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I Introduction

I.1 Motivation

With a total volume of 67 trillion US-$, public equity markets represent one of the

most important investment opportunities in the world.1 Despite their popularity, equity

valuations fluctuate significantly over time, exposing investors to a considerable amount of

risk. A striking example for these risks materialized about 10 years ago, when the Great

Recession of 2008 wiped out 46% of equity wealth in a single year2 and forced many

states to bail out their tumbling financial institutions. Mostly unforeseen crash events

like this show that missing knowledge about the fundamental laws behind price moves

and changes in risks are a central issue for practitioners and academics alike, leading to

the construction and use of approximate models, that may eventually proof wrong or

even harmful (see, e.g., Colander et al., 2009; Martin, 2017). At the same time, Lewis

(2011) describes in his famous book ”The Big Short”, how several investors anticipated

the crash and traded on their insights, without sharing their views with the broad public.

Although such reports render it imaginable to forecast crashs in the equity market at

least to some extent, the attempt to create a general model for the robust prediction of

such events appears presumptuous. Still, there is reason to believe that someone is able

to identify a looming, but mostly overlooked, risk and is trading on her believes. If so,

these views should be incorporated in equity prices and even more in prices of equity

derivatives (Chakravarty et al., 2004; Cremers et al., 2019).

This thought opens a route to an alternative approach to quantifying risks in equity

markets: the model-free measurement of expectations that are incorporated in observed

market prices. The advantage of the approach is clear; if there is no model, there is also

no chance of a too simplistic representation of complex relationships or over-fitting of

1According to data from World Bank (2020) for the end of 2018.
2See World Bank (2020).

1



I. INTRODUCTION 2

spurious characteristics in the data. But how can one extract market expectations from

observed prices only, without making strong assumptions? Breeden and Litzenberger

(1978) showed that the risk-neutral density of equity returns can be recovered model-

free from a panel of equity option prices, if markets are arbitrage-free. Unfortunately, a

sufficient amount of option prices for the precise measurement of the risk-neutral density is

often not observed and noise in the observed prices is relatively high. These characteristics

necessitate the use of a smoothing and interpolation technique to obtain artificial option

prices for a continuum of strike prices, that are in line with the observed market situation.

Multiple of such techniques have been proposed (see, e.g., Jackwerth, 1999; Figlewski,

2008; OptionMetrics, 2016) and are heavily used in financial research today. Despite their

workhorse status, no detailed assessment and comparison of the most popular techniques

for recovering risk-neutral expectations has been performed so far. This thesis closes the

gap in the literature, by uncovering that option-implied measures are sensitive to the

employed smoothing and interpolation technique and providing guidance about which

technique represents option markets most accurately.

While the model-free extraction of risk-neutral expectations has become a standard in

the financial literature, a model-free estimation of physical expectations has long not

been feasible. At the same time, the physical distribution of equity returns may be of

even greater interest for risk and asset managers than the risk-neutral distribution, as

it allows to quantify the probability of real-world events and extract measures like the

value-at-risk or the expected shortfall. While studies like Aı̈t-Sahalia and Lo (2000) esti-

mate the unconditional physical distribution of equity returns model-free using a kernel

density estimator, the same has not been possible for time-varying density estimates as

the estimator requires a high amount of data, but only a single draw from each day’s

conditional physical density is observed. Moreover, in the presence of regime shifts and

limited information, relying on past returns to predict the physical return density can

lead to biases (Linn et al., 2018; Jackwerth and Menner, 2018). This problem can only

be overcome by using forward-looking estimators of the physical return distribution, i.e.,

estimators that base their predictions on market expectations only, not on observations

of the past. The most popular input to such estimators are again risk-neutral expec-

tations. With all their theoretical appeal, the proposed forward-looking estimators in

the literature come at a cost: They require strong assumptions about the pricing kernel

to facilitate the translation of risk-neutral into physical expectations, thus losing their

model-free character. In this thesis, we present a forward-looking estimator of the time-
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varying physical distribution of equity returns that is agnostic about the pricing kernel

and relies only on minimal exogenous constraints. It can thus be considered model-free

while still maintaining full flexibility.

The wedge between the risk-neutral and the physical density is the pricing kernel

(Cochrane, 2001). Based on a firm theoretical foundation, the pricing kernel is a central

building block for academic research. Due to its tight connection to investors’ prefer-

ences, knowledge about the empirical properties of the pricing kernel directly helps to

improve our understanding of financial markets. In a seminal study, Jackwerth (2000)

recovers the pricing kernel empirically and describes local increases in the pricing kernel,

a result that was at odds with most asset pricing models at the time.3 With the ad-

vent of forward-looking estimators for the physical equity return distribution, a debate

re-emerged about whether these local increases actually exist or had just been a result of

biases in the backward-looking estimators for the physical return density (see, e.g., Linn

et al., 2018; Cuesdeanu and Jackwerth, 2018a). Equipped with our model-free estima-

tors of the risk-neutral and physical distribution of equity returns, we are able to recover

model-free pricing kernels. Our pricing kernel estimates are both forward-looking and

time-varying, which has not been possible before. We use our measurements to extract

a number of insights about key properties of the pricing kernel.

I.2 Structure of the Thesis

In this thesis, we develop and present a set of tools that may proof helpful for both

practitioners and academics. The structure of the thesis follows the logical grouping of

these tools. Chapter II covers the precise measurement of the risk-neutral density. We

present and examine our forward-looking estimator for the physical density of equity

returns in chapter III. Chapter IV then analyses their ratio, the pricing kernel. In more

detail, this thesis is structured as follows:

In chapter II, which is based on the working paper Walther and Ulrich (2019), we in-

spect the sensitivity of multiple option-implied measures to the method that is used in

constructing the implied volatility surface. Different state-of-the-art and widely used ap-

proaches lead to economically surprisingly large differences in these measures and some

methods lead to systematic biases, especially for out-of-the-money Put options. To over-

3Many classical asset pricing models imply that the pricing kernel decreases monotonically in equity
returns, see for example Mehra and Prescott (1985); Bansal and Yaron (2004); Cochrane (2001).
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come this problem we propose two new volatility surfaces, one for end-of-day and one

for intraday applications. Our end-of-day method builds upon a one-dimensional kernel

regression, while our intraday method employs a Bayesian approach to filter stable and

accurate volatility smiles from tick-by-tick option trade observations. We assess the sta-

tistical accuracy of our proposed methods relative to existing state-of-the-art parametric,

semi- and non-parametric volatility surfaces by means of leave-one-out cross-validation.

Based on 14 years of end-of-day and intraday S&P 500 and Euro Stoxx 50 option data,

we show that our methods represent option market information more accurately than

existing approaches of the literature.

Having established accurate measurements for the risk-neutral distribution, we next turn

to the estimation of the physical distribution of equity returns in chapter III, which is

based on the working paper Walther et al. (2019). In this chapter, we present a forward-

looking estimator for the time-varying physical return distribution with minimal prior

restrictions of the shape of the distribution and no exogenous assumptions about the

economy or preferences. Our estimator, which is based on a neural network, derives its

forecasts from the option-implied moments of the most accurate volatility surface from

chapter II and predicts the conditional mean and volatility of returns such that prof-

itable trading strategies can be derived. In contrast to backward-looking estimators and

alternative forward-looking parametric and non-parametric approaches, its distribution

forecasts cannot be rejected in statistical tests and they feature lower prediction errors

and higher conditional log likelihood values than the alternatives. By deliberately varying

the input variables of our estimator, we uncover nonlinear relationships between physical

and risk-neutral moments, which appear necessary to accurately capture changes in the

physical distribution of equity returns.

Chapter IV then combines our estimators for the risk-neutral and the physical distribution

from the previous chapters to obtain daily measures for the pricing kernel at the monthly

time horizon. Despite their time-varying nature, our pricing kernels are non-parametric,

forward-looking, agnostic about preferences, economic state variables or their dynamics

and rely only on minimal technical constraints. Still, our realized pricing kernel estimates

are clearly linked to economic state variables like the term spread, the credit spread

or liquidity.4 We decompose the expected variance of the log pricing kernel and find

4For example, Ang (2014, ch. 9) shows that the term spread reliably predicted economic activity
in the past, Gilchrist and Zakraǰsek (2012) provides similar evidence for credit spreads and Næs et al.
(2011) identifies stock market liquidity as a ”leading indicator of the real economy”.
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that jumps contribute a considerable portion to overall pricing kernel risk. Building on

statistical tests, we identify a strong U-shape in the pricing kernel as a function of equity

returns, which never ceases to exist in our sample. Overall, we find clear signs of time

variation in the pricing kernel, both with respect to its shape and volatility.

Finally, we recapitulate the main results of this thesis in chapter V and briefly discuss

ideas for future research.



II The Risk-Neutral Return Distri-

bution

Many popular option-implied metrics such as the variance or skewness of the risk-neutral

distribution (RND) and the variance risk premium are calculated based on an estimate of

the option-implied volatility surface. We document here that the method for constructing

the volatility surface affects these standard option-implied quantities. Our findings hold

more generally for any quantity that is extracted from the aggregation of option prices

along the strike range.

State-of-the-art methodologies such as the semi-parametric spline interpolation1 of

Figlewski (2008) or the three-dimensional kernel regression of OptionMetrics (2016) pro-

duce surprisingly large differences in standard option-implied quantities. In our sample

for S&P 500 options (2004 - 2017), Bakshi et al. (2003) risk-neutral variance for medium-

term maturities, computed with exactly the same procedure, but based on the volatility

surface from the interpolation scheme of Figlewski (2008) or OptionMetrics (2016), dif-

fers in relative terms by more than 10% on average. The one-month-ahead variance risk

premium in S&P 500 options varies across both volatility surfaces by a relative margin of

on average 60%. Differences are even more troublesome for risk-neutral skewness, where

we document relative differences in the order of 200% and more.

The key question to ask is which volatility surface represents market information most

accurately? As information is extracted from option prices by means of deterministic

manipulations of the observed portions of the volatility surface, it is natural that it is the

most accurate volatility surface that also reprices options most accurately. We therefore

perform a detailed empirical investigation to understand which volatility surface cap-

1The spline interpolation represents an implied volatility smile parametrically. However, there is no
explicit parametric form of the risk-neutral density that the volatility smile implies. For this reason, we
consider this methodology, and more broadly the class of parametric implied volatility models that do
not allow to pin down the RND parametrically, as semi-parametric.

6



II. THE RISK-NEUTRAL RETURN DISTRIBUTION 7

tures market information most accurately. Our test incorporates the semi-parametric

spline interpolation (Figlewski, 2008), a three-dimensional non-parametric kernel regres-

sion (OptionMetrics, 2016), and the parametric Gram-Charlier expansion (Beber and

Brandt, 2006). In addition, we also propose a one-dimensional non-parametric kernel

regression method and a Bayesian filtering model for capturing the intraday movements

of the implied volatility surface. We compare the statistical accuracy of these volatility

surfaces by means of leave-one-out cross-validation root mean squared errors (RMSEs)

and mean absolute errors (MAEs). Calculating the average integrated squared second

derivative of the respective implied volatility smiles allows us to identify differences in

their smoothness. Our tests expand across two dimensions: (i) options on the S&P 500

and on the Euro Stoxx 50 and (ii) with an end-of-day and intraday frequency. The time

span of the analysis is 2004 to 2017 for US data and 2002 to 2017 for European data.

Our main findings are as follows: First, the one-dimensional kernel regression generates

the most accurate end-of-day volatility surface for S&P 500 options by means of the lowest

leave-one-out cross-validation RMSE and MAE. For the case of intraday transaction data,

the Bayesian filtering model appears to represent the unobserved and by single trades

only scarcely measured volatility surface best.

