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Abstract

State-of-the-art edge-connected graphene/hexagonal boron nitride van der Waals
heterostructures provide low contact resistivity, high charge carrier mobilities as well
as a large mean free path. In combination with their high device geometry flexibility
they appear thus to be predestined for realizing high-quality tunable weak links
in Josephson junctions, which can be readily implemented into superconducting
circuits for quantum technological applications. However, designing gate-controlled
nanostructures in monolayer graphene remains a serious challenge due to its lack of
a band gap which hinders the confinement of charge carriers. The present thesis aims
to address this shortcoming by establishing bilayer graphene as a suitable alternative.
Unlike the single-layer relative, bilayer graphene offers the opportunity to open an
electronic band gap by breaking the layer symmetry which is possible with the ease of
exposing electric displacement fields across the two layers. In this regard, employing
the combination of locally defined back and top gate architectures allows to design
electrostatically induced nanostructures based on spatial band structure engineering.

In this thesis, at first the realization of a gate-tunable charge carrier confinement is
presented. The formation of the constriction is demonstrated by means of supercon-
ducting magneto-interferometry measurements. Building on the successfully induced
electrostatic confinement and in combination with a more sophisticated double top
gate structure, a fully operable quantum point contact is implemented within the
bilayer graphene weak link. When the junction is measured in the normal state,
quantized conductance is observed due to the formation of one-dimensional sub-
bands. Though, unlike in other material systems we here explore the complexity of
the degeneracy of spin, valley and unusual mini-valley quantum degrees of freedom.
In final measurements, the quantum point contact is probed in the superconducting
state. The measured critical current through the junction displays a discrete varia-
tion directly correlated to the quantized steps in the normal state conductance. These
results pave the way towards the study of individual Andreev bound levels through
this superconducting quantum point contact.

In conclusion, the presented work demonstrates the implementation of electrostati-
cally tunable superconducting nanostructures in bilayer graphene weak links which
serves as a platform for the design of more complex electronic circuits.
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Kurzzusammenfassung

Modernste Graphen/hexagonales Bornitrid van der Waals Heterostrukturen mit
Randkontakten scheinen prädestiniert zu sein, um qualitativ hochwertige und ab-
stimmbare schwach-gekoppelte Verknüpfungen in einem Josephson-Kontakt zu
realisieren, da sie geringe Kontaktwiderstände, hohe Ladungsträger-Mobilitäten und
eine lange mittlere freie Weglänge sowie eine große Flexibilität im Design der Proben-
geometrie aufweisen. Diese können in supraleitende Schaltkreise für Anwendungen
in der Quantentechnologie integriert werden. Die Entwicklung von elektrostatisch
induzierten Nanostrukturen in einlagigem Graphen bleibt jedoch eine Herausfor-
derung, da aufgrund einer fehlenden Bandlücke die Möglichkeit zur räumlichen
Einschränkung von Ladungsträgern verhindert wird. Die vorliegende Arbeit hat die
Zielsetzung eine potentielle Lösungsstrategie für diese Problematik zu entwickeln,
indem zweilagiges Graphen als geeignete Alternative vorgestellt wird. Im Gegensatz
zu einlagigem Graphen lässt sich hier eine elektronische Bandlücke öffnen. Dies ist
durch brechen der Symmetrie der beiden Schichten in zweilagigem Graphen möglich,
was mittels einer angelegten senkrechten elektrischen Flussdichte umgesetzt werden
kann. Entsprechend lassen sich mittels einer Kombination aus räumlich lokal definier-
ten Gate-Strukturen auf der Unter- und Oberseite gezielt elektrostatisch kontrollierte
Nanostrukturen herstellen.

In dieser Arbeit wird zunächst eine elektrostatisch kontrollierte Ladungsträgerein-
schränkung realisiert, welche mithilfe von supraleitenden magnetischen Interferenz-
messungen nachgewiesen wird. Darauf aufbauend sowie mittels einer erweiterten
doppelschichtigen oberen Gate-Struktur wird die Implementierung eines funktions-
fähigen Quantenpunktkontakts demonstriert. Bei Messungen im normalleitenden
Zustand ist der Leitwert aufgrund der Ausbildung eindimensionaler Subbänder
quantisiert. Anders als in anderen Materialsystemen erforschen wir hier jedoch
eine komplexe Entartung der Subbänder in Spin-, Valley- und Minivalley-Quanten-
freiheitsgraden. In abschließenden Messungen wird der Quantenpunktkontakt im
supraleitenden Zustand untersucht. Hier weist der gemessene kritische Strom dis-
krete Änderungsschritte in direkter Korrelation mit den quantisierten Stufen des
Leitwerts im normalleitenden Zustand auf. Die Ergebnisse sind Voraussetzung zur
Untersuchung einzelner Andreev-gebundener Zustände durch den supraleitenden
Quantenpunktkontakt in zukünftigen Experimenten.
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Kurzzusammenfassung

Zusammenfassend lässt sich sagen, dass in der vorliegenden Arbeit elektrostatisch
kontrollierbare Nanostrukturen in zweilagigem Graphen hergestellt wurden, welche
in einer supraleitenden schwach-gekoppelten Verknüpfung in einem Josephson-
Kontakt integriert sind. Die Ergebnisse sind Grundlage für die Entwicklung kom-
plexerer (supraleitender) Schaltkreise.
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1 Introduction

Ever since its successful isolation, the first truly two-dimensional (2D) material named
graphene has attracted great interest and sparked enormous worldwide research
activities [GN07]. As the single-layer of graphite, graphene is a monoatomic layer
consisting of sp2 hybridized carbon atoms arranged in a honeycomb lattice. Although
2D layers of graphite were theoretically described much earlier and have been known
as the integral part of bulk structures, strictly 2D crystals were presumed to be ther-
modynamically unstable under ambient conditions and therefore could not exist free
standing on their own [GN07]. It was only in 2004, that Konstantin Novoselov and
Andre Geim announced the successful isolation and identification of atomically thin
layers of graphite [Nov+04]. Their revolutionary but simple idea was to look for the
leftover thin crystal flakes on a piece of adhesive tape after peeling off layers from
bulk graphite. Indeed, even monoatomic layers of graphene can be obtained owing
to the strong in-plane bonds but weak van der Waals (vdW) interactions between dif-
ferent layers. For the subsequently performed experiments on this first of its kind 2D
material both received the Nobel Prize in Physics in 2010.

What makes graphene particularly special is its unique electronic band structure aris-
ing from the inversion symmetry of two non-equivalent atomic sites in the honeycomb
lattice. It is a gapless semimetal where conduction and valence bands touch at the six
corner points of the hexagonal first Brillouin zone. In the vicinity of these so-called
Dirac points the electronic energy spectrum can be described in terms of a Dirac-
like Hamiltonian in the basis of the “pseudo-spin” spinor wave function of the two
sublattices [Cas+09]. The resulting energy band structure is linear and the charge car-
riers in graphene behave like massless quasiparticles. Their relativistic nature gives
rise to unusual phenomena such as the half-integer quantum Hall effect [Nov+05a;
Zha+05] and Klein tunneling observed as an anisotropic perfect transmission through
p–n barriers [KNG06].

Apart from the intriguing possibility to mimic quantum relativistic physics in a con-
densed matter analogue [GN07], graphene has been envisioned early on to revolution-
ize in many facets technological applications owing to its superior physical properties
with many outstanding material parameters in terms of mechanical strength and elas-
ticity, thermal and electrical conductivities, impermeability to gases as well as many
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1 Introduction

more [Nov+12]. Probably the most intensely driven field of research on graphene is
about its electronic properties with one possible direction of employing graphene for
the development of new electronic circuits in quantum technological applications. For
instance graphene quantum dots (QDs) are proposed to be used for designing spin
qubits [Tra+07] with improved coherence times due to suppressed decoherence mech-
anisms in carbon-based devices. Moreover, exploiting the additional valley quantum
degree of freedom in graphene is anticipated as a platform for developing devices in
the new field of valleytronics [RTB07].

However, there is one major obstacle in designing electronic circuits and nanostruc-
tures based on graphene, which is its gapless band structure that hardly allows to
completely close a conducting channel and confine charge carriers. One amongst
other pursued strategies to overcome this problem involved the etching and pattern-
ing of graphene into nanoribbons with the eventual opening of a band gap [SCL06],
but these devices suffered from scattering from the rough edges [Bis+16]. The good
news is that there exists one suitable alternative, which is bilayer graphene (BLG).
Being constituted of two coupled monolayers of graphene, BLG provides many simi-
lar properties as its single-layer relative, but features also significant differences as it
hosts massive Dirac fermions due to a parabolic energy band structure [MK13]. Most
importantly though, it is possible to open up an electronic band gap by breaking the
inversion symmetry of the two layers [McC06].

The feasibility of engineering spatially defined electronic band gaps by means of elec-
trostatic gating makes BLG an appealing candidate for designing tunable nanostruc-
tures. While already in earliest transport experiments on dual-gated BLG devices
[Oos+08] the induced opening of a gap has been observed by a largely increasing re-
sistance, a full pinch-off in gate-defined nanostructures appeared to be hampered by
leakage arising from hopping transport due to the inhomogeneous developed band
gap of initial BLG devices on Si/SiO2 substrates [Miy+10]. In fact, the Si/SiO2 sub-
strate was understood as the main limiting factor for earliest graphene devices causing
impaired device performance with reduced charge carrier mobilities [HAD07].

The full electronic potential of substrate supported graphene devices was only
brought forward by combining it with another 2D material, namely hexagonal boron
nitride (hBN), which has been identified as the most ideal substrate material for
graphene and gave the field a new boost [Dea+10]. In fact, there exists by now a large
zoo of all kinds of 2D materials including metals, semiconductors, insulators, ferro-
magnets etc., which can be readily assembled into so-called vdW heterostructures
[GG13]. While interlayer effects in stacked 2D materials give rise to new intriguing
phenomena [Yan+19], the assembly of vdW heterostructures has developed into a
new research field by its own [Nov+16]. However for this work, it is most important

2



to note that hBN can be employed as the perfect atomically flat featureless dielectric
substrate retaining graphene’s intrinsic properties.

Thanks to further sample fabrication improvements [Wan+13], where graphene is
fully encapsulated between a top and bottom hBN flake and connected from the edge
of the mesa, extremely clean devices with high contact transparencies can be realized.
With this new generation of graphene devices ballistic transport has been demon-
strated over micron distance scales. Nevertheless, despite the improved quality of
devices with significantly reduced disorder, further attempts of creating electrostati-
cally induced nanostructures in BLG still did not show the aimed success [Goo+12;
Drö+12].

The present work is designed to deal with the outlined issues and establish BLG
as a versatile platform for realizing tunable nanostructures based on spatially de-
fined band gap engineering by means of electrostatic gating. In our approach we
employ state-of-the-art encapsulated devices, but placed onto a pre-patterned back
gate (BG) covered by a layer of Al2O3 deposited by atomic layer deposition (ALD),
thereby fully avoiding effects of inhomogeneities on Si/SiO2 substrates. Another
addressed aspect in this work will be to employ BLG as highly tunable weak link
material in a Josephson junction (JJ). Such a device consists of weakly coupled su-
perconductors and makes it possible to measure a supercurrent across an otherwise
non-superconducting material. Originally predicted and observed in superconductor–
insulator–superconductor (SIS) tunnel junctions [Jos62; AR63], it is actually possible
to implemented any kind of conductive system as a so-called weak link [Lik79]. Here
we draw on the high-quality and purity of graphene/hBN vdW heterostructures with
high contact transparencies that allows to pass a supercurrent over large distance
between the superconducting electrodes. This way, we study the tunability of the
supercurrent in the BLG weak link coupled to superconducting Ti/Al metal contacts
and demonstrate its full monitoring both spatially and in amplitude by means of
gate-induced confinement geometries based on locally defined top gate structures.
The measurements are performed at mK temperatures in a 3He/4He dilution fridge
using standard lock-in detection techniques with small ac excitation < 10 µV at low
frequency signal ∼ 13 Hz combined with out-of-equilibrium measurements in applied
out-of-plane and in-plane magnetic fields.

Outline of this thesis

The thesis involves three experimental main parts, that is first establishing a tailoring
supercurrent confinement in BLG weak links, then with a refined device structure
the realization of a fully operable quantum point contact (QPC), and finally the pi-
oneering towards an superconducting quantum point contact (SQPC) in BLG which

3



1 Introduction

represents the combination of the two previous parts. Each of these three chapters is
written in a rather self-contained manner with a separate introduction and literature
review about the key aspects of the respective topic, followed by the experimental
results and concluded with a short summary.

Therefore, this thesis is organized as follows: In chapter 2 the reader is intro-
duced to the fundamental aspects of this work. This includes at first a discussion
why graphene/hBN vdW heterostructures are predestined for the fabrication of
high-quality devices. Thereafter, a theoretical description of the electronic energy
spectrum in BLG is given with attention to the relevant parameters that tune the
band structure. The chapter is completed with an introduction to the fundamental
concepts and physics of Josephson junctions and the peculiarities of graphene weak
links are pointed out.
Chapter 3 provides the details of sample fabrication, starting from the exfoliation of
2D materials, followed by the assembly routine of vdW heterostructures, the making
of electrical contact, and the final patterning of the devices together with the design
of top gate (TG) structures. In the second part of this chapter, the low-temperature
experimental setup and the measurement scheme are described.
Chapter 4 presents experiments on gate-defined nanostructures in BLG weak link
Josephson junctions. The confinement of the supercurrent is investigated by super-
conducting magneto-interferometry measurements. Therefore, all the background
information about this technique are discussed first. The experimental part itself
consists of the study on two different confinement geometries, i. e. a QPC-like con-
finement and a long channel confinement.
In chapter 5, we take the findings of the preceding chapter to the next level by adding
an additional overall TG to the device. Thanks to this additional tuning knob, we
can study the formation of one-dimensional (1D) subbands in a BLG QPC with a
unique set of controllable quantum degrees of freedom. A brief introduction to QPCs
in general and a short review on attempts in graphene-based devices is provided
beforehand.
With the last experiment presented in chapter 6, the priorly established QPC is stud-
ied in the superconducting regime. The theory of SQPCs and previous experiments
are outlined in the respective literature review.
Finally, the results of this thesis are summarized in chapter 7 and an outlook for
further investigations and future experiments is given.
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2 Fundamental aspects and

literature overview

In this chapter, the fundamental prerequisites for this thesis are introduced.1 At first,
an overview on the rapidly emerging field of graphene/hBN vdW heterostructures is
given (2.1), followed by a brief description of the basic electronic properties of bilayer
graphene (2.2). In the last part of this chapter, the elementary physics of Josephson
junctions as well as peculiarities of graphene weak links are outlined (2.3).

2.1 Graphene/hexagonal boron nitride van der Waals

heterostructures

2.1.1 Extrinsic limits on SiO2

Whilst 2D materials owe their remarkable properties to their atomically thin crystal
structure [Nov+05b], this also brings along a great challenge at the same time: With
exposed surfaces on both top and bottom sides of the crystal but no bulk in-between,
the experimentally observed characteristics are therefore strongly governed by the
interaction with the environment which obscures studies on the intrinsic material
properties themselves [YXL14]. In this regard, initial measurements on graphene
devices were strongly hampered due to the influence of the employed underlying SiO2

substrate [Tan+07; CF08; Che+08a; Mor+08].2 Surface roughness [Ish+07; Cul+10],
scattering from interfacial phonons [Che+08b] and charged impurities inherent in the
oxide [HAD07; Mar+08a; Des+09; Zha+09a] have been identified as major drawbacks
setting an extrinsic limit for the device performance (i. e. rather low mobilities and
high amount of charge disorder).

1 Note that other more specific theoretical backgrounds and respective literature overviews are dis-
cussed within each of the three experimental chapters 4, 5 and 6, respectively.

2 An review on early electronic transport experiments can be found in [Das+11].
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2 Fundamental aspects and literature overview

One possible solution to overcome these limitations is to suspend the graphene layer
above a trench by etching away the supporting substrate [Mey+07]. While follow-
ing this approach significant improvements in the sample quality could be achieved
[Bol+08; Du+08], the fragility of this device architecture renders the fabrication chal-
lenging and restricts the functionality as the structure might collapse under the appli-
cation of larger gate bias voltages which strongly limits the reachable charge carrier
densities or displacement fields [YXL14]. Thus, it would be highly desirable to design
devices in a substrate-supported geometry, yet without the limitations brought along
by the amorphous SiO2.

2.1.2 Hexagonal boron nitride � the ideal substrate

In search of new substrate materials, hBN eventually has been recognized as the ideal
candidate in 2010 [Dea+10].3 Being the insulating isomorph of graphite (with boron
and nitrogen atoms in place of the carbon atoms sitting on A and B sublattices, re-
spectively), atomically flat layers free of dangling bonds and surface charge traps can
be obtained with the ease of mechanical cleavage from the bulk crystals much like
in the case of graphene. Moreover, the lattice mismatch of hBN is only ∼ 1.8 % with
respect to graphene, and it provides a large electronic band gap of ∼ 6 eV [WTK04].
Finally, with the energies of surface optical phonon modes being two times larger
than for comparable modes in SiO2, graphene/hBN heterostructure devices promise
improved performance for the operation at high electric field (or high temperature)
[Dea+10].

Initial transport measurements on first of its kind graphene/hBN heterostructure de-
vices [Dea+10; Tay+11; May+11; Zom+11] already revealed the benefit of using hBN
as the substrate of choice for graphene, showing enhanced charge carrier mobilities
by roughly one order of magnitude in comparison to the best devices on SiO2. The
advances have also been directly visualized on the atomic scale by scanning probe mi-
croscopy measurements [Xue+11; Dec+11; Bur+13]. Figure 2.1 shows the topography
comparison of graphene on hBN and SiO2 reported in [Xue+11] using scanning tun-
neling microscopy. Since graphene behaves like a membrane owing to its atomically
thin nature and thus tends to conform to the underlying surface topography [Cul+10],
the surface roughness of graphene on hBN is greatly reduced compared to the SiO2

substrate (i. e. typically less than 50 pm on hBN, but ∼ 0.5 nm on SiO2), thanks to the
atomically flat crystalline hBN surface in contrast to the amorphous structure of the
thermally grown SiO2. Further studies presented in [Xue+11] regarding the charge

3 Note that hBN has been already proposed earlier to be used as a substrate but for reasons of inducing
a gap opening in graphene [Gio+07].
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(a) (b) (c)

Figure 2.1: Topography comparison of graphene on hBN and SiO2. STM topography of graphene on
(a) hBN and (b) SiO2. (c) Respective roughness histogram of graphene on hBN (black) or SiO2 (red).
Taken from [YXL14]; original source: [Xue+11].

(a) (b) (c)

Figure 2.2: Comparison of the spatial charge inhomogeneity in graphene on hBN and SiO2. Scan-
ning tunneling spectroscopy measurements imaging the spatial charge fluctuations in graphene on
(a) hBN and (b) SiO2.The maps spatially resolve the energy of the Dirac point, corresponding to the
tip voltage at the minimum differential conductance. The scale bar is 10 nm in both panels. (c) Respec-
tive histograms of the Dirac point energies for graphene on hBN (black) and SiO2 (red). Taken from
[YXL14]; original source: [Xue+11].

inhomogeneity in graphene either on hBN or SiO2 obtained by scanning tunneling
spectroscopy measurements are shown in Fig. 2.2. The results demonstrate the strong
reduction of charge fluctuations induced from the underlying substrate. While in
standard graphene devices on SiO2 the charge disorder is typically in the range of
1011 cm−2 to 1012 cm−2, it can be lowered in graphene/hBN heterostructure devices
by at least two to three orders of magnitude due to the hBN isolation layer increasing
the distance between graphene and charged impurities in the oxide surface. These
premises enable to experimentally study the intrinsic properties of graphene down to
lowest energies close to the Dirac point singularity. [YXL14]

2.1.3 Sample fabrication improvements

Yet, regardless of all these attributes making hBN the most superior substrate di-
electric material for graphene, the required stacking of the different crystallites in-
troduces new sources of disorder by itself. For instance, residual impurities from
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the polymer used in initial transfer procedures can hardly be removed completely
from the sample. In avoidance of these obstacles, further fabrication improvements
have been introduced in 2013 [Wan+13]. Here, the layer assembly is based on a dry
and contamination-free transfer method in which the graphene is fully encapsulated
between two hBN flakes while electrical contact is made to the 1D graphene edge
exposed via selective ion etching, which (apart from minor adaptations) has set the
standard in nowadays sample fabrication. Since the devices for this thesis are as well
produced following this routine, the details of the procedure are presented later in the
methodology chapter 3. At this point, it is only noted that encapsulation with hBN
yields extremely clean devices with ultra-low disorder in which ballistic transport has
been demonstrated over tens of micrometers [May+11; Wan+13; Tay+13], while edge
contacts provide high contact transparency [Wan+13].

2.1.4 Emerging �eld of 2D materials and vdW heterostructures

Apart from the advances in sample fabrication of graphene/hBN heterostructure
devices, it is worth mentioning that the sequential stacking of various 2D materi-
als forming so-called vdW heterostructures has developed into a strongly emerging
new research field by its own [GG13]. For instance, engineering artificial material
compounds with customized properties has become possible by readily mixing and
matching different 2D materials into a heterostructure via the controlled stacking
and deterministic placement of the layers without facing the usual constraints of
conventional bottom-up approaches [Nov+16; Fri+18]. The selection of the ever-
growing family of 2D materials at this stage offers already a broad range of electronic
properties including semimetals (graphene), insulators (e. g. hBN), semiconductors
(e. g. MoS2), superconductors (e. g. NbSe2), quantum spin Hall insulators (e. g. WTe2)
or ferromagnets (e. g. CrI3) [Yan+19].

In addition to the mentioned prospects of combining selectively chosen properties of
different 2D materials into a heterostructure, the interplay of the layers becomes con-
comitantly important. In particular, interlayer interactions in vdW heterostructures
have revealed exciting new properties fundamentally distinct from the host layers. As
one of the first examples, graphene/hBN heterostructures featured the appearance of
secondary Dirac points in the electronic band structure of graphene due to the pres-
ence of a moiré superlattice structure [Yan+12]. Indeed, while the hBN crystal acts
as featureless but ideal dielectric substrate for graphene at large relative twist angle,
it turns out that the arising large-scale lattice interference pattern in case of small
rotational misalignment between the layers features rich physics with new emerging
physical phenomena, such as the observation of the Hofstadter’s butterfly [Dea+13;
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Pon+13; Hun+13]. Beyond that, dynamic band structure engineering has been demon-
strated by actively tuning the moiré wavelength (i. e. the superlattice periodicity) via
the controlled twisting of the layers [Rib+18] or by changing the interlayer interactions
due to deliberately applied pressure [Yan+18].

In fact, designing artificial structures based on the fabrication of superlattices due
to precisely angle-controlled stacking at will is not restricted to graphene/hBN vdW
heterostructures. The probably most prominent example has been published only
recently, where in a “magic-angle” twisted bilayer graphene unconventional super-
conductivity could be observed [Cao+18b] (appearing intriguingly next to a Mott-like
insulating behavior at slightly different charge carrier density [Cao+18a]). Since then,
the excitement in the field is unabated and countless publications followed within
the short period of a year, where several groups could reproduce these astonishing
results and bring the phenomenon forward to other vdW heterostructures with the
observation of further striking effects.

Further readings about the development and future possibilities opening up in the
rising field of 2D materials and vdW heterostructures can be found in the reviews
[Nov+16; Fri+18; Yan+19] (although not covering the most recent developments in
magic-angle twist heterostructures).

2.1.5 Conclusion

In this section, the developments and improvements in fabricating graphene electronic
devices have been reviewed. The encapsulation of the graphene sheet between a
top and bottom hBN together with electrical contacts designed on the edge of the
mesa has set the standard in today’s sample fabrication for realizing high-quality
mesoscopic devices. Although sometimes cumbersome and at the moment hard to
scale up, this provides us the perfect platform for the design of BLG nanostructures.
We follow with minor adaptations the vdW assembly routine introduced in [Wan+13],
which is presented in chapter 3.

2.2 Why bilayer graphene?

Irrespective of the outstanding and remarkable properties of monolayer graphene,
the lack of a band gap [Cas+09], together with the absence of back scattering and the
phenomenon of Klein tunneling [KNG06; Kat12] represent a major roadblock when
it comes to electronic applications that require the confinement of charge carriers. In
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(a) (b) (c)

Figure 2.3: Crystal structure of bilayer graphene. (a, b) Plan and side view of the crystal structure of
BLG with four different atomic sites A1 (white), B1 (black) on the lower layer and A2 (black) and B2

(gray) on the upper layer, respectively. The conventional unit cell is shown as a grayish rhombus in

(a), with primitive lattice vectors a1 =
(

a
2 ,
√

3a
2

)T
and a2 =

(
a
2 , −

√
3a
2

)T
, where a = |a1| = |a2| =√

3aCC = 2.46 Å is the lattice constant and aCC = 1.42 Å is the carbon-carbon bond length between
neighboring atoms within one layer. Coupling between different atomic orbitals is described by tight-
binding parameters γ0, γ1, γ3 and γ4 as shown in (b). (c) Reciprocal lattice (crosses denote lattice

points), with primitive reciprocal lattice vectors b1 =
(

2π

a , 2π√
3a

)T
and b2 =

(
2π

a , − 2π√
3a

)T
. The first

Brillouin zone is a hexagon with center point Γ, featuring two non-equivalent corners K+ and K−.
Taken from [MK13].

view of these limitations, its bilayer version turns out to just meet with all those chal-
lenges. With bilayer graphene, built-up from two coupled single-layers of graphene,
it is possible to not only tune the Fermi level but the electronic band structure itself
[McC06; MF06; Cas+07]. The opportunity to open an electronic band gap by means
of electrostatic gating while drawing on the benefits of high-quality graphene/hBN
vdW heterostructures makes BLG an appealing candidate material for the design of
electronic devices. In the following, the band structure of BLG is introduced and
the parameters that matter in the opening of the gap are discussed. For a detailed
description see [MK13].

2.2.1 Band structure

Throughout this thesis we consider Bernal-stacked (i. e. AB-stacked) BLG as obtained
by cleavage from natural bulk graphite. A schematic of the crystal structure is shown
in Fig. 2.3a, b. The lattice structure itself is the same as in monolayer graphene, but
the unit cell consists of four atoms A1, B1 and A2, B2, with two atoms each on lower
and upper layer, respectively (unlike monolayer graphene with only A and B atoms
on two sublattice sites). The atomic arrangement is such that half of the atoms, i. e. B1

and A2, is positioned directly on top of each other, while atoms A1 and B2 do not have
a counterpart as they sit in the center of the hexagon of the respective other layer.

10
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The low-energy band structure can be described in terms of tight-binding theory, in-
volving hopping parameters γ0 = 3.16 eV, γ1 = 0.38 eV, γ3 = 0.38 eV and γ4 = 0.14 eV
following the notation of the Slonczewski-Weiss-McClure model for bulk graphite
[McC57; SW58].4 Here, γ0 denotes the intralayer coupling between electronic orbitals
of neighboring atomic sites Aj and Bj (j = 1, 2) within one layer, whereas parameters
γ1, γ3 and γ4 represent interlayer couplings (see Fig. 2.3b). Note that γ1 corresponds
to a strictly vertical coupling, whereas γ3 and γ4 describe skewed couplings with an
in-plane hopping component. The resulting band structure consists of four bands
with a split pair of each conduction and valence bands. Analogous to monolayer
graphene, the six corners of the hexagonal first Brillouin zone denote special points,
where the lowest-energy valence and conduction bands touch in the case of intrinsic
BLG. In particular, there are two non-equivalent corners Kξ at k = Kξ with ξ = ±
(see Fig. 2.3c). Close to these points (i. e. at relative momentum p = h̄k − h̄Kξ for
pa � h̄, where p = |p| = (p2

x + p2
y)

1/2 with px and py the x- and y-component of the
momentum, respectively), one can write an effective four-band Hamiltonian

Hξ
BLG =


εA1 vπ† −v4π† v3π

vπ εB1 γ1 −v4π†

−v4π γ1 εA2 vπ†

v3π† −v4π vπ εB2

 , (2.1)

where π = ξ px + ipy.5 The diagonal elements εA1 , εB1 , εA2 and εB2 denote on-site
energies on the four atomic sites, respectively, v =

√
3aγ0/2h̄ is the band velocity

and vi =
√

3aγi/2h̄ (i = 3, 4) are effective velocities. Neglecting the weakest energy
coupling γ4 and considering an interlayer asymmetry U between the on-site energies
of the two layers (i. e. εA1 = εB1 = −U/2 and εA2 = εB2 = +U/2), one finds four
valley degenerate electronic bands given by the energies ±Eα=1,2 with

E2
α =

γ2
1

2
+

U2

4
+

(
v2 +

v2
3

2

)
p2+

+ (−1)α

[
1
4
(γ2

1 − v2
3p2)2 + v2p2(γ2

1 + U2 + v2
3p2) + 2ξγ1v3v2p3 cos 3ϕ

]1/2

, (2.2)

with polar angle of the momentum ϕ = arctan
(

py/px
)

(a plot of the four bands
±Eα=1,2 with U = 0 is shown in Fig. 2.4, left panel). [MF06; MK13]

4 The given hopping parameter values γi (i = 0, 1, 3, 4) are taken from infrared spectroscopy measure-
ments reported in [Kuz+09].

5 Note that in the experimental analysis of this thesis we replace the here specified notation for the
relative momentum p by the expression h̄k, i. e. the wave vector k = |k| and in particular the Fermi
wave vector kF is measured relative to the first Brillouin zone corner points K+ and K−.
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Egap
+E1

+E2

   E1

   E2

~ɣ1

Figure 2.4: Asymmetry band gap – the “Mexican hat”. Left: Plot of the four low-energy bands ±Eα=1,2

with U = 0 (Eq. 2.2). Bands ±E2 are split away from zero energy in order of γ1. Right: Plot of the
two lowest-energy bands ±E1 (Eq. 2.4). The presence of a finite layer asymmetry (here U = 280 meV)
opens a band gap (black curves), whereas in the pristine case (U = 0) the bands touch at zero energy
(gray dashed curves). Note that the asymmetry parameter was chosen large for reasons of clarity. In
our experiments U . 100 meV, yielding a smaller gap with less pronounced “Mexican hat” shape but
more flat bands at the bottom and top of conduction and valence band.

Band structure of the lower-energy bands

In the following, we focus on the lower-energy bands ±E1, since the higher energy
bands ±E2 are split away from zero energy with a splitting in the order of γ1, i. e. out-
side the range of typical transport experiments and are of no relevance for the pre-
sented results in this thesis.6

In order to understand the effects of the involved parameters in Eq. 2.2 on the band
structure, it is instructive to first discuss the energy bands ±E1 in the absence of
interlayer asymmetry (i. e. U = 0) and disregarding terms proportional to γ3 (i. e.
v3 = 0). One then obtains a gapless band structure with simplified relation

E1 ≈
1
2

γ1

√1 +
(

2vp
γ1

)2

− 1

 . (2.3)

In this approximation, the dispersion of E1 interpolates from small to large momen-
tum between a quadratic ≈ p2/2m (with effective mass m = γ1/2v2) and linear
≈ vp energy spectrum, with the crossover occurring at p ≈ γ1/2v corresponding
to a charge carrier density ∼ 1012 cm−2. [MF06; MK13]

6 Note that the lowest-energy bands can then be described via an effective two-band Hamiltonian
[MF06], as explicitly discussed in [MK13]; but here we will not go further into detail and stay with
the four-band Hamiltonian in Eq. 2.1 and the lowest-energy bands ±E1 given in Eq. 2.2 with α = 1.
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2.2.2 Asymmetry band gap

We now include a finite interlayer asymmetry U, i. e. a difference in on-site energies
of lower and upper layer. In this scenario the band structure is given by Eq. 2.2 with
v3 = 0:

E2
1 =

γ2
1

2
+

U2

2
+ v2p2 −

√
γ4

1
4

+ v2p2(γ2
1 + U2) , (2.4)

yielding an electronic band gap between conduction and valence band

Egap =
|U|γ1√
γ2

1 + U2
. (2.5)

The resulting gapped band structure is shown in Fig. 2.4 (right panel) together with
the gapless pristine BLG case. Notably, the gapped spectrum features the shape of
a “Mexican hat” with Egap (i. e. the closest energy gap between conduction and va-

lence band) occurring at finite momentum pgap = |U|
√
(2γ2

1 + U2)/(γ2
1 + U2)/2v

measured from the center of the Kξ points, which is a particular characteristic of
the BLG band structure with induced asymmetry band gap. Following from Eq. 2.5,
the size of the gap is approximately equal to the interlayer asymmetry Egap ≈ |U|
in the limit of small |U| � γ1, but saturates asymptotically Egap → γ1 in the op-
posite limit |U| � γ1. The accessible range in transport experiments is typically
|U| . 100 meV < γ1. [MK13]

Most importantly, the band gap arising from the broken layer symmetry can be re-
alized experimentally by inducing a perpendicular electric displacement field using
the combination of a back gate and top gate [McC06; Cas+07; Oos+08; Zha+09b].7

The electrostatics of such a dual-gated device can be captured in the picture of a se-
ries of parallel-plate capacitors, where the plates are represented by the back gate,
the two individual layers of BLG and the top gate, respectively. In a Hartree model of
screening [McC06], the interlayer asymmetry U parameterizing the on-site energy dif-
ference between the two BLG layers may be written as the sum of externally induced
asymmetry plus a screening term

U = Uext + Λγ1
n2 − n1

n⊥
. (2.6)

The externally induced interlayer asymmetry is determined by

Uext =
ec0

2ε0εr
(Db + Dt) , (2.7)

7 Alternatively, but less tunable, the asymmetry of on-site energies between the layers may be induced
by chemical doping [Oht+06].
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where c0 = 3.35 Å is the interlayer distance between the BLG capacitor plates, εr ≈ 1
is the dielectric constant of the interlayer space and D̄ = (Db + Dt)/2 is the average
electric displacement field, generated by back gate Db = +ε0εb(VBG − Vcnp

BG ) and top
gate Dt = −ε0εt(VTG − Vcnp

TG ), respectively. Here, εb, εt and db, dt are the dielec-
tric constants and thicknesses of the bottom or top dielectric layers, respectively, and
the effective offset voltages Vcnp

BG and Vcnp
TG account for the presence of environment-

induced charge carrier doping in the absence of applied gate voltages. [MK13]

The second term in Eq. 2.6 takes into account the charge redistribution in the presence
of an external field. The rearrangement of charge carriers leads to an imbalance
between the layers which causes an internal electric field screening the external one
[McC06; Cas+07]. The introduced dimensionless screening parameter Λ is defined
as Λ = c0e2n⊥/2γ1ε0εr with characteristic density scale n⊥ = γ2

1/πh̄2v2. Note that
the asymmetry parameter U is related to the layer densities n1 and n2 on lower and
upper layer (cf. Eq. 2.6), respectively, which in turn include a dependency on U owing
to the tuning of the band structure in the case of broken layer symmetry. Thus, the
asymmetry parameter U needs to be calculated self-consistently

U(n) = Uext

1− Λ
2

ln

 |n|
2n⊥

+
1
2

√(
n

n⊥

)2

+

(
U

2γ1

)2
−1

, (2.8)

where n is the total charge carrier density related to the applied gate voltages in the
parallel-plate capacitor model by

n =
CBG

e
(
VBG −Vcnp

BG

)
+

CTG

e
(
VTG −Vcnp

TG

)
. (2.9)

Here, CBG = ε0εb/db and CTG = ε0εt/dt are the specific gate capacitance per unit area
of back gate and top gate, respectively. [MK13]

The tuning of the band gap in a dual-gated device is shown in Fig. 2.5a, b, display-
ing the typically observed behavior of the resistance as a function of VBG and VTG in
a three-dimensional (3D) plot and respective 2D color map [Tay+11]. Two different
lines of larger resistance are observed, i. e. one only tuned by VBG corresponding to
charge neutrality outside the top-gated region, whereas the other line (indicated by
a black line in Fig. 2.5b) is tuned by both gates corresponding to charge neutrality
within the dual-gated region of the device (δD = Db − Dt = 0). Clearly, the resis-
tance strongly increases along this diagonal line with increasing displacement fields
D̄ = Db + Dt)/2, indicating the opening of a band gap. Cuts along iso-displacement
field lines (i. e. D̄ = const.; indicated by colored lines in Fig. 2.5b) are shown in
Fig. 2.5c. For each curve the resistance gets maximal when δD = 0.
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(a) (c)(b)

δD  ;D=const.

δD=const.; D

Figure 2.5: Dual-gate map of BLG. (a, b) 3D plot and respective 2D color map of the resistance as a
function of VTG and VBG. The opening of a band gap is observed by the increasing resistance along the
charge neutrality line δD = Db − Dt = 0 (black line) with increasing displacement field D̄. (c) Resis-
tance along iso-displacement-field line cuts (D̄ = const.). Taken from [Tay+11] (with added white axes
of δD and D̄ in panel (b)).

2.2.3 Interlayer coupling γ3 � e�ects of trigonal warping

Despite the band structure of BLG being mostly governed by the hopping parame-
ters γ0 and γ1, the skew interlayer coupling γ3 becomes important at small energy
scales, providing a source of trigonal warping at the bottom or top of the conduction
and valence band, respectively [MF06]. In this work, this may be of particular rele-
vance when the system is depleted down to pinch-off in order to successfully design
nanostructures by means of band gap engineering in BLG. In this regard, we illu-
minate the effect of γ3 in the joint presence of interlayer asymmetry U, where E1 is
determined according to Eq. 2.2. Figure 2.6 shows a respective contour energy plot
for the lowest conduction band E1. Intriguingly, the continuous iso-energetic lines at
higher energy break into three isolated pockets (or mini-valleys) at low energy with
size of order 1 meV featuring a Lifshitz transition [Lif60] (the exact energy splitting of
these pockets depends on the magnitude of interlayer asymmetry parameter U).8 The
presence of these mini-valleys should give rise to a new effective degeneracy in the
system at this energy scale, as e. g. observed in the Landau level spectrum of gapped
BLG [Var+14b]. However, it is important to note that in a locally gate-defined nano-
structure there is a spatially modulated potential acting on the on-site energies, which
makes the description less trivial [KF18].

8 Note that the effect of trigonal warping and the resulting formation of pockets is different in the
absence of interlayer asymmetry (i. e. U = 0); see [MK13].
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Figure 2.6: Trigonal warping of the bands. Contour plot of the conduction band in valley K+ follow-
ing from Eq. 2.2 with interlayer asymmetry U = 100 meV. The highlighted lines denote the Lifshitz
transition from a single continuous iso-energetic line (dashed black line) into three isolated pockets
(thicker black line) at the bottom of the band.

