P-Rich Ylides

Phosphanylphosphinidene-Phosphoranes: A Study on Building and Decomposition of Phosphorus-Rich Chains with Two Ylidic **Moieties**

Eberhard Matern, [a] Christopher E. Anson, [a] Elke Baum, [a] Ewald Sattler, [a] and Ilona Kovács*[b]

Abstract: The reactions of tBu₂P-P=P(tBu₂)CH₂Li at low temperature with dichlorophosphanes RPCl₂ (R = Ph, Me, NEt₂, tBu) lead to "P-7-chains" as primary products wherein two ylidic moieties are linked by a CH_2 -PR- CH_2 unit. However, if R = tButhe long chain is only a by-product in addition to tBu₂P-P= P(tBu₂)Me. The thermal decomposition of "P-7-chains" as monitored by ³¹P NMR spectroscopy results in tBu₂P-CH₂-PR-CH₂-PtBu₂ ("P-3-chains") and the phosphanylphosphanylidene

{tBu₂P-P} which is observed as its cyclic trimer or tetramer. In the reactions of tBu(Me₃Si)P-P=P(tBu₂)CH₂Li with RPCl₂ the corresponding "P-7-chains" and the P₄CH₂-rings are formed. The substituent R strongly determines the ratio of chain to ring as well as the thermal stability of the products. The solid-state structures of one representative of both "P-7-chains", and of the oxidized derivative of the P_4CH_2 -ring with R = tBu were determined by single-crystal X-ray diffraction analysis.

Introduction

Phosphinidene-σ⁴-phosphoranes (XP=PR₃) can be interpreted as phosphinidenes protected by phosphanes PR3. Most phosphinidenes are too reactive to be isolated and can only be observed as trapped products.[1] Only recently Bertrand et al. reported on the first isolated phosphinidene, which is stable for weeks in the solid state at room temperature.^[2] Since the first example of a neutral phosphinidene-phosphorane, CF₃P=PMe₃, was reported by Burg and Mahler,[3] further types of this class of low-coordinated linear phosphorus compounds have been synthesized, such as the phosphanyl-substituted P-rich ylides, R₂P-P=PR₃ discovered by the group of Fritz^[4] and later the thermally stable ArP=PR₃ (Ar are sterically demanding aryl groups) observed by Protasiewicz et al.^[5] It has been shown that the latter representatives can react with electrophiles^[6] and can be used for phospha-Wittig syntheses.^[7]

Our research interests are focused on the chemistry of ylides of type R₂P-P=PR₃ with a pure phosphorus chain. We have synthesized numerous representatives of this class of materials^[4,8]

[a] Institut für Anorganische Chemie, Karlsruher Institut für Technologie, Engesserstrasse 15, 76131 Karlsruhe, Germany

[b] Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics,

Szt. Gellért tér 4. Budapest, 1111, Hungary E-mail: ikovacs@mail.bme.hu

http://iaachem.bme.hu

Supporting information and ORCID(s) from the author(s) for this article are available on the WWW under https://doi.org/10.1002/ejic.202000073.

© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. • This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Wiley Online Library

and studied extensively how their formation and properties depend on their substituents, [9] and some of these compounds were also structurally characterized.^[10] These ylides possess a remarkable synthetic potential as phosphanylphosphinidene transfer reagents in the chemistry of transition metal complexes.[11] A number of other phosphanylphosphinidene-phosphoranes are accessible by phosphane-exchange reactions. The extent of these equilibrium reactions depends on the substituents in the phosphanes.[12]

Linear oligophosphanes of type $R_2P-(PR)_n-PR_2$ (R = alkyl, aryl, $SiMe_3$) with a chain length n > 4 are unstable.^[13] Attempts to access such long P-chains resulted in cyclophosphanes and diphosphanes as a consequence of disproportionation and rearrangement reactions. The synthesis of tBu(Me₃Si)P-P= P(tBu₂)Me^[8b] with the functional SiMe₃ group at the terminal P-atom offered the chance to study the influence of a phosphinidene-phosphorane unit on the formation of longer Pchains. Furthermore, the question arises whether the inclusion of a second phosphinidene-phosphorane unit in the same molecule might be possible. Schmidpeter et al. reported earlier on the preparation of tetraphosphenes and cyclotetraphosphanes with two R₃P=C ylidyl substituents which stabilize a low coordination environment of phosphorus.^[14] The bis- and tris(alkylidene-phosphoranyl)phosphanes observed by Karsch represent a new type of ylide-phosphane chelating ligands. [15] Protasiewicz et al. developed a diphospha-Wittig reagent containing two Me₃P=P ylidyl units that was successfully used for the synthesis of phosphaalkene polymers.^[16]

In order to obtain a P-rich phosphinidene-phosphorane the cleavage of the Si-P bond in tBu(Me₃Si)P-P=P(tBu₂)Me with nBuLi in THF was attempted. However, the PMe group was lithiated resulting in the ylide tBu(Me₃Si)P-P=P(tBu₂)CH₂Li; this sur-

prising reactivity is similar to that previously reported for $tBu_2P-P=P(tBu_2)Me.^{[17]}$ In the present work, we describe the reactions of these functionalized ylides with various dichlorophosphanes RPCl₂, which result in neutral P-rich chains and rings, and the effect of the group R on the thermal stability of these new ylides. The decomposition processes could be monitored by ^{31}P NMR spectroscopy. All compounds were investigated by NMR spectroscopy in solution, and by single-crystal X-ray structural determination when appropriate.

Results and Discussion

Reactions of tBu₂P-P=P(tBu₂)CH₂Li (2) with RPCl₂

Generated via lithiation of the parent ylide **1**, compound **2** reacts with dichlorophosphanes RPCl₂ with R = Ph, Me, NEt₂, and tBu (molar ratio 2:1) at low temperature to afford the new Prich compounds **3a**–**d** which contain two ylidic moieties linked by a CH₂–P–CH₂ unit, which we will refer to here as "P-7-chains" (Scheme 1).

$$tBu_{2}P-P=P(tBu_{2})CH_{3}$$

$$tBu_{2}P-P=P(tBu_{2})CH_{2}Li$$

$$tBu_{2}P-P=P(tBu_{2})CH_{2}Li$$

$$tBu_{2}P-P=P(tBu_{2})CH_{2}Li$$

$$tBu_{2}P-P=P(tBu_{2})-CH_{2}-P(R)-CH_{2}-(tBu_{2})P=P-PtBu_{2}$$

$$R=Ph~(3a),~Me~(3b),~NEt_{2}~(3c),~tBu~(3d)$$

Scheme 1. Formation of "P-7-chains" 3a-d.

The stability of $\bf 3a-d$ formed as primary products in all reactions depends strongly on the substituent R. Dichlorophosphanes RPCl₂ (R = Ph, Me, or NEt₂) react with $\bf 2$ to give almost exclusively the "P-7-chains" $\bf 3a-c$. Only small amounts of $tBu_2P-P=P(tBu_2)Me$ (1) were observed as by-product, which is formed by protonation of the starting THF-containing compound $\bf 2$. This back-protonation occurred already during the synthesis of $\bf 2$. In contrast, the reaction of $tBuPCl_2$ with $\bf 2$ gives the "P-7-chain" $\bf 3d$ only in low yield, with the major product the starting

Scheme 2. Decomposition of 3a-d.

material $tBu_2P-P=P(tBu_2)Me$ **1.** The formation of the protonated ylide corresponds to the general behavior of compounds with sterically strained tBu groups, which readily eliminate $Me_2C=CH_2$. During the reaction, the shorter chain **4d** was already being formed by decomposition of **3d** (Scheme 2), with the molar ratio of compounds **1:3d:4d** estimated as 4:1:1 by integration of the $^{31}P\{^{1}H\}$ NMR spectra. Compound **3d** could not be isolated, however **3a–c** were obtained as colorless solids and investigated by ^{1}H and ^{31}P NMR spectroscopy in solution.

At room temperature, compounds **3a–c** can be stored for days in the solid state under dry nitrogen with little decomposition, whereas in solution the long "P-7-chains" decompose much more rapidly, forming successively the shorter chains **4a–d** and then **5a–d** by loss of the phosphinidene unit {*t*Bu₂P–P} (Scheme 2). The latter oligomerizes, forming the cyclophosphanes [*t*Bu₂PP]₄ and [*t*Bu₂PP]₃. These decomposition processes could be monitored by ³¹P NMR spectroscopy (Figure 1). A similar decomposition was also observed in the case of the previously investigated compounds of type R₂P–P=PR₃ containing only one ylidic unit. ^[4] The PPh-bridged compound **3a** proved to be the most stable of these "P-7-chains" in solution, and both **3a** and its decomposition product **4a** could also be characterized by ¹³C NMR spectroscopy.