Second, for the end-of-day analysis of S&P500 options, the spline-based volatility surface

turns out to be the second best, with a RMSE (MAE) that is on average 128% (91%)

higher than the RMSE (MAE) of the one-dimensional kernel regression surface. The

three-dimensional kernel regression produces a RMSE that is more than 5 times larger

than the RMSE of the one-dimensional kernel regression and an 11 times higher MAE.

The Gram-Charlier volatility surface produces the largest RMSEs (MAEs), on average

over 9 (23) times larger than the RMSE (MAE) of the best performing volatility surface.

The results for Euro Stoxx 50 options confirm our general findings, though the one-

dimensional kernel regression and the spline interpolation appear to perform roughly at

par here.

Third, state-of-the-art volatility surfaces turn out to be less accurate than the one-

dimensional kernel regression volatility surface because these surfaces do not accurately

capture market information in the thinly traded out-of-the-money regions of the volatil-

ity surface, which correspond to the tails of the RND. The volatility surface based on

spline interpolation shows weakness in capturing the left tail of short-term options. The

three-dimensional kernel regression shows severe shortcomings in capturing the left tail
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of short-, medium- and long-term options. The method of the Gram Charlier expansion

partially captures the at-the-money region of volatility smiles well, but shows otherwise

shortcomings in capturing the left and right tail of options across all maturities.

Fourth, for the intraday analysis we find that our proposed Bayesian volatility surface is

the most accurate by a large margin. This finding holds for all considered error measures

and assets, even if the alternative methods are equipped with a higher amount of trade

observations as inputs. Among the non-Bayesian methods, the one-dimensional kernel

regression performs best, if data is very scarce. However, the indication about the most

accurate method among the non-Bayesian approaches depends on the number of trades

that are used to construct the implied volatility surface and diverges between the error

measures. While the one-dimensional kernel regression continues to lead in most set-ups

with respect to the RMSE, the spline interpolation quickly shows lower MAEs than all

other non-Bayesian methods as the number of utilized input observations grows. This

finding can be rationalized by occasional over-fitting in the spline method, which occurs

less often if more observations are available for fitting the spline.

Our analysis concludes that option-implied information can differ substantially across

volatility surfaces. Despite being widely used in the literature, the three-dimensional

kernel regression method of OptionMetrics (2016) underpredicts option-implied tail risk

at the end-of-day data frequency which translates into systematic biases in risk-neutral

skewness and variance. Instead, our one-dimensional kernel regression appears to produce

the most accurate volatility surface for the end-of-day use-case. For intraday set-ups, our

proposed Bayesian volatility surface appears to be the most accurate in all of our tests.

Our research study adds to the growing empirical finance literature that exploits option-

implied information. By now, this literature is too vast to be reviewed here in detail.

Hence, we cannot give credit to all studies and have to leave out important contributions.

However, we discuss a selection of recent studies and focus on how these have constructed

the option-implied volatility surface.

A large and diverse amount of research studies work with the volatility surface of Option-

Metrics (2016): For example, Buss and Vilkov (2012) estimate option-implied correlations

and CAPM-betas and find that higher option-implied betas go along with higher average

returns. Chang et al. (2012) predict a stock’s beta based on Bakshi et al. (2003) im-

plied volatility and skewness estimates. Martin and Wagner (2019) extract a measure for

predicting the risk premium for each stock from its associated implied volatility surface.
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Christoffersen et al. (2017) propose a parametric option pricing model where illiquidity

is a driver of the jump intensity of the underlying and can thus explain time variation in

the implied volatility surface. Du and Kapadia (2012) compare the information content

of the VIX and Bakshi et al. (2003) implied variance and construct a tail risk index

from the difference between the two measures. Hofmann and Uhrig-Homburg (2018) use

the wedge between implied volatility observations and respective OptionMetrics (2016)

estimates to construct a limits of arbitrage measure.

Driessen et al. (2009) compare portfolios of single stock options with options on the index

and find evidence for a substantial option-implied correlation risk premium. Bollerslev

and Todorov (2011) introduce various risk measures for realized and expected continuous

risk and jump risk under the physical and risk-neutral probability measure and find that a

significant portion of the equity risk premium is compensation for jump risk. The option-

implied volatility surface in these innovative studies is constructed based on end-of-day

closing prices and with a version of the spline interpolation methodology that we use in

this paper.

Martin (2017) shows that options contain information about the lower bound of the

underlying’s expected return. Schneider and Trojani (2015) construct tradable option-

implied strategies for higher moments. These studies do not interpolate the option-

implied volatility surface, but work with observed option-implied volatilities.

Wright (2016) adopts the multi-dimensional kernel regression of Aı̈t-Sahalia and Lo (1998)

to construct a monthly option-implied volatility surface of real interest rates. The author

pools all end-of-day volatilities (roughly 25 per day and maturity) within one month to

stabilize the procedure and obtain a sufficiently smooth volatility surface. Swanson (2016)

highlights that pooling prevents that study from working at a higher frequency. More-

over, Swanson (2016) suggests to use the spline methodology to construct daily implied

volatility surfaces. As evidence in Bliss and Panigirtzoglou (2002) suggests, the spline

method works well for 10 or more option prices per day and maturity. In order to stay in

a non-parametric framework while still obtaining smoothness, Jackwerth and Rubinstein

(1996) and Jackwerth (2000) propose a method that directly fits the volatility surface to

observed data by minimizing the squared fitting error while at the same time maximizing

the smoothness of the surface. Our research study contributes to this discussion, as we

formally compare both the statistical accuracy and smoothness of several state-of-the-art

volatility surfaces across different frequencies and different currency zones. For our tests,
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we select two kernel regression approaches as representatives for the non-parametric class

of volatility surfaces. These methods do not explicitly optimize for smoothness, thus en-

abling us to perform a fair evaluation, since neither the kernel regression of OptionMetrics

(2016) nor the spline method of Figlewski (2008) or the Gram-Charlier expansion fea-

tures an explicit smoothness treatment. As we document, especially the one-dimensional

kernel regression is still well capable of producing smooth volatility surfaces.

A large body of the literature studies parametric representations of the implied volatility

surface. An early example is Schönbucher (1999), who assumes a diffusion process for

the evolution of implied volatility.2 He derives restrictions on the parameters to ensure

arbitrage-freeness and to prevent the potential model-implied emergence of bubbles in

implied volatility as the maturity decreases. The latter leads to a constraint that can

essentially serve as a model for the volatility smile at a given maturity. Based on a

two-dimensional diffusion for the forward price of an asset and its volatility, Hagan et al.

(2002) derive a closed-form solution for a parametric volatility smile in their SABR model.

The model is completely specified by four parameters, which essentially describe the level,

skew and curvedness of the volatility smile. However, as Gatheral (2006) points out, the

lack of a mean reversion component in the volatility diffusion makes it only applicable to

short-maturity options. In his SVI model, Gatheral (2004) assumes a parametric func-

tion for the volatility smile that is similar to the representation of Schönbucher (1999),

but features an additional parameter to locate the volatility smile across the strike range.

By construction, the SVI model assumes that the implied volatility smile becomes ap-

proximately linear in the tails. This assumption is not always fulfilled in the data, which

has triggered the development of generalized versions of the SVI model that allow con-

cavity, for example Zhao and Hodges (2013) or Damghani and Kos (2013). Damghani

(2015) further elaborates on this work in the context of the FX option market. His IVP

model features an explicit treatment of the bid-ask spreads in option prices and allows to

incorporate liquiditiy factors. By adding a maturity interpolation scheme, he is able to

capture the whole volatility surface with a dramatic reduction in parameters that need to

be estimated. Figlewski (2008) follows a different approach: He argues to use a 4th-order

smoothing spline with one knot point at-the-money to model the volatility smile at each

maturity separately. The higher amount of free parameters is accepted to reach higher

2Assuming a diffusion process for implied volatility is different from a diffusion process for the
volatility of the underlying, as in Heston (1993). In the model of Schönbucher (1999), movements in
implied volatility are correlated with movements in the underlying, though explicitly feature components
that are independent of the underlying asset.
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accuracy while still smoothing out noise. In our study, we use the method of Figlewski

(2008) as representative of the class of parametric models of the implied volatility surface.

Survey and methodology papers that are closest to ours are Jackwerth (1999), Jondeau

and Rockinger (2000), Bliss and Panigirtzoglou (2002) and Bahaludin and Abdullah

(2017). Relative to these studies, our empirical assessment covers a much longer time span

(14 years), US and EU equity option markets and distinguishes between characteristics

of the option data sets.

II.1 Relationship between the RND and the Volatil-

ity Surface

At a given maturity, the implied volatility smile of a set of options on some underlying

is linked tightly to the risk-neutral probability density function of the returns of that

underlying, such that knowing one allows to infer the other. As Breeden and Litzenberger

(1978) show, at time t, the τ -maturity RND qt(K, τ) for a potential price in t + τ of K

can be calculated as the second derivative of (European-style) Call prices Ct(K, τ) with

respect to their strike:

qt(K, τ) =
∂2Ct(x, τ)

∂x2

∣∣∣∣
x=K

= lim
∆K→0

Ct(K −∆K, τ)− 2Ct(K, τ) + Ct(K + ∆K, τ)

(∆K)2
.

(II.1)

Given a dense set of Call price observations along the strike range, the right-hand side

of equation II.1 can be calculated. However in most cases, the traded grid of strikes is

not dense enough for the approximation error of the limit in equation II.1 to become

negligible. The solution is to enrich the set of observed option prices by interpolation.

Such an interpolation can be performed on Call prices directly, however, as Jackwerth

(1999) points out, interpolating implied volatility is preferable due to numerical stability.

Implied volatility is a transformation of the option price, that is obtained by inverting

an option pricing model and setting the volatility parameter of that model such that

it matches the observed option price perfectly. It is important to note that the pricing

model does not need to be correct. It is merely used as a bijective mapping between

the space of implied volatilities and the space of option prices. We use the model of

Black and Scholes (1973) to map implied volatilities to observed option prices for options

of European exercise style. For American-style options, the early exercise premium of
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these contracts needs to be taken into account.3 Here, we recommend to distinguish

between two cases: Many American-style options are written on Future contracts as the

underlying or on underlyings that pay an approximately continuous dividend yield. For

these options, the model of Barone-Adesi and Whaley (1987) provides a fast and precise

approximation for the American option price and the early exercise premium. Options

on underlyings that have discrete payoffs at specific points of time during the lifetime of

the option constitute the second case. Options on dividend-paying single stocks belong

to this category. Here, the binomial tree model of Cox et al. (1979) allows to consider

the timing of the single payments and adjusts the early exercise premium appropriately.

The previous discussion pointed out a route to translate implied volatilities to the RND:

First, implied volatilities are converted to European option prices via the Black and

Scholes (1973) and then the second derivative of the price with respect to the option’s

strike is approximated numerically. At the same time, the reverse transformation is

feasible, too. The price of an option is the discounted expected payoff under the risk-

neutral measure (Cochrane, 2001, ch. 17):

Ct(K, τ) = e−rf,tτEQt (max(St+τ −K, 0)) = e−rf,tτ
∫ ∞

0

max(x−K, 0) qt(x, τ) dx. (II.2)

Here, rf,t denotes the risk-free rate in t, St+τ is the underlying price in t + τ and EQt (·)
represents the expectation under the risk-neutral measure Q, conditional on all infor-

mation that is available at time t. Equation II.2 shows the pricing formula for a Call

option, pricing a Put option is straight-forward by replacing the payoff with the respective

counter-part for Puts.

