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ABSTRACT Leveraging the inherent error tolerance of a vast number of application domains that are rapidly
growing, approximate computing arises as a design alternative to improve the efficiency of our computing
systems by trading accuracy for energy savings. However, the requirement for computational accuracy is not
fixed. Controlling the applied level of approximation dynamically at runtime is a key to effectively optimize
energy, while still containing and bounding the induced errors at runtime. In this paper, we propose and
implement an automatic and circuit independent design framework that generates approximate circuits with
dynamically reconfigurable accuracy at runtime. The generated circuits feature varying accuracy levels,
supporting also accurate execution. Extensive experimental evaluation, using industry strength flow and
circuits, demonstrates that our generated approximate circuits improve the energy by up to 41% for 2%
error bound and by 17.5% on average under a pessimistic scenario that assumes full accuracy requirement
in the 33% of the runtime. To demonstrate further the efficiency of our framework, we considered two
state-of-the-art technology libraries which are a 7nm conventional FinFET and an emerging technology that
boosts performance at a high cost of increased dynamic power.

INDEX TERMS Approximate computing, approximate design automation, dynamically reconfigurable
accuracy, low power.

I. INTRODUCTION
Recent research by Intel, IBM and Microsoft has demon-
strated that there is a large number of application domains,
e.g., machine learning, that exhibit an intrinsic error tol-
erance [1]. It is shown that in such applications the 70%,
on average, of their energy consumption is dissipated in
computations that can be approximated [2], if a certain
accuracy level is ensured. Approximate computing, exploits
the inherent error resilience to trade accuracy for gains in
other metrics (e.g., energy, performance etc). Driven by this
high potential for energy reduction, designing approximate
circuits gains significant research interest. Despite the fact
that such applications can tolerate errors in the performed
computations, an application’s requirements for computa-
tional accuracy is not fixed [3] and it may vary over time
and with respect to the application’s state. Therefore, error
resilient applications necessitate to switch between different
levels of accuracy at runtime. However, approximate circuits
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traditionally apply fixed approximation, e.g., [4]–[41],
neglecting the potential for dynamic accuracy reconfigura-
tion. In this work, we respond to this necessity and address for
the first time the problem of generating approximate circuits
that can switch between varying accuracy levels at runtime
and also support fully accurate execution.

Hardware-level approximation mainly targets arithmetic
units as they constitute the key components of a vast number
of error tolerant applications, e.g., signal processing, image
processing, and neural networks [2]. In [4]–[7], [8]–[14],
and [15]–[20] operation specific approximation techniques
are proposed to build approximate adders, multipliers and
dividers, respectively. In [21]–[34] approximate design
automation frameworks are proposed to ease the generation
of approximate circuits. In [35]–[39] complex application
specific approximate accelerators are designed. In [35], [36]
approximate implementations of the coordinate rotation
digital computer (CORDIC) design are proposed, while
in [37], [38] approximate Fast Fourier Transformation (FFT)
circuits are generated. In [39] approximate Sum of Abso-
lute Differences (SAD) kernels are proposed to accelerate
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an H.265/HEVC encoder. In [40], [41] machine learning is
employed to build large approximate accelerators out of
approximate libraries containing simple approximate circuits.
However, all the aforementioned works apply fixed approx-
imation at design time that cannot be modified at runtime.
The ever-growing need for controlling the accuracy of the
approximations at runtime is highlighted in [42]–[47] where
approximate circuits that exhibit dynamic accuracy recon-
figuration are proposed. However, all these works are oper-
ation specific and they induce significant overheads at the
accurate operation. In addition, they mainly support only one
approximation level [42]–[45] and thus, they cannot adapt the
approximation level to the application’s needs.

In this paper, we are the first to propose and implement
an automatic design framework for generating approximate
circuits that feature dynamically reconfigurable accuracy and
support several accuracy levels. The proposed framework
replaces the circuit’s wires with ‘‘approximate switches’’
and reduces the circuit’s power consumption by systemat-
ically constraining its switching activity. Given the desired
accuracy levels, the proposed framework identifies which
wires have to be approximated at each level. At runtime,
the selection of the desired accuracy level is performed using
a control signal that activates the corresponding approximate
switches. To identify the approximated wires, we employ a
power-aware heuristic optimization procedure. Our frame-
work is circuit agnostic and can be applied to any combi-
national circuit, seamlessly extending any hardware design
flow.

Extensive experimental evaluation demonstrates the effi-
ciency of the approximate circuits generated by the pro-
posed framework. Compared to the accurate circuits, the ones
generated by our framework feature similar performance
while reduce the energy consumption by 22% and 29%,
on average, when operating at the accuracy levels with 1%
and 2% error bounds respectively. Our proposed and imple-
mented framework is evaluated using various circuits from
the commercial Synopsys tool flows at the state-of-the-art
7nm FinFET technology node. Furthermore, we additionally
evaluate our framework at the 7nm Negative Capacitance
FET (NCFET) technology demonstrating the effectiveness
of our framework in such a promising new technology that
is very rapidly emerging for future computing. Compared
to conventional CMOS technology, at the same operating
voltage, NCFET achieves much higher performance at the
cost, however, of much higher dynamic power consumption.
Our analysis demonstrates how our proposed reconfigurable
approximation enables the exploitation of NCFET technol-
ogy by eliminating the energy/power downside of the NCFET
circuits. Applying our framework to NCFET-based circuits
retains their high performance and improves their efficiency
(represented by delay-energy product) by up to 1.7×. Finally,
we also demonstrate the efficiency of our framework when
targeting fixed approximation as well as at application level
considering approximate Neural Network inference.

Our novel contributions in this work are as follows:
• We propose and implement, for the first time, an auto-
mated and circuit-independent design framework that
produces dynamically reconfigurable approximate cir-
cuits that support several accuracy levels at runtime.

• We employ a power-aware heuristic approach that effi-
ciently identifies the wires that will be approximated.
Our approach avoids performing time consuming circuit
simulations and evaluates at high level the power and
error values of the approximated circuit.

• Our framework is evaluated at 7nm FinFET as well as
emerging NCFET technologies. This is the first time that
approximate computing is employed and evaluated to
address the energy downside of the NCFET technology.

The rest of the paper is organized as follows: Section II dis-
cusses the generation of dynamically reconfigurable approx-
imate circuits and Section III describes our framework.
In Section IV the proposed framework is experimentally
evaluated and Section V discusses the prior art in the field of
approximate design. Finally, Section VI concludes this work.

II. APPROXIMATE CIRCUITS WITH
RECONFIGURABLE ACCURACY
In this section the proposed method for generating approxi-
mate circuits with reconfigurable accuracy is described. The
vast majority of the existing approximate circuits feature
only a single accuracy level. However, at application level,
the requirement for numerical accuracy is not static and the
impact of approximation, to the end quality, highly depends
on the inputs characteristics [3]. Moreover, an approximation
that is optimal for an input distribution in terms of energy
efficiency and/or induced error, it might be sub-optimal for a
different one. In addition, it is highly possible that the quality
requirements of an application might vary over time. For
example, in the case of an embedded system, as its battery
level goes down, in some application domains (e.g., image
processing), higher error values might be accepted in order to
prolong its life. To address the aforementioned inefficiencies,
we propose a framework for generating approximate circuits
that exhibit dynamically reconfigurable accuracy. In the gen-
erated circuits, the desired accuracy level can be dynami-
cally selected at runtime by setting accordingly the value of
a control signal. Selecting the accuracy level is performed
seamlessly and the generated circuits can switch on the fly
among the accuracy levels without any latency overhead.

The main design target of the approximate circuits is to
minimize the power/energy consumption. A circuit’s power
dissipation is estimated by [48]:

P ≈ Pstatic + Pdynamic, (1)

where Pdynamic is given by [48]:

Pdynamic = aCV 2f . (2)

The parameter a is defined by the circuit’s switching activity,
C is the total circuit’s capacitance, and V and f are the
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FIGURE 1. Examining the impact of limiting the switching activity on the
power consumption. An 8-bit adder and an 8-bit multiplier are examined.
In this example, the switching activity is constrained by keeping some of
the inputs’ least significant bits constant. The circuits are obtained from
the Synopsys DesignWare Library (M-2016.12), they are optimized for
speed, and the implementation of both circuits is pparch.

operating voltage and frequency values respectively. There-
fore, given (1) and (2), the power consumption highly
depends on the circuit’s area, voltage value, and switch-
ing activity. Hardware approximation techniques produce,
mainly, simpler circuits (e.g., logic simplification [5]) to
reduce the circuit’s area and/or decrease the operating volt-
age value below its nominal value (e.g., Voltage Over-
scaling [23]). Simplifying the circuit can also result to lower
delay, whereas reducing V decreases only the power con-
sumption. In this work, we systematically limit the circuit’s
switching activity to reduce its dynamic power and eventu-
ally its total power consumption. To elucidate the impact of
limiting the switching activity on the circuit’s power, a rep-
resentative example is illustrated in Fig. 1. In this example,
we constrain the switching activity of two different arith-
metic circuits (i.e., 8-bit adder and multiplier) by keeping
the least significant bits of the circuit’s inputs constant. For
each circuit, 105 random generated inputs are used. On aver-
age, the power consumption of the 8-bit adder and multi-
plier decreases by 13% and 27%, respectively. The power
reduction of the adder ranges from 3.6% up to 22.2%, while
the respective values for the multiplier are 7.9% and 44%.
Although the power consumption of both circuits decreases
significantly, the multiplier features higher power savings.
The 8-bit multiplier is considerably more complex circuit
than the 8-bit adder and thus, its power consumption is ben-
efited more by decreasing a. However, in Fig. 1, the average
error value1 of the adder ranges from 0.7% up to 20%, while
the error of the multiplier ranges from 3% up to 49%. Thus,
despite the high power reduction attained, the output error
value is also very large. As a result, directed approximations
are required to limit the switching activity and maximize the
power savings while constraining the error value.