Reactions of tBu(Me₃Si)P-P=P(tBu₂)CH₂Li (7) with RPCl₂

Analogously to the formation of **2** from **1**, the lithiated $tBu(Me_3Si)P-P=P(tBu_2)CH_2Li$ (**7**) can be generated from the ylide

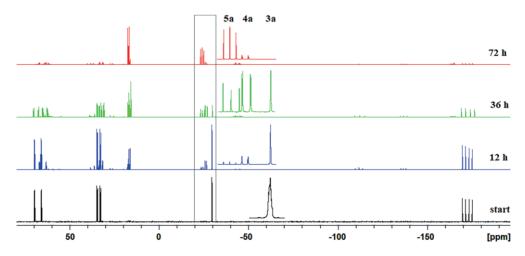
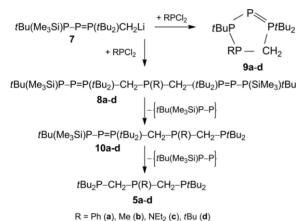



Figure 1. $31P\{^1H\}$ NMR spectra of the decomposition of **3a** in C_6D_6 at 25 °C. Bottom trace: pure **3a**; second trace: decomposition beginning (**3a > 4a > 5a**); third trace: further decomposition; top trace: **5a** >> **4a**, no **3a** remains.

tBu(Me₃Si)P-P=P(tBu₂)Me (6). In contrast to 2, compound 7 now has two functional groups and can therefore react with RPCl₂ to form either the "P-7-chains" 8a-d or P₄CH₂-rings 9a-d (Scheme 3). Which reaction branch prevails depends strongly on the substituent R and less on the molar ratio of the reactants. In the case of R = Me or Ph, "P-7-chain" formation is favored at low temperature (-60 °C), independent of the stoichiometry. In the ³¹P NMR spectra of the reaction solutions, signals of rings could only be observed with low intensity. For R = tBu or NEt_2 the formation of both ring and chain was observed. However, when R = tBu a molar ratio of **7:**RPCl₂ = 1:1 favors the ring formation, whereas ring and chain are formed in comparable amounts with a molar ratio of $7:RPCl_2 = 2:1$. If the reaction was carried out at a slightly higher temperature (-30 °C), the amount of chains increased compared to that of the rings. In addition, the back-protonation of 7 to the starting compound $tBu(Me_3Si)P-P=P(tBu_2)Me$ (6) was also observed. Furthermore, all reactions were accompanied by the formation of tBu(Me₃Si)P-P=P(tBu₂)-CH₂-SiMe₃ (11) as a by-product.

Scheme 3. Formation and decomposition of "P-7-chains" **8a-d** and rings **9a-d**.

Due to the rather low thermal stability of these "P-7-chains" in solution at room temperature, they decompose rapidly, first to the "P-5-chains" **10a-d**, and then the "P-3-chains" **5a-d**. The formation of these compounds results from the loss of the phosphinidene {tBu(Me₃Si)P-P}, similar to the decomposition of the chains **3a-d**. However the analogous subsequent reaction, the formation of cyclophosphanes by tri- or tetramerization of {tBu(Me₃Si)P-P}, could not be detected; only signals from monophosphanes [e.g. tBuP(SiMe₃)₂] and higher phosphanes could be observed in the ³¹P NMR spectra. These decomposition products can be formed by breaking of all P-P bonds in the chains.

Compounds **5a,c,d** could be synthesized and isolated by a different procedure (Scheme 4) and characterized by ¹H, ¹³C, ³¹P NMR spectroscopy, as well as by mass spectrometry. These

$$2 tBu_2PCH_2Li + RPCI_2 \xrightarrow{THF, -60 \text{ °C}} tBu_2P-CH_2-P(R)-CH_2-PtBu_2$$

 $5a,c,d$
 $R = Ph (5a), NEt_2 (5c), tBu (5d)$

Scheme 4. Synthesis of "P-3-chains" 5a,c,d.

results have greatly facilitated the identification of the decomposition products and the assignment of the signals in the NMR spectra, as only compound **5b** had been previously reported.^[19]

³¹P{¹H} NMR Investigations

The ³¹P{¹H} NMR spectra of the chains **3a-d** show four signal groups (Table 1); the $(P^1-P^2-P^3-CH_2-)$ and $(-CH_2-P^5-P^6-P^7)$ moieties give identical spectra by symmetry. (The notation of the P atoms is consistent with that of the molecular structures.) The ³¹P NMR signals of the phosphanyl atoms P¹, P⁷ appear in the range of 30.9 to 33.5 ppm as dd multiplet, similar to those in $tBu_2P-P=P(tBu_2)Me$ (1), while those for the phosphinidene atoms P^2 , P^6 are in the range of -167.4 to -173.7 ppm. The latter are strongly shifted downfield compared to 1 (δP^2 = -200.6 ppm), and show ddd splitting owing to the atoms P1, P^7 , and P^3 , P^5 , and P^4 , respectively. The ^{31}P NMR signals of the phosphorane atoms P³, P⁵ (in the range of 62.0 to 67.6 ppm) are observed slightly downfield relative to the corresponding signal in 1 and show ddd splitting. The ³¹P chemical shifts of P⁴ depend on the substituents (Table 1). The coupling constants $^{1}J_{P1,P2}$, $^{1}J_{P6,P7}$ with values of about 290 Hz and $^{1}J_{P2,P3}$, $^{1}J_{P5,P6}$ of about 600 Hz, respectively, indicate a strongly different bonding situation in the molecules. The large absolute values of ${}^{1}J_{P2,P3}$ indicate a partial double bond between P² and P³, as was also shown for 1.[10b] The molecular structure of 3a from singlecrystal X-ray diffraction is in accordance with the NMR results (see later).

Table 1. ^{31}P NMR data of $tBu_2P^1-P^2=P^3(tBu_2)Me$ (1), $tBu_2P^1-P^2=P^3(tBu_2)CH_2Li$ (2), and $tBu_2P^1-P^2=P^3(tBu_2)-CH_2-P^4(R)-CH_2-(tBu_2)P^5=P^6-P^7tBu_2$ (3a-d). $^{[a]}$

	3a	3b	3с	3d	1	2
$\delta P^1/P^7$	33.5	30.9	33.1	30.9	33.6	39.9
$\delta P^2/P^6$	-172.5	-173.7	-172.2	-167.4	-200.6	-176.2
$\delta P^3/P^5$	67.5	63.2	67.6	62.0	58.0	78.8
δP^4	-29.8	-38.6	53.3	-1.0		
¹ J _{P1,P2}	289.1	288.5	290.8	291.7	275.2	324.3
$^{1}J_{P2,P3}$	608.1	616.4	605.1	618.8	604.4	494.2
$^{2}J_{P1,P3}$	53.6	54.3	54.3	52.8	64.3	34.9
$^{2}J_{P3,P4}$	5.6	14.1	9.6	18.9		
$^{3}J_{P2,P4}$	0	21.1	4.3	22.9		

[a] 298 K, C_6D_6 , δ [ppm], J [Hz], $^1J_{P1,P2} = ^1J_{P6,P7}$, $^1J_{P2,P3} = ^1J_{P5,P6}$, $^2J_{P1,P3} = ^2J_{P5,P6}$, $^2J_{P3,P4} = ^2J_{P4,P5}$, $^2J_{P2,P4} = ^2J_{P4,P6}$.

The "P-7-chains" **8a–d** contain two asymmetric centers with the same constitution: P¹ and P². If these atoms possess opposite configuration, then P⁴ is a pseudocenter, i.e. a stereogenic atom. Accordingly, four stereoisomeric chains exist in the same quantity: P¹R,P 7R , P¹R,P 7S , P¹S,P 7S , and P¹S,P 7S (Figure S9 in the SI). Since P¹R,P 7R and P¹S,P 7S are an enantiomeric pair, only three diastereomers can be observed in the ³¹P NMR spectra in the molar ratio of 1:1:2. Using the optimized coupling constants as obtained by iterations to simulate the superimposed multiplet regions, the ³¹P NMR spectra of the "P-7-chains" with terminal $tBu(Me_3Si)P$ groups can be assigned in the same way as those with tBu_2P groups. [20] An example is given in SI (Figure S15). As expected, the ³¹P NMR signals appear in the following three ranges for the $tBu(Me_3Si)P$ -P= tBu_2 moiety successively: -73.9 to -77.0 ppm (P¹, P²), -178.5 to -182.7 ppm (P², P⁶), and

60.1–66.2 (P³, P⁵). Similarly to compounds **3a–d**, the ³¹P NMR signals of P², P⁶ lie significantly downfield with respect to those in $tBu(Me_3Si)P-P=P(Me)tBu_2$ (**6**), whereas the signals of P³, P⁵ are only slightly downfield shifted (**6**: δP^2 : –207.2 ppm; P³: 57.8 ppm). ^[10b] The large difference between the coupling constants ${}^1J_{P1,P2}$, ${}^1J_{P6,P7}$ (about 250 Hz) and ${}^1J_{P2,P3}$, ${}^1J_{P5,6}$ (about 625 Hz) shows that a bond system typical for ylides as **1** and **6** is present also in these "P-7-chains".