Given estimates for the RND qt(x, τ) at a dense grid of x, the integral in equation II.2 can

be approximated numerically with high precision (Atkinson, 1989, ch. 5). A translation

of the option price to implied volatility can then be made by inverting the Black and

Scholes (1973) model.

3Since the option pricing model need not to be correct to map implied volatilities to observed option
prices, one could also just use the Black and Scholes (1973) model for American-style options, too.
However, several second-tier applications, like the calculation of Bakshi et al. (2003) model-free implied
volatility requires a panel of European-style option prices, making it necessary to eliminate the early
exercise premium from the observed American-style option prices.
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II.2 Constructing a Volatility Surface

II.2.1 Estimation of Expected Dividend Yields

Many option contracts are written on underlyings that pay out dividends or coupons, or

that experience storage costs before the expiration of the option contract. If such pre-

expiration payoffs exist4, they must be considered in the option’s price, as such payoffs

predictably affect the price of the underlying during the lifetime of the option.5 For

this study, both the S&P 500 and the Euro Stoxx 50 index, are price indices and are

thus quoted ex-dividends. More generally, dividend payments need to be taken into

account for all options on equity underlyings, since filtering out invalid option prices from

our data set (see section II.3) and calculating implied volatilities requires an estimate

of the expected dividend payment under the risk-neutral measure. For options with

European exercise style, we determine the maturity-specific expected dividend yield via

the put-call parity. For American exercise style options on single stocks, we need to take

care of the discreteness of the dividend payment, its timing and how it affects the early

exercise premium of the option. In the following paragraphs, we will provide a detailed

description of our estimation procedure of risk-neutral dividend expectations based on

observed option prices. These estimations are based on the full option data sample, before

applying any filters.

European-style Options We make use of the put-call parity to obtain daily model-

free estimates of the expected dividend yield for an option’s underlying. More precisely,

let C be the Call price and P be the Put price of 2 options with maturity τ on the same

underlying with price S and forward price F . Both options have the same strike K. Let

the risk-free rate be r and the dividend yield be q. Following Hull (2018), we can express

the put-call parity in the following equation:

C − P = e−rτ (F −K) = e−qτS − e−rτK. (II.3)

4Costs can be seen as negative payoffs.
5Some options, for example the fixed income options at the Eurex, are written on Futures as under-

lying. Here, no payoff adjustment is necessary, as any pre-expiration payoff is already reflected in the
price of the Future. For these options, the ”payoff yield” does not need to be estimated and is set to
zero.
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Solving this equation for the dividend yield q yields

q =
1

τ

[
ln(S)− ln(C − P + e−rτK)

]
. (II.4)

In order to estimate the dividend yield with this equation, one needs to find a Put and

a Call price with the same strike and maturity at the same point of time. In our end-of-

day data sets, settlement or bid/ask prices for a high amount of strikes and maturities

for both Puts and Calls are available. As all end-of-day option prices are recorded at

the same point of time within the day, the price of the underlying coincides for all price

quotes. For each pair of options at a specific date, strike and maturity, we calculate the

implied dividend yield using equation II.4 and take the median over the strike range to

arrive at a single estimate of the dividend yield per date and maturity. If the estimate

turns out to be negative, we replace it with 0.

The situation is more complex for intraday transaction data, since quoted trades do

not occur simultaneously. For this reason, there will always be a time differential when

matching a Put and a Call with the same strike and maturity for calculating the dividend

yield via the put-call parity. However, the time differential might be large enough for the

price or the risk-neutral volatility expectation of the underlying to change. In that case,

the put-call parity does not hold any more, even if the expected dividend yield remains

constant. When matching Put and Call prices in the intraday set-up, we therefore impose

the constraints that the price quotes are from the same day and that the price of the

underlying has changed less than 0.01%. If multiple pairs of a Put and a Call fulfill these

constraints, we choose the ones with the smallest time differentials. We assume that the

risk-neutral volatility expectations for such pairs of option contracts differ only negligibly.

Again, we take the median over the expected dividend yield estimates of all Put-Call pairs

for a certain date and maturity to arrive at a single dividend yield estimate.

American-style Options The estimation of option-implied dividend yields is more

complex for American-style options, since the put-call parity does not hold for these

options. However, the price of an American Call option CA and an American Put option

PA with the same strike and maturity must fulfill the put-call inequality (Hull, 2018),

S −K −D ≤ CA − PA ≤ S −Ke−rτ = D̂lb, (II.5)
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where D denotes the present value of the risk-neutral dividend expectation.6 The put-call

inequality allows to extract a lower bound for the dividend yield:

D ≥ S −K − CA + PA. (II.6)

By expressing the American option prices CA and PA as European option prices plus a

respective early exercise premium, CA = C +EEP call and PA = P +EEP put, the lower

bound can be restated as

D̂lb = S −Ke−rτ − C + P + (EEP put − EEP call −K(1− e−rτ )). (II.7)

We know from the put-call parity for European-style options that D = S−Ke−rτ−C+P ,

so the error of the lower-bound dividend estimate is D̂lb − D = EEP put − EEP call −
K(1− e−rτ ). It might well be that one makes a smaller estimation error by simply using

American option prices in the put-call parity to estimate dividend yields. In that case,

we can write

D̂parity = S −Ke−rτ − CA + PA = S −Ke−rτ − C + P + EEP put − EEP call (II.8)

and the error between the put-call parity dividend estimate and the true risk-neutral

dividend expectation is given by D̂parity −D = EEP put − EEP call.

In order to decide on a method for the expected dividend estimation for American-style

options, we analyze the method-specific errors for a panel of artificial option contracts.

Given the characteristics of such an artificial option contract, we use the binomial tree

pricing model of Cox et al. (1979) to calculate the American Put and Call prices for a

grid of strikes K ∈ {0.8S, 0.825S, 0.85S, ..., 1.175S, 1.2S}. We then use the lower-bound

method and put-call parity to estimate the option-implied dividend for the Put-Call pair

of each strike. Similar to the dividend yield estimation for European-style options, D̂lb

and D̂parity are then obtained by taking the median expected dividend estimate over all

strikes. Finally, we calculate a third estimate, D̂partial, which also uses the put-call parity,

but aggregates only over option contracts with a strike that fulfills 1 ≤ K
S
≤ 1.1. It is

important to keep in mind that we know the true dividend expectation of our artificial

options, since we set it as a parameter of the option price. We can hence calculate

6The following relationship holds between the dividend yield and the present value of expected
dividends: D = S(1− e−qτ )
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Table II.1: Option-Implied Dividend Expectations: Estimation Errors by Method

S τ r σ D τD lb parity partial

100 30 0.02 0.25 0.01S 0.5τ -27.7 -11.3 1.1
100 30 0.02 0.25 0.0 - -0.140 0.010 0.028
100 30 0.02 0.25 0.1S 0.5τ -19.5 -17.8 -3.6
100 365 0.02 0.25 0.01S 0.5τ -182.5 17.5 25.0
100 365 0.02 0.25 0.04S 0.5τ -57.4 -7.4 -0.7
100 365 0.02 0.25 0.1S 0.5τ -39.4 -19.4 -11.6
100 30 0.02 0.25 0.01S 0.1τ -15.3 1.2 3.3
100 30 0.02 0.25 0.01S 0.9τ -54.4 -38.0 -14.9
100 30 0.06 0.25 0.01S 0.1τ -54.7 -5.4 9.6
100 30 0.02 0.5 0.01S 0.1τ -24.1 -7.7 -1.7

The table shows estimation errors for expected dividends based on artificial American-style
options. The first six columns show the parameters that characterize each artificial option con-
tract. The estimation methods are the lower-bound (’lb’) method, the put-call parity (’parity’)
method and the put-call parity method with aggregation only over options with a moneyness
between 1 and 1.1 (’partial’). τD specifies the point of time during the lifetime of the option of
the discrete dividend payment D. Errors are given in percent of the actual dividend payment,
except for the case of no dividend payment, where we report the absolute deviation from the
correct dividend estimate.

estimation errors for our dividend estimates of the true dividend expectation. Table II.1

shows the estimation error D̂x−D
D

, x ∈ {lb, parity, partial} for each method and a panel

of artificial option contracts.

Not surprisingly, the lower-bound method always under-estimates the true dividend ex-

pectation. The extent of this under-estimation can be quite large: The method frequently

only estimates half of the correct dividend expectations and one expected dividend esti-

mate is even negative, causing an estimation error below −100%. The put-call parity and

the partial put-call parity estimates are generally closer to the true expected dividend in

our tests. With the partial put-call parity estimate showing a lower absolute error in 6

out of 10 test cases and an average absolute estimation error of 7.9% compared to 14.0%

for the full put-call parity estimate, we recommend using this approach for estimating

option-implied dividends for American-style options in practice.

At the point of time of an option trade, the actual payment date of a future dividend

is generally unknown. The timing of the dividend can however affect the early exercise

premium of an American-style option. It is therefore necessary to estimate the date

of the dividend payment during the lifetime of the option contract. A dividend-paying

company usually follows a certain dividend payout frequency. For example, if a stock



II. THE RISK-NEUTRAL RETURN DISTRIBUTION 17

is currently paying a dividend every half year, we consider it to follow a semi-annual

payment regime. For dividend payment dates that have not been announced yet, we

recommend the following payment-regime-dependent set of rules to construct expected

dividend payment dates:

• Annual Dividend: Use the same month and date as the last observed dividend

payment.

• Semi-annual and Quarterly Dividend: For each dividend payment in a year,

compute the average day of the year of the dividend payment over the last 3 years.

For each year in the future, adjust that day to match the weekday of the last

dividend payment, such that the deviation from the respective average day of the

year is minimal.

• Monthly Dividend: Use the day of the month of the last observed dividend

payment.

• Other Dividend Frequency: For each dividend payment in a year, compute the

average day of the year of the dividend payment over the last 3 years. Use that day

as projected dividend payment day in the future.

• Monthly, Annual and Other Frequencies: If the projected payment date is

on a weekend, use the closest trading day. If the projected payment date is a

non-trading holiday, use the previous trading day.

II.2.2 One-Dimensional Kernel Regression with Tail Extrapo-

lation

We now continue to propose a kernel regression specification for interpolating the implied

volatility surface. Our methodology features a number of favorable characteristics. First,

it is a non-parametric approach, which ensures flexibility. Second, it is essentially only

one-dimensional, which makes it more robust and less data-intensive than existing multi-

dimensional kernel regression approaches. Third, our approach ensures the volatility

surface to be arbitrage-free, borrowing a technique from Fengler (2009). Fourth, con-

ditional on having sufficient data, our approach takes special care of capturing market

information that is hidden in the thinly traded tails.
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Aı̈t-Sahalia and Lo (1998) propose to approximate unobserved option-implied volatilities

by the following kernel regression set-up:

σ̂(Fj, Kj, τj) =
N∑
i=1

k(Fj − Fi) k(Kj −Ki) k(τj − τi)∑N
i=1 k(Fj − Fi) k(Kj −Ki) k(τj − τi)

σ(Fi, Ki, τi), (II.9)

where N is the number of observed option prices that enter the kernel regression as in-

puts, σ(.) is the observed implied volatility and σ̂ is the interpolated implied volatility

for a desired tuple of strike Kj, underlying forward price Fj and maturity τj. The ker-

nel function k(x) has a Gaussian shape with its own bandwidth parameter hx for each

dimension, i.e.,

k(x) =
1√
2π
e
−
(
x2

2hx

)
. (II.10)

We apply several refinements that distinguish our approach from the tested application

in Aı̈t-Sahalia and Lo (1998). First, we reduce the input dimension by one unit, as we

combine the underlying forward price with the strike level. More precisely, we define the

observed moneyness measure as mi = Ki
Fi

and apply the kernel regression to mj − mi

instead of Fj − Fi and Kj − Ki.
7 In most cases, this step can be regarded as a mere

technical re-scaling of the strike axis, which does not affect the interpolation accuracy of

the technique. In our end-of-day set-up, we only use the price observations of a single day

to construct the respective day’s implied volatility surface. For a given maturity, these

price observations all have the same underlying forward price as they are observed at the

same point of time. The denominator of the ratio Ki
Fi

is therefore constant. Similarly, in

intraday set-ups, we construct the implied volatility surface based on a small number of

subsequent option trade observations. In the vast majority of cases, the change in the

underlying price during the time between these option trades is very small, such that the

underlying forward price can be considered approximately constant. Here, the switch in

the kernel regression to a moneyness axis can hence be seen as a re-scaling of the strike

dimension, too.