2.2.4 Conclusion

In this section, BLG has been introduced as an interesting candidate material for the
design of gate-defined nanostructures due to the possibility to open an electronic band
gap by applied electrical displacement fields. The relevant parameters in the tight-
binding description of the band structure have been discussed, including the layer
asymmetry U responsible for the gap opening, as well as trigonal warping effects due
to the “skewed” interlayer parameter γ3 affecting a fine tuning at the bottom or top
of conduction and valence bands, respectively. While the gate-tunable band gap is
the key throughout all presented experiments, the fine structure tuning of the bands
might affect the degeneracy of the system and thus plays in particular a role in the
formation of subbands in a BLG QPC (chapter 5).

2.3 Josephson junctions

It is now only a few years back, that the anniversary years of two of the most strik-
ing and spectacular phenomenons in condensed matter physics were commemo-
rated [Wil12; War11], that is superconductivity and the Josephson effect. In 1911,
H. Kamerlingh Onnes made the groundbreaking discovery that the resistance in a
mercury wire abruptly vanished after cooling to 4.2 K in liquid helium, which is
together with the Meissner effect (i. e. the expulsion of magnetic fields) the mani-
festation of superconductivity [Tin04]. The absence of resistivity is understood within
the Bardeen-Cooper-Schrieffer (BCS) theory [BCS57] by the condensation of electrons
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into Cooper pairs, which form a coherent macroscopic quantum state described by
a single wave function Ψ(r) = |Ψ(r)|eiθ(r) with a single phase θ(r). The fact that an
electric current persists indefinitely in a superconducting loop without driving source
sparked people to envision a superconducting future.

In the second half of this “century of superconductivity” (1962), Brian Josephson
[Jos62] came up with an answer to the question what should happen when two
superconductors (with phases θ1 and θ2, respectively) are weakly coupled together
in a sense that they can feel each other but not so strong that a new coupled su-
perconductor is formed with phase θ3 [War11]. In the framework of a SIS junction,
he postulated interference effects between the two superconducting wavefunctions
depending on the phase difference ϕ = θ1 − θ2 and the so-called Josephson effect
is ever since one of the most striking and spectacular macroscopic quantum phe-
nomenons in condensed matter physics. Interestingly, although superconductivity is
a macroscopic phenomenon, here the junction dynamics rather strongly depend on
microscopic properties. In the following, different aspects of Josephson junctions are
discussed.

2.3.1 Josephson equations

In his seminal description of two weakly coupled superconductors, Brian Josephson
predicted a supercurrent to flow across the junction based on the phase difference
of the two superconducting reservoirs ϕ = θ1 − θ2 [Jos62]. This microscopic phase
difference, determining the dynamics of the junction, is related to the macroscopic
currents and voltages of the junction according to the first and second Josephson
equations:

Is = Ic sin ϕ (2.10)

and
V =

h̄
2e

∂ϕ

∂t
. (2.11)

The first equation denotes a Josephson current Is through the weak link proportional
to sin ϕ with a maximum Josephson current (or critical current) Ic, whereas the second
equation relates the voltage V across the weak link to the evolution of the phase dif-
ference in time ∂ϕ/∂t. For a current smaller than Ic, the junction is in the supercurrent
state with zero voltage drop and thus, there is no change of the phase difference (dc
Josephson effect). On the other hand, in the case of a current exceeding Ic, the junc-
tion is no longer in the zero- but in a finite voltage state where the phase difference
evolves in time. In the consequence, the current Is = Ic sin(2eVt/h̄ + ϕ0) oscillates
with amplitude Ic and a frequency f J = 2eV/h, where 2e/h ≈ 483.6 GHz mV−1 is a
fundamental constant (ac Josephson effect). [Tin04]
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Figure 2.7: RSCJ model. Left: Equivalent circuit of a Josephson junction in the RSCJ model. Right:
Dynamics of a fictitious phase particle in the tilted washboard potential Epot for different biasing
current i ≡ I/Ic.

2.3.2 Resistively and capacitively shunted junction model

In the finite voltage state, the total current is carried in parts by additional cur-
rent channels other than the Josephson current, which can be described within the
RCSJ model as outlined in the following (based on [Tin04; GM05]). An equivalent
circuit is shown in Fig.2.7a, consisting of the ideal Josephson junction with current
Is = Ic sin(ϕ) shunted by parallel resistive and capacitive channels, respectively. The
former is due to the contribution of unpaired quasiparticles in the presence of a volt-
age across the junction with resistive normal current Ires = V/R, while the latter arises
under a time varying voltage due to the geometrically induced capacitive coupling of
the two superconductors with displacement current Icap = C dV

dt . Note that the resis-
tance R is assumed to be constant within the RCSJ model. The total current through
the junction is given according to Kirchhoff’s law by the sum I = Is + Ires + Icap.
In combination with the second Josephson equation (Eq. 2.11), and by introducing a
dimensionless normalized time variable τ = t/τJ with τJ = 2eIcR/h̄, one can write

βC
d2ϕ

dτ2 +
dϕ

dτ
+ sin ϕ− I

Ic
= 0 , (2.12)

where βC = 2eIcR2C/h̄ is the so-called Stewart-McCumber parameter. The obtained
relation is formally equivalent to the equation of motion of a fictitious phase particle
with mass m = (h̄/2e)2 C and damping η = (h̄/2e)2 /R moving in an effective “tilted
washboard potential” Epot(ϕ) = EJ0 (− cos ϕ− ϕI/Ic), and with its coordinate given
by ϕ.

Figure 2.7b visualizes the situation of a phase particle in Epot(ϕ). At zero tempera-
ture and I < Ic, the phase particle is trapped in a local minimum (zero-voltage state)
and oscillates with the plasma frequency ωp =

√
2eIc/h̄C. Upon a biasing current

the washboard potential is tilted. At the point when I ≥ Ic, the phase particle is no
longer trapped and can move down the potential (finite voltage state). In this picture,
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(a) (b)
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Figure 2.8: Hysteresis effects in underdamped and overdamped Josephson junctions. (a) Current-
voltage curves for different values of the Stewart-McCumber parameter βC. The red curve (βC = 0) is
the overdamped limit, while for finite βC hysteresis is observed with retrapping current Ir smaller than
Ic. (b) Ratio of Ir/Ic as a function of βC. Taken from [GM05], with modified axes labeling.

the “speed” of the particle’s motion (i. e. the phase evolving with time dϕ/dt) is pro-
portional to the voltage drop across the junction according to the second Josephson
equation (Eq. 2.11). Experimentally though, i. e. at finite temperature and/or in the
presence of thermal fluctuations due to noise the phase particle can already escape
from the local potential minimum at a switching current Isw < Ic.

The retrapping of a running phase particle in the tilted washboard potential depend-
ing on its inertia and the damping describes the hysteretic behavior of a junction. In
an underdamped JJ (βC � 1) the mass of the phase particle (∝ C) is large and/or
the damping (∝ 1/R) is small, such that the particle gets only stuck in a potential
minimum at a retrapping current Ir < Ic, causing a hysteresis in the current-voltage
characteristics. On the other hand, in overdamped JJs (βC � 1) the energy of the
phase particle is quickly dissipated due to its small mass and/or large damping.
In this case, the phase particle is successively retrapped in the local potential min-
imum when the current is lowered below Ic and the current-voltage curve displays
no hysteresis. The hysteretic characteristics of underdamped and overdamped JJs are
exemplified in Fig. 2.8.

Ambegaokar-Halperin theory for overdamped junctions

As mentioned above, the junction dynamics is also influenced by thermal fluctuations,
where thermally activated escapes of the phase particle from a potential minimum
cause a premature switching. Here we only discuss the consequences for an over-
damped junction which will be of relevance for the presented analysis (for respective
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Figure 2.9: Rounded switching in the Ambegaokar-Halperin model. Current-voltage curves with
normalized voltage V/IcRn and current I/Ic for different values of the normalized activation energy
u. Taken from [Tin04], with mirrored axes and new labeling.

details on the thermally activated dynamics of underdamped junctions the reader is
referred to [Tin04]). Ambegaokar and Halperin found that the IV curve of an over-
damped junction is strongly modified in the presence of an additional thermal noise
current in a sense that a finite resistance is always measured [AH69]. Their result
is shown in Fig. 2.9. One can see that even below Ic the current remains dissipative
depending on the normalized activation energy u = h̄Ic/ekBT. The finite resistance is
due to phase-slip processes in which the phase particle rather diffuses over the bar-
riers. For I → Ic, this activated resistance shows a nonlinear behavior, but trends for
I → 0 into a nonzero resistance limit

R0 = Rn [I0(u/2)]−2 ∝ Rn ue−u . (2.13)

Here, Rn is the normal state resistance of the junction and I0 is the modified Bessel
function. The given exponential relation is valid in the limit u� 1. [Tin04]

2.3.3 Josephson junctions based on conductive weak links

It should be noted that the Josephson effect was originally derived for and experi-
mentally observed in a SIS Josephson junction based on an insulating tunnel bar-
rier between the superconducting contacts [Jos62; AR63]. In more general though,
a Josephson junction can be formed by any type of weak link instead of the tunnel
barrier [Lik79]. Using a conductive system as the weak link, the Josephson coupling
can be mediated over a much larger distance rather than only the few nanometers
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in a SIS tunnel junction. The strength of the coupling mostly depends on the con-
tact transparency, disorder in the weak link and temperature [Lik79]. Also it should
be noted that the current-phase relation in a conductive weak link Josephson junc-
tion, e. g. superconductor–normal metal–superconductor (SNS), may differ from the
sinusoidal relation in the case of the tunnel junction (cf. Eq. 2.10).

SNS junctions can be classified in terms of different characteristic length scales by
comparison of the junction length L, the superconducting coherence length ξ0 and the
mean free path lmfp, distinguishing between diffusive (L > lmfp) or ballistic (L < lmfp)
and short (L < ξ0) or long (L > ξ0) junctions, respectively. The superconducting co-
herence length is either given by ξ0 = h̄vF/∆0 in the ballistic limit or ξ0 =

√
h̄D/∆0 in

the diffusive limit, where ∆0 is the superconducting energy gap and D = vFlmfp/2 is
the diffusion constant. Equivalently, the junction can be classified as well in terms
of the smallest energy scale by comparing ∆0 with the relevant Thouless energy
ETh = h̄vF/L (ballistic) or ETh = h̄D/L2 (diffusive), denoting short (∆0 < ETh) and
long (∆0 > ETh) junctions. [Tin04]

2.3.4 Andreev re�ection and Andreev bound states

In a Josephson junction formed by a conductive weak link, let’s say SNS, the medi-
ated supercurrent across the normal part of the junction can be viewed in terms of
the transport of quasiparticles rather than by the tunneling of Cooper pairs through
the tunnel barrier of a SIS Josephson junction. Within this quasiclassical picture the
Josephson coupling is due to the Andreev reflection [And64; Kla04] taking place at
the normal metal–superconductor (NS) interface, which describes the conversion of
an electron into a hole excitation due to the pair potential of the superconducting
contact (i. e. charge carriers with excitation smaller than the superconducting energy
gap ∆0 can only enter pairwise into the superconducting contact). A schematic of this
process is shown in Fig. 2.10. When an electron in the normal metal at energy EF + ε

with excitation energy ε < ∆0 is incident on the interface to the superconductor, it is
back reflected in an elastic process as a hole excitation at energy EF− ε, while a charge
of 2e is absorbed as a Cooper pair by the superconductor. The hole excitation carry-
ing opposite velocity and spin is thereby retro-reflected and retraces the path of the
incoming electron. Since this process is time-reversal symmetric, the hole excitation
can be transformed back into its original electron state by another Andreev reflection
at the opposite NS interface accompanied with the annihilation of a Cooper pair. In a
ballistic junction, the back and forth reflection of the electron and hole quasiparticles
forms a phase-sensitive Andreev bound level carrying the supercurrent.
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Figure 2.10: Andreev bound state in a SNS Josephson junction. Illustrated principle of a formed
Andreev bound state based on the conversion of an electron (at energy EF + ε) into a hole excitation
(at energy EF − ε) and vice versa due to Andreev reflections at the two NS interfaces. The supercon-
ducting contacts are characterized by the energy gap ∆0 where no electronic states in the density of
states (DoS) exist and charge carriers from the normal region can only enter as a Cooper pair into the
superconductor.

Specular Andreev re�ection in graphene

Unlike in other materials, there is a special possibility of specular Andreev reflection
in graphene [Bee06; Lud07; Efe+16]. Although, this aspect is not studied in this work,
we here provide a short description for completeness. For a Fermi energy EF > ∆0,
quasiparticles are retro-reflected via an intraband Andreev reflection, i. e. both electron
and hole quasiparticles are from the conduction band but in opposite valleys K+ and
K−. Note that the valley is switched in order to have the Cooper pair having zero total
momentum. However, approaching the charge neutrality point where conduction and
valence band touch, the Fermi energy in graphene is eventually EF . ∆0. In that case,
and for excitation energy ε > EF of the incident electron (but still smaller than ∆0), the
Andreev reflection is an interband process with a reflected hole quasiparticle in the
valence band. Since a hole in the valence band has its velocity in the same direction
as the wave vector, this reflection is specular. It should be noted that to observe
specular Andreev reflection ultra-clean devices are required, where the Fermi energy
broadening due to disorder is well below the superconducting gap. For a colloquium-
style description of Andreev reflection (an its analogy to Klein tunneling) in graphene
see [Bee08].

2.3.5 Multiple Andreev re�ection

As discussed above, supercurrent is mediated in the zero voltage state of the junc-
tion by Andreev reflected quasiparticles. At finite voltage, a quasiparticle traversing
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Figure 2.11: Multiple Andreev reflections in a SNS Josephson junction. Illustrated principle of sub-
gap transport at finite voltage V across the weak link. An injected quasiparticle can escape the weak
link cavity when its accumulated energy eV ≥ 2∆0 due to multiple Andreev reflections.

the weak link gains the energy eV. Since electron and hole quasiparticles carry op-
posite charge, the energy is accumulated in the subgap regime V < 2∆0/e during
continuous Andreev reflection processes and the quasiparticle can eventually escape
into the quasiparticle continuum of the superconducting contacts when its energy is
larger than the superconducting energy gap. This multiparticle transport mechanism,
termed multiple Andreev reflection (MAR) [KBT82; Oct+83], is illustrated in Fig. 2.11.
Note that at a voltage V ≥ 2∆0/e, quasiparticles can be directly transmitted into the
superconducting reservoirs. The transferred charge q in this process is determined by
the number N of involved Andreev reflections q = (N + 1)e. Therefore, MARs give
rise to a subharmonic gap structure featuring non-linear current-voltage characteris-
tics where steps in the current appear at V = 2∆0/je (with j an integer number). Such
resonances are clearly resolved as peaks in the differential conductance dI/dV (or dip
in the differential resistance dV/dI, respectively) at the respective voltage. Since with
each reflection there is a finite probability of being normal reflected resulting in phase-
insensitive electronic levels, the signal of higher order processes is typically observed
weaker. The subharmonic gap structure in graphene was discussed in [CY06].

2.3.6 Proximity-coupling in graphene weak links

Early on, graphene was proposed as a new class of weak link material to be used in
a Josephson junction [TB06], combining the unique relativistic physics in graphene
with the Josephson effect. For ballistic graphene weak links, an analytical expression
for the current-phase relation at zero temperature can be found in the wide and short
junction limit (L�W, ξ0) and close to the Dirac point as [TB06]

I(ϕ) =
e∆0

h̄
2W
πL

cos(ϕ/2) tanh−1[sin(ϕ/2)] (2.14)

with maximum Josephson current

Ic ≡ max{I(ϕ)} = 1.33
e∆0

h̄
W
πL

, IcRn = 2.08∆0/e . (2.15)
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Interestingly, although calculated for a graphene Josephson junction in the ballistic
regime, the obtained 1/L dependence is instead formally identical to the behavior of
Josephson junctions made from disordered normal metal weak links. Such a pseudo-
diffusive behavior at the Dirac point is manifestation of the relativistic nature of ballis-
tic Dirac fermions in graphene. Note that the given current-phase relation in Eq. 2.14
features an anharmonic forward-skewing with respect to the sinusoidal current-phase
relation in tunnel junctions.

For the same junction limit but away from the Dirac point, i. e. in the case of large
Fermi level, there is no such simple analytic expression for I(ϕ). Yet, the critical
current and the IcRn product are found as

Ic = 1.22
e∆0

h̄
EFW
πh̄v

, IcRn = 2.44∆0/e , (2.16)

where the critical current is independent of L, and scales linearly with the Fermi level.
It should be noted that these values are reduced compared to the ideal ballistic value
in ordinary SNS Josephson junctions [KO77] Ic = 2Ne∆0/h̄ (with N = EFW/πh̄v the
number of degenerate modes, i. e. per spin and valley) and IcRn = π∆0/e, which is
attributed to the Fermi wavelength mismatch at the graphene–superconductor inter-
faces [TB06].

Further theoretical works included different junction width and/or length limits, as
well as finite temperatures [BD08; BL10; HYK10; MCP12; RKC16]. In long ballistic
graphene weak links (L � ξ0), the Josephson coupling strength IcRn scales with
1/L which is presumed to hold as well at finite temperature for L ∼ ξ0 [RKC16].
Concerning BLG Josephson junctions on the other hand, there exists less theoretical
work. Yet, with regard to the strength of the Josephson coupling, the maximum
supercurrent in BLG is expected to be equivalent to single layer graphene junctions at
large charge carrier density [MCP12], but being modified in gapped devices.

First experimental results were reported in graphene on Si/SiO2 devices [Hee+07]
demonstrating a gate-tunable ambipolar supercurrent, although being restricted to the
diffusive regime. In subsequent experiments based on suspended graphene devices,
supercurrent in samples approaching or reaching the ballistic transport regime were
reported [Du+08; MND13]. Thanks to sample fabrication improvements [Wan+13],
where the graphene sheet is encapsulated between hBN and connected from the edge
of the mesa (see discussion in section 2.1 and sample fabrication in chapter 3), ballis-
tic superconducting transport is now readily achieved in substrate supported devices
with attainable large supercurrent amplitudes over micron distance scales [Cal+15;
Ben+16; Bor+16; RKC16; Zhu+18]. A review including different theories and experi-
ments on Josephson coupling in graphene-based weak links can be found in [LL18].
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Based on the high-quality and tunability of the encapsulated devices, graphene weak
links have been employed to study the supercurrent in the quantum Hall regime
[Ame+16] or have been successfully integrated into superconducting microwave
circuits [Kro+18; Sch+18] as the basis for new graphene-based transmon qubits.
However, despite edge-connected encapsulated graphene has been established as a
promising and gate-tunable weak link material, a controllable spatial shaping of the
supercurrent has not been demonstrated. Only e. g. a self-induced confinement of
the supercurrent at the edges of graphene-based junctions has been reported at low
charge carrier density because of edge states [All+16], but which does not allow to
define at will the supercurrent distribution.

2.3.7 Conclusion

In this section, the necessary basics of Josephson junctions in general have been in-
troduced. Other relevant but more specific aspects, such as the monitoring of the
supercurrent via superconducting magneto-interferometry measurements or the em-
bedding of a QPC into the weak link, are directly addressed in chapters 4 and 6,
respectively. At the end of this section, a brief overview on the Josephson coupling
in graphene weak links has been discussed. The opportunity to measure the ballis-
tic supercurrent in micron-sized graphene weak links gives enough area to design
gate-defined nanostructures. In this work, we take advantage of these promising pre-
requisites by coupling our electrostatically engineered confinement structures in BLG
to superconducting contacts. Therefore, we can probe the confinement via super-
conducting interferometric measurements (chapter 4) and study Josephson coupling
through 1D subbands in a SQPC via individual Andreev bound levels (chapter 6).
Further investigations of the subgap conductance in the finite voltage state (i. e. look-
ing at the phase-sensitive MAR spectrum) give additional information on the trans-
port properties of the SQPC upon the (de-)population of subbands.
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Here, the experimental methods used within this work are presented. The chapter
is thereby organized in two parts: In the first part, the procedure of sample fabri-
cation is introduced (3.1), whereas a description of the experimental setup and the
measurement techniques follows in the second part (3.2).

3.1 Sample fabrication

As pointed out in chapter 2, high-quality electronic devices can be realized on the
basis of edge-connected vdW heterostructures. In respect thereof, we prepare our
samples following state-of-the-art dry and contamination-free assembly techniques
originally developed in [Wan+13] with minor adoptions.1 The fabrication procedure
(i. e. exfoliation, vdW assembly, electrical contact, final device patterning, and adding
TG structures) is outlined step by step in the following.

3.1.1 Exfoliation of 2D crystals

As starting point, flakes of graphene and hBN are prepared by micromechanical
cleavage from natural bulk graphite (NGS Naturgraphit GmbH) and commercial
hBN powder2 (Momentive, grade PT110), respectively, which has become popular
as the so-called “Scotch tape” technique since the early stages of isolating 2D mate-
rials [Nov+05b; GN07] but remains up to the present day the method of choice for
obtaining highest quality 2D crystallites. In this exfoliation process, 2D layers are
cleaved out of the bulk material with a piece of adhesive tape (Nitto Denko, ELP BT-
150E-CM; or Scotch Magic tape), taking advantage of the weak interlayer vdW forces.

1 Note that various amendments of the initially introduced assembly routine have been meanwhile
reported in literature, e. g. in [Zom+14] or [Piz+16]. A review about transfer methods of 2D materials
in general (including wet transfer techniques etc.) can be found in [Fri+18].

2 We note, that the usage of commercially available hBN powder instead of the commonly in the
literature employed hBN single-crystals provided by T. Taniguchi and K. Watanabe [TW07] showed
no apparent negative effect on the sample quality.
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Figure 3.1: Exfoliated 2D crystallites of graphite and hBN. (a, b) Flakes of graphene and hBN. The
inset labels denote the number of layers or flake thickness, respectively. Scale bar in both images is
20 µm.

The thickness of the leftover crystallites on the tape is further thinned down due to
repetitive exfoliation with other pieces of tape. After several cycles, the remaining
graphite flakes start to become more and more transparent (in case of hBN additional
thinning steps might not be as important for obtaining a good yield of flakes with
tenth of nanometers thickness). In a final exfoliation step, the tape with the thinned
crystallites is then pressed down onto the surface of a priorly cleaned Si/SiO2 chip
and after peeling off the tape, 2D layers are partially cleaved and eventually trans-
ferred on the substrate. The obtained exfoliated flakes are randomly spread over the
surface of the substrate, and vary in size, thickness and shape [Nov+05b].

At this point, suitable flakes have to be found amongst all the other crystallites. This
is done by carefully scanning the surface of the substrate under an optical microscope
(here done by eye; more ideally this is even possible in a fully automatized scanning
process). Indeed, most simple optical inspection allows to find nearly transparent
monoatomic layers of graphite (i. e. ≈ 98 % transparency in the visible light spec-
trum [Nai+08]) owing to a feeble but visible contrast with respect to an empty wafer
due to interference effects (strongly depending on the underlying substrate) [Bla+07;
Rod+07]. In this way, flakes with different number of layers can be readily distin-
guished, making it possible to optically determine and select single-layers, bilayers
or multi-layers of graphene (see the exemplary optical images shown in Fig. 3.1a).
The number of layers of a potential candidate flake can be finally validated using
Raman spectroscopy [Fer+06; FB13], where the obtained Raman spectrum might as
well serve as indicator for the flake’s quality and cleanliness [Fer07] (although not
necessarily meaningful, as even graphene flakes with contaminants and/or local de-
fects may yield large enough clean areas that can be used for designing devices later
on). In the case of hBN, appropriately thick flakes with seemingly clean and flat sur-
faces are selected based on their color which provides a fairly good initial estimate
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Figure 3.2: Transfer setup. Photograph
of the long distance working micro-
scope (the description is given in the
main text).

for the thickness [Gol+13], as shown in Fig. 3.1b. For a conclusive final selection, the
thickness and surface morphology of the preselected specimens can be inspected via
atomic force microscopy (AFM).

3.1.2 Van der Waals assembly

With all flakes prepared, the graphene is then encapsulated between a top and a bot-
tom hBN flake in the fashion of a dry vdW assembly technique [Wan+13] using our
home-made transfer setup (see Fig. 3.2 for a photograph), consisting of an optical
microscope with long distance working objectives, a transfer stage movable in x- and
y-direction (i. e. in the horizontal plane) by micromanipulators and a rotatable hot
plate that can be adjusted nanometer-wise in the z-direction (i. e. up and down). By
taking advantage of the strong vdW adhesion forces between the surfaces of 2D crys-
tallites, the individual layers can be piled up into a combined heterostructure without
contaminating the active interfaces at any transfer step (i. e. only the outer surface of
the top hBN flake gets into contact with polymers). The single steps of the employed
stacking routine are illustrated in Fig. 3.3 and presented in the following:

Sample holder

Glass slide

PDMS

PPC
hBN

graphene

hBN/graphene/hBN

Si
SiO2

Figure 3.3: Dry, contamination-free van der Waals assembly technique. A series of schematics show-
ing from left to right the stacking routine for the assembly of vdW heterostructures as described in the
main text. The 2D crystals are sequentially picked up until the final stack is completed, while non of
the active interfaces of the heterostructure get into contact with polymers.
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Step 1 In a first step, the hBN flake that is chosen as top dielectric layer has to be
picked up. For that, a thin film of poly-propylene carbonate (PPC; 7 wt% dis-
solved in ethyl acetate), i. e. a transparent polymer, is spin-coated onto the wafer
with the exfoliated flake. Subsequent baking is done in an oven for 15 min at
80 ◦C (or alternatively on a hot plate) for evaporating the solvent. After gently
lifting the edges of the baked PPC layer (e. g. with the help of a razor blade or
scalpel), the film can be picked up with a polydimethylsiloxane (PDMS) stamp
which itself sits on a standard microscope glass slide glued to a sample holder.
Together with the PPC sticking to the PDMS stamp, most of the flakes are de-
tached as well from the substrate owing to the stronger adhesion forces to the
PPC polymer film rather than to the “rough” surface of the Si/SiO2 wafer.3

Step 2 With the hBN flake now sitting on the stamp, the graphene can be picked up
in a next step free of contamination by the polymer. To do so, the wafer with the
target graphene flake is fixed on the hot plate (either by fastening with a small
clamp or by gluing using polymethyl methacrylate (PMMA)) while the sample
holder with the stamp is mounted to a metal frame and screwed upside down
to the transfer stage. After aligning the hBN flake with respect to the graphene,
the hot plate is slowly raised towards the stamp. During the elevation process
the scenery is continuously monitored through the microscope and the flakes
are re-aligned if necessary. Once brought into contact, the hot plate is heated to
45 ◦C–60 ◦C 4 and kept at this temperature for a few minutes for enhancing the
interlayer attraction before being cooled down again.

Step 3 At this stage, there are two options to proceed. Either the hot plate is lowered
at elevated temperatures while the PPC film is softened allowing to detach the
PDMS stamp from the sample or is only retracted after the PPC has again cured
to a hardened film at temperatures below 30 ◦C. In the former scenario, the
stacked flakes are left behind on the substrate covered with the PPC film (which
is either dissolved in Acetone or could be directly re-used for further transfer
steps starting with step one), whereas in the latter case the graphene ideally
remains attached to the hBN flake due to the strong adhesion force between
the two atomically flat interfacial surfaces and gets thereby picked up from the
rougher substrate surface as the hot plate is lowered.

3 Alternatively, top hBN flakes may be readily exfoliated directly onto a PPC film [Wan+13].
4 Higher temperatures above 100 ◦C might help to further improve the final interlayer cleanliness, as

proposed in [Piz+16].
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Step 4 Then, the target substrate is replaced by the one with the designated bottom
hBN flake and the pick-up procedure is repeated. In fact, further iteration steps
allow to sequentially pile up quasi unlimited numbers of different 2D crystal-
lites into a vdW heterostructure as long as the stacked structure remains stable
and not minding cumulative “bubble” formation with each added interface due
to trapped interfacial adsorbates between consecutive layers. The issue of con-
taminants will be addressed at a later point.

Figure 3.4 presents optical images of the stacking procedure, starting from the first
hBN until the encapsulated graphene stack. In this work, a final transfer step is done
in which the completed heterostructure is placed onto a pre-patterned gate structure
(Cr/Au 5 nm/50 nm) on a sapphire wafer and covered by a dielectric layer of 20 nm
Al2O3 deposited by ALD (see Appendix A.1). The stack is eventually released on its
target position by retracting the hot plate while the PPC is kept softened at elevated
temperature (60 ◦C). At last, the residual PPC film is dissolved in acetone.

We make use of the pre-patterned gate structure mainly for three reasons: First, the
Al2O3 layer deposited by ALD is expected to provide a better quality dielectric with
less charge traps compared to the thermally grown amorphous oxide on Si.5 Sec-
ond, the sapphire substrate prevents any leakage which might appear in Si/SiO2

wafers employed as the BG itself (for instance due to weak spots, i. e. cracks in the
oxide, possibly appearing due to the wedge bonding of the contact metal pads or
other reasons). Third, using an insulating substrate is advisable and beneficial when
it comes to measurements with high-frequency signals in order to avoid losses that
would otherwise arise due to a parasitic capacitance between the conductive substrate
(e. g. Si/SiO2) and the metallic contacts [Ben14]. Here, the requirement for transmit-
ting high-frequency signals is associated with potential follow up experiments de-
signed on the basis of the results of this thesis, i. e. measuring the suppression of shot
noise in a quantized conductor [Rez+95]. Finally, sapphire is a good thermal conduc-
tor as another positive aspect for thermalization of the sample in the low-temperature
measurements.

5 In the past few years also graphite gates have been established as superior gating structure in com-
parison to the common Si/SiO2 back gate. Although infrequently reported as employed gate material
throughout the literature priorly, the use of graphite gates just recently has become popular in the
field for realizing high-quality devices [Zib+17]. The exfoliated graphitic layer not only provides natu-
rally an atomically flat gate surface but it also ultimately screens any charge inhomogeneities from the
substrate surface and thereby, extremely low charge carrier disorder in the order of ∼ 1× 109 cm−2

could be achieved [Yan+19]. Finally we note, that graphite gates have been successfully employed
in most recent complementary experiments on gate-defined BLG nanostructures performed in other
groups [Ove+18a; Eic+18a; Ban+18].
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(a) (b) (c)

Figure 3.4: Graphene/hexagonal boron nitride van der Waals heterostructure. Optical images of the
assembly routine: (a) Picking up the top hBN from the substrate. Inset: hBN on the stamp. (b) The top
hBN is placed onto the target graphene flake (here two stripes next to a thicker graphite flake). Inset:
hBN/graphene stack on the stamp. (c) hBN/graphene stack transferred onto the bottom hBN flake. A
zoom-in on the completed hBN/graphene/hBN heterostructure is shown in the magnifier.

Revised assembly routine with newly designed PDMS stamps

Initially, this transfer and pick-up procedure is done with a rather thick PDMS stamp
(i. e. ∼ 2 mm home grown layer cut out of a Petri dish) placed down on a microscope
glass slide. To avoid the PDMS stamp to detach during the stamping, a sufficiently
large interface to the glass slide is helpful. Though, due to the larger stamp area
significant shear forces might be introduced at smallest tilt angles when the stamp is
pressed on the target substrate, which will cause a drifting of the aligned flakes after
contact is made. Furthermore, the thicker the PDMS (or any other layer, i. e. PPC and
glass slide, inserted between the microscope objective and the monitored flakes) the
worse the contrast and thus the precision of the alignment.

A revised assembly routine is introduced using newly designed PDMS stamps which
are shape casted in a predefined mask (albeit all presented results in this thesis are
still based on devices fabricated prior to the renewed routine), representing likely
an improvement to before as the assembly could now be mastered faster by fresh
students. It consists of a much thinner PDMS layer with a small nub in its center but
with large interface area to the extra thin (but at the same time more fragile) glass
slide. Therefore, a significantly enhanced visibility is gained and the stamping itself
can now be done with better accuracy, while one does not need to worry about lateral
shifting during transfer or a detaching of the stamp from the glass slide. Finally, it is
suggested that the stamping process for a deterministic pick-up and placement of 2D
crystallites [Fri+18] may eventually be further improved using a semi-spherical nub,
eliminating last downsides of the new PDMS stamp design (i. e. slightly roughened
edges of the cylindrically shaped nub).

Bubble formation and �self-cleansing� mechanism

With the graphene sheet being eventually “sandwiched” between the top and bottom
hBN multilayers, it is thereby protected against outside influences such as e. g. con-
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3.1 Sample fabrication

(a) (b)

Figure 3.5: Bubble formation and self-cleansing mechanism. (a) AFM images of the stack presented
in Fig. 3.4 after heating at 300 ◦C. The flakes are shown in false-colors: mint (bottom hBN), orchid (top
hBN) and whitish (graphene), respectively. (b) Zoom-in on the black dashed box. The bubbles (white)
are accumulated along the edges of the graphene strip, but the interfaces themselves appear perfectly
clean. In one of the strips bubbles are squeezed into the crack of the top hBN. Since these pockets do
not evaporate, they must be from the lower interface between bottom hBN and graphene.

tamination due to adsorbate molecules from the environment or polymer residues
caused by lithography steps for device patterning. Yet, since the complete sample fab-
rication itself (i. e. exfoliation of the crystallites and the stacking process) is performed
under ambient conditions, it is unavoidable that contaminants (mainly hydrocarbons,
water etc.) immediately accumulate on the surfaces of the exfoliated flakes and get
eventually trapped at each interface of two 2D crystals during the stacking process.
Nonetheless, sufficiently large clean areas (∼ 10 µm in size) are obtained in a com-
piled heterostructure owing to a so-called “self-cleansing” mechanism [Kre+14], in
which trapped contaminants are squeezed into “bubbles” and thereby leaving behind
atomically sharp interfaces free of contamination [Hai+12] (a study on the physics of
bubble formation in vdW heterostructures has been reported in [Khe+16]).

The diffusion of adsorbate molecules segregating into the larger pockets can be en-
hanced due to an annealing step (here done in an oven at 300 ◦C for 3 h). It shows
that the self-cleansing mechanism is most effective in rather narrow graphene strips
(∼ 5 µm in width) where the contaminants can fully diffuse outside the flake area
and coalesce only at the edges of the graphene/hBN interface (an example is shown
in Fig. 3.5). But even defects in the heterostructure or cracks in the top hBN layer
introduced during the stacking could be helpful for collecting efficiently the contami-
nants into droplets of larger size or actually completely releasing adsorbate molecules
through the fissure, respectively. Furthermore, a slowly made contact between the
flakes during the pick-up process is proposed to yield an improved self-cleansing
effect [Piz+16].
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Figure 3.6: Edge connection of encapsulated devices. Series of schematics illustrating the fabrication
of edge contacts. (1) Reactive-ion etching using CHF3/O2 and with a patterned PMMA etch mask
defined by electron-beam lithography. (2) Metal deposition (Ti/Al) making contact along the exposed
graphene edge using the same patterned and etched PMMA mask. (3) Metal lift-off with remaining
contact leads connected to the encapsulated graphene layer from the edge of the mesa.

Finally, devices can be designed and patterned within the clean and flat regions of
the assembled graphene/hBN heterostructure which are identified via an AFM scan
(note that the layout and design of devices is thereby sample specific and unique, thus
requiring in each case its own planning of the patterning). These last steps of sample
fabrication are discussed in the following.

3.1.3 Edge contacts

Making good electrical contact to a material is another important aspect for design-
ing high-quality electronic devices, especially in the case of proximity-coupling in
a weak link Josephson junction. Though, one might wonder how to connect the
active transport layer once fully encapsulated in the final heterostructure. In fact,
what might seem like an impediment at first glance, turns out to be one of the
biggest advantages. By etching trenches into the stack using reactive ion etching (see
Appendix A.2) the graphene edge is exposed, along which a metal contact can be
made. Indeed, the edge contact geometry has proven to yield highly transparent
contacts with significantly lowered contact resistance compared to common surface
contacts [Wan+13].

In the original procedure for the fabrication of edge contacts [Wan+13], a two-layer
resist with a hard etch mask (i. e. hydrogen-silsesquioxane; HSQ) is employed for
initial patterning of the devices, making an additional subsequent lithography step
necessary for the later metalization of the contacts. However, the already exposed
graphene edge might get contaminated by resist residues due to the second lithogra-
phy step. Moreover, the sequentially defined contacts must slightly overlap the edged
mesa to make sure that the graphene is connected properly, uncontrollably affecting
the electrostatics in the sample. In avoidance of these downsides, we fabricate the
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3.1 Sample fabrication

(a) (b)

Figure 3.7: Edge contacts and device patterning. (a) AFM image after depositing metal contacts
making electrical contact to a graphene/hBN heterostructure placed on a pre-patterned BG structure.
(b) Zoom-in on the central part of (a) after the final patterning was done by reactive-ion etching. In
total six devices can be seen, connected from the edge of the mesa and shaped into defined junction
geometries.

edge contacts in a revised fashion, where a single PMMA resist layer for both etching
and subsequent metalization of the contacts is employed. The duration of the etch
process is carefully chosen to be long enough in order to etch completely through the
top hBN for exposing the graphene layer, but not too deep as the remaining thickness
of the bottom hBN limits the maximum applicable voltage on the BG. In the next step,
the same already patterned PMMA resist layer is then directly used as lift-off mask
for the metal deposition, ensuring clean and self-aligned contacts. The procedure is
illustrated in Fig. 3.6.

3.1.4 Final patterning and top gate deposition

The sample fabrication process is finalized by patterning the heterostructure into the
desired device geometry and designing local gate structures on top of the sample
according to requirements. The final shaping of the devices is done via another cycle
of lithography and subsequent etching (note that this step might not be necessary
when using a narrow graphene strip where the natural edges of the flake can serve
as the device boundaries). An exemplary AFM image of patterned devices is shown
in Fig. 3.7. After this etching step, the edges of the graphene layer are again exposed
to the environment. Thus, prior to TG deposition an intermediate step is required,
i. e. adding an insulating layer to prevent the metal gate being electrically connected
to the graphene (or if the TG needs to be overlapped with the source and drain
contacts; see e. g. the device architecture in chapter 4.3).6 In this regard, the sample is

6 Note that if the order is reversed, i. e. first TG deposition followed by final shaping of the devices, no
insulating layer may be needed but there will be graphene sleeves remaining underneath the TG lead
protected from etching.
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covered by an Al2O3 layer deposited by ALD (as done with the pre-patterned BG). TG
structures are then deposited thereafter, which includes another step of lithography
followed by metalization. More complex device geometries might consist of several
TG electrodes with one superimposed on the other. In this case, the different levels
of TGs are again isolated from each other due to an extra layer of Al2O3 deposited
priorly to the upper TG structure (see e. g. the device architecture in chapter 5.2).

