1}{q^{\prime}}}\|f\|_{M_{p_{1}, q}^{s}}
\end{aligned}
$$

and the first factor is finite for $s>\frac{d}{q^{\prime}}$ by comparison with the integral $\int_{\mathbb{R}^{d}}\langle x\rangle^{-s q^{\prime}} \mathrm{d} x$.
(3) By part (1) it is enough to show that $M_{\infty, 1} \hookrightarrow C_{b}$. For any $f \in M_{\infty, 1}$ we have $\underbrace{\sum_{|k| \leq N} \square_{k} f}_{\in C^{\infty}} \rightarrow f$ in \mathcal{S}^{\prime} as $N \rightarrow \infty$. But simultaneously, the series $\sum_{k \in \mathbb{Z}^{d}} \square_{k} f$ is absolutely convergent in L^{∞} to, say, $g \in C_{b}$. As $M_{\infty, 1} \hookrightarrow S^{\prime}$ (see [Fei83, Thm. 6.1 (B)]), we have $f=g$.

For the proof of Theorem 2 we will need the following (cf. [BO09, eqn. (2.4)])
Lemma 7 (Bilinear estimate). Let $d \in \mathbb{N}$ and $1 \leq p \leq \infty$. Assume $f \in M_{p, q}\left(\mathbb{R}^{d}\right)$ and $g \in M_{\infty, 1}\left(\mathbb{R}^{d}\right)$. Then

$$
\|f g\|_{M_{p, q}\left(\mathbb{R}^{d}\right)} \lesssim\|f\|_{M_{p, q}\left(\mathbb{R}^{d}\right)}\|g\|_{M_{\infty, 1}\left(\mathbb{R}^{d}\right)}
$$

where the implicit constant does not depend on p or q.
For convenience, and because we will generalize Lemma 7 to Theorem 3, we present a proof close to the one of [WZG06, Corollary 4.2].

Proof. We use (6) to estimate the modulation space norm of the left-hand side. Fix a $k \in \mathbb{Z}^{d}$. By the definition of the operator \square_{k} we have

$$
\square_{k}(f g)=\frac{1}{(2 \pi)^{\frac{d}{2}}} \mathcal{F}^{(-1)}\left(\sigma_{k}(\hat{f} * \hat{g})\right)=\frac{1}{(2 \pi)^{\frac{d}{2}}} \sum_{l, m \in \mathbb{Z}^{d}} \mathcal{F}^{(-1)}\left(\sigma_{k}\left(\left(\sigma_{l} \hat{f}\right) *\left(\sigma_{m} \hat{g}\right)\right)\right) .
$$

As the supports of the partition of unity are compact, many summands vanish. Indeed, for any $k, l, m \in \mathbb{Z}^{d}$

$$
\begin{aligned}
\operatorname{supp}\left(\sigma_{k}\left(\left(\sigma_{l} \hat{f}\right) *\left(\sigma_{m} \hat{g}\right)\right)\right) & \subseteq \operatorname{supp}\left(\sigma_{k}\right) \cap\left(\operatorname{supp}\left(\sigma_{l}\right)+\operatorname{supp}\left(\sigma_{m}\right)\right) \\
& \subseteq B_{\sqrt{d}}(k) \cap B_{2 \sqrt{d}}(l+m)
\end{aligned}
$$

and so $\sigma_{k}\left(\left(\sigma_{l} \hat{f}\right) *\left(\sigma_{m} \hat{g}\right)\right) \equiv 0$ if $|(k-l)-m|>3 \sqrt{d}$. Hence, the double series over $l, m \in \mathbb{Z}^{d}$ boils down to a finite sum of discrete convolutions

$$
\begin{aligned}
\square_{k}(f g) & =\frac{1}{(2 \pi)^{\frac{d}{2}}} \mathcal{F}^{(-1)}\left(\sigma_{k} \sum_{m \in M} \sum_{l \in \mathbb{Z}^{d}}\left(\sigma_{l} \hat{f}\right) *\left(\sigma_{k-l+m} \hat{g}\right)\right) \\
& =\square_{k} \sum_{m \in M} \sum_{l \in \mathbb{Z}^{d}}\left(\square_{l} f\right) \cdot\left(\square_{k+m-l} g\right),
\end{aligned}
$$

where $M=\left\{m \in \mathbb{Z}^{d}| | m \mid \leq 3 \sqrt{d}\right\}$ and $\# M \leq(6 \sqrt{d}+1)^{d}<\infty$. That was the job of \square_{k} and we now get rid of it,

$$
\left\|\square_{k}(f g)\right\|_{p} \lesssim \sum_{m \in M} \sum_{l \in \mathbb{Z}^{d}}\left\|\left(\square_{l} f\right) \cdot\left(\square_{k+m-l} g\right)\right\|_{p}
$$

using the Bernstein multiplier estimate from Lemma 5 .
Invoking Hölder's inequality we further estimate

$$
\begin{equation*}
\left\|\square_{k}(f g)\right\|_{p} \lesssim \sum_{m \in M}\left(\left(\left\|\square_{l}(f)\right\|_{p}\right)_{l} *\left(\left\|\square_{n+m}(g)\right\|_{\infty}\right)_{n}\right)(k) \tag{7}
\end{equation*}
$$