The second refinement of the Aı̈t-Sahalia and Lo (1998) approach is the removal of

the time to maturity dimension, τ , from the kernel regression. This means that the

kernel regression is purely used to approximate the option-implied volatility surface in

the moneyness dimension. Mathematically, we arrive at the following kernel weighting

7Although this adjustment has already been proposed by Aı̈t-Sahalia and Lo (1998), their subsequent
empirical analysis works with K and F , separately.
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for the moneyness dimension:

σ̂(mj, τ) =
Nτ∑
i=1

k(mj −mi)∑Nτ
i=1 k(mj −mi)

σ(mi, τ), mi =
Ki

Fi
, (II.11)

where Nτ denotes the size of the set of observed option prices with maturity τ .8 We set

the bandwidth parameter for the moneyness dimension by the following rule-of-thumb:

We first compute the average distance between two neighboring strikes

∆K(τ) =
1

Nτ − 1
(Kmax(τ)−Kmin(τ)), (II.13)

where Kmax(τ) (Kmin(τ)) represents the maximum (minimum) observed strike at matu-

rity τ . We now set the moneyness bandwidth to hm(τ) = 0.75 ∆K(τ). While our choice

of the coefficient of 0.75 may appear ad-hoc at first, our tests reveal that the results

barely change if it is set at any value within a range of [0.6, 1].

Third, far out-of-the money options are usually not observed, but very important ingredi-

ents for capturing the tails of the risk-neutral density. For the analysis at the end-of-day

frequency, we use a linear extrapolation scheme to increase the number of ’observed’

implied volatilities in both tails before applying the kernel smoother. The extrapolation

works as follows: We start with a set of implied volatilities {σk}k∈[1,N ] for some point

of time. We split this set into subsets {σi,τ}i∈[1,Nτ ] with all elements in a subset having

the same time to maturity τ . We assume that the elements of {σi,τ}i∈[1,Nτ ] are sorted

ascendingly by their moneyness mi.

For the left tail extrapolation, we use the first 5 implied volatilities of each subset. The

number of 5 observations is a trade-off between stability on the one hand and including

only the most extreme tail observations on the other hand. Unreported results show that

our findings are robust to variations in that considered number of observations. On these

5 observations, we estimate the following linear regression using OLS:

σi,τ = ατ + βτ mi + εi, εi ∼ i.i.d. (II.14)

8If needed, we recommend a linear interpolation along the log-maturity axis between two observed
maturities:

σ̂(mj , τj) = σ̂(mj , τl) +
ln τj − ln τl
ln τh − ln τl

(σ̂(mj , τh)− σ̂(mj , τl)), (II.12)

where τh (τl) represents the next longer (shorter) observed time to maturity, relative to the targeted
time to maturity τj .
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Figure II.1: Effect of Tail Extrapolation on the Kernel Regression

(a) No Tail Extrapolation
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(b) With Tail Extrapolation
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This figure visualizes for a random day of the sample, May 22nd, 2012, the effect of the linear tail
extrapolation on the option-implied volatility smile for Euro Stoxx 50 options with 24 days to
maturity. The black dots mark the observed implied volatilities for that day and maturity, the
red dots mark the additional artificial observations that are introduced by our tail extrapolation.
The green line depicts the kernel regression of the implied volatility smile. Panel (a) shows the
kernel regression without tail extrapolation, panel (b) includes the tail extrapolation.

Starting from the lowest observed moneyness, we proceed in steps of ∆K(τ) and calculate

the extrapolated implied volatility as σ̃τ (m) = ατ + βτ m until reaching a moneyness

of m = 0.4. We proceed similarly for the right tail, using the last 5 observations in

{σi,τ}i∈[1,Nτ ] and extrapolating from the largest observed moneyness in steps of ∆K(τ)

until a final moneyness of 1.6. We use the union of observed implied volatilities and

thus artificially created implied volatilities as inputs for the kernel regression. Figure II.1

presents the tail extrapolation visually for a sample day and maturity.

Our last refinement to the Aı̈t-Sahalia and Lo (1998) methodology is to guarantee that the

resulting option-implied volatility surface is consistent with an arbitrage-free asset market

by applying the algorithm of Fengler (2009). This algorithm adjusts the implied volatility

surface minimally, until no-arbitrage constraints in the interpolation are fulfilled. If the

volatility surface from the kernel regression is already arbitrage-free, the algorithm does

not lead to any changes.

Table II.2 displays the performance gains that we achieve with each adjustment of the

Aı̈t-Sahalia and Lo (1998) method. Clearly, dropping the maturity dimension from the

kernel regression leads to the strongest improvement, lowering the RMSE by 77% for the
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Table II.2: Cross-Validation Errors for Refinement Steps of the Kernel Regression

S&P 500 Euro Stoxx 50

Step RMSE MAE RMSE MAE

Initial 0.0479 0.0139 0.1964 0.0518
No maturity dimension 0.0109 0.0023 0.0156 0.0024
Tail Extrapolation 0.0091 0.0019 0.0101 0.0021
No-arbitrage Enforcement 0.0092 0.0019 0.0100 0.0019

This table shows the leave-one-out cross-validation root mean squared error (RMSE) and mean
absolute error (MAE) for our refinements steps of the kernel regression method of Aı̈t-Sahalia
and Lo (1998). All numbers refer to end-of-day data. Initial represents the original method,
applied day by day. We first remove the maturity dimension (No maturity dimension) and then
add the linear tail extrapolation in implied volatility space (Tail Extrapolation). Finally, we
additionally enforce no-arbitrage on the volatility surface in the No-arbitrage Enforcement step.

S&P 500 and 92% for the Euro Stoxx 50. Further adding the tail extrapolation leads

to an additional 16% reduction in the RMSE of the S&P 500 implied volatility surface

(minus 35% for the Euro Stoxx 50). Finally, enforcing no-arbitrage does generally not

lead to a higher accuracy of the constructed implied volatility surface. However, as the

error figures are not rising, we can enforce an arbitrage-free implied volatility surface

without having to sacrifice accuracy.

II.2.3 A Bayesian Intraday Volatility Surface

In this section, we propose a novel methodology for constructing the implied volatility

surface on a tick-by-tick basis. There are essentially two approaches to constructing

an intraday volatility surface, that is, a volatility surface that updates throughout the

trading day. One approach is to base the surface on bid-ask price quotes. These quotes

are available at any point of time during the day for a broad set of strikes and maturities.

The set-up is analogous to the construction of an end-of-day volatility surface, which is

either build on settlement prices or bid-ask quotes, too. Obviously, the large amount

of input data over a dense grid of strikes and maturities simplifies the construction of

the volatility surface and may lead to more robust volatility surface estimates. However,

as Vergote and Gutiérrez (2012) point out, bid-ask quotes for different options may be

recorded at different points of time in the past, such that the prices may not be consistent

across strikes and maturities. Also, high bid-ask spreads might introduce high errors

into the measurement of implied volatilities, a problem that Birru and Figlewski (2012)

emphasize.
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We follow a second approach in constructing the intraday implied volatility surface by

basing our estimate on tick-by-tick transaction data. The use of transaction data prevents

the imprecise measurement of implied volatility and asynchronicity, that arise from bid-

ask quotes, though at the downside of a much sparser set of observations. At any point

of time, only a single observation, the recorded trade, is available as current information.

Handling this kind of sparseness is key on the way to a high-quality high-frequency

volatility surface. Using Bayesian inference, our method sequentially updates an internal

estimate of the complete implied volatility smile for a certain maturity with each new

incoming observation. This allows to closely track developments in the option market,

while smoothing out noise and maintaining key features of the implied volatility smile,

like slope or curvature. In the following paragraphs, we will provide a detailed exposition

of our methodology.

We start by redefining the moneyness measure as

m =
ln K

F√
τ
. (II.15)

The division by the square root of maturity neutralizes the moneyness measure from

changes in the maturity of the option contract.9 Over a historic interval, we collect

the daily j-th end-of-day volatility smile, that is, the front maturity’s volatility smile,

the second-shortest maturity’s volatility smile, etc. We label these smiles {σt,m}j for a

specific date t and moneyness m, where j is iterating over the maturity number. In the

following outline, we always consider options of the same expiration date at a time, thus

we drop the index j for ease of notation.

For each date t, we collect the volatility smiles at a fix grid of moneynesses {mi}i∈[1,N ]

for the past 2 years, amounting to 504 trading days. In order to obtain measurements for

implied volatility at the grid points {mi}, we first apply the methodology of section II.2.2

9To see this, consider the following example: Assume a 1-year option on an underlying with a yearly
volatility of 25% and a log-normal return distribution. The probability that the underlying price exceeds
the strike K = e0.05F at the end of the option’s maturity is roughly 42%. Now assume the same situation
for an option with a remaining maturity of one week. The probability of the underlying price exceeding
K = e0.05F after one week is only 7.4%. By decreasing maturity, the same log moneyness ln K

F is hence
”drifting” into the tails. Implied volatilities in the tails have very different characteristics than implied
volatilities near the at-the-money region, though. All else equal, dividing by the square root of the
maturity erases this maturity-induced drift towards the tails and makes moneyness comparable across
maturities.
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to observed end-of-day data. We combine the volatility smile observations to a matrix,

V =


σt−504,m1 σt−504,m2 · · · σt−504,mN

σt−503,m1 σt−503,m2 · · · σt−503,mN

...
...

. . .
...

σt−1,m1 σt−1,m2 · · · σt−1,mN

 .

