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Abstract: Despite a rapid increase of public interest for electric mobility, several factors still
impede Battery Electric Vehicles’ (BEVs) acceptance. These factors include their limited range
and inconvenient charging. For mitigating these limitations to users, certain BEV-specific services
are required. Therefore, such services provide a reliable range prediction and routing, including
charging-stop planning. The basis of these services is a precise and reliable Energy Demand
(ED) prediction. For that matter, aggregated fleet-vehicle data combined with map-specific data
(e.g., road slope) form an energetic map, which can serve for precise ED predictions. However,
data coverage is paramount for these predictions, more specifically regarding gapless energetic
maps. This work aims to eliminate the energetic map’s gaps using two Machine Learning (ML)
approaches: regression and classification. The proposed ML solution builds upon the synergy
between map-information and crowdsourced driving profiles of 4.6 million kilometres of training
and test traces. For evaluation, two test-scenarios capture the models’ performance for the analysed
problem in two perspectives. First, we evaluate our ML models, followed by the problem-specific
energetic evaluation perspective for better interpretability. From the latter, the results indicate
energetic map data imputation performs promisingly better when using the regression instead of the
classification model.

Keywords: electric mobility; big data; artificial intelligence; supervised machine learning; regression;
classification; missing data imputation

1. Introduction

Environmental awareness in both society and legislation demand a reduction of greenhouse
gas emissions. This desire fosters interest in electrified personal mobility. In contrast to established
fuel-based vehicles, battery electric vehicles do not emit greenhouse gases while driving. Nevertheless,
today’s electric vehicles have a rather limited range. The limited range is among the statistically
significant (p < 0.01) factors decreasing the acceptance of electric vehicles, besides high prices and
issues related to charging [1,2]. All these factors inhibit potential buyers from purchasing electric
vehicles [1]. However, increasing the range of vehicles by installing a larger battery capacity is not an
appropriate solution from different points of view. Accordingly, the already high price would further
increase, demanding additional resources from an ecological viewpoint. Therefore, an alternative
solution is required to lower the impact of the named impediments. Such services as precise range
estimation and BEV route planning can achieve the required acceptance gain [2]. These services help
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BEVs’ users to utilise the available capacity entirely. Nevertheless, to strengthen the user’s trust in
those services, they need to operate reliably.

For reliable results, such services require detailed route-specific information about the prospective
vehicle’s Energy Demand (ED). A route’s ED depends on multiple factors, including vehicle
characteristics (e.g., vehicle mass and aerodynamic properties), road slope profile, traffic condition,
weather and driving profile. A significant influence on the driving profile, and hence on the ED, is the
driver’s behaviour.

Different approaches in literature aim to predict the ED along an entire route, thus up to several
hundreds of kilometres. These approaches need to model the mentioned influences, which refer
to the categories of driving and slope profile, as well as surrounding parameters like temperature,
atmospheric pressure and solar radiation. Those are the inputs for models which calculate the aimed
output of the predicted ED. According to the literature review, both the model itself and the origin of
the inputs are essential and can be utilised for grouping the route ED prediction models. Concerning
the models, there are direct, machine learning and analytical models. Direct modelling is a simplistic
approach that uses the recorded ED on a road section for prediction, as described, for instance, by
Sellschopp [3]. Lamprecht’s direct approach collects consumption-related information over time for
each road class and normalises and denormalises it to and from driving on a road with no slope,
respectively [4]. However, this approach can hardly describe variations caused by some of the
influences mentioned above, such as traffic or temperature. Therefore, e.g., Masikos et al. tackles
this drawback by using a general regression Neuronal Network model while using the ED model to
generate routes with low ED [5]. With regard to the model types, as mentioned earlier, this is a direct
model augmented by a machine learning algorithm. There are also pure machine learning models,
which use different regression models, to predict ED [6], range [7] or to create routes with lower ED [8].
Nevertheless, machine learning models lack physical traceability of a change in the input variables and
their impact on ED. In contrast, analytical models like proposed by Yang et al. and Wang et al. calculate
the ED based on the driving resistance equation from a predicted driving profile [9,10]. This approach
ensures a physically proper consideration of energetic influences and comes with straightforward
physical traceability of the model. However, the model of Yang et al. uses only one overall efficiency,
which could cause energetic deviations while recuperation phases [9]. Concerning the model type,
analytic models are the most advantageous since they can correctly incorporate influences and at the
same time make it physically traceable.

Regarding the input origins, the information mainly come from two sources: map data and
vehicle data. Depending on the model type itself, the models based on map data either generate a
driving profile from the map features, such as speed limit or crossings, and feed it to an analytical
ED model [8,10] or directly predict ED like Masikos et al., which use a general regression Neuronal
Network model [5]. In contrast to the map data-based model group, the vehicle data one consists of
two subgroups: single vehicle and fleet-based data sourcing. The approach of Qi et al. only uses vehicle
data recorded from itself, which reduces the area of prediction to routes already driven by the same
vehicle [6]. However, Qi et al. also suggests transferring the data sourcing model to a fleet of vehicles,
which in turn would enable the prediction of unknown routes [6]. The model of Grubwinkler et al. is
based on fleet data from one urban area with high population density but ignores some roads in the
prediction phase [7].

Apparently, a concept that works reliably in any area and can deal with different daytimes and
weekdays, for modelling of rush hour effects, needs some backup mechanisms to tackle such issues
as loss of connection or absence of data. Therefore, an imputation of missing data can enhance the
robustness of the ED prediction systems. Generally, the prediction of missing data is an essential
area in multiple, distinct domains [11–14]. Regardless of the application field, simply ignoring
and discarding the data is not recommended [11,15]. Thus, the estimation of missing information
utilises approaches of different complexity levels, from the naive imputation of the mean to more
sophisticated predictive models based on ML. In the area of psychological counselling, Schlomer et al.
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compares the different performances achieved by software that implements statistical methods for data
imputation [11]. At this level, multiple imputation methods and full information maximum likelihood
provide better results than the mean substitution methods, which are not recommended for further
usage. Besides statistical approaches, the usage of ML methods is analysed in medicine [12], industrial
data management [16] and transportation [14]. Jerez et al. make use of both statistical imputation and
ML-based strategies, and conclude that the latter provides higher prediction accuracy [12]. Despite
the popularity of these two main imputation methods, Jeng et al. introduce a domain scenario in
which the application of sophisticated models might be expensive in both economic and resource
dimensions; therefore, two functional approaches corresponding to online and offline processing are
developed [13].

In the research of traffic forecasting, the representative patent of Wynter et al. shows usage of
historical data as input to an exemplary missing data prediction algorithm [14] . Similarly, Laña et al.
present ML approaches to impute lacking traffic information, based on regression and classification
models [17]. Although most of the complex imputation problems are searching for solutions in
ML methodology, the dimension of ML opens structural and parametric optimisation problems,
also addressed in [18,19].