The ^{31}P NMR investigations of $\mathbf{9a-d}$ confirmed the formation of rings (Table 2). As a result of the elimination of the SiMe₃ group from P¹ during the formation of the rings the nuclei P¹ are strongly deshielded compared to the parent lithium compound **7** as expected, whereas the phosphinidene nuclei P² in $\mathbf{9a-d}$ are strongly shielded, the chemical shifts for P³ show no significant change relative to those of **7**. The coupling constants $^{1}J_{P1,P2}$ and $^{1}J_{P1,P4}$ with values between 196 Hz and 287 Hz are typical for P–P single bonds, while the $^{1}J_{P2,P3}$ above 500 Hz are much higher and indicate a partial double bond between P² and P³. However, the differentiation between the P–P bonds in these rings does not reach that in the chain-like ylides, but shows more similarity to compound **7**, in which lithium easily coordinates P¹ forming a ring. [17]

Table 2. 31P NMR data of 9a-d and 7. [a]

	$tBuP^1$ RP^4 9a-d	P ³ tBu ₂ / CH ₂	$tBu(Me_3Si)P_1^1 \xrightarrow{P^2} P^3tBu_2$ $Li - CH_2$			
	9a	9b	9с	9d	7	
$\delta P^1/P^7$	43.3	49.7	4.0	31.9	-67.1	
$\delta P^2/P^6$	-224.7	-222.4	-258.7	-225.0	-186.0	
$\delta P^3/P^5$	82.5	87.0	64.0	87.9	79.8	
δP^4	-30.8	-43.4	54.2	16.9		
¹ J _{P1,P2}	251.4	255.2	249.7	287.1	294.3	
$^{1}J_{P2,P3}$	522.8	532.2	506.8	543.8	505.1	
$^{1}J_{P1,P4}$	206.5	196.2	226.3	240.7		
$^{2}J_{P3,P4}$	16.5	10.9	21.4	3.5		
$^{2}J_{P2,P4}$	6.4	4.5	10.3	0		
$^{2}J_{P1,P3}$	0	0	2.8	7.6	25.6	

[a] 298 K, C_6D_6 , δ [ppm], J [Hz].

Crystal Structure Investigations

Crystal structures of one representative of each set of "P-7 chains" (**3a**, **8b**) were determined. Colorless crystals suitable for X-ray structure investigations were obtained from toluene/pentane solution. Compound **3a** crystallizes in the monoclinic space group $P2_1/n$ (Figure 2). The P1–P2 and P6–P7 distances are located at the lower limit of the range of 2.17–2.24 Å given by Corbridge for P–P single bonds.^[21] In contrast to these, the P2–P3 and P5–P6 distances are shorter by 0.0519 Å and 0.0453 Å, respectively, and point to a small partial double bond character. These data are similar to those in the parent compound $tBu_2P-P=P(tBu_2)Me$ (**1**) (P1–P2 2.1791 Å, P2–P3 2.1263 Å), [10b] consequently the linkage of two ylidic moieties by a CH_2-P-CH_2 unit does not severely influence the bonding system. The sum of

the angles around P4 in **3a** is 297.6°, thus P4 has a pyramidal coordination geometry.

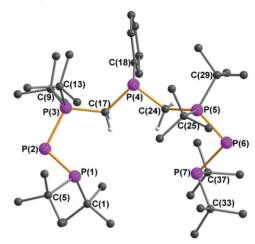


Figure 2. Molecular structure of **3a**. H atoms [except for those of the methylene groups C(17) and C(24)] are omitted for clarity. Selected bond lengths [Å] and bond angles [°]: P1–P2 2.1851(9), P2–P3 2.1332(8), P3–C17 1.835(2), P4–C17 1.869(2), P4–C24 1.872(2), P4–C18 1.835(2), P5–C24 1.824(2), P5–P6 2.1320(9), P6–P7 2.1773(10), P1–P2–P3 102.83(4), C17–P3–P2 110.25(8), C17–P4–C24 96.04(11), C17–P4–C18 102.07(11), C18–P4–C24 99.45(11), C24–P5–P6 110.87(8), P5–P6–P7 100.63(4), P3–C17–P4 126.51(13), P5–C24–P4 123.36(13).

Compound **8b** crystallizes in the triclinic space group $P\bar{1}$ with Z=2 (Figure 3). The central P4 is slightly (P4A 92 %; P4B 8 %) disordered to either side of the C16–C17–C18 triangle, while the tBu and $SiMe_3$ substituents on P7 are also mutually disordered (major component A 78 %, minor component B 22 %). Thus, in the molecule shown in Figure 3, P1 has an R-configuration, while in 78 % of the molecules in the crystal P7 is also R, but in the other 22 % it is S. The second molecule in the centrosymmetric unit cell then shows the opposite enantiomeric configurations to these. Thus in the crystal the chiral diastereomer (RR and SS) dominates over the SR0 form (SR0 or SR1). The SR1 bond lengths and differences between the SR1 but in

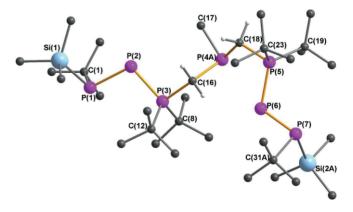


Figure 3. Molecular structure of **8b**. H-atoms [except for methylene groups C(16) and C(18)] and the minor disordered component are omitted for clarity. Selected bond lengths [Å] and bond angles [°]: P1–P2 2.1947(9), P2–P3 2.1342(9), P3–C16 1.831(2), P4A–C16 1.848(3), P4A–C17 1.854(3), P4A–C18 1.852(2), P5–C18 1.830(2), P5–P6 2.1378(8), P6–P7 2.1867(9), P1–P2–P3 107.43(3), C16–P3–P2 101.17(8), C16–P4A–C18 97.32(11), C16–P4A–C17 100.38(13), C18–P4A–C17 95.54(12), C18–P5–P6 104.54(8), P5–P6–P7 107.25(4), P3–C16–P4A 124.32(13), P5–C18–P4A 120.87(13).

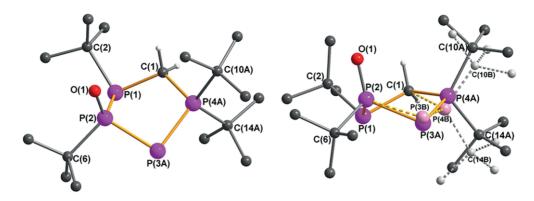


Figure 4. (a) Molecular structure of **9d-O** (major disorder component), (b) the twisting disorder of the P_4 C ring in **9d-O** (minor component drawn with smaller and paler spheres and dashed bonds). All H-atoms except those of the methylene group C(1), have been omitted for clarity. Selected bond lengths [Å] and bond angles [°] for the major component: P1–P4 2.273(2), P1–P2A 2.189(7), P2A–P3A 2.178(9), P4–C1 1.882(6), P3A–C1 1.846(9), P2A–P1–P4 95.9(4), P1–P2A–P3A 94.1(4), C1–P4–P1 93.37(18), C1–P3A–P2A 106.1(6).

P2–P3 distances ($\Delta=0.0605$ Å), and the P5–P6 and P6–P7 distances ($\Delta=0.0489$ Å) show a close similarity to **3a**. A comparison of these data with those of $tBu(Me_3Si)P1-P2=P3(tBu_2)Me$ (**6**) (P2–P3 2.1358 Å; P1–P2 2.1826 Å; difference 0.0468 Å)^[10b] shows that the bonding system is not substantially affected by the concatenation of the two ylides by a P-link. It is clear from Figure 2 and Figure 3 that molecules of **3a** and **8b** pack in their respective crystals with very different conformations. While the backbone of **3a** adopts a structure with an idealized twofold axis through P4, that of **8d** is highly unsymmetrical.

After several attempts to obtain crystals of **9d** suitable for X-ray structure investigations, a few crystals could be obtained from lengthy storage of a toluene solution overlaid with hexane/CH₂Cl₂. The X-ray crystallographic study (trigonal $R\bar{3}$ with Z=18) revealed that these crystals contained were not of **9d**, but its oxidation product, **9d-O**, which contained the expected P₄C ring, but with an O atom now bonded to P1 (Figure 4a), in contrast to the results of ³¹P NMR and HRMS measurements. Unfortunately, insufficient **9d-O** could be isolated to be characterized spectroscopically.

In the structure of **9d-O**, the P₄C ring system showed a twisting disorder in which the atoms of the tBu_2P-P moiety were disordered (56:44 %, Figure 4b). The P1–P2 and P2–P3 distances are closely similar and lie just at the lower limit of P–P single bonds, slightly shorter than those in the P₃CLi ring of **2**. [17] In contrast, the P1–P4 distance with 2.273(2) Å is significantly longer and comparable with the P–P bond lengths in the five-membered ring (PPh)₄CH₂S₂ (2.233–2.253 Å). [22]

Conclusions

The functionalized ylides $tBu_2P-P=P(tBu_2)CH_2Li$ (2) and $tBu(Me_3Si)P-P=P(tBu_2)CH_2Li$ (7) opened a way to form linear Prich chains. 2 reacted with dichlorophosphanes RPCl₂ (R = Ph, Me, NEt₂) in molar ratio 2:1 at -60 °C to afford the new "P-7-chains" (3a-c) almost quantitatively; these contain two ylidic moieties linked by a CH_2-P-CH_2 unit. In contrast, the reaction of $tBuPCl_2$ with 2 resulted in $tBu_2P-P=P(tBu_2)Me$ as main product; the "P-7-chain" (3d) was here only a by-product. In the solid state 3a-c can be stored under dry nitrogen for days at room

www.eurjic.org

temperature, and for long periods at -30 °C, without noticeable decomposition, whereas in solution the "P-7-chains" decompose successively within a few days to "P-5-" and "P-3-chains" by elimination of the phosphinidene {tBu₂P-P}. The decomposition processes could be monitored by ³¹P NMR spectroscopy.

