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1 Introduction

Creating an accurate classification rule is often one crucial part of machine
learning tasks. In many cases, dimensionality reduction methods are able to
contribute to the solution of the task (cf. (Guyon et al (2006)). Combining
classifiers (Kuncheva (2004)) is another powerful technique to solve this problem.

We present a dimensionality reduction technique, which is able to increase the
classification performance of some initial separating hyperplane by combining
discriminant and margin-based properties. Specifying the application scenario,
we concentrate on Linear Discriminant Analysis (LDA) (Fisher (1936)) and on
the situation, where the boundaries of the classes might be lying relatively close
to each other. As a logical intuitive workflow, the experts will fit a separating
hyperplane exactly between boundaries of the classes. They rather will prefer a
geometrical margin-based separation provided by, e.g., a linear Support-Vector-
Machine (SVM) (Vapnik and Chervonenkis (1974); Vapnik (1998)), and not a
statistics-based separation by LDA. Therefore, the statistical strengths of LDA
will be neglected, however, possible overfitting drawbacks of SVM will be taken
into account. The method, which we present in this paper, contributes to the
discussed situation. It combines both classifiers and profits from the statistical
nature of LDA and the margin-like strengths of SVM.

Our method is based on the LDA classification post-refined by a margin-based
optimisation. The goal is to improve the initial LDA classification behaviour
on the boundaries of classes. The procedure is related to the method described
in (Dörksen and Lohweg (2017)), which is originally designed for SVM classifi-
cation. Differently to the SVM refinement from (Dörksen and Lohweg (2017)),
we define rules for the fast margin-based LDA refinement. Our method concen-
trates on the value of the margin of LDA classifier, which will be increased. In
addition, by the rules we are looking for the features in the lower-dimensional
spaces with more powerful discriminative properties as in the original space.

We prove several statements regarding theoretical fundamentals of the
refinement method as well as examine it experimentally on datasets from the
UCI (2017) Machine Learning Repository. For many examples we illustrate,
that our method has higher generalisation ability and outperforms initial LDA
as well as SVM results.
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2 Approach

This section is organised as follows. In the first part we recall the theoretical
foundations of LDA and SVM, which are required for our refinement method.
In the second part we describe the approach and in the third part we define the
rules for its fast implementation.

2.1 Foundations of LDA and SVM Classification

We consider the classification task for two classes x+ ∈ T+ and x− ∈ T−,
where x+,x− are subsets of objects. Objects are row vectors x ∈ Rd with
x = (x1, . . . , xd) in the d-dimensional feature space X ⊂ Rd. Feature vectors
f+1 , . . . , f

+
d
and f−1 , . . . , f

−
d
for classes T+ and T− are defined as follows:

f+i := {xi | for all xi ∈ x+}, f−i := {xi | for all xi ∈ x−}, i = 1, . . . , d.

Feature vectors f+i resp. f−i are column vectors of the lengths corresponding to
the number of objects in classes T+ resp. T−.

We assume that a linear combination of features x1, . . . , xd (or a projection
of an object x) is given as:

h(x) = 〈a,x〉 =
d∑
i=1

aixi, (1)

where a = (a1, . . . ,ad) and ai ∈ R, i = 1, . . . , d. With some scalar (so-called
bias) c ∈ R, the rule for the linear classification, w.r.t. Equation (1) is the
following:

x ∈ T+, if h(x) ≥ c and x ∈ T−, if h(x) < c. (2)

In the geometrical interpretation, the equality h(x) = c represents a hyperplane
in Rd, which separates the classes T+ and T−.

First classifier in our investigations is LDA. It provides a classification
hyperplane by solving an optimisation task with respect to the so-called Fisher’s
linear discriminant (Fisher (1936)). Maximizing the discriminant corresponds
to the searching for the direction, which maximizes the projected class means
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while minimizing the variance of the classes in this direction. Without loss
of generality, in the theoretical part of our work we do not concentrate on the
original value of Fisher’s linear discriminant, but rather on the almost equivalent
distance metric d (Guyon et al (2006)), which we name also discriminant in
our framework. Distance d relies on the both functions mean µ : Rn → R and
variance σ2 : Rn → R, though for a vector v = (v1, . . . , vn) holds:

µ(v) =
1
n

n∑
k=1

vk, σ2(v) =
1
n

n∑
k=1
(vk − µ(v))2 .

