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Abstract: The distinction of chiral and mirror symmetric objects is straightforward from a geometrical
point of view. Since the biological as well as the optical activity of molecules strongly depend on their
handedness, chirality has recently attracted high interest in the field of nano-optics. Various aspects
of associated phenomena including the influences of internal and external degrees of freedom on
the optical response have been discussed. Here, we propose a constructive method to evaluate the
possibility of observing any chiral response from an optical scatterer. Based on solely the T-matrix of
one enantiomer, planes of minimal chiral response are located and compared to geometric mirror
planes. This provides insights into the relation of geometric and optical properties and enables
identifying the potential of chiral scatterers for nano-optical experiments.

Keywords: optical chirality; mirror symmetry; helicity; optical scatterer

1. Introduction

It is usually a simple task to tell by eye whether an object is chiral or not: Achiral objects are
superimposable onto their mirror image and, accordingly, they possess a mirror plane [1]. Recently,
chiral scatterers have gained significant interest in nano-optics due to their potential to enhance the
weak optical signal of chiral molecules [2–4]. Especially, the quantities of optical chirality and optical
helicity as well as their relation to duality symmetry are subjects of current research [5]. The most
established experimental technique in this field is the analysis of the circular dichroism (CD) spectrum
which equals the differential energy extinction due to the illumination by right- and left-handed
circularly polarized light [6].

In order to observe such chiral electromagnetic response, it seems to be obvious that geometrically
chiral scatterers are required. However, it has been shown that extrinsic chirality, that is, a chiral
configuration of the illumination and geometric parameters, yields comparable effects as intrinsically
chiral objects [7]. By tuning the far-field polarization of the illumination, large chiral near-fields may
even be generated in the viscinity of achiral objects [8]. In CD measurements, randomly orientied
molecules are investigated, which can be classified by their T-matrix [9]. The latter has been used for
quantifying the electromagnetic (e.m.) chirality, based on a novel definition of it [10].

However, the quantification of the geometric chirality is an elusive task [11] and even the
unambiguous association of the terms right- and left-handed enantiomer of a general object is
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impossible [12]. Different coefficients attempting to rate the chirality of an object are based on the
maximal overlap of two mirror images [13] as well as the Hausdorff distance [14]. The choice of
a specific coefficient determines the most chiral object [15], that is, there is no natural choice for
quantifying geometric chirality. This also holds for the various figures of merit estimating the e.m.
chirality. Similar correlations between geometric and optical properties are investigated with respect
to the non-sphericity of arbitrary scatterers [16].

In this study, we start by transferring the simple procedure of finding a mirror plane to optics.
Such symmetries are present in different mathematical descriptions as for example, block structures
in the Mueller scattering matrix [17]. Here, we analyse the T-matrix and its associated geometric
mirror symmetries by employing translation and rotation theorems of vector spherial harmonics.
We illustrate this concept with numerical simulations of an experimentally realized gold helix.
Different quantifications of the e.m. chirality are compared. Furthermore, the symmetry planes
found in the optical response by our method are correlated to those of geometric origin. It is shown
that the complex optical response, including higher order multipoles, yields mirror planes in the
T-matrix which are not directly related to geometric symmetries.

In the following, we would like to briefly introduce the theory behind the methods described in
this study. Further information may be found in Supplementary Materials.

The most general description of an isolated optical scatterer is the well-known T-matrix [18].
It relates an arbitrary incident field with the scattered field caused by the scattering object. The optical
response to any incident field is included in the T-matrix. Accordingly, the following analysis of T is
independent of specific illumination parameters such as the direction, polarization and beam shape.
The goal of this study is to obtain insights into illumination-independent symmetries of the scatterer.

Usually, both the incident as well as the scattered field are given in the basis of vector spherical
harmonics for computations with the T-matrix [19] (see Supplementary Materials). Physically
observable quantities such as the scattered energy, the absorption, as well as the flux of optical
chirality are readily computed from T [9]. In numerical simulations, T may be computed with high
accuracy [20]. Knowing the response of the left-handed object Tl enables the analytic computation of
the response of its mirror image Tr:

Tr =M−1
xy TlMxy, (1)

where we choose mirroring in the xy-plane Mxy without loss of generality (see Supplementary
Materials for further details on notation). Note that the terminology of right- Tr and left-handed Tl is
ambiguous, as pointed out before, and may be interchanged.