One of the most effective approximation techniques to
generate approximate circuits is the netlist approxima-
tion [21]–[24]. A representative example of netlist approx-
imation is the netlist pruning [21], [24]. Given an optimal
accurate implementation, netlist pruning replaces the circuit
wires by constant values. Hence, by removing any floating
cells, a less complex circuit is obtained in which less power

1The Relative Error Distance (RED) is used as an error metric:
RED = | accurate−approximateaccurate | [14].

FIGURE 2. The approximate netlist (b) produced by applying netlist
pruning with n2=0 on the accurate netlist of (a).

FIGURE 3. The approximate switches ASW0 and ASW1 used in our
framework to produce approximate circuits with reconfigurable accuracy.

is consumed but also errors are produced due to the wire-
by-constant substitution. Netlist pruning offers a very fine
grained control of the performed approximations and thus,
very efficient approximate circuits are obtained. Fig. 2 depicts
an example of the netlist pruning technique. Assuming a
uniform input distribution, the output of an AND gate is equal
to logic ‘0’ for the 75% of the outputs. Hence, the wire n2
(output of the AND gate G2) is replaced by a constant ‘0’ to
produce the pruned circuit. The resulting approximate circuit,
depicted in Fig. 2b, equals to one AND gate (i.e., 2 gates
saving) and features an error rate of 18.75% (3/16).

Despite its high efficiency, netlist pruning leads to very
different circuit implementations and prohibits the run-
time accuracy reconfiguration. In this paper, we exploit
the efficiency and the fine grained control delivered by
netlist-specific approximations and enable approximate cir-
cuits with dynamically reconfigurable accuracy. We decrease
the circuit’s switching activity by dynamically limiting the
toggling of a set of circuit wires. Similar to the netlist pruning,
we identify the wires that have to be approximated as well
as the respective value to be used for the approximation
(‘0’ or ‘1’). Then, the identified wires are replaced by a
switch that selects between the wire’s value and the extracted
approximate one. We use the two approximate switches,
named ASW0 and ASW1, depicted in Fig. 3. When the
switch ASW0 is off (enable signal is 0), it outputs the wire’s
value, i.e., accurate mode. When ASW0 is on (enable sig-
nal is 1), it outputs a constant ‘0’, i.e., approximate mode.
Similarly, ASW1 produces a logic ‘1’ when it is on. Hence,
by tuning off/on the switches, we can dynamically switch to
accurate/approximate execution. At the approximate mode,
the output of the switches is constant, the circuit’s switching
activity is reduced and thus, its power consumption decreases.

The accurate circuit of Fig. 2a is reused to give an example
of the proposed netlist modification. Replacing the wire n2
with ASW0 produces the approximate circuit of Fig. 4. When
the enable signal ctrl is ‘0’, the value of the wire n2′ equals
to the value of the wire n2 and accurate results are obtained.
When ctrl is set to ‘1’, n2′ equals to ‘0’ and, similarly to
Fig. 2b, the error rate is 18.75%. However, the proposed
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FIGURE 4. Example of using ASW0 instead of applying netlist pruning (see
example of Fig. 2). When ctrl=0 accurate computations are performed.
When ctrl=1 approximate results are obtained with error rate 18.75%.

FIGURE 5. Example of enabling varying accuracy levels using the
‘‘approximate switches’’. When the control signal ctrl=2’b00 fully accurate
operation is achieved. When ctrl=2’b01 or ctrl=2’b11 approximate
execution is enabled and the error rate is 8.2% and 12.9%, respectively.

method is not limited to only accurate and approximate
modes. It can be easily extended to support varying accuracy
levels. By identifying which wires have to be approximated in
each accuracy level, a multi-bit control signal can be used to
dynamically enable only the respective switches that deliver
the desired accuracy. Fig. 5 illustrates a simple example of
how the required accuracy level can be dynamically selected.
Fig. 5b is an approximate counterpart of Fig. 5a that has
two switches (S0 and S1) and a 2-bit control signal ctrl[1:0].
If ctrl=2’b00, all the switches are off and accurate results are
obtained. If ctrl=2’b01, the switch S0 is on, the switch S1 is
off, and the circuit’s error rate is 8.2%. Finally, if ctrl=2’b11,
both switches are on and the error rate becomes 12.9%.When
replacing a wire with an approximate switch, when the switch
is on, the output of the switch is constant and thus, the switch-
ing activity of the circuitry driven by this wire decreases. For
example, in Fig. 5b, the gates G5, G6, and G7 are affected
by the approximated wires. The more gates are benefited by
neglecting the switching activity of the approximated wire,
the higher power reduction is achieved.

In Fig. 5b we showed how we modify the circuit’s netlist
and achieve dynamic accuracy reconfiguration. Modifying
accordingly any circuit’s netlist while satisfying given accu-
racy constraints can become a very complex task, especially
as the circuit’s complexity increases. Moreover, compared to
the accurate circuit, the power decreases when operating at an
approximate level since the switching activity is constrained.
The added circuitry will consume static power in both the
accurate and approximate operation. Nevertheless, a high
reduction of the switching activity will lead to high dynamic
power reduction. Considering that in the state-of-the-art Fin-
FET technology the dynamic power dominates the static
one [49], a high decrease of the dynamic power will compen-
sate the static power of the approximate switches and eventu-
ally the total power consumption will decrease significantly.
However, due to the added logic gates, the power increases
when operating at the accurate level. Therefore, a systematic

FIGURE 6. Abstract overview of the flow used by the proposed
framework to generate approximate circuits with reconfigurable accuracy.

approach is required to enable the generation of such approx-
imate circuits with dynamically reconfigurable accuracy and
maximize the gains while minimizing the overheads. To this
end, we propose the RETSINA (appRoximatE circuiTS wIth
recoNfigurable Accuracy) framework. RETSINA is an auto-
mated logic synthesis framework, written in C and Python,
that can seamlessly extend any typical design flow to generate
approximate circuits with reconfigurable accuracy at runtime.
The proposed framework operates over the gate-level netlist
and thus, it can be applied to any circuit. In this work, we limit
our analysis to combinational circuits only.

III. THE PROPOSED RETSINA FRAMEWORK
In this section, we discuss the optimization problem of pro-
ducing the previously described approximate circuits that fea-
ture dynamically reconfigurable accuracy at runtime. Then,
the proposed RETSINA framework is described. An abstract
overview of the proposed framework is illustrated in Fig 6.
Briefly, RETSINA operates as follows: given the hardware
description of a circuit, RETSINA synthesizes the circuit
and extracts the accurate gate-level netlist. Then, it performs
a Static Timing Analysis (STA) and extracts the circuit’s
timing information. Next, given i) a user provided quality
function, ii) the desired accuracy levels, and iii) the previ-
ously obtained netlist and timing report, RETSINA applies
a heuristic optimization to identify the netlist’s wires that
will be approximated as well as the respective switch type
(ASW0 or ASW1). Finally, the accurate netlist is approxi-
mated by replacing the extracted wires with the respective
switches. During the netlist approximation, an input control
signal is also added to the netlist. For N accuracy levels,
the width of the input control signal is N-1 bits. The enable
signal of each approximate switch is connected to a bit of the
input control signal. Hence, at runtime, the user can switch
between the accuracy levels by setting accordingly the input
control signal. After the netlist modification Design Compiler
is used to fix any fanout constraints.

The generated approximate circuits feature varying accu-
racy levels that can be dynamically selected using the
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control signal. Assume N accuracy levels with error bounds
{e1, . . . , eN }. For each level i, RETSINA has to identify the
approximation set Xi that minimizes the power consumption
and satisfies the error constraint (ei) when the approximate
circuit is operated at this level i. The set Xi comprises
the circuit wires that have to be approximated as well as
the respective approximate switch type. The union YN =⋃N

i=1Xi constitutes the final approximate circuit. The latter is
generated by replacing in the accurate netlist the wires of YN
with the respective switches. A different enable signal is used
to activate the switches of each setXi (i.e., dynamically select
the accuracy level). For the sake of simplicity we assume that
the accuracy levels are sorted with increasing error value (ei)
and that the first level (i = 1) refers to accurate execution.
Assuming that the set L contains all the wires of the accurate
netlist, the optimization problem of producing our approxi-
mate circuits with dynamically reconfigurable accuracy can
be formulated as follows:

minimize
i∈[1,N ]

(
Power(YN|i)

)
(3)

subject to Error(YN|i) ≤ ei, ∀i ∈ [1,N ]

YN =

N⋃
i=1

Xi,

Xi = {(wi1 , si1 ), . . . , (wiz , siz )},

∀j (wj, sj) ∈ L× {ASW0,ASW1}, (4)

where Power(YN|i) and Error(YN|i) are respectively the
power consumption and the error value of the approximate
circuit when operating at the accuracy level i. The tuples
(wj,ASW0) and (wj,ASW1) are mutually exclusive, i.e., only
one of them can belong in YN. However, a tuple (wj, sj) can
belong to more than one sets Xi. To asses the complexity of
our optimization problem, we rewrite (3) as:

maximize
i∈[1,N ]

( 1
Power(YN|i)

)
. (5)

This is a combinatorial optimization problem and is mapped
to the multiple nonlinear Knapsack problem [50]. Thus, it is
NP-hard as a generalization of the single linear knapsack
problem [50]. In our case, the cost (error) and value (power
reduction) functions take real values, are non linear, and
can be nonconvex or nonconcave. Moreover, the cost and
value of selecting an item (replace a wire with ASW0 or
ASW1) depend on the already selected items. To further
elucidate the complexity of this problem, we note that the
size of the design space is 3|L| (every wire can be either
accurate or approximated by ASW0 or ASW1) and the eval-
uation of every design point requires very time consuming
circuit simulations. Therefore, considering that even a simple
adder circuit can feature has 292 wires (see Section IV),
the design space explodes for more complex circuits. Hence,
the increased complexity of this problem mandates the use of
heuristic algorithms in practice.