 $tBu(Me_3Si)P-P=P(tBu_2)CH_2Li$ (7) reacts with RPCl₂ forming either the corresponding "P-7-chains" by elimination of LiCl, or P_4CH_2 -rings by elimination of Me₃SiCl. The substituent R strongly determines the ratio of chain to ring, whereas the stoichiometry has less influence on the reaction.

The molecular structures of the "P-7-chains" **3a** and **8b** show a similar bonding situation as it was observed in the parent ylides **1** and **6**. The P-P bond lengths differ only slightly, the terminal P-P distances are near the border between single and double bonding, while the ylidic P-P distances suggest a small partial double bond character.

Experimental Section

General

All manipulations were performed under a dry nitrogen atmosphere with exclusion of air and moisture using standard Schlenk techniques. All solvents were dried by using standard procedures (toluene, THF, C₆D₆, and [D₈]toluene over sodium/benzophenone; hexane, and pentane over LiAlH₄) and freshly distilled prior to use. CD₂Cl₂ was dried with activated molecular sieves. *n*BuLi (1.6 м in hexane), PhPCl₂, and MePCl₂ were purchased from Sigma-Aldrich, and *n*BuLi was used as received, the dichlorophosphane was freshly distilled under dry nitrogen atmosphere. *t*Bu₂P-P=P(*t*Bu₂)Me (1),^[10] *t*Bu(Me₃Si)P-P=P(*t*Bu₂)Me (6),^[8a] *t*Bu₂P-P=P(*t*Bu₂)CH₂Li (2),^[17] *t*Bu(Me₃Si)P-P=P(*t*Bu₂)CH₂Li (7),^[17] *t*Bu₂PCH₂Li,^[23] *t*Bu₂PMe,^[24] *t*BuPCl₂,^[25] and Et₂NPCl₂^[26] were prepared according to literature procedures.

The 1 H, 13 C, and 31 P NMR spectra were recorded on Bruker AMX 300, Av 400, and DRX 500 spectrometers, using the deuterated solvents (C_6D_6 , CD_2Cl_2 , or [D_8]toluene for low temperature experiments) as internal lock, and TMS (1 H, 13 C), and 85 % H_3PO_4 (31 P) as external standards. Two-dimensional 1 H– 13 C HSQC, HMBC, and 1 H– 31 P HMBC spectra were recorded using standard Bruker pulse sequences. Temperature calibration of the NMR measurements was carried out using Bruker standard samples. 1 H NMR spectra of

Chemistry Europe European Chemical Societies Publishing

higher order and ³¹P{¹H} NMR spectra (for an exact assignment of the signals) were analyzed using Daisy iterations. [20] High resolution mass spectra were measured on a Varian MAT 8200 mass spectrometer. The MS investigations for "P-7-" and "P-5-chains" were unsuccessful, no M⁺-lon could be observed, only the decomposition products could be detected. Elemental analyses were performed with an Elementar vario EL analyser.

Data for 3a and 8b were collected at 200(2) K on a Stoe IPDS II diffractometer, data for 9d-O at 100(2) K on a Bruker SMART Apex diffractometer, in all cases using graphite-monochromated Mo-K. radiation. Structure solution was by direct methods (SHELXS-97^[27]), followed by full-matrix least-squares refinement against F^2_{obs} using SHELXL-2018^[28] within the Olex2 platform.^[29] Anisotropic thermal parameters were assigned to all non-H atoms, apart from C-atoms of minor disorder components: H-atoms were placed in calculated positions. Further details of the structural refinements and a table of crystallographic parameters (Table S1) can be found in the Supporting Information.

CCDC 1848034 (for 3a), 1848035 (for 8b), and 1848036 (for 9d-0) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Synthesis of Compounds 3a-d

A solution of the corresponding RPCI₂ (0.75 mmol) in toluene (5 mL) was added dropwise to a solution of tBu₂P-P=P(tBu₂)CH₂Li•2.5THF (2) (0.78 g, 1.50 mmol) in toluene (10 mL) at -60 °C. After 4 hours stirring at the same temperature the formed precipitate was removed by filtration. During the filtration the filtrate was kept at -60 °C. Then, two thirds of the solvent were removed under reduced pressure, and a little pentane was layered on the remaining residue. Colorless crystals grew from this solution at -40 °C. In the case of **3a** single crystals suitable for X-ray structure determinations could be obtained.

3a (**R = Ph):** Yield: 0.47 g (81 %), m.p. 103 °C (dec.). ¹H NMR (400.13 MHz, C_6D_6 , 25 °C): $\delta = 1.09$ (d, ${}^3J_{HP3} = 14.0$ Hz, 18H, $C(CH_3)_3$), 1.56 (d, ${}^{3}J_{HP1} = 11.0$ Hz, 18H, C(CH₃)₃), 1.57 (d, ${}^{3}J_{HP3} = 14.5$ Hz, 18H, $C(CH_3)_3$), 1.60 (d, ${}^3J_{HP1} = 11.5$ Hz, 18H, $C(CH_3)_3$), 3.18 ($J_{AB} = 15.5$ Hz, $^{2}J_{HP} = 9.8 \text{ Hz}, ^{2}J_{HP} = 2.0 \text{ Hz}, 2H, CH_{2}(A)), 3.33 (J_{AB} = 15.5 \text{ Hz}, ^{2}J_{HP} =$ 14.2 Hz, ${}^{2}J_{HP}$ = 5.6 Hz, 2H, CH₂(B)), 6.96–7.06 (m, 3H, Ph), 7.69–7.75 (m, 2H, Ph) ppm. $^{13}\text{C}\{^1\text{H}\}$ NMR (201.11 MHz, C_6D_6 , 25 °C): δ = 29.7 $(dd, {}^{2}J_{CP3} = 5.9 \text{ Hz}, {}^{3}J_{CP2} = 2.5 \text{ Hz}, (CH_{3})_{3}CP^{3}), 30.3 (dd, {}^{2}J_{CP3} = 6.4 \text{ Hz},$ $^{3}J_{CP2} = 3.6 \text{ Hz}, (CH_{3})_{3}CP^{3}), 30.6 (dddd, ^{1}J_{CP3} = 46.2 \text{ Hz}, ^{1}J_{CP4} =$ 24.7 Hz, ${}^{2}J_{CP2} = 17.8$ Hz, ${}^{3}J_{CP1} = 6.7$ Hz, CH_{2}), 32.6 (dd, ${}^{2}J_{CP1} =$ 13.6 Hz, ${}^{3}J_{CP2} = 4.8$ Hz, $(CH_3)_3CP^1$), 33.1 (dd, ${}^{2}J_{CP1} = 13.1$ Hz, ${}^{3}J_{CP2} =$ 5.0 Hz, $(CH_3)_3CP^1$), 35.5 (ddd, ${}^1J_{CP1} = 27.6$ Hz, ${}^2J_{CP2} = 11.3$ Hz, ${}^3J_{CP3} =$ 7.6 Hz, $(CH_3)_3CP^1$), 35.7 (ddd, ${}^1J_{CP1} = 26.2$ Hz, ${}^2J_{CP2} = 11.5$ Hz, ${}^3J_{CP3} =$ 8.3 Hz, $(CH_3)_3CP^1$), 38.4 (dd, $^1J_{CP3} = 30.2$ Hz, $^2J_{CP2} = 9.8$ Hz, $(CH_3)_3CP^3$), 39.7 (ddd, ${}^1J_{CP3} = 26.2 \text{ Hz}$, ${}^2J_{CP2} = 6.0 \text{ Hz}$, ${}^3J_{CP1} = 2.0 \text{ Hz}$, $(CH_3)_3CP^3$), 129.6 (d, $J_{CP} = 8.7$ Hz, Ph), 131.2 (d, $J_{CP} = 1.2$, Ph), 135.0 (d, $J_{CP} = 22.2 \text{ Hz}$, Ph), 140.5 (d, $J_{CP} = 19.9 \text{ Hz}$, Ph) ppm. ³¹P{¹H} NMR (161.97 MHz, C_6D_{6r} 25 °C): $\delta = -172.5$ (dd, ${}^{1}J_{P2P3} = 608.1$ Hz, ${}^{1}J_{P1P2} =$ 289.1 Hz, P^2 , P^6), -29.8 (unresolved multiplet, P^4), 33.5 (dd, ${}^1J_{P1P2}$ = 289.1 Hz, ${}^{2}J_{P1P3} = 53.6$ Hz, P^{1} , P^{7}), 67.5 (ddd, ${}^{1}J_{P2P3} = 608.1$ Hz, $^{2}J_{P1P3} = 53.6 \text{ Hz}, ^{2}J_{P3P4} = 5.6 \text{ Hz}, P^{3}, P^{5}) \text{ ppm. Elemental analysis}$ calcd. for C₄₀H₈₁P₇: C 61.68, H 10.48, found C 61.01, H 10.50.

