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ABSTRACT Privacy-preserving high-quality people detection is a vital computer vision task for various
indoor scenarios, e.g. people counting, customer behavior analysis, ambient assisted living or smart homes.
In this work a novel approach for people detection in multiple overlapping depth images is proposed.
We present a probabilistic framework utilizing a generative scene model to jointly exploit the multi-view
image evidence, allowing us to detect people from arbitrary viewpoints. Our approach makes use of mean-
field variational inference to not only estimate the maximum a posteriori (MAP) state but to also approximate
the posterior probability distribution of people present in the scene. Evaluation shows state-of-the-art results
on a novel data set for indoor people detection and tracking in depth images from the top-view with high
perspective distortions. Furthermore it can be demonstrated that our approach (compared to the the mono-
view setup) successfully exploits the multi-view image evidence and robustly converges in only a few
iterations.

INDEX TERMS Depth sensor indoor surveillance, depth sensor networks, generative scene model, joint
multi-view person detection, mean-field variational inference, multi-camera person detection, people detec-
tion in top-view, vertical top-view pedestrian detection.

I. INTRODUCTION
By virtue of the emergence of low-cost commodity depth
sensors, there is an increasing demand for privacy-preserving
high-quality people detection in various indoor scenarios, e.g.
people counting, customer behavior analysis, public secu-
rity, ambient assisted living or smart homes. In contrast to
classical pedestrian detection approaches, the depth sensors
capture the scene from the top-view tominimize occlusions in
crowded scenes. However, due to the top-view and the limited
mounting height in many indoor scenarios, the resulting field
of view of a single depth sensor is quite limited, thus the
observable area is rather small. This is an issue in many
real-world applications such as customer behavior analysis
in a shopping mall or airport. To provide complete detections
in a wide-area scenario we therefore employ a multi-view
approach. Apart from the increased observable area, there
are additional advantages compared to the classical single-
view approach. Since a single image does not capture all
the details in a 3D scene, considering additional partially
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overlapping views provides more information about the true
scene state. This is especially relevant in situations where
people are only partially visible in one camera view due to
occlusion or the limited field of view (see Fig. 2). Hence the
detection performance (including the reliability of the detec-
tion confidence) in the overlapping regions can be improved
by the complementary image evidence from multiple views.
In particular this is relevant for demanding applications
such as emergency detection in an ambient assisted living
context.

The general problem of people detection in a multi-
camera setup has been widely studied in computer vision
literature. However, existing multi-camera people detection
approaches mostly focus on outdoor pedestrian detection,
capturing pedestrians from profile or frontal view and using
monocular video cameras. In contrast, we focus on the task
of people detection in multiple overlapping depth images.
Due to the vertical top-view, position changes of pedestri-
ans lead to drastically varying appearances, making it very
challenging for off-the-shelf data-driven pedestrian detec-
tors without a domain-specific large scale data set. Besides
only few methods in the literature take advantage of the full
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FIGURE 1. Overview of our approach. We use foreground-segmented
depth observations from three sensors as input (left) to approximate the
marginal probability distribution of people present in the scene (right).

multi-view image evidence from overlapping fields of view,
in order to increase the detection performance. To overcome
those shortcomings, we propose a novel approach which
exploits the multi-view image evidence by (i) employing a
generative scene model leading to a viewpoint independent
detector without the need of a training data set; (ii) using a
probabilistic framework which includes the full multi-view
image evidence from all sensors to resolve occlusion as well
as measurement noise; and (iii) instead of just estimating
the maximum a posteriori (MAP) state, utilizing mean-field
variational inference to approximate the posterior distribution
of people present in the scene (see Fig. 1). In the evaluation
we report state-of-the art results on a novel data set for indoor
people detection in multiple top-view depth images.