Algorithm 1 Our RETSINA Optimization Algorithm
Input: 1. L: list of circuit wires, 2. E: list of the error bounds
Output: X: list of sets of tuples. The element X[i] refers to
the set Xi of (7)

# calculate the error value of the single approximation
tuples

1: P = []
2: for all w in L:
3: for all s in {ASW0, ASW1}:
4: e=calcError([{(w,s)}])
5: P.append((w,s,e))

# call the recursive function
6: N = len(E)
7: X = recSolver (P,E,N)
8: return X

# recursive function
9: def recSolver (P,E,i):
10: if N == 1:
11: return []
12: else:
13: X = recSolver (P,E,i−1)
14: Pi = []
15: for all (w,s,e) in P:
16: if e ≤ α× E[i]:
17: Pi.append((w,s))
18: X = SimulatedAnnealing (Pi, E[i], X, i)

# SimulatedAnnealing is described in Algorithm 2
# SimulatedAnnealing calculates X[i] and may modify
X[j] ∀ j<i

19: return X

A. PROPOSED HEURISTIC OPTIMIZATION
To solve our optimization problem we first reformulate it
and then we employ the heuristic optimization presented in
Algorithms 1 and 2. Simulated Annealing [51] is used in our
heuristic approach to extract a good enough solution in a fixed
and reasonable amount of time. The optimization decision is
modified and reformulated as follows:

minimize
( N∑
i=1

(
pi × Power(YN|i)

))
(6)

subject to Error(YN|i) ≤ ei, ∀i ∈ [1,N ]

YN =

N⋃
i=1

Xi,

Xi−1 ⊆ Xi, ∀i ∈ [2,N ]

Xi = {(wi1 , si1 ), . . . , (wiz , siz )},

X1 = {},

∀j (wj, sj) ∈ L× {ASW0,ASW1}, (7)

where pi denotes the probability that the accuracy level i is
selected at runtime.Without loss of power efficiency the opti-
mization goal (3) is replaced by (6). In other words, instead
of minimizing the power consumption of each accuracy
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Algorithm 2 Simulated Annealing Pseudocode
Input: 1. Pi: list of potential tuples, 2. errorBound: error constraint
3. X: current solution (for i-1), 4. i: accuracy level
Output: R: list of sets of tuples (X is of size i-1 and R is of size i)
1: Initialize temperature T

# initial state X[i] = X[i−1]
2: Let R = X # R is the current solution state
3: R[i] = X[i−1]

# first phase: build initial solution by adding random elements
4: for b=0 to β×netlistSize:; # netlistSize=|L|
5: if length(R[i]) == numSwitches: break
6: newSolutionSet = []
7: for all d < δ:;# parallel execution
8: Pick random (w,s) in Pi-R[i], Rnew ← add (w,s) in R[i]
9: evaluate error and energy of Rnew
10: prob← eval prob(Energy(s),Energy(snew),T)
11: if prob ≥ rnd(0, 1) & checkError & checkDelay:
12: newSolutionSet.append(Rnew)
13: R← select Rnew with the minimum energy in newSolutionSet
14: if epoch length reached & Error(R) increased: update T

# second phase: neighbor evaluation
15: for b=β×netlistSize to (β + γ )×netlistSize:
16: newSolutionSet = []
17: for all d < δ:;# parallel execution
18: Pick random (w,s) in R[i]
19: select random (w′,s′) s.t. w′ in neighbors(w) and (w′,s′) in Pi
20: Rnew← remove (w,s) from R[j] ∀ j≤i, add (w′,s′) in R[i]
21: prob← eval prob(Energy(s),Energy(snew),T)
22: if prob ≥ rnd(0, 1) & checkError & checkDelay:
23: newSolutionSet.append(Rnew)
24: R← select Rnew with the minimum energy in newSolutionSet
25: if epoch length reached & Error(R) increased: update T
26: if Energy(R) is constant for τ epochs: return R
27: return R

level i in isolation, we aim in minimizing the average power
consumption with respect to the overall operation of the
circuit. If the values pi are not known, we assume that all the
accuracy levels are equiprobable. Furthermore, we assume
thatXi−1 ⊆ Xi,∀i ∈ [2,N ], i.e., the approximations selected
for the accuracy level i-1 are also selected in the accuracy
level i. Although this decision might lead to some efficiency
loss, it significantly reduces the complexity of our optimiza-
tion decision. In order to compute the set Xi, the solution
obtained for the set Xi−1 is reused and we do not need to
initiate the solution search from an empty set. Note that since
ei−1 < ei, the set Xi−1 satisfies, by definition, the error
constraint of the level i. Moreover, leveraging thatXi−1 ⊆ Xi,
we obtain a very simple implementation for the circuitry that
dynamically controls the accuracy levels, i.e., if the accuracy
level i is selected, then all the switches of the setsXj with j ≤ i
are activated. For N accuracy levels, a N-1 bit input control
signal is required to select the accuracy level at runtime.
Every bit j of the input control signal is used to activate the
switches that belong in the set Xj − Xj−1. Thus, to select
the accuracy level i at runtime, the input control signal has
to be set to 2i−1-1. Next, to further reduce the complexity

of our problem and without any loss of optimality, we prune
the design space of the possible tuples (wj, sj) that can be
selected in each set Xi. To achieve this, the error value of all
the tuples (w, s) ∈ L × {ASW0,ASW1} (when are applied
individually) is computed. Then, for each set Xi, we consider
only the tuples that result to an error value less or equal to
α × ei. In this work, we set α = 2, but lower values can be
used to further prune the design space.

The size of the final approximation set, i.e., |YN|,
mainly defines the overheads induced by the proposed
technique. Without loss of generality, assume that ASW0,
ASW1 feature the same area (AASW ), capacitance (CASW ),
and delay (DASW ). The area overhead is proportional to the
number of switches [52] and can be bound by |YN| × AASW ,
i.e., O(|YN|). Similarly, considering (2) and that the area
increase is bounded, the power overhead when operating at
the accurate level is also O(|YN|). However, these overheads
might be constrained by the user’s or the system’s require-
ments. Therefore, to control the power and area overheads at
design time, we use the configuration parameter numSwitches
(Algoritm 2) that limits the maximum number of switches
that will be used, i.e., |YN| ≤ numSwitches. Moreover, if a
switch replaces a wire in a path, the path’s delay will increase
when operating at the accurate level. Hence, the increase of
the path’s delay can be estimated by k ×DASW [52], where k
is the number of switches in that path. The gate-level netlist
of a combinational circuit can be viewed as a direct acyclic
graph (DAG). The circuit gates are the graph nodes and the
wires are the edges. By parsing the circuit’s DAGwe canmea-
sure the number of added switches per path. Using PrimeTime
we perform a STA and extract the delay of all the paths from
the circuit’s inputs to its outputs. Then, the DAG is annotated
with the delays computed by STA and the value DASW is
obtained from the technology library. As a result, using the
annotated DAG we can calculate and constraint the delay
increase by limiting accordingly the number of switches per
path. For example, in case that we do not want to increase
the circuit’s critical path delay (CPD), assuming that PD is a
path’s delay obtained from STA, up to b(CPD−PD)/DASW )c
switches are allowed in this path.