3.2 Measurement setup

Cryostat

The low-temperature electrical measurements are performed in a BlueFors LD250
cryogen-free dilution refrigerator, i. e. a “dry” cryostat. The pre-cooling is done with
a two-stage pulse tube cooler reaching a temperature below . 4 K (while the warmer
stage being at about 50 K). By decoupling mixing chamber stage and still plate from
the environment via closed gas-gap heat switches and running the circulation of the
3He/4He mixture (initial condensing during the cooldown process is supported by
a compressor), the system is further cooled down. The cooling power is provided
by the endothermic dilution of 3He from a concentrated phase (∼ 100 % 3He) into
the dilute phase (about 6.4 %/93.6 % 3He/4He for T → 0) in the mixing chamber,
while pumping on the still line generates a continuous cycle of 3He. A schematic of
the dilution unit operating principle and a photograph of the cryostat are shown in
Fig. 3.8a, b. The base temperature reached at the mixing chamber level in the empty
cryostat is below 7 mK. When the mixing chamber is equipped with electric lines
(and/or high-frequency transmission lines) for the measurement, the temperature is
higher (typically about 10 mK–20 mK 7) due to the installed connections to the room-
temperature environment outside the cryostat which act as additional heating loads.
It needs thus to be taken great care of thorough thermal anchoring of the cabling at
each temperature stage.

Filtering and shielding against outside in�uences

Another important aspect to be minded for the experiment at low temperature is
noise coming from connected instruments at room-temperature (i. e. amplifiers etc.),
which act as heat sources for the electronic temperature in the sample itself. There-
fore, we integrate a combination of low-pass filters into each of the electric lines at the
mixing chamber level: three-stage RC filters (consisting of three resistors R1 = 330 Ω,

7 Specific base temperatures of measurements from different cooldowns are given within the particular
experimental chapters.
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(d)

(c)

(b)(a)

Figure 3.8: Cryogen-free 3He/4He dilution refrigerator with sample holder. (a) Schematic of the
principal parts in the dilution refrigerator system (taken from the User manual for BF-LD250, 2011,
Version 1.3.1). (b) Photograph of the opened cryostat. (c) Zoom-in on the sample holder mounted at
the end of the cold finger (orange dashed box in panel (b)), which will be in the center of the magnet
when closed. (d) Photograph of the printed circuit board inside the sample holder, showing three
bonded chips.

R2 = 220 Ω and R3 = 100 Ω in turns with a total of four capacitors C = 100 nF
coupled to ground) with a cut-off frequency of 1 kHz and copper powder filters (2 m
conducting track per line on a printed circuit board) with a cut-off frequency of
1 GHz, effectively attenuating noise over a large frequency range.8,9 In some of the
measurements, an additional thermal anchoring is used (i. e. cryogenic woven copper
loom wiring with a length of ≈ 1 m immersed into Galinstan).

Further precautions are taken with respect to environmental influences. The complete
experimental setup, i. e. cryostat together with all electronic equipment, is installed in-
side a Faraday cage shielding against external radio frequency interferences. Further-
more, twisted pair cabling is utilized for incoming and outgoing lines to the sample,
which helps to reduce electromagnetic interference from external sources (as well as
crosstalk between neighboring pairs). Finally, the measurement system is fully elec-
trically isolated from the environment and only connected via an optical fiber cable
to the measurement control computer.

8 Details on the performance of the RC filters are discussed in the PhD theses [Bor14; Moh16].
9 New metal powder filters are designed and fabricated, though not yet used for the measurements

in this thesis. The electric line length for the filtering is increased to 5 m using cryogenic woven
copper loom encapsulated into a closed oxygen-free and gold-plated copper box with two chambers
of stainless steel powder and copper powder, respectively.
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Figure 3.9: Measurement circuitry. The device under test (DUT) at low temperature is connected to
the measurement equipment outside the cryostat, i. e. dc power sources for source-drain bias and gate
voltages (Vbias, VBG and VTG), lock-in amplifiers (LIAs) and digital multimeters (DMMs) as described
in the main text.

Measurement scheme and instrumentation

For loading the sample into the cryostat, the chip is initially glued onto the printed
circuit board of our designed sample holder using thermally conductive varnish
(GE 7031) and connected to the metal pads of the printed circuit board (which them-
selves are soldered to an electrical connector) via ultrasonic wedge bonding (AlSi 1 %
bond wires). The sample holder is then mounted to the cold finger of the cryostat
which is going to be inside the cylindrical inner bore of the installed magnet. Pic-
tures of the connected sample holder and the bonded chips are shown in Fig. 3.8c, d,
respectively. In the measurements, an integrated cryogen-free compensated solenoid
superconducting magnet-system is applied (American Magnetics, Inc.; AMI 12 T) gen-
erating homogeneous fields in its vertical direction.

The devices are probed in a two terminal single-ended measurement configuration
with two lines each at source and drain contacts for measuring voltage and current.
Thereby only the contact resistance of the two metal leads to the graphene but no other
series resistance (i. e. cabling and filters) is included. We use standard low-frequency
(10 Hz–15 Hz) lock-in techniques with low ac excitation (< 10 µV) for measuring
the differential resistance/conductance, with two synchronized lock-in amplifiers
(Stanford, SR830) for the detection of both current and voltage (the signal is generated
by the internal oscillator of one of the lock-in amplifiers; here the lock-in amplifier
for voltage detection). Out-of-equilibrium measurements are performed with applied
bias using an ultra-low noise dc-power source (iTest Bilt System, BE2101). The dc
voltage is added to the ac signal at a voltage divider (with two input terminal resis-
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tors Rac = 476 kΩ and Rdc = 1 kΩ, a resistor R = 10 Ω to ground and one output
terminal). The signal behind the sample is amplified with low noise preamplifiers
for current (DL instruments, DL1211) and voltage (dc: LI-75A; ac: Celians EPC1-B),
respectively, and the dc component is recorded via digital multimeters (Agilent,
34410A). Finally, the gating is done with applied electrostatic potentials on BG and
TGs using further channels of the dc-power source. A schematic of the measurement
scheme is shown in Fig. 3.9.
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4 Tailoring supercurrent

con�nement

In this chapter we study the induced supercurrent in gate-defined one-dimensional
nanoscale constrictions in BLG weak links by monitoring the confinement via
magneto-interferometry measurements. The chapter is organized as follows: At
first, a literature review (4.1) is presented including an introduction to supercon-
ducting magneto-interferometry, as well as a short discussion about the employed
Dynes-Fulton techniques for determining the spatial supercurrent density profiles.
The following experimental results are subdivided into two parts based on differ-
ent devices with distinct gate geometries, i. e. QPC-like confinement (4.2) and long
channel confinement (4.3). Finally, a short conclusion is given (4.4).

4.1 Literature review

Graphene-based Josephson junctions represent a new class of weak links, combining
superconductivity with relativistic effects as introduced in chapter 2 [TB06]. The pro-
vided gate-tunability of the Josephson effect together with high contact transparency
and ballistic transport makes edge-connected graphene vdW heterostructure weak
links an appealing platform for designing versatile superconducting quantum devices
[LL18]. However, in spite of these excellent prerequisites for mediating superconduc-
tivity, a full control of the supercurrent both in its amplitude and spatial distribution
remains challenging. One of the reasons behind this is the difficulty to confine charge
carriers in graphene due to the lack of an electronic band gap [Cas+09], the absence
of back scattering and the phenomenon of Klein tunneling [KNG06; Kat12]. On the
other hand, the use of BLG could circumvent these problems thanks to the possibility
to engineer an electronic band gap by breaking the lattice inversion symmetry of the
AB-stacked bilayer [McC06; Cas+07; Oos+08; Zha+09b; TJ10; MK13]. For this reason,
BLG is employed as weak link material in the here presented studies, providing a
way to shape the supercurrent distribution by means of local gating. In the scope of
this thesis two different gate geometries are presented, i. e. a QPC-like confinement
(subsection 4.2) and a long channel confinement (subsection 4.3). [Kra+18b]
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4 Tailoring supercurrent confinement

It should be remarked that prior to this work, several groups have noted the presence
of conductive channels despite the opening of the band gap [Ju+15; All+16; Zhu+17],
which impedes the intended spatial control of the supercurrent via local band gap
engineering. The reported shunting behavior in the assumed insulating state is ex-
plained by induced currents through topological channels which can appear primarily
for two reasons: AB stacking faults [ZMM13; Vae+13] or edge states [Cas+08; Li+11].1

The saturating resistivity in the presence of topological current paths along domain
walls or the sample edges could be monitored by near-field infrared nanometer-
scale microscopy [Ju+15] or superconducting magneto-interferometry measurements
[All+16; Zhu+17], respectively.

Here, we investigate in a similar fashion the spatial distribution of the supercurrent
by measuring the interference pattern arising from the response of the Josephson
current to the applied perpendicular magnetic field, which contains information on
the supercurrent density distribution. The underlying physics of the superconduct-
ing magneto-interferometry will be introduced at this point (based on [BP82; Tin04;
GM05]).

Superconducting magneto-interferometry

We consider a finite-size Josephson junction (here the BLG weak link) of length and
width L, W, respectively, with the junction area oriented in the xy-plane, as sketched
in Fig. 4.1a. In an external perpendicular magnetic field B = (0, 0, Bz) different
supercurrent paths connecting the two superconducting electrodes pick up a gauge-
invariant phase difference with respect to each other. Demanding the phase to be
quantized between any two paths for the macroscopic wave function to be single
valued, i. e. the total phase change along a closed contour is 2πn (see the white dashed
box in Fig. 4.1a), the position dependent phase difference can be written as

ϕ(x) = ϕ0 +
2πΦ
Φ0

x
W

, (4.1)

where ϕ0 = ϕ(x = 0) is the phase difference at x = 0, Φ0 = h/2e is the flux quan-
tum and Φ = Bz Ã is the magnetic flux threading the junction area Ã = L̃W with
L̃ = L + 2λL the effective length including the London penetration depth of the
applied magnetic field into the superconducting electrodes. Inserting ϕ(x) into the
current-phase relation (Eq. 2.10) the supercurrent density is obtained to

Js(x) = Jc(x) sin(βx + ϕ0) , (4.2)

1 Note, that in early experiments with diffusive non-encapsulated BLG junctions on Si/SiO2 substrates
[Oos+08; TJ10] other more trivial reasons would cause the limitation of achievable maximum resis-
tance, such as charge inhomogeneities and disorder in the device causing mid-gap states and the
eventual quenching of the transport gap [Miy+10; Jin+10].

42



4.1 Literature review

ϕ

Ic

-2 -1 0 1 2 3-W/2 0 +W/2
x

JS

ϕ=1/2

ϕ=2/2

ϕ=3/2

ϕ=0

S

S

N

W

L+
2
λ

IS

(a) (b) (c)

x

y
z

JS

x
0

 Ic /W

0-W2/ W2/

-3

Figure 4.1: Introduction to superconducting magneto-interferometry. (a) Sketch of the SNS junction.
(b) Spatial variation of the supercurrent density for different values of the normalized magnetic flux
φ = Φ/Φ0. (c) Interference pattern of the maximum supercurrent as a function of the normalized mag-
netic flux, showing a Fraunhofer interference of a single-slit (i. e. short and wide) Josephson junction.
Inset: Corresponding supercurrent density profile that can be translated into the interference pattern
by solving the Fourier integral in Eq. 4.5b.

where β = 2πΦ
Φ0

1
W , which describes a sinusoidally oscillating supercurrent density

along the x-direction with periodicity depending on the flux (see Fig. 4.1b). The total
supercurrent through the junction is then calculated by integrating the supercurrent
density over the junction width W:

Is(β, ϕ0) =
∫ +W/2

−W/2
Jc(x) sin(βx + ϕ0)dx , (4.3)

which can be rewritten into the equivalent expression

Is(β, ϕ0) = Im
{

eiϕ0

∫ +W/2

−W/2
Jc(x)eiβx dx

}
. (4.4)

The critical current, i. e. the maximum supercurrent, is finally obtained by maximizing
Eq. 4.4 with respect to ϕ0, which yields simply the magnitude of the integral

Ic(β) = maxϕ0 {Is(β, ϕ0)} = |I(β)| , (4.5a)

I(β) ≡
∫ +∞

−∞
Jc(x)eiβx dx , (4.5b)

where I(β) can be identified as the complex Fourier transform of the real space critical
current density Jc(x).2

2 Note that here the integration limits have been replaced by ±∞, which does not change the result
of the integral since Jc(x) (and hence the integrand itself) is only finite within the physical junction
boundaries −W/2 ≤ x ≤ +W/2, but zero outside.
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In the case of a single Josephson junction with homogeneous maximum supercurrent
density profile across its width, i. e. constant Jc(x) = Jc, the resulting critical current
as a function of magnetic flux takes the form

Ic(Φ)

Ic(0)
=

∣∣∣∣∣∣
sin
(

βW
2

)
βW

2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
sin
(

πΦ
Φ0

)
πΦ
Φ0

∣∣∣∣∣∣ , (4.6)

which is analogous to the Fraunhofer diffraction pattern of a single-slit in optics
[Tin04] (see Fig. 4.1c). Here, it is the spatially varying phase difference causing a
spatial interference effect of the macroscopic superconducting wave function in the
Josephson junction which can be observed as the interference pattern of the maxi-
mum supercurrent as a function of the externally applied magnetic field.

The Fraunhofer-like interference pattern has been extensively studied already in ear-
liest experiments based on diffusive SNS junctions in the wide junction limit [Row63;
Cla69; NYF82; YF84]. Since then, the response of the critical current subject to mag-
netic field has been investigated in a large variety of different superconducting junc-
tions, revealing anomalous and non-Fraunhofer interference patterns. For instance,
increased oscillation periodicities have been reported in ballistic SNS junctions of
comparable length and width [Hei+98]. Theoretically, this has been qualitatively de-
scribed in terms of quasi-classical trajectories, where reflections from the edges needs
to be taken into account for decreasing width-to-length ratios which modifies the
Ic(Φ) behavior in a way of gradually increased oscillation period from Φ0 to 2Φ0 (or
Φ0 → 3Φ0 in the diffusive regime) [BZ99; LFB99; MFG16], as well as lifted nodes
(non-zero minima) [MFG16].

Further experiments, performed in the narrow junction limit, revealed an unusual
monotonic decay of the critical current as a function of perpendicular magnetic field
[Ang+08; Chi+12; Ama+13]. The absence of the magnetic interference pattern is un-
derstood due to the presence of magnetic vortex structures appearing in the normal
region of the junction, eventually effectuating a cross over from the Fraunhofer-like
pattern in wide and short junctions to a monotonic decay in long junctions narrower
than the magnetic length lB [CB07; BC08; CI13].

Importantly, the observation of a distinct variety of interference patterns in different
junction geometries [BP82] reflects the fact that the response of the critical current to
the applied perpendicular magnetic field is correlated to the supercurrent density dis-
tribution (cf. Eq. 4.5). Superconducting magneto-interferometry thus provides a pow-
erful tool to probe the supercurrent flow in a device, as it was recently demonstrated
experimentally in a 2D HgTe/HgCdTe quantum well topological insulator [Har+14],
where the real space supercurrent density profile could be extracted from the mea-
sured interference pattern by performing the inverse complex Fourier transform of
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Figure 4.2: Superconducting magneto-interferometry measurements in a topological HgTe/HgCdTe
quantum well. Left: Superconducting magnetic interference patterns. Right: Corresponding recon-
structed supercurrent density profiles by performing the inverse Fourier transform following the
Dynes-Fulton approach. The obtained density profiles represent a uniform supercurrent distribution
(top) and induced superconductivity in the helical edge states with suppressed bulk current (bottom),
corresponding to the two scenarios as depicted by the schematics in the insets. Taken from [Har+14]
(labels have been replaced for better visibility).

Eq. 4.5b following the Dynes-Fulton approach [DF71] (see Fig. 4.2). By now, this
method has become a widely used standard protocol for monitoring the supercurrent
density distribution [Pri+15; All+16; Zhu+17; Ind+18]. In the following paragraph,
the Dynes-Fulton approach is briefly discussed.

The Dynes-Fulton approach

The proposed procedure due to Dynes and Fulton [DF71] allows in principle to re-
construct the maximum supercurrent density profile Jc(x) from the observed super-
conducting magnetic interference pattern of the critical current as a function of the
magnetic flux Ic(Φ) by performing the inverse complex Fourier transform of the given
expression in Eq. 4.5b over the measured sampling range b of β:

Jc(x) =
∣∣∣∣ 1
2π

∫ +b/2

−b/2
I(β)e−iβx dβ

∣∣∣∣ . (4.7)

However, due to the fact that only the maximum supercurrent, i. e. the critical current
Ic(β) = |I(β)|, is measured in the experiment, all the necessary phase information
of the complex I(β) is lost in the obtained interference pattern. In the Dynes-Fulton
approach, this lack of knowledge is overcome by writing the total maximum super-
current density distribution as the sum of an even and odd part Jc(x) = Je(x) + Jo(x),
which yields

I(β) =
∫ +∞

−∞
Je(x) cos(βx)dx + i

∫ +∞

−∞
Jo(x) sin(βx)dx , (4.8)
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decomposed into its real and imaginary parts I(β) = Ireal(β) + iI imag(β) with
Ireal(β) ≡

∫ +∞
−∞ Je(x) cos(βx)dx and I imag(β) ≡

∫ +∞
−∞ Je(x) sin(βx)dx. Then, by as-

suming an almost symmetric density profile, i. e. Je(x)� Jo(x), the phase information
can be recovered by flipping the sign of alternating lobes of the measured pattern
Ic(β) = |I(β)|, since I(β) ' Ireal(β) becomes purely real.

On the other hand, the odd component Jo(x) of the supercurrent density profile is re-
flected in the appearance of a non-zero critical current at minima of the pattern, where
the real part Ireal(β) vanishes and the pattern is instead dominated by the imaginary
part I imag(β), i. e. I(β) ' I imag(β). In that sense, I imag(β) can be estimated semi-
quantitatively by interpolation through the minima and flipping sign between lobes.
Finally, having recovered the phase information for the complex I(β) from the mea-
sured pattern of the absolute Ic(β) = |I(β)|, it is possible to reconstruct the maximum
supercurrent density profile Jc(x) as to Eq. 4.7.

Yet, it is important to note that this approximate analysis due to Dynes and Fulton
incorporates strongly simplifying assumptions causing intrinsic limitations of this
technique [Hui+14]. First of all, the analysis is strictly based on the constraint of
considering a sinusoidal current-phase relation, which itself further demands a short
and wide junction with small transmission parameter D � 1 of the superconducting
contacts.3 Secondly, the sample geometry, i. e. width and length of the junction, is
treated as a known and especially constant input to the calculations, while in experi-
ment the effective junction area might depend on different experimental parameters,
such as gate voltage or externally applied magnetic field (and others).

Moreover, the Fourier integral as given in Eq. 4.5b requests a uniform supercurrent
density distribution along the other dimension of the 2D junction plane, i. e. in the di-
rection of the current flow normal to the superconducting contacts (say y-direction).
Though, in the case of a non-uniform supercurrent density profile in y-direction
(e. g. due to the presence of disorder or charge carrier inhomogeneities) the equation
would need to be solved for two spatial variables, i. e. Jc(x, y) instead of Jc(x), making
the problem unsolvable in this simplistic approach. Last but not least, extracting Jc(x)
based on the Dynes-Fulton technique provides not a unique solution, similar to an

3 In ballistic graphene Josephson junctions, the current-phase relation has been calculated in several
theoretical works [TB06; BD08; BL10; MCP12; RKC16] predicting anharmonic forward-skewing with
respect to the sinusoidal current-phase relation. The non-sinusoidal behavior has been observed
experimentally in the diffusive [Eng+16] and ballistic [Nan+17] regime, revealing increasing skewness
as a function of the critical current but decreasing upon an increase in temperature. On the other hand,
a sinusoidal current-phase relation has been reported in the case of reduced contact transparency due
to the formation of pn-junctions at the contact interfaces upon hole doping, while forward skewness
is present when the sample is electron doped resulting in high transparency and large critical current
[Sch+18].
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inverse scattering problem with lost phase information about the original unknown
function. Here, only the amplitude of the complex Fourier integral is experimentally
accessible, making it first necessary to recover the phase information, which itself ma-
nipulates the result due to the symmetry constraint of the made assumptions. For
instance, it has been shown that different choices of Jc(x) 6= Je(x) can yield the same
interference pattern [Zap75].

Due to its many assumptions, the Dynes-Fulton approach also inherits a lack of inter-
nal consistency, as it does not provide a self-consistent solution in further reiteration
steps of the Fourier transform, i. e. the resultant calculated interference pattern from
the initially extracted Jc(x) might not be the same as the original experimental pat-
tern but showing a quantitative disagreement [Hui+14]. The possible inconsistencies
could arise due to impracticable prerequisites of the technique. For example, the
appearance of non-zero minima is only and exclusively attributed to an asymmetry
in the supercurrent density profile, whereas other possible node-lifting mechanisms,
such as finite contact transparencies [Hui+14], long junction effects [MFG16] or parity
switching at low temperatures in a topological superconducting junction [Lee+14],
are not considered.

The problematics of the procedure become also apparent in the appearance of an
unwanted byproduct, that is the calculated currents are spilling in parts outside the
sample dimensions. This unphysical answer to the problem seems to be an unavoid-
able artifact of the Dynes-Fulton technique as it can be observed in any of the pre-
sented results [Har+14; Pri+15; All+16; Zhu+17; Ind+18]. Finally, it should be noted
that the resolution of the extracted supercurrent density is limited and determined
by the measured range of β (i. e. inversely proportional), being typically in the order
of ∼ 100 nm for applied magnetic fields of order ∼ 10 mT and an effective junction
length ∼ 1 µm.4

Nevertheless, despite all listed constraints and limitations that need to be considered,
the Dynes-Fulton approach can often provide a useful simplistic method to gain a
qualitatively adequate understanding of the supercurrent flow in the device, which
will be demonstrated in the second experimental part B in the “long channel con-
finement” (section 4.3), but being not applicable in the first experimental part A with
“QPC-like confinement” (section 4.2) which is presented next.

4 The spatial resolution is given by ∆x = 2π/b (with b the sampling range of β), which can be written
in terms of magnetic field as ∆x = Φ0/(Br L̃), where Br = Bmax − Bmin is the measured range of
magnetic field values.
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Figure 4.3: Device design. (a) 3D schematic of the device and (b) cross-sectional view as a cut through
the dual-gated region. The device consists of a hBN-BLG-hBN heterostructure (with a bottom and top
hBN multilayer of ≈ 35 nm and ≈ 38 nm thick, respectively) on a pre-patterned back gate (BG) covered
with a 20 nm thick Al2O3 and a split gate (SG) on top of the heterostructure. The Ti/Al superconducting
contacts are edge-connected to the mesa in a self-aligned manner. The junction width and length are
W = 3.2 µm and L = 0.95 µm, respectively, while the closest distance between the two SG electrodes is
w ≈ 65 nm and thicknesses of the dielectric (hetero-) layers are dt ≈ 38 nm and db ≈ 55 nm, i. e. distance
between gates and BLG layer. (c) AFM image of the device (the scale bar is 1 µm). We note that the
junction geometry is not perfectly rectangular, but rather slightly rhomboid.

4.2 Experimental results � Part A: quantum point

contact-like con�nement

Here we study a device designed in a QPC-like structure.5 A schematic as well as the
AFM image of the sample is shown in Fig. 4.3. Details on the device geometry are
given in the figure caption. The confinement is realized by controlled band gap engi-
neering via the applied displacement fields between the overall pre-patterned BG and
the locally defined split gate (SG). The experiments were performed in several ther-
mal cycles, and the obtained results could be reproduced in the different cooldowns
(only minor changes in the position of the charge neutrality point are observed).

The here presented results are based on two cooldowns, which will be labeled
throughout this section as CD#1 and CD#2 (corresponding to recorded cooldowns
#23 and #25 of the cryostat logbook, respectively). Base temperatures of these two
cooldowns were about . 25 mK and . 55 mK (unless stated otherwise). In the initial
device characterization the shown data is mainly based on CD#2, whereas the rest
is primarily based on CD#1 (which will be specified in each figure caption). The
normal state measurements were conducted by applying a perpendicular magnetic
field B = 20 mT.

For the supercurrent analysis and magneto-interferometry measurements the critical
current Ic is extracted using a threshold voltage method with the threshold value set
to 1 µV. The two adjacent data points of recorded IV curves right before and after the

5 The presented results are partly based on [Kra+18b].
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(a) (b)

Figure 4.4: The electric field effect – normal state characteristics. (a) Resistance curve as a function of
VBG for the approximate uniformly doped 2D system (i. e. VSG = Vcnp

SG = 0.2 V). (b) log-log-plot of the
conductivity σ as a function of charge carrier density n, where a contact resistance of 2RC = 72 Ω was
subtracted. Data is based on CD#2.

threshold are evaluated, and Ic is determined by linear extrapolation in the current
between these two points depending on the ratio of the voltage drops with respect to
the threshold value. The extracted critical current is finally corrected by subtracting
the artificial offset that is produced by this method.

4.2.1 Initial device characterization

Normal state characteristics

Here, the basic characteristics of the sample are presented for which it is instructive
to start with a measurement of the electric field effect of the device. Figure 4.4a shows
the respective resistance as a function of VBG when the device is measured as 2D
junction, i. e. with approximately uniform overall doping. At the charge neutrality
point, a sharp resistance peak is observed, which is positioned at slightly negative
VBG = Vcnp

BG = −0.32 V (CD#2) indicating a small intrinsic n-type doping of the
BLG. Upon finite induced charge carrier density, the resistance drops and an appar-
ent asymmetry is noticed between the saturating resistance of electron and hole side
[Hua+08]. The asymmetric device properties are due to the charge transfer from the
Ti/Al contact leads having a smaller work function with respect to graphene, which
induces a slight n-type doping to the BLG in their vicinity [Gio+08]. Then, as the
graphene sheet itself is tuned to a p-type doping, additional pn-junctions form at the
interfaces to the metal contacts.

Next, an upper bound of the contact resistance per contact is estimated as
RC = (R− RQ)/2, where the quantum resistance RQ is subtracted from the measured
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resistance R. The quantum resistance RQ = (M × ge2/h)−1 is defined as the resis-
tance set by the ballistic limit of all contributing conductance modes M = W/(λF/2)
with λF = 2π/kF = 2π/

√
πn the Fermi wavelength at charge carrier density n and

g = 4 accounts for the fourfold degeneracy, i. e. spin and valley. At high charge
carrier density on the electron side n ≈ 4× 1012 cm−2 (corresponding to M = 361
and RQ = 18 Ω) a resistance of R = 90 Ω is measured, yielding RC = 36 Ω and
contact resistivity ρC = RCW = 115 Ω µm, comparable to the values given by Wang
et al. [Wan+13].

The residual charge carrier density in the device nres on the electron side is estimated
as to [Du+08], where Fig. 4.4b shows the log-log-plot of the conductivity (with sub-
tracted contact resistance) as a function of charge carrier density n.6 The crossing
point of the saturation conductivity with the extrapolated linear fit to the data at
elevated charge carrier density yields a low residual charge carrier inhomogeneity
nres of the order of ∼ 1× 1010 cm−2, below which transport is governed by the resid-
ual disorder rather than the tuning by the gate voltage. We note that transport above
nres is in the ballistic regime, as evident from the apparent presence of Fabry-Pérot
interferences in different cavities formed by the SG or by the unintentional doping
from the metal leads [SRL08; YK09; Ric+13; Var+14b; Du+18] (see Appendix B.2).

Proximity-induced superconductivity

Next, the junction is characterized in the superconducting state, i. e. at zero magnetic
field. Figure 4.5a shows again a measurement of the electric field effect of the sample
tuned by the overall BG. Although this time, the resistance drops to zero away from
charge neutrality indicating the finite supercurrent flowing through the BLG weak
link due to the superconducting proximity effect. At the charge neutrality point itself
supercurrent is suppressed and the junction remains resistive. The amplitude of the
supercurrent in the BLG Josephson junction is studied by measuring a continuous
set of IV curves for different values of the BG (i. e. different charge carrier densities,
respectively). The corresponding differential resistance dV/dI is plotted as a function
of VBG and current I in Fig. 4.5b, where dissipationless current is observed as black
regions. Once again, a clear asymmetry is noticed between electron and hole side. The
significantly smaller supercurrent magnitude measured in the case of p-type doping
(by about an order of magnitude) is due to the formation of pn-junctions as discussed
for the normal state resistance beforehand.

6 The charge carrier density is calculated as to a parallel-plate capacitor picture n = (C/e)V, where
C is the specific gate capacitance per unit area extracted from the Landau level fan diagram (see
Appendix B.1).
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Figure 4.5: Proximity-induced superconductivity – supercurrent in the 2D junction. (a) Resistance
curve as a function of VBG at VSG = 0 in the superconducting regime. (b) Corresponding bias map,
showing the differential resistance as a function of VBG and current I. (c) Respective gray-scale map of
the normalized differential conductance (arbitrary units) as a function of bias voltage V and VBG. The
additionally shown colored curve denotes the trace at VBG = 4 V, highlighting the visible subgap reso-
nances (i. e. MAR) positioned at eV = 2∆0/n with n = 1, 2, 3, 4. (a-c) Data from CD#2. (d, e) Exemplary
IV curves at VSG = 0 for different VBG as given in the respective legend. Data from CD#1.

Above the critical current the junction is no longer superconducting but switches
to the resistive regime, where several resonances are visible. These subharmonic
features for energies below the superconducting energy gap are due to MAR [KBT82;
Oct+83; CY06], as depicted in Fig. 4.5c showing a gray-scale map of the respective
(normalized) differential conductance as a function of bias V and VBG together with
an exemplary curve (VBG = 4 V). Here, the subgap resonances are observed as lines
at position V = 2∆0/(ne) (with n = 1, 2, 3, 4 an integer number) from which we
extract the superconducting energy gap ∆0 = 107 µeV. We note that the resonance
peak n = 1 is not well-positioned at the expected position and reveals a dispersing
behavior as a function of VBG, which we attribute to the smearing of the gap at higher
bias excitation due to the heating caused by the current being larger at increased BG
voltage. The superconducting energy gap ∆0 is smaller than the Thouless energy
ETh = h̄vF/L ≈ 600 µeV (in a ballistic junction). The superconducting coherence
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(a) (b) (c)

Figure 4.6: Formation of the constriction – gate-gate-map analysis. (a, b) Resistance maps as a function
of VSG and VBG in the normal state (a) and superconducting state (b), respectively. Note that in (b) the
color scale is non-linear for better visibility of features with low resistance (particularly in the upper
left corner). The given labels NNN, PPP and NPN, PNP denote the different quadrants of unipolar
and bipolar doping in the device. The displacement field line along which the charge carrier density
in the dual-gated region is set to zero (δD = 0) is indicated by the double-headed arrow. The dotted
line marks the transition when EF is tuned from the conduction band into the induced band gap.
(c) Resistance curves (blue: normal state; red: superconducting state) versus displacement field D
measured along the displacement field line. Data from CD#1.

length being ξ0 = h̄vF/∆0 ≈ 5.5 µm which is larger but in the same order as the
junction length (L . ξ0).

Finally, the critical current Ic and IcRn product (being a measure for the strength of the
proximity coupling) are extracted from the IV curves shown in Fig. 4.5d, e (note that
the IV curves are taken from CD#1 unlike the rest of the figure for better comparison
with later discussed supercurrent amplitudes primarily based on the same cooldown).
At large charge carrier density n ∼ ±4× 1012 cm2 the critical current Ic = 1.86 µA
(VBG = 10 V) and Ic = 0.19 µA (VBG = −10 V), corresponding to IcRn = 1.64∆0/e and
0.35∆0/e, respectively.

4.2.2 How to read the dual-gate map of a split-gated device

Employing the combination of overall BG and local SG is presupposed to electrostat-
ically confine the charge carriers. In order to figure out suitable gate conditions to
probe the confinement, we first analyze resistance maps as a function of VSG and VBG

for both normal and superconducting state, respectively, shown in Fig. 4.6a, b. The
maps are subdivided into unipolar (NNN, PPP) and bipolar (NPN, PNP) quadrants
due to unique doping combinations in the different regions of the device, i. e. dual-
gated regions controlled by both SG and BG or the outer regions only tuned by the BG.
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Though, in both cases (normal and superconducting state) distinct deviations com-
pared to the observed behavior of BLG devices in pnp-junction geometry [Oos+08;
TJ10; Var+14b] are clearly visible (cf. Fig. 2.5).

Typically, in BLG dual-gated devices a monotonically increase of the resistance would
be expected with increasing displacement fields due to the induced insulating state
with strongly suppressed conductivity as the band gap develops. Here, we ob-
serve a non-monotonic change of the resistance which first increases and then de-
clines after reaching a maximum while following the displacement field line indicated
by the gray double-headed arrow in the maps (corresponding to charge neutrality
δD = Db − Dt = 0 [Zha+09b], i. e. at equal displacement fields Db and Dt generated
by BG and SG, respectively). The respective resistance curves are plotted in Fig. 4.6c.
While the described trend is already noticeable in the normal state (blue curve), it
becomes strikingly evident in the superconducting state (red curve) as the resistance
fully drops to zero. In the map of Fig. 4.6b, this is seen by the region of zero resistance
extending from the unipolar NNN into the part of the map where the displacement
field is maximal and the Fermi level is presumed to be positioned within the induced
band gap. On the other hand, the observed maximum resistance in both maps does
not follow the displacement field line, but instead diverges into the bipolar regions
NPN and PNP, respectively.

The non-trivial evolution of the resistance can be understood considering the antag-
onistic interplay from BG and SG. Since the application of large displacement fields
in order to suppress the current underneath the SG electrodes requires large opposite
gate voltages, the two gates act in a competitive fashion on the channel. Then, at
elevated displacement field the charge carrier density in the channel is mainly driven
by the BG but becomes less and less affected by the stray fields developed by the
SG, which cannot compensate the influence of the BG on the channel region. In the
consequence, this gives rise to the non-monotonic progression of the resistance along
the displacement field line as the device remains highly conductive due to the opened
channel in contrast to the pinch-off characteristics of gapped BLG with full-width top
gate, which is particularly visible in the superconducting state by the observed zero
resistance (i. e. dissipationless current due to a finite supercurrent through the con-
striction). The measured maximum resistance instead following a bent line is due
to the required overcompensation of the SG voltage to diminish the induced charge
carriers within the channel region.

However, this imbalance between applied SG and BG voltages shifts the Fermi level
eventually out of the gap into the respective other band (i. e. valence or conduction
band, respectively), which induces charge carriers of opposite sign in the dual-gated
cavities resulting in the formation of pn-junctions. As a consequence, the bipolar re-
gions are subdivided into different transport regimes depending on the doping within
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(a) (b)

(i) (ii) (iii)

N N N N N NPp Pn N

Figure 4.7: Operating regimes of the QPC-like constriction. (a) Zoom-in on the upper left corner of
the resistance map in the superconducting state (see Fig. 4.6b), here plotted as gray-scale map. The
different transport regimes areas are enlightened by dashed lines and accordingly labeled as introduced
in the main text. (b) Schematics of the spatially resolved band structures in the QPC-like geometry
observed in a top view for the three different transport regimes (i) NPpN, (ii) NPnN and (iii) NNN.

the constriction. Figure 4.7a presents a zoom-in on the upper left corner of the map
in the superconducting state, in which the different regions are delineated by col-
ored dashed lines and accordingly labeled with an additional sub-label denoting the
channel doping. The QPC-like structure can then be driven in an ‘open’ NPnN (the
1D channel doping is of the same type as the 2D reservoirs) or ‘closed’ NPpN (the
1D channel doping is of the opposite type as the reservoirs forming a non-uniform
potential barrier) regime. The possible scenarios, governing the behavior of such elec-
trostatically induced constriction, are illustrated in Fig. 4.7b showing spatial band
structure schematics for (i) the non-uniform NPpN junction, (ii) the formed 1D con-
striction NPnN and (iii) the unipolar regime NNN.

Although the described different transport regimes can be identified for both polari-
ties, it is important to note that the overall resistance on the hole side remains higher
compared to the electron side (i. e. uniform PPP↔NNN or bipolar PNP↔NPN, re-
spectively). The asymmetry can be attributed to the presence of pn-junctions forming
at the interfaces to the metal contacts when the graphene itself is hole doped (see
subsection 4.2.1). This becomes particularly clear in the superconducting state, where
the PNP region remains resistive, while a large part of the NPN section displays a
zero resistance state. For this reason, the following analysis is focused on the NPN
area and in particular on the NPnN part, where the supercurrent is expected to flow
only via the constriction and thus can be studied in the confined regime.
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(a) (b)

(c)

Figure 4.8: Formation of the constriction – supercurrent analysis. (a) Color map of the differential
resistance as a function of VSG and current I at constant VBG = 8 V, monitoring the decreasing am-
plitude of the supercurrent as the constriction forms at larger negative SG values. Data from CD#2.
(b) Exemplary IV curves at constant VBG = 8 V for different VSG. (c) Extracted critical current as a
function of VSG for different VBG. Dashed vertical lines denote the position where a change of the slope
in the curves of Ic(VSG) appears. (b, c) Data from CD#1.

4.2.3 Supercurrent analysis

In the previous subsection (4.2.2) it was demonstrated that the device remains su-
perconducting in a gate range where the constriction is formed, namely the NPnN
regime. Here, the hypothesis of a confined supercurrent is tested by probing the crit-
ical current Ic upon a tuning by means of the SG. Figure 4.8a shows a map of the
differential resistance as a function of VSG and current I at a constant VBG = 8 V,
corresponding to a large charge carrier density in the outer BLG reservoirs. Respec-
tive IV curves for different SG voltages are shown in Fig. 4.8b. While at positive
VSG the critical current remains fairly constant, a strong tuning of the supercurrent
is monitored with increasingly negative VSG. This is due to the supercurrent ampli-
tude through the junction being determined by its weakest link. In case of VSG > 0
(i. e. nin > nout), these are the outer BLG reservoirs, which are kept at constant den-
sity. On the other hand, for VSG < 0 (i. e. nin < nout), the charge carrier density is
depleted below the SGs and the critical current decreases rapidly until VSG ≈ −6.8 V.
At this point, the Fermi level underneath the SG is tuned into the band gap and
charge carriers can only flow through the 1D channel of the induced confinement.
Then, beyond the formation of the constriction, Ic decreases in a much slower fashion
as the tuning of the supercurrent amplitude is only due to the stray fields from the SG
acting on the channel. We further note that the junction is tuned from underdamped
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to overdamped within the picture of the resistively and capacitively shunted junction
(RCSJ) model, as the system is depleted with the SG and the confinement develops
(shown in Appendix B.3).

The extracted critical current Ic as a function of VSG is plotted in Fig. 4.8c for differ-
ent charge carrier densities, i. e. different VBG. At small density (VBG = 2 V, orange
curve), the supercurrent is fully cut off as the Fermi level is positioned within the
gap, indicating that the stray fields under this gating conditions are strong enough to
close the channel (also see the resistance map in the superconducting state, shown in
Fig. 4.6b). With larger negative VSG a small but finite supercurrent reappears despite
the presence of a weak pn-junction as the Fermi level is tuned already into the valence
band (corresponding to the depicted scenario NPpN in Fig. 4.7b).

In contrast, the BG starts to electrostatically dominate the constriction region for the
other shown cases at higher charge carrier densities. The creation of the 1D channel
(corresponding to the scenario NPnN in Fig. 4.7b) is directly reflected in the sudden
change of slope of Ic(VSG) curves (blue and dark blue curves, with the position of
the slope change marked by dashed lines). The supercurrent through the channel is
then only slowly reduced owing to the narrowing of the channel with increasing neg-
ative VSG as discussed beforehand. Once the constriction is formed, the supercurrent
amplitude is quenched by two orders of magnitude compared to the respective 2D
current.