II. RELATED WORK
Multi-camera people detection has been extensivley studied
in the context of video surveillance. The vast majority of the
existing approaches is based on multiple monocular video
cameras observing an outdoor scene. However, the topic of
indoor people detection in multiple depth images, especially
in top-view, has not yet been explored in detail. Hence,
we will first discuss approaches focusing on pedestrian detec-
tion with multiple monocular cameras, and their relation to
our approach. In order to restrict our scope, we do not con-
sider methods working across non-overlapping views [1]–[3]
but rather focus on methods utilizing overlapping views. For
an exhaustive survey of multi-camera people detection and
tracking, we refer to [4]–[6]. For the rest of this section,
we categorize the relevant literature into approaches utiliz-
ing multiple monocular video camera views (RGB-based
approaches) and depth images (depth-based approaches).

A. RGB-BASED APPROACHES
Since people detection and tracking in single-camera
views have been intensivly studied [7]–[9], many methods

accomplish multi-view detection by fusing local detec-
tions or local tracklets into a common world coordinate sys-
tem [10]–[12]. However, since the detection is performed
independently for each view, those methods do not take
full advantage of the multi-view information, thus making it
harder to resolve occlusion and measurement noise. Besides,
the vast majority of employed pedestrian detectors is opti-
mized to detect people in frontal or profile view but not in the
top-view [13], [14].

Homography based approaches project local image fea-
tures from each sensor into a common plane to perform global
detection [15]. In [16] a homographic occupancy constraint
is proposed to handle occlusion and detect people on a com-
mon scene plane. Eshel and Moses [17] propose a similar
approach, projecting the foreground pixels of all views into
a common height plane for head detection. In [18] those
approaches are extended by amulti-viewBayesian network in
order to avoid false positive detections arising from occlusion
artefacts.

Another class of related approaches addresses the prob-
lem of multi-camera detection by employing a generative
model to jointly take advantage of the image evidence
of all available views. Fleuret et al. [19] introduce the
probabilistic occupancy map (POM). They use foreground-
segmented binary images as input and employ a simple
person model expressed as a rectangular bounding box to
estimate probabilities of occupancy by mean-field varia-
tional inference. The method used in our approach is heavily
inspired by [19]. Alahi et al. [20] re-cast the problem as a
linear inverse problem. Other than in [19], a silhouette is pro-
posed as person model. Unlike our approach, both methods
utilize only 2D models and fit them to a binary foreground
mask.

Baque et al. [21] introduce a state-of-the-art end-to-end
multi-view people detection architecture. They combine a
classical Convolutional Neural Network (CNN) with Condi-
tional Random Fields (CRFs) to resolve ambiguities arising
from occlusion. Chavdarova and Fleuret [22] present a CNN
architecture to allow for end-to-end multi-view people detec-
tion. To overcome the lack of an appropriate multi-view data
set, a larger existing monocular pedestrian data set [23] is
used. However, due to the lack of extensive labeled data for
top-view people detection in depth images, both approaches
are insufficient for our use case.

B. DEPTH-BASED APPROACHES
Since people detection in multiple depth images has
rarely been studied, we first discuss relevant single-view
approaches. The related problem of people counting with a
single depth camera from the top-view has been studied in
great detail [24]–[27]. In contrast to our proposed method,
those approaches focus on integrated systems counting the
number of persons crossing a certain virtual line, providing
people detection only implicitly and in a rather small area.
Recent CNN architectures [28]–[30] are successfully applied
to single view depth image people detection leveraging many
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FIGURE 2. Example observations from our multi-view setup with six people present in the covered area, marked with unique colors. In view (a) the
magenta marked person occludes the green marked person, while in (b) the pair can be clearly separated. In the views (b,c) several people are only
partially visible. Notice that for inference only the depth images are used.

labeled images for training. Since in our top-view setup
position changes of people lead to drastically varying appear-
ances (compared to the classical frontal or profile view),
those approaches need to be re-trained with a domain-specific
large-scale data set. Both mentioned classes of methods only
provide single-view detection.