pointwise in $k \in \mathbb{Z}^{d}$, where $*$ denotes the convolution of sequences, and hence obtain

$$
\|f g\|_{M_{p, q}} \lesssim\left\|\left(\left\|\square_{l} f\right\|_{p}\right)_{l}\right\|_{q}\left\|\left(\left\|\square_{n} g\right\|_{\infty}\right)_{n}\right\|_{1}
$$

by Young's inequality.
Lemma 8 (Dual space). For $s \in \mathbb{R}, p, q \in[1, \infty)$ we have

$$
\left(M_{p, q}^{s}\left(\mathbb{R}^{d}\right)\right)^{*}=M_{p^{\prime}, q^{\prime}}^{-s}\left(\mathbb{R}^{d}\right)
$$

(see WH07, Theorem 3.1]).
Theorem 9 (Complex interpolation). For $p_{1}, q_{1} \in[1, \infty), p_{2}, q_{2} \in[1, \infty], s_{1}, s_{2} \in$ \mathbb{R} and $\theta \in(0,1)$ one has

$$
\left[M_{p_{1}, q_{1}}^{s_{1}}\left(\mathbb{R}^{d}\right), M_{p_{2}, q_{2}}^{s_{2}}\left(\mathbb{R}^{d}\right)\right]_{\theta}=M_{p, q}^{s}\left(\mathbb{R}^{d}\right),
$$

with

$$
\frac{1}{p}=\frac{1-\theta}{p_{1}}+\frac{\theta}{p_{2}}, \quad \frac{1}{q}=\frac{1-\theta}{q_{1}}+\frac{\theta}{q_{2}}, \quad s=(1-\theta) s_{1}+\theta s_{2}
$$

(see [Fei83, Theorem 6.1 (D)]).
We are now ready to state and prove the following
Theorem 10 (Schrödinger propagator bound). There is a constant $C>0$ such that for any $d \in \mathbb{N}, p, q \in[1, \infty]$ and $s \in \mathbb{R}$ the inequality

$$
\begin{equation*}
\left\|e^{\mathrm{i} t \Delta}\right\|_{\mathscr{L}\left(M_{p, q}^{s}\left(\mathbb{R}^{d}\right)\right)} \leq C^{d}(1+|t|)^{d\left|\frac{1}{2}-\frac{1}{p}\right|} \tag{8}
\end{equation*}
$$

holds for all $t \in \mathbb{R}$. Furthermore, the exponent of the time dependence is sharp.
The boundedness has been obtained e.g. in BGOR07, Theorem 1] whereas the sharpness was proven in CN09, Proposition 4.1]. If $q<\infty$, then $\left(e^{\mathrm{it} \Delta}\right)_{t \in \mathbb{R}}$ is a C_{0}-group on $M_{p, q}^{s}$, i.e.

$$
\lim _{t \rightarrow 0}\left\|e^{\mathrm{it} \Delta} f-f\right\|_{M_{p, q}^{s}}=0 \quad \forall f \in M_{p, q}^{s}
$$

(see e.g. [Cha18, Proposition 3.5]). This is not true for $q=\infty$ and we refer to Kun19 for this more subtle case.

Theorem 10. By definition, we have

$$
\left(V_{g} e^{\mathrm{i} t \Delta} f\right)(x, \xi)=e^{-\mathrm{i} t|\xi|^{2}}\left(V_{e^{\mathrm{i} t} \Delta_{g}} f\right)(x+2 t \xi, \xi)
$$

for any $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$, any $(x, \xi) \in \mathbb{R}^{d} \times \mathbb{R}^{d}$, and any $t \in \mathbb{R}$, i.e. the Schrödinger time evolution of the initial data can be interpreted as the time evolution of the window function. The price for changing from window g_{0} to window g_{1} is $\left\|V_{g_{0}} g_{1}\right\|_{L^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)}$ by Grö01, Proposition 11.3.2 (c)]. For $g(x)=e^{-|x|^{2}}$ one explicitly calculates

$$
\left\|V_{e^{-\mathrm{i} t \Delta g} g} g\right\|_{L^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)}=C^{d}(1+|t|)^{\frac{d}{2}}
$$

which proves the claimed bound for $p \in\{1, \infty\}$. Conservation for $p=2$ is easily seen from (6). Complex interpolation between the cases $p=2$ and $p=\infty$ yields (8) for $p \in[2, \infty]$. The remaining case $p \in(1,2)$ is covered by duality.

Optimality in the case $p \in[1,2]$ is proven by choosing the window g and the argument f to be a Gaussian and explicitly calculating $\left\|e^{\mathrm{i} t \Delta} f\right\|_{M_{p, q}^{s}} \approx(1+|t|)^{d\left(\frac{1}{p}-\frac{1}{2}\right)}$. This implies the optimality for $p \in(2, \infty]$ by duality.