We set µ+i := µ(f+i ), µ−i := µ(f−i ) and σ
2
+i := σ2(f+i ), σ

2
−i := σ2(f−i ). The

distance d between classes w.r.t. single feature vectors f+i and f−i is following:

d(f+i , f
−
i ) :=

(µ+i − µ−i)
2

σ2
+i + σ

2
−i

. (3)

The extention of the above definition depends on the linear combinations of
feature vectors. For a vector a = (a1, . . . ,ad), we receive the corresponding
linear combinations of feature vectors:

f+(a) := a1 · f+1 + . . . + ad · f+d and f−(a) := a1 · f−1 + . . . + ad · f−d . (4)

The terms f+(a) resp. f−(a) are column vectors of the same lengths as f+i resp.
f−i . Within settings

µ+ := µ
(
f+(a)

)
, µ− := µ (f−(a)) , σ2

+ := σ2 (
f+(a)

)
, σ2
− := σ2 (f−(a)) ,

the distance metric d is defined for linear combinations of feature vectors as
follows:

d
(
f+(a), f−(a)

)
=
(µ+ − µ−)

2

σ2
+ + σ

2
−

. (5)

Thus, the metric d is based on statistical characteristics of the feature vectors
and their linear combinations. Further, LDA corresponds to the solution of the
optimisation task:

max
a

d
(
f+(a), f−(a)

)
for a ∈ Rd .

Regarding scaling and translation, the discriminant d has the following
properties:
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1. Scaling: For an enlarging or shrinking of a with respect to s ∈ R, s , 0,
which is s · a = (s · a1, . . . , s · ad), holds:

d
(
f+(s · a), f−(s · a)

)
= |s | · d

(
f+(a), f−(a)

)
. (6)

2. Translation: For each translation vector t = (t1, . . . , td) ∈ Rd and linear
combinations of the translations of feature vectors, i.e.
a1 ·

(
f+1 + t1

)
+ . . . + ad ·

(
f+
d
+ td

)
=: [f+ + t](a) resp.

a1 ·
(
f−1 + t1

)
+ . . . + ad ·

(
f−
d
+ td

)
=: [f− + t](a) holds:

d
(
[f+ + t](a), [f− + t](a)

)
= d

(
f+(a), f−(a)

)
. (7)

Our second classifier is SVM. The SVM provides a geometrical solution for the
separating hyperplane between classes by searching for the largest margin ρ,
which represents the distance between boundaries of the classes. We illustrate in
Figure 1 the geometrical interpretation of margin for a simple example in a two-
dimensional feature space. For the separable case in canonical form (Schölkopf
and Smola (2002)) the margin

ρ =
2
‖a‖
=

2√
a2

1 + . . . + a2
d

(8)

is maximized. Within labels y = 1 for all x+ ∈ T+ and y = −1 for all x− ∈ T−,
it is equivalent to the solution of the problem:

min
1
2
‖a‖2

subject to yi (〈a,xi〉 − c) ≥ 1 (9)
with xi ∈ {x+,x−}, ∀i.
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Figure 1: Two classes 2 and • are considered. In a) the SVM classification solution with aSVM =

(−1, −1) is shown by the solid line. The so-called support vectors (more details found in (Schölkopf
and Smola (2002)) are indicated by © . The distance from the classification boundary to the support
vectors is equal to ρSVM /2. From formula (10) ρSVM = 2/

√
2 ≈ 1.41. The discriminant value (4)

for aSVM is dSVM ≈ 3.20. For the same classes, in b) the LDA classification solution with aLDA =

(−1.9480, −2.2868) is shown by the solid line. Here, the discriminant value (4) is dLDA ≈ 4.68
and ρLDA ≈ 0.67. Dashed lines in a) and b) represent all points having the distances ρSVM /2 resp.
ρLDA/2 to the classification boundaries.