The recursive Algorithm 1 is used to extract a solution
of the modified problem (6) subject to (7). Considering that
YN is the final solution (N accuracy levels), Algorithm 1
computes first the solution for the problem with N -1 accu-
racy levels, i.e., YN−1 =

⋃N−1
i=1 Xi. Then, YN−1 is used

to calculate XN and thus extract the final solution
⋃N

i=1Xi.
In each recursion i, Algorithm 1 is allowed to i) remove
tuples from the sets Xj with j < i and ii) add new tuples
(i.e., tuples that are not already selected) to Xi. Given the
sets X1,. . . ,Xi−1, Simulated Annealing [51] (SA) is used to
calculate Xi. Algorithm 2 presents the pseudocode of our
Simulated Annealing implementation. SA is divided in two
phases. In the first phase, random tuples are added in the
solution until reaching the numSwitches threshold. To achieve
this, Algorithm 2 performs a random sampling over the entire
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design space of the potential tuples and creates the initial
solution state. SA selects a random tuple (w, s) /∈ Xi and
checks if the new state Xi

⋃
{(w, s)} will be accepted. The

new state is accepted only if i) the acceptance probability
function of SA, ii) the error constraints, and iii) the delay con-
straint are satisfied. This phase terminates when a maximum
iteration count (line 4) or when the the maximum number
of switches numSwitches (line 5) are reached. In the second
phase, SA evaluates the neighbor states of the current state.
Algorithm 2 selects a random tuple (w, s) ∈ Xi and then
picks a random neighbor w′ of w. Then, it replaces (w, s)
with (w′, s′) = (w′, random(ASW0,ASW1)) to generate the
new state under consideration. Similar to the first phase,
the new state is evaluated to be accepted or not. If (w, s) ∈
Xj,∀j < i, it is removed from Xj and (w′, s′) is added
only to Xi, i.e., X′j = Xj − {(w, s)},∀j < i and X′i =
Xi
⋃
{(w′, s′)}−{(w, s)}. The tuple (w, s) is removed fromXj

so that the constraint Xi−1 ⊆ Xi is satisfied. Hence, the new
state under consideration is given by Y ′i =

⋃i
j=1X

′

j. When
referring to the neighbors of a wirew, we refer to all the wires
that are either inputs or outputs of the gates that the wire w
connects. The neighbors of a wirew are therefore obtained by
the circuit’s DAG. In Algorithm 2, (6) is used as the energy
function of SA, i.e., E =

∑i
j=1

(
pj × Power(Yi|j)

)
. Note

that, in each epoch, SA tries to reduce its energy function.
As a cooling schedule we use an adaptive variant of the expo-
nential multiplicative cooling [51]. At the end of each epoch,
if the error value decreased, the temperature remains constant.
Otherwise, the temperature is updated (multiplied by 0.9).
In order to limit the execution time of SA, its maximum iter-
ation count is set to be proportional to the number of wires of
the circuit’s netlist, i.e., (β+γ )×|L|. Specifically, in this work
we use β = 10 and γ = 100. Moreover, if the energy remains
constant after τ epochs, we consider that SA converged,
Algorithm 2 terminates, and the current state is returned. In
our work, we set τ = 500 to allow SA considerable time to
escape a local minimum. In each iteration of SA, δ new states
are evaluated in parallel. We set δ = 80, i.e., the number
of available hardware threads in our system. The parameter
δ determines also the epoch length of SA. Considering the
largest size of the examined circuits and that δ = 80 we set
the epoch length to be 25. The execution time of each epoch is
determined by the time required for evaluating the energy and
error values of a state. To further optimize the SA execution
time, memoization is used, i.e., the error and energy values of
every evaluated state are stored in a dictionary. Each time the
same state occurs again, the stored values are reused instead
of recomputing them. This is particularly useful to speedup
the execution time and especially to avoid recomputing the
energy and error values when removing a tuple from a set(
e.g., X′j = Xj − {(w, s)}

)
.

However, computing the energy and error values in
Algorithm 2 requires: i) netlist modification (replace each
wirewj with the switch sj), ii) circuit simulation (calculate the
error value and generate the circuit’s switching activity), and

FIGURE 7. The flow diagram of the implemented gate-level to C
converter. The resulting C function computes the circuit’s error value and
estimates its power consumption for a given approximation set and an
input dataset.

iii) power analysis (calculate the power consumption using
the obtained switching activity). Therefore, despite the afore-
mentioned optimizations, the execution time of the proposed
heuristic solution is defined by the increased time required for
a circuit simulation. To avoid performing circuit simulations,
we implement a gate-level netlist to C converter and evaluate
the circuit’s error and power values at C-level.

Note that Simulated Annealing (SA) is selected in
Algorithm 2 because our optimization problem could be
directly mapped to it and because SA enables the extraction
of a good enough solution in a fixed amount of time [51].
However, our framework is not strictly bound to SA and our
gate-level to C converter (Section III-B) enables the exploita-
tion of any other heuristic algorithm (with similar objective)
to replace SA. All the parameters of SA, e.g., epoch length
and cooling schedule, as well as the parameters α, β, γ , δ and
τ can be set accordingly by the user. In our evaluation, these
parameters are empirically set to the aforementioned values
to provide SA reasonable time to converge, but also limit the
execution time of our framework to reasonable values.

B. PROPOSED C-LEVEL POWER AND ERROR EVALUATION
Fig. 7 presents the flow employed to enable very fast power
and error evaluation of the produced approximate circuits at
C-level. Our gate-level to C converter is used to translate
the circuit’s gate-level description to a C function and thus,
enable fast circuit simulations at C. During the C-level sim-
ulations the circuit’s outputs are computed and its power
consumption is estimated. An analytical power model is used
to estimate the power consumption with respect to the togling
activity of the circuit’s wires. Hence, using i) the provided
accuracy function, ii) the gate-level to C converter, and iii) the
power model we obtain the circuit’s error and power values.
Power Model: The power consumption of a circuit can be

approximated by the sum of the power consumption of the
circuit’s gates [49], [53]:

Power(circuit) =
∑

∀gate ∈ circuit

(
Power(gate)

)
. (8)

Similar to (1)-(2), the power consumption of a gate is
estimated by [48]:

Power(gate) = Pstatic + aCV 2f . (9)

Therefore, a linear regression model can be used and effi-
ciently estimate a gate’s power consumption with respect to
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its switching activity.2 The intercept of the linear regression
comprises the static power consumption of the gate and
the product slope×switching activity represents the gate’s
dynamic power consumption. For each gate in the circuit,
we train a linear regression and estimate the gate’s power
with respect to the toggling ratio (i.e., toggling count over
input dataset size) of its outputs. Assuming that LRg and tg are
respectively the linear regression model and the toggling ratio
of the outputs of a gate g, the circuit’s power consumption is
estimated by:

Power(circuit) =
∑

∀g ∈ circuit

(
LRg(tg)

)
. (10)

As a result, after training the linear regression models LRg,
we only need to calculate tg to obtain the circuit’s power
consumption. Using the gate-level netlist to C converter, tg is
estimated at C-level by counting the number of times that
each variable’s value is changed. Thus, the circuit’s power
consumption can be estimated at C-level and we do not
need to perform vast circuit simulations and power analyses
during the proposed heuristic optimization. To compute the
LRg models we simulate the circuit with different (small)
input datasets and generate varying switching activity files
(SAIFs). Next, using Synopsys PrimeTime, power analyses
are performed for every SAIF and the power consumption of
each gate is extracted. In addition, for the same input datasets,
C-level simulation is performed and we obtain the respective
tg values. Using the computed toggling ratios (tg) and the
power values, a linear regression (LRg) is trained to estimate
the power of each gate. Circuit- andC-level simulationsmight
result to different tg values and for this reason we train the
LRg with respect to the tg obtain by the C simulation. All the
gates of our examined technology library (Section IV) feature
a single output wire and thus, only two circuit simulations
are performed to train the LRg. However, even for libraries
that contain gates with several outputs, the number of the
required simulations is very limited. For the most complex
circuit we examine in Section IV (i.e., 3769 gates), training
the linear regression models required less than 10 minutes
(with 40,000 inputs per simulation). Similarly, we also train
to two Linear Regression models LRASW0 and LRASW1 to
estimate the power consumption of the approximate switches
ASW0 and ASW1. Then, when a switch is used to replace
a wire, the respective model (LRASW0 or LRASW1) is added
to the sum of (10). When the switch is off, its toggling ratio
equals the respective one of the replaced wire. When it is on,
its toggling ratio is zero.
Gate-Level to C: The gate-level netlist to C converter is

implemented to translate the circuit’s Verilog netlist to a C
function and accelerate thus our optimization Algorithm 2.
The converter parses the Verilog file of the technology library
and for each gate in the library, it generates an equivalent C
function (with the same name and arguments). The Verilog

2The static power is given by Pstatic = Ileakage ×V [48] and thus, it does
not depend on the switching activity.