Missing data imputation for the ED prediction of BEVs has a lower presence in the literature.
Different approaches are based on own vehicle data suggest imputing data from other vehicles in
case of missing data [6,20]. Accordingly, a fleet-vehicle data-based one has the advantage that it
can naturally reflect effects on ED at a location, whereas a map-based approach needs to reconstruct
the effects. To summarise, this paper aims to present a backup mechanism for situations without
sufficient data which works within an analytical ED prediction based on fleet data. Whereby, such
location-specific fleet data within this ED prediction context provide a map layer, which can be figured
as an energetic map with some gaps. The main objective of this work is to present a concept for such
a favourable ED prediction based on fleet data. Moreover, as a proof of concept, the prediction also
features a backup mechanism to deal with an insufficient amount of data, which can be understood as
an energetic map data imputation.

2. Materials and Methods

The main objective of the Energy demand Prediction Framework (EPF) is to raise the acceptance
level of BEVs among customers by enabling functions supporting the driver. Therefore, the model
must ensure a robust and precise prediction output. In this context, the identification of error sources
becomes essential. Missing data is among the contributors to the final prediction error. This section
aims to introduce the fleet data-based EPF and the problem of missing data, by describing the methods
involved in the proposed solution and presenting the evaluation setup from two different perspectives.

2.1. Fleet Data-Based Route Energy Demand Prediction

Before describing the actual problem addressed by this paper, the following section first explains
the general description of a route’s ED and then the EPF based on it. Equation (1) depicts the calculation
of a routes ED at the high voltage battery’s (HVB) clamp ERoute, HVB, Cl, which is the location of the
connection to all energy consumers. It is the sum of the powertrain’s EPt,[k] and auxiliaries’ energy
demand EAux,[k] on each route link k from the start kstart to the destination link kdest, where links
represent a road segments located between neighbouring road junctions. In the following, it is
assumed that the problem is quasi-static along a road segments. In other words, the auxiliaries’ power
demand PAux,[k] is nearly constant within a link. As the map provides each link’s length ∆s[k], and the
average velocity v̄[k] (AV) is also available, the estimated time to drive along a link can be calculated.
The product of this value and the PAux,[k] results in each link’s EAux,[k]. In contrast, the calculation of the
other part of the ED on a link, the EPt,[k], is not time-dependent, but distance-dependent. Accordingly,
the EPt,[k] is the integral of wheel force FW concerning the driven distance s, given the powertrain’s
efficiency ηPt is considered according to the direction of FW . Whereby, the FW indicates whether there
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is ED from the HVB and the powertrain is in propulsion (prop) mode or energy can be recovered into
the HVB, and the powertrain is in recuperation (recu) mode.

ERoute, HVB, Cl =
kdest

∑
k=kstart

EPt,[k] + EAux,[k] =
kdest

∑
k=kstart

k+1∫
k

1

η
sign(FW (s))
Pt

· FW(s)ds + PAux,[k] ·
∆s[k]
v̄[k]

(1)

FW(s) = ~pT ·~r =
( m·e

ρ
2 ·cx ·A
ft ·m·g
m·g

)T

·

 a(s)
v2(s)

cos(α)
sin(α)

 = Finertia + Fair + Ftire + Fslope (2)

Equation (2) depicts the calculation of FW . As aforementioned, it separates the quasi-static parts
of mainly vehicle parameters in the parameter vector ~p (vehicle mass m, gravitational acceleration g,
rotational mass factor e, tire rolling resistance coefficient ft, air density ρ, aerodynamic drag coefficient
cx and frontal area A) and the variables changing over distance in the route vector~r. The~r contains the
slope α and the DP, which consists of the velocity v and the acceleration a, over distace s. The vector
product of those two vectors embody the sum of driving resistance forces, namely, the inertial pseudo
d’Alembert force Finertia, the aerodynamic resistance force Fair, the tires’ rolling resistance force Ftire
and the climbing resistance force Fslope. Table 1 shows the energetic driving profile map attributes
(DPMAs) that can be extracted if only looking at the DP influence from the Equations (1) and (2).
Note that the integral DPMA need to be separated according to the energy’s flow into propulsion and
recuperation parts to consider ηPt properly.

Table 1. Derived energetic driving profile map attributes (DPMAs), which generally describe the
impact of the driving profile on a vehicle’s energy demand.

Driving Profile Map Attribute Propulsion Recuperation

Integral Acceleration IAP:
∫
[a(s)]Propds IAR:

∫
[a(s)]Recuds

Integral Squared Velocity ISVP:
∫
[v2(s)]Propds ISVR:

∫
[v2(s)]Recuds

Average Velocity AV: v̄

Figure 1 describes the process of the EPF and its intermediate stages from (A) to (I) based on
the derived DPMA. The figure shows in two boxes which parts of the process take place in vehicles
and on backend servers. For the first process step (A), the vehicles of a fleet record traces. A trace
includes second-wise records of timestamps and the vehicle’s geolocation retrieved from a Global
Navigation Satellite System (GNSS). The vehicle sends those records anonymised via a mobile network
to a backend server, as indicated by step (B). In step (C), the backend performs map matching, which
adds to every record a map-link reference, called a link-ID. The map matching provides each record’s
relative position on the link. The used map matching is based on a Hidden Markov Model as described
by [21].

Furthermore, the link-ID enables the addition of other map attributes regarding each record.
This attributes can include the link’s length, the speed limit, the direction of movement on the link
and others. In particular, based on each link’s lengths together with the relative position on the link
and the timestamp, the backend part of the framework can calculate a continuous reconstruction of the
DP in step (D). This DP describes the velocity and acceleration over the driven distance. From this DP,
the following step (E) extracts energetic DPMA for crossed map-links. Furthermore, the EPF’s proof of
concept incorporates a discretization of the map-links into multiple sublinks of maximum 50 m length.
Accordingly, step (E) calculates the DPMA for each sublink traversed by each trace. Subsequently,
the five aggregated DPMA are a sample of the influence of this trace’s DP on ED along a sublink,
as described in the beginning of this section and summarised in Table 1. Step (F) aggregates DPMA of
different traces into nonparametric distributions for distinct space and time buckets for each DPMA,
named DP map attribute distributions (DPMADs). Specifically, on one hand, a space bucket refers to
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the particular sublink of a record and the direction of driving on it. On the other hand, a time bucket
refers to the corresponding weekday and the number of half-hours elapsed from midnight until the
record of the DPMAs. Therefore, a group of five DPMADs refers to DPMA samples. This means that
the samples belong to similar circumstances considering time and location. Consequently, a DPMAD
describes the spread of traces concerning the ED influence of the DP. In turn, the DPMADs represent
the spread in cumulated probability within 25 bins for each velocity-related DPMA, whereas 31 bins
represent the acceleration-based ones. Therefore, the population of the DPMADs forms a map of the
energetic spread stored on the backend.
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Figure 1. The general approach of fleet-based route energy demand prediction framework (EPF).
The process starts from fleet data collection (A) in a vehicle and sending to backend server (B).
It continues with the processing in the backend in the steps (C)–(F). After sending (G) the DPMA
to the prediction vehicle, the ED prediction (K) takes place for the route that is divided into space
buckets. Steps marked with warning signs are possible faulty and can fail in this process. In step (G),
the connection to the vehicle can be lost. In the decomposed route (H), some space buckets for the
needed time bucket can be missing due to no or not sufficient fleet data recordings.