Here, each row in V corresponds to an end-of-day volatility smile before t. Let Ṽ

be a matrix that consists of the demeaned columns of V , Ṽt−∆t,mi = Vt−∆t,mi − V̄mi ,

V̄mi = 1
504

∑t−1
t′=t−504 σt′,mi . We apply a PCA on Ṽ and obtain the eigenvectors EVi, eigen-

values evi and principal components PCi. We choose M such that the first M principal

components (PCs) explain 95% of the variance of Ṽ . In general, it holds:

PC = Ṽ EV, Ṽ = PC EV −1,

where PC and EV are matrices with PCi and EVi as columns. Approximating V with

the first M principal components of Ṽ yields the approximating relationship

V ≈ PCM EV −1
M + V̄ , (II.16)

with PCM being a T ×M matrix of the first M columns of the matrix of PCs, EV −1
M

being a M × N matrix of the first M rows of the full EV −1 matrix and V̄ a T × N

matrix where the i-th column is set to V̄mi . Note, that this converts the PCs back to

implied volatility at the respective moneyness grid points {mi}. However, we usually

observe the implied volatility at a moneyness m that is not part of the regular moneyness

grid, but which lies between 2 points of that grid, ml ≤ m ≤ mh. We assume that this

implied volatility observation can be accurately represented by a linear interpolation of

the implied volatilities of the neighbor grid points:

σt,m =
m−ml

mh −ml

σt,mh + (1− m−ml

mh −ml

)σt,ml = c σt,mh + (1− c)σt,ml

≈ c ([PCM ]t [EV −1
M ]h + V̄mh) + (1− c) ([PCM ]t [EV −1

M ]l + V̄ml)

= [PCM ]t
(
c [EV −1

M ]h + (1− c) [EV −1
M ]l

)
+ c V̄mh + (1− c) V̄ml

= [PCM ]t f(m) + g(m). (II.17)

[EV −1
M ]h and [EV −1

M ]l stand for the h-th and l-th column in EV −1
M , [PCM ]t is the row
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in PCM that corresponds to time t and f(m) and g(m) are functions of the moneyness

of the implied volatility observation m. Hence, for each observation σt,m, we have a

deterministic approximation based on the reduced set of principle components [PCM ]t.

We now treat the first M principle components as latent state variables in the linear

state-space system

σt,m = g(m) + [PCM ]t f(m) + εt, εt ∼ N(0, s2,ε), (II.18)

[PCM ]t = [PCM ]t−1 + νt, νt ∼ N(0,Σν), Σν
ij = 0, i 6= j, (II.19)

which we estimate with a Kalman Filter (Kalman, 1960). We start in the morning of each

day and, with a slight abuse of notation, iterate the time index t through the incoming

intraday trade observations. Note, that the matrix V remains the same for all trades in

a day, which also means that EV −1
M remains the same throughout the day. The very first

PC values, [PCM ]0, are set to the end-of-day PCs of the previous day. At each point

of time, the model maintains a prior estimate of the full implied volatility smile based

on f(m), g(m) and the current values of PCM . With each new trade observation, the

Kalman Filter updates the state PCM and hence the full internal representation of the

implied volatility smile. In the model, we assume that a potential drift component in the

state variables is negligibly small due to the short time interval between 2 observations

in intraday set-ups, such that Et−1(PCi,t) = PCi,t−1 with the conditional expectation at

time t− 1, Et−1(·).

Due to the restricted nature of the model, the only free parameters are s2,ε, the diagonal

elements of Σν and the initial state variances Σν,0. Unfortunately, the precise estimation of

the variances in a linear state-space system, in particular the state variances, is challenging

(Welch and Bishop, 2001, p. 35). Luckily, our state variables, the principle components

of V , are only unobserved intraday and we observe a time series of our states on an end-

of-day basis for the 504-day time period before the current day t. We use this end-of-day

time series to form a prior expectation about the parameters Σν . Such a prior can be

incorporated in the maximum likelihood estimation of the parameters θ = {s2,ε,Σν ,Σν,0},

p(θ|{σt,m}, [PCM ]0) =
p({σt,m}|θ, [PCM ]0) p(θ)

p(σt,m)

∝ p({σt,m}|θ, [PCM ]0) p(θ).

In many applications, nothing is known about the parameters θ, such that one re-
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mains agnostic about their values, essentially setting p(θ) to a uniform distribution

and p(θ|{σt,m}, [PCM ]0) ∝ p({σt,m}|θ, [PCM ]0). However, given information about the

parameters to estimate, we can add this information to the estimation by choosing

a more informative prior p(θ). Specifically, we set p(Σν) = φ(Σν ; Σ̄ν , Sν), where φ

denotes the pdf of a normal distribution, diag(Σ̄ν) = 1
|{σt,m}|diag(Cov(∆PCM)) be-

ing the scaled covariance of the changes in the end-of-day PCM observations and

Sν = 1
|{σt,m}|

1
504

(µ4(∆PCM) − diag(Σ̄ν)2) being the variance of the variance estimate

diag(Σ̄ν), using the centralized fourth moment of ∆PCM , µ4(∆PCM).10 Note that the

estimators for the variance and variance of variance of the PC changes are scaled by the

amount of observed trades |{σt,m}| on the day under consideration. This is because the

end-of-day variance of PC innovations consists of the sum of variances of the intraday

PC innovations, which accumulate to the daily PC innovation.

We remain agnostic about the values of the remaining parameters s2,ε and Σν,0, i.e., we

set their respective priors to a uniform distribution. For each day and maturity, we

fit the parameters θ to the observed set of intraday option trades. We then use these

parameters to filter the intraday time series of PCs and thus the implied volatility smile

for the respective maturity.

II.2.4 Alternative Volatility Surface Estimators

A broad range of methods for constructing the option-implied volatility surface has been

introduced to the literature. After giving a quick overview on the most common paramet-

ric, semi-parametric and non-parametric approaches here, we will shortly present each of

these methodologies in more detail in the following subsections.

One popular representative for a parametric approach is the Gram-Charlier expansion.

It approximates an unknown density by starting with a Gaussian density and, similar

to a Taylor expansion, iteratively adding higher-order components to reduce deviations

between the true unknown density and its previous approximation. This parametric

approach captures volatility, skewness and kurtosis of the unknown risk-neutral density

10Using the relationship V ar(X) = E((X − µ)2) = E(X2)− (E(X))2, E(X) = µ, the variance of the
variance of a random variable X is V ar((X − µ)2) = E((X − µ)4) − (E((X − µ)2))2 = µ4 − σ4, with
the centralized fourth moment µ4 and the variance σ2 of X. Given an estimate s2 for σ2 based on n
observed realizations of X, the central limit theorem holds (van der Vaart, 2000, p.16) and implies

√
n(s2 − σ2)

p→ N(0, µ4 − σ4).
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and allows for closed-form prices of Calls and Puts (Backus et al., 2004), which can

straight-forward be translated to implied volatilities (see section II.1).

Interpolating observed implied volatilities with polynomial splines is certainly the most

popular semi-parametric approach for constructing the implied volatility surface. Several

variations of the spline interpolation approach exist, mainly differing in the degree of

the spline or in the dimension over which the interpolation runs (see, for example, Bliss

and Panigirtzoglou (2002), Jiang and Tian (2005), or Chang et al. (2012)). We follow

Figlewski (2008) and Fengler (2009) as their procedure nests many other approaches of

the literature.

An often applied non-parametric approach is the kernel regression. This is the class

of methods that our volatility surface estimator of section II.2.2 belongs to. Another

prominent example of this class of methods, that is often used in financial research, is the

kernel regression specification of OptionMetrics (2016). That data provider approximates

the option-implied volatility surface with a three-dimensional kernel regression. The

corresponding three bandwidth parameters are fixed in OptionMetrics (2016).

In the following expositions, let {Oi}i∈[1,...,N ], be a panel of option prices with N being

the number of observed option prices that are used to construct the volatility surface. As

all methodologies apply per point of time, we desist from a time index to save notation.

In addition to the previously introduced underlying price Si, strike Ki and maturity τi,

each option price Oi = O(Ki, τi, Ii) is associated with a Black-Scholes option delta ∆i

and an indicator Ii, which is 1 for Call options and 0 for Put options. In this notation,

Oi just groups all option prices, since for Calls O(Ki, τi, 1) = C(Ki, τi) and for Puts

O(Ki, τi, 0) = P (Ki, τi).

II.2.4.1 Gram-Charlier Expansion

The Gram-Charlier expansion applies a fourth-order approximation of the risk-neutral

density q(x, τ). More formally,

q(x, τ) = φ(x;σ2
τ )−

γ1,τ

3!

∂3φ

∂x3
(x;σ2

τ ) +
γ2,τ

4!

∂4φ

∂x4
(x;σ2

τ ) +H.O.T.(x5), ∀x, τ, (II.20)

where φ(x;σ2
τ ) is the Gaussian density function with volatility στ , evaluated at the point

x. γ1,τ and γ2,τ are maturity-specific free parameters that account for the degree of

skewness and excess kurtosis in q(x, τ), and H.O.T. stands for higher order error terms.
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We follow Beber and Brandt (2006) and fit the free parameters (στ , γ1,τ , γ2,τ ) by minimiz-

ing the squared pricing errors between observed option prices and Backus et al. (2004)

implied option prices, i.e.

min
στ ,γ1,τ ,γ2,τ

N∑
i=1

(
O(Ki, τi, Ii)− Ô(Ki, τi, Ii;στ , γ1,τ , γ2τ )

)2

(II.21)

where the Backus et al. (2004) implied call price coincides with

Ĉ(K, τ ;στ , γ1,τ , γ2,τ ) = e−rτ (Fφ(d)−Kφ(d− στ ))

+ Fe−rτφ(d)στ

[γ1,τ

3!
(2στ − d)− γ2,τ

4!
(1− d2 + 3dστ − 3σ2

τ )
]

d =
ln(F/K) + σ2

τ/2

στ
.

and F is the value of a future contract on the underlying with maturity τ and φ(·) denotes

the pdf of a standard normal distribution. Put prices are obtained via the put-call parity.

In line with Jondeau and Rockinger (2000), we fit the three free parameters separately

for each observed maturity τ .

II.2.4.2 Smoothing Spline

We follow Figlewski (2008) and Fengler (2009) as their procedure nests many other ap-

proaches of the literature. Their variation of the smoothing spline algorithm consists of

4 steps: (i) data pre-processing, (ii) spline interpolation, (iii) tail extrapolation and (iv)

data post-processing. We now sketch each step in more detail.

According to Figlewski (2008), a pre-processing step of observed at-the-money (ATM)

implied volatilities is necessary due to a practical problem of the data: Many approaches

construct the option-implied volatility surface with only out-of-the-money (OTM) options

due to their higher liquidity and hence supposably higher informativeness about the

current market environment. However, the switch from OTM Puts to OTM Calls at

a moneyness of m = 1 results in many occasions in a small jump in implied volatility,

as ATM Puts often imply a slightly different implied volatility than ATM Calls. This

volatility jump may deteriorate the quality of the fitted spline.

The pre-processing step mitigates this problem by considering, separately for each

maturity, a small region around the ATM level, which contains options that fulfill

0.98 ≤ mi = Ki
F
≤ 1.02. Let Khigh be the highest and Klow be the lowest traded
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strike within that moneyness region. By linearly combining the observed Put- and Call-

implied volatilities σPut(Ki) and σCall(Ki), we smooth the hard volatility jump in the

region of ATM options and replace the observed implied volatilities with their smoothed

counterparts (Figlewski, 2008):

σ∗(Ki) = w σPut(Ki) + (1− w)σCall(Ki), (II.22)

w =
Khigh −Ki

Khigh −Klow

, ∀Ki ∈ [0.98Fi, 1.02Fi]. (II.23)

In the main interpolation step, we now fit a spline to the observed and pre-processed

option-implied volatilities for each maturity separately. Figlewski (2008) proposes to use

a 4th-order polynomial with one knot at a moneyness of m = 1. Using a 4th-order

polynomial guarantees a continuous 3rd derivative of the spline, which translates into a

smooth RND without any edges. In addition, it is not too restrictive on the shape of

the implied volatility smile, while still smoothing out market noise. If enough option

observations to determine all parameters of the spline are available, we use this setting

for interpolating the moneyness range. In settings where a sufficient amount of implied

volatility observations for the parameter estimation is not available, we simply drop the

knot point and reduce the polynomial’s order, thus effectively reducing the number of

parameters.