In a naive estimate, assuming the same supercurrent density in the 2D and 1D con-
fined regime, the ratio of I2D

c (VBG = 8 V; VSG = 0) = 1.66 µA (W = 3.2 µm) and
I1D
c (VBG = 8 V; VSG = −8 V) ≈ 0.04 µA would yield an effective junction width

w ∼ 80 nm close to the designed lithographic channel width. Yet, it should be noted
that the made assumption represents an apparent oversimplification of the problem,
e. g. completely ignoring trajectories that could pass diagonally through the channel
from the wider 2D reservoirs as the constriction is only formed in the center of the
device (i. e. the measured I1D

c is increased compared to that in the hypothetical purely
1D device). Thus, the obtained value rather gives a possible upper bound for the
width of the formed constriction.

Finally, at intermediate charge carrier density (green curve), the channel is initially
created (NPnN ; see change of slope into a more gradual decrease of Ic(VSG) after a
rapid drop), then closed with the supercurrent switched off, to eventually form a soft
non-uniform pn-junction with a small supercurrent detected (NPpN).
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4.2.4 Magneto-interferometry measurements

So far, several indicators for a confined supercurrent have been discussed by the anal-
ysis of the gate-gate-maps and the supercurrent amplitude. In this subsection, further
evidence is provided by studying the response of the critical current to a perpen-
dicular magnetic flux penetrating the junction. The resulting interference patterns
contain information about the supercurrent density distribution across the sample
width as described in the literature review (section 4.1). Figure 4.9a-d present such
patterns, showing the differential resistance as a function of magnetic field B and cur-
rent I for different VSG at a constant charge carrier density of the outer BLG reservoirs
(VBG = 8 V). The patterns reveal a progressive change of the interference patterns
with increasingly negative VSG, i. e. as the constriction develops. First, at VSG = 0
(Fig. 4.9d), a beating pattern is visible, resembling a Fraunhofer-like interference of a
2D junction [Tin04].7,8 The observed oscillatory behavior of the critical current keeps
up for a large range VSG → −6.0 V (Fig. 4.9c), although with changed shaped and
continuously decreasing supercurrent magnitude as discussed in the previous sub-
section 4.2.3. In a next step at VSG = −6.5 V (Fig. 4.9b), the interference pattern
features a lifting of the lobes before it finally turns into a non-beating ‘bell-shaped’
pattern for VSG = −7.0 V (Fig. 4.9a). Note that such a non-beating pattern has been
observed as well in rectangular superconducting weak links with low aspect ratio,
i. e. narrow long junctions [Ang+08; Chi+12; Ama+13].

We further note, that the transition from a beating to a non-beating pattern occurs
within a rather narrow SG voltage range −7 V < VSG < −6 V (at the given VBG = 8 V;
additional data at VBG = 6 V is shown in Appendix B.4, as well as for the hole-side in
Appendix B.5). As long as a finite supercurrent flows underneath the SGs, the system
remains two-dimensional and a beating pattern is recorded. But with the Fermi level
eventually shifted into the induced band gap, the supercurrent flows only through
the confined 1D constriction signified by the appearance of the non-beating pattern.
In Fig. 4.9e, this evolution is mapped carefully by measuring a series of interference

7 We note that the pattern does not reflect the ideal sinc-function behavior of a short and wide junction,
but reveals missing and deformed lobes as well as lifted nodes, which can be attributed to several
reasons (cf. the discussion in the paragraph about the Dynes-Fulton approach in section 4.1). Firstly,
the electrostatic profile across the junction is disturbed by the presence of the SG, where at VSG = 0
the charge carrier distribution might not be perfectly uniform due to a small but non-zero potential
induced by the SG. Secondly, the device has a non-rectangular shape while any geometry distortion
from the ideal short and wide junction case causes anomalous interference [BP82]. Last but not least,
the device is not a short junction but L . ξ, where additional effects (e. g. reflection from the edges)
might need to be considered, resulting in a modified pattern [BZ99; LFB99; MFG16; RKC16].

8 We further note a rather triangular shaped central lobe, which is signature for a pattern of a ballistic
weak link [SZ03; MFG16].

57



4 Tailoring supercurrent confinement

(a) (b) (c)

(d)(e)
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Figure 4.9: Superconducting magneto-interferometry. (a-d) Magnetic interference patterns, showing
the differential resistance dV/dI (in Ω) as a function of B and current I at VBG = 8 V for different
values of VSG: (a) −7.0 V, (b) −6.5 V, (c) −6.0 V and (d) 0 V. The latter pattern for VSG = 0 is fitted by a
sinc-function (brown curve), whereas in the other three cases (a-c) the extracted Ic values are plotted on
top of the pattern (orange, green and blue data points, respectively). (e) Mapped series of interference
patterns, showing the extracted (normalized) critical current amplitude Ic (top) and Inorm.

c (bottom) in
a color map as a function of VSG and B. Each vertical slice corresponds to the extracted data of a single
interference pattern as denoted by colored dashed lines for the three exemplary patterns in panels
(a-c). (f) Gray-scale gate-gate-map of the resistance in the superconducting state as shown in Fig. 4.7
with marked gate conditions (colored dots) of the shown interference patterns (a-d). Data from CD#1.
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patterns with varying VSG. The extracted critical current Ic (top panel), as well as the
critical current Inorm.

c normalized with respect to its maximum of each curve (bottom
panel), is plotted as a function of magnetic field B and VSG. Each vertical slice of these
maps corresponds to the critical current (or normalized critical current, respectively)
extracted from a single magnetic interference pattern, as e. g. denoted by the colored
dashed lines of the respective patterns shown in Fig. 4.9a-c. The detailed monitoring
of the evolving patterns as a function of VSG highlights the transition from 2D (beating
pattern) to 1D (‘bell-shaped’ pattern) supercurrent.

However, despite this clear change in the patterns being evidence of a strongly modi-
fied spatial supercurrent density, recovering the real space supercurrent density distri-
bution by employing the techniques due to Dynes and Fulton [DF71] is not possible as
this approach is based on the assumption that the current density is strictly homoge-
neous in the direction normal to the superconducting electrodes (apart from several
other presumptions and constraints [Hui+14] as discussed in sections 4.1 and 4.3).
Here, the QPC-like geometry clearly does not fulfill this prerequisite. Instead, an an-
alytical model calculating the Josephson current through the sample in the presence
of a magnetic field, as well as tight-binding simulations using the Kwant package
[Gro+14] are presented in the following.

4.2.5 Modeling the supercurrent con�nement

In order to gain deeper understanding how the magnetic interference pattern should
evolve with the creation of a QPC-like 1D constriction, an analytical and numerical
model are developed.9

Analytical model

In this model, the Josephson current through the sample in the presence of a mag-
netic field is calculated by employing a quasi-classical picture [BZ99; SZ03; MFG16].
Based on this approach, the superconducting current density is expressed in terms of
Andreev bound states, which can be viewed as electron-hole ‘tubes’ of width ∼ λF

resulting from the Andreev reflection at the NS interfaces and the magnetic field de-
pendence is included due to the Aharonov-Bohm phase. The magnetic flux dependent
Josephson current is then found by summing over all possible paths connecting the

9 The former model is due to the collaboration with our theory colleagues Nefta Kanilmaz and Igor
Gornyi (KIT) who derived the analytical expressions, while numerical tight-binding simulations are
performed by Muhammad Irfan under supervision of Anton Akhmerov (Delft University of Tech-
nology). For detailed descriptions on the modeling see the electronic supplementary material to
[Kra+18b].
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Figure 4.10: Analytical modeling of the magneto-interferometry measurements. (a) Schematic of the
device setup for the analytical calculations. (b) Experimental magnetic interference pattern, showing
the differential resistance as a function of B and current I at constant VBG = 8 V and VSG = −8 V when
the 1D constriction is formed. The extracted critical current Ic (turquoise data points) is fitted by our
analytical expression (magenta curve). Data from CD#1.

two superconducting electrodes. Here, an additional input is given by the presence
of a QPC-like structure in the middle of the device as depicted in Fig. 4.10a, showing
a schematic of the considered junction setup. In this geometry, points on the two
opposite superconducting electrodes can only be connected by trajectories passing
through the constriction itself. Since the width of the constriction is of the order of
(or smaller than) the Fermi wavelength λF the transmission probability is considered
to be isotropic. One can then find simplified analytical expressions for the asymptotic
behavior in the two limits φ → 0 and φ → ∞, where φ = Φ/Φ0 is the dimensionless
flux through the sample in units of Φ0 = h/2e :

Ic(φ)

Ic(0)
' 1− π2φ2

32
f0(W/L) , φ→ 0 , (4.9)

and

Ic(φ)

Ic(0)
' f1(W/L)

(
πφ

2W/L

)3/2

exp
(
− πφ

2W/L

)
, φ→ ∞ , (4.10)

with geometry-dependent functions f0(W/L) and f1(W/L) (see Appendix B.6 and
[Kra+18b]). Following from these two equations, the magnetic interference pattern of
a Josephson current for the here presented sample geometry with a constriction in the
center of the junction is well described by a parabolic shape at small φ (Eq. 4.9), while
it trends into an exponentially decaying tail at large φ (Eq. 4.10).

For comparison with the experimental data, the obtained functions for calculating the
normalized critical current are evaluated over the whole magnetic field range (note
that we do not have such simplified analytic expressions for the intermediate regime).
The obtained theoretical normalized critical current as a function of magnetic flux
is then matched to the experimentally extracted Ic(B) by scaling the curve with a
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(a) (b)

γ0

Figure 4.11: Numerical modeling of the magneto-interferometry measurements. (a) Schematic of the
device setup for the numerical tight-binding calculations. (b) Calculated evolution of the magnetic
interference patterns, plotting the critical current amplitude Ic in units of the superconducting gap
e∆0/h̄ (top panel) and normalized Inorm.

c (bottom panel) as a function of the SG strength ϕSG in units
of tight-binding intralayer hopping parameter γ0 and normalized magnetic flux φ = Φ/Φ0 in units of
the flux quantum Φ0 (for details see [Kra+18b]).

factor of the maximum critical current Ic(0) = 43.5 nA and employing a junction area
of ≈ 6.1× 10−12 m2 with a total junction length of L̃ = L + 2λL ≈ 1.9 µm, where
λL ≈ 450 nm is the London penetration depth. Figure 4.10b shows the resulting fit
of the analytical model (magenta curve) to the extracted Ic (turquoise crosses) from
the experimental interference pattern at VBG = 8 V and VSG = −8 V where the 1D
constriction is formed.

Numerical tight-binding simulations

Additionally, numerical calculations using the Kwant package [Gro+14] are employed
to qualitatively capture the evolution of the magnetic interference patterns due to the
transition from a 2D-like to 1D confined supercurrent density. The resulting critical
current Ic as a function of magnetic field B and ϕSG is shown in Fig. 4.11b. Here, ϕSG

represents the strength of the on-site potentials introduced by the SG on respectively
split-gated lattice sites in units of the intralayer hopping constant γ0. Although a re-
alistic and quantitative comparison with the experimental parameters is not possible,
the similar trend of a beating pattern evolving into a monotonically decaying pattern
is clearly observed. The good match between experiment and quasi-classical ana-
lytical model, as well as the qualitative agreement with the numerical tight-binding
simulations are evidence of the confined supercurrent due to the induced QPC-like
1D constriction in our device.
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Figure 4.12: Effect of shunting currents on the magnetic interference pattern. Top panel: Correction
factor C as a function of magnetic field for different ratios Te/Tq (cf. Eq. 4.11). Bottom panel: Resulting
interference pattern of the normalized critical current Inorm.

c obtained by multiplication of our analytical
expressions with C. Inset: Schematic of the considered device setup, involving the QPC and additional
edge channels with transmission Tq and Te, respectively.

4.2.6 E�ect of shunting currents

Finally, from the presented magneto-interferometry experiments, no obvious signs of
induced currents through topological channels appearing due to AB stacking faults
[Ju+15] or edge states [All+16; Zhu+17] are detected. In order to verify this assump-
tion, we estimate what would be the effect of additional shunting currents on the
magnetic interference pattern. For that, the analytical model presented in the previ-
ous subsection 4.2.5 is extended by allowing extra current paths at the sample edges
to contribute to the total current, i. e. other than the current flowing through the con-
striction of the QPC-like confinement. The modified setup is displayed in the inset of
Fig. 4.12. In the limits of φ → 0 and φ → ∞ one can then find the same expressions
as in Eqs. 4.9 and 4.10, respectively, but multiplied with a correction factor C which
reads as follows [Kra+18b]:

C =
|Tq + Te cos(πφ)/2|

Tq + Te/2
, (4.11)

where Tq and Te correspond to the transmission coefficients of the QPC and edge
channels, respectively. Figure 4.12 (top panel) shows the variation of the correction
factor C as a function of B (converted from φ as described in subsection 4.2.5) for
various values of the ratio Te/Tq. It can be seen that the correction factor is unity

62



4.3 Experimental results – Part B: Supercurrent guiding

at Te = 0 (absence of shunting currents) but develops a significant amplitude mod-
ulation as Te/Tq → 1. Thus, the stronger the contribution of shunting currents, the
larger the variation in C. We note that with further raised Te (not shown), the mod-
ulation of C increases with oscillation minima reaching zero for Te/Tq = 2 (nodes
of zero critical current in the pattern), and in the limit Te � Tq the correction factor
displays a pattern resembling to the one of a superconducting quantum interference
device (SQUID) as expected [Tin04].

The consequences of the correction factor C for the shape of the magnetic interference
pattern are shown in Fig. 4.12 (bottom panel). On top of the original pattern deter-
mined by the 1D confinement (Te = 0 and C = 1, respectively) a periodic modulation
appears due to the shunting currents at the edges of the sample (Te/Tq → 1). Indeed,
the presence of additional currents develops a noticeable beating that can be distinctly
monitored for smallest transmission coefficients Te ∼ Tq/100. Thus, it is clear that if
one would be confronted with the contribution of currents flowing via the edges (or
any other additional current path), the experimentally recorded magnetic interference
pattern should be directly affected for, at least, current values down to a hundredth of
the current through the constriction. Here, we have measured a confined supercurrent
down to ∼ 20 nA and hence, the presence of shunting currents should be detectable
down to 200 pA or less. In particular, this upper bound of any edge currents is about
25 times less than reported in [Zhu+17].

We note that at BG and SG values of VBG = 8 V and VSG = −7.6 V respectively, the in-
duced displacement field of D ≈ 0.56 V nm−1 (i. e. one order of magnitude larger than
in [Zhu+17]) opens a significantly large band gap Eg ≈ 85.4 meV (see Appendix B.7
for the estimate of the gap size). The absence of contributions from currents flowing
via the sample edges could then possibly be explained by the edge-state localization
in the case of strongly gapped BLG as reported in [Li+11], where the characteristic
value of the localization length was found to be about tens of nanometers, i. e. much
smaller than the split-gated region, and thus implying a strong suppression of edge
currents.

4.3 Experimental results � Part B: Supercurrent

guiding

In this second experimental part the confinement of the induced supercurrent is again
studied by employing local band gap engineering in the BLG weak link due to applied
displacement fields between an overall BG and a SG on top of the device. Though,
unlike the sample in the previous section, here the SG electrodes are covering the
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(a)

(b)

(c) (d)

Figure 4.13: Long channel confinement – device design. (a) AFM image of the chip with a total
of six devices. The sample is fabricated from an encapsulated BLG/hBN vdW heterostructure with
thickness of top and bottom hBN ≈ 27 nm and ≈ 31 nm, respectively. The whole stack is placed
onto a pre-patterned BG covered with 20 nm Al2O3 analogous to the previous QPC-like sample (see
section 4.2). Additional top SG electrodes overlapping with the metal contacts are isolated by an extra
ALD layer of ≈ 18 nm. The devices are designed with different junction width and/or length as well
as different channel sizes between the top SG electrodes. A zoom-in picture on a pair of devices
(white dashed box) is shown in (b). All presented results in this chapter are based on the shorter (left)
junction of these two devices. Its width is W = 1.8 µm and length L = 0.5 µm with a channel of width
w = 300 nm. Originally in this pair of devices, an additional TG finger gate (100 nm) in-between the
two SG electrodes is designed, splitting the channel in two. Unluckily, this gate electrode is broken
but remains unconnected (floating), as can be seen in the image. For a better grasp of the device
architecture, panels (c) and (d) show the device prior TG deposition and the developed PMMA mask
for TG metal lift-off, respectively. The scale bar in all images is 2 µm.

full distance between the superconducting contacts. Importantly, in this geometry the
supercurrent through the weak link in the direction normal to the leads is considerable
uniform allowing to test the simple Dynes-Fulton approach [DF71] as discussed in
section 4.1. The AFM image of the device is depicted in Fig. 4.13, with the geometry
details given in the caption.

The experiments are performed at a base temperature ≈ 25 mK (cooldown #26 in the
cryostat logbook) and measurements in the normal state are due to applying a per-
pendicular magnetic field of B = 20 mT. The critical current is extracted with respect
to the position of the maximum resistance peak, marking the transition from super-
current to dissipative current. More precisely, the value of the current is evaluated at
a third of the resistance difference between resistance minimum r0 (at I = 0) and re-
sistance peak rmax, multiplied with a correction factor f = (1 + r0/100)−1 to account
for resistive, i. e. slanted or rounded, steps in the IV curves: rc = r0 + (rmax− r0)/3→
Ic = f × I(rc).
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(a) (b)

Figure 4.14: Basic characterization of sample B. (a) Resistance curves versus VBG for both normal state
(blue) and superconducting state (red) at VSG = 0, i. e. considerably uniform doping in the sample. The
inset shows a zoom-in on the visible conductance oscillations due to Fabry-Pérot interferences on the
p-side as marked by the black dashed box. (b) Differential resistance as a function of VBG and current
I at the same VSG = 0.

4.3.1 Initial device characterization

Figure 4.14a shows BG sweeps at approximately uniform overall charge carrier
density for both normal state (blue) and superconducting state (red), respectively.
Analogous to the other presented device (see section 4.2.1), in the normal state a
larger resistance is observed on the p-side than on the n-side due to the formation of
pn-junctions at the interfaces to the metal contacts upon induced hole doping. The
clearly visible conductance oscillations (see inset) are thus attributed to the Fabry-
Pérot interferences arising in the formed cavity between the contacts as a signature of
the ballistic transport in the sample [SRL08; YK09; Ric+13; Var+14b; Du+18] (also see
Appendix C.1). The presence of these unintentionally induced pn-interfaces is also
apparent in a small but non-vanishing residual resistance (< 10 Ω) in the supercon-
ducting state, whereas on the electron side the resistance drops to zero. The contact
resistivity on the electron side excluding the quantum resistance is estimated10 as
ρC ≈ 52 Ωµm and the residual charge carrier density of order nres ∼ 1010 cm−2.

The proximity-induced supercurrent of the approximately uniform 2D junction tuned
by the BG is observed in Fig. 4.14b, showing a map of the differential resistance
as a function of VBG and current I. While at charge neutrality the supercurrent is
fully suppressed, the extracted values of the critical current at high charge carrier
density (|n| ≈ 3.3× 1012 cm−2) for both n- and p-type doping are Ic = 1.04 µA at

10 At VBG = 8 V corresponding to n ≈ 4.3× 1012 cm−2 the quantum resistance RQ ≈ 31 Ω, and sub-
tracted from the measured resistance R = 89 Ω this gives an estimate for the contact resistance
RC = (R− RQ)/2 = 29 Ω.
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4 Tailoring supercurrent confinement

Figure 4.15: Gate-gate-map of the long channel confinement. Right: Color map of the resistance in
the superconducting state as a function of VSG and VBG. Left: Same map in gray scale with different
regions highlighted due to false coloring. Respective band structure profiles across the junction width
are illustrated in the extra panels. The region of interest for studying the confined supercurrent is
marked by the additional colored (orange) dot.

VBG = 6 V and 0.11 µA at VBG = −8 V (i. e. Ic being about one order of magnitude
smaller on the hole side at comparable charge carrier densities) or the corresponding
IcRn = 0.93∆0/e and 0.33∆0/e (with Rn = 96 Ω, 317 Ω and superconducting energy
gap ∆0 ≈ 107 eV extracted from the position of n = 2 MAR), respectively.

Likewise to the QPC-like confinement, the mediated supercurrent can be spatially
tuned by means of local band gap engineering due to the induced displacement fields
from BG and SG. Figure 4.15 displays the respective resistance map in the supercon-
ducting state as a function of VSG and VBG. Here, the effect of the bent resistance
maximum appears even more dramatic, since the induced npn- or pnp-junctions
in the bipolar doping configurations form lengthwise to the transport direction of
charge carriers (i. e. in particular no barrier). The junction thus remains supercon-
ducting nevertheless for almost any gate condition, whereas only along the bent line
the device becomes resistive when the channel is closed by the stray fields while the
split-gated sides are still pinched off either due to the induced electronic band gap or
(non-)transparent pn-interfaces (see the depicted spatial band structure schematics).
From the resistance map in the superconducting state, we can again identify the gate
region of interest, where the supercurrent is expected to be guided within the long
channel confinement. We note, that while the bent resistance is observed for both
electrons and holes, the p-doped channel regime remains resistive similar to the QPC-
like confinement. In the following, the spatial shaping of the supercurrent is probed
once more by magneto-interferometry measurements.
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(a) (b)

Figure 4.16: The Fraunhofer pattern. (a) Differential resistance as a function of magnetic field B and
current I at constant VBG = 6 V and VSG = 0, showing the superconducting magnetic interference
pattern of the approximately uniform 2D BLG weak link. The extracted critical current values (every
2nd shown) are marked by the blue crosses. The white line indicates a pattern given by the sinc-
function of a single-slit Fraunhofer interference. (b) Reconstructed supercurrent density distribution
following the Dynes-Fulton approach. The black dashed lines denote a box-like (i. e. uniform) density
profile with constant Jmax

c = Ic(0)/W within the range −W/2 ≤ x ≤ +W/2 of the sample edges.

4.3.2 Dynes-Fulton approach

2D junction

Figure 4.16a presents the superconducting magnetic interference pattern measured
at VBG = 6 V and VSG = 0, i. e. at high charge carrier density with approximately
uniform overall doping. The observed pattern reveals a sinc-function-like behavior,
indicated by the white line11, in close resemblance to the well-known Fraunhofer
interference in short wide junctions analogous to the single-slit interference in optics
experiments [Tin04]. Though, we note a minor difference, that is the experimental
first lobe appears more pronounced compared to the white curve of the sinc-function.

For a further elaboration of the experimental interference pattern, we perform the
Dynes-Fulton analysis by employing the inverse Fourier integral over the extracted
critical current data points Ic(B) (blue crosses) in order to reconstruct the supercurrent
density distribution (see section 4.1). We note that Ic(B) does not feature any lifted
lobes but each minimum goes strictly to zero, making it not necessary to recover first
the phase information, i. e. the real and imaginary contributions of the complex critical
current. The resultant supercurrent density profile is plotted in Fig. 4.16b, revealing a
center-symmetric distribution due to the purely real interference pattern of the criti-
cal current as a function of magnetic field. For comparison, a box-like (i. e. uniform)

11 The sinc-function is plotted by fitting to the maximum critical current Ic = 1.04 µA at B = 0 and
employing the effective junction area Ã = 0.9× 1.8 µm2 for aligning the position of the first minimum.
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(a) (b)

Figure 4.17: Enhanced supercurrent density underneath the split-gates. (a) Superconducting magnetic
interference pattern at VBG = 0 and VSG = 7 V. Blue crosses denote the extracted critical current values
(every 2nd datapoint is plotted). (b) Corresponding supercurrent density distribution obtained due to
the Dynes-Fulton technique. The spatial extend of both SGs is visualized by black boxes, split by the
w = 300 nm channel.

supercurrent density profile is additionally plotted, which is given by a constant
Jmax
c = Ic(0)/W within the spatial extend of the sample, but zero outside. Indeed,

the major contribution of the obtained density profile appears to be well-positioned
within the physical boundaries of the junction width, but showing minor parts of the
current spilling outside the sample as a typically observed artifact of the Dynes-Fulton
approach [Hui+14]. Moreover, the reconstructed profile, being only roughly constant,
features rather enhanced supercurrent densities underneath the split-gated parts of
the sample. Thus, it can be concluded that at the applied VSG = 0 the sample is not
exactly at charge neutrality but slightly doped. Recalling the beforehand described
deviation from the ideal sinc-function, the small but finite doping and consequently
increased supercurrent density underneath the SGs is directly reflected in the appear-
ance of raised first side-lobes.

Towards SQUID-like pattern of a double-slit junction

In a next step, the applied gating condition is reversed, i. e. VBG = 0 and VSG = 7 V. In
this case, it is expected that the major part of the supercurrent is flowing underneath
the SG electrodes, while only a smaller contribution remains in the central channel
region.12 The corresponding superconducting magnetic interference pattern is shown
in Fig. 4.17a, exposing increased first side-lobes indicative of a pair of spatially split
supercurrent channels with maximal amplitude. Indeed, the obtained supercurrent

12 The supercurrent density in the channel itself can not be fully suppressed which was originally
designed with the additional but unfortunately disconnected/broken TG finger gate between the two
SGs (see Fig. 4.13).
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(a) (b)

Figure 4.18: Spatial shaping of the supercurrent density with a single split-gate. (a) Four panels of
superconducting magnetic interference patterns tuned by only one SG electrode. The respective gate
conditions are given within each plot and the color bar is given for all plots together in the top left
panel. The extracted values of the critical current for each data set are plotted as colored dots. The
additional white curve in the bottom right panel reflects a sinc-function (see main text). (b) Resulting
supercurrent density distributions from the Dynes-Fulton method. Top: Profiles for the first three
patterns together with the curve at VSG = 0 (dark blue) as presented in Fig. 4.16. Bottom: Profile of the
last (lower right) panel with given boundaries corresponding to an effectively halved junction width.

density distribution in Fig. 4.17b features two peaks positioned within the SG regions
as indicated by the black lines, whereas in the non-split-gated channel a strongly
reduced supercurrent density is observed. The smaller but non-vanishing current
within the channel itself can be mainly attributed to the induced charge carriers due
to the stray-fields developed by the SGs. Note that in the case of a fully suppressed
current inside the channel, the junction becomes effectively double-slit-like and Ic(B)
would trend into a SQUID-like interference [Tin04].

Half-gate tuning � Spatial shaping of the supercurrent by the use of a single split-

gate electrode

The two so far discussed scenarios represent symmetric gating conditions, result-
ing in problems of purely real critical current interference patterns to be solved. At
this point, we test the reliability of the Dynes-Fulton technique under asymmetric
conditions, i. e. by using only one of the SG electrodes, making it necessary to also
consider the imaginary contribution of the complex critical current due to the odd
part of the supercurrent density distribution. Figure 4.18a presents superconduct-
ing magnetic interference patterns at constant VBG = 6 V and increasingly negative
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VSG1 = −4 V, −5 V, −6 V and −7 V while the other VSG2 = 0. We notice a vanished
third side-lobe, as well as a continuous lifting of the first minimum. As a conse-
quence thereof, the imaginary supercurrent contributions becomes larger and larger
as the first side-lobe is getting “swallowed” by the central main (zeroth) lobe. This
evolution is directly reflected in the converted supercurrent density profiles, shown
in Fig. 4.18b, where a progressive reduction is observed in one half of the device.

At last, i. e. for VSG1 = −7 V, the pattern again develops into a sinc-function-like beat-
ing of the critical current as a function of magnetic field, although with an observed
approximate doubling of the oscillation period (see the white sinc-function curve
using an effective junction area Ã = 0.9× 1.0 µm2, i. e. approximately half compared
to the case at VSG = 0). In fact, the reconstructed corresponding supercurrent density
profile in Fig. 4.18c fits now into an effective junction that is cut down to (almost)
half of its original width, i. e. more precisely the width of the unused SG (0.75 µm)
plus most of the channel (≈ 250 nm) remain as new effective junction width of about
≈ 1 µm ∼ W/2 (note that only small parts of the channel are suppressed as well due
to stray fields of the active SG). We note that the shown distribution is centered with
respect to the origin, but not shifted to the actual spatial position within the overall
device. This is due to the fact, that the supercurrent is eventually quenched in one
part of the device, giving rise to a new junction center as the reference point. The
reappearance of the sinc-function-like Fraunhofer pattern accompanied with a nearly
doubling of the oscillation period thus demonstrates a full suppression of the su-
percurrent underneath the employed SG, resulting in a newly formed homogeneous
junction on the respective other half of the device.

Supercurrent guiding in the long channel con�nement

Now, we turn to the long channel confinement regime induced by the combination
of BG and both the SG electrodes, once again probed by means of superconduct-
ing magneto-interferometry measurements. The obtained interference patterns are
shown in Fig. 4.19a, measured at constant VBG = 6 V and progressively negative
VSG = −4 V → −7 V, with the respective gate conditions marked by colored dots in
the gray-scale gate-gate-map in Fig. 4.19b. The monitored evolution reveals separately
to the overall reduction of the maximum supercurrent a progressive disappearance
of odd-numbered side-lobes concomitant with the growing of even-numbered side-
lobes. After the complete vanishing, the interference pattern of the critical current as
a function of magnetic field starts to get lifted, i. e. minimums not reaching to zero,
until finally trending into a monotonically decaying pattern at VSG = −7 V indicating
the imposed supercurrent confinement.

Without much knowledge about the junction geometry, an approach following the
Dynes-Fulton method would treat these patterns by considering a large contribution
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(a)

(b) (c) (d)
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Figure 4.19: Long channel confinement. (a) Different superconducting magnetic interference patterns
tuned by the SG (see labeled gate conditions in each panel). (b) Grey-scale gate-gate-map (see Fig. 4.15)
with the respective gate conditions of the interference patterns marked by colored dots. (c) Corre-
sponding reconstructed supercurrent density profiles together with the curve of VSG = 0 (dark blue;
see Fig. 4.16). (d) Gaussian fit (orange) to the supercurrent density distribution in the case of fully
developed channel confinement at VSG = −7 V (here shown as blue crosses, while in the former panel
as maroon colored curve). The full width at half maximum (FWHM) of the fit is given in the panel and
the depicted channel boundaries (black) correspond to the designed channel width w.
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of an odd (i. e. asymmetric) supercurrent density component, requesting in turns large
imaginary parts contained in the observed patterns with sizable node lifting. How-
ever, this seems to be a rather unlikely solution, regarding the fact of the hitherto
observed symmetric tuning of the supercurrent by means of the SG. In that sense, we
perform the Fourier analysis of the raised interference patterns (i. e. VSG = −6.0 V and
−6.5 V) without flipping of alternative lobes but rather treat Ic(B) as a purely real
function of the single continuous lobe with modulated amplitude, which admittedly
seems somewhat arbitrary. Nevertheless, as it will be seen, this yields the supposedly
correct supercurrent density profile, which on the other hand is only possible with
knowledge about the expected distribution in the first place.

Figure 4.19c shows the respective calculated supercurrent density profiles following
the Dynes-Fulton approach, being more and more suppressed underneath the SGs. At
VSG = −7 V, the Fourier transform of the monotonically decaying interference pattern
features a single sharp peak at the center of the junction, i. e. the channel between
the SG electrodes, with a magnitude comparable to the supercurrent density in the
approximately uniform junction. In fact, assuming similar supercurrent densities for
the two cases, the ratio of the presumably confined critical current Ic ≈ 0.18 µA at
VSG = −7 V and the (considerable homogeneous) 2D critical current Ic ≈ 1.04 µA at
VSG = 0 (for the given VBG = 6 V) yields in a naive estimate the effective junction
width 0.17×W ∼ 300 nm. For a more profound analysis of the spatial extend of the
confined supercurrent, the resultant supercurrent density profile is fitted by a Gauss
function, which is shown in Fig. 4.19d. From the fit, we find a full width at half
maximum of ≈ 260 nm in good agreement with the lithographically defined channel
width w = 300 nm (depicted by the black frame), providing evidence for the 1D
confined supercurrent within the electrostatically induced channel.13

We note, that similar results can be obtained by doing the analysis the other way
round, i. e. starting from an assumed supercurrent density distribution and calculate
the corresponding interference pattern of the critical current as a function of mag-
netic field by performing the Fourier transform as given in Eq. 4.5b. The compari-
son of calculated with experimentally obtained interference pattern is presented in
Fig. 4.20, where we consider box-like supercurrent density profiles across the junc-
tion width. Nonetheless, despite this most simplistic approach, the main qualitative
features (as e. g. the disappearance of odd-numbered side-lobes and the lifting of the
entire interference pattern) are well captured. Yet, it is important to note that in both
ways, either predicting the resultant superconducting magnetic interference pattern or

13 The spatial resolution of the here performed reverse Fourier transform for the applied magnetic
field range of −8 mT → +8 mT and the given effective junction length 0.9 µm is ∆x . 150 nm (see
section 4.1), being thus sufficient in order to resolve the supercurrent confined to the channel w.
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Figure 4.20: Comparison of calculated and experimentally obtained interference patterns. Left col-
umn: Considered supercurrent density profiles for different gate conditions in the order VSG = 0,
−4.0 V, −5.0 V, −5.5 V, −6.0 V, −6.5 V, −7.0 V at constant VBG = 6 V, employing a simplistic box-
function-like distribution. Middle column: Resulting interference patterns of the critical current as a
function of magnetic field according to the Fourier transform in Eq. 4.5b. Right column: Plots of the
experimentally obtained superconducting magnetic interference patterns (cf. Fig. 4.19) overlaid by the
respective interference curves presented in the middle column.
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(a) (b) (c)

Figure 4.21: Effect of shunting currents. (a) Considered supercurrent density profiles for different
strengths of additional current paths at the edges of the sample to the 1D confined supercurrent in the
center. The legend to the employed color code is given at the right-hand side of the figure. (b) Interfer-
ence patterns of the critical current as a function of magnetic field B obtained from Fourier transform
(Eq. 4.5b). (c) Corresponding normalized critical current with respect to the maximum at B = 0 for
each curve.

reconstructing instead the supercurrent density profile, are based on several assump-
tions (see discussion in section 4.1) which need to be considered when interpreting
the results. For a truly quantitative analysis of the supercurrent density distribution
from measured superconducting magnetic interference patterns a more complete and
sophisticated modeling is required [Hui+14].

E�ect of shunting currents

In this final paragraph, we make a validity check for the robustness of the claimed
supercurrent guiding in the gate-defined channel. For that, we again estimate the im-
pact of additional supercurrent paths shunting the confinement. Figure 4.21a shows
fictional supercurrent density distributions allowing additional current paths at the
edges of the sample with a relative amplitude to the 1D confined supercurrent in the
junction center as given by the legend at the right-hand side of the figure. The resul-
tant interference patterns of the (normalized) critical current as a function of magnetic
field B are plotted in Fig. 4.21b, c. It can be noticed, that the effect of the considered
shunting currents is clearly visible down to a factor of ∼ 10−2, yielding an upper limit
of possible shunting currents . 1 nA. Although this limit is slightly larger than in the
QPC-like case, it is still one order of magnitude smaller than the reported values in
[Zhu+17] and thus, substantiating the demonstrated electrostatically induced channel
supercurrent confinement based on the spatially full suppression of the supercurrent
due to band gap engineering.
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4.4 Conclusion

In this chapter, the tailoring confinement of an induced supercurrent in BLG weak
links has been explored via superconducting magneto-interferometry measurements
in two different local gating structures, i. e. a QPC-like confinement and long channel
confinement.

QPC-like confinement A full monitoring of the supercurrent, both spatially and in
amplitude, has been demonstrated by means of spatial band gap engineering due
to the employed combination of overall BG and locally defined SG structure on top
of the device. In this dual-gated geometry, an unusual resistance gate-gate-map is
observed where the measured maximum resistance does not increase continuously
along the displacement field line as typically reported in BLG pnp-junction devices.
This trend becomes particularly visible in the superconducting state due to the region
of zero resistance appearing at maximal displacement field and the Fermi level being
presumptively positioned in the induced electronic band gap, which is indication of
a finite supercurrent flowing through the formed constriction. Further investigations
by out-of-equilibrium measurements revealed the effect of the induced confinement
on the supercurrent amplitude. Finally, the spatial tuning of the supercurrent could
be monitored by the employed superconducting magneto-interferometry. In these
measurements, the observed evolution of the interference patterns directly reflects
the transition from a 2D supercurrent to a 1D confined supercurrent, in agreement
with the results of the provided analytical and numerical modeling.

Long channel confinement Similar results as in the QPC-like confinement have been
obtained. Though, the major difference between these two device geometries is the ap-
plicability of the Dynes-Fulton techniques. Due to the approximately uniform super-
current density profile along the direction normal to the superconducting electrodes
in the long channel confinement, a simplistic analysis of the supercurrent flow in the
device is possible by solving the Fourier integral relating the supercurrent density
distribution to the interference pattern of the critical current as a function of mag-
netic field. The ease of employing superconducting magneto-interferometry measure-
ments for monitoring spatially the supercurrent density distribution is demonstrated
by the consistency of the reconstructed profiles with respect to sample geometry and
gate conditions, as well as the good qualitative match between predictively calculated
and experimentally measured patterns for a number of supercurrent density profiles
(i. e. different gate conditions).

In both presented geometries, no signs for the presence of shunting currents have
been detected, highlighting the possibility to employ local band gap engineering in
BLG to design electrostatically induced nanoscale constrictions.
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In chapter 4 a 1D QPC-like confinement without edge currents has been demonstrated
by investigating the proximity-induced superconductivity in magneto-interferometric
measurements. Though, in the hitherto presented sample geometry consisting of a
global BG and the local SG electrodes a study of conductance quantization in the nor-
mal state due to 1D subband formation was not possible as the confinement is based
on the combined use of both gates and thus could not be tuned independently. Here,
an overall TG is added providing an additional tuning knob with which it is possible
to fully control band structure and confinement, and therefore to observe quantized
conductance. The chapter starts with a literature review (5.1) covering a brief intro-
duction to QPCs in general, as well as a summary about different approaches under-
taken in order to design constrictions in graphene-based devices. In the results part
(5.2) the quantization of conductance is presented containing the tuning of all quan-
tum degrees of freedom in a BLG QPC, i. e. spin, valley and mini-valley. Furthermore,
signatures of a 0.7 structure are discussed. Finally, the chapter is concluded with a
summary (5.3).