For the non-separable case slack variables ξi with ξi ≥ 0, ∀i are defined.
Slack variables store the deviation from the margin ρ in order to relax the
constraints (Alpaydin (2010)). A soft margin classifier for a non-separable case
is the solution of the problem:

min
1
2
‖a‖2 + C

∑
i

ξi

subject to yi (〈a,xi〉 − c) ≥ 1 − ξi (10)
with xi ∈ {x+,x−}, ξi ≥ 0, ∀i,

where the constantC > 0 determines the trade-off between margin maximization
and training error minimization (Schölkopf and Smola (2002)). In our investiga-
tions, without loss of generality, we apply formula (10) for the calculation of
the margin value ρ for both separable and non-separable cases.
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2.2 Refinement of LDA

The workflow of the refinement approach consists of three basic steps presented
below.

i. Calculation of the initial separation hyperplane with LDA and the corre-
sponding margin ρLDA resp. Equation (10) based on initial parameters
aLDA.

ii. Dimensionality reduction of the feature space based on initial parameters
aLDA of the LDA hyperplane.

iii. Calculation of the SVM separation parameters bSVM in reduced feature
space, such that for the re-calculated margin of SVM hyperplane ρREF

in the original space (resp. Equation (19) below) holds:

ρLDA ≤ ρREF . (11)

We remind here that we apply formula (10) for the calculation of the margin
value for both separable and non-separable cases. To illustrate the steps of the
workflow, we assume that a classification rule in Equation (2) is calculated
with LDA. The margin of the initial rule is ρLDA = 2/‖a‖. The original LDA
projection is a linear mapping h : Rd → R into a one-dimensional space with:

h(x) = h(x1, . . . , xd) =
d∑
i=1

aixi . (12)

However, there are further LDA initiated linear projections g : Rd → Rj into
lower dimensional spaces U with 1 < j < d. We define:

Definition 1 Let g : Rd → Rj be a linear mapping into the feature spaces
U ⊂ Rj of dimensions j = 2, . . . , d − 1:

g(x1, . . . , xd) =
©­­­­«

∑
i∈I1

aixi

...∑
i∈Ij

aixi

ª®®®®¬
:=

©­­«
u1
...

u j

ª®®¬ , (13)

where for k = 1, · · · , j holds Ik ⊂ {1, · · · , d}.
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If all Ik are non-empty disjoint subsets of indices with the property that:

j⋃
k=1

Ik = {1, · · · , d} and Ik ∩ Il = ∅ for all l , k, (14)

then g is called refinement mapping.

Due to the definition above, it is clear that j < d, i.e. g is a mapping, which
leads to a dimensionality reduction of the initial feature space. In the refinement
mapping g all possible aixi’s, i = 1, . . . , d of h appear in some uk , k = 1, . . . , j
and each aixi appears only once. In the feature space U we calculate parameters
for the new SVM hyperplane as:

h̃(u) = h̃(u1, . . . ,u j) =

j∑
i=1

biui . (15)

Thus, for b1, . . . , bj ∈ R and scalar c̃ the rule for the linear classification in the
feature space U is the following:

x ∈ T+, if
j∑

i=1
biui ≥ c̃ and x ∈ T−, if

j∑
i=1

biui < c̃. (16)

The margin of SVM in the space U is obviously ρSVM = 2/‖b‖. It is clear,
that the direct comparison of ρLDA and ρSVM makes no sense. We have to
re-calculate the margin of h̃ in the original space. Obviously, the formula is:

ρREF =
2√

b2
1
∑

i∈I1 a2
i + · · · + b2

j

∑
i∈Ij a2

i

. (17)

Example 1 We illustrate the dimensionality reduction principle of a projection
g on the dataset iris (found in UCI (2017) Machine Learning Repository or
in MATLAB R2016b as fisheriris). The sample has four features and three
classes with 50 objects in each class. The classes are: ’setosa’, ’versicolor’ and
’virginica’. We consider the classes ’versicolor’ and ’virginica’ and calculate
the LDA solution (by MATLAB R2016b code classify with coef as a structure
array containing coefficients describing the boundary between classes; coef
consists of the linear term and a constant term. The linear term corresponds to
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the parameters of the linear combination h in Equation (1), the constant term
corresponds to the bias c in Equation (2). The calculated projection h and the
bias c for the dataset are the following:

h(x) = 3.5563 x1 + 5.5786 x2 − 6.9701 x3 − 12.3860 x4

and c = −16.6631 (18)

and the classification accuracy for the boundary between classes is 97%. We are
interested in a more powerful classification rule with respect to the classification
accuracy. Thus, we construct the linear projection g for j = 2, I1 = {1} and
I2 = {2,3,4}, i.e.

g(x) =
(

u1
u2

)
=

(
3.5563 x1

5.5786 x2 − 6.9701 x3 − 12.3860 x4

)
(19)

Figure 2 shows the classes in the feature space U ⊂ R2.