3. Littlewood-Paley theory

In this section we extend some ideas of the Littlewood-Paley decomposition from Sobolev spaces $H^{s}\left(\mathbb{R}^{d}\right)$ to modulation spaces $M_{p, q}^{s}\left(\mathbb{R}^{d}\right)$. The inspiration for this was AG07, Chapter II].

Observe, that for any $\xi \in \mathbb{R}^{d}$ one has

$$
\sum_{l=0}^{\infty} \phi_{l}(\xi)=\phi_{0}(\xi)+\lim _{N \rightarrow \infty} \sum_{l=1}^{N}\left[\phi_{1}\left(\frac{\xi}{2^{l}}\right)-\phi_{1}\left(\frac{\xi}{2^{l-1}}\right)\right]=\lim _{N \rightarrow \infty} \phi_{0}\left(\frac{\xi}{2^{N}}\right)=1
$$

i.e. $\left\{\phi_{0}, \phi_{1}, \phi_{2}, \ldots\right\}$ is a smooth partition of unity. Moreover, $\operatorname{supp}\left(\phi_{l}\right) \subseteq A_{l}$ for any $l \in \mathbb{N}_{0}$, where

$$
A_{0}:=\left\{\xi \in \mathbb{R}^{d}| | \xi \mid \leq 1\right\} \quad \text { and } \quad A_{l}:=\left\{\xi \in \mathbb{R}^{d}\left|2^{l-2} \leq|\xi| \leq 2^{l}\right\} \quad \forall l \in \mathbb{N} .\right.
$$

The symbols of the dyadic decomposition operators satisfy

$$
\left\|\hat{\phi}_{l}\right\|_{1}=\left\|\mathcal{F}\left[\phi_{1}\left(\frac{\cdot}{2^{l-1}}\right)\right]\right\|_{1}=\left\|2^{l-1} \hat{\phi}_{1}\left(2^{l-1} \cdot\right)\right\|_{1}=\left\|\hat{\phi}_{1}\right\|_{1} \leq 2\left\|\hat{\phi}_{0}\right\|_{1}
$$

for all $l \in \mathbb{N}$. Applying Lemma 5 shows that for any $l \in \mathbb{N}_{0}$ and any $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ one has that $\Delta_{l} f \in C^{\infty}$ and any of its derivates has at most polynomial growth. Furthermore, $\left\|\Delta_{l}\right\|_{\mathscr{L}\left(L^{p}\left(\mathbb{R}^{d}\right)\right)}$ is bounded independently of $l \in \mathbb{N}_{0}$ and $p \in[1, \infty]$.

Theorem 1. We start by gathering some useful facts. Fix $l \in \mathbb{N}_{0}$ and $k \in \mathbb{Z}^{d}$. Recall, that $\operatorname{supp}\left(\phi_{l}\right) \subseteq A_{l}$ and $\operatorname{supp}\left(\sigma_{k}\right) \subseteq B_{\sqrt{d}}(k)$. Hence,

$$
\begin{equation*}
\square_{k} \Delta_{l} \not \equiv 0 \Rightarrow k \in A_{l}^{\prime}:=\left\{k^{\prime} \in \mathbb{Z}^{d}\left|2^{l-2}-\sqrt{d} \leq\left|k^{\prime}\right| \leq 2^{l}+\sqrt{d}\right\} .\right. \tag{9}
\end{equation*}
$$

On A_{l}^{\prime} the Japanese bracket can be controlled. In fact, for all $t \in \mathbb{R}$ we have

$$
\begin{equation*}
\langle k\rangle^{t} \approx 2^{l t}, \tag{10}
\end{equation*}
$$

where the implicit constant does not depend on l.
Finally, observe that $k \in A_{l}^{\prime}$ is satisfied for only finitely many $l \in \mathbb{N}_{0}$, whose number is independent of $k \in \mathbb{Z}^{d}$, i.e.

$$
\begin{equation*}
\sum_{l=0}^{\infty} \mathbb{1}_{A_{l}^{\prime}}(k) \lesssim 1 \tag{11}
\end{equation*}
$$

where the implicit constant depends on d only.

- え: Consider $q<\infty$ first. By (6), (9), Bernstein multiplier estimate, (10) and (11) we have

$$
\begin{aligned}
& \left\|\left(2^{l s}\left\|\Delta_{l} f\right\|_{M_{p, q}}\right)_{l}\right\|_{q} \\
\approx & \left(\sum_{l=0}^{\infty} 2^{l s q} \sum_{k \in \mathbb{Z}^{d}}\left\|\square_{k} \Delta_{l} f\right\|_{p}^{q}\right)^{\frac{1}{q}} \lesssim\left(\sum_{l=0}^{\infty} \sum_{k \in A_{l}^{\prime}} 2^{l s q}\left\|\square_{k} f\right\|_{p}^{q}\right)^{\frac{1}{q}} \\
\approx & \left(\sum_{l=0}^{\infty} \sum_{k \in \mathbb{Z}^{d}} \mathbb{1}_{A_{l}^{\prime}}(k)\langle k\rangle^{q s}\left\|\square_{k} f\right\|_{p}^{q}\right)^{\frac{1}{q}} \lesssim\|f\|_{M_{p, q}^{s}} .
\end{aligned}
$$