5.1 Literature review

A QPC is a ballistic narrow constriction of width WQPC comparable to the Fermi
wavelength λF coupled adiabatically to two wider reservoirs [BH91b; HBW92]. Then,
owing to the lateral confinement in the quasi 1D channel, the charge carrier transport
is due to discrete transverse modes arising from the size-quantization of the electronic
wave function [Büt90]. Importantly, the current I ∝

∫
dEρ(E)v(E)T(E) carried by a 1D

subband is mode independent as the energy dependence is canceled in the product
of velocity v(E) ∝ dE/dky (ky is the longitudinal wave vector) times 1D density of
states ρ(E) ∝ (dE/dky)−1 and transport can be described by the Landauer-Büttiker
formalism [Dat95]:

G =
ge2

h

N

∑
n

Tn , (5.1)
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x

y

Figure 5.1: Quantized conductance of a QPC defined in the 2DEG of a GaAs/AlGaAs heterojunction.
The image shows the original reported results in [Wee+88a], where the conductance data is obtained
by subtracting a series resistance from the measured resistance. The inset shows their QPC layout (the
coordinate axis labeling has been changed as a matter of consistency).

where the conductance is given by the sum over transmission probabilities Tn of each
1D subband n. For perfect transmission this simplifies to the quantized conductance

G = N
ge2

h
, (5.2)

where all populated 1D subbands contribute equally to the overall conductance by
the conductance quantum G0 = ge2/h with g-fold degeneracy.

The quantization of conductance in a QPC was first reported in 1988 independently
by two groups [Wee+88a; Wha+88], where the constriction is formed in the two-
dimensional electron gas (2DEG) of a GaAs/AlGaAs heterostructure via the electro-
statically induced confinement potential due to a SG [Tho+86; Zhe+86; Ber+86]. By
applying a negative voltage, electrons are depleted underneath the gates allowing
transport only through the QPC channel and upon the narrowing of the constriction
with increasingly negative voltage the number of transverse modes fitting into the
channel is reduced [BP10]. The resulting staircase of quantized conductance of the
original experiment by van Wees et al. [Wee+88a] is shown in Fig. 5.1.

Since then, quantized conductance has been explored in a large variety of 1D ballistic
systems. While in the vast majority of studied materials conductance quantization
appears in units of the twofold-degenerate conductance quantum 2 e2/h, where the
factor of 2 is due to the spin degeneracy, only few involve an additional valley de-
gree of freedom such as Si/SiGe heterostructures [Tob+95; Wie+02; Sca+06; Gos+07;
McG+10], AlAs quantum wells [Gun+06] or carbon nanotubes [Bie+05]. Yet, while
spin and valley degeneracy should give rise to conductance steps of 4 e2/h, devia-
tions from this expected quantized value have been typically observed and usually
explained by the lifting of the valley degeneracy because of confinement. [Kra+18a]
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Graphene represents another material with fourfold degeneracy and realizing quan-
tum confinement in ballistic graphene nanostructures has been a targeted goal early
on. The formation of 1D subbands and conductance quantization has been inves-
tigated and reported in graphene nanoribbons [Lin+08; Lia+10; Tom+11; Ter+16;
Som+17; Car+18], or in (gate-defined) constrictions based on BLG devices [AMY12;
Goo+12; Drö+12; Lee+18], but most commonly lifted degeneracies or not well-
positioned conductance plateaus have been observed while lacking a clean pinch-off
characteristic. One of the reasons explaining the noticeable deficiencies are the un-
predictable transport properties due to rough edges in etched graphene nanodevices
[Bis+16]. On the other hand, while such uncontrollable device properties may not
play a role in the reported quantum confinement induced by electrostatic gating in
BLG, limiting aspects are due to leakage currents below the SGs arising from hop-
ping transport in a non-homogeneous electronic band gap for devices on a Si/SiO2

substrate (probably even if encapsulated between hBN) or due to a too small gap in
suspended devices.

Importantly, as demonstrated in the previous chapter, an outright electrostatic con-
finement is successfully induced in our device based on the BLG/hBN heterostructure
on a pre-patterned BG with a deposited Al2O3 dielectric via ALD and with a local top
SG, although 1D subband formation and quantized conductance was not observed
since the channel itself could not be independently depopulated. In respect thereof,
here we propose an extended device architecture with additional overall TG as pre-
sented in the following section.1

5.2 Experimental results

The measurements are based on the device in which the QPC-like supercurrent con-
finement has been established (see section 4.2 in the previous chapter), but here with
an additional subsequently added overall Ti/Cu/Al TG (the Al serves as a capping
layer preventing the Cu from oxidation).2 The TG is isolated from SG and contact

1 We note that in a double split-gated (top and bottom) BLG device gate-controlled topological con-
ducting channels have been realized with effectively suppressed current underneath the gates [Li+16].
Meanwhile, also the use of a graphite BG has been demonstrated to provide clean electronic band
gaps in gate-defined BLG nanostructures [Ove+18a] and employed as a triple-gate structure with two
TG layers charge carrier confinement has been realized in a split-gated geometry [Ove+18a] or as QDs
[Ban+18; Eic+18a; Eic+18b].

2 The presented results are partly based on [Kra+18a]; a complementary work of another group with
similar device structure but the TG only covering the channel region of the QPC has been published
in the same issue of the journal [Ove+18b].
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Figure 5.2: Device schematic and working principle of the gate-defined BLG QPC. (a) 3D sketch
of the device (see Fig. 4.3 for details, but here with additional TG). (b) Cross-section through the
constriction as indicated by the dashed line in panel (a). (c) Corresponding band structure diagram
when the device is operated as QPC.

electrodes due to an extra layer of Al2O3 (30 nm) deposited by ALD covering the en-
tire sample. A schematic of the device is shown in Fig. 5.2a, b. By employing the
combination of all three gates BG, SG and TG the successful operation of an electro-
statically induced QPC in BLG is demonstrated. In applied in-plane and out-of-pane
magnetic fields the lifting of spin and valley degeneracy is studied.

The experiments are conducted in three cooldown cycles at base temperatures
. 20 mK, unless specified otherwise. Data of different cooldowns is referenced in the
text as CD#3, CD#4 and CD#5 (corresponding to recorded cooldowns #28, #29 and
#30 of the cryostat logbook, respectively). The presented normal state data is due to
an applied perpendicular magnetic field B = 20 mT. Measurements with in-plane
magnetic field orientation are obtained in a separate cooldown (i. e. CD#5) than the
out-of-plane magnetic field measurements for changing the rotation of the sample
holder inside the magnet in order to align the graphene plane to the magnetic field
direction. The in-plane angle with respect to the confinement axis is estimated at
≈ 45◦. If not specified, all magnetic fields are applied in an out-of-plane orientation.

5.2.1 E�ect of split and top gate

First, the different transport characteristics are analyzed when the device is either
tuned by the BG plus SG or TG, respectively, while the other unused gate is grounded.
Figure 5.3 shows the resulting resistance maps as a function of VBG and VSG (a) or
VTG (b), together with corresponding resistance curves in the panels below. In the
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(a) (b)

Figure 5.3: Comparison split gate versus top gate. (a, b) Color maps of the resistance as a function
of VBG and either VSG (a) or VTG (b). The panels below show corresponding resistance curves as a
function of VBG for different VSG or VTG, respectively. The data in (b) is measured at T = 130 mK. Data
from CD#3.

former case, a similar map as without the additional TG is observed (see Fig. 4.6
and the corresponding discussion in subsection 4.2.2). Despite the conductance being
fully suppressed underneath the SG, a conductive channel between the SG electrodes
remains open and the measured maximum resistance is less than 2 kΩ. In contrast,
the TG covers the entirety of the device and hence, the BLG layer is gapped across
the full width. Then, as the gap develops with increasing displacement field along
the diagonal line, the maximum resistance is progressively rising up to values in the
order of 10 MΩ, i. e. reaching the limits of our lock-in detection (note that the data
is presented in log scale unlike in the SG case). The observed double peak in the
resistance might be attributed to regions of slightly different capacitive coupling of
the TG (BLG reservoirs and QPC, respectively) due to partial screening from the SG
leading to a more complex electrostatic landscape in the device.

Operating all gates together finally enables us to study a BLG QPC. Its working princi-
ple is illustrated in Fig. 5.2c, depicting a band structure diagram across the split-gated
confinement. While the Fermi level underneath the SG is positioned in the induced

81



5 Gate-defined quantum point contact in bilayer graphene

(a) (b)

Figure 5.4: Quantization of conductance in a gate-defined BLG QPC. (a) Conductance curves as
a function of VTG for different VSG from −11.0 V (left) to −10.5 V (right) with increment 0.1 V at a
constant VBG = 9 V. The curves are shifted for clarity by 2 V between consecutive traces (the leftmost
curve is not shifted). (b) Transconductance as a function of VTG and VSG at VBG = 9 V. Small colored
markers denote positions of the line cuts shown in panel (a). Data from CD#3.

band gap, the channel (as well as the reservoirs) can be controllably depopulated
down to full pinch-off by means of the TG. It is important to note, that not only the
Fermi level is tuned but also the confinement potential as well as the band structure
itself, which has non-trivial implications on the 1D subband formation.

5.2.2 Quantization of conductance

Figure 5.4a shows several conductance curves as a function of VTG for different VSG at
constant VBG = 9 V. For clarity the curves are shifted as described in the caption. The
conductance through the QPC appears robustly quantized down to the lowest sub-
band in steps of 4 e2/h as it should be expected for a fourfold-degenerate system. In
Fig. 5.4b the confinement is studied over a larger gate range, presented as a map of the
differentiated conductance, i. e. transconductance dG/dVTG, as a function of both VTG

and VSG, with the respective conductance traces of Fig. 5.4a denoted by small colored
markers. Here, plateaus in the conductance are visible as large white stripes sepa-
rated by black lines of large transconductance corresponding to the conductance steps
at the crossing of 1D subband edges. The robustness of the electrostatic confinement
is demonstrated by the continuous evolution of the plateaus (also see Appendix D.1).
Though, it should be noted that the confinement at a given VBG is realized only in a
limited range of VSG, i. e. the Fermi level underneath the SG needs to be positioned in
the induced electronic band gap. At too large negative VSG the Fermi level is tuned
into the valence band resulting in rather semi-transparent p–n barriers instead of the
fully gapped split-gated constriction, which is discussed in Appendix D.2.

82



5.2 Experimental results

(a)

(b)

(c)

Figure 5.5: Additional conductance oscillations due to Fabry-Pérot interferences. (a) Conductance
and (b) net oscillations as functions of VTG (top x-axis) and Fermi wave vector kF (bottom x-axis) at
constant VBG = 9 V and VSG = −9.1 V. The net oscillations are obtained by subtracting the smooth
background (orange) from the raw conductance (blue). (c) Normalized Fourier transform of δG as a
function of length L. The black curve corresponds to a smoothed signal. Data from CD#3.

Additionally to the described oblique stripe pattern due to quantized conductance in
Fig. 5.4b, faint superimposed vertical lines are observed which correspond to the vis-
ible small oscillations on top of the staircase of quantized conductance (see Fig. 5.4a).
Being primarily tuned by the TG but only minorly by the SG, these resonances might
be due to Fabry-Pérot interferences arising from cavities formed in the non-split-gated
regions of the device, i. e. the two BLG reservoirs between contacts and the barriers
induced by the SG. A trace of the conductance versus VTG or converted Fermi wave
vector kF =

√
πn, respectively, at VSG = −9.1 V is presented in Fig. 5.5a. The net oscil-

lations δG plotted in Fig. 5.5b are obtained by subtracting the smooth background con-
ductance. In order to verify their origin, the associated cavity size is estimated from
the frequency of the oscillations by performing a Fourier transformation following
from the resonance condition L = j · π/kF with j an integer number. The resulting fre-
quency spectrum, shown in Fig. 5.5c, reveals a pronounced peak at ≈ 230 nm in good
agreement with the distance between leads and SG electrodes. Notably, although
having different physical origins, both quantized conductance and Fabry-Pérot inter-
ferences are phenomena of ballistic charge carrier transport appearing concurrently
in the device.

Moreover, we note that the tuning of the QPC by TG and SG is not equivalent. In par-
ticular, the widening of the plateaus towards larger negative VSG indicates an unusual
increasing subband level spacing at higher subbands as a function of VTG, whereas
the level spacing as a function of VSG increases as commonly observed [Tho+95] when
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Figure 5.6: Source-drain bias spectroscopy of the size-quantized energy levels. Transconductance as
a function of bias voltage V and VTG at constant VBG = 9 V and VSG = −10.6 V. The additionally
plotted overlaying set of cyan dashed lines traces the splitting of energy levels with applied bias. Data
from CD#3.

the confinement strengthens. The opposite effects of the two gates might be explained
considering their different functionalities. While the SG acts on the confinement espe-
cially by squeezing the channel due to stray fields, the TG controls the QPC channel
and simultaneously the reservoirs by completely tuning the shape of the confinement
potential as well as the band structure.

Out-of-equilibrium measurements

To further probe the confinement and the energy level spacing ∆En,n+1 of the 1D sub-
bands, source-drain bias spectroscopy measurements are performed [Pat+90; Pat+91;
Mar+92]. The corresponding transconductance map as a function of bias voltage V
and VTG at a given confinement condition VBG = 9 V and VSG = −10.6 V is shown
in Fig. 5.6. A diamond-shaped pattern is observed with plateaus appearing in black
corresponding to a minimum in the transconductance, while brighter lines represent
transitions between plateaus due to the crossing of subband edges. Once more, addi-
tional superimposed resonances are visible as parallel lines to the subband edges due
to the beforehand mentioned Fabry-Pérot interferences.

At finite applied bias the transitions between plateaus are linearly split as the elec-
trochemical potentials µS and µD of source and drain contacts are raised or lowered
with respect to each other. When the energy difference eV = |µS − µD| is equal to the
energy level spacing ∆En,n+1 the split lines of subsequent 1D subbands are crossing.
The extracted energy level spacing is found to be continuously increasing from about
∆E1,2 ≈ 4 meV to ∆E7,8 ≈ 9 meV which highlights the previously mentioned unusual
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Figure 5.7: Lifted degeneracies in perpendicular magnetic field. Conductance as a function of VTG

for different values of B in steps of 100 mT at constant VBG = 9 V and VSG = −10.6 V. The curves
are shifted for clarity by an offset of 2 V/T (200 mV between consecutive curves). The leftmost thicker
black curve (not shifted) corresponds to the data acquired at B = 20 mT shown in Fig. 5.4. Highlighted
colored curves correspond to B = 0.9 T (orange), 1.5 T (blue), 2.2 T (green) and 8.0 T (red), respectively.
Data from CD#3.

tuning of the confinement via the TG. The observed decreasing energy level spacing
towards lower subbands suggests a flattening of the confinement potential at larger
negative VTG, though band structure tuning plays as well a crucial role for the lowest
subbands which will be discussed in subsection 5.2.5.

Finally, the out-of-equilibrium measurements are employed to estimate the gate cou-
pling parameter αTG, which is given by the slope of the linearly dispersing subband
edges: αTGe(VTG −V0

TG) = EQPC
n ± eV/2, where EQPC

n are the energy levels of the 1D
subbands counted from respective zero energy reached at VTG = V0

TG. Indeed, the
transconductance pattern is well described using a single value αTG = 3.8× 10−3 for
all visible subbands (as well as for another confinement condition; see Appendix D.3),
which is thus a good estimate for a large range of 1D subband formation in our de-
vice. In the analysis below, the extracted coupling parameter from source-drain bias
spectroscopy is employed to convert between energy and applied VTG.

5.2.3 Valley subband splitting

Here, the QPC is investigated in an applied out-of-plane magnetic field B, i. e. per-
pendicular to the BLG plane. Figure 5.7 shows a series of conductance curves as a
function of VTG for different B in the confined regime at VBG = 9 V and VSG = −10.6 V.
The magnetic field is increasing from 100 mT (left) to 8 T (right) in steps of 100 mT.
For clarity the curves are shifted by an offset of 200 mV between consecutive curves.
The leftmost thicker black curve (not shifted) corresponds to the staircase of quan-
tized conductance measured at 20 mT as shown in Fig. 5.4a. An apparent change in
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Figure 5.8: Evolution of magnetoelectric subbands. (a) Respective transconductance of the data in
Fig. 5.7 as a function of VTG and B, where colored dashed lines denote the correspondingly highlighted
conductance curves. (b) Energy level diagram of valley-split magnetoelectric subbands evolving into
Landau levels. Data from CD#3.

the sequence of quantized steps is observed with increasing B. Starting from the orig-
inal sequence with conductance plateaus at every integer of the fourfold-degenerate
conductance quantum G0 = 4 e2/h (thick black curve), the steps split until finally the
degeneracy of the lowest levels is fully lifted at large B showing steps of 1 e2/h (see
red curve). In the intermediate regime, different sequences appear including steps
of 2 e2/h (see orange and green curves), as well as a restored fourfold-degenerate se-
quence but with plateaus visible at shifted half-integer values (n− 1/2)× 4 e2/h (see
blue curve).

In order to study the continuous evolution of the 1D subbands in a perpendicular
magnetic field more carefully, a map of the respective transconductance as a function
of VTG and B is shown in Fig. 5.8a, revealing a complex splitting and bunching of in-
dividual 1D subbands observed as dark lines (quantized plateaus are visible as bright
parts corresponding to a small transconductance).3 At small applied perpendicular
magnetic field (B < 1 T) all size-quantized 1D subbands start to split. The splitting
can be explained by the coupling of the out-of-plane magnetic field to the magnetic-
moment carrying states arising due to a finite Berry curvature in gapped BLG, which
adds a Zeeman-like contribution −M(k) · B, where M(k) is the orbital magnetic mo-
ment [KF18]. Due to opposite signs of the orbital magnetic moment for valleys K+

and K− the valley degeneracy is lifted in a perpendicular magnetic field B leading

3 We note additional faint blurry lines which are strongly tuned by the magnetic field. Their appearance
can be attributed to changes of the filling factor in the two BLG bulk reservoirs [Ove+18a], where
Landau levels originate from large negative VTG ∼ V0

TG at the given positive VBG = 10 V, i. e. charge
neutrality of the reservoirs. Yet, as charge carrier transport is predominantly determined by the
magnetoelectric confinement in the QPC, these weak resonances are not further discussed.
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to the observed splitting of the subbands into the staircase of quantized conductance
with steps of 2 e2/h. The valley levels are shifted linearly within the approximation
of a constant magnetic moment for a given 1D subband by δεξ = ξ|M|B with ξ = ±
for the two valleys, resulting in a valley Zeeman energy splitting ∆Eν

Z = 2|M|B. Note
that with increasing magnetic field and shifted energy levels, respectively, the band
structure as well as Berry curvature are changing. Thus, the made assumption of
linear splitting is only reasonable at small B for split levels close to the original 1D
subband energy level. The observed low-magnetic field valley Zeeman-like splitting
is estimated at ≈ 0.8–1.6 V/T for different subbands translating into ≈ 3–6 meV/T
(using the relation ∆E = eαTG∆VTG), i. e. 30–50 times stronger than the Zeeman spin
splitting for a free electron, similar to what has been reported in a BLG QD [Eic+18a].

At increased magnetic field (1 T . B . 2 T) the split lines of neighboring subbands
are crossing each other, which leads to the restored but shifted sequence with steps
of 4 e2/h as described beforehand. Yet, the intersection of different subbands occurs
not exactly at the same field as the lines start to disperse towards higher energy,
i. e. more positive VTG, which is due to the formation of so-called magnetoelectric
subbands [Wee+88b] based on the combination of both electrostatic confinement from
the QPC as well as the additional quantizing harmonic potential for charge carriers
in a perpendicular magnetic field [BH91b; HBW92]. With further increasing B the
contribution of the magnetic confinement gets stronger and as the cyclotron orbit
eventually becomes smaller than the constriction width WQPC, i. e. at B ≥ 2h̄kF/eWQPC,
the magnetoelectric subbands evolve into Landau levels. Importantly, the Landau
level spectrum of BLG with broken layer symmetry due to a finite displacement field,
i. e. gapped BLG, consists of two fully valley polarized levels N = 0 and N = 1 due
to the broken valley degeneracy of the originally eightfold-degenerate zero energy
Landau level in pristine BLG with the two energy levels of the respective other valley
shifted into the valence band [MK13]. On the other hand, higher Landau levels N ≥ 2
are approximately degenerate in valleys K+ and K− as the splitting is only weak
and levels are close in their energies, explaining the observed peculiar mixing of two
non-adjacent 1D subbands at large B as illustrated by the schematic in Fig. 5.8b.4

4 Without displacement field the series of Landau levels in BLG is degenerate in valleys K+ and K−

and given by EN,± = ±h̄ωc
√

N(N − 1), where ± refers to electron and hole states, and with wave
functions spread over the two sublattices ψN≥2 ,± = 1√

2
(φN ,±φN−2)

T for K+ or the reversed spinor

for K−. Additionally, two special states N = 0 and N = 1 exist at zero energy E1 = E0 = 0 with
eightfold degeneracy due to valley, spin and orbital degeneracy of ψ0 = (φ0 , 0)T and ψ1 = (φ1 , 0)T

or with reversed roles of the sublattices for K−, respectively. Most important, these wave functions
have a non-zero amplitude only on one of the layers and with induced layer asymmetry the two
valleys are split into energy levels E0 = − 1

2 ξU and E1 = − 1
2 ξU + ξUh̄ωc/γ1, whereas higher levels

are only weakly split into levels EN≥2,± ≈ ±h̄ωc
√

N(N − 1) + ξUh̄ωc/2γ1 remaining approximately
degenerate in valleys K+ and K−. For details see [MK13].
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Figure 5.9: Modeled valley splitting and mixing in a perpendicular magnetic field. (a) Valley sub-
band dispersion as a function of B calculated with the semi-phenomenological model. K+ and K−

subbands are shown as cyan or magenta lines, respectively. The displayed numbers denote the values
of quantized conductance plateaus in units of e2/h.

Note that the roles of valleys K+ and K− are interchanged for the emerging pattern
of valley splitting and bunching of 1D subbands in a reversed magnetic field −B.
We further note that apart from the splitting of valley subbands a full lifting of the
degeneracy, i. e. spin and valley, is visible for the lowest levels with increasing B,
resulting in the described conductance steps of 1 e2/h. The additional spin splitting
can be attributed to an enhanced Coulomb interaction being strongest at the small
charge carrier densities of the lowest subbands in contrast to the higher subbands
where no further splitting is monitored within the range of applied B. Finally, we
mention that spin and valley splitting under applied out-of-plane magnetic field has
been observed as well in 1D ballistic fourfold-degenerate Si/SiGe heterostructures
[Tob+95; Gos+07; McG+10], albeit without the described non-trivial valley subband
mixing arising from the unique Landau level structure in (gapped) BLG.

Modeling of the valley subband splitting and mixing

In the following a semi-phenomenological model is presented, capturing on a quali-
tative level the main features of the described intricate bunching of valley-split sub-
bands from two non-adjacent size-quantized energy levels in a perpendicular mag-
netic field.5 The model is based on the 2× 2 effective Hamiltonian of BLG [McC06;

5 The model was designed by Igor Krainov, Alexander Dmitriev (both A. F. Ioffe Physico-Technical
Institute, St. Petersburg, Russia), Vanessa Gall and Igor Gornyi (both KIT). For a detailed description
of the model see the Supplemental Material to [Kra+18a].

88



5.2 Experimental results

MK13],6 disregarding for simplicity effects related to the fine structure of the gapped
BLG spectrum near the bottom of the conduction band or top of the valence band,
i. e. trigonal warping and the “Mexican hat” band modulation (the effect of these fea-
tures on the QPC conductance is discussed in [KF18; LKF19] and will be analyzed
in subsection 5.2.5). Moreover, Zeeman spin splitting as well as the approximately
linear-in-B Zeeman-like valley splitting at small B are neglected. Within this simpli-
fied model, the evolution of eigenenergies and eigenstates for the valleys K+ and K−

with increasing magnetic field can be written as follows:

K+ : En =
√
(∆/2)2 + (E0

n)
2 −−−→

B→∞

√
(∆/2)2 + (h̄ωc)2(n− 2)(n− 1) ,

(5.3a)

ψn =

 ϕn

p̂2
+

2m∗(E+∆/2) ϕn

 −−−→
B→∞

(
ϕ̃n

ϕ̃n−2

)
, (5.3b)

K− : En =
√
(∆/2)2 + (E0

n)
2 −−−→

B→∞

√
(∆/2)2 + (h̄ωc)2 n(n + 1) , (5.4a)

ψn =

 ϕn

p̂2
−

2m∗(E+∆/2) ϕn

 −−−→
B→∞

(
ϕ̃n

ϕ̃n+2

)
, (5.4b)

where ∆ is the band gap induced by the displacement field and E0
n denotes the 1D

subband energy levels in the QPC at B = 0. The magnetic field, appearing in the
equations due to cyclotron frequency ωc = eB/m∗, is included via the shift in the
momentum operators p̂± = p̂x − eAx/c ∓ i( p̂y − eAy) by the corresponding vector
potential.

The equations describe at B = 0 size-quantized energy levels that are degenerate in
the two valleys K+ and K− with the components of the eigenstate spinors given by
the wave functions ϕn (n = 1, 2, 3, ...) of an electron confined to a 1D quantum well,
which trend with increasing B into a harmonic oscillator wave function with the same
number ϕn →(B→∞) ϕ̃n. As can be seen from the expressions for the energy levels at

6 The 2× 2 Hamiltonian is used for a more simplified description of the two lowest-energy bands and
can be obtained by reducing the four-band Hamiltonian which was presented in chapter 2.2. For
details see [MK13].
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5 Gate-defined quantum point contact in bilayer graphene

large magnetic field, this results in degenerate Landau levels by merging of subbands
from valleys K+ and K− with indices differing by 2 as previously discussed.

In order to describe the experimental data for the complete magnetic field range,
i. e. energy levels at intermediate magnetic fields, the two extrema B = 0 and B→ ∞
are interpolated by simplest formulas instead of solving exactly for the energy lev-
els. The gap ∆ = 70 meV is used as a free fitting parameter, whereas E0

n = EQPC
n is

extracted from source-drain bias spectroscopy and converted to TG voltage VTG em-
ploying the coupling parameter αTG as described in subsection 5.2.2. This is why the
model is considered as semi-phenomenological rather than describing the energy lev-
els in a fully analytical manner by considering the electrostatic properties of the setup.
The resulting pattern is plotted in Fig. 5.9, showing the evolution of valley subbands
with magnetic field following from Eqs. 5.3 and 5.4. Compared to the experimen-
tal data, shown in Fig. 5.8, the simplified model well captures the main qualitative
features, i. e. valley splitting and mixing of valleys K+ and K− with non-consecutive
indices.

5.2.4 Zeeman spin splitting

For a further analysis of the 1D subbands in the BLG QPC, the Zeeman spin splitting
is studied in an in-plane and out-of-plane magnetic field orientation B‖ and B⊥, re-
spectively. Figure 5.10a shows a color map of the transconductance as a function of
VTG and B‖ for the lowest four subbands. The transitions across subband edges ap-
pear as black lines (high transconductance), whereas conductance plateaus are visible
as white regions. With increasing B‖ a splitting of the 1D subbands is observed, cor-
responding to the evolution from spin-degenerate to spin-split energy levels. Within
the studied range of magnetic field B‖ ≤ 8 T the lifting of spin degeneracy occurs only
for the lowest three subbands (equivalently for both positive and negative magnetic
field), which is illustrated in Fig. 5.10b in a simplified schematic. We note that the
energy levels are partially disturbed by Fabry-Pérot resonances which do not vanish
with applied in-plane magnetic field even up to B‖ = 8 T (see Appendix D.4). The
splitting is likewise reflected in the appearance of additional half-step conductance
plateaus at high in-plane magnetic fields, as highlighted in Fig. 5.10c showing two
exemplary conductance curves for different B‖ = 0.2 T (black) and B‖ = 6.4 T (ma-
genta), respectively. Note that the valley degeneracy is not affected by the application
of an in-plane magnetic field and the Zeeman spin-split subbands remain degenerate
in the two valleys K+ and K−.

The transition from spin-degenerate to spin-split subbands is further highlighted in
Fig. 5.10d, presenting the same data set of the transconductance as in Fig. 5.10a, but
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Figure 5.10: Zeeman spin splitting in in-plane magnetic field. (a) Transconductance as a function of
VTG and B‖ at VBG = 10 V and VSG = −12 V. Small colored dots denote positions of split subband
edges (black lines) determined as maxima in the transconductance. The small black arrow marks a
crossing of the spin split subband with a Fabry-Pérot resonance. (b) Simplified energy level diagram,
depicting the Zeeman spin splitting of 1D subbands. The Zeeman energy splitting ∆EZ is indicated by
a gray double-headed arrow for the lowest subband n = 1. (c) Conductance curves versus VTG for two
different B‖ = 0.2 T (black) and 6.4 T (magenta) corresponding to line cuts as denoted by the colored
markers in panel (a) and (d). (d) Same data set as in (a), but plotted as a function of B‖ and G, allowing
to monitor the conductance plateau sequences as white lines. Data from CD#5.
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here plotted as a function of B‖ and the conductance itself. This representation allows
a better monitoring of different sequences of the quantized conductance since plateaus
are now recognized as rather sharp white lines at the respective conductance values.
While at small in-plane magnetic fields the plateaus appear at integer numbers of
4 e2/h, a clear change is observed with increasing B‖ & 4.5 T with plateaus visible at
every 2 e2/h for the three lowest subbands. Additionally, the presence of a plateau-like
feature in resemblance of a 0.7 structure can be noticed below the first conductance
plateau [Tho+96] (as well visible in Fig. 5.10a, c, respectively), which will be discussed
at this point.

Signature of the 0.7 structure

The observed conductance feature, which is rather a kink or shoulder than a plateau,
is positioned at about≈ 2.4 e2/h, but starts to drop at finite B‖. With further increasing
in-plane magnetic field, the line finally trends into the plateau of the lowest spin-split
subband at 2 e2/h. We note that another dispersing line below the first plateau is visi-
ble. While such a splitting one after the other could indicate an interaction-driven spin
splitting of the first 1D energy level for only one of the two valleys K+ and K−, there
is no trivial reason that could explain such a lifting of the valley degeneracy with-
out magnetic field but which gets restored at finite in-plane magnetic fields. Looking
closely at the evolution of the Zeeman spin splitting of the first subband in Fig. 5.10a,
a crossing with a non-dispersing vertical line is noticed (marked by the small black
arrow). This resonance, being not affected by the in-plane magnetic field, is due to
the Fabry-Pérot interferences. Then, as the spin-split subband disperses through the
resonance, the additional conductance kink trends progressively from the plateau at
4 e2/h down to 2e2/h as observed in Fig. 5.10d. On the other hand, the lowest con-
ductance shoulder appears distinctly different featuring a non-monotonic evolution
of the conductance plateau (Fig. 5.10d) and furthermore its respective position in en-
ergy slightly disperses with the applied in-plane magnetic field (Fig. 5.10a) unlike
the Fabry-Pérot interferences. Therefore we conclude that this observed conductance
kink developing smoothly into the lowest spin-split subband can be attributed to a
spin-related anomalous conductance structure.

The appearance of such unexpected conductance structure below the first regular
quantized plateau, was first described in [Tho+96] although already visible in earlier
published data without taking much of a notice, and has become known as so-called
0.7 anomaly.7 In the following, the presence of this feature which could not be de-
scribed in a single-particle framework [Mic11] (unlike the quantized conductance in

7 Note that the naming is rather misleading, since the anomalous structure has been observed in a
larger range 0.25–0.95 of the degenerate conductance quantum [DG17].
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the QPC itself [Büt90]) has been widely studied and observed in a variety of exper-
iments based on QPCs or ballistic quantum wires in n- or p-type GaAs heterostruc-
tures [Tho+98; Kri+00; Cro+02; Dan+08], and later as well e. g. in InAs nanowires
[Hee+16] or Ge quantum wells [Miz+18]. However, despite being commonly ob-
served in experiments, less consensus exists regarding the understanding of the phe-
nomenon. Amongst the diversity of early on proposed explanations in the existing
literature [SZ00; FK00; RRJ00; BCF01; Sus01; Rei+02; SM03; Mat04; Rei05; LSR07;
AH09], there exist particularly two popular and mainly invoked mechanisms, that is a
semi-phenomenological assumption of spontaneous spin polarization [Tho+96; WB96;
LYB11] or Kondo-like effects due to the formation of a many-body state [Cro+02;
MHW02; RM06] (a review of initial experiments and theoretical investigations is
found in [Mic11]). In fact, the common understanding of more recent works tends
more towards the latter explanation of interaction enhancement due to Kondo-like
physics [Iqb+13; Bru+14; Hey+15] or rather the presence of a smeared van-Hove sin-
gularity in the local density of states appearing at the bottom of the first 1D subband
[Bau+13; Sch+14].

Yet, the basic understanding of this phenomenon remains until now debated [Fig16;
DG17] and has especially only been vaguely reported but not investigated in a
fourfold-degenerate system (i. e. in an AlAs quantum well or Si/SiGe heterostructure
but with broken valley degeneracies or at unconvincing large out-of-plane magnetic
field with fully lifted degeneracy [Gun+06; Sca+06; Gos+07]). Also it should be noted
that this anomalous structure is typically energy dependent and extremely sensitive to
the confinement itself [Bur+12; Sch+14], which could be the reason why it was not
observed in all of our measurements with different gate conditions. For a better un-
derstanding of such a conductance anomaly in the here presented fourfold-degenerate
system further studies are required including out-of-equilibrium and temperature-
dependent measurements under different confinement conditions. Also the effect of
the Fabry-Pérot interferences must be ruled out to clearly identify the 0.7 structure.

E�ective 1D g-factor

Finally, the Zeeman spin splitting rate of the different 1D subbands is compared which
is found to be unequally strong (see the colored dots tracing the spin-split subbands in
Fig. 5.10a). The observed renormalization of the spin splitting is generally described
by the introduction of a phenomenological effective 1D g-factor |g∗| [Tho+96] different
from the bare bulk g-factor (a dimensionless physical quantity relating the magnetic
moment of a particle to its total electronic angular momentum, i. e. spin and orbit),
which allows to effectively incorporate interaction effects within the single-particle
description [VSZ12]. We determine the Zeeman energy splitting as ∆EZ = αTGe∆VTG

where the TG voltage difference ∆VTG = V↓TG − V↑TG of spin-split subbands is con-
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(a) (b)

Figure 5.11: Zeeman energy splitting and effective 1D Landé g-factor. (a) Extracted Zeeman energy
splittings ∆EZ = eαTG(V

↓
TG − V↑TG) from spin-split subbands (see Fig. 5.10a) versus B‖ for the lowest

three subbands n = 1 (blue), 2 (orange) and 3 (green). (b) Effective Landé g-factor |g∗| for the different
1D subbands n. The standard error of the linear fits is shown by errorbars. The bare 2D g-factor in
bilayer graphene g = 2 is indicated by a gray dashed horizontal line. Data from CD#5.

verted into energy using the coupling parameter αTG extracted from the splitting
rate of the energy levels in source-drain bias measurements (see subsection 5.2.2).
Figure 5.11a shows the estimated ∆EZ values as a function of B‖ revealing linearly
increasing Zeeman energy splittings. Yet, the splitting of the first 1D subband n = 1
only trends into a linear behavior for B‖ & 5 T, whereas at smaller magnetic fields
an almost constant splitting is observed. At this magnetic field range, the dispersing
spin-split subband crosses with the Fabry-Pérot resonance as described beforehand,
obscuring the exact position of the energy level. Moreover, a finite splitting remains
at zero magnetic field due to the observed conductance anomaly. Correspondingly,
a non-zero ∆EZ is found at B‖ = 0, unlike the cases n = 2 and n = 3 which can be
extrapolated to a zero Zeeman energy splitting.

From the slopes of the linear fit to ∆EZ = |g∗|µBB (with µB the Bohr magneton) we
find magnetic field independent effective Landé g-factors |g∗| for each of the sub-
bands (the data points of n = 1 are only fitted for B‖ ≥ 5 T), which is plotted in
Fig. 5.11b. The obtained |g∗| values are increasingly enhanced for lower subbands in
comparison with the bare 2D g-factor in graphene g ' 2 (i. e. close to the free elec-
tron value due to the small spin-orbit coupling in carbon materials) as e. g. found via
electron spin resonance measurements in graphite [MTS91] as well as in graphene
[Rao+11].8 The maximum enhancement by a factor of about 2–3 at the lowest n = 1

8 We note that in magnetotransport measurements with tilted magnetic fields slightly enhanced values
|g∗| ∼ 2.5 have been reported in graphite [Sch+10] or single- and bilayer graphene [Kur+11] 2D
devices, whereas no enhancement of the Zeeman spin splitting in single- and bilayer graphene QDs is
observed [Güt+10; Eic+18a]. The observed spin g-factor correction has been attributed to many-body
electronic interactions in graphene [Men+17].
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subband is similar to what has been reported in QPCs based on (both n- or p-type)
GaAs [Pat+91; Tho+96; Tho+98; Dan+97; Dan+06] or InGaAs [Mar+08b; Mar+10] het-
erostructures.9 In contrast, no enhancement has been observed in a QPC based on
another 2D material, i. e. a monolayer MoS2 device encapsulated in hBN [Mar+17].

Indeed, it should be noted that throughout the literature rather contradictory results
in respect thereof are published. For instance, shot noise measurements in a GaAs
QPC indicated likewise an enhancement of the g-factor [DiC+06], much like the mea-
surement of spin currents in a GaAs 2DEG with QPC injector and detector [Fro+09],
whereas other spin current measurements based on ballistic nanostructure constric-
tions in GaAs (open QD or QPC) revealed no enhancement [Pot+02; Koo+08]. In this
regard, it was argued in [VS16] that the enhanced g-factor strongly depends on the
non-equilibrium state in source-drain bias spectroscopy measurements, since the cal-
culated exchange diagrams considering electron-electron interactions in the Hartree-
Fock approximation showed rather reduced source-drain bias level splitting but no
increase of the magnetic splitting effectively causing a seemingly enhanced Zeeman
energy splitting. Otherwise in a previous theoretical work [WB96], an exchange-
interaction mechanism is discussed for enhanced Zeeman energy splitting in the case
of an infinitely long 1D GaAs quantum wire. However, the calculated enhancement
appears to be much stronger than experimentally observed and the applicability to a
QPC confinement being much shorter than the spin relaxation length seems question-
able.