The third step concerns the approximation of the tails of the RND. Depending on the

moneyness of the traded options, it might occur that these do not reach out far enough

into the out-of-the-money regions of the volatility smile to accurately recover these tails.

In these situations, an extrapolation of the RND and thus the volatility surface into the

tails is necessary. For that task, Figlewski (2008) proposes to translate the initial volatility

curve of each maturity to its corresponding RND estimate and fit a generalized extreme

value density (GEV) to both tails of the RND. We then extrapolate the RND based on

the fitted GEV tail and backwards calculate option prices based on that extrapolated

density via numerical integration of the expected payoff (see section II.1).

Finally, the fourth step of the interpolation method follows the algorithm of Fengler

(2009) to post-process the implied volatility surface in order to exclude arbitrage in the

estimator.
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II.2.4.3 Three-Dimensional Kernel Regression

For this approach, we follow the methodology of the OptionMetrics IvyDB US File and

Data Reference Manual, Version 3.1, Rev. 8/19/2016. The implied volatility estimate for

an option with a given delta ∆j, a maturity τj and a Put/Call flag Ij ∈ {0, 1} is given by

σ̂(∆j, τj, Ij) =
N∑
i=1

νi k(∆j −∆i, ln(τj)− ln(τi), Ij − Ii)∑N
i=1 νi k(∆j −∆i, ln(τj)− ln(τi), Ij − Ii)

σ(∆i, τi, Ii), (II.24)

where the left hand side stands for the approximation of the unobserved implied volatility,

while the right hand side is a weighted average of all N observed implied volatilities.

Especially, the right hand side of equation II.24 contains options of all maturities, which

differs from the other methodologies that we consider. The weight that each observed

σ(∆i, τi, Ii) obtains is determined by that option’s vega νi and the proximity of the

observation to the desired target point of the interpolation. This proximity is translated

into a weight via the Gaussian kernel function

k(x, y, z) =
1√
2π
e
−
(
x2

2h1
+ y2

2h2
+ z2

2h3

)
. (II.25)

The IvyDB US Reference Manual specifies the bandwidth parameters to coincide with

h1 = 0.05, h2 = 0.005, h3 = 0.001

and limits the kernel regression to the delta interval of [0.2, 0.8].

The volatility surface of OptionMetrics (2016) is not necessarily arbitrage-free. In order to

compare apples with apples, we need all considered volatility surfaces to be arbitrage-free,

so we again apply the post-processing step of Fengler (2009) on the original OptionMetrics

(2016) volatility surface. All of our our results are qualitatively and quantitatively robust

to whether or not one applies this post-processing step. In unreported results we have

found that ensuring no-arbitrage improves the statistical accuracy of the OptionMetrics

(2016) volatility surface.

II.3 Data

We use data for two of the most actively traded equity option contracts: options on the

S&P 500 and options on the Euro Stoxx 50. The former is traded at the CBOE, while
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Table II.3: Summary Statistics

EOD Trades

S&P 500 Euro Stoxx 50 S&P 500 Euro Stoxx 50

Total number of price observations 9,246,926 6,877,495 43,749,042 16,921,911

Avg number of maturities per day 17.21 16.58 16.96 12.65
Avg number of strikes per maturity 61.27 45.28 16.97 5.93

Total number of short-term ATM prices 771,000 73,000 24,627,422 5,866,507
Total number of short-term Left Tail prices 1,326,413 274,227 4,449,056 1,956,662
Total number of short-term Right Tail prices 293,823 198,558 1,330,209 903,600
Total number of medium-term ATM prices 1,186,655 293,028 7,348,889 3,148,740
Total number of medium-term Left Tail prices 3,536,880 1,218,912 3,996,122 3,016,860
Total number of medium-term Right Tail prices 1,048,097 982,266 1,628,093 1,586,504
Total number of long-term ATM prices 120,389 340,796 100,016 168,532
Total number of long-term Left Tail prices 656,001 1,768,878 179,571 170,934
Total number of long-term Right Tail prices 307,668 1,727,830 89,664 103,572

This table provides some aggregated summary statistics of our option data panel. ’EOD’ stands
for ’end-of-day’ (data-rich environment), whereas the ’Trades’ columns summarize the aggre-
gated data for our intraday analysis (data-poor environment).

the latter is traded at the Eurex. The S&P 500 and the Euro Stoxx 50 do both stand

for the Blue Chip stocks of their respective currency zone. Both option contracts are of

European exercise style.

Historical data for S&P 500 options come from the CBOE Livevol data shop. We collect

both, end-of-day bid-ask prices as well as intraday transaction prices. For the end-of-day

data set, we use the mid price for our calculations, whereas we use actual trade prices

for the intraday data set. The end-of-day data is from January 2004 to July 2017. The

intraday data spans the period January 2004 to October 2017. The data comes with the

matched bid and ask prices of the underlying at the point of time of the record.

We obtain end-of-day settlement prices and intraday transaction prices for Euro Stoxx

50 options and the underlying Euro Stoxx 50 index from the Karlsruher Kapitalmarkt-

datenbank (KKMDB), which is hosted at the Finance Institute of the Karlsruhe Institute

of Technology. The KKMDB receives its data directly from the Eurex and Stoxx. The

index data comes in 15 second intervals, while the intraday option data is time stamped

at the point of time of the trade. We match the option trade with the index price di-

rectly at or prior to the trade’s time stamp. The end-of-day data spans January 2002 to

September 2017, whereas the intraday data covers the period January 2003 to September

2017. Table II.3 summarizes our option data sets in more detail.

For the risk-free rate, we use the US-Dollar and Euro OIS curves from Bloomberg, which
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come in discrete maturities between 1 day and 20 years and which we obtain at the daily

frequency. We match each option record with the risk-free rate for its respective date.

We interpolate the OIS rate linearly along the maturity dimension to match the maturity

of the respective option.

We apply a number of filtering steps to ensure that only valid option prices enter the

construction of implied volatility surfaces. We only consider options with a price that

fulfills basic no-arbitrage considerations. More precisely, we keep a Call option price

C, if C ≥ Se−qτ − Ke−rτ , and a Put option price P , if P ≥ Ke−rτ − Se−qτ , with

the current price of the underlying S, a strike of K, maturity of τ years, the risk-free

rate r and the continuous dividend yield q. While this study focuses on options with

European exercise style, we still want to point out where the application of the described

procedures deviates for options of American exercise style.11 In the filtering phase, an

additional lower price bound is imposed on American exercise style options. Since these

options can be exercised at any point of time, their value must always exceed the intrinsic

value of the option contract. We would hence only keep an American Call option price

CA (American Put option price PA), if, in addition to fulfilling the lower price bound

constraint for European Calls (Puts), it fulfills CA ≥ S−K (PA ≥ K−S). Independent

of the exercise style, we remove options for which the calculation of implied volatility

did not converge. In line with Bliss and Panigirtzoglou (2002), we only keep out-of-the-

money options and recover prices for in-the-money options (if required) through put-call

parity or, for American exercise style options, by repricing the option based on the out-

of-the-money implied volatility. The latter is not done for the three-dimensional kernel

regression of OptionMetrics (2016), as that method explicitly works with both, Call and

Put prices, in a delta range of 0.2 to 0.8 and a vega of less than 0.5.

II.4 On the Uniqueness of Option-Implied Informa-

tion

Option-implied risk and return measures, such as forward-looking risk-neutral variance,

skewness or the variance risk premium do have a unique mathematical representation.

Yet, the numerical implementation of such measures does often require the approximation

of an integral of option prices across the whole strike spectrum, even though only a subset

of these strikes are actually traded in the market. Conditional on a correct volatility

11For example, most options on single stock underlyings are of American exercise style.
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Figure II.2: Unconditional Mean of Model-Free Implied Volatility by Methodology
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This figure presents the sample mean of the Bakshi et al. (2003) model-free implied volatility
for S&P 500 options (black dots), by maturity and interpolation methodology, together with
95% confidence intervals. The short-term category refers to maturities below 30 days, the mid-
term category groups maturities between 30 and 365 days, the long-term category summarizes
maturities that are longer than 365 days.

surface, Jiang and Tian (2005) show how to implement such an integration numerically.

But in real-life applications the problem is that different state-of-the-art approaches for

constructing the volatility surface in high resolution across the strike dimension do result

in different volatility surfaces. It is the goal of this chapter to assess the severity of these

differences for a subset of methodologies and to perform a thorough statistical analysis

to identify the methodology that comes closest to the unobserved true volatility surface.

Figure II.2 summarizes the sample mean of the Bakshi et al. (2003) implied volatilities for

S&P500 options with a remaining maturity of (i) less than 30 days (short-term), (ii) 30

to 365 days (medium-term) and (iii) more than 365 days (long-term), respectively. Each

sample mean is based on one of the four volatility surfaces that we have discussed above.

We highlight two insights: First, different volatility surfaces imply different values for a

standard risk measure like Bakshi et al. (2003) implied volatility. The average medium-

term Bakshi et al. (2003) implied volatility is in our sample 21.0% when using the three-

dimensional kernel regression volatility surface and 23.5% when working with the spline

volatility surface. That 12% relative spread is statistically significant and obviously large

from an economic point of view. Second, while the spline interpolation method and the

kernel regression methods tend to produce Bakshi et al. (2003) volatilities that are close
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Figure II.3: Distribution Characteristics of Model-Free Implied Volatility by Methodology
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(b) Medium-term
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(c) Long-term
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This figure presents boxplots for the estimates of the Bakshi et al. (2003) model-free implied
volatility for S&P 500 options, by maturity and interpolation methodology. The short-term
category refers to maturities below 30 days, the mid-term category groups maturities between
30 and 365 days, the long-term category summarizes maturities that are longer than 365 days.
The rectangular boxes mark the quartiles of the distribution of implied model-free volatility,
the horizontal lines within the boxes mark the median. The solid lines outside of the boxes
expand to the 5% and 95% percentiles.

to each other for short-term options, the differences build up for maturities larger than

30 days. Noteworthy, the kernel regression methods produce average term structures

of Bakshi et al. (2003) implied volatilities that are flatter than the term structures of

the other two interpolation methodologies. This results in comparatively low average

medium- and long-term estimates for Bakshi et al. (2003) implied volatility.

In contrast to the disperse, yet precisely estimated, sample means of the Bakshi et al.

(2003) volatilities, the boxplots in figure II.3 describe the respective full distribution of

each interpolation method’s Bakshi et al. (2003) implied volatility. The distributions

largely overlap for short- and medium-term maturities. For medium-term maturities and

even more strongly for long-term maturities, the downward bias of the kernel regression

methods’ estimates becomes visible, which is even more pronounced in the right tail of

the distribution.

Differences in model-free implied variance estimates induce different variance risk pre-

mium (VRP) estimates. In line with Drechsler and Yaron (2011), we define the variance

risk premium (VRP) as the difference in expected variance under the risk-neutral measure
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Q and the physical measure,

V RPt = EQt [Total Return Variation(t, t+ 21)]− Et[Total Return Variation(t, t+ 21)]

where t+ 21 stands for a one-month (or 21-trading-day) increment. We use Bakshi et al.

(2003) model-free implied variance as the measure for the expected total return variation

under Q. For those days, during which the one-month maturity option is not traded, we

linearly interpolate the implied variance measures for surrounding traded maturities along

the maturity dimension to obtain a one-month-ahead expectation. We use an adjusted

form of the model of Corsi (2009) to obtain total return variation expectations under the

physical measure:

RVt = r2
t =

(
ln

St
St−1

)2

, RV
(w)
t =

1

5

t∑
i=t−4

r2
i , RV

(m)
t =

1

21

t∑
i=t−20

r2
i

ln RV
(m)
t+21 = α + β1 ln RVt + β2 ln RV

(w)
t + β3 ln RV

(m)
t + εt+21. (II.26)

The parameters α, β1, β2 and β3 are estimated via OLS.