Similarly, for $q=\infty$, we have

$$
\begin{aligned}
\left\|\left(2^{l s}\left\|\Delta_{l} f\right\|_{M_{p, \infty}}\right)_{l}\right\|_{\infty} & =\sup _{l \in \mathbb{N}_{0}} 2^{l s} \sup _{k \in \mathbb{Z}^{d}}\left\|\square_{k} \Delta_{l} f\right\|_{p} \\
& \lesssim \sup _{l \in \mathbb{N}_{0}} \sup _{k \in A_{l}^{\prime}}\langle k\rangle^{s}\left\|\square_{k} f\right\|_{p} \approx\|f\|_{M_{p, \infty}^{s}}
\end{aligned}
$$

- \lesssim : Again, consider $q<\infty$ first. By (6), $f=\sum_{l=0}^{\infty} \Delta_{l} f$ in \mathcal{S}^{\prime} and (9) we have

$$
\begin{aligned}
\|f\|_{M_{p, q}^{s}} & \lesssim\left(\sum_{k \in \mathbb{Z}^{d}}\langle k\rangle^{q s}\left(\sum_{l=0}^{\infty}\left\|\square_{k} \Delta_{l} f\right\|_{p}\right)^{q}\right)^{\frac{1}{q}} \\
& \lesssim\left(\sum_{k \in \mathbb{Z}^{d}}\langle k\rangle^{q s}\left(\sum_{l=0}^{\infty} \mathbb{1}_{A_{l}^{\prime}}(k)\left\|\square_{k} \Delta_{l} f\right\|_{p}\right)^{q}\right)^{\frac{1}{q}} .
\end{aligned}
$$

For each $k \in \mathbb{Z}^{d}$ the sum over l contains only finitely many non-vanishing summands and their number is independent of k by (11). Hölder's inequality estimates the last term against

$$
\begin{aligned}
\left(\sum_{k \in \mathbb{Z}^{d}}\langle k\rangle^{q s} \sum_{l=0}^{\infty} \mathbb{1}_{A_{l}^{\prime}}(k)\left\|\square_{k} \Delta_{l} f\right\|_{p}^{q}\right)^{\frac{1}{q}} & \approx\left(\sum_{l=0}^{\infty} 2^{l s q} \sum_{k \in \mathbb{Z}^{d}} \mathbb{1}_{A_{l}^{\prime}}(k)\left\|\Delta_{l} \square_{k} f\right\|_{p}^{q}\right)^{\frac{1}{q}} \\
& \leq\left\|\left(2^{l s}\left\|\Delta_{l} f\right\|_{M_{p, q}}\right)_{l}\right\|_{q}
\end{aligned}
$$

where we additionally used 10 . The proof for $q=\infty$ is along the same lines.

The individual parts of the Littlewood-Paley decomposition had their Fourier transform supported in almost disjoint dyadic annuli. Theorem 1 characterized elements of modulation spaces by the decay of these parts. The following lemma provides a sufficient condition for the case of non-disjoint balls.

Lemma 11 (Sufficient condition). Let $1 \leq q \leq \infty$ and $s>0$. For $m \in \mathbb{N}_{0}$ let $f_{m} \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ be such that

$$
\operatorname{supp}\left(\hat{f}_{m}\right) \subseteq B_{m}:=\left\{\xi \in \mathbb{R}^{d}| | \xi \mid \leq 2^{m}\right\} \quad \forall m \in \mathbb{N}_{0}
$$

Set $f:=\sum_{m=0}^{\infty} f_{m}$ in $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$. Then

$$
\|f\|_{M_{p, q}^{s}\left(\mathbb{R}^{d}\right)} \lesssim\left\|\left(2^{m s}\left\|f_{m}\right\|_{M_{p, q}\left(\mathbb{R}^{d}\right)}\right)_{m \in \mathbb{N}_{0}}\right\|_{q}
$$

where the implicit constant depends on d and s only.
Proof. Observe, that $A_{l} \cap B_{m}=\emptyset$ if $l>m+2$. Hence, we have

$$
\begin{aligned}
\|f\|_{M_{p, q}^{s}} & \approx\left\|\left(2^{l s}\left\|\Delta_{l} f\right\|_{M_{p, q}}\right)_{l}\right\|_{q} \lesssim\left\|\left(2^{l s} \sum_{m=l}^{\infty}\left\|\Delta_{l} f_{m}\right\|_{M_{p, q}}\right)_{l}\right\|_{q} \\
& \lesssim\left\|\left(2^{l s} \sum_{m=l}^{\infty}\left\|f_{m}\right\|_{M_{p, q}}\right)_{l}\right\|_{q}
\end{aligned}
$$

where we additionally used Theorem 1 and Bernstein multiplier estimate. From now on, we assume $q \in(1, \infty)$, as the proof for the other cases is easier and follows the same lines. Hölder's inequality and geometric sum formula estimates the last
term against