Now we turn to the scenario of Zeeman spin splitting in an applied out-of-plane
magnetic field. As described in the previous subsection 5.2.3, a full lifting of the
degeneracy is observed for the lowest subbands in a perpendicular magnetic field
B⊥ with 8 entirely spin- and valley-split energy levels. Thus, it is possible to extract
the Zeeman energy splitting for the out-of-plane magnetic field orientation as well.
Yet, determining the effective 1D g-factor is restricted to small B⊥ . 3.5 T to ensure
that not just simply the splitting of 2D Landau levels is probed. That is why only
the Zeeman spin splitting of subband K+

1 is considered. The respective evolution of
the subband splitting is monitored in Fig. 5.12a (blue dots tracing the split levels),
showing a map of the transconductance as a function of VTG and B⊥ at VBG = 10 V
and VSG = −12 V, i. e. at a different gate voltage condition and measured in another
cooldown (CD#4) than Fig. 5.8. The extracted values for ∆EZ and |g∗⊥| for the out-of-
plane magnetic field orientation are shown in Fig. 5.12b (the non-zero Zeeman energy

9 Note that the in-plane g-factor in electron based QPCs is observed to be isotropic [Mar+10] (unlike in
QPCs based on p-type heterostructures where anisotropy of the in-plane g-factor has been reported
[Dan+06]).[Mis+17] Thus, the here applied in-plane magnetic field orientation of ≈ 45◦ with respect
to the transport direction through the QPC should not play a role for the presented results.
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Figure 5.12: Spin splitting in perpendicular magnetic field. (a) Transconductance as a function of VTG

and B⊥ at constant VBG = 10 V and VSG = −12 V. Each subband is labeled according to the notation
|n ξ σ〉 as introduced in the main text. Letters A, B and C denote points referenced in the text. The
extracted spin-split subband edges of |1+〉 are indicated by small blue dots. (b) Respective Zeeman
energy splitting ∆EZ. The effective |g∗⊥| is extracted from the slope of the linear fit. Data from CD#4.

splitting at B⊥ = 0 is reminiscent of the beforehand mentioned 0.7 structure). In
comparison with the values extracted in the in-plane magnetic field orientation the
effective |g∗⊥| = 7.1± 0.3 in out-of-plane magnetic field is stronger enhanced. A simi-
lar anisotropic renormalization of the Landé g-factor has been reported in an InGaAs
QPC device [Mar+10], which has been attributed to stronger exchange interaction
and correlation effects due to the additional orbital confinement [KMS16].10 Indeed,
the effect of electron-electron interactions in graphene under applied perpendicular
magnetic field is predicted to induce an enhancement of the g-factor [IZ12; VSZ12].
Importantly, it should be noted that here the Zeeman spin splitting in the out-of-plane
magnetic field orientation occurs within an already valley-split subband, while in the
in-plane case the splitting is between two spins each up and down due to valley-
degenerate subbands, which has not been discussed in literature to the best of our
knowledge.

We further note that the spin splitting of other subbands in the out-of-plane magnetic
field orientation appears to be more complex due to the additional lifting of the valley
degeneracy and the arising interactions at the crossing with other subbands. For a
better referencing of individual energy levels the following notation is introduced
|n ξ σ〉 where the three quantum numbers correspond to the orbital wave function
of subband with index n = 1, 2, 3, ..., valley isospin ξ = +, −, and spin σ =↑, ↓
(see Fig. 5.12a). The importance of considering exchange interaction-driven effects for

10 We note that particularly strong anisotropy between in-plane and out-of-plane magnetic field ori-
entation is observed in systems with prominent spin-orbit coupling, as e. g. reported in InSb QPCs
[Qu+16] or long 1D hole channels in Ge quantum wells [Miz+18].
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(a) (b)

Figure 5.13: Additional degeneracies of the first energy level. (a) Conductance curves as a function of
VTG for different VSG = −10.7 V (blue), −11.2 V (orange) and −11.6 V (green) at constant VBG = 10 V.
(b) Transconductance as a function of VSG and conductance G obtained from multiple TG sweeps. The
respective SG values of the conductance curves in panel (a) are denoted by small colored markers.
Data from CD#4.

Zeeman spin splitting of the lowest subbands is e. g. demonstrated by an apparently
enhanced splitting of |1−〉 whenever it intersects with other subband edges, i. e. |2+〉
at the position labeled with A and |3+〉 at B, respectively, whereas a closing of the
splitting is observed in-between. Likewise, energy levels |2+〉 and |3+〉 reveal a
discernible spin splitting after the mentioned crossings. Moreover, the intersection
of |2+〉 with |1−〉 at position A features a discontinuous shift as indicated by the
dashed line. The appearance of this new conductance structure has been described as
the analog of a zero-field 0.7-like anomaly in a GaAs/AlGaAs heterostructure due to
enhanced exchange interactions at the crossing of two different 1D subbands [Gra+03].
Finally, a strong enhancement of the spin splitting for magnetoelectric subbands |1+〉
and |2+〉 can be noticed after the crossing of |1+ ↓〉 and |2+ ↑〉 at position C, leading
to a spin-sorted sequence (↑↑↓↓) of the valley-polarized N = 0 and N = 1 Landau
levels.

5.2.5 Tuning the mini-valley quantum degree of freedom

So far, only the “normal” staircase of quantized conductance with steps of 4 e2/h
down to the lowest subband has been discussed. Yet, unusual conductance quan-
tization in BLG QPCs with the first plateau appearing accidentally at 8 e2/h have
been reported in literature [Ove+18a; Ove+18b], which is attributed to the complex
band structure tuning in the BLG channel [KF18]. Here, a controllable tuning of the
additional degeneracy of the first transverse mode is demonstrated by varying the
confinement potential due to the combination of SG and TG. Figure 5.13a shows con-
ductance curves versus VTG for three values of VSG (see caption). Notably, the first
plateau appears at distinct quantized conductance values 4 e2/h (green), 8 e2/h (or-
ange) and 12 e2/h (blue), whereas for higher subbands the regular step height of 4 e2/h

97



5 Gate-defined quantum point contact in bilayer graphene

(a) (b)

(c)
K+1K

+
2

LL0,1

K+3K-1

LL2
K+4K-2

LL3

K+j+1K-j-1

LLj

n=1
n=2

n=3

n=4

n=5

EQPC ELL

N=0
N=1

N=2

N=3

K+1
K+2

K-1
K+3

K+4
K-2

K+j+1 K-j-1

N=j

Figure 5.14: Valley subband splitting in the case of eightfold degeneracy of the first 1D energy level.
(a) Transconductance as a function of VTG and B at constant VBG = 6 V and VSG = −6.7 V. (b) Energy
level diagram. (c) Calculated valley subband dispersion in out-of-plane magnetic field, where the size-
quantized energy levels are shifted according to EQPC

n → EQPC
n−1 for subbands with n ≥ 2 to account

for the additional degeneracy of the first energy level. The double line-width of the leftmost cyan line
reflects two K+ valleys. Data from CD#3.

is observed in all three cases. For a better monitoring of the quantized conductance
plateau sequences for a given SG value, the transconductance obtained from multiple
TG sweeps is plotted in Fig. 5.13b as a function of VSG and the respective conductance
itself, where plateaus are visible as black lines (minima in the transconductance). The
corresponding SG values of the presented conductance curves in panel (a) are denoted
by small colored markers. A clear change of the quantized conductance plateau se-
quence is observed as the lowest plateaus at 4 e2/h and 8 e2/h subsequently vanish at
smaller VSG corresponding to a smoother and wider confinement.

The additional degeneracy is also apparent in the depopulation of the magnetoelectric
subbands, here demonstrated for a confinement condition with eightfold degeneracy.
Figure 5.14a shows the respective pattern of valley subband splitting in a perpen-
dicular magnetic field. Unlike the data presented previously in Fig. 5.8 the Landau
levels N = 0 and N = 1 fully emerge from the first 1D energy level as illustrated in
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Fig. 5.14b. The observed pattern can be captured as well within the presented sim-
plified model (subsection 5.2.3) by shifting the energy levels EQPC

n → EQPC
n−1 for n ≥ 2.

The resulting calculated valley subband dispersion is plotted in Fig. 5.14c (Zeeman
splitting is again neglected) in good agreement with the experimental data with four
emerging valley subbands from the first size-quantized energy level. Note the double
line-width of the leftmost cyan line, reflecting two K+ valley subbands.

The presented additional degeneracies of the lowest 1D subband directly reflect the
complex fine structure at the bottom of the conduction band in BLG, where the trigo-
nal warping features the formation of a mini-valley triplet in both K+ and K− valleys
upon the opening of an interlayer asymmetry band gap [MK13] (as e. g. observed via
the evolution of the Landau level spectrum in gapped BLG featuring a Lifshitz transi-
tion [Var+14a]). The presence of the mini-valley structure is understood to manipulate
the degeneracy of the low-energy subbands depending on the confinement as well as
the band alignment between the channel spectra in the QPC and the bulk spectra in
the BLG reservoirs [KF18; LKF19]. That’s why the additional degeneracy appeared
rather accidentally in some experiments [Ove+18a; Ove+18b]. Here, the simultaneous
tuning of both QPC channel and BLG reservoirs via the TG allows to couple smoothly
into the mini-valley transverse modes with the respective number of modes depen-
dent on VSG, demonstrating that the mini-valleys in the BLG band spectrum provide
sufficiently developed energy splittings and separated states in momentum space to
be considered as a good quantum number that can be exploited in the transport prop-
erties of a BLG QPC.

5.3 Conclusion

In this chapter, we have studied the transport properties of an electrostatically induced
QPC in BLG. The QPC is successfully realized by the combination of BG, SG and
TG. While the system is confined by means of BG and SG, the additional overall TG
allows to controllably depopulate individual 1D subbands down to full pinch-off. The
conductance through the QPC is observed to be robustly quantized in steps of 4 e2/h
owing to the fourfold degeneracy in BLG, i. e. spin and valley.

The subband degeneracies have been further investigated by the application of mag-
netic fields. In a perpendicular field, the valley degeneracy is lifted resulting in an
intricate pattern of magnetoelectric subbands which undergo a mixing of next-nearest
K+ and K− subbands at large B. The evolution of the valley-split magnetoelectric sub-
bands could be well described by a simplified semi-phenomenological model, while
the Zeeman-like valley splitting at small magnetic field is found to be 30-50 times
stronger than the Zeeman spin splitting of a free electron.
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On the other hand, the spin degeneracy is lifted in both in-plane and out-of-plane
magnetic fields. In the case of in-plane magnetic field orientation, a Zeeman spin
splitting of the lowest three energy levels is observed, whereas the valley degeneracy
is not affected. The extracted effective 1D g-factors |g∗| are increasingly enhanced
for lower subbands by a factor 2–3 at the maximum in comparison with the bare
2D Landé g-factor g = 2 in bilayer graphene. When the magnetic field is applied
perpendicularly, a more intricate splitting occurs due to the additional lifting of the
valley degeneracy. Owing to the renormalization of the Zeeman energy splitting by
enhanced exchange interactions the degeneracy of Landau levels N = 0, N = 1 and
N = 2 is fully lifted with eight entirely spin- and valley-split subbands. From the Zee-
man energy splitting of the first valley-split subband an even stronger enhancement of
|g∗⊥| is reported, revealing an anisotropic renormalization of the Landé g-factor due to
enhanced interactions at the small charge carrier densities of the lowest subbands. The
importance of considering effects driven by exchange interactions is demonstrated in
the appearance of a 0.7-like conductance structure below the first plateau as well as
at the crossing of magnetoelectric subbands.

Finally, the consequences of the fine structure in a gapped BLG band spectrum have
been discussed, where the presence of mini-valleys due to trigonal warping leads to
additional degeneracies of the lowest subband.
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6 Towards discretized critical current

As the superconducting analogue of the quantized conductance in a normal conduct-
ing ballistic constriction, i. e. a QPC, it is predicted that the critical current through
a SQPC is accordingly discretized [BH91a; FTT91; FTT92; CLB00; Shc00]. Here, in
the final experimental chapter of this thesis, the SQPC in a BLG weak link is demon-
strated as a suitable platform to observe the predicted supercurrent discretization. At
first, the theoretical framework is briefly introduced and the current state of research
reported in other material systems is summarized in a short literature overview (6.1).
Next, our experimental results are discussed (6.2), including the analysis of the con-
fined critical current in the SQPC as a function of both SG and TG, as well as a study
of the subgap conductance. The chapter ends with a short conclusion (6.3).

6.1 Literature review

6.1.1 Theoretical framework

In a Josephson junction consisting of a normal conducting weak link in the clean limit
the ratio of the critical current Ic and normal state conductance Gn becomes a constant
value of order ∼ ∆0/e (with ∆0 the superconducting energy gap) [Lik79; Tin04], which
was first proposed by Kulik and Omel’yanchuk in 1977, who provided a theory of the
stationary Josephson effect for the case of a short classical ballistic superconducting
point contact [KO77; KO78]. Here, the expressions short, classical and ballistic describe
a regime λF � W and L � l, ξ0 , where W, L are the width and length of the point
contact, respectively, λF is the Fermi wavelength, l the mean free path and ξ0 the
superconducting coherence length. The critical current at zero temperature is then
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calculated according to1

Is(ϕ) = Gn
π∆(T)

e
sin(ϕ/2) tanh

(
∆(T)
2kBT

cos(ϕ/2)
)

, (6.1a)

Ic(T = 0) = max {Is(ϕ)(T = 0)} = Gn
π∆0

e
, |ϕ| = π + 2πj . (6.1b)

Although this semiclassical model based on Boltzmann-type equations cannot be ap-
plied to the case of a quantum point contact, one would already expect following from
this equation an inherited discretization of the critical current due to a quantized nor-
mal state conductance. This idea was put forward by Beenakker and van Houten
[BH91a] shortly after the first experimental proof of conductance quantization in a
QPC [Wee+88a; Wha+88], using a fully quantum-mechanical approach by solving
the Bogoliubov-de Gennes equations for quasiparticle wavefunctions in a short QPC
Josephson junction (L � ξ0). The resulting critical current at zero temperature is
indeed found to be discretized as2

Is(ϕ) = Ng
e∆(T)

2h̄
sin(ϕ/2) tanh

(
∆(T)
2kBT

cos(ϕ/2)
)

, (6.2a)

Ic(T = 0) = max {Is(ϕ)(T = 0)} = Ng
e∆0

2h̄
, |ϕ| = π + 2πj , (6.2b)

where N is the number of transport modes and g accounts for the degeneracy. Con-
sidering a quantized normal state conductance Gn = NG0 = Nge2/h, the equa-
tion becomes the natural quantum-mechanical extension of the classical expression
in Eq. 6.1. Importantly, this result describes a maximum supercurrent carried by indi-
vidual transport modes that are formed via single Andreev bound levels, where each
channel contributes an equal amount to the total critical current Ic = NIc0 with the
discretized unit given by

Ic0 = g
e∆0

2h̄
. (6.3)

Moreover, Ic in the short SQPC is independent of the junction geometry, but the step
height Ic0 still depends on the non-universal superconducting energy gap ∆0. This is
why Ic is rather discretized than quantized in units of Ic0. [BH92]

1 It should be noted that the underlying zero-temperature relationship of supercurrent Is and phase
difference ϕ between the two superconducting reservoirs at opposite sides of the constriction is non-
sinusoidal with discontinuous jumps, i. e. markedly different from that of a tunnel junction. For a
detailed discussion the reader is referred to [Lik79].

2 Equivalently to the remark in footnote 1 referring to Eq. 6.1, the respective zero-temperature current-
phase relation Is(ϕ) is again a discontinuous function. At finite temperature the discontinuities be-
come smoothed out and close to the critical temperature T ≈ Tc a sinusoidal current-phase relation is
recovered with a reduced Ic = Ng(e∆2

0/8h̄kBTc) reached at ϕ = π/2. [BH92]
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In a concurrent theoretical work, Furusaki, Takayanagi, and Tsukada [FTT91; FTT92]
calculated numerically a more general expression following from a geometry-
dependent analysis. In the short junction limit (L � ξ0) their result is in accordance
with Eq. 6.2, whereas in the long junction limit (L & ξ0) the current is carried by
many bound states proportional to L/ξ0 instead of a single state. The critical cur-
rent in a SQPC is then no longer independent of the junction geometry but scales
with the ratio vF/L (vF is the Fermi velocity) and depends strongly on the shape
of the constriction itself [FTT91]. Furthermore, in additional calculations the effects
of non-adiabatic transport as well as normal reflections at the NS interfaces were
included [FTT92] which has been reviewed and analytically discussed in more detail
by Chtchelkatchev, Lesovik, and Blatter [CLB00] or Shchelkachev [Shc00].

According to [CLB00; Shc00] the critical current in a long junction with perfect trans-
mission is discretized in units

δIc = g
e

2τ
, (6.4)

where τ can be understood in a quasiclassical picture as the time it takes from the
decay of a Cooper pair into a pair of electron and hole quasiparticles at one super-
conducting contact till the transformation back into a Cooper pair at the opposite
superconducting contact, and is given by

τ = τ0 + τ∆ . (6.5)

Here, τ0 is the travel time for a quasiparticle traversing the normal region and
τ∆ = h̄/∆0 is the time in which an electron wave packet is transformed into a hole
wave packet due to Andreev reflection. With τ0 = L/vF for a fully opened transport
mode the step height saturates at

δIc = g
evF

2(L + πξ0)
, (6.6)

where steps in the critical current are limited by the Fermi velocity vF and junction
length L.3

The step height is further quenched if the supercurrent carrying Andreev bound states
are transformed into phase-insensitive electronic levels [FTT92; CLB00; Shc00]. This
transformation occurs due to scattering at the constriction with non-perfect transmis-
sion amplitudes [CLB00] or due to normal reflection instead of Andreev reflection at
the NS boundaries with a finite barrier potential [Shc00]. Taking the scattering from

3 Note, that in the limit L� ξ0 (or respectively τ0 � τ∆) the geometry-independent result of Eq. 6.3 is
recovered.
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6 Towards discretized critical current

the potential step at imperfect contacts into account, the critical current exhibits a non-
monotonic dependence with additional peaks and dips appearing due to the presence
of (Fabry-Pérot-type) resonances. On-resonance (peak), Ic is then obtained by sum-
ming over all open transport modes with steps given by Eq. 6.4, but with the travel
time being replaced by τ0 → τ0[(2/DZ)− 1] [Shc00] including the transmission prob-
ability DZ = 1/(1 + Z2), where the factor Z describes the barrier strength [BTK82].
In the off-resonance case (dip), the critical current is equal to the sum over a reduced
step height g(e/2τ)(DZ/4π) if τ0 � τ∆, or g(e/2τ∆)(D2

Z/8) if τ0 � τ∆ [Shc00].

Considering instead reflections from the confinement potential but perfect transmis-
sion at the NS interfaces, a simple expression can be found as well for a short junc-
tion (L � ξ0) with step heights as given in Eq. 6.3 being reduced according to
Ic0(1−

√
R) with R the reflection probability [CLB00]. Particularly, the step height

of the discretized critical current is much stronger affected by non-perfect transmis-
sion of the transport modes in contrast to the quantized normal state conductance
Gn = G0(1− R). Finally, it is important to note that all presented cases above, which
include a finite reflection at either the NS boundaries or the confinement potential
itself, yield discrete steps with a subband-dependent transparency, such that the step
height could differ from one transport mode to another.

Superconducting quantum point contact based on graphene nanoribbons

The properties of a SQPC in a graphene-based weak link have been discussed in
[MZ07] on the basis of narrow nanoribbons. It is found that the critical current sensi-
tively depends on the edge configuration where smooth, armchair and zigzag edges
were considered. In the former two cases, i. e. smooth and armchair edges, no quan-
tization of the critical current is observed in contrast to common SQPCs. The overall
trend of the critical current is predicted to depend linearly on EFW/h̄vF with addi-
tional peaks at the onset of a new propagating mode when the junction width changes
by the Fermi wavelength. The overall linear trend of Ic is yet suppressed compared
to the ideally expected value Ic = 2Ne∆0/h̄ (cf. Eq. 6.2 with g = 4). In the limit
of a narrow strip at small charge carrier density, the critical current in both cases
takes constant minimum values 0 (smooth) and e∆0/h̄ (armchair), respectively. The
corresponding current-phase relation in the smooth case is sinusoidal analogous to
a tunnel junction Is(ϕ) = Ic sin(ϕ), whereas in a narrow armchair ribbon it is given
by Is(ϕ) = Ic sin(ϕ/2) cos(ϕ/2)/| cos(ϕ/2)| with discontinuous jumps similar to the
current-phase relation in a SQPC.

Unlike the other two scenarios, narrow graphene nanoribbons with zigzag edges are
predicted to show discrete steps in the critical current, although remarkably different
to that in an ordinary SQPC. The calculated sequence of steps appears to be half-
integer quantized (n + 1/2)4 e∆0/h̄ (in resemblance of the half-integer quantum Hall

104



6.1 Literature review

effect in single-layer graphene) and with steps 2 times larger than would be expected
from the ideal value Ic0 = 2e∆0/h̄ (considering fourfold degeneracy). The correspond-
ing current-phase relation is the same as for the armchair nanoribbon.

However, it should be mentioned that with respect to the here presented experiments
based on a BLG weak link with smooth electrostatically induced confinement, the ap-
plicability of these predicted results for the case of single-layer graphene nanoribbons
seems questionable.

6.1.2 State of research

Several experiments in various material systems have been performed to study the
predicted discretization of the critical current in a SQPC. Initially, this concept could
be demonstrated in a superconducting mechanically controllable break junction made
of Nb, where a discretized critical current with steps of order ∼ e∆0/h̄ was observed
by mechanically changing the constriction diameter [MRJ92]. Later, measurements
on atomic contacts between superconducting electrodes were expanded upon fur-
ther materials [Sch+98]. However, tunability of these systems appears challenging,
i. e. controlling transparency and the number of conduction channels which are di-
rectly linked to the valence orbital structure and thus sensitively depend on the
contact configuration at the atomic-scale. A review on the quantum properties of
atomic-sized conductors can be found in [AYR03].

Another, most commonly pursued approach is based on a gate-tunable platform,
i. e. semiconductor–superconductor hybrid junctions, which offers a suitable route
towards the implementation of a SQPC within the weak link by exploiting existing
confinement techniques in conventional 2DEG devices but coupled to superconduct-
ing electrodes. For instance, measurements reporting on the discretization of Ic have
been performed in heterostructures based on InAs [TAN95; TAN96; Bau+05; Iri+14]
and Ge/SiGe [Hen+19] as well as in nanowires made of InAs [Aba+13] or Si/Ge
[Xia+06]. However, the observed step heights were typically orders of magnitude
smaller than the theoretically expected ideal value Ic0, with the exception of the re-
sult reported in a short Si/Ge nanowire [Xia+06] missing only a factor ∼ 3–4. The
suppressed critical current is mainly attributed to geometry-dependent quantum size
effects in long junctions [FTT91], or explained by non-perfect transmission either in
the weak link channel [CLB00] or at the NS interfaces [Shc00].
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(a) (b)

Figure 6.1: Planar 2D BLG weak link. (a) Resistance curves of normal state (red) and superconducting
state (black) as a function of VBG at approximately uniform overall doping in the device, i. e. VTG = 0
and VSG = Vcnp

SG . The normal state data was recorded in a separate cooldown and for better comparison
shifted by −0.2 V in order to align both curves at the same charge neutrality point Vcnp

BG . (b) Up- and
down sweep IV curve at VBG = 10 V.

6.2 Experimental results

Here, based on the foundations of the previous two chapters, i. e. confinement of a
supercurrent in the BLG weak link [Kra+18b] and conductance quantization in the
normal state due to the formation of 1D subbands in the electrostatically induced
BLG QPC [Kra+18a], we report a study on a gate-defined SQPC in a BLG weak link
junction. The presented measurements are based on the same device as in chapter 5,
but probed in the superconducting regime. The experiments are performed at a base
temperature of about ≈ 15 mK and for measurements in the normal state an out-of-
plane magnetic field B = 20 mT is applied.

6.2.1 Initial device characterization

To start with, the basic (superconducting) properties of the BLG weak link junction
are discussed. We note that the basis for observing a discretized critical current, that is
confining the supercurrent together with the formation of quantized 1D subbands, has
been already discussed in detail in chapters 4 and 5. In this regard, the here presented
initial device characterization is kept only to a necessary minimum. Figure 6.1a shows
the BG dependence of the resistance for both normal state (red) and superconducting
state (black) at VTG = 0 and VSG = Vcnp

SG , corresponding to assumable homogeneous
charge carrier density in the overall device, i. e. without induced confinement.4 At

4 The data for the two curves were recorded in separate cooldowns. Out of convenience, both curves
are aligned to the same neutrality point as described in the caption of Fig. 6.1.
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the Dirac point a sharp resistance peak is observed in both cases . The presence of
pn-junctions at the metal contact interfaces is once again reflected in the observed
asymmetry of the saturating normal state resistance on electron and hole side at high
charge carrier densities (cf. chapter 4 and 5). In contrast to the normal state, the
resistance in the superconducting state rapidly decreases to zero away from the charge
neutrality point due to a finite supercurrent through the BLG weak link.

An IV curve (up- and down-sweep) at VBG = 10 V, i. e. large electron doping
≈ 5× 1012 cm−2, is shown in Fig. 6.1b. The extracted critical current Ic = 2.05 µA
and normalized to the normal state conductance IcRn & 200 µV, corresponding to
≈ 2∆0/e (with ∆0 = 101 µeV estimated from the position of the m = 2 MAR peak
V = ∆0/e). We note that this value is somewhat larger than obtained in the same
device prior deposition of the additional overall TG (cf. chapter 4), indicating a
stronger proximity-coupling affected by the presence of the overlapping gate to the
superconducting electrodes. Importantly, the obtained IcRn is close to the theoret-
ically predicted maximum ∼ 2.44∆0/e at T = 0 for ideal wide and short ballistic
graphene weak links [TB06], even despite the fact that the device can be considered
in the intermediate regime L . ξ0 between the two limits of short (L � ξ0) and long
(L � ξ0) junction. In the case of a long ballistic weak link IcRn scales with 1/L,
while at finite temperature this dependence is presumed to hold as well for L ∼ ξ0

[RKC16] in agreement with experimental observations [Ben+16]. We note that here
the weak link is made from a bilayer instead of a monolayer graphene. However, at
high doping different models for the BLG case agree on a similar or almost identical
supercurrent magnitude compared to a single layer graphene junction [MCP12; TI11;
TI12]. We further note that IcRn ≈ 2∆0/e matches with recently reported largest IcRn

products in a short ballistic weak link [Par+18].

Confinement of the supercurrent is realized using the combination of BG and SG.
Correspondingly, the resistance map in the superconducting state as a function of
VBG and VSG is presented in Fig. 6.2a. The details of such a map for a split-gated
BLG weak link have been discussed explicitly in chapter 4. Here, only one important
point is recapitulated, which is the observation of a dissipationless current, i. e. zero
resistance, where the Fermi level underneath the SG is positioned in the induced band
gap at maximal displacement field. In this configuration the supercurrent is expected
to only flow via the 1D channel of the induced SQPC.

The confinement is checked and monitored via superconducting magneto-
interferometry measurements, shown in Fig. 6.2b for two different gate conditions
VSG = −8.5 V (orange) and −12 V (blue) at VBG = 10 V (the respective conditions are
marked in the map of Fig. 6.2a by colored dots). Clear indication of the constriction
formation is observed as the interference patterns undergo a change from a beating
pattern (top panel; orange) into a monotonically decaying pattern (bottom panel;
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(a) (b) (c)

Figure 6.2: Confining the supercurrent. (a) Resistance map in the superconducting state as a function
of VBG and VSG at VTG = 0. Insets: Illustrated spatial band structure diagrams across the split-gated
constriction for two different gate conditions VBG = 10 V and VSG = −8.5 V (orange; top right corner)
or VSG = −12 V (blue; bottom left corner), respectively. (b) Respective superconducting magnetic
interference patterns for the two scenarios (upper panel: orange; lower panel: blue), showing the
differential resistance (in Ω) as a function of magnetic field B and current I. (c) Corresponding curve
of the differential resistance dV/dI (blue, left y-axis) as a function of current I at B = 0 for the lower
panel in (b), together with the respective IV curve (black, voltage plotted versus right y-axis).

blue). Sketches of the corresponding spatial band structure across the split-gated
confinement for the two scenarios are depicted as insets in Fig. 6.2a.

Figure 6.2c shows the respective curve of the differential resistance dV/dI (blue, left
y-axis) as a function of current I for the gate condition of the confined supercurrent
(i. e. corresponding to B = 0 of the lower interference panel in Fig. 6.2b; blue marker
dot), together with its IV curve (black; voltage plotted versus right y-axis). Impor-
tantly, despite the supercurrent being strongly reduced compared to the 2D case, a
finite critical current can be measured. In the following analysis, Ic is extracted from
the position of the resistance peak maximum marking the switching from supercon-
ducting dissipationless to resistive current.5

Here, for the fully confined supercurrent at VTG = 0, the extracted critical current
Ic = 115 nA and IcRn = 100 µV corresponding to ≈ ∆0/e, respectively. Although the
contact interfaces and reservoirs are not tuned (i. e. same VBG = 10 V and VTG = 0),
the coupling strength expressed in the IcRn product appears weakened in the 1D
confined regime (VSG = −12 V) compared to the 2D weak link (VSG = 0). However,
we note that the value ≈ ∆0/e is amongst the largest (or greater than) reported in 1D
superconductor–semi-conductor hybrid junctions [TAN95; TAN96; Bau+05; Doh+05;
JvK06; Xia+06; Nil+11; Aba+13; Iri+14; Hen+19].

5 We note that a slight kink in the resistance peak is visible. This constituted double peak structure
(also more pronounced visible under different gate conditions) is primarily observed in the confined
regime and may indicate a non-homogeneous switching in different regions of the junction.
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Figure 6.3: Mapping the discretization of the critical current. (a) Color map of the normal state
conductance Gn as a function of VTG and VSG at constant VBG = 10 V. Plateaus are labeled with the
corresponding 1D subband index n. Inset: Trace of Gn at VSG = −12 V. (b) Differentiated critical
current dIc/dVSG mapped under the same gate voltage conditions as in (a). Dark colors and bright
colors reflect plateaus and steps in the critical current Ic, respectively.

Thus, the presented preconditions of a tailoring supercurrent confinement in the BLG
weak link (for a detailed description see the discussion in chapter 4) provide a con-
venient basis for studying a discretization of the critical current. Therefore, we now
explore the maximum supercurrent, i. e. critical current Ic, in a varying confinement
tuned by SG and TG.

6.2.2 Discretization of the critical current

As already demonstrated in chapter 5, the confinement and thereby the number of
populated transverse modes through the constriction can be controlled by tuning SG
and TG while keeping the BG fixed. In the same fashion, we here start by mapping
the critical current, i. e. by measuring a series of current-voltage curves, as a function
of VTG and VSG at a constant VBG = 10 V. The resulting map of the differentiated
dIc/dVSG is shown in Fig. 6.3b in comparison with the corresponding normal state
conductance Gn in Fig. 6.3a. In the latter case, a stripe pattern of conductance plateaus
is observed as already presented and discussed in chapter 5. Likewise, the critical
current Ic exhibits a step-like variation, where plateaus and steps are visible as black
regions and bright lines, respectively. Importantly, the map of quantized normal state
conductance Gn is directly reflected in the changes of the critical current dIc/dVSG.
Also, it should be noted that again faint and blurry vertical lines can be seen, where Ic

is additionally modulated by the conductance oscillations observed in the normal state
due to Fabry-Pérot interferences within the BLG reservoirs as discussed earlier in this
thesis (chapters 4 and 5). The ballistic conductance resonances being directly reflected
in an oscillating critical current is considered as a signature of ballistic supercurrent
[Cal+15; Ben+16].
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(a) (b)

Figure 6.4: Mapped critical current normalized with respect to its normal state conductance. (a) Color
map of the IcRn product as a function of VTG and VSG. (b) Traces of IcRn as either a function of VTG

(left panel) or VSG (right panel), respectively.

Figure 6.4a shows the critical current normalized with respect to its normal state
conductance (i. e. the corresponding IcRn product of the data in Fig. 6.3) for which
ideally a constant value would be expected [BH91a]. However, the map clearly does
not show a single value. Instead, individual features such as Fabry-Pérot resonances
are distinctly resolved, indicating that the relative oscillation amplitude is different
in the normal state conductance and critical current. Also, blurry stripes at the step
positions remain visible due to unequally sharp transitions between the plateaus.

The TG and SG dependence of IcRn is further elaborated in Fig. 6.4b, showing curves
as either a function of VTG (left panel) or VSG (right panel) for different voltages of
the respective other gate. In the former case, IcRn saturates for VTG → 0 at about
100 µV corresponding to ≈ ∆/e , but is progressively suppressed upon increasingly
negative VTG. Notably, the described trend is consistently observed for any SG voltage
such that all the curves sit nearly on top of each other independently of the applied
VSG. This implies that IcRn should be constant as a function of VSG which is indeed
observed in Fig. 6.4b (right panel). Here, curves of IcRn reveal within the range of
noticed 1D subband formation (VSG . −10 V) a fairly constant value with only small
variations, but the magnitude of IcRn depends on VTG.

Briefly summarized, the mapped critical current Ic through the SQPC reveals a limit-
ing effect of the TG, especially apparent in the gate dependence of the IcRn product.
Here it should be noted, that the TG not only controls the confinement and channel of
the SQPC itself, but tunes simultaneously the band structure in the entire BLG weak
link as well as the transmission at the contacts. Therefore, by depleting the 1D sub-
bands via the TG the supercurrent amplitude in the complete weak link is quenched.
On the other hand, the SG can be used to squeeze the channel independently of the
BLG bulk reservoirs. However, the range of applicable VSG appears limited before the
confinement collapses as the Fermi level underneath the SG is no longer positioned in
the gap but already tuned into the valence band, forming pnp-junctions rather than a
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(a) (b) (c)

Figure 6.5: Top gate dependence of the critical current in the SQPC. (a) Color map of the differential
resistance dV/dI (in kΩ) as a function of VTG and I at constant VBG = 10 V and VSG = −12 V.
(b) Zoom-in measurement of (a) as denoted by the white dashed box. (c) Extracted critical current Ic

(blue, right y-axis) and the respective normal state conductance Gn (red, left y-axis) as a function of
VTG. A smoothed curve is added (thin darker blue line) as guide to the eye, emphasizing the rather
step-like evolution of Ic.

constriction (see Appendix D.2 and discussions in chapter 4 and 5). In what follows,
the gate dependence of Ic is analyzed in more detail, first as a function of VTG (6.2.3)
and finally as a function of VSG (6.2.4).

6.2.3 Top gate dependence of the discretized critical current

Figure 6.5a shows the differential resistance dV/dI as a function of current I tuned
by VTG at constant VBG = 10 V and VSG = −12 V. At this configuration of BG and SG
the SQPC is operated in the confined regime as e. g. demonstrated by the supercon-
ducting magnetic interference pattern in Fig. 6.2b. It can be seen that the maximum
supercurrent in the SQPC gets reduced when the system is depleted with increasingly
negative VTG, but at this scale no discretized steps are discernible. However, it is im-
portant to note that outside the superconducting region additional resonant lines are
recognized, which are due to MAR [Oct+83; CY06], revealing a step-like behavior in
the current. Clearly, the subgap conductance is governed by the number of transport
modes through the SQPC, but will be discussed later (see subsection 6.2.5).6

In Fig. 6.5b a zoom-in measurement with higher resolution is presented for the range
−12 V < VTG < −6 V. Now, a rather step-like behavior is vaguely observed, partially
obscured by oscillations which can be attributed to the presence of Fabry-Pérot inter-
ferences in the normal state as pointed out beforehand. The extracted critical current

6 It is more instructive to study these subharmonic gap structures as a function of bias voltage V rather
than current I.
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Ic is shown in Fig. 6.5c (blue; right y-axis) together with the corresponding normal
state conductance Gn (red; left y-axis), which displays a well-developed sequence of
quantized conductance plateaus down to the lowest subband (cf. chapter 5). Unlike
Gn, steps in Ic are less recognizable. Especially Ic being highly sensitive to any in-
fluence on the weak link, the additional oscillations due to Fabry-Pérot resonances
tuned by the TG appear strongly pronounced in the critical current, i. e. their ampli-
tude is of comparable size to the step height. In the consequence, only a faint but
rather obscured step-like variation of Ic as a function of VTG is visible. Moreover,
the step height is seemingly decreasing and below the second conductance plateau
a more and more rounded switching occurs in the current-voltage curves, such that
extracting Ic becomes unreasonable. Thus, the critical current finally trends towards
zero, but reappearing signatures of a Josephson coupling are observed at the position
of the first plateau, i. e. a finite excess current Iexc and increased subgap conductance.

6.2.4 Split gate dependence of the discretized critical current

At this point, the SG dependence of the discretized critical current is studied. Unlike
the overall TG the locally defined SG does not act on the entire BLG weak link but
only controls the confinement of the SQPC itself. Figure 6.6a shows a color map of the
differential resistance dV/dI as a function of I continuously measured for different
VSG at constant VBG = 10 V and VTG = −10 V. Unambiguously, the switching of the
supercurrent exhibits a staircase-like variation, demonstrating the discretization of Ic.
The extracted critical current Ic is plotted in Fig. 6.6b (blue; right y-axis) in direct
comparison with the normal state conductance Gn (red; left y-axis) under the same
gate condition. At this combination of BG and TG, a sequence of conductance plateaus
is observed down to the third lowest 1D subband within the range of maximal applied
VSG. In accordance with the quantized normal state conductance a step-like increase
of the critical current occurs with each additionally contributing transport mode. The
correlation between Gn and Ic is also reflected in a considerably constant IcRn product,
shown in Fig. 6.6c. Within the range of observed 1D subband formation, IcRn varies
by less than 10% around the mean value of 74 µV, where fluctuations can be mainly
attributed to the unequally sharp steps.

Below, a quantitative analysis of the discretized critical current is presented. For that,
Ic is fitted according to the following equation adopted from the Landauer formalism:

Ic = δIc ∑
n

Tn , (6.7)

where the critical current is calculated by the sum over the transmission probabili-
ties Tn of each 1D transport mode n multiplied by the discretized unit δIc. Out of
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(a) (b)

Figure 6.6: Split gate dependence of the critical current in the SQPC. (a) Color map of the differential
resistance dV/dI as a function of VSG and I at constant VBG = 10 V and VTG = −10 V. (b) Extracted
critical current Ic (blue; right y-axis) as a function of VSG in comparison to the normal state conductance
Gn (red; left y-axis). Solid lines are fits to the data using Eqs. 6.7 and 6.9, respectively. (c) Corresponding
IcRn product. The gray shaded region denotes a range of the mean value plus and minus twice the
standard deviation (≈ 74± 7 µV).

simplicity, we have used a saddle-point confinement potential, neglecting geometry-
dependent factors [Gla+88] as well as the complex band structure tuning within the
BLG channel [KF18]. The transmission probability is then given by [Büt90]

Tn =
1

1 + e−πεn
, (6.8)

with εn = 2(EF−En)/h̄ωx, where EF is the Fermi energy and En is the nth 1D subband
energy level. Based on the form of Tn, the transmission probability of subbands above
EF is exponentially suppressed, whereas all open transport modes contribute equally
by the same discretized value δIc to the total critical current Ic. The sharpness of the
steps is determined by the curvature of the confinement potential h̄ωx. For fitting this
energy dependent equation to the data as a function of gate voltage, we assume a
linear relationship E = αSGeVSG [Kra+18b].