Table II.4 summarizes the average annualized VRP for S&P 500 and Euro Stoxx 50

options for different volatility surfaces, respectively. The average annualized VRP for

S&P 500 (Euro Stoxx 50) options has been estimated to be between 1.5% and 2.4%

(1.9% and 2.9%), depending on the volatility surface. In relative terms, the spline-based

volatility surface results on average in a 60% higher S&P 500 VRP estimate relative to the

same estimate for the three-dimensional kernel regression. The differences between the

average VRP estimates are for nearly all pairs of methods statistically strongly significant.

Table II.4: Average Annualized Monthly Variance Risk Premium and Sharpe Ratio

S&P 500 Euro Stoxx 50

Average VRP Sharpe ratio Average VRP Sharpe Ratio

3D Kernel Regression 0.015 (0.0006) 0.44 0.019 (0.0006) 0.5
1D Kernel Regression 0.020 (0.0006) 0.54 0.029 (0.0007) 0.68
Spline Interpolation 0.024 (0.0008) 0.57 0.028 (0.0007) 0.65
Gram-Charlier Expansion 0.016 (0.0010) 0.26 0.024 (0.0007) 0.56

This table shows average annualized one-month variance risk premia and VRP Sharpe Ratios.
Standard errors are given in parenthesis. The integration scheme and model for the physical
variance expectations are the same for all estimates, such that the only difference is the method
for constructing the implied volatility surface.
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Table II.5: Average Bakshi et al. (2003) Skewness by Time Period and Method

(a) S&P 500

Period Start Date End Date
3D Kernel
Regression

1D Kernel
Regression

Spline Interpolation
Gram-Charlier
Expansion

Pre-Crisis 2004-01-01 2007-12-31 -1.256 (0.005) -2.347 (0.022) -2.583 (0.042) -1.332 (0.007)
Financial Crisis 2008-01-01 2009-03-31 -0.881 (0.005) -1.307 (0.01) -1.366 (0.035) -1.210 (0.01)
Post-Crisis 2009-04-01 2017-07-21 -1.316 (0.002) -2.791 (0.007) -3.703 (0.025) -1.492 (0.002)

(b) Euro Stoxx 50

Period Start Date End Date
3D Kernel
Regression

1D Kernel
Regression

Spline Interpolation
Gram-Charlier
Expansion

Pre-Crisis 2002-01-01 2007-12-31 -0.826 (0.009) -1.858 (0.009) -1.612 (0.01) -1.347 (0.015)
Financial Crisis 2008-01-01 2009-03-31 -0.708 (0.015) -1.324 (0.010) -1.335 (0.013) -1.242 (0.01)
Between-Crisis 2009-04-01 2010-03-31 -0.657 (0.016) -1.622 (0.011) -1.721 (0.015) -1.135 (0.009)
Euro Crisis 2010-04-01 2013-12-31 -0.699 (0.009) -1.855 (0.01) -1.921 (0.012) -1.277 (0.007)
Post-Crisis 2014-01-01 2017-09-30 -0.805 (0.008) -1.918 (0.009) -1.826 (0.015) -1.287 (0.007)

This table summarizes the sample average of the end-of-day Bakshi et al. (2003) model-free
option-implied skewness, for different time periods and different interpolation schemes. All
numbers in panel (a) are calculated for S&P 500 options, whereas numbers in panel (b) refer to
Euro Stoxx 50 options. Only options with maturities between 15 and 91 days are considered.
Standard errors are given in parenthesis.

Monthly Sharpe ratios for the VRP range from 0.26 to 0.57 for the S&P 500 and from

0.5 to 0.68 for the Euro Stoxx 50. We highlight that these economically large differences

are a direct result of the choice of the inter- and extrapolation method that builds the

basis for a volatility surface; the input data and the VRP calculation scheme is the same

across all methods.

Table II.5 states the sample mean of model-free option-implied skewness for maturi-

ties between 15 and 91 days. Option-implied skewness is calculated as in Bakshi et al.

(2003) and reported for different sub-samples.12 We split the US data set into a pre-

financial-crisis, a crisis and a post-financial-crisis period. We apply the same cuts for the

European data set, but further split the post-financial-crisis period into a between-crisis-,

an euro-crisis-, and a post-euro-crisis period due to the high impact of the European

sovereign debt crisis for European stock markets. The risk-neutral skewness estimates

are nearly all significantly different across different volatility surfaces. The estimates of

the three-dimensional kernel regression are roughly only half the size when compared

to our proposed one-dimensional kernel regression or the spline method. Further, the

changes in the average risk-neutral skewness between one subperiod and the next also

12The results do not change qualitatively for different maturity intervals.
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differ among the volatility surfaces, sometimes even disagreeing on the sign of the change.

For example, risk-neutral skewness based on the spline interpolation become less nega-

tive on average after the Euro Crisis in Europe, while the estimates based on all other

volatility surfaces become more negative.

In summary, information extracted from option markets is supposed to be unique. But

our analysis documents that this information is sensitive with regard to the volatility

surface that a researcher uses. We have shown that risk-neutral model-free estimates for

variance and skewness differ by a large margin across different state-of-the-art methods.

While we have used the Bakshi et al. (2003) moments for explanatory purpose, our

findings hold more generally for any quantity that is extracted from the aggregation of

option prices along the strike range.

II.5 Assessing the Accuracy of a Volatility Surface

We proceed with a discussion about potential evaluation schemes for the relative ad-

vantages and disadvantages of different state-of-the-art volatility surfaces. Our previous

findings have documented that standard option-implied measures differ across volatility

surfaces. As these measures are deterministic functions of the volatility surface, it is natu-

ral that the most accurate volatility surface does imply the most accurate option-implied

risk measures.

At the same time, accuracy is only one of multiple practical considerations when con-

structing an implied volatility surface. It is, for example, well thinkable to accept a lower

accuracy in favor of a more informative representation of the volatility surface. Especially

parametric models can provide such representations. Depending on the model, single pa-

rameters can be interpreted directly and serve as measures that express the situation at

the option market in lower dimension. For example, the parameters of the SVI model of

Gatheral (2004) inform about the level of the implied volatility smile, its rotation and

how wide it is. Parametrization also allows to easily share an implied volatility surface,

as it can be fully reconstructed from the relatively few parameters. The model for the

volatility smile allows to extrapolate beyond observed option prices in a manner that is

consistent with the central part of the modeled volatility smile. No-arbitrage constraints

can be incorporated into the construction of the implied volatility surface at the pa-

rameter estimation phase already (Damghani and Kos, 2013; Damghani, 2015). These

arguments speak in favor of a parametric representation of the implied volatility surface.
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However in this chapter, we explore how accurate different volatility surfaces capture

option market information. The result of our analysis can then serve as an important

input, next to the previously mentioned concerns, for the choice of a construction method

in practice.

One might also be willing to deliberately sacrifice some accuracy in the representation of

the observed implied volatilities in favor of a smoother volatility surface (Jackwerth, 2000;

Jackwerth and Rubinstein, 1996). This is especially true, if the noise in the observations

is expected to be large enough to not be fully canceled out by the interpolation and

smoothing method. In that case, the constructed volatility surface would show spikes

or bumps, which would decrease its smoothness. On the other hand, a very smooth

volatility surface might plane out important features of the observations and thus in-

troduce biases.13 Therefore, we are going to implement a thorough investigation of the

statistical accuracy of popular volatility surfaces and compare them with respect to their

smoothness.

We follow a rich machine learning literature that assesses the accuracy of a model based

on leave-one-out cross-validation (Geisser, 1993; Kohavi, 1995). The advantage of this

cross-validation approach for our study is that every method that we use to construct an

option-implied volatility surface is evaluated with data that was not used to construct

the surface. This allows us to detect over- and under-fitting.

We evaluate the statistical quality of each volatility surface with end-of-day and intraday

data for S&P 500 and Euro Stoxx 50 options. End-of-day data is characterized by a

rich panel of option prices for different strikes and maturities, that all refer to the same

point of time. We call this to be the data-rich environment. In contrast, intraday data

is characterized by a limited amount of observed trade prices in a given time interval.

We therefore call the intraday application to be a data-poor environment. The intraday

set-up becomes increasingly data-poor as the considered time interval for pooling trade

observations shrinks and thus the time resolution increases.14

The highest possible time resolution of a method is bound by the minimum amount

13The introduction of biases by very smooth volatility surfaces can easily be seen by the fact that the
smoothest volatility surface is an uncurved plane.

14End-of-day data does not necessarily create a data-rich environment. For some options, only a
handful of strikes are traded, thus effectively constituting a data-poor environment in end-of-day data.
On the other hand, if bid-ask quotes are used on an intraday basis or the time interval for pooling
intraday trade prices becomes large enough, there will likely be enough observations for distinct strikes
to constitute a data-rich environment.
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of option trades that a method requires for constructing the option-implied volatility

surface. Technically, the Gram-Charlier expansion requires only 3 observed option prices

for distinct strikes at the same maturity. Price observations at 3 different strikes are also

the minimum of the kernel regression methods and the spline interpolation for capturing

the key characteristics level, slope and curvature of the implied volatility smile. Opposed

to these methods, the Bayesian intraday volatility surface from section II.2.3 can maintain

a realistic estimate of the implied volatility smile after processing a single new price

observation. However, the Bayesian method updates an existing estimate and does not

construct the volatility smile from scratch based on new observations only, like the other

methods do. For the Gram-Charlier, kernel regression and spline methods, we therefore

undertake four independent intraday analyses, namely relying on 3, 4, 5 and 10 pooled

trade observations at different strikes per maturity. In each case, we compare their

performance among each other and with the Bayesian method that updates on every

single trade.

For the data-rich end-of-day case, the cross-validation works as follows: Given price obser-

vations of a day, we in turn leave out a single observation and calculate the methodology-

implied volatility estimate at the strike and maturity that was left out. We repeat this

procedure for each price observation. The data-poor intraday set-up with 3, 4, 5 and 10

price observations per maturity is treated similarly: For each new transaction, we use

the corresponding 3, 4, 5 or 10 preceding transactions with differing strikes for the same

maturity in order to create an estimate for the next transaction’s implied volatility. In

the case of the Bayesian volatility surface, we use the prior volatility estimate at the strike

and maturity of the next transaction. For all intraday volatility surfaces, this approach

is basically assessing out-of-sample how well a volatility surface predicts future option

prices.

Given a set of N evaluation samples with implied volatility observations σi, i ∈ {1, ..., N},
our primary evaluation measure is the root mean squared error (RMSE), that arises

when comparing the respective method’s implied volatility estimator σ̂i with the left out

observation σi:

RMSE =

√√√√ 1

N

N∑
i=1

(σi − σ̂i)2. (II.27)

By squaring the errors, the RMSE penalizes large deviations of the constructed volatility

surface from the observed implied volatilities more strongly than small deviations. How-

ever, as discussed above, one might be willing to accept occasional large errors in favor of
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a smoother volatility surface. This is especially true, if one expects such large errors to

be due to outliers, that are not representative of the true unobserved volatility surface.