Since we aim to investigate arbitrary mirror planes, we note that an arbitrary plane is given by the
three spherical coordinates of its normal: the inclination Θ and the azimuthal angle Φ, as well as the
distance d from the origin. We define the according transformation R(Θ, Φ, d) acting on the object as

R(Θ, Φ, d) = T (Θ, Φ, d)Rz(Φ)Ry(Θ), (2)

where T (Θ, Φ, d) is the translation of the T-matrix in the direction given by the angles and
the distance and Rz(Φ) and Ry(Θ) are the rotations around the z- and y-axis, respectively [21]
(see Supplementary Materials).

For a geometrically achiral object (see Figure 1a) there exists at least one transformation R(Θ, Φ, d)
such that Tl = R(Θ, Φ, d)TrR−1(Θ, Φ, d). On the other hand, the lack of a geometric mirror plane of
a chiral object Figure 1b implies that there exists no such transformation and that Tl and Tr do not
coincide for any set of transformation parameters (Θ, Φ, d). Note that this does not generally hold in
the long wavelength limit, that is, the incident wavelength being much larger than the dimension of
the scatterer, due to chiral dispersion [22].
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Figure 1. (a) The mirror image of an achiral object overlaps with its original after proper translations
and rotations. This implies that the original T-matrix Tr coincides with Tl of the mirror object after the
corresponding transformations R. (b) A chiral object and its mirror image are not congruent. If the
object is much smaller than the incident wavelength, it usually exists a transformation R after which Tl
and RTrR−1 are equal. Note that the achiral isosceles triangle in (a) possess a mirror plane in 2D and
that the asymmetric triangle in (b) is chiral only in 2D.

2. Results

For investigating the role of the geometric shape in nano-optics, it is of interest to identify those
planes of highest symmetry of a chiral object: Although there is no mirror plane in a chiral object,
a transformation may be identified in which the right- and left-handed T-matrices are closest to one
another. Rating the closeness is done here by calculating the 2-norm of the difference of these two
matrices. Accordingly, we introduce the coefficient χTT which minimizes the difference between the
T-matrices of mirror images as

χTT = min
(Θ,Φ,d)

∣∣∣∣∣∣Tl − R−1(Θ, Φ, d)TrR(Θ, Φ, d)
∣∣∣∣∣∣

2
. (3)

This means that for the mirror plane corresponding to minimal parameters (Θmin, Φmin, dmin) of
(3), the optical responses of the two mirror images are as similar as possible. In other words, the mirror
images are hardly distinguishable. For an achiral object χTT vanishes since there exists a transformation
for which the mirror images are identical.

Obviously, the choice of the norm is not unique and other quantifications of similarity of the
mirror images could be defined (see Supplementary Materials for the physical relevance of the 2-norm).
A recently introduced coefficient χSV is, for example, based on the singular-value decomposition
of the T-matrix in the helicity basis [10]. Alternatively, the angular-averaged differential energy
extinction χCD due to illuminating with either right- or left-handed circularly polarized plane waves is
experimentally accessible as the CD spectrum.

In order to exemplary introduce our formalism and compare it to previous work, we investigate
a nano-optical device numerically. The finite element method is employed to accurately simulate
the electromagnetic properties due to incident monochromatic light. Within this study we use the
commercial FEM package JCMsuite [23]. In postprocessing, the T-matrix is computed by decomposing
the scattered field into vector spherical wave functions [20] from illumination with 150 plane waves
with randomly chosen parameters (see Supplementary Materials).

In Figure 2, we compare simulations of the aforementioned three coefficients quantifying the
e.m. chirality for a gold helix as realized experimentally [24]. The helix is constructed on the surface of
a cylinder with height 230nm and radius 60nm (see Supplementary Materials). The CD spectrum χCD

shows zero values at incident wavelengths of λ = 615 nm and λ = 1070 nm. If only these wavelengths
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were analyzed, one could draw the conclusion that an achiral object is investigated. This contradicts
the goal of this study to obtain insights into illumination-independent symmetries of the scatterer—for
illuminations with λ = 615 nm and λ = 1070 nm, the scatterer seems to be geometrically achiral which
is obviously not the case. Nevertheless, CD makes the chiral geometric nature of the helix visible as a
maximum at 823 nm and a minimum at 1452 nm of smaller amplitude. For a helix with an opposite
twist—that is, the mirror image—the roles of the extrema are interchanged.