Figure 2:LDA initiated two-dimensional feature spaceU and iris sample projected into it are illustrated.
The original LDA boundary corresponds to the solid line: u1 + u2 = c.
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In the feature space U we are able to increase the classification accuracy till
98% if we now apply the SVM method. Based on SVM, the new classification
rule is the following:

x ∈ T+, if b1 u1 + b2 u2 ≥ c̃ and x ∈ T−, if b1 u1 + b2 u2 < c̃, (20)

where b1 = 0.6074, b2 = 0.9579 and c̃ = −24.0495. It can be easily seen, that
the hyperplane b1 u1 + b2 u2 = c̃ in the space U is equivalent to the hyperplane

h̃(x) = b1 a1 x1 + b2 · (a2 x2 + a3 x3 + a4 x4) = c̃ (21)

in the original space X and, in general, hyperplanes h(x) = c and h̃(x) = c̃ are
different, i.e. they lead to different classification results. The margins of h(x)
and h̃(x) are comparable. They are resp. ρLDA = 0.1276 and ρREF = 0.1353.
Thus, we were able to find a new separating hyperplane with larger margin and
higher classification accuracy as the initial LDA.

Some properties of linear mappings g, which transform the original d-
dimensional feature space X ⊂ Rd into lower-dimensional feature space U ⊂ Rj

for j = 2, . . . , d − 1, are described in proposition (1):

Proposition 1. Assume a linear projection h(x) from Equation (1) and refine-
ment mappings g(x) are considered. It holds:

1. Classification rules for h(x) w.r.t. (2) and for
j∑

i=1
biui are equivalent,

whether bi = 1 for all i = 1, . . . , j and c = c̃.

2. There are
(d
2
)
different linear mappings, which transform the original

d-dimensional feature space X into the d − 1-dimensional feature space
U.

3. The number of different transformations of the original d-dimensional
feature space X into the two-dimensional feature space U is:

d/2−1∑
j=1

(
d
j

)
+

1
2

(
d

d/2

)
, if d is even; (22)

(d−1)/2∑
j=1

(
d
j

)
, if d is odd. (23)
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Proof. 1. It follows from the definition of g:

j∑
i=1

biui =
j∑

i=1
ui =

d∑
i=1

aixi, (24)

i.e. the statement is true.
2. With different nomenclature, this statement is related to (Dörksen and

Lohweg (2014, Prop. 1)).

3. The statement is related to (Dörksen and Lohweg (2014, Prop. 2)).
�

2.3 Rules for Fast Refinement

The calculation of all possible non equal mappings g might be a crucial task
in the case the dimension of the feature space X is large. As one example, the
calculation time of all d − 1-dimensional feature spaces U is O(d2) and of
two-dimensional feature spaces is O(2d) (Dörksen and Lohweg (2014, Prop. 3)).
From that point of view, we are interested not in the best classification solution
through all possible feature spaces U. We are rather interested in rules for the fast
searching for such U, where we expect to receive higher classification accuracy
as in the initial space X. One possible rule, called Min/Max rule is described
in (Dörksen and Lohweg (2017)). Min/Max rule finds the d − 1-dimensional
feature space U within the time that depends linearly on the number of features.
We adopt this rule as follows:

Min/Max Rules for Margin-based Refinement
1. Find the set I of two indices k1 and k2 from {1, · · · , d} such that

a2
k1
+ a2

k2
=

∑
i∈I a2

i is minimal (forMin Rule) or maximal (forMax Rule),
i.e. choose from |a1 |, · · · , |ad | two with minimal or maximal values,
respectively.

2. For the set I define the linear mapping g : Rd → Rd−1 such that

g(x) = (u1, . . . ,ud−1)
T

with u1 =
∑
i∈I

aixi. The entries for ui, i , 1 are all remaining aixi’s with

1 ≤ i ≤ d and i < I.
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Proof. By the selection
∑

i∈I a2
i with only two elements in I we expect that the

refinement for ai’s, i < I is marginal, i.e. bj ≈ 1, for j , 1. In that case the
margin value ρREF depends mainly on both