gate primitives are replaced with the respective bitwise opera-
tors in C, e.g., ‘‘and’’ is replaced by the C operator ‘&’. Point-
ers are used for the function outputs so that every function
can seamlessly have more than one output values. Translating
the library from Verilog to C needs to be performed only
once per technology library. Note that in this work we target
combinational circuits and thus, the library’s sequential cells
are not translated. Then, given the C description of the library,
the gate-level netlist of the circuit is transformed to its C
equivalent. The parser reads the Verilog description of the
netlist and generates the circuit’s direct acyclic graph (DAG).
Then, the DAG is traversed and a C function equivalent to
the gate-level-netlist is generated. The DAG is parsed level by
level to build the C function since C statements are executed
in order (unlike the gate-level Verilog statements that are
concurrent). During this procedure, the DAG nodes (gates)
are replaced by the respective functions calls to the library
and the edges (wires) are used as the function’s input and
output variables. Next, the generated C function is modified
as follows: i) each variable (i.e., circuit’s wire) is monitored to
count its toggling and ii) a case statement is used for each vari-
able to select between ‘‘ASW0’’, ‘‘ASW1’’ or the variable’s
value (i.e., not approximated). After generating the modified
C function, the main function is produced. The inputs of the
main function are i) a dataset file that contains the inputs
for the circuit simulation and the respective accurate outputs
and ii) an array containing the indexes of the approximated
wires and the respective switch type. The output of the main
function is the circuit’s error and its power consumption
estimation. The main function reads the inputs from the file
and calls the circuit’s modified C function to compute the
approximate outputs. Then, it compares the obtained outputs
with the accurate ones (read from the file) and computes the
circuit’s error value with respect to the provided accuracy
function. Moreover, using the toggling count measured by the
monitor function and the power model (10), it produces the
power estimation. Therefore, given an approximate set Yi,
using the gate-level netlist to C converter we can obtain,
in a very fast manner, the values Error(Yi|i) and Power(Yi|i)
required in our optimization process. Algorithms 1 and 2 are
written in Python and ctypes is used to run C-level circuit
simulations.
Efficiency Evaluation: In Fig. 8 we evaluate the efficiency,

in terms of power estimation and execution time, of per-
forming C-level simulations instead of gate-level ones using
QuestaSim. First, we examine the efficiency of the adopted
power model (10). Simulated annealing aims to minimize its
energy function. To achieve this, it mainly moves from the
current state to a neighbor state that features less energy. As
a result, in our optimization (Algorithms 1 and 2) precisely
estimating the order of the approximate circuits with respect
to their power consumption is of high significance. Hence,
to assess the efficiency of our power estimator we use the
Spearman’s rank correlation coefficient, i.e., we examine how
efficiently the power ranking of our approximate circuits is
estimated. The Spearman’s rank correlation coefficient takes
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FIGURE 8. Evaluation of the efficiency of our gate-level to C converter in
terms of (a) estimating the power ranking of our approximate
reconfigurable circuits and (b) accelerating the simulation time required
to compute a circuit’s outputs. (a) and (b) are reported for the circuits
examined in Section IV. As the baseline, we consider the simulation time
of the circuit simulation using QuestaSim and the power consumption
obtained by PrimeTime.

values in the segment [-1,1], where the value 1 refers to per-
fect positive correlation. For all the benchmark examined in
Section IV, we generate 50 random approximate counterparts
(300 designs in total), i.e., we randomly replace some circuit
wires with the switches ASW0 or ASW1. To measure their
power consumption (at the approximate operation) we per-
form circuit-level simulations using Mentor QuestaSim and
power analyses using Synopsys PrimeTime. Then, we esti-
mate their power consumption by performing C-level simu-
lations using our gate-level to C converter and the proposed
power model (10). For each circuit, the obtained Spearman’s
rank correlation coefficient is illustrated in Fig. 8a. On aver-
age, the Spearman’s rank correlation coefficient is 0.987,
i.e., almost perfect positive correlation, and ranges from
0.95 up to 1. Hence, the proposed power model efficiently
estimates the power ranking of our approximate circuits.
In addition, we also examine the accuracy of our power
model by examining the Root Mean Square Error (RMSE)
between the values predicted by our power model and the
values calculated by PrimeTime. For all the examined circuits
in Fig. 8a (300 in total), the RMSE value is 9.22×10−5.
Hence, considering that the power consumption is in the order
of mW, our C-level power estimation delivers also accurate
enough power estimation. Next, we evaluate the efficiency of
the gate-level to C converter in accelerating the execution of
our optimization process. For the benchmarks examined in
Section IV, we measure the speedup achieved by performing
circuit simulations at C-level using the proposed gate-level
to C converter compared to performing simulations using
QuestaSim. For every circuit, 105 random generated inputs
are used and every experiment is conducted 3 times to mea-
sure the average execution time. The speedup achieved by
performing C-level simulations is reported in Fig. 8b. The
average attained speedup is 120× and ranges from 34× up
to 266×. Considering the vast number of error and power
evaluations performed in Algorithms 1 and 2, the gate-level
to C converter significantly accelerates their execution.

IV. EXPERIMENTAL EVALUATION
In this section, we evaluate the efficiency of the proposed
framework using industry-strength tools and benchmarks.
We use two state-of-the-art technology standard cell libraries

with differing characteristics: a conventional 7nm FinFET
library [54] and its counterpart using Negative Capacitance
Field-Effect Transistors (NCFET) [55], [56]. Six benchmarks
are considered in our evaluation, i.e., adder, square root (sqrt),
square, multiplier, multiply-accumulate (mac), and divider.
All the benchmarks are obtained from the industry-level
Synopsys DesignWare library (M-2016.12) and they are
listed in Table 1. All the circuits are synthesized targeting
performance optimization and they are compiled using the
‘‘compile_ultra’’ command of Design Compiler. Moreover,
all the evaluated circuits are synthesized and simulated at
their critical path delay, i.e., with zero slack. As an accuracy
function, the Mean Relative Error Distance (MRED) [14] is
used. MRED is the average relative error and is calculated
by 1

K

∑N
1 |

OA−OE
OE
|, where OA, OE are the approximate and

accurate outputs, respectively, and K is the total number
of outputs. For each benchmark, three accuracy levels are
considered with MRED bounds {0%, 1%, 2%}. The accu-
racy level 1 refers to accurate execution (noted as MRED
bound 0%) while accuracy levels 2 and 3 target 1% and 2%
MRED, respectively. Circuit simulations using QuestaSim
are performed to calculate the output/error of the generated
circuits. PrimeTime is used for power analyses and to com-
pute power consumption of all the circuits. After generating
the approximate circuits, their area and delay values are
calculated using Design Compiler and PrimeTime, respec-
tively. For each circuit, two distinct randomly generated input
datasets are used. The first one (2×105 inputs) is used in
the optimization phase of RETSINA. The second one (106

inputs) is used for the circuit simulations. For each circuit,
the parameter numSwitches is set to be equal to 5% of the
number of the circuit’s gates. In our evaluation, we examine
a worst case analysis scenario, i.e., fully optimized designs
synthesized at their critical path delay. Therefore, since the
circuit paths are well balanced, we allow RETSINA to add
switches to the circuit’s critical paths in order to increase the
approximation candidates. However, we constraint the delay
overhead to be at most equal to the delay of an approximate
switch. In this worst case evaluation, all the accuracy levels
are considered equiprobable, i.e., operating at the accurate
level is highly probable. Finally, since the circuits are oper-
ated at their critical path delay, if in Algorithm 2 the delay
increases, we update the slopes of the LRg models to reflect
the new frequency. The frequency is given by 1/delay. Thus,
to update the slopes we have to multiply them by d/d ′, where
d is the delay of the accurate circuit and d ′ is the delay of the
approximate one. The experiments are run on a dual Xeon
Gold 6138 server that features 80 threads and 128GB RAM.
Error Analysis: First, the error characteristics of the

approximate circuits generated by RETSINA are examined.
Each accurate circuit of Table 1 is synthesized targeting the
7nm FinFET library to obtain the accurate netlist. Then,
RETSINA is used to generate its dynamically reconfig-
urable approximate counterpart. Note that identical results
are obtained for the NCFET library since the error optimiza-
tion in our framework is technology independent and the
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TABLE 1. The benchmarks used to evaluate the proposed framework. All
the benchmarks are from Synopsys DesignWare library.

TABLE 2. Error evaluation of the approximate circuits generated by
RETSINA.

induced error is controlled at design time. To compute the
error value at each accuracy level, 3 circuit simulations are
performed for every generated approximate circuit. In each
simulation the approximate circuit is operated at a single
accuracy level. In Table 2, the error characteristics of the gen-
erated approximate circuits are reported. As shown in Table 2,
the target MRED constraint is well satisfied in all the cases.
Moreover, as a measure of dispersion, the Median Absolute
Deviation (MAD) of the Relative Error Distance (RED) is
also presented in Table 2. MAD is a robust measure of statis-
tical dispersion and is defined as the median of the absolute
deviations from the distribution median. MAD retains units
and is reported as a percentage since RED is also reported as
percentage. As presented in Table 2, MAD takes very small
values (with respect also to MRED). For the accuracy level 2,
i.e., 1% MRED bound, the average MAD is 0.23% ranging
from 0.0% up to 0.50%. Similarly, for the target accuracy
level 2 (2% MRED bound) MAD is on average 0.60% and
ranges from 0.20% up to 1.20%. Hence, the RED value of the
generated approximate circuits features very small dispersion
and is well concentrated close to the target error value.
Hardware Analysis targeting the 7nm FinFET Conven-

tional Technology: In Fig. 9a the hardware efficiency of the
generated reconfigurable approximate circuits is evaluated
when targeting the 7nm FinFET library [54]. Fig. 9a presents
their area, delay, and energy characteristics. The energy con-
sumption is reported for each accuracy level as well as in a
random case where the accuracy level is randomly selected
and all the accuracy levels feature the same probability to
be selected. The examined metrics are reported as relative
values with respect to the ones of the corresponding accurate
design. The energy consumption is calculated by the product
power×delay, where the power and delay values for each
circuit are computed using PrimeTime. In Fig. 9a, RETSINA
replaced 11, 18, 36, 62, 78, and 178 wires with approx-
imate switches in the adder, sqrt, square, multiplier, mac,
and divider circuits, respectively. Therefore, the numSwitches
constraint we set, is well satisfied. On average, the area