In contrast to the methods mentioned above, only few
existing approaches rely on multiple depth images for people
detection. Tseng et al. [31] present an indoor people detec-
tion system based on multiple active sensors in top-view.
Their approach is based on a fused virtual top-view depth
image, obtained by the point cloud of each sensor. For the
detection they employ a hemiellipsoidal head model to take
advantage of the discriminative height difference around the
head contour of a human. In contrast to our approach, the pre-
sented method relies on high-quality depth data. In previous
work [32] we re-cast the problem of people detection and
tracking with multiple depth sensors as an inverse problem,
employing an approximately differentiable scene model to
detect people from arbitrary viewpoints. However, as a con-
sequence of the used optimization method, the number of
people in the scene is required a priori, and a sufficiently
good initialization is essential. Carraror et al. [33] propose
an approach for human body pose estimation and tracking
in a network of RGB-D sensors. To obtain a global 3D
skeleton, CNN-based pose estimation [34] is applied to the
RGB images of each single-view. However, due to the single-
view detection approach they do not take advantage of the full
multi-view information. In contrast to our work, the former
approaches [31]–[33] estimate an MAP point estimate but do

not provide a probability distribution over people present in
the scene.

C. SUMMARY
To summarize, our work is highly inspired by [19]. In con-
trast, we use depth images as evidence and therefore are
able to make use of a more specific generative scene model.
We also propose a different strategy to approximate the final
mean-field update expectation by making use of geometric
scene knowledge and a pre-trained vocabulary. Our gen-
erative scene model is similar to our previous work [32].
However, the approach introduced in this work does not
hinge on scene-specific a priori knowledge and provides an
approximation to the full posterior distribution. In contrast
to recent data-driven CNN architectures [22], [28]–[30], [33]
our method requires no training data and the detection con-
fidence can be quantified more precisely by approximating
the posterior distribution. To the best of our knowledge, vari-
ational mean-field inference in combination with a generative
scenemodel has not yet been applied to the problem of people
detection in overlapping depth images.

III. APPROACH
The problem we address in this work is the detection of
people givenmultiple overlapping depth images from, but not
limited to, the top-view on the scene. The major challenges
are (i) the different appearances of people due to the change of
viewpoint (see Fig. 2); (ii) occlusions in more crowded scenes
and (iii) the measurement noise due to commodity low-
resolution depth sensors. To overcome challenge (i), wemake
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FIGURE 3. Forward model: Synthetic depth images for a given scene configuration Ex .

use of a generative scene model (see Fig. 3), formulating the
people detection problem as an analysis-by-synthesis prob-
lem. Challenge (ii) and (iii) are addressed by the proposed
probabilistic model (see Sect. III-A), which jointly han-
dles the multi-view information. Furthermore, the mean-field
variational inference approach deals with occlusion implicitly
and turns our statistical inference problem into a tractable
optimization problem, in order to get an approximation of the
proposed posterior distribution (see Sect. III-B).

Due to the available depth data, marker-free extrinsic cal-
ibration can be achieved in three simple steps: (1) for each
sensor S1, . . . , SC the ground floor plane is estimated by a
simple plane fit; (2) one arbitrary sensor coordinate system
is defined as the common world coordinate system; (3) for
each sensor Sc the rigid body transformation to the common
world coordinate system is obtained by corresponding natural
image features in the overlapping fields of view. For the
rest of this paper we define Pc as the projection matrix for
each sensor Sc, which maps a point from the common world
coordinate system to the corresponding image coordinates of
each sensor.

A. PROBABILISTIC MODEL
Since we assume that the common ground floor plane is
known from the initial calibration, we describe the presence
of people in the scene in ground floor world coordinates.
We discretize the ground floor area into a 2D-grid of n
locations. Each location ui will be assigned a realization xi
of a Bernoulli random variable Xi ∼ B(p), where p denotes
the probability of a person present at location ui. The latent
variables are given as the vector Ex = (x1, . . . , xn)T ∈ {0, 1}n,
also referred to as scene configuration. Let Eo = (o1, . . . , oc)T

be the vector of foreground-segmented depth observations at
one time step, acquired from depth sensors S1 . . . SC . Our
joint probability model can be written as

p(Eo, Ex) = p(Eo|Ex)p(Ex). (1)

The likelihood construction is similar to our previous
work [32], although we use a discrete grid instead of con-
tinuous person locations. To make the likelihood tractable,
we assume that the views are conditionally independent for
a fixed scene configuration Ex. Since we assume that only

people are part of the foreground, and that the depth images
are robust against illumination changes, this assumption can
be justified. Thus, the likelihood factorizes as:

p(Eo|Ex) =
C∏
c=1

p(oc|Ex). (2)