∑
i∈I a2

i and b2
1. Thus, the margin

ρREF represented in Equation (19) will become large whether
∑

i∈I a2
i or b2

1 (or
both) are small. The influence of b1 is not possible, but it is possible to select
the appropriate ai’s. We deduce that |ai |’s with small values strongly enlarge the
margin. This fact leads to theMin Rule. For theMax Rule, the argumentation
for the selection of the large |ai |’s is the opposite. By the margin optimisation
within Max Rule, we degrade the contribution of |ai |’s with large values and
increase the margin. �

For these rules the time complexity of the dimensionality reduction is O(d). The
restriction of these rules is that only mappings g : Rd → Rd−1 which reduce
the dimension by 1 are considered. By this restriction, the performance of the
refinement might be marginal for several data sets. To overcome this situation,
we are interested in such mappings g : Rd → Rj for arbitrary j.

We concentrate on LDA fundamentals and corresponding solution, i.e. a =
aLDA. The discriminant value d from (4) is related to the discriminative power
of feature vectors, i.e. higher d means higher discriminative power of the
separation. Our idea is to construct mappings g : Rd → Rj , such that the feature
vectors in the space U have higher discriminative power than the feature vectors
in the original space X. Within a set I of indices from {1, · · · , d}, corresponding
vector aI and the setting:

f+(aI ) :=
∑
i∈I

aif+i and f−(aI ) :=
∑
i∈I

aif−i ,

this idea leads to the following rule:

Discriminant Rule
1. Find a set I of indices from {1, · · · , d} such that for the corresponding

ai’s, i ∈ I holds:

d
(
f+(aI ), f−(aI )

)
≥ d

(
f+i , f

−
i

)
for all i ∈ I (25)

2. If I , ∅ define the refinement mapping g : Rd → Rj .

Proof. By defining the projection g we establish that the discriminative power
of the feature vector combination is larger or equal than discriminative power of
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each single feature vector of the set I, i.e. features in the space U have higher or
equal discriminative power as features in the original space X. �

We remark that the weights aI for the feature vectors of the subset I correspond
to the weights of the initial classification. The discriminant d (f+(aI ), f−(aI )) is
calculated on these weights and does not need a re-optimisation.

The limitation of the presented discriminant rule arises by the question how
to find such a set I with property (27). A combinatorial solution of this problem
is unacceptable for large d. One possible technique to find the set I is the
combination of the discriminant rule andMin/Max rule. It is simply based on
the finding mapping g : Rd → Rj iteratively by theMin/Max Rule and testing
property (27) in each iteration. The time complexity of this rule is O(d log d).
For the pseudocode, see algorithm 1:

Algorithm 1 Discriminant Rule with Min/Max

1. Initiate I = ∅.

2. Choose the index k corresponding to |ak | with minimal/maximal value
(within iteration of this step do not consider the |ak | which are already in
I).

3. If property (27) is true, then add k to the set I and go to 2 again. Otherwise,
go to 4.

4. If I , ∅ define refinement mapping g : Rd → Rj .

Finally, we describe one rule, which is based on finding such subsets I of the
feature vectors, that for the LDA solution a = aLDA holds:

d
(
f+(aI ), f−(aI )

)
> d

(
f+(a), f−(a)

)
. (26)

Also in this case, the weights aI for the features of the subset I correspond to
the weights of the initial classification. The discriminant d (f+(aI ), f−(aI )) is
calculated on these weights and does not need re-optimisation.

Under the assumption that feature vectors are normally distributed (i.e.
in our denotations it means f+i ∼ N(µ+i, σ

2
+i) and f−i ∼ N(µ−i, σ

2
−i) for all
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i = 1, . . . , d), for their linear combination the following theorem is well-known
from mathematical statistics:

Theorem 1 Assume that variables Xi ∼ N(µi, σ
2
i ), 1 ≤ i ≤ d are normally

independent identically distributed. Then for their linear combination Y within
parameters ai ∈ R, i = 1, . . . , d and some scalar c ∈ R holds:

Y =
d∑
i=1

aiXi + c ∼ N(µ,σ2), with µ =
d∑
i=1

aiµi + c, σ2 =

d∑
i=1

a2
i σ

2
i . (27)

Without loss of generality, we consider our classes in standardised form: The
feature vectors in the class T+ have values µ+i = 0 and σ2

+i
= 1 for all

i = 1, . . . , d. All feature vectors of the class T− can be transposed respectively.
Their means and standard deviations are µ−i and σ2

