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Abstract

Motivation: Recently, Lemoine et al. suggested the transfer bootstrap expectation (TBE) branch support metric as
an alternative to classical phylogenetic bootstrap support for taxon-rich datasets. However, the original TBE imple-
mentation in the booster tool is compute- and memory-intensive.

Results: We developed a fast and memory-efficient TBE implementation. We improve upon the original algorithm
by Lemoine et al. via several algorithmic and technical optimizations. On empirical as well as on random tree sets
with varying taxon counts, our implementation is up to 480 times faster than booster. Furthermore, it only requires
memory that is linear in the number of taxa, which leads to 10� to 40�memory savings compared with booster.
Availability and implementation: Our implementation has been partially integrated into pll-modules and RAxML-
NG and is available under the GNU Affero General Public License v3.0 at https://github.com/ddarriba/pll-modules and
https://github.com/amkozlov/raxml-ng. The parallel version that also computes additional TBE-related statistics is
available at: https://github.com/lutteropp/raxml-ng/tree/tbe.
Contact: sarah.lutteropp@h-its.org
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The Felsenstein bootstrap (BS) (FBP) procedure (Felsenstein, 1985)
is widely used to assess the robustness of phylogenies. The FBP
draws columns from the multiple sequence alignment (MSA) with
replacement to generate 100 or more MSA replicates. Then, for each
MSA replicate, a corresponding BS tree is inferred. Subsequently,
the BS support value of a branch in the reference tree (e.g. the best-
known ML tree on the original MSA) is computed by calculating the
frequency of occurrence of this branch/bipartition in the BS trees. In
the classical FBP approach, only bipartitions that match exactly are
counted. Conversely, the transfer BS expectation (TBE) metric
(Lemoine et al., 2018) also takes into account all ‘similar’ biparti-
tions in the BS replicate trees. The contribution of such similar
bipartitions is weighted by their similarity to the respective reference
bipartition.

TBE support computations are based on the so-called transfer
distance. The transfer distance dðb; b�Þ between a branch b in the
reference tree and a branch b� in a BS replicate is the minimum num-
ber of taxa that need to be moved to transform the bipartition
induced by b into the bipartition induced by b�. The transfer index
/ðb;T�Þ is defined as the minimum transfer distance between a
branch b in the reference tree and the branches in the BS replicate
tree T�:

/ðb;T�Þ ¼ min
b�2T�

dðb; b�Þ:

Given a reference tree and a set of BS replicate trees, Lemoine et al.
define the TBEðbÞ of a branch b in the reference tree as follows:

TBEðbÞ ¼ 1� /ðb;T�Þ
p� 1

;

where /ðb;T�Þ is the average transfer index over all BS replicates
and p is the number of taxa on the ‘light’ side of the bipartition
induced by b. The part of a bipartition that contains the smaller tip
set is referred to as the ‘light side’ of the bipartition, whereas the
larger tip set is called the ‘heavy side’. When both sets are of equal
size, the ‘light side’ is chosen arbitrarily.

2 Implementation

We implemented the transfer BS computation as part of the pll-
modules library. The pll-modules library offers high-level func-
tions (e.g. model parameter optimization functions) for the low-level
phylogenetic likelihood library libpll (Flouri et al., 2015). Besides
likelihood computations, libpll and pll-modules libraries
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provide highly efficient tree operations (e.g. NEWICK parsing/writ-
ing, tree traversals, manipulating bipartitions). Hence, using pll-
modules allowed us to leverage these routines for our TBE imple-

mentation, and to facilitate integration into third-party programs as
well as into our RAxML-NG (Kozlov et al., 2019) software.

Our implementation has been integrated into RAxML-NG
v0.8.1 and later versions. We describe our implementation in de-

tail in Supplementary Material.
The booster tool calculates additional TBE-related statistics

that might help the user to identify potential problems with a data-
set, such as the presence of rogue taxa. However, computing these
additional statistics increases space- and runtime complexity by a

factor of n, where n is the number of taxa. We also designed and
implemented an improved algorithm for computing these statistics

(see Supplementary Material for details).

3 Results

We compared runtime performance and memory consumption be-
tween our implementation and booster. Our implementation
yields exactly the same scores as booster on all datasets we used

for this evaluation.
Two other popular phylogenetic inference tools also offer TBE

computations: PhyML (Guindon et al., 2010) and IQ-Tree
(Nguyen et al., 2015). IQ-Tree internally uses booster for this

task, and PhyML cannot compute TBE support for user-specified
tree sets. Therefore, we excluded IQ-Tree and PhyML from our
evaluation.

Note that Truszkowski et al. (2019) are simultaneously and in-
dependently working on an improved algorithm for TBE computa-

tions with a lower theoretical run time complexity. The respective
prototype implementation is 237 times faster (personal communica-

tion) than the original booster implementation on the dataset C.
On this dataset, our implementation is 258 times faster and requires
21 times less memory than booster.

We measured runtimes and memory consumption on a machine
equipped with two Xeon Gold 6148 (Skylake-SP) CPUs and 768GB

RAM. Details on the empirical datasets we used for evaluation can
be found in Supplementary Material.

Our experimental results show that RAxML-NG is two orders
of magnitude faster than booster on all datasets, while RAxML-
NG uses considerably less memory than booster (Figs 1 and 2).

As can be seen in Supplementary Material, RAxML-NG also
outperforms booster when using multiple threads.

4 Conclusions

We developed and made available a substantially faster and more
memory-efficient open source transfer BS implementation. It allows
to calculate TBE support metrics on extremely taxon-rich phyloge-

nies, without constituting a computational limitation. For example,
using a single thread on dataset D with 31 749 taxa and 100 BS

trees, our implementation can compute TBE support values in under
2 min, while booster requires 916 min. While we can now rapidly
compute the TBE, users should bear in mind that inferring the actual

BS trees typically represents the main computational burden of a
phylogenetic analysis.
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Fig. 1. Average runtime per BS tree in seconds, with and without computing add-

itional statistics in RAxML-NG. Both tools were executed sequentially. Note the

logarithmic scale on the y-axis. On the E_203418 dataset, booster went out of mem-

ory. RAxML-NG is several orders of magnitude faster than booster
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Fig. 2. Average total memory usage in kilobytes, with and without computing add-

itional statistics in RAxML-NG. Both tools were executed sequentially. Note the

logarithmic scale on the y-axis. On the E_203418 dataset, booster went out of mem-

ory. RAxML-NG requires several orders of magnitude less memory than booster

across all tested datasets
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