We define the likelihood for one observation by employing
a generative forward model Gc(Ex,Pc), which maps a scene
configuration Ex and a given projectionmatrixPc to a synthetic
observation (i.e. synthetic depth image) from the perspective
of sensor Sc. Therefore, we use a simple, rotationally sym-
metric 3D person model, consisting of a cylinder for the body
and a sphere for the head, see Fig.3. For the sake of simplicity
we assume that our given observations suffer from Gaussian
noise, yielding an observation likelihood

p(oc|Ex, σ ) ∝ exp
(
−

1
2σ 2 ‖oc − Gc(Ex,Pc)‖

2
2

)
. (3)

Since our generative forward model is not only a function
of Ex but also of the projection matrix Pc we incorporate the
physical sensor model in a natural way into our framework,
allowing us to detect people from arbitrary viewpoints and
to easily integrate a new sensor modality into the network.
Applying Bayes’ theorem and assuming that the prior factor-
izes as p(Ex) =

∏n
i=1 p(xi), we get the posterior distribution

p(Ex|Eo) =
∏
c p(oc|Ex)

∏
i p(xi)∑

Ex′∈{0,1}n
∏
c p(oc|Ex ′)

∏
i p(x

′
i )
. (4)

B. MEAN-FIELD VARIATIONAL INFERENCE
Because of the dimensionality of the latent scene configura-
tion space {0, 1}n, the partition function in (4) is intractable,
and we cannot directly compute the posterior distribution.
Instead we propose to apply Kullback-Leibler variational
inference [35], [36] to approximate the complex distribution
p(Ex|Eo) by a simpler proxy distribution q(Ex). Let 〈·〉p(x) be
the expectation with respect to a distribution p(x); then the
optimization objective can be expressed as

q̂(Ex) = argminq KL(q(Ex) || p(Ex|Eo))

= argminq 〈log q(Ex)− log p(Ex|Eo)〉q(Ex) . (5)
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FIGURE 4. The red dashed rectangle illustrates the bounding box I1[ui ] corresponding to the rendering of a person present at location ui in sensor 1. The
scene configuration Ex shown here is zero for every grid location except for the two neighbors of ui .

Tomake the problem computationally tractable, we assume
a fully-factorized distribution q(Ex) =

∏n
i=1 qi(xi), known

as the naive mean-field assumption. Let q(Ex \ xi) denote
the mean-field distribution excluding the element xi, namely
q(Ex \ xi) =

∏n
j=1:j 6=i qj(xj). The general mean field equation,

given by

qi(xi) ∝ exp
(
〈log p(Ex|Eo)〉q(Ex\xi)

)
, (6)

updates qi(xi) depending on the previous mean-field state
q(Ex \xi). It can be proven that updating qi(xi) asynchronously
according to (6) will decrease the KL divergence in (5) (see
[37, 625 ff.]). Since each xi is Bernoulli distributed, (6) (for
xi being in state 1) can be written as

qi(xi = 1) = 1
Zi
exp

(
〈log p(Eo, Ex|xi = 1)〉q(Ex\xi)

)
, (7)

with the partition function

Zi =
∑

s∈{0,1}

exp
(
〈log p(Eo, Ex|xi = s)〉q(Ex\xi)

)
. (8)

Additionally, let δ(I1, I2) = 1
2σ 2
||I1 − I2||22 be an image

distance function, and τi = log 1−p(xi=1)
p(xi=1)

a function of the
prior. Inserting the joint probability distribution defined in
(1-4) into (7), and using the relation ex

ex+ey =
1

1+ey−x , the final
asynchronous update of the probability qi(xi = 1) is a
sigmoid function given as

qi(xi = 1) =

[
1+ exp

(
τi +

C∑
c=1

Ec,i

)]−1
, (9)

with the expectation

Ec,i = 〈δ(oc,Gc(Ex|xi=1))− δ(oc,Gc(Ex|xi=0))〉q(Ex\xi) .