3b (**R** = **Me**): Yield: 0.38 g (71 %), m.p. 79 °C (dec.). ¹H NMR (400.13 MHz, CD_2CI_2 , 25 °C): $\delta = 1.29$ (d, ${}^3J_{HP1} = 10.9$ Hz, 18H, $C(CH_3)_3$, 1.30 (d, ${}^3J_{HP1} = 11.0$ Hz, 18H, $C(CH_3)_3$), 1.53 (d, ${}^3J_{HP3} =$ 14.0 Hz, 18H, C(CH₃)₃), 1.54 (d, ${}^{3}J_{HP1} = 13.9$ Hz, 18H, C(CH₃)₃), 1.68 (d, ${}^{2}J_{HP4} = 5.9$ Hz, 3H, PCH₃), 2.24 ($J_{AB} = 14.6$ Hz, ${}^{2}J_{HP} = 10.4$ Hz, $^{2}J_{HP} = 3.8 \text{ Hz}$, 2H, CH₂(A)), 2.63 ($J_{AB} = 14.6 \text{ Hz}$, $^{2}J_{HP} = 13.1 \text{ Hz}$, $^{2}J_{HP} =$

3.1 Hz, $J_{\rm HP} = 1.6$ Hz, 2H, CH₂(B)) ppm. $^{31}{\rm P}\{^{1}{\rm H}\}$ NMR (121.49 MHz, C₆D₆, 25 °C): δ = -173.7 (ddd, ${}^{1}J_{P2P3}$ = 616.4 Hz, ${}^{1}J_{P1P2}$ = 288.5 Hz, ${}^{3}J_{P2P4} = 21.1 \text{ Hz}, P^{2},P^{6}), -38.6 \text{ (tt, } {}^{2}J_{P3P4} = 14.1 \text{ Hz}, {}^{3}J_{P2P4} = 21.1 \text{ Hz},$ P^4), 30.9 (dd, ${}^1J_{P1P2} = 288.5$ Hz, ${}^2J_{P1P3} = 54.3$ Hz, P^1 , P^7), 63.2 (ddd, $^{1}J_{P2P3} = 616.4 \text{ Hz}, ^{2}J_{P1P3} = 54.3 \text{ Hz}, ^{2}J_{P3P4} = 14.1 \text{ Hz}, P^{3}, P^{5}) \text{ ppm}.$ Elemental analysis calcd. for C₃₅H₇₉P₇: C 58.64, H 11.11, found C 58.74, H 11.13.

3c (R = NEt_2): Yield: 0.37 g (64 %), m.p. 84 °C (dec.). ¹H NMR (400.13 MHz, C_6D_{6t} 25 °C): $\delta = 1.03$ (hidden by NCH_2CH_3), 1.45 (d, ${}^{3}J_{HP3} = 13.9 \text{ Hz}, 18H, C(CH_{3})_{3}), 1.51 \text{ (d, } {}^{3}J_{HP3} = 14.0 \text{ Hz}, 18H, C(CH_{3})_{3}),$ 1.54 (d, ${}^{3}J_{HP1} = 10.4$ Hz, 18H, C(CH₃)₃), 1.54 (d, ${}^{3}J_{HP1} = 10.9$ Hz, 18H, $C(CH_3)_3$), 2.64 ($J_{AB} = 15.7$ Hz, $^2J_{HP} = 12.6$ Hz, $^2J_{HP} = 3.4$ Hz, 2H, $CH_2(A)$), 2.99 ($J_{AB} = 15.7$ Hz, 2H, $CH_2(B)$), 3.0 (unresolved, NCH_2CH_3) ppm. $^{31}P\{^{1}H\}$ NMR (161.97 MHz, $C_{6}D_{6}$, 25 °C): δ = -172.2 (ddd, $^{1}J_{P2P3} = 605.1 \text{ Hz}, \, ^{1}J_{P1P2} = 290.8 \text{ Hz}, \, ^{3}J_{P2P4} = 4.3 \text{ Hz}, \, P^{2},P^{6}), \, 33.1 \text{ (dd,}$ $^{1}J_{P1P2} = 290.8 \text{ Hz}, \ ^{2}J_{P1P3} = 54.3 \text{ Hz}, \ P^{1}, \ P^{7}), \ 53.3 \text{ (tt, } ^{2}J_{P3P4} = 9.6 \text{ Hz},$ ${}^{3}J_{P2P4} = 4.3 \text{ Hz}, P^{4}), 67.6 \text{ (ddd, } {}^{1}J_{P2P3} = 605.1 \text{ Hz}, {}^{2}J_{P1P3} = 54.3 \text{ Hz},$ $^{2}J_{P3P4} = 9.6 \text{ Hz}, P^{3}, P^{5})$, ppm. Elemental analysis calcd. for $C_{38}H_{86}NP_{7}$: calcd. C 58.97, H 11.20, N 1.81, found C 58.68, H 11.43, N 1.60.

3d ($\mathbf{R} = t\mathbf{Bu}$): Yield: 16 % (estimated by integration of the $^{31}\mathbf{P}\{^{1}\mathbf{H}\}$ NMR spectra). ${}^{31}P{}^{1}H{}^{1}$ NMR (121.49 MHz, C₆D₆, 25 °C): $\delta = -167.4$ $(ddd, {}^{1}J_{P2P3} = 618.8 \text{ Hz}, {}^{1}J_{P1P2} = 291.7 \text{ Hz}, {}^{3}J_{P2P4} = 22.9 \text{ Hz}, P^{2}, P^{6}),$ -1.0 (tt, ${}^{2}J_{P3P4} = 18.9$ Hz, ${}^{3}J_{P2P4} = 22.9$ Hz, P^{4}), 30.9 (dd, ${}^{1}J_{P1P2} =$ 291.7 Hz, ${}^{2}J_{P1P3} = 52.8$ Hz, P^{1} , P^{7}), 62.0 (ddd, ${}^{1}J_{P2P3} = 618.8$ Hz, $^{2}J_{P1P3} = 52.8 \text{ Hz}, \, ^{2}J_{P3P4} = 18.9 \text{ Hz}, \, P^{3}, \, P^{5}) \text{ ppm}.$

Synthesis of Compounds 5a,c,d

10 mL of THF was added to 0.60 g (3.60 mmol) tBu₂PCH₂Li and the resulting mixture was cooled to -40 °C. To this solution the corresponding RPCl₂ (1.80 mmol) in 5 mL of THF was added dropwise. The reaction mixture was warmed slowly to room temperature and stirred for another 3 h. The solvent was removed under reduced pressure, 10 mL of toluene was added to the residue and the formed precipitate was removed by filtration. All volatile compounds were removed from the filtrate in high-vacuum, and the residue was sublimated (100 °C oil bath/10⁻³ mbar).

5a (**R = Ph**): ¹H NMR (500.13 MHz, C_6D_6 , 25 °C): δ = 1.04 (d, $^3J_{HP1}$ = 10.6 Hz, 18H, $C(CH_3)_3$), 1.24 (d, ${}^3J_{HP1} = 10.8$ Hz, 18H, $C(CH_3)_3$), 1.73 $(J_{AB} = 13.8 \text{ Hz}, J_{HP} = 2.6 \text{ Hz}, J_{HP} = 1.3 \text{ Hz}, J_{HP} = 0.8 \text{ Hz}, 2H, CH₂(A)),$ 2.23 ($J_{AB} = 13.8 \text{ Hz}$, $J_{HP} = 3.8 \text{ Hz}$, $J_{HP} = 1.5 \text{ Hz}$, 2H, $CH_2(B)$), 7.11–7.24 (m, 3H, Ph), 7.82-7.87 (m, 2H, Ph) ppm. $^{13}C\{^{1}H\}$ NMR (75.47 MHz, C₆D₆, 25 °C): δ = 22.5 (ddd, ${}^{1}J_{CP}$ = 34.0 Hz, ${}^{1}J_{CP}$ = 22.5 Hz, ${}^{3}J_{CP}$ = 9.9 Hz, $P^1CH_2P^2$), 29.4 (dd, $^2J_{CP1} = 14.1$ Hz, $^4J_{CP2} = 1.8$ Hz, $(CH_3)_3CP^1$), 29.7 (dd, ${}^2J_{CP1}$ = 14.2 Hz, ${}^4J_{CP2}$ = 1.9 Hz, (CH₃)₃CP¹), 31.4 (dd, ${}^1J_{CP1}$ = 25.0 Hz, ${}^{3}J_{CP2} = 6.7$ Hz, $(CH_3)_3CP^1$), 31.9 (dd, ${}^{1}J_{CP1} = 24.9$ Hz, ${}^{3}J_{CP2} =$ 6.2 Hz, $(CH_3)_3CP^1$), 128.0 (s, mPh), 128.8 (s, pPh), 133.0 (d, $^2J_{CP2}$ = 19.8 Hz, oPh), 140.8 (dt, ${}^{1}J_{CP2} = 21.5$ Hz, ${}^{3}J_{CP1} = 6.1$ Hz, iPh) ppm. $^{31}P\{^{1}H\}$ NMR (121.49 MHz, C₆D₆, 25 °C): $\delta = -24.0$ ("t", $^{2}J_{P1P2} =$ 133.1 Hz, P^2), 17.2 (d, ${}^2J_{P1P2} = 133.1$ Hz, P^1) ppm. HRMS (EI) m/z (%): 369.2007 (56.3) (calcd. for $C_{20}H_{36}P_3$ 369.2030) [M - tBu]⁺, 313.1371 (16.9) (calcd. for $C_{16}H_{28}P_3$ 313.1404) $[M-2 \times tBu + H]^+$.