$$
\begin{aligned}
& \left(\sum_{l=0}^{\infty}\left(\sum_{m=l}^{\infty} 2^{l s}\left\|f_{m}\right\|_{M_{p, q}}\right)^{q}\right)^{\frac{1}{q}} \\
= & \left(\sum_{l=0}^{\infty}\left(\sum_{m=l}^{\infty} 2^{\frac{(l-m) s}{q^{\prime}}} \times 2^{\frac{(l-m) s}{q}} 2^{m s}\left\|f_{m}\right\|_{M_{p, q}}\right)^{q}\right)^{\frac{1}{q}} \\
\leq & \left(\sum_{l=0}^{\infty}\left(\sum_{m=l}^{\infty} 2^{(l-m) s}\right)^{\frac{q}{q}}\left(\sum_{m=l}^{\infty} 2^{(l-m) s} 2^{m s q}\left\|f_{m}\right\|_{M_{p, q}}^{q}\right)\right)^{\frac{1}{q}} \\
\approx & \left(\sum_{m=0}^{\infty} \sum_{l=0}^{m} 2^{(l-m) s} 2^{m s q}\left\|f_{m}\right\|_{M_{p, q}}^{q}\right)^{\frac{1}{q}} \\
\approx & \left\|\left(2^{m s}\left\|f_{m}\right\|_{M_{p, q}}\right)_{m}\right\|_{q}
\end{aligned}
$$

finishing the proof.

4. Algebra property and Hölder-type inequality

Main goal of this section is to prove Theorem 2, which was inspired by the fact that $H^{s}\left(\mathbb{R}^{d}\right) \cap L^{\infty}\left(\mathbb{R}^{d}\right)$ is a Banach *-algebra with respect to pointwise multiplication for $s \geq 0$.

Theorem [2. Parts 2 and 3 of Lemma 6 prove the claimed embedding. Continuity of complex conjugation is obvious from (6). Continuity of multiplication follows by the paraproduct argument

$$
f g=\left(\sum_{l=0}^{\infty} \Delta_{l} f\right)\left(\sum_{m=0}^{\infty} \Delta_{m} g\right)=\sum_{l=0}^{\infty} \underbrace{\left(\Delta_{l} f \sum_{m=0}^{l} \Delta_{m} g\right)}_{=: u_{l}}+\sum_{m=1}^{\infty} \underbrace{\left(\Delta_{m} g \sum_{l=0}^{m-1} \Delta_{l} f\right)}_{=: v_{m}} .
$$

Observe, that for any $l, m \in \mathbb{N}_{0}$ we have $\operatorname{supp}\left(\hat{u}_{l}\right) \subseteq B_{l+1}$ and $\operatorname{supp}\left(\hat{v}_{m}\right) \subseteq B_{m}$ by the properties of convolution. Hence, Lemma 11 could be applied. Bilinear estimate from Lemma 7 and Theorem 1 show

$$
\left\|\left(2^{l s}\left\|u_{l}\right\|_{M_{p, q}}\right)_{l}\right\|_{q} \leq\left\|\left(2^{l s}\left\|\Delta_{l} f\right\|_{M_{p, q}}\right)_{l}\right\|_{q} \sum_{m=0}^{\infty}\left\|\Delta_{m} g\right\|_{M_{\infty}, 1} \approx\|f\|_{M_{p, q}^{s}}\|g\|_{M_{\infty, 1}} .
$$

The same argument yields $\left\|\sum_{m=1}^{\infty} v_{m}\right\|_{M_{p, q}^{s}} \lesssim\|f\|_{M_{\infty, 1}}\|g\|_{M_{p, q}^{s}}$ and finishes the proof.

The analogon of Theorem 2 for sequence spaces is stated in
Lemma 12 (Algebra property). Let $1 \leq q \leq \infty$ and $s \geq 0$. Then $l_{s}^{q}\left(\mathbb{Z}^{d}\right) \cap l^{1}\left(\mathbb{Z}^{d}\right)$ is a Banach algebra with respect to convolution

$$
\begin{equation*}
\left(a_{l}\right) *\left(b_{m}\right)=\left(\sum_{m \in \mathbb{Z}^{d}} a_{k-m} b_{m}\right)_{k \in \mathbb{Z}^{d}} \tag{12}
\end{equation*}
$$

which is well-defined, as the series above always converge absolutely.
Furthermore, if $q>1$ and $s>d\left(1-\frac{1}{q}\right)$ or $q=1$, then $l_{s}^{q}\left(\mathbb{Z}^{d}\right) \hookrightarrow l^{1}\left(\mathbb{Z}^{d}\right)$, so in particular $l_{s}^{q}\left(\mathbb{Z}^{d}\right)$ is a Banach algebra, in that case.