More specifically, when a vehicle plans an upcoming route, the backend sends in step (G) the
recorded DPMADs to the vehicle, which correspond to the required time and space bucket. Therefore,
the map referenced DPMADs can be figured as an energetic map.

Due to data privacy reasons, the following steps (H)–(K) take place in the vehicle. Particularly,
step (H) extracts driver-specific DPMA out of each DPMAD based on previously learned
driver-behaviour-profile. This approach ensures data privacy by architectural setup. Potentially,
step (H) can use a ranking of the driver’s energetic behaviour within the recorded spread from the fleet.
As DPMADs are frequently non-Gaussian or bimodal distributed, percentile values are the basis for
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the ranking. For such cases, a standard deviation-based ranking is not applicable. This driver ranking
ensures a personalised ED prediction by utilising features from a driver’s behaviour as input to the
model. As this work aims to establish a single solution throughout the fleet, the following evaluations
use the most frequent or median behaviour recorded using the crowdsourcing approach, which refers
to the 50th percentile.

Once the DPMAs are extracted from the DPMADs, the last step (I) performs the actual energy
demand prediction. The prediction step calculates the energy demand with regard to (1) and (2) on
each sublink along the route and eventually sums them up. The overall process of the EPF, shown
in Figure 1, also highlights two steps, which can be faulty in the context of a backend-based fleet
data concept. The latter can happen either in step (F), where the connection between vehicle and
backend could be lost, or in step (H), where specific DPMAD for certain space-time buckets could not
be available.

2.2. Principe of Machine Learning Approach

As depicted above, the process of energy prediction relies on the data collected from the fleet.
Moreover, the transmitted information links the model and available vehicle data. Naturally, the fleet
coverage directly affects the prediction performance. If the recording vehicles did not cover a specific
time bucket on a sublink, the model should cope with gaps while predicting the ED.

The proposed solution utilises an ML approach using both map information and existing fleet
data. Figure 2 shows the overall architecture of the proposed solution in the form of a blackbox
representation. More precisely, the missing data identification layer aims to detect faulty situations
also described in step (H) of Figure 1, to find sublinks with missing fleet information. Subsequently,
the input layer depicts the features. Specifically, the features comprise map-related information, such
as road-specific attributes described in more details in the following Section 2.3. Based on map-link IDs,
the map information and available DPMADs received from the fleet are aligned for training. After the
input layer, the blackbox layer outlines the proposed solution approaches, including the suggested
ML model types, which should predict the DPMAD information in the output layer. On one hand,
the regression model can directly predict the bins of the DPMADs, as detailed in Section 2.4. On the
other hand, the classification type model can only predict categories of DPMADs, which a clustering
provides in the shape of representative DPMADs, as depicted in Section 2.5.

Output

 5 DPMAD

 a natural number n representing a 

cluster (e.g. cluster #2)

Input

Features taken from Map 

for links without data:

 slope

 curvature

 functional road class

 speed limit
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𝐼𝐷[𝑘−1] 𝐼𝐷[𝑖] 𝐼𝐷[𝑖+1]

} } }

Missing Data Identification

?

Figure 2. Blackbox architecture.

To assure a comprehensive explanation of the blackbox layer, first, the principle of Machine
Learning is introduced. As formally defined by Mitchell, the learning performance of a system
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increases based on an experience generalisation process on a given task [22]. Based on the experience
dimension and the format of training data provided to the model, the learning process splits into
supervised, semisupervised, and unsupervised ones. Given the first category, the goal is to learn
the prediction of a random variable by relying on a set of explicative random variables. The input
data for training the ML model, in this case, is labelled, constructing an alignment between input and
output structures. In contrast, the unsupervised learning aims to learn the probability distribution
of a random vector while the training data is unlabelled. It is mainly the right approach when the
problem can not be formalised as a blackbox, and the scope is to learn unknown patterns of the data.
In turn, semisupervised learning involves both types of training data, where the presence of labelled
information in combination with unlabelled data provides a considerable performance boost compared
to unsupervised learning. The addressed missing fleet data problem fits in the supervised ML context.
Indeed, the problem is well defined, and the map-link IDs together with timestamps provide matching
between the input of map information, and the output of DPMADs collected from the vehicles in space
and time.

The ability to manipulate large amounts of data is the result of a tight combination between
the algorithms upon which ML builds and the resources requested in terms of computational power.
The limits of application areas over which ML can action are continuously shrinking. As a consequence,
in the field of energy systems, the use of ML models have recently met ample growth [23–25]. In the
case of supervised ML, the main problems addressed are tasks belonging to two categories: regression
and classification. The proposed solution includes an approach for both categories, and the objective is
a comparison between the performances given two central perspectives: a general, more mathematic
ML perspective (MLP) and a problem-specific energetic perspective (EP). The algorithm used for the
regression method is the Linear Regression Section 2.4, and for classification is the Decision Trees
algorithm Section 2.5. In terms of complexity, these are simple, fast and easy to scale algorithms,
qualifying them for the presented proof of concept. Moreover, the benefit of these algorithms lies
in their position as representatives of the regression and classification methods. On a system level,
they are subject to change similar to their parameters.

2.3. Feature Selection

Prior to setting the algorithm parameters of the proposed regression and classification models,
the input features for the supervised ML approach need to be carefully selected. Additionally,
the feature selection needs to consider the domain-specific influences. Therefore, Equations (1) and (2)
describe such relevant influences on a vehicle’s ED. Therefore, these equations are the basis for the
selection of the relevant features from the available map attributes. In the following, these attributes
describing the roads of a road network are called map features. As mentioned in Section 2.1, the route
vector~r denotes the energetic influence of the route being driven. This vector includes the topographical
and DP factors. The digital map represents the topographical characteristics by spatial shape points,
forming map-links or sublinks, along with corresponding slope angles to a horizontal surface. However,
the aimed supervised ML in a proof of concept requires scalar features. Accordingly, aggregating
functions need to describe slope values along sublinks, in a way that it not only summarises but also
considers extreme values. Therefore, average, maximum and minimum slope of a sublink serve as
features of the topographical influence on ED. These features can capture the topological influence on
ED, e.g., in the case of a high negative slope value equal to going downhill, which leads to a lower ED
or to the possibility to charge the battery by recuperating potential energy and vice versa.