5c (**R** = **NEt₂**): ¹H NMR (300.13 MHz, C₆D₆, 25 °C): δ = 1.13 (t, ³ J_{HH} = 7.1 Hz, 6H, NCH₂CH₃), 1.18 (d, ${}^{3}J_{HP1} = 10.7$ Hz, 18H, C(CH₃)₃), 1.23 (d, ${}^{3}J_{HP1} = 10.7$ Hz, 18H, C(CH₃)₃), 1.67 ($J_{AB} = 14.0$ Hz, $J_{HP} = 4.0$ Hz, $J_{\rm HP} = 2.0$ Hz, 2H, CH₂(A)), 1.97 ($J_{\rm AB} = 14.0$ Hz, $J_{\rm HP} = 8.0$ Hz, $J_{\rm HP} =$ 2.2 Hz, 2H, $CH_2(B)$), 3.04 (dq, ${}^3J_{HP2} = 9.1$ Hz, ${}^3J_{HH} = 7.1$ Hz, 4H, NC H_2 CH₃) ppm. ¹³C{¹H} NMR (100.61 MHz, C₆D₆, 25 °C): δ = 16.5 $(dt, {}^{3}J_{CP2} = 2.8 \text{ Hz}, {}^{5}J_{CP1} = 1.4 \text{ Hz}, NCH_{2}CH_{3}) 24.7 (ddd, {}^{1}J_{CP} = 35.4 \text{ Hz},$ $^{1}J_{CP} = 28.7 \text{ Hz}, \ ^{3}J_{CP} = 8.6 \text{ Hz}, \ P^{1}CH_{2}P^{2}), \ 30.8 \ (dd, \ ^{2}J_{CP1} = 14.2 \text{ Hz},$ $^{4}J_{CP2} = 1.2 \text{ Hz}, (CH_{3})_{3}CP^{1}), 31.0 (dd, ^{2}J_{CP1} = 14.1 \text{ Hz}, ^{4}J_{CP2} = 2.8 \text{ Hz},$ $(CH_3)_3CP^1$), 32.5 (dd, ${}^1J_{CP1} = 25.1$ Hz, ${}^3J_{CP2} = 6.2$ Hz, $(CH_3)_3CP^1$), 32.8 $(dd, {}^{1}J_{CP1} = 25.2 \text{ Hz}, {}^{3}J_{CP2} = 5.6 \text{ Hz}, (CH_{3})_{3}CP^{1}), 43.9 (d, {}^{2}J_{CP1} =$

14.2 Hz, NCH₂CH₃) ppm. 31 P{ 1 H} NMR (121.49 MHz, C₆D₆, 25 °C): δ = 17.3 (d, $^{2}J_{P1P2}$ = 130.1 Hz, P 1), 53.8 ("t", $^{2}J_{P1P2}$ = 130.1 Hz, P 2) ppm. MS (FI): m/z (%) = 421.3 (63.5) [M]+; HRMS (EI): m/z (%) = 364.2443 (17.5) (calcd. for C₁₈H₄₁NP₃ 364.2452) [M - tBu]+, 293.1736 (15.0) (calcd. for C₁₄H₃₂P₃ 313.1404) [M-tBu-NEt₂]+.

5d (**R** = *t***Bu**): ¹H NMR (500.13 MHz, C₆D₆, 25 °C): δ = 1.19 (d, ³ J_{HP1} = 10.5 Hz, 18H, C(CH₃)₃), 1.22 (d, ³ J_{HP2} = 11.7 Hz, 9H, C(CH₃)₃), 1.25 (d, ³ J_{HP1} = 10.9 Hz, 18H, C(CH₃)₃), 1.53 (J_{AB} = 14.0 Hz, J_{HP} = 4.0 Hz, J_{HP} = 1.5 Hz, 2H, CH₂(A)), 1.78 (J_{AB} = 14.0 Hz, J_{HP} = 1.8 Hz, J_{HP} = 1.6 Hz, 2H, CH₂(B)) ppm. ¹³C{¹H} NMR (100.61 MHz, C₆D₆, 25 °C): δ = 18.4 (ddd, ¹ J_{CP} = 34.6 Hz, ¹ J_{CP} = 31.1 Hz, ³ J_{CP} = 8.0 Hz, P¹CH₂P²), 28.6 (dt, ² J_{CP2} = 13.2 Hz, ⁴ J_{CP1} = 2.5 Hz, (CH₃)₃CP²), 30.6 (dt, ¹ J_{CP2} = 19.6 Hz, ³ J_{CP1} = 4.6 Hz, (CH₃)₃CP²), 30.9 (dd, ² J_{CP1} = 13.5 Hz, ⁴ J_{CP2} = 2.2 Hz, (CH₃)₃CP¹), 31.1 (dd, ² J_{CP1} = 13.7 Hz, ⁴ J_{CP2} = 2.8 Hz, (CH₃)₃CP¹), 33.1 (dd, ¹ J_{CP1} = 25.1 Hz, ³ J_{CP2} = 5.1 Hz, (CH₃)₃CP¹), 33.2 (dd, ¹ J_{CP1} = 25.3 Hz, ³ J_{CP2} = 4.6 Hz, (CH₃)₃CP¹) ppm. ³¹P{¹H} NMR (202.46 MHz, C₆D₆, 25 °C): δ = -5.6 ("t", ² J_{P1P2} = 101.5 Hz, P²), 17.6 (d, ² J_{P1P2} = 101.5 Hz, P¹) ppm. HRMS (EI): m/z (%) = 349.2323 (21.8) (calcd. for C₁₈H₄₀P₃ 349.2343) [M-tBu]⁺, 293.1697 (15.6) (calcd. for C₁₄H₃₂P₃ 293.1717) [M-2 tBu + H]⁺.

Reaction of tBu(Me₃Si)P-P=P(tBu₂)CH₂Li (7) with RPCl₂ in a molar ratio of 2:1 and 1:1.

2:1: A solution of the corresponding RPCl₂ (0.66 mmol) in toluene (5 mL) was added dropwise to a solution of tBu(Me₃Si)P-P= P(tBu₂)CH₂Li·2.4THF (7) (0.70 g, 1.32 mmol) in toluene (10 mL) at -60 °C. The reaction mixture was stirred for further 4 hours at the same temperature, then the formed precipitate was removed by filtration. During the filtration the filtrate was kept at -60 °C. The filtrate was concentrated under reduced pressure, then a little pentane was layered on the remaining residue. A colorless crystal mass precipitated from this solution at -40 °C. Only in the case of **8b** single crystals suitable for X-ray structure determinations could be obtained.

Molar distribution of products determined by ^{31}P NMR spectra (mol-%): **8a/9a** = 90:10; **8b/9b** = 95:5; **8c/9c** = 60:40; **8d/9d** = 50:50.

1:1: A solution of $tBu(Me_3Si)P-P=P(tBu_2)CH_2Li\cdot 2.4THF$ (**7**) (0.72 g, 1.36 mmol) in toluene (10 mL) was added dropwise to a solution of the corresponding $RPCI_2$ (1.36 mmol) in toluene (5 mL) at -60 °C. Then the reaction was carried out as written above. In the case of R=tBu single crystals suitable for X-ray structure determinations could be obtained (**9d-O**).

Molar distribution of products determined by ^{31}P NMR spectra (mol-%): **8a/9a** = 95:5; **8b/9b** = 100:0; **8c/9c** = 45:55; **8d/9d** = 30:70.