−i
for all i = 1, . . . , d. We

assume that all feature vectors are normally independent identically distributed.
According to Theorem 1 it holds for the linear combination of feature vectors
f+i , i = 1, . . . , d from the class T+ within parameters ai ∈ Rd, i = 1, . . . , d and
some scalar c ∈ R:

f+(a) =
d∑
i=1

aif+i + c ∼ N(µ+, σ2
+), (28)

with

µ+ =

d∑
i=1

aiµ+i + c = c and σ2
+ =

d∑
i=1

a2
i σ

2
+i
=

d∑
i=1

a2
i . (29)

The linear combination of the feature vectors in the class T− distributed
respectively N(µ−, σ2

−), where

µ− =

d∑
i=1

aiµ−i + c and σ2
− =

d∑
i=1

a2
i σ

2
−i
. (30)

We insert means and standard deviations into formula (4). It follows:

d
(
f+(a), f−(a)

)
=

(
c −

(
d∑
i=1

aiµ−i + c
))2

d∑
i=1

a2
i +

d∑
i=1

a2
i σ

2
−i

=

(
d∑
i=1

aiµ−i

)2

d∑
i=1

a2
i (1 + σ2

−i
)

. (31)



Margin-based Refinement for Linear Discriminant Analysis 15

Assume, that the subset I would be constructed by eliminating one single
feature j, i.e. I = {1, . . . , d} \ j. Thus, we are interested in the relation between
d (f+(a), f−(a)) and d (f+(aI ), f−(aI )). It holds:

d
(
f+(a), f−(a)

)
=

(∑
i∈I

aiµ−i + aj µ− j

)2

∑
i∈I

a2
i (1 + σ2

−i
) + a2

j (1 + σ2
− j
)
≤

(∑
i∈I

aiµ−i + aj µ− j

)2

∑
i∈I

a2
i (1 + σ2

−i
)

.

(32)
Without loss of generality, we assume aj µ− j , 0. Further, assume that for the

single terms of the nominator
(∑
i∈I

aiµ−i + aj µ− j

)2
in formula (34) it is valid:

sign
∑
i∈I

aiµ−i , sign aj µ− j and

�����∑
i∈I

aiµ−i

����� > ��aj µ− j
�� . (33)

Within the assumption (??), it follows that eliminating the term aj µ− j will
increase the nominator, i.e. for the subset I it is true:

d
(
f+(aI ), f−(aI )

)
> d

(
f+(a), f−(a)

)
.

Now we are able to prove the following statement:

Lemma 1. Assume two classes T+ and T− given in standardised form have
normally independent identically distributed feature vector. Assume all aiµ−i ,
0, i = 1, . . . , d. Further, within signα = 1 for α > 0 and signα = −1 for α < 0,
for subsets I1 and I2 with I1 ∪ I2 = {1, . . . , d} and I1 ∩ I2 = ∅ holds:

sign
∑
i∈I1

aiµ−i , sign
∑
i∈I2

aiµ−i . (34)

If
��� ∑i∈I1 aiµ−i

��� > ��� ∑i∈I2 aiµ−i
���, then d

(
f+(aI1), f−(aI1)

)
> d (f+(a), f−(a)).

Otherwise, i.e. if
�� ∑

i∈I1 aiµ−i
�� < �� ∑

i∈I2 aiµ−i
��, then d

(
f+(aI2), f−(aI2)

)
>

d (f+(a), f−(a)).

Proof. The statement of the lemma is true by the fact that the value of
d (f+(a), f−(a)) can be increased by enlarging the value of the nominator or
reducing the value of the denominator. �
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Based on the considerations above, we define the sign rule in algorithmus 2:

Algorithm 2 Sign Rule

1. Consider the classes in standardised form: the feature vectors of the class
T+ have values µ+i = 0 and σ2

+i = 1 for all i = 1, . . . , d. All feature
vectors of the class T− are transposed respectively.

2. Define subsets I1 and I2 as follows: I1 = {i | aiµ−i > 0} and I2 = {i |
aiµ−i < 0}. Thus, sign

∑
i∈I1 aiµ−i = 1 , sign

∑
i∈I2 aiµ−i = −1.

3. If
∑

i∈I1 aiµ−i >
��� ∑i∈I2 aiµ−i

���, then define I := I1. Otherwise, if∑
i∈I1 aiµ−i <

�� ∑
i∈I2 aiµ−i

��, then define I := I2.