600 800 1,000 1,200 1,400 1,600 1,800 2,000

−0.2

0

0.2

0.4

0.6

0.8

λ [nm]

χTT
χSV
χCD

Figure 2. Chiral response of a gold nano-helix depending on the incident wavelength λ. The angular
averaged differential extinction of circularly polarized plane waves χCD (black dotted line) vanishes at
615 nm and 1070 nm which could be interpreted as achirality of the studied object. The electromagnetic
chirality coefficient χSV (dashed blue line) is based on the singular values of the T-matrix in the helicity
basis. Values below 0.1 at 610 nm and 1085 nm indicate nearly achiral optical response. However, the
minimal difference χTT (red solid line) between Tr and RTl R−1 reveals that the helix is chiral at all
wavelengths. Its maxima correspond to those of χCD and are, hence, observable.

On the other hand, the coefficient χSV is normalized by the average interaction strength of the
T-matrix at each wavelength. This yields a fairly flat spectrum with two narrow minima below 0.1 at
the two λ for which χCD = 0. These minima are not present in the minimized χTT introduced in (3).
However, the maxima of this latter coefficient are in accordance with the experimentally observable
CD extrema (χCD). In the long wavelength regime, all three coefficients tend to zero as expected for
point-like particles due to vanishing off-diagonal elements in the T-matrix.

The minimization in the three-dimensional parameter space in (3) is carried out using Bayesian
optimization [25] (see Supplementary Materials). Since the shape of the minimized function highly
depends on the actual object, the Bayesian approach is well suited for finding a global minimum.
The parameters (Θmin, Φmin, dmin) of the optimized value are related to geometric mirror planes.
In Figure 3a, the planes following from the respective transformation R(Θmin, Φmin, dmin) of the
xy-plane are plotted for all incident wavelengths from 550 nm to 2.05µm. The inclination Θ and
azimuthal angle Φ are given in the shown coordinate system which is centered at the centroid of
the helix.

We identify three distinct classes shown in blue, red and green. These correspond to planes which
are parallel and perpendicular to the helix axis, as well as tilted by a small angle Θ from the horizontal
position, respectively. The dark grey plane corresponds to the minimal geometric parameters which
will be explained in the following paragraphs. Details on the optimization such as challenging flat
behaviour for translations from the centroid and, on the obtained minimizing parameters, are given in
Supplementary Materials. Note that the minimization required to obtain the illumination-independent
coefficient χTT involves significantly higher numerical effort than the simple averaging for χCD for
which most information contained in T is ignored.
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Figure 3. (a) Transformed xy-planes (blue, red, green) corresponding to minimal χTT computed from
T-matrix of the gold helix (yellow). Planes for all incident wavelenghts λ ∈ [550, 2050] nm are shown.
The dark grey plane corresponds to minimal χGE. (b) Geometric chiral coefficient χGE(Θ, Φ) for the
helix and its mirror image which is rotated around the centroid (grey colormap). The minimal value of
0.57 belongs to the dark grey plane in Figure 3a. Angles of the colored planes are shown by circles.

Next, we compare the findings on the symmetry based on the optical T-matrix to those
stemming from purely geometric properties. As discussed previously, there is no coefficient which
unambiguously rates the geometric chirality of an object. We choose a coefficient χGE based on the
overlap of the left- Ol and right-handed Or(Θ, Φ, d) object, where the latter results from mirroring Ol
at the xy-plane and transformation with (Θ, Φ, d). Namely, the volume V of the overlap is compared
to the volume of the object [13] (see Supplementary Materials):

χGE(Θ, Φ, d) = 1− V (Ol ∩Or(Θ, Φ, d))
V(Ol)

. (4)

This coefficient vanishes for achiral objects as required for a degree of chirality [14].
Figure 3b displays the geometric chirality coefficient χGE(Θ, Φ, 0) for planes rotated around the

centroid of the helix as a grey colourmap. Dark regions with large values of χGE indicate a vanishing
overlap between the two mirrored helices. Note that for large distances to the origin d→ ∞, the mirror
images do not overlap and χGE = 1. However, this is always possible no matter if the object is chiral
or not. As in the case of χTT, the parameter points of interest of χGE(Θ, Φ, d) are those corresponding
to a minimum: The minimum 0.57 in Figure 3b occurs at (180◦, 55◦) and (0◦, 125◦) which show the
intrinsic chiral property of the investigated helix. These two minima are equivalent since a finite helix
is C2 symmetric. The corresponding transformed xy-plane is shown in dark grey in Figure 3a.

