
Phylogenetics

A fast and memory-efficient implementation of the

transfer bootstrap

Sarah Lutteropp1,*, Alexey M. Kozlov 1 and Alexandros Stamatakis1,2

1Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg 69118 and 2Institute for Theoretical

Informatics, Karlsruhe Institute of Technology, Karlsruhe 76128, Germany

*To whom correspondence should be addressed.

Associate Editor: Russell Schwartz

Received on August 23, 2019; revised on November 7, 2019; editorial decision on November 12, 2019; accepted on November 21, 2019

Abstract

Motivation: Recently, Lemoine et al. suggested the transfer bootstrap expectation (TBE) branch support metric as
an alternative to classical phylogenetic bootstrap support for taxon-rich datasets. However, the original TBE imple-
mentation in the booster tool is compute- and memory-intensive.

Results: We developed a fast and memory-efficient TBE implementation. We improve upon the original algorithm
by Lemoine et al. via several algorithmic and technical optimizations. On empirical as well as on random tree sets
with varying taxon counts, our implementation is up to 480 times faster than booster. Furthermore, it only requires
memory that is linear in the number of taxa, which leads to 10� to 40�memory savings compared with booster.
Availability and implementation: Our implementation has been partially integrated into pll-modules and RAxML-
NG and is available under the GNU Affero General Public License v3.0 at https://github.com/ddarriba/pll-modules and
https://github.com/amkozlov/raxml-ng. The parallel version that also computes additional TBE-related statistics is
available at: https://github.com/lutteropp/raxml-ng/tree/tbe.
Contact: sarah.lutteropp@h-its.org
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The Felsenstein bootstrap (BS) (FBP) procedure (Felsenstein, 1985)
is widely used to assess the robustness of phylogenies. The FBP
draws columns from the multiple sequence alignment (MSA) with
replacement to generate 100 or more MSA replicates. Then, for each
MSA replicate, a corresponding BS tree is inferred. Subsequently,
the BS support value of a branch in the reference tree (e.g. the best-
known ML tree on the original MSA) is computed by calculating the
frequency of occurrence of this branch/bipartition in the BS trees. In
the classical FBP approach, only bipartitions that match exactly are
counted. Conversely, the transfer BS expectation (TBE) metric
(Lemoine et al., 2018) also takes into account all ‘similar’ biparti-
tions in the BS replicate trees. The contribution of such similar
bipartitions is weighted by their similarity to the respective reference
bipartition.

TBE support computations are based on the so-called transfer
distance. The transfer distance dðb; b�Þ between a branch b in the
reference tree and a branch b� in a BS replicate is the minimum num-
ber of taxa that need to be moved to transform the bipartition
induced by b into the bipartition induced by b�. The transfer index
/ðb;T�Þ is defined as the minimum transfer distance between a
branch b in the reference tree and the branches in the BS replicate
tree T�:

/ðb;T�Þ ¼ min
b�2T�

dðb; b�Þ:

Given a reference tree and a set of BS replicate trees, Lemoine et al.
define the TBEðbÞ of a branch b in the reference tree as follows:

TBEðbÞ ¼ 1� /ðb;T�Þ
p� 1

;

where /ðb;T�Þ is the average transfer index over all BS replicates
and p is the number of taxa on the ‘light’ side of the bipartition
induced by b. The part of a bipartition that contains the smaller tip
set is referred to as the ‘light side’ of the bipartition, whereas the
larger tip set is called the ‘heavy side’. When both sets are of equal
size, the ‘light side’ is chosen arbitrarily.

2 Implementation

We implemented the transfer BS computation as part of the pll-
modules library. The pll-modules library offers high-level func-
tions (e.g. model parameter optimization functions) for the low-level
phylogenetic likelihood library libpll (Flouri et al., 2015). Besides
likelihood computations, libpll and pll-modules libraries

VC The Author(s) 2019. Published by Oxford University Press. 2280

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 36(7), 2020, 2280–2281

doi: 10.1093/bioinformatics/btz874

Advance Access Publication Date: 22 November 2019

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/7/2280/5637754 by KIT Library user on 18 M
ay 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/326703758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0001-7394-2718
https://github.com/ddarriba/pll-modules
https://github.com/amkozlov/raxml-ng
https://github.com/lutteropp/raxml-ng/tree/tbe
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz874#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz874#supplementary-data
https://academic.oup.com/


provide highly efficient tree operations (e.g. NEWICK parsing/writ-
ing, tree traversals, manipulating bipartitions). Hence, using pll-
modules allowed us to leverage these routines for our TBE imple-

mentation, and to facilitate integration into third-party programs as
well as into our RAxML-NG (Kozlov et al., 2019) software.

Our implementation has been integrated into RAxML-NG
v0.8.1 and later versions. We describe our implementation in de-

tail in Supplementary Material.
The booster tool calculates additional TBE-related statistics

that might help the user to identify potential problems with a data-
set, such as the presence of rogue taxa. However, computing these
additional statistics increases space- and runtime complexity by a

factor of n, where n is the number of taxa. We also designed and
implemented an improved algorithm for computing these statistics

(see Supplementary Material for details).