4. If I , ∅ define refinement mapping g : Rd → Rj .

We remark, that the Sign Rule is constructed from the analysis of discriminative
characteristics of feature vectors combinations and it is not margin-based.
Therefore, the refinement within this rule will not neccesserily lead to the
increasing of the margin. Nevertheless, in the next section, we will present some
examples where this rule is working for the margin well.

3 Experimental Results

In this section we present experimental results of the application of the Discrim-
inant Rule with Min/Max and Sign Rule to datasets from the Machine Learning
Repository (UCI (2017)). The refinement results for these datasets indicate high
performance. The results of the application of stand-aloneMin/Max Rules for
Margin-based Refinement to several samples are found in (Dörksen and Lohweg
(2017)).

For the considered samples, the feature vectors in one class are standardised
to have values µi = 0 and σ2

i = 1 for all i = 1, . . . , d; all feature vectors of
another class are transformed respectively. Without loss of generality, the initial
margin is standardised ρinitial = 2 before refinement. Further, we define the
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Balance ≥ 1 of the sample as the number of objects #Obj(class) of one class
divided by the number of the objects of the other, i.e.

Balance =


#Obj(T+)
#Obj(T−) , if #Obj (T+) ≥ #Obj (T−) ,
#Obj(T−)
#Obj(T+) , otherwise.

For the well-balanced samples is Balance = 1, not well-balanced samples have
Balance > 1.

We present the classification rates in terms of accuracies (in %) and tK−1-
statistics of K-fold cross-validation (cv) paired t test (Alpaydin (2010)) for
comparing two classification algorithms. For the tests, the complete dataset
is divided randomly into K equalsized parts. To generate each pair, one of
the K parts is keeped out as the training set. The remaining K − 1 parts form
the validation set. Doing this K times, K pairs are formed. Thus, the training
sets consist of 10% and validation sets consist of 90% of the sample. For
K-fold cross-validation (cv) paired t test, two classification algorithms are
trained K times on the same sets. The error percentages of the classifiers on the
corresponding validation sets are recordered as p1

i and p2
i for i = 1, . . . ,K .

If the two classification algorithms have the same error rates, then we expect
them to have the same mean, or equivalently, that for the difference of their
means holds µ(p1

i − p2
i ) = 0. That leads to the following hypotesis test w.r.t.

pi = p1
i − p2

i :

H0 : µ(p1
i − p2

i ) = 0 vs. H1 : µ(p1
i − p2

i ) , 0

Within values

µ =

∑K
i=1 pi
K

, σ2 =

∑K
i=1(pi − µ)

2

K − 1
,

the tK−1-statistic is defined as:

tK−1 ∼

√
K · µ
σ2 .

The larger the value of the tK−1-statistic is, the more it is likely that the
algorithms have different error rates. E.g. for t9: If |t9 | > 2.26, then we reject the
hypothesis that the algorithms have the same error rate with 97.5% confidence.
In our tests, we calculate tK−1-statistic for comparing the initial classifier with
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its refinement. In addition to the value tK−1, in Table 1 the information about
samples and classification calculations are following: The value #Feat = d is
the dimention of the considered feature space (i.e. number of features). The
number of all objects is:

#Obj = #Obj
(
T+

)
+ #Obj (T−) .

The LDA hyperplane is calculated within MATLAB 2016b function classify, the
SVM hyperplane within svmtrain. The refinement is performed by Algorithm 1
and Algorithm 2. The accuracy of LDA classification is denoted by LDA(%),
the accuracy of refinement is REF(%). The refinement rule is indicated byMin,
Max or Sign. The margin of the classification hyperplane after refinement is
marked by ρREF (to be compared with standardised ρLDA = 2). In addition,
the last column in Table 1 indicates the accuracy of the stand-alone SVM.

Table 1: Results of K-fold cv paired t test (K = 10) for refinement within initial LDA. In columns,
overall accuracies, margin ρREF as well as tK−1-statistics for benchmarking are given. Refinement
rule is indicated by Min, Max or Sign. For initial margin is valid ρLDA = 2 for all samples. All
samples are standardised with respect to one of the classes, such that for one class holds: µi = 0 and
σ2

i = 1, ∀i = 1, . . . , d. For comparison, last column indicates accuracy of the stand-alone SVM.
NA (not available) stands for the samples, where the SVM solution was not delivered by function
svmtrain..