As Equation (2) depicts, the other essential part of the route vector~r is the DP, comprising two
components: velocity and acceleration. Multiple features model these two components within our
framework. As of velocity, which influences the ED by means of aerodynamic resistance, the framework
uses the map attribute speed limit, as a primary feature for this component. However, traffic and
road characteristics are also influencing the actual velocity. Therefore, the further features of daytime
and weekday with a resolution of 30 min model the traffic influence in a first iteration. In this proof



Energies 2020, 13, 982 8 of 23

of concept, these features enable the ML to consider effects of rush hour traffic. Apparently, traffic
influences not only the velocity, but also acceleration; therefore, we used this time-specific feature
to address both velocity and acceleration DP components, which affect the ED due to a change in
aerodynamic resistance and a change in the vehicle’s kinetic energy.

Similarly, road class and curvature influence both parts of the energetic DP, namely, velocity and
acceleration. The road class feature represents road characteristics like speed, the volume of traffic
and geographical position, including the importance of areas which are connected through the roads.
The road classes’ definition is categorical, and the data used within the proposed system use five road
class categories. These categories start from highest traversal roads connecting significant urban areas
to roads with a lower traffic volume and minimum speed limits.

Consequently, the road class describes the character of the road and thus affects typical velocity
and acceleration being registered along the route, which again influences the ED due to a change in
aerodynamic resistance and a change in the vehicle’s kinetic energy. In turn, the curvature affects
the DP capturing the physical and comfort restrictions given by the road geometry regarding the
curves’ radius. Thus, given a particular curvature, only a certain velocity can be driven comfortably
and securely. Similar to slopes, also for curvatures, the map provides multiple values along a sublink.
Correspondingly, aggregating functions extract two features from the curvature values along a sublink:
minimum and maximum.

The selected map features geometrically describe a map. The basic units of this map are elements
called links and nodes, with links combining shape points organising roads in a continuous way
and nodes represent crossing by connecting several links. The shape points encode the real-world
curvature of the road into measured numerical values. The nodes also determine the direction within
a link, therefore, depending on the driving direction can be either Origin or Non-Origin nodes.

Note that the selected features are subject to optimisation, as we are considering them as a system
parameter. Furthermore, feature engineering techniques can be applied, for instance, polynomial
combinations of the features with a higher degree. Finally, more sophisticated features like weather,
real-time traffic information or the speed limit difference between adjacent links can be included in
the model.

In the blackbox representation of the presented framework, the output block contains five
DPMADs built upon the historical DPMADs captured from the fleet, as explained in Section 2.1.
Figure 3 shows representatives of these DPMADs.

2.4. Application of Regression

Once the input features are selected, a suitable algorithm for regression problem has to be chosen.
The most commonly used one is Least Squares. Fundamentally, it determines the decision boundary
line for a set of data points by minimising the sum of the squares of the errors between the hypothesis
of the model and the observed values. When compared with other regression methods, results of
Least Squares are easily interpretable and can be achieved in a smaller computational effort (i.e., faster
execution times and lower memory footprint). This method, however, is highly sensitive to the choice
of starting values for its coefficients and well known for not capturing highly complex relationships
between the input features [26]. Moreover, this method has a closed-form solution which can be
computed using linear algebra given a feasible dimension of the input vector. In the supervised ML
method integrated into this work, the Linear Regression algorithm is used as a prediction model.
Its default parameters are defined in Table 2.



Energies 2020, 13, 982 9 of 23

Figure 3. Representative driving profile (DP) map attribute distributions (DPMADs): (a) Integral
acceleration recuperation (IAR). (b) Integral acceleration propulsion (IAP). (c) Integral squared velocity
recuperation (ISVR). (d) Integral squared velocity propulsion (ISVP). (e) Average Velocity (AV).
Panels (a–d) are displayed normed over distance, and panels (c,d) are transformed into linear space
for better interpretability.

Given the synergy between input map-related information with the output DPMADs,
the integration of the chosen regression method can take different forms. On one hand, an approach is
to build the concept upon one singular model. In this case, only one regressor is trained for the entire
prediction task, including all five bin-like-structured DPMADs. On the other hand, a second approach
is to train multiple regressors for each of the DPMADs’ bin. Because different bins of the DPMADs
need to be modelled separately, the second approach was chosen. Furthermore, besides keeping a
modularised structure of the solution, this strategy avoids the complexity of one singular model.

The intermediate results show important data insights, namely, that the number of outliers
in the peripherical bins negatively affect the prediction and, consequently, the following phases of
the pipeline. The outcome indicates the need for a potential redesign of the DPMADs structure,
which is subject to future work. However, in this work, we address the drawback by applying an
outlier analysis.

Thus, for anomaly detection, Seo compares the possible outlier detection and removal
methods [27]. According to this study, Z-score is more appropriate in cases where normal distributions
are involved. Therefore, Tukey’s method, also known as Interquartile Range (IQR), is further used in
our framework [28]. IQR represents a measure of statistical spread and is defined by the difference
between the lower (Q1) and upper (Q3) quartiles. With regard to Tukey’s method, the observations
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that fall below Q1− 1.5 · IQR or above Q3 + 1.5 · IQR are labelled as outliers and further disregarded
in the process [28].

From the technical point of view, the bins containing a significant number of outliers are excluded
from the regression task and modelled by fixed values, namely, 0 and 1, as these bins are located at the
head and tile of the cumulative DPMADs.

Table 2. Default parameters of the linear regression and decision tree algorithms [29].

Linear Regression Decision Tree

fit-intercept = True criterion = “gini”
normalise = False splitter = “best”
n-jobs = 1 max-depth = None

min-samples-split = 2
min-samples-leaf = 1
min-weight-fraction-leaf = 0.0
max-features = None
random-state = None
max-leaf-nodes = None
min-impurity-decrease = 0.0
min-impurity-split = None
class-weight = None
presort = False

2.5. Application of Classification

Although Linear Regression provides us with continuous values, representing the DPMADs
directly, a Decision Tree is used to return nominal classes, representing the corresponding clusters,
from the given input feature vector of representative sets of DPMADs gathered by a clustering done in
previous work [30]. It does this by building a tree-like structure, which, starting from its root node,
splits the input set with a series of boolean tests. There exist various algorithms for building such
data structure, but fundamentally, each new branch of the tree is created to maximise information
gain by splitting the input data into unmixed groups. This process yields a nonparametric model,
which does not depend on the distribution assumption, that is often prevalent in other approaches.
This method is extensively used in literature mainly for its white-box model character, allowing for
easy interpretability and keeping a low time complexity. Moreover, it can handle highly-dimensional
and non-numerical input data while also providing an importance score of each input feature. Finally,
given the simplicity and portability of Decision Trees, they may also be implemented in hardware for
fast executions in constrained embedded scenarios. However, the main drawbacks of this method
are its tendency for overfitting and the fact that the resulting trees are unstable, so that even small
variations in the training data may create completely different resulting models. The Decision Tree
algorithm is used as a classifier with the parameters listed in Table 2.