3 Results

We compared runtime performance and memory consumption be-
tween our implementation and booster. Our implementation
yields exactly the same scores as booster on all datasets we used

for this evaluation.
Two other popular phylogenetic inference tools also offer TBE

computations: PhyML (Guindon et al., 2010) and IQ-Tree
(Nguyen et al., 2015). IQ-Tree internally uses booster for this

task, and PhyML cannot compute TBE support for user-specified
tree sets. Therefore, we excluded IQ-Tree and PhyML from our
evaluation.

Note that Truszkowski et al. (2019) are simultaneously and in-
dependently working on an improved algorithm for TBE computa-

tions with a lower theoretical run time complexity. The respective
prototype implementation is 237 times faster (personal communica-

tion) than the original booster implementation on the dataset C.
On this dataset, our implementation is 258 times faster and requires
21 times less memory than booster.

We measured runtimes and memory consumption on a machine
equipped with two Xeon Gold 6148 (Skylake-SP) CPUs and 768GB

RAM. Details on the empirical datasets we used for evaluation can
be found in Supplementary Material.

Our experimental results show that RAxML-NG is two orders
of magnitude faster than booster on all datasets, while RAxML-
NG uses considerably less memory than booster (Figs 1 and 2).

As can be seen in Supplementary Material, RAxML-NG also
outperforms booster when using multiple threads.

4 Conclusions

We developed and made available a substantially faster and more
memory-efficient open source transfer BS implementation. It allows
to calculate TBE support metrics on extremely taxon-rich phyloge-

nies, without constituting a computational limitation. For example,
using a single thread on dataset D with 31 749 taxa and 100 BS

trees, our implementation can compute TBE support values in under
2 min, while booster requires 916 min. While we can now rapidly
compute the TBE, users should bear in mind that inferring the actual

BS trees typically represents the main computational burden of a
phylogenetic analysis.

Acknowledgements

We thank Frédéric Lemoine for discussions and feedback on this manuscript.

Funding

Part of this work was funded by the Klaus Tschira foundation.

Conflict of Interest: none declared.

References

Felsenstein,J. (1985) Confidence limits on phylogenies: an approach using the

bootstrap. Evolution, 39, 783–791.

Flouri,T. et al. (2015) The phylogenetic likelihood library. Syst. Biol., 64,

356–362.

Guindon,S. et al. (2010) New algorithms and methods to estimate

maximum-likelihood phylogenies: assessing the performance of phyml 3.0.

Syst. Biol., 59, 307–321.

Kozlov,A.M. et al. (2019) RAxML-NG: a fast, scalable and user-friendly tool

for maximum likelihood phylogenetic inference. Bioinformatics, 35, 4453.

Lemoine,F. et al. (2018) Renewing Felsenstein’s phylogenetic bootstrap in the

era of big data. Nature, 556, 452.

Nguyen,L.-T. et al. (2015) Iq-tree: a fast and effective stochastic algorithm for

estimating maximum-likelihood phylogenies. Mol. Biol. Evol., 32,

268–274.

Truszkowski,J. et al. (2019) Rapidly computing the phylogenetic transfer

index. In: Huber, K.T. and Gusfield, D. (eds) 19th International Workshop

on Algorithms in Bioinformatics (WABI 2019). Volume 143 of Leibniz

International Proceedings in Informatics (LIPIcs). Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 20:

1–20:12.

10−3

10−2

10−1

100

101

102

103

104

105

106

A_2311

B_6582

C_9147

D_31749

E_203418

Dataset

A
ve

ra
ge

 ti
m

e 
pe

r 
B

S
 tr

ee
 in

 s
ec

on
ds

Program

booster

RAxML−NG

RAxML−NG extra

Single−threaded

Average runtime per BS tree in seconds

Fig. 1. Average runtime per BS tree in seconds, with and without computing add-

itional statistics in RAxML-NG. Both tools were executed sequentially. Note the

logarithmic scale on the y-axis. On the E_203418 dataset, booster went out of mem-

ory. RAxML-NG is several orders of magnitude faster than booster

104

105

106

107

108

A_2311

B_6582

C_9147

D_31749

E_203418

Dataset

A
ve

ra
ge

 m
em

 u
sa

ge
 in

 k
ilo

by
te

Program

booster

RAxML−NG

RAxML−NG extra

Single−threaded

Average mem usage in kilobyte

Fig. 2. Average total memory usage in kilobytes, with and without computing add-

itional statistics in RAxML-NG. Both tools were executed sequentially. Note the

logarithmic scale on the y-axis. On the E_203418 dataset, booster went out of mem-

ory. RAxML-NG requires several orders of magnitude less memory than booster

across all tested datasets

A fast and memory-efficient implementation of the transfer bootstrap 2281

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/7/2280/5637754 by KIT Library user on 18 M
ay 2020

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz874#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz874#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz874#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz874#supplementary-data