FIGURE 9. Evaluation of the area, delay and energy of the proposed
reconfigurable approximate circuits. The examined metrics are presented
as a relative values with respect to the corresponding accurate design.
The relative energy is reported for each accuracy level as well as for
random accuracy level selection. The notation @0%, @1%, and @2%
refers to the accuracy levels 1, 2, and 3 with MRED bounds 0%, 1%, and
2%, respectively. The notation @random refers to random selection of the
accuracy level at runtime, with all the accuracy levels being equiprobable.
All the approximate and accurate circuits are implemented targeting
(a) the conventional 7nm FinFET technology and (b) the NCFET one.

overhead imposed by the added switches is 4.4% and ranges
from 3.7% up to 5.5%. Hence, the induced area overhead is
well constrained by the parameter numSwitches. Note that,
in our evaluation numSwitches is set to 5% of the number
of the circuit’s gates. To explicitly force the area overhead
below Z% the user should select numSwitches= bZ×(circuit
area/ max area(ASW0,ASW1)/100)c. Similarly, the delay
overhead is 2% on average and ranges from 0% up to 2.9%.
For the small circuits (adder, sqrt) there is no delay overhead,
i.e., they operate at same frequency as the accurate design.
For the larger benchmarks (square,multiplier, mac, divider)
the delay overhead is 10ps, i.e., RETSINA’s delay constraint
is satisfied. As the circuit complexity increases, more wires
are approximated. The examined designs are fully optimized
and their paths are well balanced. Therefore, as the number
of approximated wires increased, RETSINA couldn’t avoid
to approximate any of the critical paths wires. However, this
delay overhead is very small and the tradeoff between delay
increase and energy efficiency can be controlled at design
time. Furthermore, for each accuracy level, the energy con-
sumption of the generated circuits is evaluated. As expected,
when the approximate circuits operate at the accuracy level 1
(i.e., accurate execution), the energy consumption slightly
increases due to the induced circuitry. On average it is 3% and
ranges from 1.4% up to 5%. The aforementioned overheads
originate from the addition of the approximate switches and
thus, they constitute the cost of the control circuitry that is
required to enable the dynamic accuracy reconfiguration at
runtime. On the other hand, when the circuit operates at an
approximate mode, significant energy savings are delivered.
At the accuracy level 2 (1% MRED bound), the attained
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energy reduction is on average 22% and ranges from 7%
up to 32%. Similarly, at the accuracy level 3 (2% MRED
bound), the average energy reduction is 29%, ranging from
11% up to 41%. As shown in Fig. 9a, for higher MRED
bounds the energy reduction is higher since more wires can
be approximated and thus, RETSINA can further limit the
circuit’s switching activity. In addition, as the circuit com-
plexity increases, higher energy reduction is also achieved.
For example, for 2% MRED bound, the energy reduction
increases from 11% for the adder circuit to 41% for the
square. For complex circuits, that feature a lot of wires,
the impact on the output value of approximating a wire is
less significant compared to smaller circuits. Therefore, more
wires can be approximated and higher energy savings are
delivered. However in Fig. 9a, this scaling does not con-
tinue for the multiplier, mac, and divider circuits that feature
32%, 30%, and 34% energy reduction respectively. These
circuits are affected by the tight delay constraint set in our
optimization and thus, they couldn’t exploit the full spectrum
of the applied approximations. Nevertheless, even though the
approximations applied on these circuits were limited by the
delay constraint, they achieve significant energy savings. As
shown in Fig 9a, the proposed reconfigurable approximate
circuits feature an insignificant delay overhead that can be
controlled at design time. Moreover, although they induce a
small energy overhead when operating at the accurate level,
they deliver significant energy savings when operating at
an approximate mode. Considering the high energy gains
achieved at the accuracy levels 2 and 3, the energy overhead
of the accuracy level 1 is assumed negligible. Note that,
this overhead affects the circuit’s energy consumption only
when accurate computations are required. Since approximate
computing targets error resilient applications, the time spent
in computations that require accurate execution can be con-
sidered insignificant compared to the overall execution time.
Therefore, the impact of the of this small energy overhead
on the total energy consumption is minimum. However, as a
worst case scenario, we consider all the accuracy levels to
be equiprobable. As shown in Fig. 9a, when the accuracy
level is randomly selected, the average energy saving is 15%,
ranging from 4% up to 23%. Note that for this random level
evaluation, the MRED value is on average 0.92%. Specifi-
cally, the MRED of the adder, sqrt, square, multiplier, mac,
and divider is 0.72%, 0.93%, 0.97%, 0.96%, 0.99%, and
0.96%, respectively. This random accuracy level evaluation
demonstrates the high efficiency of the proposed framework.
Despite performing accurate computations in the 33% of the
time, significant energy savings are still obtained (15% on
average), while the MRED value is very small (less than 1%).
Hardware Analysis targeting the 7nm NCFET Emerging

Technology: In Fig. 9a we applied the proposed framework on
varying benchmarks and showed that it is circuit independent.
In Fig. 9b, we evaluate the efficiency of the proposed frame-
work using a different technology library, showing that it is
also technology independent and the delivered energy gains
are retained. In Fig. 9b the efficiency of the proposed recon-

figurable approximate circuits is examined when targeting
the NCFET emerging technology library. Moreover, through
this analysis, we evaluate, for the first time, the impact of
approximate computing on NCFET-based circuits.

Negative Capacitance Field-Effect Transistor (NCFET) is
very rapidly emerging as a promising technology for future
computing [57], [58]. NCFET enables transistors to switch
much faster without the need to increase the operating volt-
age. This is achieved, for the first time, through incorporating
a thin layer of a ferroelectric (FE) material inside the tran-
sistor gate stack. The FE layer manifests itself as a nega-
tive capacitance that magnifies the applied vertical electric
field leading to an internal voltage amplification, instead of
a voltage drop as is the case in any existing conventional
CMOS technology. Such an internal voltage amplification
significantly improves the electrostatic integrity of transistor,
leading to larger ON current and thus a higher switching
speed, while the operating voltage still remains the same [55].
In short, the presence of a negative capacitance inside the
transistor’s gate results in a much larger current that enables
a higher switching speed and as a result the circuit can be
clocked at a higher frequency while the voltage remains the
same. However, NCFET technology comes with a major
drawback in which the presence of a negative capacitance
increases the total gate’s capacitance. Therefore, compared to
conventional CMOS technology, NCFET-based circuits will
have a larger dynamic power as they will exhibit a larger total
capacitance at the same VDD.

This, in turn, strongly reduces the efficiency of the
NCFET technology and in the following we investigate,
for the first time, how applying approximate-computing
principles helps in eliminating the side-effects of NCFET,
when it comes to the increase in the dynamic power.
To achieve that, we employ our proposed framework to cre-
ate reconfigurable-approximate NCFET circuits. Because our
implementation is technology independent, we can directly
plug inNCFET-aware standard cell libraries inside RETSINA
to automatically generate reconfigurable approximate cir-
cuits in the NCFET technology. In this work, we leverage
NCFET-aware cell library developed in [55], [56], that was
created based on the 7nm FinFET technology node using
a physics-based NCFET compact model. This allows us
to have fair and direct comparisons with the conventional
FinFET-based circuits.

In Fig. 9b, RETSINA added 11, 24, 42, 65, 66, and
178 switches in the adder, sqrt, square, multiplier, mac, and
divider, respectively. Similar to Fig. 9a, the area overhead
in Fig. 9b is 5% on average and ranges from 4.6% up to 5.8%.
The delay overhead is 2%, on average, and the energy over-
head when operating at the accurate level is on average 2%,
ranging from 0.1% up to 3%. When operating at the accuracy
level 2 (MRED bound 1%), the energy reduction is 25%,
on average, and ranges from 15% up to 32%.When operating
at the accuracy level 3 (MRED bound 2%), the energy reduc-
tion is 31% on average, ranging from 18% up to 40%. Finally,
when the accuracy level is randomly selected, the energy
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TABLE 3. Evaluation of the impact of the proposed framework on
mitigating the energy efficiency downside of the NCFET based circuits.

consumption is reduced by 20% on average, ranging from
11% up to 25%. In this case, the obtained MRED value is
0.97%, on average, and ranges from 0.7% up to 1.0%. Hence,
our framework significantly reduces the energy consumption
of the NCFET circuits. The energy savings in Fig. 9b circuits
are even higher compared to Fig. 9a. The NCFET circuits
exhibit larger capacitance and thus, they are benefited more
by constraining the switching activity.