Different from the approach presented in this paper, previous experiments for data reduction
with various alternative clustering algorithms and distance metrics have been conducted [30].
The classification part implemented as a second module of the supervised ML solution of the described
framework is built upon this work, which provides representative sets of DPMADs with cluster
numbers that can be predicted by the above described Decision Tree as depicted in Figure 2.

2.6. Evaluation Approach

This section aims to create an in-depth view of the evaluation perspectives, including a deep
dive into the fleet and map data. The evaluation examines two main perspectives: the Machine
Learning Perspective (MLP) and the Energetic Perspective (EP). Initially, as the solution builds upon
ML methods, the system’s performance is evaluated from MLP .

For the regression strategy, the bins of the DPMADs are subject to IQR filtering, resulting in a
more compact representation. Contrary, the classification strategy maintains the predefined bin-like
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structure of the DPMADs. The outcomes of both strategies are discussed in Section 3. The same section
underlines the need to analyse an ML problem also from a domain-specific point of view.

Additionally, we distinguish the experimental setup by introducing the problem scenarios of
a Lost Backend Connection Scenario (LBCS) and Missing Data Scenario (MDS). The LBCS imitates
a possible loss of connection between the vehicle and the backend. Whereas, the MDS imitates the
absence of some data within the fleet data.

For each of the described problem scenarios, we used two different testing strategies,
by considering data from two distinct regions. Specifically, this work uses fleet data recorded in
Germany originating from two regions specified by so-called geohash of level 3, which is the output of
a public domain geocoding procedure [31]. In more details, a geohash encodes geographic locations
into hashes containing digits and letters, so that all geohashes with the same leading identity span a
neighbouring geographical area. Specifically, for training and validation of the proposed regression
and classification models, data from u28 (Munich area) and u30 (Leipzig area) geohashes are used,
as depicted in Figure 4a. Thus, 95% of u28 region’s data serve as the training data set, whereas the rest of
the u28 and the u30 data are used as the validation subsets. The validation data set from u28 serves for
the Application Test Scenario (ATS). The ATS represents the situation within the application situation,
where a model trained on one region also is used for the same region. In contrast, the Cross-Evaluation
Test Scenario (CTS) uses the u30 validation data, as this could expose overfitting on the training data
of the u28 region. For each combination of the presented problem (LBCS and MDS) and test scenarios
(CTS and ATS) we performed both classification (Clsf) and regression (Regr) experiments as Table 3
depicts. For Regression, the Linear Regression algorithm, according to Section 2.4, is applied, whereas
for the Clsf strategy, the Decision Tree algorithm according to Section 2.5 is used. Both algorithms use
default parameter values listed in Table 2, except the max-depth parameter of Decision Tree where the
value is set to ten.

Table 3. Evaluation matrix showing the problem scenarios: Lost Backend Connection Scenario (LBCS)
and Missing Data Scenario (MDS); test scenarios: Cross-Evaluation Test Scenario (CTS) and Application
Test Scenario (ATS); strategies: Regression (Regr) and Classification (Clsf).

Problem ScenarioTest Scenario Test Area Lost Backend Connection Missing Data

Cross-evaluation u30 Regr↔ Clsf disregarded

Application u28 Regr↔ Clsf Regr↔ Clsf
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Figure 4. (a) Map of the two origin regions, where the data are recorded. The records from the region
u28 serve as training data set. The records of u30 serve as cross-validation data set. (b) Energetic Map
created using the u28 training data, indicating low (blue) to high (red) energy consumption and also
energy recuperation (dark blue).

As described previously, LBCS implies that the training phase of the model uses data from
u28. However, in this scenario, the model predicts not only within the same geohash, but also a
different one, namely, u30. Such a splitting enables the detection of overfitting and ensures an objective
evaluation of different strategies. Due to the fact that u30 has no immediate neighbourhood to u28,
a fair cross-evaluation environment is ensured by the CTS. Note that the combination of the CTS and
the LBCS illustrates the worst-case scenario. In contrast to LBCS, the MDS represents the missing data
scenario and involves a data availability check on the backend. Therefore, two scenarios are possible:
either the DPMADs are available on the backend, or they need to be predicted by the ML model
first. Further, the complete set of DPMADs for each sublink is used to compute energy consumption.
For simulating this scenario, the pipeline assumes that the ML model predicts 30% of the data. This
simulation set-up imitates the experimentally observed missing data ratio of the u28 validation data
set. Overall, the evaluation features three scenarios in different problem and geographical test settings
to analyse the two ML approaches. As the upper right cell of Table 3 would depict a weaker worst-case
scenario, this work does not address it.

The following amount of data describes the underlying training and testing data sets. The training
set contains 95% of available traces from u28, which is 1,491,580 anonymised trace fragments with a
total length of 3,503,958 km. As Section 2.1 depicts, each trace is composed of links, which are further
divided into sublinks. The sublinks, aligned with both corresponding DPMADs and map features
from Section 2.3, embody the input samples of the ML models. Thus, the training set is composed of
291,444 distinct links and 82,757,521 samples. The remaining 5% of traces from u28 are the ATS test set,
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which is 74,579 trace fragments with a total length of 556,135 km. The LBCS test set consists of the
same number of trace fragments, randomly taken from u30 with a full length of 554,366 km.

Based on the data of u28, Figure 4b shows the fleet sourced energetic map summarised for all
daytimes. The colours indicate the energy consumption principally for a median driver normed
over distance. The unit would be kilowatt hours per 100 km. Dark red refers to very high energy
consumption, for example, on the south road going uphill within the zoomed area, whereas dark blue
refers to a high recuperation potential, for example, on the north road going downhill within the
zoomed area.

With regards to the statistical description of the map-related features, Figures 5 and 6 show the
proportion of length for each road class, alongside with the proportion of three speed limit intervals for
both validation and training sets. Concerning the weekday feature, in the training data, the proportion
of working days is 75% while in the validation sets it is 83% and 88%, within u28 and u30, respectively.
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Figure 5. Percentage ratio of the traces to each of the functional road classes in terms of length.
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Figure 6. Percentage ratio of the the traces to three intervals of speed limit (km/h): 0 ≤ I1 ≤ 50;
50 < I2 ≤ 100; I3 > 100.

Prior to the training of the ML models and their evaluation within the specified problem and
test scenarios, the handling process of map features need to be addressed. The alignment between
the features and the collected DPMADs from the fleet can involve missing map-related information.
Thi problem is addressed by the imputation method described below. At link junctions, a preprocessing
needs to select the curvature according to the link sequence provided by the map-matching procedure
Figure 1. Another curvature-related issue is that some links with a lower traversal and traffic volume
have no curvature information included in the map. As they belong to the lowest functional road
class category, which presents mainly in residential areas, the imputation assumes straight roads,
by imputing null values. Whereas, for sublinks with the missing speed limit, the imputation sets
the mean velocity calculated based on the fleet data. Finally, the gaps, in terms of road slope, are
filled by averaging the previous and the next sublink’s available slope values. To summarise, for the
map-related attributes that are not available, the imputation process aims to fill the gap by providing
solutions based on neighbouring segments.
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3. Results and Discussion

The results obtained by employing the proposed solution are displayed and described in this
section. At first, this chapter depicts the results from the MLP followed by the problem-specific EP.
Furthermore, paragraphs for the discussion of the outcomes are included.