8a (**R** = **Ph**): 31 P{ 1 H} NMR (161.97 MHz, [D₈]toluene, 25 °C): *R,S/S,R*: $\delta = -180.5$ (dd, ${}^{1}J_{P2P3} = 624.9$ Hz, ${}^{1}J_{P1P2} = 250.6$ Hz, ${}^{2}P_{P}^{9}$), -75.1 (dd, ${}^{1}J_{P1P2} = 250.6$ Hz, ${}^{2}J_{P3P4} = 5.6$ Hz, ${}^{2}J_{P3P4} = 5.6$ Hz, ${}^{2}J_{P3P4} = 5.6$ Hz, ${}^{2}J_{P3P4} = 624.9$ Hz, ${}^{2}J_{P1P3} = 45.5$ Hz, ${}^{2}J_{P3P4} = 5.6$ Hz, ${}^{2}J_{P3P4} = 5.6$ Hz, ${}^{2}J_{P3P4} = 6.1$ Hz, ${}^{2}J_{P3P4} = 6.1$ Hz, ${}^{2}J_{P3P4} = 7.7$ Hz, ${}^{3}J_{P2P4} = 6.1$ Hz, ${}^{2}J_{P3P4} = 7.7$ Hz, ${}^{3}J_{P2P4} = 6.1$ Hz, ${}^{2}J_{P3P4} = 7.7$ Hz, ${}^{3}J_{P2P4} = 6.1$ Hz, ${}^{2}J_{P3P4} = 7.7$ Hz, ${}^{3}J_{P3P4} = 2.5$ Hz, ${}^{2}J_{P3P4} = 3.1$ Hz, ${}^$

8b (**R** = **Me**): ${}^{31}P{}^{1}H{}$ NMR (161.97 MHz, [D₈]toluene, 25 °C): R,S/S,R: $\delta = -181.7$ (ddd, ${}^{1}J_{P2P3} = 632.5$ Hz, ${}^{1}J_{P1P2} = 252.3$ Hz, ${}^{3}J_{P2P4} =$

22.4 Hz, P^2, P^6), -74.6 (dd, $^1J_{P1P2} = 253.3$ Hz, $^2J_{P1P3} = 47.8$ Hz, P^1, P^7), -37.6 (tt, $^2J_{P3P4} = 14.6$ Hz, $^3J_{P2P4} = 22.4$ Hz, P^4), 60.7 (ddd, $^1J_{P2P3} = 632.5$ Hz, $^2J_{P1P3} = 47.8$ Hz, $^2J_{P3P4} = 14.6$ Hz, P^3, P^5) ppm. R, S/S, R: $\delta = -181.7$ (ddd, $^1J_{P2P3} = 632.2$ Hz, $^1J_{P1P2} = 251.1$ Hz, $^3J_{P2P4} = 34.3$ Hz, $^2P_{P}^6$), -75.1 (dd, $^1J_{P1P2} = 251.1$ Hz, $^2J_{P1P3} = 48.6$ Hz, $^2P_{P}^7$), -39.5 (tt, $^2J_{P3P4} = 14.8$ Hz, $^3J_{P2P4} = 34.3$ Hz, $^3P_{P1P3} = 48.6$ Hz, $^2P_{P1P3} = 48.6$ Hz, $^2P_{P3P4} = 14.8$ Hz, $^3P_{P3P4} = 37.6$ Hz, $^2P_{P3P4} = 37.6$ Hz, $^2P_{P$

8c (R = NEt₂): ${}^{31}P{}^{1}H}$ NMR (161.97 MHz, [D₈]toluene, 25 °C): R,S/ S,R: $\delta = -180.2$ (ddd, ${}^{1}J_{P2P3} = 624.7$ Hz, ${}^{1}J_{P1P2} = 252.3$ Hz, ${}^{3}J_{P2P4} =$ 12.0 Hz, P^2 , P^6), -75.0 (dd, $^1J_{P1P2} = 252.3$ Hz, $^2J_{P1P3} = 47.0$ Hz, P^1 , P^7), 50.3 (tt, ${}^{2}J_{P3P4} = 12.5$ Hz, ${}^{3}J_{P2P4} = 12.0$ Hz, P^{4}), 62.8 (ddd, ${}^{1}J_{P2P3} =$ 624.7 Hz, ${}^2J_{\text{P1P3}} = 47.0$ Hz, ${}^2J_{\text{P3P4}} = 12.5$ Hz, P^3 , P^5) ppm. R,S/S,R: $\delta =$ -180.0 (ddd, ${}^{1}J_{P2P3} = 624.0$ Hz, ${}^{1}J_{P1P2} = 254.3$ Hz, ${}^{3}J_{P2P4} = 8.4$ Hz, P^{2},P^{6}), -74.5 (dd, ${}^{1}J_{P1P2} = 254.3$ Hz, ${}^{2}J_{P1P3} = 46.7$ Hz, P^{1},P^{7}), 50.6 (tt, $^{2}J_{P3P4} = 12.4 \text{ Hz}, \ ^{3}J_{P2P4} = 8.4 \text{ Hz}, \ P^{4}), 63.3 \text{ (ddd, } ^{1}J_{P2P3} = 624.0 \text{ Hz},$ $^{2}J_{P1P3} = 46.7 \text{ Hz}, \, ^{2}J_{P3P4} = 12.4 \text{ Hz}, \, P^{3}, \, P^{5}) \text{ ppm. } R,R/S,S: \, \delta = -181.1$ (ddd, ${}^{1}J_{P5P6} = 624.2 \text{ Hz}$, ${}^{1}J_{P6P7} = 250.4 \text{ Hz}$, ${}^{2}J_{P4P6} = 15.5 \text{ Hz}$, P^{6}), -180.7 (ddd, ${}^{1}J_{P2P3} = 624.4$ Hz, ${}^{1}J_{P1P2} = 252.1$ Hz, ${}^{3}J_{P2P4} = 16.1$ Hz, P^2), -77.0 (dd, ${}^{1}J_{P6P7} = 250.4$ Hz, ${}^{2}J_{P5P7} = 46.2$ Hz, P^7), -75.3 (dd, $^{1}J_{P1P2} = 252.1 \text{ Hz}, ^{2}J_{P1P3} = 47.8 \text{ Hz}, P^{1}), 50.7 \text{ (ddd, } ^{2}J_{P4P5} = 15.4 \text{ Hz},$ ${}^{3}J_{P2P4} = 16.1 \text{ Hz}, {}^{3}J_{P4P6} = 15.5 \text{ Hz}, {}^{2}J_{P3P4} = 0, P^{4}), 63.2 \text{ (dd, } {}^{1}J_{P2P3} =$ 624.4 Hz, ${}^{2}J_{P1P3}$ = 47.8 Hz, P3), 60.3 (ddd, ${}^{1}J_{P5P6}$ = 624.2 Hz, ${}^{2}J_{P5P7}$ = 46.2 Hz, ${}^{2}J_{P4P5} = 15.4$ Hz, ${}^{2}J_{P3P4} = 0$, P^{5}), ppm.

9a (**R = Ph):** ${}^{31}P\{^{1}H\}$ NMR (121.49 MHz, C_6D_6 , 25 °C): $\delta = -224.7$ (ddd, ${}^{1}J_{P2P3} = 522.8$ Hz, ${}^{1}J_{P1P2} = 251.4$ Hz, ${}^{2}J_{P2P4} = 16.5$ Hz, ${}^{2}J_{P3P4} = 16.5$ Hz, ${}^{2}J_{P3P4} = 6.4$ Hz, 2

9b (**R** = **Me**): 31 P{ 1 H} NMR (121.49 MHz, C₆D₆, 25 °C): δ = -222.4 (ddd, ${}^{1}J_{P2P3}$ = 532.2 Hz, ${}^{1}J_{P1P2}$ = 255.2 Hz, ${}^{2}J_{P2P4}$ = 4.5 Hz, P²), -43.4 (ddd, ${}^{1}J_{P1P4}$ = 196.2 Hz, ${}^{2}J_{P3P4}$ = 10.9 Hz, ${}^{2}J_{P2P4}$ = 4.5 Hz, P⁴), 49.7 (dd, ${}^{1}J_{P1P2}$ = 255.2 Hz, ${}^{1}J_{P1P4}$ = 196.2 Hz, P¹), 87.0 (dd, ${}^{1}J_{P2P3}$ = 532.2 Hz, ${}^{2}J_{P3P4}$ = 10.9 Hz, P³) ppm.

9c (**R = NEt₂**): 31 P{ 1 H} NMR (121.49 MHz, C₆D₆, 25 °C): δ = -258.7 (ddd, ${}^{1}J_{P2P3}$ = 506.8 Hz, ${}^{1}J_{P1P2}$ = 249.7 Hz, ${}^{2}J_{P2P4}$ = 10.3 Hz, P²), 4.0 (ddd, ${}^{1}J_{P1P2}$ = 249.7 Hz, ${}^{1}J_{P1P4}$ = 226.3 Hz, ${}^{2}J_{P1P3}$ = 2.8 Hz, P¹), 54.2 (ddd, ${}^{1}J_{P1P4}$ = 226.3 Hz, ${}^{2}J_{P3P4}$ = 21.4 Hz, ${}^{2}J_{P2P4}$ = 10.3 Hz, P⁴), 64.0 (ddd, ${}^{1}J_{P2P3}$ = 506.8 Hz, ${}^{2}J_{P3P4}$ = 21.4 Hz, ${}^{2}J_{P1P3}$ = 2.8 Hz, P³) ppm. HRMS (EI): m/z (%) = 381.2004 (12.1) (calcd. for C₁₇H₃₉P₄N 381. 2033) [M⁺].