(10)

Notice that Gc(Ex|xi = 1) maps a scene configuration Ex
to a synthetic depth image in the perspective of sensor Sc
with xi forced to 1 (see Fig. 4). Following the argument given
in [19], one can see how occlusion is handled in an implicit
way: If the forward-model projection of a person located
at ui is occluded by a projection of a person with a high
probability of occupancy, the value of xi does not affect the
image distance δ(oc,Gc(Ex|xi = s)). Thus, the expectation Ec,i
in (10) converges to zero.

C. APPROXIMATE MEAN-FIELD UPDATE
Still (10) is intractable due to the expectation 〈·〉q(Ex\xi), which
implies an iteration over all scene configurations. We approx-
imate the expected value by considering only a relevant subset
of scene configurations. Therefore, we exploit the fact that the
difference

δ(oc,Gc(Ex|xi = 1))− δ(oc,Gc(Ex|xi = 0)) (11)

only depends on the pixels belonging to the silhouette of the
projection of the 3D model at location ui (see Fig. 4).
For a simpler and faster implementation, we do not work

on the exact silhouettes but on the corresponding rectangular
bounding boxes, given as Ic[ui]. Thus only those scene con-
figurations, for which the pixel values inside the bounding
box Ic[ui] of the generated image Gc(Ex) are effected, need
to be evaluated for the expectation Ec,i in (10). We assume
that only the projections of the direct eight neighbors of a
grid location ui intersect with the bounding box Ic[ui]. For
our top-view setup this is a valid assumption; however, for
a frontal view setup, a more sophisticated approximation
would be preferable. Consequently, we can approximate the
expectation Ec,i in (10) by the reduced neighborhood scene
configuration Ẽxi ∈ {0, 1}8. Since the local neighborhood
(including xi) allows only 29 = 512 possible scene config-
urations, we can effectively approximate the expectation.

Instead of the image distance δ(·, ·), derived from our
probabilistic model, we introduce a weighted asymmetric
image similarity δasym(o, g) between a foreground segmented
observation o and a generated image g. Since there is no
need to compute the derivative of the distance function we
replace the squared L2-norm by the more robust L1-norm.
LetM : RW×H

7→ {0, 1}W×H be a threshold function which
maps an image to its binary foreground mask, M (i) = 1 −
M (i) its inverse and � the hadarmard product between two
images. The asymmetric image similarity is given as

δasym(o, g) =
(
α
∥∥o�M (g)

∥∥
1 + (2− α)

∥∥g�M (o)
∥∥
1

+‖(o− g)�M (o)�M (g)‖1
)
, (12)

with the design parameter α ∈ [0, 2]. For α = 1 the image
similarity δasym(o, g) is identical to the L1-norm ‖o− g‖1.
For α > 1 observed depth pixels which are not explained
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by the generative scene model will be penalized stronger. Let
further

δxi=s =
1

2σ 2 δasym(oc[ui],Gc(Ẽxi|xi = s)[ui]) (13)

be the image similarity restricted to the cropped image region
Ic[ui]. Then the approximated expectation can be written as

Ẽc,i =
1

|Ic[ui]|

〈
δxi=1 − δxi=0

〉
q(Ẽxi)

. (14)

Additionally, we normalize the expectation with respect
to the size of the image slice |Ic[ui]|, to account for the
viewpoint dependent size of a bounding box. In order to
efficiently compute (14), we propose to pre-build for each ui a
vocabulary of image sections Ic[ui] for all 512 possible scene
configurations x̃i.
The final mean-field updates can be executed asyn-

chronously or synchronously. In an asynchronous mean-
field update iteration, the individual qi(xi)’s are updated
sequentially, whereas, in a synchronous update iteration,
all the qi(xi) are updated simultaneously, using the same
previous mean-field state q(Ex). While asynchronous update
provides theoretical convergence (see III-B), synchronous
mean-field updates can be easily parallelized. For the opti-
mization we use coordinate-ascent variational inference
(CAVI) [35]. Hence, the probability for each q̂i(xi) will asyn-
chronously be updated with respect to the previous mean-
field state q(Ex) according to the final update equation

q̂i(xi = 1) =

[
1+ exp

(
τi +

C∑
c=1

Ẽc,i

)]−1
. (15)