Next, we evaluate the impact of approximate computing in
compensating the energy-efficiency downside of the NCFET
based circuits. As shown in Table 3, the accurate NCFET
circuits feature significantly higher performance (1.59× on
average) compared to the respective FinFET based ones.
However, this high performance comes at the cost of very
high energy consumption. Compared to the accurate FinFET
circuits, the energy consumption of the accurate NCFET
ones is 76% higher, on average. Therefore, to asses the
efficiency of the NCFET based circuits, we examine the
Energy×Delay Product (EDP) metric. Despite the increased
performance of the accurate NCFET circuits, their energy
consumption is so high that eliminates the achieved delay
gain. On average, the EDP of the accurate NCFET circuits is
11% higher than that of the FinFET ones. On the other hand,
compared to the accurate FinFET based circuits, the approxi-
mate NCFET ones produced by RETSINA feature on average
1.56× higher performance and 9% smaller EDP. Note that,
in Table 3, we consider the worst case scenario of Fig. 9b. The
approximate NCFET circuits feature, mainly, smaller EDP
than the respective accurate FinFET circuit. Only the EDP
of the small 16-bit adder didn’t decrease bellow the FinFET
baseline. As aforementioned, in the 16-bit adder only a few
wires are approximated due to the MRED and numSwitches
constraints set in RETSINA. As a result, the achieved energy
reduction is limited (11%) and thus, the EDP remained higher
than the one of the FinFET based adder. However, for the rest

FIGURE 10. Runtime power comparison between the accurate square and
its approximate counterpart produced by RETSINA. For the approximate
square, the runtime variation of the RED and MRED is also presented. The
accuracy level is randomly selected and 300 random generated inputs are
considered.

circuits the EDP gain ranges from 9% up to 20%. As shown
in Table 3, our framework enables the exploitation of NCFET
based circuits by mitigating and in most cases eliminating
their energy-efficiency drawback. Hence, very performant as
well as energy efficient approximate circuits with dynami-
cally reconfigurable accuracy are obtained.
Dynamic Reconfiguration: Fig. 10 presents an example

of the dynamic accuracy reconfiguration. For this example,
300 random generated inputs are considered and the accuracy
level is randomly selected. The square circuit is used as our
driving circuit and similar results are obtained for the other
circuits. The power variation, over time, of the approximate
square is depicted in Fig. 10 and it is compared against the
respective power variation of the accurate square. In addition,
the RED and MRED variations are also illustrated in Fig. 10.
The selected accuracy accuracy level is depicted above the
graph. In this example, the average the energy reduction is
17.5% while the MRED value is only 0.20%. As shown
in Fig. 10, selecting the accuracy level enables the user
to dynamically control the RED value. Regarding the
power variation, when the accuracy level 1 is selected,
the approximate circuit features equal or a little higher power
compared to the accurate one. However, when operating at
levels 2 and 3, the approximate square features significantly
less power than the accurate one. On average, as the level
of approximation increases, larger distance between the two
power graphs is observed and thus, higher power gain is
achieved. The approximate circuits generated by RETSINA
offer the user a very fine grain control of the applied approxi-
mation at runtime. Leveraging the on the fly accuracy control,
the user can select the respective accuracy level, considering
the input values and the application’s state, and thus, effec-
tively optimize the application’s energy-error tradeoff.
Approximation Efficiency Evaluation: In Fig. 9 the energy

efficiency of the circuits generated by RETSINA is evaluated.
In Fig. 12, we examine the efficacy of the employed heuristic
solution in identifying which wires will be approximated.
RETSINA is compared against the state-of-the-art approx-
imation technique GLP [21] that is illustrated in Fig. 11.
Similarly to RETSINA, GLP is an automated approximate
design framework that applies netlist approximations. How-
ever, GLP prunes the circuit’s wires and thus, it does not
support accuracy reconfiguration at runtime. Therefore, for
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FIGURE 11. The flow diagram of the GLP framework [21].

FIGURE 12. Evaluation of the approximation efficiency of the heuristic
approach employed in the proposed RETSINA framework. The
approximate circuits generated by RETSINA are compared against the
ones produced by GLP [21]. All the circuits are generated targeting 1%
MRED bound. For the fairness of the performed comparison, RETSINA
also prunes the wires instead of replacing them with switches.

the fairness of the performed comparison, we examine only
one accuracy level and in the last step of RETSINA instead
of replacing the selected wires with the switches ASW0 and
ASW1, we prune them with the respective value. Then,
the obtained circuit is synthesized to remove any floating
gates. All the approximate circuits in Fig. 12 are designed
with MRED bound 1% and are synthesized and simulated
at the critical path delay of the respective accurate cir-
cuit. Fig. 12 depicts the relative energy consumption of
the approximate circuits generated by RETSINA and GLP
with respect to the corresponding accurate one. On aver-
age, the approximate circuits generated by RETSINA fea-
ture 46% less energy consumption compared to the GLP
circuits. This high energy gain demonstrates the approxi-
mation efficiency of our power-aware heuristic approach.
GLP [21], in order to avoid the complexity of the circuit
pruning optimization problem, uses an iterative greedy algo-
rithm. At each iteration, GLP prunes the wire that features the
lowest significance×activity product (SAP). GLP terminates
when the error bound is reached. In each iteration, after
pruning, the netlist is synthesized to generate the respective
approximate one. Nevertheless, such a greedy approach does
not ensure energy efficiency. During the pruning procedure,
[21] considers only SAP and does not examine the impact of
pruning a wire on the circuit’s energy consumption.

In addition, GLP does not consider the error propagation in
the performed pruning. For example, the error generated by
pruning awiremight be compensated by pruning another one.
However, by examining only the output significance of each
wire, such information is not leveraged and thus, a fewer num-
ber of wires is pruned. On the other hand, RETSINA evaluates
the circuit’s error before selecting the wire to be approxi-
mated and thus, it is able to capture such cases. Furthermore,
RETSINA uses the proposed power model and estimates
the circuit’s power consumption. Then, RETSINA selects
the respective approximations that attains the highest power
reduction. Hence, the proposed framework is able to deliver

FIGURE 13. The execution time of the proposed framework with respect
to the examined benchmarks that feature increasing circuit complexity.
Three accuracy levels are considered for each circuit.

more energy-efficient approximate solutions compared to the
greedy and power agnostic approach of [21].
Time Complexity Evaluation: Next, the time complexity

of the proposed framework is evaluated. For every circuit
examined, the time required by RETSINA to generate its
reconfigurable approximate counterpart is reported in Fig. 13.
The execution time of RETSINA ranges from 8 minutes for
the adder that features 292 wires up to 7.76 hours for the
divider, i.e., the largest examined circuit with 3796 wires.
As aforementioned, the bottleneck of RETSINA’s execution
is the time required to evaluate the circuit’s error and power.
Hence, considering the speedup delivered by performing the
proposed C-level error and power evaluation (Fig. 8), the gen-
eration of our reconfigurable approximate circuits would
be infeasible without the proposed approach. As shown
in Fig. 13, the execution time of RETSINA increases as
the circuit complexity increases. This is expected since in
Algorithm 2, we set the iteration constraint to be propor-
tional to the number of the circuit’s wires. The execution
time required by RETSINA is comparable (or even smaller)
to existing approximate design automation frameworks. For
example, [32] requires 1.16 minutes for only a 4-bit adder,
[21] reports 15-20 minutes for a 32-bit adder, [23] requires
4 hours for a 16-bit multiplier, and [26] needs 20 hours
for an 8-bit multiplier. Note that these frameworks apply
only fixed approximation. The proposed framework is circuit
independent and can be applied to any combinational circuit.
Considering larger accelerator circuits, RETSINA can be
directly used to produce their approximate reconfigurable
counterparts. However, as shown in Fig. 13, the time com-
plexity of RETSINA scales linearly with respect to the cir-
cuit’s size. To avoid this overhead, RETSINA can be used to
approximate the most intensive parts of the accelerator (e.g.,
its arithmetic units). Then a framework similar to [40], [41]
can be used to build the entire approximate accelerator out
of its approximate reconfigurable components produced by
RETSINA.
Application Evaluation: Finally, we demonstrate the effi-

ciency of the reconfigurable circuits generated by RETSINA
at application level. We select Neural Network inference as
our testcase and we use the ResNet-8 network [59] (7 convo-
lution layers) trained with the CIFAR-10 image classification
dataset. The NN is quantized at 8 bits to avoid floating point
operations [60]. First, we use RETSINA to generate two
approximate reconfigurable 8-bit multipliers. The first one,
named RM1, is produced targeting three accuracy levels with
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error bounds {0%, 0.5%, 1.5%}. The second one, named
RM2, is generated for two accuracy levels with error bounds
{0.5%, 1.0%}. RM2 features only approximate levels and
thus, the wires identified in the first accuracy level (i.e., 0.5%)
are pruned instead of replaced with approximate switches.
In our evaluation, as a reference point, we consider the
Pareto-optimal fixed approximate multipliers (36 in total)
of the state-of-the-art EvoApprox8b library [31]. For the
fairness of the performed comparisons, the accurate 8-bit
multiplier of [31] is used as the input circuit of RETSINA.
All the circuits are synthesized and simulated at the critical
path delay of the accurate 8-bit multiplier [31], i.e., we set
zero delay overhead at RETSINA. RM1 achieves 8% and
17% energy reduction at the accuracy levels 2 and 3, respec-
tively, while it induces 1% energy overhead at the accu-
racy level 1 (i.e., accurate mode). RM2 achieves 16% and
22% energy reduction at the accuracy levels 1 and 2, respec-
tively, and does not support accurate execution. The accu-
racy levels of RM1 and RM2 are selected targeting high
inference accuracy. To achieve this, we used [31] and [60]
to profile how the multiplier’s error impacts ResNet’s accu-
racy. Next, we extend [60] and integrate our reconfigurable
multipliers RM1 and RM2. In [60], approximate multipli-
ers are used to perform the multiplications of each convo-
lution layer. However, since different layers have different
accuracy requirement, [60] employs an heterogeneous archi-
tecture that comprises several fixed approximate multiplier
types. At runtime, at each layer, only one approximate mul-
tiplier type is used and the rest ones are power gated. This
approach results in a significant area overhead and a poten-
tial performance/throughput loss due to the underutilized
hardware. In our evaluation, we avoid these overheads and
elucidate the significance our dynamically reconfigurable
approximate circuits by considering an homogeneous archi-
tecture (i.e., only one approximate multiplier type is used
either from [31] either RM1 or RM2). Since RM1 and
RM2 feature several accuracy levels, we can dynamically
select the desired accuracy level per layer at runtime. There-
fore, for the ResNet-8, 2187 and 128 different configurations
(i.e., selected accuracy level per layer) are obtained using
RM1 and RM2, respectively. In Fig. 14, the accuracy-energy
tradeoff of the ResNet-8 network is illustrated. To evaluate
the energy savings, we measure the energy consumed in
the multiplication operations (21.18M in total). The relative
energy with respect to the energy consumed by the accurate
multiplier is reported. The accuracy achieved using the accu-
rate 8-bit multiplier is 83.26%. In Fig. 14, the multipliers
of [31] and the configurations of RM1 and RM2 that feature
up to 2% accuracy loss are depicted. Note that, to generate
Fig. 14, all the configurations of RM1 and RM2 are eval-
uated and application mapping to the circuits generated by
RETSINA is out of the scope of this paper. As shown, using
approximate multipliers in NN inference can significantly
decrease the energy consumption for aminimal accuracy loss.
For only 0.5% accuracy loss, RM1 and RM2 achieve 15%
and 19% energy reduction, respectively. In the respective