Specifically, the training used for the training of the ML models hardware containing 2 CPUs,
each with ten cores of 2.40 GHz. In terms of memory, the hardware provides 32GB DDR4-RAM.
Concerning computational times, the training of the regression models accounts for approximately
39 h, and the training of the classification model takes up to 2 h.

3.1. Machine Learning Perspective

As the described system in this work builds upon supervised ML methods, the results are
initially analysed from the MLP described at the beginning of Section 2.6. First, Figure 7a,b shows the
performance of both regression and classification models for the LBCS within the CTS that represent
the worst-case scenario in Table 3. The lengths difference between the plots from (a) and (b) is the
result of the filtering proposed in Section 2.4. To analyse the performances, the mean absolute error
(MAE) of each bin’s cumulative probability with the DPMADs is used. Accordingly, for the graphs of
the acceleration outcomes, there is no significant difference, although the classification method seems
to achieve slightly better results. On the contrary, with regards to the velocity outcomes, the regression
method presents visibly better results.

Second, Figure 7 shows the performance of both regression and classification models for the
LBCS within the ATS. Similar to the previously described set-up, the results from panels (c) and (d)
highlight that the classification method presents slightly better outcomes regarding acceleration. Again,
the velocity results are better in the case of regression.

Considering the LBCS problem scenario within both CTS and ATS, furthermore, the comparison
of the outcomes enables overfitting detection. Accordingly, the comparison of Figure 7a,b versus c,d
shows only slight differences, therefore, overfitting seems to be neglectable.

Furthermore, Table 4 summarises the comparison of the graphs for each test scenario in Figure 7
by providing the better performing model for each DPMA and the advantage within the average of all
bins’ MAE. On one hand, these statistics indicate an equal or better performance of the classification
model for the acceleration related DPMA, given both test scenarios. Furthermore, the classification
model also performs better for the ISVR, but overall, the greatest advantage is −3.2%. On the other
hand, for ISVP and AV, the regression method achieves a magnitude better outcomes with advantages
between −10.7% and −28.9%. Regrading ISVR, Figure 7 shows visually favourable plots for the
regression, but the statistics indicate it differently. This outcome might be due to the omitted values
from the ignored DPMAD bins due to IQR filtering. Thus, the regression model predicts only the
values that correspond to the more spreading bins of the DPMADs, whereas the classification includes
all bins. Therefore, statistics are not comparable besides giving different indications about which
model performs better for the different DPMA. Accordingly, the MLP seems not clear enough, and the
need for a more problem-specific perspective arises.

Table 4. Evaluation showing which model performs better in DPMAD prediction separately for each
DPMA including deviation in brackets.

Evaluation Region u30 u28

Model Recuperation Propulsion Recuperation Propulsion

Integral acceleration similar (0.0%) Clsf (−2.1%) Clsf (−1.5%) Clsf (−2.3%)
Integral squared velocity Clsf (−1.3%) Regr (−12.4%) Clsf (−3.2%) Regr (−10.7%)

Average velocity Regr (−28.9%) Regr (−27.2%)
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Figure 7. Mean Absolute Errors (MAE) for DPMAD bins using both machine learning (ML) model
categories (a,c) regression and (b,d) classification. The problem scenario is LBCS, and the test scenario
for panels (a,b) is CTS, whereas for panels (c,d) is ATC.
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The average of all mean absolute errors displayed in each subfigure of Figure 7 should serve as a
single overall summary statistic of the MLP on the different models and test scenarios. For both CTS
and ATS, the summary statistics of the regression model is equal to 0.19, whereas for the classification
model, the values are equal to 0.12. Once again, the classification model’s advantage in the second
digit of the summary statistics between the two ML methods might occur from the above mentioned
bin-wise structure and its application. Overall, the summary statistics show the same values within
two digits for the CTS and ATS, which indicates neglectable overfitting. In turn, the overfitting-related
observations might be affected by the proximity of the u30 and u28 geographical areas. Another factor
might be the season, here spring, as the fleet was recording in April and May. Subsequently, there is
the possibility that these overfitting observations could change for other areas or different recording
seasons toward worse conclusions, whereas the current results indicate clearly that the set of data is
large enough for this analysis.

In conclusion, the MLP indicates the absence of notable overfitting. Furthermore, regression
performs in specific velocity-related DPMAs better, whereas, particularly for the acceleration-related
DPMAs and velocity-related DPMAs in recuperation, classification presents better outcomes.
Subsequently, the classification performs better for most of the DPMAs. However, if regression
performs better, the advantage is a lot bigger in comparison to the ones where classification performs
superior. Overall, through the analysis conducted from the MLP, the necessity for a problem-specific
perspective emerged.

3.2. Energetic Perspective

In contrast to the MLP of looking at the results, Figure 8 shows the problem-specific results in
terms of energetic errors within the EP. In regards to the evaluation perspectives described at the
beginning of Section 2.6, in the EP only one error value per sample can express the deviation introduced
by a model within each evaluation scenario. Figure 8 shows the results for the same scenarios and
models like the section before. In panel (a), the figure shows the LBCS tested within the CTS, which is
trained on the u28 training set and evaluated on the u30 evaluation set. Here, the regression model
introduces a median bias into the ED prediction of −12.6% with a spread of 30.1% in IQR, according to
Table 5. Correspondingly, the regression model performs 70.0% better in bias and 80.2% better in IQR
spread than the classification one.

Furthermore, panel (b) of Figure 8 shows the result for the ATS based on the evaluation set taken
from u28, whereby the problem scenario configurations stay the same. The comparison of the ATS and
CTS shows no difference for the classification model and only slight differences in the regression model.
In contrast, panel (c) of Figure 8 shows the results for the MDS within the ATS. This setting predicts
only a 30% proportion and the rest is assumed to be provided from the fleet data-based DPMADs
from the backend. The regression models bias in ED prediction is 7.2% with a spread of 22.6% in IQR,
according to Table 5. Once again, the regression performs better than the classification model, which
has a 60.0% worse bias and 80.3% higher IQR spread.

Regarding feature-related performance of the ML models, Table 6 depicts the mean energetic error
within each road class. Table 6 shows that regression performs best in the case of the road class that has
the smallest absolute variation in velocity, which the model needs to learn. By contrast, classification
has better outcomes for road classes with a higher level of variance. The result might be due to the fact
that both the clustering and classification distinguish more groups of data if there is more spread within
those. If there is just a low spread, especially the clustering gives a lower number of representative
DPMADs for a data set part of low variance in comparison to a data set part of high variance.