IV. EVALUATION
A. DATA SET
To the best of our knowledge, currently no publicly available
data set that covers the scenario of top-view people detection
using multiple depth sensors with overlapping fields of view
exists. Therefore, we introduce a novel data set to compare
our approach with state-of-the art multi camera people detec-
tion approaches. The data set contains footage from an indoor
office scene and is recorded from three low-resolution com-
modity stereo-vision-based depth sensors, covering a variety
of constellations (see Fig. 7). The sensors have a top-view on
the scene, are mounted at a height of three meters, and have
fields of view with a significant joint overlap (see Fig. 2).
They cover a visible area of approximately 20m2 with up
to six individual people present in the scene, entering and
leaving the visible area multiple times. The data set con-
sists of 2200 annotated frames, captured with a resolution of
376 × 240 pixel each, providing raw rectified stereo image
pairs as well as disparity maps obtained by block matching.
In total we annotated the ground floor locations of 10435
targets. Additionally, we associated each detection with a
track to allow for full detection and tracking evaluation. For
the reproducibility of our results the data set will be made
publicly available.

B. QUANTITATIVE ANALYSIS
For the evaluation of our approach we use a ground floor
grid with 15 × 12 grid points, corresponding to a horizontal
and vertical distance of 33 cm between adjacent grid points.
As input observations we use foreground-segmented depth
images, obtained by static background subtraction. Notice
that we only focus on frame-by-frame detection, however the
outcome of our approach could serve as input for tracking-
by-detection post-processing.

We have noticed that our approach is quite sensitive to
the initial marginal probabilities qiniti (xi). If the initial occu-
pancy probability is too small, the expectation in (10) will
inordinately favor scene configurations with only one person
present; thus, occlusion is not taken into account in the first
iteration. We therefore initialize each mean-field node with
a prior of qiniti (xi) = p(xi) = 0.5 by default. The design
parameter of the asymmetric image similarity δasym(·, ·) (see
(12)) is set to α = 1.25, to penalize unexplained observations
stronger. Fig. 6 depicts the impact of α on the precision-recall
performance. The standard deviation of the measurement
noise σ is set to a default value of 2 cm.

For the quantitative evaluation, a detection is assumed to
be a true positive if it is in a radius of 30 cm of the ground
truth. We show the performance of our approach based on
the precision-recall curves in Fig. 5, where the precision is
given by TP/(TP+FP) and the recall by TP/(TP+FN ); TP,
FP, FN are the counts of the true positives, false positives and
false negatives, respectively. The F1-Score is given as F1 =
(2× precision× recall)/(precision+ recall).
We compare our approach with state-of-the-art monocular

multi-view approaches. As a baseline on the given depth
observations we introduce a difference of Gaussian (DoG)
based blob detector. The methods to be compared are:

• POM [19] works on binary input observations. For a
fair comparison we use the same depth based foreground
segmentation as in our approach. Also the grid layout
and the camera calibrations are identical to our setup.

• Deep Occlussion [21] is the current state-of-the art
end-to-end architecture for multi-view person detection.
Due to the lack of a large data set we use the avail-
able pre-trained model without any further supervision.
As input we stack the given gray scale observations to
a three channel image to be compatible with the RGB
architecture.

• DoG-Detector As a baseline on the given depth data
we apply difference of Gaussian blob detection on the
foreground segmented depth images of each sensor inde-
pendently and project the resulting detections onto the
commonworld ground plane. The final detections on the
ground plane are obtained by proximity clustering.

Fig. 5a depicts the performance of the examined
approaches over all frames and views. The results show that
without any further supervision the given data set is very
challenging for deep learning architectures such as Deep
Occlusion [21]. Due to the vertical top-view, the appearances
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FIGURE 5. Precision-recall curves showing the performance of our approach. In (a) the precision-recall performance (precision range [0.5,1]) over all
frames and views is plotted. For (b), only the people visible in all three views are taken into account.