Although this result is certainly not new, we could not find a suitable reference. A proof can be given using the same techniques as for the proof of Theorem 2, i.e. by proving analoga of Theorem 1 and Lemma 11 for the weighted sequence spaces. Another approach is to notice that by definition

$$
\left\|\sum_{k \in \mathbb{Z}^{d}} a_{k} e^{\mathrm{i} k x}\right\|_{M_{\infty, q}^{s}} \approx\left\|\left(a_{k}\right)\right\|_{l_{s}^{q}}
$$

and hence, by Theorem 2, one has

$$
\begin{aligned}
& \left\|\left(a_{k}\right) *\left(b_{k}\right)\right\|_{l_{s}^{q}} \\
\approx & \left\|\left(\sum_{k \in \mathbb{Z}^{d}} a_{k} e^{\mathrm{i} k x}\right) \cdot\left(\sum_{k \in \mathbb{Z}^{d}} b_{k} e^{\mathrm{i} k x}\right)\right\|_{M_{\infty, q}^{s}} \\
\lesssim & \left\|\sum_{k \in \mathbb{Z}^{d}} a_{k} e^{\mathrm{i} k x}\right\|_{M_{\infty, q}^{s}}\left\|\sum_{k \in \mathbb{Z}^{d}} b_{k} e^{\mathrm{i} k x}\right\|_{M_{\infty, 1}}+\left\|\sum_{k \in \mathbb{Z}^{d}} a_{k} e^{\mathrm{i} k x}\right\|_{M_{\infty, 1}}\left\|\sum_{k \in \mathbb{Z}^{d}} b_{k} e^{\mathrm{i} k x}\right\|_{M_{\infty, q}^{s}} \\
\approx & \left\|\left(a_{k}\right)\right\|_{l_{s}^{q}}\left\|\left(b_{k}\right)\right\|_{l^{1}}+\left\|\left(a_{k}\right)\right\|_{l^{1}}\left\|\left(b_{k}\right)\right\|_{l_{s}^{q}} .
\end{aligned}
$$

We are now ready to give a
Theorem [3. We arrive, as for equation (7) in the proof of Lemma 7, at

$$
\left\|\square_{k}(f g)\right\|_{p} \lesssim \sum_{m \in M}\left(\left(\left\|\square_{l}(f)\right\|_{p_{1}}\right)_{l} *\left(\left\|\square_{n+m}(g)\right\|_{p_{2}}\right)_{n}\right)(k)
$$

pointwise in $k \in \mathbb{Z}^{d}$. By the algebra property from Lemma 12 it follows that

$$
\|f g\|_{M_{p, q}^{s}} \lesssim\left\|\left(\left\|\square_{l} f\right\|_{p_{1}}\right)_{l}\right\|_{q, s}\left(\sum_{m \in M}\left\|\left(\left\|\square_{n+m} g\right\|_{p_{2}}\right)_{n}\right\|_{q, s}\right)
$$

and the first factor is already $\|f\|_{M_{p, q}^{s}}$. Finally, we remove the sum over m in the second factor

$$
\sum_{m \in M}\left\|\left(\left\|\square_{n+m} g\right\|_{p_{2}}\right)_{n}\right\|_{q, s} \lesssim\|g\|_{M_{p_{2}, q}^{s}}
$$

applying Peetre's inequality $\langle k+l\rangle^{s} \leq 2^{|s|}\langle k\rangle^{s}\langle l\rangle^{|s|}$ (see e.g. RT10, Proposition 3.3.31]).

Let us finish the proof remarking that the only estimate involving " p "s we used was Hölder's inequality and thus the implicit constant indeed does not depend on p, p_{1} or p_{2}.
5. Proof of the local well-posedness, Theorem 4.

Theorem 2 immediately implies that $X(T)$ is a Banach *-algebra, i.e.

$$
\begin{aligned}
\|u v\|_{X(T)} & =\sup _{0 \leq t \leq T}\|u v(\cdot, t)\|_{X} \lesssim\left(\sup _{0 \leq s \leq T}\|u(\cdot, s)\|_{X}\right)\left(\sup _{0 \leq t \leq T}\|v(\cdot, t)\|_{X}\right) \\
& =\|u\|_{X(T)}\|v\|_{X(T)}
\end{aligned}
$$

For $R>0$ we denote by $M(R, T)=\left\{u \in X(T) \mid\|u\|_{X(T)} \leq R\right\}$ the closed ball of radius R in $X(T)$ centered at the origin. We show that for some $R, T>0$ the right-hand side of (4),

$$
\begin{equation*}
(\mathcal{T} u)(\cdot, t):=e^{\mathrm{i} t \Delta} u_{0} \pm \mathrm{i} \int_{0}^{t} e^{\mathrm{i}(t-\tau) \Delta}\left(|u|^{2} u(\cdot, \tau)\right) \mathrm{d} \tau \quad(\forall t \in[0, T]) \tag{13}
\end{equation*}
$$

defines a contractive self-mapping $\mathcal{T}=\mathcal{T}\left(u_{0}\right): M_{R, T} \rightarrow M_{R, T}$.