The following paragraphs discuss the beforehand described results to put them into context.
Figure 8a shows the test set-up, which represents the overall worst case. It predicts every DPMAD
for energetic prediction just based on the trained models in an area of no direct geographic vicinity
to the training area, as shown in Figure 4a. In contrast to the indications of the MLP, this worst
case, as well as all other test set-ups, show that the regression performs more than two times better
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than the classification model. Two factors could cause this inferior performance of the classification
model. On one hand, the model might serve from the two-step generalisation of the fleet data, as
at first, the clustering into representative DPMADs takes place and is followed by the classification
model’s training which can both introduce errors. On the other hand, this clustering projects the
continuous space of the DPMADs provided in step (F) of Figure 1 into a discrete space, which limits
the classification model’s freedom of action.
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Figure 8. Results displayed considering problem-specific energetic perspective (EP). Therefore, errors
shown are percentage errors in predicted ED. Panels (a,b) show evaluations for the LBCS and a
prediction only based on regression and classification models. These evaluations use the model trained
on the u28 geohash region and are calculated on the u30 (a) and the u28 (b) region. Panel (c) shows
results for training and evaluation in u28 region. Accordingly, the regression and classification model
predicts only 30% of the segments.

Table 5. Spread in errors for different scenarios from the energetic point of view displaying the
interquartile range (IQR) and its borders: The 25%-percentile (Q1) and the 75%-percentile (Q3).

Lost Backend Connection Scenario Missing Data Scenario

u30 u28 u28

Statistics Regr Clsf Regr Clsf Regr Clsf

Q1 (%) −25.6 −124.3 −23.9 −124.3 −17.3 −79.2
Q3 (%) 4.5 27.6 3.5 27.6 5.3 35.6

IQR (%) 30.1 151.9 27.4 151.9 22.6 114.8

This limitation could further cause the absence of any difference for the classification results
between panels (a) and (b) in Figure 8, in contrast to some slight differences between the respective
regression model results. Both use different data for training and evaluation. Furthermore, the results
of panel (a) use evaluation data from a different region. The evaluation data of panel (b) originate
from the same region as for the training, as the application of the model would always be trained on
all data available and applied to the origin regions. However, the comparison of the results displayed
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in Figure 8a,b allows the derivation of statements about the level of the model’s overfitting. This
comparison shows only some slight difference for the regression and for the classification even no
difference, which indicates neglectable overfitting. Therefore, the training data set seems to be of
sufficient comprehensiveness and size. Moreover, the level of overfitting is so small that only the
continuous regression model shows a difference, and the classification model’s discrete resolution
cannot represent any difference. The different proportions in road classes Figure 5 of the two compared
evaluations data sets further support the value of this overfitting evaluation. Nevertheless, another
evaluation questioning overfitting could include a test on data of another continent and from another
season, like winter, as the cross-validation evaluation set from u30 originates from the same country
and season as the training data set. However, the presented evaluations for the proof of a basic concept
can already show that the amount of training data seems to be sufficient, and the regression model
outperforms the classification one concerning a backup model for the LBCS.

Table 6 gives a more in-depth insight into the energetic deviations within the LBCS problem and
ATC test scenario for the regression and classification models. The regression model performs best for
the lower important roads, and therefore lower velocities, as there is a lower absolute variance within
the data to capture. In contrast, the classification model performs best for the higher priority road class
and thus manly higher velocities. This higher deviation occurs as the clustering, which is the basis for
the classification, assigns within k-means algorithm fewer representatives to areas of lower variance,
and thus the classification has less possibility to distinguish. In turn, the regression is not subject to
this resulting discrete resolution, and thus performs better for the road classes with a lower velocity.
Even though the classification performs better for higher road classes, it performs for all road classes
worse than the regression in the worst road class 4. Accordingly, the regression model is for all road
classes, the favourable one.

Table 6. Performance from the best to the worst ranking of ML models in the EP grouped by functional
road class with energetic deviation in brackets for the LBCS problem scenario and the ATC test scenario.

Model

Regr Clsf

Class 5 (6.8%) Class 2 (27.4%)
Class 3 (14.8%) Class 1 (38.3%)
Class 2 (15.0%) Class 5 (49.1%)
Class 1 (16.5%) Class 4 (54.5%)
Class 4 (18.4%) Class 3 (57.5%)

The more relevant scenario in a daily application might not be the total loss of backend connection,
but the absence of some DPMADs due to an insufficient number of available fleet data samples within
a space and time bucket. Figure 8c depicts the results for the latter scenario. This scenario assumes
30% of the DPMADs missing. As this ratio is based on the given two-month fleet data set, a longer
period of fleet data recording and a bigger number of recorded traces can decrease this ratio and thus
the introduced error. The results are again for classification not as good as for regression. The latter
is already promising if compared to some energy prediction models’ precision, which provides no
dedicated backup models for the case of absent inputs. The analyses of Sautermeister et al. provide
an overall range uncertainty margin between 12% and 22.6% for different scenarios [32]. Whereby,
the power demand prediction introduces 8.3% to 10.8% uncertainty. The mean absolute percentage
error (MAPE) in ED prediction of Masikos et al. is 4.0% [33]. Sarrafan et al. also reports up to 8% error
in range prediction [34]. Therefore, the herein presented basic concept using the regression model can
already achieve an error of the same magnitude as other methods. Overall, the regression model based
on simplistic map features can serve as backup-model to overcome the problems addressed by this
work, namely, loss of backend connection and the MDS.
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3.3. Comparison of General and Problem-Specific Model Evaluation

This section depicts deductions, from a comparison of the two evaluation perspectives presented
in the previous Sections 3.1 and 3.2. The results of the general machine learning perspective indicate
that the classification model outperforms the regression one, according to the summary statistics
and Table 4. However, for further improvement of the interpretability of these indications, we also
performed domain-specific evaluations in Section 3.2, as is usually recommended. This evaluation
depicts the energetic error introduced into the ED prediction by the two model options in different
scenarios. Whereby this evaluation shows that the regression outperforms the classification model
significantly, mostly due to the fact that the classification model serves from errors in the two nested
model stages of clustering and classification.

3.4. Outlook and Potential Next Steps

As mentioned in Section 2.2, this work proofs the concept of utilising supervised ML methods to
solve the problem of missing data within the energetic map for the EPF. The main contribution of the
work lays in the conceptual architecture, which was validated by the results from the problem-specific
EP discussed in Section 3.2. In addition to the missing energetic map data issue, the solution can be
used as a replacement of the current setup by an onboard deployment. More precisely, the current
framework relies on the connection between the vehicle and the backend. However, based on the
proposed solution, this could be replaced by the model, which is autonomously deployed in the
vehicle.