TABLE 1. Performance of evaluated approaches.

of people is drastically different compared to the classical
profile view. The results of the DoG-Detector indicate that,
even when considering proximity clustered results from all
three views, naive blob-based single-view detectors are not
competitive compared to the more sophisticated multi-view
approaches in our scenario. Although POM [19] achieves
remarkable performance in our setting, our approach outper-
forms POM in terms of precision, resulting in a better area
under the curve value (AUC) as well as better F1-Score (see
Table. 1).

In order to show how our probabilistic model exploits the
multi-view evidence given by all three sensors, we evaluated
the performance of our approach for all different combina-
tions of sensor views contributing to the solution. For a fair
comparison, we take only those people into account that are
visible from all three sensors (see Fig. 2 for the fields of
view of the sensors). Fig. 5b depicts how using the multi-
view information increases the detection performance. In the
mono-view case, View 2 and View 3 by themselves do not
perform well with F1-Scores of 0.61 and 0.73, respectively.
However, combining the image evidence of View 2 and
View 3 leads to a drastic performance increase, as evidenced
by a best F1-Score of 0.92. Even View 1 achieves comparable
good performance due to the general viewpoint, using the
image evidence from all three sensors clearly outperforms all
other view combinations.

FIGURE 6. Precision-recall curves for different values of the asymmetric
image similarity parameter α.

On a single CPU core,1 our non-optimized Python
implementation needs approximately 800ms per frame.
Although real-time performance is not reached yet, there are
plenty of optimization options, such as parallel mean-field
updates, or taking advantage of GPUs.

C. QUALITATIVE ANALYSIS
Fig. 7 shows exemplary mean-field optimization results. The
given samples illustrate that our approach is able to resolve
challenging scenarios, suffering from occlusion and mea-
surement noise, by making use of the full multi-view image
evidence. Fig. 7c shows a typical false negative error on the

1Intel Core-i7@2.9Ghz
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FIGURE 7. Exemplary mean-field optimization result q̂(Ex) after five iterations. The final marginal probability map is projected onto
the ground floor, where purple correspond to a probability of zero and yellow to one respectively. (a) Shows an estimation of the
marginal probability distribution q(Ex) with clear peaks at grid locations occupied by a person. (b) Includes some uncertainty
around the peaks of the distribution. (c) Includes a typical false negative, marked with a red dashed circle.
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FIGURE 8. Evolution of asynchronous and synchronous mean-field updates. In the left-hand plots of (b) and (c), every path corresponds to the probability
evolution of one qi (xi ). The probability evolution of six grid locations of interest are plotted in unique colors, the others are plotted in purple. The
right-hand plots show the same process illustrated as probability maps for the first four iterations.

image border, which is the dominant error class occurring in
the data set. Due to the stereo vision based sensors, the depth
information is more noisy on the image border, eventually
leading to an insufficient fit of the 3D model. To overcome
this limitation, a richer probabilistic sensor model which
takes systematically varying noise into account could be
employed.

In Fig. 8, the mean-field optimization is illustrated for
one exemplary frame, for both the asynchronous and the
synchronous update strategy. Fig. 8c depicts a general dis-
advantage of synchronous mean-field updates. The simulta-
neous optimization potentially leads to oscillating marginal
probabilities of adjacent grid locations. In Fig. 9 it is shown
that asynchronous mean-field optimization converges after
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FIGURE 9. Comparison of asynchronous and synchronous mean-field
updates.

only few iterations whereas synchronous mean-field update
suffers from the oscillating effects mentioned above.

V. CONCLUSION
In this work we have presented a novel approach for prob-
abilistic people detection in multiple overlapping depth
images. Our main contribution is the use of mean-field vari-
ational inference in combination with a generative scene
model to jointly exploit themulti-view information in order to
approximate the marginal probability distribution of people
present in the scene. Our experiments have shown state-of-
the-art results on a novel data set for indoor people detection
in overlapping depth images from the top-view. We have
demonstrate that our approach achieves strong detec-
tion performance, outperforming state-of-the-art monocular
multi-view people detection methods. We were also able
to show that using multi-view image evidence increases
the detection performance significantly compared to a
single-view.

Future work will focus on incorporating temporal infor-
mation into our probabilistic model in order to provide joint
probabilistic detection and tracking.
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