The resulting fit to Ic with the respective set of parameters δIc = 10.5 nA and
h̄ωx = 0.32 V, yielding a curve with uniform steps of equal height, is plotted in
Fig. 6.6b (dark blue solid line). Additionally, a curve for the normal state conductance
Gn is provided (dark red solid line), using the exact same parameters but replacing
the step height δIc with the fourfold degenerate conductance quantum G0 = 4 e2/h
and including a contact resistance of 2RC = 80 Ω :

G−1
n =

[
G0 ∑

n=1
Tn

]−1

+ 2RC . (6.9)
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6 Towards discretized critical current

The fact that the extracted Ic can be fitted by employing a universal step height δIc for
all visible plateaus n = 3, 4, 5, 6, (7) (at this given VBG = 10 V and VTG = −10 V) with
steps occurring at the same positions as in the quantized normal state conductance Gn

demonstrates that the supercurrent is carried by individual Andreev bound states via
size-quantized transport modes through the SQPC without mixing of the channels at
the plateaus [BH91a].

The described fitting is done for another confinement condition at different TG volt-
age (i. e. VTG = −8 V; shown in Appendix E.1). Consistently, the data can be de-
scribed with a constant step height, although with a TG dependent different value
δI(2)c = 12 nA. However, in comparison with the theoretically expected ideal value
Ic0 = 2e∆0/h̄ = 49.2 nA, our reported step heights δIc turn out to be suppressed
but are in the same order of magnitude (comparable to the reported suppression in
[Xia+06] getting the most close to the expected ideal value throughout literature to
the best of our knowledge). Possible reasons and arguments that could explain the
observed reduction and TG dependence of δIc are discussed in the following.

Discussion of suppressed step heights in the critical current

First, taking the finite weak link channel length L . ξ0 into account, the theoretical
step height for perfect transmission is reduced to δIc0 = 2e/(τ0 + h̄/∆0), involving
the travel time τ0 = L/vF of a quasiparticle traversing the weak link channel (see
Eq. 6.6 in subsection 6.1.1) [CLB00; Shc00]. Although the Fermi velocity is unknown
due to the complex band structure tuning in the BLG weak link, an upper bound
δIc0 = 42.9 nA for steps in the discretized critical current is estimated with assumed
maximum Fermi velocity vF =

√
3aγ0/2h̄ ≈ 1× 106 m s−1 from the rather linear band

structure at higher energies [MK13]. Still, our reported values of δIc lack by a factor
3–4 compared to the theoretical expectation δIc0 in the junction with finite length. We
note that with a possibly smaller vF due to the band structure tuning at the bottom of
the bands the calculated step height δIc0 could be significantly further reduced.

Second, as aforementioned, the overall TG acts on the entirety of the weak link, i. e. de-
pleting both SQPC channel and BLG reservoirs, while tuning the contact interfaces to
the superconducting metal leads at the same time. In the consequence, the proximity-
coupling is quenched upon the increasing opening of a gap in the BLG reservoirs as
observed in the SG- and TG-dependence of the IcRn product (see subsection 6.2.2),
resulting in the reduction of the extracted δIc at larger negative VTG (for positive VBG).
This limiting effect on the supercurrent injection into the BLG weak link can be un-
derstood to a certain extend due to an effectively reduced superconducting energy
gap ∆∗0(VTG) as a function of TG voltage which is shown later in subsection 6.2.5
with a discussion on the subgap conductance. Considering the quenched gap size
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∆∗0/∆0 < 1 in turn yields an effectively reduced ideal step height I∗c0 = 2e∆∗0/h̄ or
δI∗c0 = 2evF/(L + πξ∗0) with ξ∗0 = vFh̄/π∆∗0 , respectively.

A comparison of all extracted δIc with the theoretical values I∗c0 and δI∗c0 is summa-
rized in Tab. 6.1. The displayed numbers in parenthesis correspond to the ratio of
experimental to theoretical values δIc/I∗c0 or δIc/δI∗c0, respectively. We note that tak-
ing into account the reduction of the critical current due to the two reasons discussed
above, i. e. a finite channel length as well as a smaller effective superconducting energy
gap, can not fully explain the observed reduction of the step height. The remaining
difference could be probably explained by a non-perfect transmission of the transport
modes carried by Andreev bound states, which could be due to normal reflections
from the NS boundaries [CLB00; Shc00].7 However, while the presence of Fabry-Pérot
resonances might be indication of a barrier potential at the contact interfaces leading
to a reduced probability of Andreev reflection, we recall that without tuning directly
the contact interfaces (i. e. constant VBG = 10 V and VTG = 0) the strength of the 1D
supercurrent expressed in IcRn ≈ ∆0/e measured at VSG = −12 V appears already
suppressed compared to the value ≈ 2∆0/e in case of the uniform configuration at
VSG = 0 (see subsection 6.2.1). On the other hand, the SG acts on the channel in the
confined regime due to stray-fields, implying that band structure tuning might be an
important aspect.

VTG/V ∆∗0/∆0 δIc/nA I∗c0/nA δI∗c0/nA

−8 0.95 12.0 46.7 (0.26) 41.0 (0.29)

−10 0.86 10.5 42.3 (0.25) 37.6 (0.28)

Table 6.1: Summarized step height values of the critical current in the SQPC. Extracted step height
δIc for two different VTG in comparison with theoretical step heights I∗c0 of an ideal SQPC or δI∗c0
for a SQPC embedded in a weak link of finite length L and considering perfect transmission. The
experimental values are extracted from the fit to the data according to Eq. 6.7, and calculated values
are obtained from Eqs. 6.3 and 6.6 assuming vF = 1× 106 m s−1 and taking the effectively reduced
superconducting energy gap ∆∗0(VTG) into account (numbers in parenthesis give the ratio of measured
to calculated step height). For gap size ∆0 = 101 µeV found in our 2D BLG weak link junction the ideal
step height Ic0 = 49.2 nA.

Finally, it should be noted that the maximum supercurrent in ballistic graphene weak
link junctions is already predicted to be cut-off to only about half of the ideal value
2Ne∆0/h̄ (with N the number of degenerate transport modes) due to a mismatching

7 Scattering from the confinement potential [CLB00] seems less likely regarding the fact that in the
normal state conductance robustly quantized steps in units of 4e2/h are observed without subtracting
a small (TG-dependent) contact resistance, which implies a transmission probability of 1D channels
through the QPC close to unity.
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Fermi wavelength at the NS interfaces [TB06] (cf. subsection 2.3.6). Taking such lim-
ited Ic for graphene Josephson junctions into account, our reported steps δIc almost
match with the theoretical discretized values δI∗c0 with perfect transmission. How-
ever it should be remarked that this reduced critical current is discussed in the case of
wide graphene junctions. In contrast, another theoretical work [MZ07] deals with nar-
row graphene nanoribbon weak links in the context of SQPCs, where it is found that
the critical current sensitively depends on the edge configuration (cf. subsection 6.1.1).
While for smooth and armchair edges the absence of discrete steps is predicted, zigzag
nanoribbons should show a half-integer sequence with enhanced steps. Considering
the smooth electrostatic potential in our SQPC, the smooth edge configuration seems
to have the best correspondence but would not show the discretization of the critical
current. Yet, all the different calculations for graphene weak links show that this sys-
tem is indeed special due to the interplay of relativity and superconductivity and can
diverge from the norm of ordinary weak links (or SQPCs). After all, it remains an
open question what should be expected for an SQPC in a BLG weak link, especially
with regard to the complex band structure tuning within the weak link channel itself
(even fundamentally different from the single-layer case).

6.2.5 Subgap conductance

As a last point, we study the subgap transport in order to further analyze the
SQPC properties. Figure 6.7a shows a gray-scale map of the numerical derivative
of the differential conductance d2 I/dV2 as a function of bias voltage V and VTG at
VBG = 10 V and VSG = −12 V (note that this is the same data set as in Fig. 6.5). The
bright line at V = 0 is due to the finite supercurrent through the weak link. Besides,
as aforementioned, additional resonant features are observed within the subgap bias
voltage range V < 2∆0/e. These conductance resonances occur at V = 2∆0/(me)
with m = 1, 2, 3, 4 and are attributed to MAR [Oct+83; CY06]. Note, that the m = 1
subharmonic structure is positioned at decreased bias V, which might be due to an
effectively reduced superconducting energy gap caused by self-heating effects for the
higher applied bias voltages [Xia+06]. Another point to be noted is that the MAR
peaks trend towards smaller bias voltage with increasingly negative VTG, as visual-
ized by the dashed orange line tracing the m = 2 resonance. Since the bias voltage
of the subharmonic gap structure directly depends on the superconducting energy
gap, we find an effectively reduced gap size ∆∗0 as a function of VTG (as mentioned
previously), which is shown as inset in Fig. 6.7a. Notably, the TG dependence of ∆∗0
is similar to the one of the IcRn product (see Fig. 6.4b), which partly explains the
supercurrent suppression when 1D subbands are depopulated by means of the TG.

116



6.2 Experimental results

(a) (b) (c)

(d)

Figure 6.7: Subgap conductance in the SQPC. (a) Numerical derivative of the differential conductance
d2 I/dV2 as a function of V and VTG at constant VBG = 10 V and VSG = −12 V (data is differentiated
from large bias towards zero for both positive and negative polarities, respectively). Inset: Effective
superconducting energy gap ∆∗0(VTG)/∆0, extracted from the MAR peak m = 2 at bias V = ∆∗0/e
(shown by the dashed orange line in the main panel). Colored dots at the right edge of the panel
mark VTG values of the curves shown in (b). (b) Differential conductance dI/dV versus V for different
VTG (note that curves are not shifted). The color code denotes strong (cyan) or weak (magenta) MARs.
(c) Subgap differential conductance dI/dV as a function of VTG for different V = 2∆0/(em) with m = 1
(pink), 2 (orchid), 3 (purple) and 4 (dark purple) in comparison with the normal state conductance
Gn (gray). (d) Differentiated normal state conductance dGn/dVTG normalized to its maximum (gray
curve) and smoothed (black curve) in order to remove additional oscillations due to the Fabry-Pérot
interferences. The position of strong/weak MARs is marked by cyan/magenta dots, respectively.

Finally, it can be noticed that the amplitude of the subharmonic structures is not
constant but modulated as a function of VTG, which is observed as an alternation of
stronger and weaker resonances (particularly visible for m = 1 and m = 2). Respective
curves of the differential conductance dI/dV versus bias voltage V for different VTG

in the range −10.9 V→ −6.2 V are plotted in Fig. 6.7b (from bottom to top; note that
curves are not shifted but only modulated by the applied VTG). We observe a notable
suppression of MARs in turns with increased resonances represented by magenta
and cyan colored curves, respectively. The corresponding gate conditions of the color
coded curves are also marked in Fig. 6.7a.

In Fig. 6.7d the alternating sequence of the subharmonic gap structure is compared
with the transconductance dGn/dVTG in the normal state (here the minimums,
i. e. ideally zero, correspond to the conductance plateaus, whereas transconductance
maximums reflect the steps in-between occurring at the crossing of a 1D subband).
Remarkably, the positions of observed enhancement or suppression of the subgap res-
onances (cyan and magenta dots) are distinctly arranged within the transconductance
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curve. Concomitant with a level crossing (peak) appears an on-resonant state with
pronounced MARs (cyan) [Ing+01]. In contrast, the MARs are suppressed (magenta)
when the next-higher subband starts to contribute (increasing transconductance after
traversing a conductance plateau, i. e. the minimum in transconductance). Then, as
the next subband edge is reached, the MARs are again enhanced (cyan).

The observed interchanging from on- and off-resonances is indication of a channel
mixing of two Andreev bound levels when the Fermi level is positioned in between
1D subbands which is not captured within the theory provided in [BH91a] (the
theoretical predictions for the discrete supercurrent amplitude being only valid on
the plateaus but not at the transition between subbands). We note that a suppression
of the transport based on Andreev reflections has been observed as a dip structure
in the subgap conductance at the transition to the next energy level (but absent in
the normal state conductance) [Kja+16; Zha+17; Hen+19], which is explained due to
the presence of a van-Hove singularity at the onset of a new channel resulting in the
strong mixing of subbands.

The transport of quasiparticles through the SQPC is as well demonstrated in Fig. 6.7c,
showing the differential subgap conductance dI/dV for V = 2∆0/(em) with
m = 1, 2, 3, 4 in comparison with the normal state conductance Gn (gray) as a func-
tion of VTG. While Gn displays the expected staircase conductance with quantized
steps in units of 4 e2/h, the subgap conductance varies likewise in a step-like fashion,
but with step heights notably increased compared to that of the normal state con-
ductance. The enhanced subgap conductance is a direct consequence of the transport
mechanism based on Andreev reflection processes [And64; BTK82], where a multiple
of the electronic charge can be transmitted through the SQPC due to the MARs. Note-
worthy, the step height of the subgap conductance further increases with higher order
MARs, although the higher order subharmonic gap structures diminish as the con-
finement strengthens. In a QPC facing only one superconductor interface, i. e. in a NS
junction, a doubling of the conductance due to a single Andreev reflection has been
theoretically predicted [HB91; Bee92] as well as experimentally observed [Kja+16].
Here, we find the subgap conductance exceeding twice the (fourfold-degenerate)
conductance quantum G0 = 4 e2/h in the normal state due to MARs, similar to what
has been reported in a SNS junction based on an InGaAs channel [Iri+14], which is
evidence of the phase-sensitive transport down to the lowest subband in our SQPC.

6.3 Conclusion

In this chapter, the discretization of the supercurrent in a BLG SQPC has been investi-
gated based on the foundation of the preceding results in chapters 4 and 5, i. e. tunable
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formation of 1D subbands in a gate-defined QPC induced within a BLG weak link.
While in the uniform 2D junction the measured critical current normalized to the
normal state conductance IcRn ≈ 2∆0/e is close to the theoretically predicted limit
for ideal short and wide ballistic graphene Josephson weak links, the supercurrent
is successfully confined to 1D with the combination of SG and BG as monitored by
superconducting magneto-interferometry. In this confined regime, a large (i. e. in com-
parison to other reported values in literature) IcRn ≈ ∆0/e is recorded at VTG = 0.

By tuning the confinement with SG and TG, the number of modes through the 1D
channel is controllably varied and the critical current exhibits a step-like variation in
accordance with the quantized steps in the normal state conductance. However, it is
found that the IcRn product as a function of VTG is not a constant value as it would be
expected for a discrete critical current, but gets progressively suppressed as the weak
link is tuned towards pinch-off using the TG. In the consequence, the critical current
features decreasing step heights δIc weakly resolved as a function of VTG. On the other
hand, clearly discretized critical current has been demonstrated as a function of VSG

appearing in direct correlation with the respective quantized staircase in the normal
state conductance. The observed steps in the critical current are well described by a
single step height as fitting parameter for all subbands at a given VTG.

Yet, despite the provided evidence for coupling of the supercurrent via discrete energy
levels in the SQPC carried by individual Andreev bound states, the extracted step
heights δIc appear quenched compared to the theoretically expected ideal value. The
main limiting factor is due to the required depletion at larger negative VTG in order
to reach the lowest subbands with the SG, which at the same time suppresses the
supercurrent injection into the weak link as the BLG reservoirs are gapped. Other
discussed aspects consider the finite junction length of the weak link L . ξ0, as
well as the observation of an effectively reduced superconducting energy gap size
∆∗0/∆0 < 1 tuned by the overall TG. Further optimization of the device geometry,
such as employing shorter distances between the superconducting leads as well as
independent control over the 1D channel and BLG/superconductor boundaries, might
help to improve the described shortages in the step height of the critical current.

Finally, the subgap transport properties of the SQPC have been studied. Observed
steps in the staircase of the subgap conductance are significantly enhanced, exceeding
at the maximum twice the step height in the normal state, which demonstrates a
phase-sensitive quasiparticle transport mechanism due to MARs. The amplitude of
these subharmonic energy gap structures is found to be modulated by tuning the
subband population. While after the transition across a 1D energy level the MAR
resonances are enhanced, a suppression is noticed in-between energy levels at the
onset of the next-higher subband indicating a strong channel mixing at the transition
itself.
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In this thesis, gate-defined nanostructures in BLG weak link Josephson junctions were
studied. The samples were fabricated following a dry and contamination-free vdW
assembly for encapsulation of the graphene into hBN/BLG/hBN heterostructures
where electrical contact is made from the edge of the mesa with superconducting
Ti/Al electrodes, providing high-quality state-of-the-art hybrid superconductor–
graphene devices in the ballistic regime. The electrical characterization was done at
mK temperature using standard lock-in detection techniques and performing out-
of-equilibrium transport measurements in out-of-plane as well as in-plane magnetic
field orientations.

At first, a tunable shaping of the supercurrent through the BLG weak link was demon-
strated both spatially and in its amplitude based on electrostatic confinement in two
different geometries, i. e. QPC-like and long channel confinement. The constrictions
were realized by local band gap engineering via the employed combination of a global
BG and locally defined top SG structures, owing to the possibility of opening an
electronic band gap in BLG by breaking the layer symmetry due to applied perpen-
dicular displacement fields. In both structures, unusual gate-gate-maps of a dual-
gated BLG junction were discussed due to the effect of a split gate. The induced 1D
supercurrent confinement was studied and monitored by means of superconducting
magneto-interferometry measurements. In case of the long-channel confinement it
was possible to reconstruct the spatial supercurrent density profile using the Dynes-
Fulton approach, while in the QPC-like confinement the results are supported by
analytical and numerical modeling. No presence of shunting currents (e. g. due to
edge states) was detected.

However, in spite of the demonstrated 1D supercurrent confinement, a controllable
depopulation of the channel was not possible in this sample configuration because of
a lacking independent control on the channel density as the combination of BG and
SG is necessary for inducing the constriction itself. In respect thereof, an additional
overall TG was added. Thanks to this extra tuning knob, 1D subband formation was
observed with robustly quantized conductance in steps of 4 e2/h as expected for the
fourfold degeneracy in this system (i. e. spin and valley) down to the lowest subband
until finally complete pinch-off is reached. A lifting of spin and valley degeneracy of
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the 1D subbands was investigated with applied in-plane and out-of-plane magnetic
fields. In the perpendicular magnetic field orientation a complex valley splitting and
mixing of 1D subbands with indices differing by 2 was observed which could be ex-
plained in a semi-phenomenological model and was understood due to the peculiar
Landau level spectrum of gapped BLG. Additionally, from the observed enhancement
of the Zeeman energy spin splitting (for both in-plane and out-of-plane magnetic
field) an effective 1D g-factor |g∗| was determined with strongest renormalization at
the lowest subband and noticed anisotropy between in-plane and out-of-plane mag-
netic field orientation. Indeed, interaction effects were noticed to come into play at the
lowest subbands in this confined system, as visible by the appearance of a 0.7-like con-
ductance structure below the first plateau as well as at the crossing of split subbands
at finite magnetic field accompanied with intriguing non-monotonic enhancement of
the spin splitting. Finally in this BLG QPC, an additional mini-valley quantum degree
of freedom was identified, appearing as a feature of the fine structure at the bottom
of the conductance band due to trigonal warping of the bands. The consequence is an
unusual degeneracy of the lowest subband with the first conductance plateau appear-
ing either at 4 e2/h, 8 e2/h or 12 e2/h. It was demonstrated that the coupling from the
bulk reservoirs into the “accidentally” degenerate channel modes can be selectively
controlled by tuning the reservoirs and induced confinement via SG and TG.

In a last experiment, the successfully implemented QPC within the BLG weak link
was studied in the superconducting regime. In this SQPC, the critical current was
observed to change in discretized steps in correlation with the quantized conductance
in the normal state as the number of modes is varied, demonstrating a supercur-
rent coupling via discrete energy levels carried by individual Andreev bound states.
However, the extracted step heights were smaller than the expected ideal value of
quantized supercurrent, mainly attributed to the tuning of the entire weak link by
the overall TG. The phase-sensitive transport of quasiparticles through the SQPC was
further revealed by subgap measurements (i. e. at finite voltage below the supercon-
ducting energy gap), where the finding of enhanced steps in the subgap conductance
larger than in the normal state indicated a charge transport mechanism due to MARs.
Strikingly, the MAR resonances appeared with a modulated amplitude depending on
the position of the Fermi level with respect to the 1D subbands. The monitored sup-
pression of MARs at the transition to the next energy level revealed a subband mixing
at the opening of a new channel.

Outlook

The presented results provide a promising platform for future experiments. In fact,
the demonstrated control of the quantum degrees of freedom (i. e. valley, spin and
mini-valley) in the BLG QPC is a necessity in the development of new quantum elec-
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tronic devices in the field of spin- or valleytronics [ŽFD04; Sch+16]. For instance, the
design of valley filters and valley valves in graphene has been proposed based on
ballistic QPCs [RTB07]. Moreover, the lifting of the valley degeneracy appears to be
a crucial requirement in view of the proposal for using graphene QDs as spin qubits
[Tra+07].

Another interesting aspect would be measurements of this confined system in the
quantum Hall regime. Here, the gate-tunable selective transmission of quantum Hall
channels can be utilized as beam splitters in the design of electronic interferome-
ters [Hen+99; Ji+03]. Also, the controllable mixing and partitioning of opposite edge
channels brought together in the QPC allows to probe fractional quantum Hall states
[Mil+07; Dol+08], where even-denominator phases are predicted to host non-abelian
anyons that are investigated for encoding quantum information in topological qubits
[Kit03]. The observation of even-denominator fractional quantum Hall states in BLG
has been recently reported [Zib+17; Li+17], as well as a study on the selective trans-
mission of integer and fractional quantum Hall channels in a monolayer graphene
QPC based on pn-junctions in the quantum Hall regime [Zim+17].

In view of the demonstrated electrostatic spatial shaping of the supercurrent in the
BLG weak link, more complex hybrid superconductor–semiconductor devices and
circuits [De +10] may be realized, such as a superconducting electronic interferome-
ter based on a gate-defined Y-shape BLG weak link junction coupled to a supercon-
ducting loop and injector [Lan+02; Ama+14] or an Aharonov-Bohm interferometer
connected with superconducting leads which can be used as a sign-switch of the
Josephson current [DG07].

Furthermore, it is noteworthy that a single channel Andreev bound state operation
in a SQPC is described by a two-level Hamiltonian [IF99] which serves as a building
block for designing Andreev level qubits [Zaz+03]. Yet, single channel operation in
the here presented work was limited by the quenching of the proximity-coupling
upon depletion of the entire weak link with the overall TG, thus requiring further
optimization of the junction architecture.

Finally, we mention that a new device design with additional superconducting leads
from the sides were tested for enhancing the superconductivity coupling in extremely
long junctions. In particular, induced supercurrent in a BLG weak link was mea-
sured over 4 µm distance scales, i. e. much longer than would be possible without
the superconducting side reservoirs, which could be helpful for enlarging the space
of designing gate-defined nanostructures within the weak link channel. While such
multi-terminal Josephson junctions are also proposed to provide novel realizations of
topological matter [Riw+16], the preliminary results on these devices appear to be
highly promising.
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[KMS16] K. Kolasiński, A. Mreńca-Kolasińska, and B. Szafran: Transconductance
and effective Landé factors for quantum point contacts: Spin-orbit coupling and
interaction effects. Phys. Rev. B 93, 035304 (2016). doi: 10.1103/physrevb.
93.035304 (cit. on p. 96).

[Koo+08] E. J. Koop, B. J. van Wees, D. Reuter, A. D. Wieck, and C. H. van der Wal:
Spin Accumulation and Spin Relaxation in a Large Open Quantum Dot. Phys.
Rev. Lett. 101, 056602 (2008). doi: 10.1103/physrevlett.101.056602
(cit. on p. 95).

[Kra+18a] R. Kraft, I. V. Krainov, V. Gall, A. P. Dmitriev, R. Krupke, I. V. Gornyi, and
R. Danneau: Valley Subband Splitting in Bilayer Graphene Quantum Point
Contacts. Phys. Rev. Lett. 121, 257703 (2018). doi: 10.1103/physrevlett.
121.257703 (cit. on pp. 78, 79, 88, 106, 166).

[Kra+18b] R. Kraft, J. Mohrmann, R. Du, P. B. Selvasundaram, M. Irfan, U. N. Kanil-
maz, F. Wu, D. Beckmann, H. von Löhneysen, R. Krupke, A. Akhmerov,
I. Gornyi, and R. Danneau: Tailoring supercurrent confinement in graphene
bilayer weak links. Nat. Commun. 9, 1722 (2018). doi: 10.1038/s41467-
018-04153-4 (cit. on pp. 41, 48, 59–62, 106, 113, 160, 164).

[Kre+14] A. V. Kretinin, Y. Cao, J. S. Tu, G. L. Yu, R. Jalil, K. S. Novoselov, S. J.
Haigh, A. Gholinia, A. Mishchenko, M. Lozada, T. Georgiou, C. R.
Woods, F. Withers, P. Blake, G. Eda, A. Wirsig, C. Hucho, K. Watanabe,
T. Taniguchi, A. K. Geim, and R. V. Gorbachev: Electronic Properties of
Graphene Encapsulated with Different Two-Dimensional Atomic Crystals.
Nano Lett. 14, 3270–3276 (2014). doi: 10.1021/nl5006542 (cit. on p. 33).

[Kri+00] A. Kristensen, H. Bruus, A. E. Hansen, J. B. Jensen, P. E. Lindelof, C. J.
Marckmann, J. Nygård, C. B. Sørensen, F. Beuscher, A. Forchel, and M.
Michel: Bias and temperature dependence of the 0.7 conductance anomaly in
quantum point contacts. Phys. Rev. B 62, 10950–10957 (2000). doi: 10.1103/
physrevb.62.10950 (cit. on p. 93).

[Kro+18] J. G. Kroll, W. Uilhoorn, K. L. van der Enden, D. de Jong, K. Watanabe, T.
Taniguchi, S. Goswami, M. C. Cassidy, and L. P. Kouwenhoven: Magnetic
field compatible circuit quantum electrodynamics with graphene Josephson junc-
tions. Nat. Commun. 9, 4615 (2018). doi: 10.1038/s41467-018-07124-x
(cit. on p. 25).

139

https://doi.org/10.1103/physrevb.98.155435
https://doi.org/10.1103/physrevb.93.035304
https://doi.org/10.1103/physrevb.93.035304
https://doi.org/10.1103/physrevlett.101.056602
https://doi.org/10.1103/physrevlett.121.257703
https://doi.org/10.1103/physrevlett.121.257703
https://doi.org/10.1038/s41467-018-04153-4
https://doi.org/10.1038/s41467-018-04153-4
https://doi.org/10.1021/nl5006542
https://doi.org/10.1103/physrevb.62.10950
https://doi.org/10.1103/physrevb.62.10950
https://doi.org/10.1038/s41467-018-07124-x


Bibliography

[KO77] I. O. Kulik and A. N. Omel’yanchuk: Properties of superconducting micro-
bridges in the pure limit. Sov. J. Low Temp. Phys. 3:7 (1977) (cit. on pp. 24,
101).

[KO78] O. I. Kulik and A. N. Omel’yanchuk: Josephson effect in superconducting
bridges - Microscopic theory. Fiz. Nisk. Temp. 4, 296–311 (1978) (cit. on
p. 101).

[Kur+11] E. V. Kurganova, H. J. van Elferen, A. McCollam, L. A. Ponomarenko,
K. S. Novoselov, A. Veligura, B. J. van Wees, J. C. Maan, and U. Zeitler:
Spin splitting in graphene studied by means of tilted magnetic-field experiments.
Phys. Rev. B 84, 121407(R) (2011). doi: 10.1103/physrevb.84.121407 (cit.
on p. 94).

[Kuz+09] A. B. Kuzmenko, I. Crassee, D. van der Marel, P. Blake, and K. S.
Novoselov: Determination of the gate-tunable band gap and tight-binding
parameters in bilayer graphene using infrared spectroscopy. Phys. Rev. B 80,
165406 (2009). doi: 10.1103/physrevb.80.165406 (cit. on p. 11).

[LKF19] T. L. M. Lane, A. Knothe, and V. I. Fal’ko: Semimetallic features in quantum
transport through a gate-defined point contact in bilayer graphene. Phys. Rev.
B 100, 115427 (2019). doi: 10.1103/physrevb.100.115427 (cit. on pp. 89,
99).

[Lan+02] J. Lantz, V. S. Shumeiko, E. Bratus, and G. Wendin: Phase-dependent multi-
ple Andreev reflections in SNS interferometers. Phys. Rev. B 65, 134523 (2002).
doi: 10.1103/physrevb.65.134523 (cit. on p. 123).

[LSR07] A. Lassl, P. Schlagheck, and K. Richter: Effects of short-range interactions on
transport through quantum point contacts: A numerical approach. Phys. Rev.
B 75, 045346 (2007). doi: 10.1103/physrevb.75.045346 (cit. on p. 93).

[LFB99] U. Ledermann, A. L. Fauchère, and G. Blatter: Nonlocality in mesoscopic
Josephson junctions with strip geometry. Phys. Rev. B 59, R9027–R9030
(1999). doi: 10.1103/physrevb.59.r9027 (cit. on pp. 44, 57).

[LL18] G.-H. Lee and H.-J. Lee: Proximity coupling in superconductor-graphene het-
erostructures. Rep. Prog. Phys. 81, 056502 (2018). doi: 10.1088/1361-
6633/aaafe1 (cit. on pp. 24, 41).

[Lee+18] H. Lee, G.-H. Park, J. Park, G.-H. Lee, K. Watanabe, T. Taniguchi, and
H.-J. Lee: Edge-Limited Valley-Preserved Transport in Quasi-1D Constriction
of Bilayer Graphene. Nano Lett. 18, 5961–5966 (2018). doi: 10.1021/acs.
nanolett.8b02750 (cit. on p. 79).

140

https://doi.org/10.1103/physrevb.84.121407
https://doi.org/10.1103/physrevb.80.165406
https://doi.org/10.1103/physrevb.100.115427
https://doi.org/10.1103/physrevb.65.134523
https://doi.org/10.1103/physrevb.75.045346
https://doi.org/10.1103/physrevb.59.r9027
https://doi.org/10.1088/1361-6633/aaafe1
https://doi.org/10.1088/1361-6633/aaafe1
https://doi.org/10.1021/acs.nanolett.8b02750
https://doi.org/10.1021/acs.nanolett.8b02750


Bibliography

[Lee+14] S.-P. Lee, K. Michaeli, J. Alicea, and A. Yacoby: Revealing Topological Su-
perconductivity in Extended Quantum Spin Hall Josephson Junctions. Phys.
Rev. Lett. 113, 197001 (2014). doi: 10.1103/physrevlett.113.197001
(cit. on p. 47).

[Li+17] J. I. A. Li, C. Tan, S. Chen, Y. Zeng, T. Taniguchi, K. Watanabe, J. Hone,
and C. R. Dean: Even-denominator fractional quantum Hall states in bilayer
graphene. Science 358, 648–652 (2017). doi: 10.1126/science.aao2521
(cit. on p. 123).

[Li+11] J. Li, I. Martin, M. Büttiker, and A. F. Morpurgo: Topological origin of sub-
gap conductance in insulating bilayer graphene. Nat. Phys. 7, 38–42 (2011).
doi: 10.1038/nphys1822 (cit. on pp. 42, 63).

[Li+16] J. Li, K. Wang, K. J. McFaul, Z. Zern, Y. Ren, K. Watanabe, T. Taniguchi,
Z. Qiao, and J. Zhu: Gate-controlled topological conducting channels in bilayer
graphene. Nat. Nanotechnol. 11, 1060–1065 (2016). doi: 10.1038/nnano.
2016.158 (cit. on p. 79).

[Lia+10] C. Lian, K. Tahy, T. Fang, G. Li, H. G. Xing, and D. Jena: Quantum trans-
port in graphene nanoribbons patterned by metal masks. Appl. Phys. Lett. 96,
103109 (2010). doi: 10.1063/1.3352559 (cit. on p. 79).

[Lif60] I. M. Lifshitz: Anomalies of Electron Characteristics of a Metal in the High
Pressure Region. JETP 11, 1130 (1960) (cit. on p. 15).

[Lik79] K. K. Likharev: Superconducting weak links. Rev. Mod. Phys. 51, 101–159
(1979). doi: 10.1103/revmodphys.51.101 (cit. on pp. 3, 20, 21, 101, 102).

[Lin+08] Y.-M. Lin, V. Perebeinos, Z. Chen, and P. Avouris: Electrical observation
of subband formation in graphene nanoribbons. Phys. Rev. B 78, 161409(R)
(2008). doi: 10.1103/physrevb.78.161409 (cit. on p. 79).

[LYB11] H. Lind, I. I. Yakimenko, and K.-F. Berggren: Electric-field control of magne-
tization in biased semiconductor quantum wires and point contacts. Phys. Rev.
B 83, 075308 (2011). doi: 10.1103/physrevb.83.075308 (cit. on p. 93).

[Lud07] T. Ludwig: Andreev reflection in bilayer graphene. Phys. Rev. B 75, 195322
(2007). doi: 10.1103/physrevb.75.195322 (cit. on p. 22).

[Mar+17] K. Marinov, A. Avsar, K. Watanabe, T. Taniguchi, and A. Kis: Resolving
the spin splitting in the conduction band of monolayer MoS2. Nat. Commun.
8, 1938 (2017). doi: 10.1038/s41467-017-02047-5 (cit. on p. 95).

[Mar+08a] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Kl-
itzing, and A. Yacoby: Observation of electron–hole puddles in graphene us-
ing a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2008). doi:
10.1038/nphys781 (cit. on p. 5).

141

https://doi.org/10.1103/physrevlett.113.197001
https://doi.org/10.1126/science.aao2521
https://doi.org/10.1038/nphys1822
https://doi.org/10.1038/nnano.2016.158
https://doi.org/10.1038/nnano.2016.158
https://doi.org/10.1063/1.3352559
https://doi.org/10.1103/revmodphys.51.101
https://doi.org/10.1103/physrevb.78.161409
https://doi.org/10.1103/physrevb.83.075308
https://doi.org/10.1103/physrevb.75.195322
https://doi.org/10.1038/s41467-017-02047-5
https://doi.org/10.1038/nphys781


Bibliography

[Mar+08b] T. P. Martin, A. Szorkovszky, A. P. Micolich, A. R. Hamilton, C. A. Mar-
low, H. Linke, R. P. Taylor, and L. Samuelson: Enhanced Zeeman splitting in
Ga0.25In0.75As quantum point contacts. Appl. Phys. Lett. 93, 012105 (2008).
doi: 10.1063/1.2957033 (cit. on p. 95).

[Mar+10] T. P. Martin, A. Szorkovszky, A. P. Micolich, A. R. Hamilton, C. A. Mar-
low, R. P. Taylor, H. Linke, and H. Q. Xu: Field-orientation dependence of the
Zeeman spin splitting in (In,Ga)As quantum point contacts. Phys. Rev. B 81,
041303(R) (2010). doi: 10.1103/physrevb.81.041303 (cit. on pp. 95, 96).

[Mar+92] L. Martin-Moreno, J. T. Nicholls, N. K. Patel, and M. Pepper: Non-linear
conductance of a saddle-point constriction. J. Phys.: Condens. Matter 4, 1323–
1333 (1992). doi: 10.1088/0953-8984/4/5/012 (cit. on p. 84).

[MTS91] K. Matsubara, T. Tsuzuku, and K. Sugihara: Electron spin resonance in
graphite. Phys. Rev. B 44, 11845–11851 (1991). doi: 10.1103/physrevb.
44.11845 (cit. on p. 94).

[Mat04] K. A. Matveev: Conductance of a quantum wire at low electron density. Phys.
Rev. B 70, 245319 (2004). doi: 10.1103/physrevb.70.245319 (cit. on
p. 93).

[May+11] A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil, L. A.
Ponomarenko, P. Blake, K. S. Novoselov, K. Watanabe, T. Taniguchi, and
A. K. Geim: Micrometer-Scale Ballistic Transport in Encapsulated Graphene
at Room Temperature. Nano Lett. 11, 2396–2399 (2011). doi: 10 . 1021 /

nl200758b (cit. on pp. 6, 8).

[McC06] E. McCann: Asymmetry gap in the electronic band structure of bilayer
graphene. Phys. Rev. B 74, 161403(R) (2006). doi: 10.1103/physrevb.
74.161403 (cit. on pp. 2, 10, 13, 14, 41, 88).

[MF06] E. McCann and V. I. Fal’ko: Landau-Level Degeneracy and Quantum Hall
Effect in a Graphite Bilayer. Phys. Rev. Lett. 96, 086805 (2006). doi: 10.
1103/physrevlett.96.086805 (cit. on pp. 10–12, 15).

[MK13] E. McCann and M. Koshino: The electronic properties of bilayer graphene.
Rep. Prog. Phys. 76, 056503 (2013). doi: 10.1088/0034- 4885/76/5/
056503 (cit. on pp. 2, 10–15, 41, 87, 89, 99, 114).

[McC57] J. W. McClure: Band Structure of Graphite and de Haas-van Alphen Effect.
Phys. Rev. 108, 612–618 (1957). doi: 10.1103/physrev.108.612 (cit. on
p. 11).

[McG+10] L. M. McGuire, M. Friesen, K. A. Slinker, S. N. Coppersmith, and M. A.
Eriksson: Valley splitting in a Si/SiGe quantum point contact. New J. Phys.
12, 033039 (2010). doi: 10.1088/1367-2630/12/3/033039 (cit. on pp. 78,
88).

142

https://doi.org/10.1063/1.2957033
https://doi.org/10.1103/physrevb.81.041303
https://doi.org/10.1088/0953-8984/4/5/012
https://doi.org/10.1103/physrevb.44.11845
https://doi.org/10.1103/physrevb.44.11845
https://doi.org/10.1103/physrevb.70.245319
https://doi.org/10.1021/nl200758b
https://doi.org/10.1021/nl200758b
https://doi.org/10.1103/physrevb.74.161403
https://doi.org/10.1103/physrevb.74.161403
https://doi.org/10.1103/physrevlett.96.086805
https://doi.org/10.1103/physrevlett.96.086805
https://doi.org/10.1088/0034-4885/76/5/056503
https://doi.org/10.1088/0034-4885/76/5/056503
https://doi.org/10.1103/physrev.108.612
https://doi.org/10.1088/1367-2630/12/3/033039


Bibliography

[MFG16] H. Meier, V. I. Fal’ko, and L. I. Glazman: Edge effects in the magnetic in-
terference pattern of a ballistic SNS junction. Phys. Rev. B 93, 184506 (2016).
doi: 10.1103/physrevb.93.184506 (cit. on pp. 44, 47, 57, 59).

[MHW02] Y. Meir, K. Hirose, and N. S. Wingreen: Kondo Model for the “0.7 Anomaly”
in Transport through a Quantum Point Contact. Phys. Rev. Lett. 89, 196802
(2002). doi: 10.1103/physrevlett.89.196802 (cit. on p. 93).

[Men+17] N. Menezes, V. S. Alves, E. C. Marino, L. Nascimento, L. O. Nascimento,
and C. M. Smith: Spin g -factor due to electronic interactions in graphene.
Phys. Rev. B 95, 245138 (2017). doi: 10.1103/physrevb.95.245138 (cit.
on p. 94).

[Mey+07] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth,
and S. Roth: The structure of suspended graphene sheets. Nature 446, 60–63
(2007). doi: 10.1038/nature05545 (cit. on p. 6).