From scalability and optimisation point of view, the current structure of the concept can be
adjusted in its configuration. Concerning features, the set of map attributes can be considerably
extended. Specifically, such real-time features like weather or traffic information can be incorporated
into the model. Regarding the feature preprocessing, the proof of concept model comprises only single
features in a first-order polynomial representation. However, higher polynomial representations can be
investigated. As Section 2.3 depicts, certain features allow us to model the influences on both velocity
and acceleration in the DPMA. For instance, the combination of the speed limit and functional road
class could be beneficial to model different road types’ influences on the acceleration DPMAs in a
more reliable way. Furthermore, polynomial features of higher orders increase the level of complexity,
which can be reproduced by the model. However, all those options for additional features could lead
to an explosion of the model and thus, high computational cost.

Regarding the supervised ML methods that take those features as input, both methods used
are only a single representative of the available classification and regression algorithms, which are
rather simple and come with low computational complexity. Regarding regression, such alternatives
as Logistic Regression, Stochastic Gradient Descent or Support Vector Machines can be used as well.
Concerning classification, a potential optimisation opportunity could be the usage of such algorithms
like Random Forest or shallow as well as deep Neuronal Network. Based on the individual analysis of
DPMAD bins, addressed in Section 2.4, future work might even consider different models for each
bin as it was done for the regression. Furthermore, the clustering stage included in the pipeline might
also be subject to optimisation. The current concept enhances the robustness of the clustering model
by considering only DPMADs based on at least three measurements. This value, as discussed in
Section 2.5, was chosen based on the idea of having at least a distribution. However, robustness can be
further enriched by considering even more measurements.

With regards to the data set, a higher informational value can always be added by bigger data
sets. As it was mentioned in Section 3.1, there is still some overfitting as both the training and testing
data originate from Germany. Besides, the season in which the fleet data was recorded might also
have an impact. Accordingly, data from different seasons can be used in future work. Consequently,
an even bigger dataset could cover additional roads and driving circumstances.
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Regarding the structure of DPMADs, the current work uses an outlier detection method to
determine the bins without substantial variance. However, the peripherical bins can be handled
differently, by an adaptation of the bin-wise structure of the DPMADs, also suggested in Section 2.4.

The selection of the DPMAs within the DPMADs for ED prediction could be another opportunity
for improvement. The ED calculation based on DPMADs, specified in Section 2.1, currently uses the
50th percentile as the representative for the average driver. This percentile choice is considered as a
parameter, which can be optimized by a driver-specific model.

In Section 2.6, several imputation methods for missing features are mentioned. Alternatively,
more sophisticated interpolation methods like spline interpolation can be used instead of a next-value
interpolation used in this work.

To summarise the outlook, the mentioned modifications offer room for other evaluations in future
work on the developed pipeline.

4. Conclusions

To foster the acceptance of emerging electric individual mobility, electric vehicle-specific services
can mitigate the user’s concerns regarding limited range and charging-related issues. Therefore,
those services should reliably provide range prediction and electric vehicle-specific routing. Both of
these services require a reliable route-specific energy demand prediction as an essential component.
There are direct, ML-based and analytical energy demand prediction models in the literature. These
models source their inputs for prediction from map data or vehicle data. The latter can originate
either solely from the prediction vehicle or a fleet of vehicles. If a fleet of vehicles provides the data,
routes not driven yet can be predicted as well. Additionally, the fleet data incorporate location-specific
influences on energy demand which constitutes an energetic map. Therefore, the objective of the
energy prediction framework should be to provide a physically traceable approach that accounts for
influences on energy demand, specific for any particular location and time. Therefore, this framework
relies on a traceable analytical model based on georeferenced fleet-vehicle data. However, such an
approach is limited if data are not available on some roads or time intervals. For further enhancement
of the reliability, this paper suggests supervised machine learning-based methods, which generalise
the knowledge extracted from available data. In particular, these methods can serve as a backup in two
scenarios. On one hand, for the imputation of missing energetic map data, on the other hand, if the
connection between vehicle and server is lost, for a complete replacement of the backend’s function to
supply energetic map data. A backup for such scenarios aims to enhance the reliability of the proposed
energy demand prediction.

This paper aims to be a proof a concept of such a backup for an energy demand prediction, which
in turn will enhance its overall performance. Therefore, such classification and regression models as
decision tree and linear regression are selected. More sophisticated machine learning models will even
further improve the obtained results. Such models could be shallow as well as deep Neuronal Networks
or ensemble algorithms that operate with advanced features such as real-time traffic information or
weather parameters. However, these approaches are much more computationally demanding and tend
to be less scalable. Scalability is particularly essential due to a rather high amount of processed data.
Indeed, the training of the models utilises more than 3.5 million kilometres of aggregated fleet data in
order to compute five energetic features. The models’ evaluations make use of a cross-evaluation and
an application test dataset of another 1.1 million kilometres from two regions in Germany.

The framework was tested from two perspectives, namely, a general machine learning and
a problem-specific energetic one. To conclude, the regression model performs better for the
addressed problem. Specifically, the regression model introduces 12.6% of energetic error while
tested under the worst-case cross-evaluation scenario. This scenario corresponds to a loss of backend
connection. This regression model outperforms the classification-based one by 70.0%. Furthermore,
in the case of missing energetic map data, the better performing regression model introduces 7.2%
bias. This deviation is comparable to the general energy demand prediction errors found in the
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literature. Therefore, the proof of concept framework presented in this paper shows promising results.
Therefore, this machine learning-based fleet data imputation for energy demand prediction can help to
increase reliability.

Future work will include a driver-specific energy demand prediction based on this paper’s
outcomes to improve precision and enhance reliability. Such an energy demand prediction can be used
beneficially in multiple ways. As mentioned before, the BEV-specific service of an enhanced range
prediction can foster the acceptance of BEVs. Moreover, a BEV-specific trip and charging-stop planning
can also contribute. Besides these BEV-specific services, the energetic map could be the basis for the
optimisation of charging networks. Furthermore, anticipatory energy management planning could
use the energy demand prediction’s information to improve efficiency also for different powertrain
topologies like a hybrid one.
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Abbreviations

The following abbreviations are used in this manuscript:

ATS Application test scenario
AV Average Velocity
BEV Battery electric vehicle
Clsf Classification
CTS Cross-evaluation test scenario
DPMA Driving profile map attributes
DPMAD Driving profile map attribute distributions
ED Energy demand
EP Energetic perspective
EPF Energy Prediction Framework
GNSS global navigation satellite system
HVB High voltage battery
IAP Integral acceleration propulsion
IAR Integral acceleration recuperation
IQR Inter Quartile Range
ISVP Integral squared velocity propulsion
ISVR Integral squared velocity recuperation
LBCS Lost backend connection scenario
MAE Mean absolute error
MAPE Mean absolute percentage error
MDS Missing data scenario
ML Machine Learning
MLP Machine Learning perspective
prop Propulsion
Q1 25%-percentile or lower quantile
Q3 75%-percentile or upper quantile
recu Recuperation
Regr Regression
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