Dataset #Feat #Obj Balance LDA (%) REF (%) ρREF tK−1 SVM (%)

Breast Cancer 9 683 1.86 94.88 95.61 Max 542.10 3.37 94.13

Splice 60 2423 2.15 81.30 86.66 Min 3.03 14.25 NA

Banknote
Authent.

4 1372 1.25 97.27 98.62 Sign 4.02 6.68 96.06

The results in Table 1 indicate clearly, that due to the refinement the margin
values are increased and the classification rates are improved. Furthermore,
according to the tK−1-statistics, the refinement performs better as initial LDA.
Even though the rules are announced for LDA, our method can be started with
linear SVM as initial feature combination. In Table 2 we illustrate the refinement
results for this case. The denotations in Table 2 are similar to such from Table 1
with the different initial classification hyperplane and corresponding accuracy
indicated by SVM (%). The last column in Table 2 represents the accuracies of
the stand-alone LDA.
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Table 2: Results of K-fold cv paired t test for refinement witin initial SVM. Table denotations are
similar to such from Table 1. Last column indicates accuracy of the stand-alone LDA. NA (not
available) stands for the samples, where the LDA solution was not delivered by function classify.

Dataset #Feat #Obj Balance SVM (%) REF (%) ρREF tK−1 LDA (%)

CNAE 333 240 1.00 79.31 85.23 Min 7.56 2.48 NA
Heart 13 270 1.25 76.91 78.11 Min 3.14 2.79 73.95
Indian Liver 10 579 2.51 61.05 62.28 Max 61.30 2.41 59.73
Plan. Relax 12 182 2.5 53.96 54.81 Max 62.76 2.94 NA
Ecoli 6 220 1.86 95.45 96.08 Sign 9.33 3.35 NA

Also in this scenario, tK−1-statistics illustrate, that the refinement outperforms
the initial SVM.
Finally, we show some results on samples which are not well-balanced. Accuracy
as an exclusive measure is not sufficient here. Scores based on true positives
and false negatives of each class are suitable for such problems. F-measures are
calculated as scores based on true positives and false negatives for each class,
where:

F(class) =
2 TP(class)

2 TP(class) + FP(class) + FN(class)
, (35)

and TP, FP, FN are resp. true positives, false positives, and false negatives. The
value of F-measure lies in the interval [0,1], i.e. with respect to the classification
accuracy in %, the value 0 corresponds to 0% resp. 1 to 100%. Table 3 represents
overall F-measures for K-fold cross-validation. Due to small sizes of single
classes, not all tests are executable with K = 10. For that reason, several tests
were executed with K = 5 or K = 3.

Table 3: For K-fold cross-validation, overall F-measures for initial LDA or SVM and for the corre-
sponding refinement are presented. F-measure is based on true positives and false negatives of each
class.

Dataset #Feat #Obj Balance F(T+) / F(T−) Initial F(T+) / F(T−) REF

Fertility (K = 5) 9 100 7.33 0.15 / 0.75 LDA 0.17 / 0.84 Min
Hepatitis (K = 3) 16 80 5.15 0.32 / 0.76 LDA 0.38 / 0.83 Max
Splice (K = 10) 60 2423 2.15 0.72 / 0.86 SVM 0.77 / 0.88 Min
Lung Cancer
(K = 5)

56 19 1.11 0.52 / 0.36 SVM 0.57 / 0.43 Sign
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The results of Table 3 illustrate, that the refinement is a powerfull method for
the not well-balanced samples.

4 Conclusion and Outlook

We presented a refinement method which is able to increase the accuracy of
classification and leads to a higher generalisation ability. Our method is based
on dimensionality reduction and combines discriminant and margin-based
properties of the separation between classes. Due to the relatively low time
complexity O(d log d) (where d is the number of the considered features) of the
Discriminant Rule with Min/Max as well as O(d) of Sign Rule, we suggest to
test the rules for their performance by classifier design within any hyperplane.

Our future investigations regarding this topic will consider research activities
for the definition of other rules for fast refinement, their suitability to large data
sets as well as possibilities of the incorporation of the refinement fundamentals
into one single step. Furthermore, applicability of the method in the context of
Feature Extraction and Feature Selection tasks will be analysed.
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