FIGURE 14. The accuracy-energy tradeoff of the quantized ResNet-8
when using approximate multipliers for the inference. The energy
consumed in the multiplications is measured. Different red points are
different multipliers of [31]. Different blue (green) points are different
runtime configurations of the reconfigurable multiplier RM1 (RM2)
produced by RETSINA.

configuration for RM1, accuracy level 3 was selected in 5 lay-
ers while accuracy levels 1 and 2 were selected in 1 layer
each. For RM2, the accuracy level 1 was selected in 4 lay-
ers and the accuracy level 2 was selected in 3 layers. It is
also observed that in many cases the ResNet’s accuracy also
increases (for both [31] and RM1/RM2). The latter is sub-
ject to the weight tuning performed by [60] to efficiently
map NN inference on approximate hardware. The red points
in Fig. 14 present the accuracy-energy tradeoff achieved
when using fixed approximate multipliers [31]. However,
different red points are produced by different approximate
multiplier types. Thus, their efficiency over different NNs
is unclear since, fixed approximation cannot guarantee that
the quality requirements will be always met. It is worth
mentioning that out of the 36 examined multipliers of [31],
only 11 appear in Fig. 14 due to their high accuracy loss.
On the other hand, the different blue (green) points are dif-
ferent runtime configurations obtained using RM1 (RM2).
As a result, RM1 and RM2 enable the user to have a very
fine-grained control of the applied approximation and the
final accuracy. Thus, by dynamically selecting the accuracy
level per layer, the energy savings can be maximized while
the final accuracy loss is minimized. Fixed approximate
multipliers [31] deliver higher energy saving since they avoid
the cost of the accuracy reconfiguration circuitry. For exam-
ple, for 0.5% MRED bound, [31] achieves 16% energy
reduction. Nevertheless, as shown in Fig. 14, the runtime
reconfiguration of RM1 and RM2 makes them more efficient
at application level. Less sensitive layers can select higher
approximation and the most sensitive ones can switch to
more accurate execution. The accuracy-energy Pareto-front
(Fig. 14) comprises mainly RM1 and RM2 configurations
and only two fixed approximate multipliers [31] appear on
the Pareto-front. Therefore, RM1 and RM2 not only enable
layer significance-aware accuracy reconfiguration at runtime,
but they also deliver very energy efficient solutions that
outperform fixed approximation.

V. RELATED WORK
In this section related research in the field of approx-
imate circuit design is discussed. Extensive research
activity is reported in the design of approximate arith-
metic circuits. A widely used approximation technique
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is logic simplification that mainly alters a cell’s truth
table. Exploiting this technique [4]–[6] produce approximate
adders while [8]–[10] generate approximate multipliers and
[15] designs approximate dividers. Another very efficient
approximation technique is algorithmic approximation that
modifies the implemented algorithm reducing its complex-
ity. Algorithmic approximation is applied in [7] to obtain
approximate adders, while [11]–[14] and [16]–[20] generate
approximate multipliers and dividers, respectively. However,
all these works produce architecture and operation dependent
approximate circuits that feature only a single accuracy level.
Moreover, their application as well as energy efficiency over
differing architectures is not comprehensively analyzed.

Approximate computing increases the already complex
task of hardware design by adding the error dimension in the
systems design. To address the aforementioned inefficiency,
significant research is reported in the field of approximate
design automation. The authors in [25] and [26] exploit
the ‘‘don’t care’’ conditions to generate approximate logic
circuits. In [27] a greedy approach is employed to detect
and apply approximate transformations on the behavioral
description of the circuit. Probabilistic Pruning and Logic
Minimization [24] systematically remove components form
a circuit and apply logic simplification based on the circuit’s
activity profile and the output significance. Approximate
circuit synthesis by determining the error propagation and
applying precision scaling is implemented in [28], while [29]
further reduces the power consumption by leveraging the
delay reduction to decrease the operating voltage value.
Cartesian genetic programming is employed in [30], [31] to
produce Pareto-optimal approximates multiplier and adders.
The library’s standard cells are approximated in [32] and a
heuristic approach is devised to modify the accurate netlist
using these cells and generate approximate arithmetic cir-
cuits. An extension to high-level synthesis tools [33] applies
variable-to-constant approximation and builds approximate
circuits that satisfy real-time constraints. The gate-level
pruning framework, proposed in [21], replaces the circuit
wires by constant values based on their output significance
and their toggling count. The authors in [22] propose a circuit
partition algorithm to quantify the output significance of
every gate and use this algorithm to guide and accelerate
the application of [21]. Multi-level approximation is applied
in [23] where a voltage-driven gate-level pruning is used to
maximize the application of voltage over-scaling. However,
during the pruning procedure, [21]–[23] consider only the
error value and do not examine the impact of pruning a wire
on the circuit’s power. Therefore, the power efficiency of the
generated designs remains unclear. Extending [21], power,
delay, and error estimators are used in [34] to assess the
impact of pruning a node on the circuit’s energy×delay. Nev-
ertheless, only a 32-bit adder is examined in [34]. All these
works produce static approximation circuits, neglecting the
ability to dynamically reconfigure the accuracy at runtime.

Acknowledging the necessity to dynamically set the
approximation level, considerable research interest is shown

on reconfigurable approximate circuits. Reconfigurable
approximate adders are produced in [42] by generating a
dual state full adder that uses two multiplexers to select
between the accurate and approximate results. An approxi-
mate carry look-ahead adder is designed in [43] that is able
to switch between exact and approximate modes by applying
power gating to switch off the exact part. Similarly, in [61],
approximate reconfigurable multipliers are generated using
dual quality 4:2 compressors that switch between accurate
and approximate mode using power-gating. In [44], the addi-
tion is split to small accurate sub-adders and multiplexers
select between the predicted approximate carry and the exact
one. An iterative approximate reciprocal process is proposed
in [46] to build a quality configurable approximate divider
that delivers more accurate results as the number of iterations
increases. Approximate exponential function unit is designed
in [47] that achieves runtime accuracy reconfiguration by
adjusting the number of added Taylor terms. In [45] the
authors employ Cartesian genetic programming and clock
gating to build approximate circuits that support approximate
and accurate modes. Nevertheless, this technique is applied
only on an 8-bit multiplier reporting significant overheads
(power, area) for the exact mode, especially when targeting
low error values. All these works examine only a specific
circuit/operation type and/or support only one approxima-
tion level. Finally, an approximate Coarse-Grained Reconfig-
urable Arrays (CGRA) architecture is employed in [62]. The
accurate multipliers and adders of the CGRA’s processing
elements are replaced by the dual-mode ones proposed in [43]
and [61] to achieve runtime accuracy reconfiguration. Then,
a mapping technique is proposed in [62] to map applications
to this approximate CGRA. Therefore, RETSINA and [62]
are co-operative by nature. RETSINA can be used to gener-
ate energy efficient approximate reconfigurable circuits and
a framework similar to [62] can be used to enable effi-
cient application mapping to these circuits. We differenti-
ate from the state-of-the-art and propose, for the first time,
an automated logic synthesis framework that generates
dynamically reconfigurable approximate circuits that feature
varying accuracy levels.

VI. CONCLUSION
Recently, approximate computing is established as a promis-
ing solution to design energy efficient circuits. However,
the requirement for computational accuracy is not fixed at
runtime and the impact of approximation to the end qual-
ity is highly input-dependent. In this work, we proposed
and implemented an automated approximate design frame-
work (RETSINA) to generate energy-efficient approximate
circuits that feature dynamically reconfigurable accuracy at
runtime and support several accuracy levels. Extensive exper-
imental evaluation using industry-strength benchmarks and
two state-of-the-art technologies demonstrates the efficiency
of our framework. In addition, we examined the efficacy
of our power-aware heuristic approach compared to the
state-of-the-art GLP framework and showed that it better
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identifies the approximationwire candidates. Finally, through
Neural Network inference application evaluation, we high-
lighted the high efficiency of the circuits generated by our
framework in terms of both accuracy control as well as energy
reduction.
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