To that end, let us observe that Theorem 10 implies the homogeneous estimate

$$
\left\|t \mapsto e^{\mathrm{i} t \Delta} v\right\|_{X} \leq C_{0}(1+T)^{\frac{d}{2}}\|v\|_{X} \quad(\forall v \in X)
$$

which, together with the algebra property of $X(T)$, proves the inhomogeneous estimate

$$
\begin{aligned}
& \left\|\int_{0}^{t} e^{\mathrm{i}(t-\tau) \Delta}\left(|u|^{2} u(\cdot, \tau)\right) \mathrm{d} \tau\right\|_{X} \\
\leq & C_{0}(1+T)^{\frac{d}{2}} \int_{0}^{t}\left\||u|^{2} u(\cdot, \tau)\right\|_{X} \mathrm{~d} \tau \leq C_{0} C_{1} T(1+T)^{\frac{d}{2}}\|u\|_{X}^{3},
\end{aligned}
$$

holding for $0 \leq t \leq T$ and $u \in X(T)$.
Applying the triangle inequality in 13 yields

$$
\|\mathcal{T} u\|_{X} \leq C_{0}(1+T)^{\frac{d}{2}}\left(\left\|u_{0}\right\|_{X}+C_{1} T R^{3}\right)
$$

for any $u \in M(R, T)$. Thus, \mathcal{T} maps $M(R, T)$ into itself for $R=2 C_{0} C_{1}\left\|u_{0}\right\|_{X}$ and T small enough. Furthermore,

$$
|u|^{2} u-|v|^{2} v=(u-v)|u|^{2}+(\bar{u} u-\bar{v} v) v=(u-v)\left(|u|^{2}+\bar{u} v\right)+(\bar{u}-\bar{v}) v^{2}
$$

and hence

$$
\|\mathcal{T} u-\mathcal{T} v\|_{X(T)} \lesssim T(1+T)^{\frac{d}{2}} R^{2}\|u-v\|_{X(T)}
$$

for $u, v \in M(R, T)$, where we additionally used the algebra property of $X(T)$ and the homogeneous estimate. Taking T sufficiently small makes \mathcal{T} a contraction.

Banach's fixed-point theorem implies the existence and uniqueness of a mild solution up to the guaranteed time of existence $T_{0}=T_{0}\left(\left\|u_{0}\right\|_{X}\right) \approx\left\|u_{0}\right\|_{X}^{-2}>0$. Uniqueness of the maximal solution and the blow-up alternative now follow easily by the usual contradiction argument.

For the proof of the Lipschitz continuity, let us notice that for any $r>\left\|u_{0}\right\|_{X}$, $v_{0} \in B_{r}(0)$ and $0<T \leq T_{0}(r)$ we have

$$
\begin{aligned}
\|u-v\|_{X(T)} & =\left\|\mathcal{T}\left(u_{0}\right) u-\mathcal{T}\left(v_{0}\right) v\right\|_{X(T)} \\
& \lesssim(1+T)^{\frac{d}{2}}\left\|u_{0}-v_{0}\right\|_{X}+T(1+T)^{\frac{d}{2}} R^{2}\|u-v\|_{X(T)}
\end{aligned}
$$

where v is the mild solution corresponding to the initial data v_{0} and $R=2 C r$, similar to the above. Collecting terms containing $\|u-v\|_{X(T)}$ shows Lipschitz continuity with constant $L=L(r)$ for sufficiently small T, say $T_{l}=T_{l}(r)$. For arbitrary $0<T^{\prime}<T_{*}$ put $r=2\|u\|_{X\left(T^{\prime}\right)}$ and divide $\left[0, T^{\prime}\right]$ into n subintervals of length $\leq T_{l}$. The claim follows for $V=B_{\delta}\left(u_{0}\right)$ where $\delta=\frac{\left\|u_{0}\right\|_{X}}{L^{n}}$ by iteration. This concludes the proof.

Acknowledgments

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through CRC 1173.