Alongside the geometric coefficient χGE, the planes identified for the minimized T-matrix
difference are shown as colored circles in Figure 3b. The colors (red, blue and green) of these circles are
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the same colors used for the planes, that is, a direct comparison of the angle parameters is possible.
As seen, the planes are ranked according to their Θ values: The perpendicular class 1 (blue) has
Θ ∈ [83, 105]◦ The flat planes belonging to class 2 (red) show Θ ∈ [0, 8.5]◦ and Θ ∈ [174, 180]◦ and the
tilted class 3 (green) has Θ ∈ [10, 19]◦ and Θ = 170◦.

3. Discussion

None of the three optical symmetry planes is directly related to the geometric mirror plane of the
helix. However, Figure 3b enables the comparison of geometric and optical symmetries. In order to
further analyze the optical response, we show the wavelength-dependent classification of the symmetry
planes on top of Figure 4. The three classes correspond to sharply separated wavelength ranges: Class 1
is valid for λ ∈ [550, 680] nm. For larger wavelengths λ ∈ [680, 1025] nm, the T-matrix possesses the
symmetry according to planes of class 2. Finally, in the long wavelength regime (λ ∈ [1025, 2050] nm),
the symmetry is in class 3.

1 2 3

600 800 1,000 1,200 1,400 1,600 1,800 2,000
0.00

0.05

0.10

0.15

0.20

0.25

λ [nm]
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|T (dip)

ma |
|T (qua)

el |

Figure 4. Wavelength-dependent classification of symmetry planes of T-matrix (top). Absolute value
of averaged diagonal T-matrix entries corresponding to induced electric dipoles (solid), magnetic
dipoles (dashed) and electric quadrupoles (dotted). The classes 3 (green), 2 (red) and 1 (blue) belong to
decreasing wavelengths. Changes in symmetry of T are due to higher order multipoles.

The analysis in Figure 3b suggests that class 3 (green) is the closest one to the geometric mirror
plane. This is further strengthened by the full angular spectrum of the optical chirality coefficient
χTT (see Supplementary Materials). Accordingly, we find that the optical response is dominated by
the geometric shape for long wavelengths. Obviously, the optics is dominated by the electric dipole
moment in this regime which is also shown in Figure 4. Here, the mean of the diagonal entries of
submatrices of the T-matrix are shown. These are proportional to the electric and magnetic dipole
moments as well as to the electric quadrupole moments.

The three symmetry classes of the T-matrix occur close to three electric dipole peaks (λ = 623,
833, and 1473 nm) and are influenced by the anisotropy of the T-matrix. Truly chiral behaviour,
as observed here, however, originates not from anisotropy but from coupling between electric and
magnetic multipoles [26]. In Supplementary Materials, we elaborate on the complex interplay between
these different contributions in the dipolar limit. Here, we limit the discussion to the main aspects of
different multipolar contributions.

For large wavelengths with symmetry of class 3, the electric dipoles are much larger then any
other induced multipole. In the intermediated regime of symmetry class 2, the magnetic dipole
moment significantly increases. For short wavelengths with planes of class 1, the electric quadrupole
moment is stronger than the magnetic dipole moment which yields the change in the optical symmetry.
Higher order multipoles including mixed electric-magnetic moments are depicted in Supplementary
Materials, in which it is shown that the dominant dipolar moments contribute additionally to the
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variation of mirror planes. This elaborated study of multipolar resonances underlines again that the
chiral response deviates from expectations due to a purely geometrical analysis of the scatterer.

4. Conclusions

In summary, we have introduced a method to obtain geometric mirror planes from the optical
T-matrix of a scattering object. Accordingly, the optical effects of geometric structures such as
metamaterials are analyzed [27]. We applied the procedure to an isolated gold helix and found
correlations between the symmetry of its geometric shape and those of the optical response in the long
wavelength regime. On the one hand, this confirms the expectation that instrinsic geometric chirality
is directly related to an optically chiral response. On the other hand, for shorter wavelengths where
higher multipoles are induced, mirror planes derived from the T-matrix do not coincide with the
geometric mirror plane. This implies light-matter interactions whose symmetry cannot be explained
simply by geometric chirality. Our method can be applied to all isolated scattering objects being chiral
as the helix or achiral (see Supplementary Materials). It constructively identifies geometric planes of
mirror symmetry in their optical response. This approach provides the basis for a detailed analysis of
correlations between structural and spectral properties of nano-optical scatterers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/12/1/158/s1
and contain detailed information on T-matrix formalism, electromagnetic and geometric chirality coefficients,
multipolar analysis, geometric model and optimization as well as the analysis of an achiral scatterer with
our method.
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