9d (**R** = **tBu**):^[17] ¹H NMR (300.13 MHz, C_6D_6 , 25 °C): δ = 1.16 (d, ${}^3J_{HP3}$ = 14.5 Hz, 9H, $C(CH_3)_3$), 1.18 (d, ${}^3J_{HP3}$ = 14.5 Hz, 9H, $C(CH_3)_3$), 1.22 (d, ${}^3J_{HP4}$ = 10.6 Hz, 9H, $C(CH_3)_3$), 1.53 (d, ${}^3J_{HP1}$ = 11.0 Hz, 9H, $C(CH_3)_3$), 2.13 (J_{AB} = 13.8 Hz, J_{HP} = 20.2 Hz, J_{HP} = 12.6 Hz, J_{HP} = 9.9 Hz, J_{HP} = 1.9 Hz, 1H, $CH_2(A)$), 2.36 (J_{AB} = 13.8 Hz, J_{HP} = 11.0 Hz, J_{HP} = 2.9 Hz, 1H, $CH_2(B)$) ppm. ¹³ $C^{1}H^{3}$ NMR (75.47 MHz, C_6D_6 , 25 °C): δ = 20.1 (m, CH_2), 27.5, 28.5 (unresolved, $P^{3}C(CH_3)_3$), 29.6 (d, ${}^2J_{P4,C}$ = 13.5 Hz, $P^{4}C(CH_3)_3$), 30.6 (d, ${}^2J_{P1,C}$ = 14.4 Hz, $P^{1}C(CH_3)_3$), 30.7, 32.1, 35.8, 38.0 (unresolved, $P^{2}C(CH_3)_3$). ³¹ $P^{1}H^{3}$ NMR (121.49 MHz, C_6D_6 , 25 °C): δ = -225.0 (dd, ${}^1J_{P2P3}$ = 543.8 Hz, ${}^1J_{P1P2}$ = 287.1 Hz, ${}^2J_{P1P4}$ = 240.7 Hz, ${}^2J_{P3P4}$ = 3.5 Hz, ${}^2P^{4}$), 31.9 (ddd, ${}^1J_{P2P3}$ = 543.8 Hz, ${}^2J_{P1P3}$ = 7.6 Hz, ${}^2J_{P3P4}$ = 3.5 Hz, ${}^2P^{3}$) ppm. HRMS (EI): m/z

European Journal of Inorganic Chemistry

(%) = 366.1885 (29.8) (calcd. for $C_{17}H_{38}P_4$ 366.1924) [M⁺], 310.1406 (26.5).

Acknowledgments

We thank Prof. A. K. Powell and Prof. H. Schnöckel for the use of X-ray diffractometers. We are especially grateful to Mrs. H. Berberich for the numerous elaborate NMR measurements.

Keywords: Phosphinidene-phosphoranes · Phosphorus · Ylides · Structure elucidation · Synthesis design

- [1] a) A. Schmidpeter in Multiple Bonds and Low Coordination in Phosphorus Chemistry, (Eds.: M. Regitz, O. J. Scherer), Thieme Verlag, Stuttgart, 1990, pp. 338–351; b) K. Lammertsma, Top. Curr. Chem. 2003, 229, 95–119; c) B. D. Ellis, C. L. B. Macdonald, Coord. Chem. Rev. 2007, 251, 936-973; d) J. D. Protasiewicz, Eur. J. Inorg. Chem. 2012, 4539-4549.
- [2] L. Liu, D. A. Ruiz, D. Munz, G. Bertrand, Chem 2016, 1, 147-153.
- [3] A. B. Burg, W. J. Mahler, J. Am. Chem. Soc. 1961, 83, 2388-2389.
- [4] a) G. Fritz, T. Vaahs, H. Fleischer, E. Matern, Angew. Chem. Int. Ed. Engl. 1989, 28, 315-316; Angew. Chem. 1989, 101, 324-325; b) G. Fritz, T. Vaahs, H. Fleischer, E. Matern, Z. Anorg. Allg. Chem. 1989, 570, 54-66.
- [5] S. Shah, J. D. Protasiewicz, Chem. Commun. 1998, 1585-1586.
- [6] a) S. Shah, G. P. A. Yap, J. D. Protasiewicz, J. Organomet. Chem. 2000, 608, 12-20; b) D. V. Partyka, M. P. Washington, J. B. Updegraff III, R. A. Woloszynek, J. D. Protasiewicz, Angew. Chem. Int. Ed. 2008, 47, 7489-7492; Angew. Chem. 2008, 120, 7599-7602.
- [7] S. Shah, J. D. Protasiewicz, Coord. Chem. Rev. 2000, 210, 181-201.
- [8] a) I. Kovács, G. Fritz, Z. Anorg. Allg. Chem. 1994, 620, 1364-1366; b) I. Kovács, G. Fritz, Z. Anorg. Allg. Chem. 1994, 620, 1367-1368; c) G. Fritz, P. Scheer, Chem. Rev. 2000, 100, 3341-3402.
- [9] I. Kovács, E. Matern, G. Fritz, Z. Anorg. Allg. Chem. 1996, 622, 935-941.
- [10] a) H. Borrmann, I. Kovács, G. Fritz, Z. Anorg. Allg. Chem. 1994, 620, 1818-1820; b) I. Kovács, V. Balema, A. Bassowa, E. Matern, E. Sattler, G. Fritz, H. Borrmann, H. Bauernschmitt, R. Ahlrichs, Z. Anorg. Allg. Chem. 1994, 620, 2033-2040.
- [11] J. Olkowska-Oetzel, J. Pikies, Appl. Organomet. Chem. 2003, 17, 28-35, and references cited therein.
- [12] a) I. Kovács, E. Matern, E. Sattler, G. Fritz, Z. Anorg. Allg. Chem. 1996, 622, 1809–1822; b) E. Matern, J. Olkowska-Oetzel, J. Pikies, G. Fritz, Z. Anorg.

- Alla. Chem. 2001, 627, 1767-1770; c) M. M. Hansmann, R. Jazzar, G. Bertrand, J. Am. Chem. Soc. 2016, 138, 8356-8359; d) M. M. Hansmann, G. Bertrand, J. Am. Chem. Soc. 2016, 138, 15885-15888.
- [13] I. Jevtovikj, P. Lönnecke, E. Hey-Hawkins, Chem. Commun. 2013, 49, 7355-7357.
- [14] a) G. Jochem, K. Karaghiosoff, H. Nöth, A. Schmidpeter, Phosphorus Sulfur Silicon Relat. Elem. 1994, 93-94, 389-390; b) H.-P. Schrödel, H. Nöth, M. Schmidt-Amelunxenal, W. W. Schoeller, A. Schmidpeter, Chem. Ber./Recueil 1997, 130, 1801-1805.
- [15] a) H. H. Karsch, E. Witt, A. Schneider, E. Herdtweck, M. Heckel, Angew. Chem. Int. Ed. Engl. 1995, 34, 557-560; Angew. Chem. 1995, 107, 628-631; b) H. H. Karsch, E. Witt, J. Organomet. Chem. 1997, 529, 151-169.
- [16] R. C. Smith, J. D. Protasiewicz, J. Am. Chem. Soc. 2004, 126, 2268–2269.
- [17] E. Sattler, H. Krautscheid, E. Matern, G. Fritz, I. Kovács, Z. Anorg. Allg. Chem. 2001, 627, 186-193.
- [18] a) I. Kovács, G. Fritz, Z. Anorg. Allg. Chem. 1994, 620, 4-7; b) H. Schmidbaur, G. Blaschke, B. Zimmer-Gasser, U. Schubert, Chem. Ber. 1980, 113, 1612-622
- [19] J. Krill, I. V. Shevchenko, A. Fischer, P. G. Jones, R. Schmutzler, Chem. Ber. **1993**, 126, 2379-2382.
- [20] a) Program Daisy (revised by J. Rohonczy, Department of Inorganic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary), part of Bruker TOPSPIN 3.5 pl 6, 2016; b) G. Hägele, M. Engelhardt, Analysis of 1D NMR Spectra, Bruker Corporation, Rheinstetten, Germany, 2017, (part of Bruker Topspin 3.5 pl 6); c) G. Hägele, M. Engelhardt, W. Boeniak, Simulation und automatisierte Analyse von Kernresonanzspektren, VCH, Weinheim, 1987.
- [21] D. E. C. Corbridge, The Structural Chemistry of Phosphorus, Elsevier, Amsterdam, 1974, p. 20.
- [22] J. Lex, M. Baudler, Z. Anorg. Allg. Chem. 1977, 431, 49-60.
- [23] H. H. Karsch, H. Schmidbaur, Z. Naturforsch. B 1977, 32, 762-767.
- [24] F. Eisenträger, A. Göthlich, I. Gruber, H. Heiss, C. A. Kiener, C. Krüger, J. U. Notheis, F. Rominger, G. Scherhag, M. Schultz, B. F. Straub, M. A. O. Vollanda, P. Hofmann, New J. Chem. 2003, 27, 540-550.
- [25] W. Voskuil, J. F. Arens, Recl. Tra. Chim. Pays-Bas 1963, 82, 302-304.
- [26] J. R. Van Wazer, L. Maier, J. Am. Chem. Soc. 1964, 86, 811-814.
- [27] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112-122.
- [28] G. M. Sheldrick, Acta Crystallogr., Sect. C 2015, 71, 3-8.
- [29] OLEX2: A Complete Structure Solution, Refinement and Analysis Program, O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339–341.

Received: January 24, 2020