[Mic11] A. P. Micolich: What lurks below the last plateau: experimental studies of the
0.7× 2e2/h conductance anomaly in one-dimensional systems. J. Phys.: Con-
dens. Matter 23, 443201 (2011). doi: 10.1088/0953-8984/23/44/443201
(cit. on pp. 92, 93).

[Mil+07] J. B. Miller, I. P. Radu, D. M. Zumbühl, E. M. Levenson-Falk, M. A. Kast-
ner, C. M. Marcus, L. N. Pfeiffer, and K. W. West: Fractional quantum Hall
effect in a quantum point contact at filling fraction 5/2. Nat. Phys. 3, 561–565
(2007). doi: 10.1038/nphys658 (cit. on p. 123).

[Mis+17] D. S. Miserev, A. Srinivasan, O. A. Tkachenko, V. A. Tkachenko, I. Far-
rer, D. A. Ritchie, A. R. Hamilton, and O. P. Sushkov: Mechanisms for
Strong Anisotropy of In-Plane g-Factors in Hole Based Quantum Point Con-
tacts. Phys. Rev. Lett. 119, 116803 (2017). doi: 10.1103/physrevlett.119.
116803 (cit. on p. 95).

[Miy+10] H. Miyazaki, K. Tsukagoshi, A. Kanda, M. Otani, and S. Okada: Influence
of Disorder on Conductance in Bilayer Graphene under Perpendicular Electric
Field. Nano Lett. 10, 3888–3892 (2010). doi: 10.1021/nl1015365 (cit. on
pp. 2, 42).

[Miz+18] R. Mizokuchi, R. Maurand, F. Vigneau, M. Myronov, and S. De Franceschi:
Ballistic One-Dimensional Holes with Strong g-Factor Anisotropy in Germa-
nium. Nano Lett. 18, 4861–4865 (2018). doi: 10.1021/acs.nanolett.
8b01457 (cit. on pp. 93, 96).

[MND13] N. Mizuno, B. Nielsen, and X. Du: Ballistic-like supercurrent in suspended
graphene Josephson weak links. Nat. Commun. 4, 2716 (2013). doi: 10.1038/
ncomms3716 (cit. on p. 24).

143

https://doi.org/10.1103/physrevb.93.184506
https://doi.org/10.1103/physrevlett.89.196802
https://doi.org/10.1103/physrevb.95.245138
https://doi.org/10.1038/nature05545
https://doi.org/10.1088/0953-8984/23/44/443201
https://doi.org/10.1038/nphys658
https://doi.org/10.1103/physrevlett.119.116803
https://doi.org/10.1103/physrevlett.119.116803
https://doi.org/10.1021/nl1015365
https://doi.org/10.1021/acs.nanolett.8b01457
https://doi.org/10.1021/acs.nanolett.8b01457
https://doi.org/10.1038/ncomms3716
https://doi.org/10.1038/ncomms3716


Bibliography

[MZ07] A. G. Moghaddam and M. Zareyan: Graphene-based superconducting quan-
tum point contacts. Appl. Phys. A 89, 579–585 (2007). doi: 10 . 1007 /

s00339-007-4187-2 (cit. on pp. 104, 116).

[Moh16] J. Mohrmann: Quantum Transport and Shot Noise in Graphene-Boron Nitride
Heterostructures. PhD thesis. Karlsruhe Institute of Technology, 2016 (cit.
on p. 37).

[Mor+08] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C.
Elias, J. A. Jaszczak, and A. K. Geim: Giant Intrinsic Carrier Mobilities
in Graphene and Its Bilayer. Phys. Rev. Lett. 100, 016602 (2008). doi:
10.1103/physrevlett.100.016602 (cit. on p. 5).

[MRJ92] C. J. Muller, J. M. van Ruitenbeek, and L. J. de Jongh: Conductance and
supercurrent discontinuities in atomic-scale metallic constrictions of variable
width. Phys. Rev. Lett. 69, 140–143 (1992). doi: 10.1103/physrevlett.69.
140 (cit. on p. 105).

[MCP12] W. A. Muñoz, L. Covaci, and F. M. Peeters: Tight-binding study of bilayer
graphene Josephson junctions. Phys. Rev. B 86, 184505 (2012). doi: 10.1103/
physrevb.86.184505 (cit. on pp. 24, 46, 107).

[NYF82] S. Nagata, H. C. Yang, and D. K. Finnemore: Oscillations in the temperature
dependence of Josephson supercurrents in SNS junctions. Phys. Rev. B 25,
6012–6014 (1982). doi: 10.1103/physrevb.25.6012 (cit. on p. 44).

[Nai+08] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T.
Stauber, N. M. R. Peres, and A. K. Geim: Fine Structure Constant Defines
Visual Transparency of Graphene. Science 320, 1308 (2008). doi: 10.1126/
science.1156965 (cit. on p. 28).

[Nan+17] G. Nanda, J. L. Aguilera-Servin, P. Rakyta, A. Kormányos, R. Kleiner,
D. Koelle, K. Watanabe, T. Taniguchi, L. M. K. Vandersypen, and S.
Goswami: Current-Phase Relation of Ballistic Graphene Josephson Junctions.
Nano Lett. 17, 3396–3401 (2017). doi: 10.1021/acs.nanolett.7b00097
(cit. on p. 46).

[Nil+11] H. A. Nilsson, P. Samuelsson, P. Caroff, and H. Q. Xu: Supercurrent and
Multiple Andreev Reflections in an InSb Nanowire Josephson Junction. Nano
Lett. 12, 228–233 (2011). doi: 10.1021/nl203380w (cit. on p. 108).

[Nov+12] K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab,
and K. Kim: A roadmap for graphene. Nature 490, 192–200 (2012). doi:
10.1038/nature11458 (cit. on p. 2).

144

https://doi.org/10.1007/s00339-007-4187-2
https://doi.org/10.1007/s00339-007-4187-2
https://doi.org/10.1103/physrevlett.100.016602
https://doi.org/10.1103/physrevlett.69.140
https://doi.org/10.1103/physrevlett.69.140
https://doi.org/10.1103/physrevb.86.184505
https://doi.org/10.1103/physrevb.86.184505
https://doi.org/10.1103/physrevb.25.6012
https://doi.org/10.1126/science.1156965
https://doi.org/10.1126/science.1156965
https://doi.org/10.1021/acs.nanolett.7b00097
https://doi.org/10.1021/nl203380w
https://doi.org/10.1038/nature11458


Bibliography

[Nov+05a] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson,
I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov: Two-dimensional gas
of massless Dirac fermions in graphene. Nature 438, 197–200 (2005). doi:
10.1038/nature04233 (cit. on p. 1).

[Nov+04] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.
Dubonos, I. V. Grigorieva, and A. A. Firsov: Electric Field Effect in Atom-
ically Thin Carbon Films. Science 306, 666–669 (2004). doi: 10 . 1126 /

science.1102896 (cit. on p. 1).

[Nov+05b] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V.
Morozov, and A. K. Geim: Two-dimensional atomic crystals. PNAS 102,
10451–10453 (2005). doi: 10.1073/pnas.0502848102 (cit. on pp. 5, 27, 28).

[Nov+16] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto: 2D
materials and van der Waals heterostructures. Science 353, aac9439 (2016).
doi: 10.1126/science.aac9439 (cit. on pp. 2, 8, 9).

[Oct+83] M. Octavio, M. Tinkham, G. E. Blonder, and T. M. Klapwijk: Subharmonic
energy-gap structure in superconducting constrictions. Phys. Rev. B 27, 6739–
6746 (1983). doi: 10.1103/physrevb.27.6739 (cit. on pp. 23, 51, 111, 116).

[Oht+06] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg: Controlling
the Electronic Structure of Bilayer Graphene. Science 313, 951–954 (2006).
doi: 10.1126/science.1130681 (cit. on p. 13).

[Oos+08] J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K.
Vandersypen: Gate-induced insulating state in bilayer graphene devices. Nat.
Mater. 7, 151–157 (2008). doi: 10.1038/nmat2082 (cit. on pp. 2, 13, 41, 42,
53).

[Ove+18a] H. Overweg, H. Eggimann, X. Chen, S. Slizovskiy, M. Eich, R. Pisoni, Y.
Lee, P. Rickhaus, K. Watanabe, T. Taniguchi, V. Fal’ko, T. Ihn, and K. En-
sslin: Electrostatically Induced Quantum Point Contacts in Bilayer Graphene.
Nano Lett. 18, 553–559 (2018). doi: 10.1021/acs.nanolett.7b04666 (cit.
on pp. 31, 79, 86, 97, 99).

[Ove+18b] H. Overweg, A. Knothe, T. Fabian, L. Linhart, P. Rickhaus, L. Wernli,
K. Watanabe, T. Taniguchi, D. Sánchez, J. Burgdörfer, F. Libisch, V. I.
Fal’ko, K. Ensslin, and T. Ihn: Topologically Nontrivial Valley States in Bi-
layer Graphene Quantum Point Contacts. Phys. Rev. Lett. 121, 257702 (2018).
doi: 10.1103/physrevlett.121.257702 (cit. on pp. 79, 97, 99).

145

https://doi.org/10.1038/nature04233
https://doi.org/10.1126/science.1102896
https://doi.org/10.1126/science.1102896
https://doi.org/10.1073/pnas.0502848102
https://doi.org/10.1126/science.aac9439
https://doi.org/10.1103/physrevb.27.6739
https://doi.org/10.1126/science.1130681
https://doi.org/10.1038/nmat2082
https://doi.org/10.1021/acs.nanolett.7b04666
https://doi.org/10.1103/physrevlett.121.257702


Bibliography

[Par+18] J. Park, J. H. Lee, G.-H. Lee, Y. Takane, K.-I. Imura, T. Taniguchi, K.
Watanabe, and H.-J. Lee: Short Ballistic Josephson Coupling in Planar
Graphene Junctions with Inhomogeneous Carrier Doping. Phys. Rev. Lett.
120, 077701 (2018). doi: 10 . 1103 / physrevlett . 120 . 077701 (cit. on
p. 107).

[Pat+90] N. K. Patel, L. Martin-Moreno, M. Pepper, R. Newbury, J. E. F. Frost,
D. A. Ritchie, G. A. C. Jones, J. T. M. B. Janssen, J. Singleton, and J. A. A. J.
Perenboom: Ballistic transport in one dimension: additional quantisation pro-
duced by an electric field. J. Phys.: Condens. Matter 2, 7247–7254 (1990).
doi: 10.1088/0953-8984/2/34/018 (cit. on p. 84).

[Pat+91] N. K. Patel, J. T. Nicholls, L. Martn-Moreno, M. Pepper, J. E. F. Frost,
D. A. Ritchie, and G. A. C. Jones: Evolution of half plateaus as a function of
electric field in a ballistic quasi-one-dimensional constriction. Phys. Rev. B 44,
13549–13555 (1991). doi: 10.1103/physrevb.44.13549 (cit. on pp. 84, 95).

[Piz+16] F. Pizzocchero, L. Gammelgaard, B. S. Jessen, J. M. Caridad, L. Wang,
J. Hone, P. Bøggild, and T. J. Booth: The hot pick-up technique for batch
assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).
doi: 10.1038/ncomms11894 (cit. on pp. 27, 30, 33).

[Pon+13] L. A. Ponomarenko, R. V. Gorbachev, G. L. Yu, D. C. Elias, R. Jalil,
A. A. Patel, A. Mishchenko, A. S. Mayorov, C. R. Woods, J. R. Wall-
bank, M. Mucha-Kruczynski, B. A. Piot, M. Potemski, I. V. Grigorieva,
K. S. Novoselov, F. Guinea, V. I. Fal’ko, and A. K. Geim: Cloning of
Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013). doi:
10.1038/nature12187 (cit. on p. 9).

[Pot+02] R. M. Potok, J. A. Folk, C. M. Marcus, and V. Umansky: Detecting Spin-
Polarized Currents in Ballistic Nanostructures. Phys. Rev. Lett. 89, 266602
(2002). doi: 10.1103/physrevlett.89.266602 (cit. on p. 95).

[Pri+15] V. S. Pribiag, A. J. A. Beukman, F. Qu, M. C. Cassidy, C. Charpentier,
W. Wegscheider, and L. P. Kouwenhoven: Edge-mode superconductivity in a
two-dimensional topological insulator. Nat. Nanotechnol. 10, 593–597 (2015).
doi: 10.1038/nnano.2015.86 (cit. on pp. 45, 47).

[Qu+16] F. Qu, J. van Veen, F. K. de Vries, A. J. A. Beukman, M. Wimmer, W.
Yi, A. A. Kiselev, B.-M. Nguyen, M. Sokolich, M. J. Manfra, F. Nichele,
C. M. Marcus, and L. P. Kouwenhoven: Quantized Conductance and Large
g-Factor Anisotropy in InSb Quantum Point Contacts. Nano Lett. 16, 7509–
7513 (2016). doi: 10.1021/acs.nanolett.6b03297 (cit. on p. 96).

146

https://doi.org/10.1103/physrevlett.120.077701
https://doi.org/10.1088/0953-8984/2/34/018
https://doi.org/10.1103/physrevb.44.13549
https://doi.org/10.1038/ncomms11894
https://doi.org/10.1038/nature12187
https://doi.org/10.1103/physrevlett.89.266602
https://doi.org/10.1038/nnano.2015.86
https://doi.org/10.1021/acs.nanolett.6b03297


Bibliography

[RKC16] P. Rakyta, A. Kormányos, and J. Cserti: Magnetic field oscillations of the
critical current in long ballistic graphene Josephson junctions. Phys. Rev. B 93,
224510 (2016). doi: 10.1103/physrevb.93.224510 (cit. on pp. 24, 46, 57,
107).

[Rao+11] S. S. Rao, A. Stesmans, K. Keunen, D. V. Kosynkin, A. Higginbotham, and
J. M. Tour: Unzipped graphene nanoribbons as sensitive O2 sensors: Electron
spin resonance probing and dissociation kinetics. Appl. Phys. Lett. 98, 083116
(2011). doi: 10.1063/1.3559229 (cit. on p. 94).

[Rei05] D. J. Reilly: Phenomenological model for the 0.7 conductance feature in quan-
tum wires. Phys. Rev. B 72, 033309 (2005). doi: 10.1103/physrevb.72.
033309 (cit. on p. 93).

[Rei+02] D. J. Reilly, T. M. Buehler, J. L. O’Brien, A. R. Hamilton, A. S. Dzurak,
R. G. Clark, B. E. Kane, L. N. Pfeiffer, and K. W. West: Density-Dependent
Spin Polarization in Ultra-Low-Disorder Quantum Wires. Phys. Rev. Lett. 89,
246801 (2002). doi: 10.1103/physrevlett.89.246801 (cit. on p. 93).

[RRJ00] T. Rejec, A. Ramšak, and J. H. Jefferson: Spin-dependent resonances in the
conduction edge of quantum wires. Phys. Rev. B 62, 12985–12989 (2000). doi:
10.1103/physrevb.62.12985 (cit. on p. 93).

[RM06] T. Rejec and Y. Meir: Magnetic impurity formation in quantum point contacts.
Nature 442, 900–903 (2006). doi: 10.1038/nature05054 (cit. on p. 93).

[Rez+95] M. Reznikov, M. Heiblum, H. Shtrikman, and D. Mahalu: Temporal Cor-
relation of Electrons: Suppression of Shot Noise in a Ballistic Quantum Point
Contact. Phys. Rev. Lett. 75, 3340–3343 (1995). doi: 10.1103/physrevlett.
75.3340 (cit. on p. 31).

[Rib+18] R. Ribeiro-Palau, C. Zhang, K. Watanabe, T. Taniguchi, J. Hone, and C. R.
Dean: Twistable electronics with dynamically rotatable heterostructures. Sci-
ence 361, 690–693 (2018). doi: 10.1126/science.aat6981 (cit. on p. 9).

[Ric+13] P. Rickhaus, R. Maurand, M.-H. Liu, M. Weiss, K. Richter, and C. Schö-
nenberger: Ballistic interferences in suspended graphene. Nat. Commun. 4,
2342 (2013). doi: 10.1038/ncomms3342 (cit. on pp. 50, 65, 159).

[Riw+16] R.-P. Riwar, M. Houzet, J. S. Meyer, and Y. V. Nazarov: Multi-terminal
Josephson junctions as topological matter. Nat. Commun. 7, 11167 (2016).
doi: 10.1038/ncomms11167 (cit. on p. 123).

[Rod+07] S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, and F. Beltram: The Optical
Visibility of Graphene: Interference Colors of Ultrathin Graphite on SiO2. Nano
Lett. 7, 2707–2710 (2007). doi: 10.1021/nl071158l (cit. on p. 28).

147

https://doi.org/10.1103/physrevb.93.224510
https://doi.org/10.1063/1.3559229
https://doi.org/10.1103/physrevb.72.033309
https://doi.org/10.1103/physrevb.72.033309
https://doi.org/10.1103/physrevlett.89.246801
https://doi.org/10.1103/physrevb.62.12985
https://doi.org/10.1038/nature05054
https://doi.org/10.1103/physrevlett.75.3340
https://doi.org/10.1103/physrevlett.75.3340
https://doi.org/10.1126/science.aat6981
https://doi.org/10.1038/ncomms3342
https://doi.org/10.1038/ncomms11167
https://doi.org/10.1021/nl071158l


Bibliography

[Row63] J. M. Rowell: Magnetic Field Dependence of the Josephson Tunnel Current.
Phys. Rev. Lett. 11, 200–202 (1963). doi: 10.1103/physrevlett.11.200
(cit. on p. 44).

[RTB07] A. Rycerz, J. Tworzydło, and C. W. J. Beenakker: Valley filter and valley
valve in graphene. Nat. Phys. 3, 172–175 (2007). doi: 10.1038/nphys547
(cit. on pp. 2, 123).

[Sca+06] G. Scappucci, L. Di Gaspare, E. Giovine, A. Notargiacomo, R. Leoni, and
F. Evangelisti: Conductance quantization in etched Si/SiGe quantum point
contacts. Phys. Rev. B 74, 035321 (2006). doi: 10.1103/physrevb.74.
035321 (cit. on pp. 78, 93).

[Sch+16] J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao,
and X. Xu: Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).
doi: 10.1038/natrevmats.2016.55 (cit. on p. 123).

[Sch+98] E. Scheer, N. Agraït, J. C. Cuevas, A. L. Yeyati, B. Ludoph, A. Martín-
Rodero, G. R. Bollinger, J. M. van Ruitenbeek, and C. Urbina: The sig-
nature of chemical valence in the electrical conduction through a single-atom
contact. Nature 394, 154–157 (1998). doi: 10.1038/28112 (cit. on p. 105).

[Sch+18] F. E. Schmidt, M. D. Jenkins, K. Watanabe, T. Taniguchi, and G. A. Steele:
A ballistic graphene superconducting microwave circuit. Nat. Commun. 9,
4069 (2018). doi: 10.1038/s41467-018-06595-2 (cit. on pp. 25, 46).

[Sch+10] J. M. Schneider, N. A. Goncharuk, P. Vašek, P. Svoboda, Z. Výborný, L.
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Appendix

A Sample fabrication recipes

A.1 Atomic layer deposition

The Al2O3 layers are fabricated with atomic layer deposition (ALD) using the fol-
lowing parameters: 182 TMA/H2O (trymethylaluminium/water) cycles at 90 ◦C for
20 nm oxide.

A.2 Reactive ion etching

The hBN/BLG/hBN vdW heterostructure stacks are etched using reactive ion etch-
ing (Oxford Instruments Plasmalab 80 reactor) with a mixture of 40 sccm/4 sccm
CHF3/O2 at a pressure of 60 mTorr. The etch rate for hBN is first calibrated using
a test hBN which was initially determined as ≈ 48 nm min−1, and later after several
maintaining steps of the machine as ≈ 40 nm min−1.
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Figure B.1: Landau level fan diagram. (a, b) Conductance and differentiated conductance as a function
of VBG and magnetic field B at constant VSG = 0. Labels ν denote the filling factor of the Landau levels.
The Landau fan is well-developed down to a few hundred mT, highlighting the high quality of the
device. (c) Respective conductance traces at constant B = 2 T→ 5 T in steps of 0.5 T. The curves reveal
a characteristic “N-shape” distortion of the plateaus as expected for two-terminal magnetotransport
measurements in samples with high aspect ratio W/L [Wil+09]. The overshoot of the conductance
plateaus is caused by the finite contribution of the longitudinal conductivity in the two-terminal setup
and appears stronger pronounced on the electron side due to the higher mobility. Data from CD#1.

B Supplementary information: QPC-like con�nement

B.1 Speci�c gate capacitances

Charge carrier densities induced by BG and SG are calculated in the parallel plate
capacitor model as nBG = CBG

e (VBG − Vcnp
BG ) and nSG = CSG

e (VSG − Vcnp
SG ). In the outer

regions of the device the charge carrier density is given by nout = nBG, while in the
dual-gated region the charge carrier density is obtained by the sum nin = nBG + nSG.
We determine the specific BG capacitance CBG from the Landau level fan diagram at
VSG = 0, shown in Fig. B.1. By fitting the slopes of the Landau levels B = nh/eν

for different filling factors ν, we find CBG = 3.9× 1011 cm−2 V−1. The specific SG
capacitance CSG can then be determined from the slope of the charge neutrality line
δD = 0 in the SG-BG resistance map (see Fig. 4.6a): CSG = CBG |∆VBG/∆VSG| =
4.15× 1011 cm−2 V−1.
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(a) (b) (c)

(d)

(e) (f)

Figure B.2: Fabry-Pérot interferences and ballistic supercurrent. (b) Numerical derivative of the
conductance in the normal state (B = 20 mT) as a function of VSG and VBG (corresponds to the data
of the gate-gate-map shown in Fig. 4.6a). (a, e, f) Zoom-in panels on regions NPN, PPP and PNP,
respectively. Colored exemplary lines highlight visible resonances. (c) Schematic of the device with
indicated cavities that are responsible for the observed sets of Fabry-Pérot interferences. (d) Color map
of the differential resistance (at B = 0) as a function of VSG and bias current I at constant VBG = 3 V,
showing the tuning of the supercurrent in region NPN as denoted by the cyan line in (a). Data from
CD#1.

B.2 Fabry-Pérot interferences and ballistic supercurrent

The gate dependence of the conductance in the normal state reveals multiple oscilla-
tion patterns that can be attributed to Fabry-Pérot interferences arising from different
cavities in the device [SRL08; YK09; Ric+13; Var+14b; Du+18]. Figure B.2b shows the
map of the differentiated conductance as a function of VSG and VBG (corresponding
to the data in Fig. 4.6a). The different sets of observed interference patterns can be
assigned to their respective cavities by evaluating periodicity, slope and appearance
in the map (see Fig. B.2a, c, e, f). The effective cavity length can be determined fol-
lowing from the resonance condition ∆kF × L = π (where ∆kF = kF, j+1 − kF, j is the
difference in Fermi wave vector between two resonances). In the unipolar regime PPP,
the cavity is formed by the pn-junctions at the interfaces of the graphene sheet with
the two metallic electrodes. The spacing between resonances is ∆kF ≈ 3.2× 106 m−1,
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(a) (b) (c)

Figure B.3: Hysteretic behavior. (a) Up- and down-sweep IV curves at constant VBG = 8 V for three
different conditions: approximately uniform 2D weak link (VSG = 0; dark blue), and right before or af-
ter the constriction is fully developed (VSG = −6.2 V; light blue and VSG = −7.0 V; green, respectively).
(b) Fitted underdamped IV curve of the uniform 2D weak link (VSG = 0) following the RCSJ model in
Eq. 2.12 with parameters Rn = 100 Ω, C = 27 fF and Ic = 1.67 µA. (c) Zoom-in on the other two curves
(black dashed box in (a)). The additional black line is plotted based on the simplified expression of
the RCSJ model for overdamped junctions (cf. Eq. B.1) using Ic = 100 nA and Rn = 816 Ω. Data from
CD#1.

yielding an effective cavity size of L . 1 µm which is consistent with the geometrical
size of the device. Thus, the occurrence of Fabry-Pérot interferences in region PPP
indicate ballistic transport on a length scale larger than the device dimensions, i. e. at
least twice the cavity size. [Kra+18b]

The amplitude of the supercurrent is found to be as well modulated in correlation
with the Fabry-Pérot interferences. Figure B.2d shows a bias current map of the
differential resistance versus VSG recorded at VBG = 3 V, i. e. in region NPN. The
critical current clearly oscillates following the Fabry-Pérot resonances in the normal
state as observed in ballistic graphene weak links [Cal+15; Ben+16]. [Kra+18b]

B.3 Hysteresis of the IV curve under in�uence of con�nement

The impact of the constriction on the hysteretic behavior of the Josephson effect is
shown in Fig. B.3a. As we can see on the IV curves (up and down bias sweeps),
a slight hysteresis (Ir/Ic ≈ 0.9) occurs at sufficiently high charge carrier density
(VBG = 8 V and VSG = 0; dark blue curve) and disappears once the constriction
develops (VSG = −6.2 V or VSG = −7.0 V; light blue and green curves, respec-
tively). Within the RCSJ model (see subsection 2.3.2) [Tin04], the Josephson junction is
tuned from underdamped to overdamped. We note that also for small n-type doping
. 1.5× 1012 cm−2, as well as for p-type doping no hysteresis is detected. [Kra+18b]
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Figure B.3b shows a fit with the RCSJ model (Eq. 2.12) to the underdamped case
of the approximately uniform junction at VSG = 0, from which a plasma frequency
ωp = 4.34× 1011 Hz (β = 1.37) is obtained. We note that although the hysteretic
behavior can be captured within the RCSJ model, the larger current (enhanced subgap
conductance) due to MAR is not. This is because of the assumed constant resistance
Rn which does clearly not describe the weak link dynamics properly.

A zoom-in on the other two cases with finite negative SG voltage is shown in Fig. B.3c.
As mentioned above, the junction becomes overdamped (i. e. no hysteresis is observed)
with developing confinement which is the regime of interest for our experiments. For
the overdamped junction case (β� 1) the equation of motion in the RCSJ framework
(Eq. 2.12) can be simplified by neglecting the capacitance, resulting in a first order
differential equation with solution [Tin04]

V = IcRn

√(
I
Ic
− 1
)

, |I| ≥ Ic . (B.1)

The additionally shown thin black curve in Fig. B.3c is plotted according to this equa-
tion for comparison with the green curve (VSG = −7 V). The employed parameters are
the normal state resistance Rn = 816 Ω and a value for the critical current Ic = 100 nA
determined from the position of the maximum resistance peak (dV/dI as a func-
tion of I) at the switching. The experimentally measured curve is clearly different
and displays a rather rounded switching and is not perfectly straight at zero current
with a small but finite resistance < 5 Ω. In the Ambegaokar-Halperin model [AH69]
(see subsection 2.3.2) this is understood as the phase diffusion due to thermal activa-
tion. For the measured critical current in the confined regime Ic ∼ 100 nA one finds
for the normalized activation energy u ≈ 238 at the base temperature of the experi-
ment T ≈ 20 mK or u ≈ 48 considering a somewhat higher electronic temperature of
100 mK. From Fig. 2.9 it can be seen that the IV curve starts to get rounded in shape
at values of u in the same order.

With respect to the analysis in chapters 4 and 6 the rounding of the IV curves makes
the definition for extracting the critical current Ic difficult. The extracted values are
rather switching currents smaller than the critical current Isw < Ic. This is of particular
importance to notice for comparing our step heights of the discretized critical current
δIc with the theoretical expectation Ic0 (or δIc0, respectively). Therefore, we have
defined in chapter 6 the position of the maximum resistance at the switching as the
criteria for extracting Ic, although this maximum appears at finite voltage due to the
gradual transition to the voltage state of the junction.
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(a) (b) (c)

(d) (e) (f)

Figure B.4: Additional superconducting magneto-interferometry data. (a-e) Color maps of the dif-
ferential resistance as a function of magnetic field B and current I at constant VBG = 6 V for different
values of VSG as given in the plots. The respective gate conditions (VSG and VBG) of each panel are
displayed by colored dots in the gate-gate-map (superconducting state, B = 0) shown in (f). Data from
CD#1.

B.4 Additional superconducting magneto-interferometry data

Here, an additional series of superconducting magnetic interference patterns is pre-
sented for a different gate condition VBG = 6 V (Fig. B.4a-e), clearly revealing the
transition from a beating to a non-beating pattern corresponding to the creation of
the 1D constriction. The crossover occurs consistently with the other data in the main
text upon the tuning of the Fermi level into the band gap (see Fig. B.4f), here observed
between −5.0 V < VSG < −5.5 V (although not precisely mapped out).

B.5 Ambipolar supercurrent con�nement

As discussed in the main text, there is a large asymmetry between n- and p-type
doping due to the formation of pn-junctions at the metal contacts, resulting in critical
current values reduced by about an order of magnitude. Nonetheless, the formation
of the constriction can be observed as well on the p-side. Figure B.5 shows a series
of superconducting magnetic interference patterns at VBG = −10 V. Even though the
monitored patterns are somewhat fainter developed, the trend from beating to non-
beating pattern is clearly visible (but it should be noted that the IV curves have a
finite slope).
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(a) (b) (c)

(d) (e) (f)

Figure B.5: Supercurrent confinement in the case of hole doping. (a-e) Color maps of the differential
resistance as a function of B and I, showing superconducting magnetic interference patterns at constant
VBG = −10 V for different values of VSG as given in the plots. The respective gate conditions (VSG and
VBG) of each panel are displayed by colored dots in the gate-gate-map (superconducting state, B = 0)
shown in (f). Note that these data sets were only recorded after added overall TG. Data from CD#4.
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B.6 Geometry-dependent functions for the analytical model

The geometry-dependent functions f0(W/L) and f1(W/L) appearing in Eqs. 4.9 and
4.10 of the main text, respectively, are defined as follows (x ≡W/L) [Kra+18b]:

f0(x) =

√
x2 + 1 log

(√
x2 + 1 + x

)
x

− x
x + (x2 + 1) arctan(x)

(B.2)

and

f1(x) =
π3/2 (1 + x2)3/2

8x2[x + (1 + x2) arctan(x)]
. (B.3)

B.7 Estimate of the band gap

We provide a quantitative estimation of the electronic band gap induced by the dis-
placement field. The gap should be much larger than the potential fluctuations com-
ing from the residual charge carrier inhomogeneity nres ≈ 2.6× 1010 cm−2 (see main
text) which corresponds to an energy E ≈ 1 meV. Such a band gap could be obtained
following Eqs. 2.5 and 2.8 by applying back gate and top gate values of for example
VBG = 0.14 V and VSG = −0.13 V, respectively. In our experiments (see section 4.2), we
studied the confinement at VBG = 8 V. Then at VSG = −7.6 V (i. e. a value within the
range of observed fully developed confinement, and corresponding to a displacement
field of D̄ ≈ 0.56 V nm−1) we find a theoretical electronic band gap of Egap ≈ 85 meV,
which is in particular much larger than the potential fluctuations. [Kra+18b]
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Figure C.1: Landau level fan and Fabry-Pérot interferences. Right: Differentiated conductance as a
function of VBG and magnetic field B at VSG = 0. Left: Zoom-in measurement on the black dashed
box with higher resolution, showing the conductance oscillations δG = G− Ḡ (with subtracted smooth
background conductance Ḡ).

C Supplementary information: Long channel

con�nement

C.1 Landau level fan and Fabry-Pérot interferences

As done for the other device with the QPC gate structure (see Appendix B.1), the
specific gate capacitance of the BG is determined from the slope of the Landau lev-
els in the Landau fan diagram at VSG = 0, shown in Fig. C.1 (right panel). We
find CBG = 4.75× 1011 cm−2 V−1 for the specific gate capacitance of the BG and
CSG = CBG |∆VBG/∆VSG| = 4.52× 1011 cm−2 V−1 for the SG determined from the
slope of the charge neutrality line δD = 0 in the gate-gate-map (see Fig. 4.15).

The left panel in Fig. C.1 corresponds to a zoom-in on the black dashed box in the
lower magnetic field range obtained in another measurement with higher resolution.
The plot shows the net conductance oscillations δG = G− Ḡ (with subtracted smooth
background conductance Ḡ), which are due to the Fabry-Pérot interferences arising
from the cavity between the two metal electrodes. As expected, the fringes show a
parabolic-like dispersion with magnetic field. The dispersing behavior is because of
the additional contribution of the Aharonov-Bohm phase [SRL08]. Furthermore it
can be noted that the fringes disperse in a continuous fashion. The absence of any
phase shift is characteristic for the anti-Klein tunneling behavior in BLG (without gap)
[Var+14b; Du+18], in contrast to the π-shift signature of Klein tunneling in single-layer
graphene [SRL08; YK09].
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Figure D.1: Stability and robustness of the quantized conductance. Conductance as a function of
VTG at VBG = 9 V and VSG = −10.6 V with a total of four curves each up (VTG → 0) and down
(VTG → −12 V) for consecutive measurements. Data from CD#3.

D Supplementary information: QPC

D.1 Stability of the quantized conductance plateaus

Here, we report on the stability of the conductance quantization. Multiple TG sweeps
(up and down) are recorded under the same gate condition as the presented data
in the main text (VBG = 9 V and VSG = −10.6 V in CD#3; cf. Fig. 5.4). In total four
curves each up (VTG = −12 V → 0) and down (VTG = 0 → −12 V) are measured
and plotted in Fig. D.1. We note that all four curves perfectly sit on top of each other
making them indistinguishable and both features conductance plateaus and Fabry-
Pérot interferences are fully reproduced. We further note that a very small hysteresis
between up- and down-sweeps is visible. [Kra+18a]

D.2 Con�nement window at a given back gate voltage

Unlike in other systems (e. g. 2DEGs), charge carriers cannot be continuously depleted
by changing a single gate. For instance, at a given VBG the Fermi level is only posi-
tioned for a limited range of the applied VSG in the induced band gap. For a too large
opposite voltage though, the Fermi level underneath the SGs is already shifted into
the respective other band, forming thereby pn-junctions in combination with the not
split-gated outer regions of the device. Here, we show the complete transition from an
unconfined unipolar junction, to a 1D confinement with the Fermi level tuned into the
gap, and finally to the formation of a npn-junction in the bipolar regime. Figure D.2
presents data of the QPC device with overall TG at VBG = 6 V, for which the maxi-
mum applied VSG ≤ −12 V (i. e. without risking the device) is sufficient to cover the
full range of the different scenarios, which can be clearly discerned in the observed
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gray-scale map of the transconductance (normal state) as a function of VTG and VSG.
With increasingly negative VSG first the familiar stripe pattern of quantized conduc-
tance plateaus appears with the additional vertical resonances due to Fabry-Pérot
interferences of the outer BLG reservoirs (cf. Fig. 5.4). Yet, with further increased
negative VSG, the stripe pattern dies down while an extra set of rather horizontal
resonances turns up, which can be attributed to Fabry-Pérot interferences arising in
the newly formed cavity underneath the SGs when the Fermi level is tuned into the
valence band. The described transition is furthermore clearly reflected in the resul-
tant superconducting magnetic interference patterns, shown on the right-hand side
of Fig. D.2, where finally the reappearance of a beating pattern is observed when the
current is again flowing through the split-gated cavities but being no longer confined.

D.3 Additional source-drain bias spectroscopy

As described in the main text (subsection 5.2.2) source-drain bias measurements were
employed to determine the gate coupling factor αTG. Here we extract this parame-
ter for another confinement condition, i e. VBG = 10 V and VSG = −11.6 V (CD#3).
Figure D.3 shows the resulting color map of the transconductance as a function of
bias voltage V and VTG. Additionally, an overlaying set of cyan lines is plotted,
which trace transitions across subband edges according to the relation as used in
the main text αTGe(VTG − V0

TG) = EQPC
n ± eV/2. The observed source-drain bias pat-

tern is well described using a subband and energy independent proportionality factor
αTG = 3.8× 10−3, in particular the same as extracted in the other discussed case with
different gate conditions. Therefore, we employ this value in the rest of our analysis
for converting between TG voltage and energy.

D.4 Fabry-Pérot interferences in in-plane magnetic �eld

The Zeeman energy spin splitting of 1D subbands (see subsection 5.2.4) is partially
disturbed by the presence of Fabry-Pérot interferences. While the spin split subband
edges disperse with changes in the in-plane magnetic field, the resonances do not.
Thereby crossings of the different levels can occur. For a better monitoring of the
behavior of the Fabry-Pérot interferences under the influence of an in-plane magnetic
field, the resonances are studied without confinement and 1D subband formation.
Figure D.4 shows the conductance oscillations δG, where the smooth background
Ḡ is subtracted from the measured conductance G, as a function of VTG and B‖ at
VBG = VSG = 0. Clearly, the resonances are hardly if at all affected by the in-plane
magnetic field and stay at a given value of VTG or Fermi wave vector, respectively (in
contrast to an out-of-plane magnetic field with cyclotron motion).
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Figure D.2: Applicable SG window for creating a confinement at a given BG voltage. Right col-
umn: Color maps of the differential resistance (in Ω) as a function of magnetic field B and current
I, showing superconducting magnetic interference patterns at constant VBG = 6 V and VTG = 0 for
different values of VSG as given in the plots. Left side: Differentiated conductance in the normal state
(B = 20 mT) as a function of VTG and VSG at respectively constant VBG = 6 V. The positions of the cor-
responding superconducting magnetic interference patterns are marked by colored dots. Additional
panels sketch the respective spatial band structure profile across the split-gated region. Data from
CD#4.
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Figure D.3: Source-drain bias spectroscopy. Transconductance as a function of bias voltage V and VTG

at VBG = 10 V and VSG = −11.6 V (i. e. another confinement condition than discussed in the main text
Fig. 5.6). The set of cyan dashed lines tracing the subband edges is plotted with the same gate coupling
parameter αTG = 3.8× 10−3 as in the main text. White numbers denote the value of the conductance
plateaus in units of 4 e2/h. Data from CD#3.

(a) (b)

7T

6T

4T

3T

2T

1T

0T

Figure D.4: Fabry-Pérot interferences under applied in-plane magnetic field. (a) Conductance oscil-
lations δG = G − Ḡ (with subtracted smooth background conductance Ḡ) as a function of VTG and
in-plane magnetic field B‖ at VBG = VSG = 0. (b) Several traces of δG for different B‖. Curves are
shifted for clarity. Data from CD#5.
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(a) (b)

Figure E.1: Discretization of the critical current at another gate voltage condition. (a) Color map
of the differential resistance as a function of VSG and current I at VBG = 10 V and VTG = −8 V.
(b) Extracted critical current (dotted) with a fitted curve (solid line) using Eq. 6.7.

E Supplementary information: SQPC

E.1 Additional measurement of the discretized critical current

Here, the SG dependence of the critical current is presented for another gate condition
at VBG = 10 V and VTG = −8 V. Figure E.1a shows the respective color map of the
differential resistance as a function of VSG and current I. Similar to the presented
data in the main text (cf. Fig. 6.6), the critical current is observed to vary in a step-
like fashion. The extracted critical current (dotted) is plotted in Fig. E.1b. From the
fit (solid line), a constant step height δI(2)c = 12 nA is determined for all visible 1D
subbands.
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