References

[AG07] Alinhac, Serge and Patrick Gérard: Pseudo-differential Operators and the Nash-Moser Theorem, volume 82 of Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island, 2007, ISBN 978-0-8218-3454-1.
[BGOR07] Bényi, Árpád, Karlheinz Gröchenig, Kasso Akochayé Okoudjou, and Luke Gervase Rogers: Unimodular Fourier multipliers for modulation spaces. Journal of Functional Analysis, 246(2):366-384, 2007, ISSN 0022-1236. https://doi.org/10.1016/j.jfa. 2006.12.019.
[BO09] Bényi, Árpád and Kasso Akochayé Okoudjou: Local well-posedness of nonlinear dispersive equations on modulation spaces. Bulletin of the London Mathematical Society, 41(3):549-558, 2009, ISSN 0024-6093. https://doi.org/10.1112/blms/bdp027
[Cha18] Chaichenets, Leonid: Modulation spaces and nonlinear Schrödinger equations. PhD thesis, Karlsruhe Institute of Technology (KIT), 2018.https://doi.org/10.5445/IR/ 1000088173
[CHKP19] Chaichenets, Leonid, Dirk Hundertmark, Peer Christian Kunstmann, and Nikolaos Pattakos: Nonlinear Schrödinger equation, differentiation by parts and modulation spaces. Journal of Evolution Equations, 2019, ISSN 1424-3202. https://doi.org/10. 1007/s00028-019-00501-z
[CN09] Cordero, Elena and Fabio Nicola: Sharpness of some properties of Wiener amalgam and modulation spaces. Bulletin of the Australian Mathematical Society, 80(1):105 116, 2009, ISSN 0004-9727. https://doi.org/10.1017/S0004972709000070
[Fei80] Feichtinger, Hans Georg: Banach convolution algebras of Wiener type. Functions, Series, Operators, 35:509 - 524, 1980. https://www.univie.ac.at/nuhag-php/bibtex/ open_files/fe83_wientyp1.pdf
[Fei83] Feichtinger, Hans Georg: Modulation spaces on locally compact abelian groups. University Vienna, 1983. https://www.univie.ac.at/nuhag-php/bibtex/open_files/120_ ModICWA.pdf.
[Grö01] Gröchenig, Karlheinz: Foundations of time-frequency analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, 2001, ISBN 978-0-8176-4022-4. https: //doi.org/10.1007/978-1-4612-0003-1.
[Guo16] Guo, Shaoming: On the $1 D$ cubic NLS in an almost critical space. Journal of Fourier Analysis and Applications, 23(1):91-124, 2016, ISSN 1531-5851. https://doi.org/ 10.1007/s00041-016-9464-z.
[Kun19] Kunstmann, Peer Christian: Modulation type spaces for generators of polynomially bounded groups and Schrödinger equations. Semigroup Forum, 2019, ISSN 1432-2137. https://doi.org/10.1007/s00233-019-10016-1.
[Pat18] Pattakos, Nikolaos: NLS in the modulation space $M_{2, q}(\mathbb{R})$. Journal of Fourier Analysis and Applications, 2018, ISSN 1531-5851. https://doi.org/10.1007/ s00041-018-09655-9
[RSW12] Ruzhansky, Michael, Mitsuru Sugimoto, and Baoxiang Wang: Modulation spaces and nonlinear evolution equations. In Evolution equations of hyperbolic and Schrödinger type, volume 301, pages 267-283. Springer, Basel, 2012, ISBN 978-3-0348-0453-0. https://doi.org/10.1007/978-3-0348-0454-7_14
[RT10] Ruzhansky, Michael Vladimirovich and Ville Turunen: Pseudo-Differential Operators and Symmetries. Number 2 in Pseudo-Differential Operators. Birkhäuser, Basel, 2010, ISBN 978-3-7643-8513-2. https://doi.org/10.1007/978-3-7643-8514-9
[STW11] Sugimoto, Mitsuru, Naohito Tomita, and Baoxiang Wang: Remarks on nonlinear operations on modulation spaces. Integral Transforms and Special Functions, 22(4 - 5):351 - 358, 2011, ISSN 1065-2469. https://doi.org/10.1080/10652469.2010. 541054
[WH07] Wang, Baoxiang and Henryk Hudzik: The global Cauchy problem for the NLS and NLKG with small rough data. Journal of Differential Equations, 232(1):36-73, 2007, ISSN 0022-0396. https://doi.org/10.1016/j.jde.2006.09.004
[WHHG11] Wang, Baoxiang, Zhaohui Huo, Chengchun Hao, and Zinhua Guo: Harmonic Analysis Method for Nonlinear Evolution Equations, I. World Scientific, 2011, ISBN 978-981-4360-73-9. https://doi.org/10.1142/8209.
[WZG06] Wang, Baoxiang, Lifeng Zhao, and Boling Guo: Isometric decomposition operators, function spaces $E_{p, q}^{\lambda}$ and applications to nonlinear evolution equations. Journal of Functional Analysis, 233(1):1-39, 2006, ISSN 0022-1236. https://doi.org/10.1016/ j.jfa.2005.06.018

Leonid Chaichenets, Department of Mathematics, Institute for Analysis, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

Email address: leonid.chaichenets@kit.edu
Dirk Hundertmark, Department of Mathematics, Institute for Analysis, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

Email address: dirk.hundertmark@kit.edu
Peer Christian Kunstmann, Department of Mathematics, Institute for Analysis, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

Email address: peer.kunstmann@kit.edu
Nikolaos Pattakos, Department of Mathematics, Institute for Analysis, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

Email address: nikolaos.pattakos@kit.edu

[^0]: (c) 2019 by the authors. Faithful reproduction of this article, in its entirety, by any means is permitted for noncommercial purposes.

 Date: April 30, 2019.
 2010 Mathematics Subject Classification. 35A01, 35A02, 35Q55, 42B25.
 Key words and phrases. Nonlinear Schrödinger equation, modulation spaces, local wellposedness, Littlewood-Paley characterization, Hölder-type inequality.

[^1]: ${ }^{1}$ For us, a Banach ${ }^{*}$-algebra X is a Banach algebra over \mathbb{C} on which a continuous involution * is defined, i.e. $(x+y)^{*}=x^{*}+y^{*},(\lambda x)^{*}=\bar{\lambda} x^{*},(x y)^{*}=y^{*} x^{*}$ and $\left(x^{*}\right)^{*}=x$ for any $x, y \in X$ and $\lambda \in \mathbb{C}$. We neither require X to have a unit nor $C=1$ in the estimates $\|x \cdot y\| \leq C\|x\|\|y\|$, $\left\|x^{*}\right\| \leq C\|x\|$.