For this reason, we also calculate the mean absolute error (MAE),

MAE =
1

N

N∑
i=1

|σi − σ̂i| , (II.28)

which is less responsive to such occasional large errors and is still comparably low, if

these errors only occur seldom and the remaining fit is good. For both error measures,

we exclude observations with an implied volatility above 10.15

We also compare the end-of-day volatility surfaces with respect to their smoothness di-

rectly. Following Jackwerth (2000), we measure smoothness as the sum of squared second

derivatives of the implied volatility smile. More precisely, for each day t and maturity

τ , we consider a moneyness range of [1− s
√
τ , 1 + s

√
τ ], where s is an estimate for the

unconditional annual volatility of the underlying. We discretize this range in steps of

∆ = 2s
√
τ

99
and construct the volatility smile {σ̂j,t,τ}j∈[0,100] for the grid points of that day

and maturity with each method. Our measure for the smoothness of the smile is then

calculated as

St,τ =
99∑
j=1

(
σ̂j−1,t,τ − 2σ̂j,t,τ + σ̂j+1,t,τ

∆2

)
. (II.29)

Finally, we compute the mean of that smoothness measure across all days and maturities

and take the square root for better readability. In that, we exclude the 1% of the smiles

with the highest and the 1% with the lowest smoothness measure to mitigate the impact of

the tails of the distribution of smoothness estimates on the average smoothness measure.

The MSE Performance Measure and Smoothness The following discussion shows

that the MSE is indeed a valid measure for assessing the quality of a volatility surface

construction methodology, especially considering the desire to obtain a smooth volatility

surface that still captures all characteristics of the true unobserved volatility surface.16

In the end-of-day set-up, all price recordings for a given day refer to the same point

of time, but may be measured with noise. We can split the error of a construction

methodology, σi − σ̂i, into a noise component εnoisei and a methodology-specific bias

15In rare cases, observed option prices translate into unreasonably high implied volatilities. Our
threshold of 10 leads to the exclusion of 0.012% or less of the data points, depending on the data set.

16The measure that we print in our tables, the RMSE, is the square root of the MSE. Since taking
the root does not affect the relative ordering of different methods, our arguments for the MSE apply
similarly for the RMSE.
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component εbiasi . The noise component is the difference between the implied volatility

observation σi and the true unobserved implied volatility and is thus the same across all

methodologies. All methodologies are not purely interpolating between observed option

prices, but attempt to smooth the volatility smile in order to reduce the noise error.

However, smoothing comes at the cost that a potential over-smoothing introduces a bias

into the implied volatility estimator, which is independent of the noise component. Such

a bias results in an error εbiasi between the implied volatility estimate σ̂i and the true

unobserved implied volatility. The methodology-specific residual can thus be rewritten

as εmethodi = b εnoisei +εbiasi , where we would expect b to be positive but smaller than 1. If a

method just replicates the exact implied volatility observations without any smoothing,

its volatility surface would not be biased (∀i : εbiasi = 0) but exposed to the full noise

error component (b = 1). Substituting these considerations into the MSE equation yields

for the expected MSE

E [MSE] = E
[
(b εnoisei + εbiasi )2

]
= b2E

[
(εnoisei )2

]
+ E

[
(εbiasi )2

]
. (II.30)

The expected MSE consists of 2 components: The noise component and the bias compo-

nent. If a method works particularly well in smoothing out price measurement noise, its

b parameter is close to 0 and the expected MSE reduces. At the same time, the bias error

directly increases the MSE if a method starts to over-smooth the implied volatility curve.

Explicitly splitting the estimation error into its two components would be spurious, as the

noise component is not observed directly. However, a perfect standardization methodol-

ogy would have just the right smoothness to cancel out noise without introducing any

biases. Both objectives lead to a lower MSE.

The situation becomes a bit more complex for the intraday set-up. Here, transaction

prices are recorded at different points of time, leading to a situation, in which there is

a small time gap between the option prices that are underlying the standardization and

the option price that is used to evaluate the standardization. During this time, market

expectations may have changed, which may result in a change in the true implied volatility

surface. When calculating the mean squared error, the time difference introduces a third

error component, εtimei , into the estimation error. We assume this error component to

be independent from the noise and the bias components in the estimation error. For the

intraday set-up, the expected MSE can hence be written as

E [MSE] = b2E
[
(εnoisei )2

]
+ E

[
(εbiasi )2

]
+ E

[
(εtimei )2

]
. (II.31)
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Since all methods are evaluated on the same data set, E [(εtimei )2] is the same for all

considered methodologies. While the time error component biases the measurement of

the full method-specific MSE upwards, a comparison of standardization methodologies is

still valid for the intraday set-up, as methodologies with better noise cancellation and no

biases still possess a lower expected MSE.

II.6 The Accuracy of Volatility Surfaces

This section summarizes key findings of our empirical assessment of the statistical quality

of different state-of-the-art volatility surfaces. We start with the end-of-day analysis for

S&P 500 and Euro Stoxx 50 options. The section ends with the presentation of our

findings for the intraday analysis.

II.6.1 End-of-day: Data-rich Environment

The aggregated RMSEs for the data-rich end-of-day environment are summarized in table

II.6, the respective MAE error figures can be found in table II.7. For S&P 500 options

we find that the volatility surface of the one-dimensional kernel regression produces the

lowest RMSE (0.0092) and MAE (0.0019). The spline interpolation’s volatility surface

ranks second with an overall RMSE (MAE) that is 118% (91%) higher. The three-

dimensional kernel regression ranks third place, with an RMSE (MAE) that is roughly 6

(12) times larger, relative to the one-dimensional kernel regression. The volatility surface

of the Gram-Charlier expansion turns out to be the least accurate, producing a RMSE

(MAE) that is more than 9 (23) times larger than the most accurate volatility surface.

Looking at the RMSE results for the Euro Stoxx 50 confirms that the volatility surface

that is generated by the one-dimensional kernel regression is the most accurate one, fol-

lowed by the spline-based volatility surface, whose overall RMSE is 37% higher. However,

the ranking is reversed with respect to the MAE, where the spline method performs best

and the kernel regression shows a 29% higher error. This reversal is the result of a down-

ward bias of the one-dimensional kernel regression for deep out-of-the-money medium-

term options with a moneyness below 0.5. If these options were to be excluded from

the error calculation, the one-dimensional kernel regression and the spline method would

produce roughly the same MAE for Euro Stoxx 50 data. Finally, the three-dimensional

kernel regression and the Gram-Charlier expansion produce RMSEs (MAEs) that are 14

(25) and 12 (24) times higher, respectively.
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Table II.6: End-of-day Cross-Validation RMSE

(a) S&P 500

Region
3D Kernel
Regression

1D Kernel
Regression

Spline
Interpolation

Gram-Charlier
Expansion

all 578% 100% (0.0092) 228% 927%

short
center 397% 100% (0.0082) 373% 362%
left 1036% 100% (0.0088) 513% 1643%
right 201% 101% 100% (0.0109) 221%

medium
center 235% 131% 210% 100% (0.0084)
left 622% 100% (0.0102) 138% 1039%
right 192% 100% (0.0059) 110% 232%

long
center 249% 100% (0.0022) 150% 164%
left 515% 116% 100% (0.0066) 1073%
right 185% 100% (0.0052) 120% 209%

(b) Euro Stoxx 50

Region
3D Kernel
Regression

1D Kernel
Regression

Spline
Interpolation

Gram-Charlier
Expansion

all 1397% 100% (0.0100) 137% 1220%

short
center 371% 100% (0.0129) 398% 155%
left 1340% 100% (0.0395) 181% 506%
right 3369% 113% 100% (0.0120) 5204%

medium
center 125% 100% (0.0010) 460% 328%
left 2521% 219% 100% (0.0059) 1892%
right 4021% 152% 100% (0.0022) 4337%

long
center 164% 109% 100% (0.0020) 226%
left 1302% 216% 100% (0.0015) 2268%
right 755% 107% 100% (0.0013) 1169%

This table summarizes the cross-validation RMSE for the data-rich (end-of-day) set-up overall
and by region of the implied volatility surface. The short maturity section groups options with
remaining maturities of less than 30 days, medium maturity refers to a remaining maturity of
30 to 365 days and long maturity represents options with a remaining maturity of more than
365 days. The moneyness m = K

F axis is divided into a left, center and right section, with the
cutting lines being located at 0.95 and 1.05. Error figures are given in percent of the respective
best-performing method’s RMSE for each section of the implied volatility surface. For each
section’s best performing method, we report its RMSE in parenthesis.
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Table II.7: End-of-day Cross-Validation MAE

(a) S&P 500

Region
3D Kernel
Regression

1D Kernel
Regression

Spline
Interpolation

Gram-Charlier
Expansion

all 1174% 100% (0.0019) 191% 2370%

short
center 506% 100% (0.0013) 483% 655%
left 1844% 100% (0.0032) 379% 3535%
right 377% 100% (0.0037) 112% 375%

medium
center 299% 100% (0.0005) 370% 561%
left 1487% 100% (0.0021) 121% 3275%
right 249% 100% (0.0018) 114% 432%

long
center 252% 100% (0.0007) 195% 303%
left 706% 100% (0.0024) 128% 1402%
right 349% 100% (0.0014) 131% 490%

(b) Euro Stoxx 50

Region
3D Kernel
Regression

1D Kernel
Regression

Spline
Interpolation

Gram-Charlier
Expansion

all 2536% 129% 100% (0.0015) 2435%

short
center 309% 100% (0.006) 155% 104%
left 2618% 100% (0.0123) 104% 1184%
right 7037% 100% (0.0035) 122% 9905%

medium
center 127% 100% (0.0005) 217% 422%
left 4284% 265% 100% (0.0014) 4570%
right 3262% 112% 100% (0.0012) 3419%

long
center 165% 100% (0.0010) 106% 284%
left 1401% 119% 100% (0.0008) 2066%
right 640% 100% (0.0006) 116% 1388%

This table summarizes the cross-validation MAE for the data-rich (end-of-day) set-up overall
and by region of the implied volatility surface. The short maturity section groups options with
remaining maturities of less than 30 days, medium maturity refers to a remaining maturity of
30 to 365 days and long maturity represents options with a remaining maturity of more than
365 days. The moneyness m = K

F axis is divided into a left, center and right section, with the
cutting lines being located at 0.95 and 1.05. Error figures are given in percent of the respective
best-performing method’s MAE for each section of the implied volatility surface. For each
section’s best performing method, we report its MAE in parenthesis.
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We now continue to report the RMSE for different regions of the option-implied volatility

surface. We split the option-implied volatility surface along the maturity and moneyness

dimension. Options with a maturity of less than 30 calendar days are considered short-

term, options with a maturity between 30 and 365 calendar days are considered medium-

term, while options with a maturity of more than one year are called long-term. Along

the moneyness axis, we label a moneyness of 0.95 to 1.05 as ’center’, whereas the ’left tail’

(’right tail’) is characterized by a moneyness of below (above) 0.95 (1.05). In combination,

these splits yield nine different regions of the option-implied volatility surface, for which

we calculate the RMSE and MAE of each method separately.

Looking at panels (a) and (b) of tables II.6 and II.7 highlights that the short-term and

left tail regions of the volatility surface appear to be hardest to capture as all methods

produce the highest errors here. For the S&P 500, the one-dimensional kernel regression

performs best in most sections of the implied volatility surface with respect to the RMSE

and in all sections with respect to the MAE. Spline interpolation tends to outperform

the one-dimensional kernel regression for medium- and long-term options for the Euro

Stoxx 50, though. This result is more pronounced in the RMSE figures than in the

MAE figures. The three-dimensional kernel regression and the Gram-Charlier expansion

both show severe difficulties in capturing the left and the right tail of the surface. The

problem of the Gram-Charlier volatility surface is that the parametric risk-neutral density

approximation turns out to be insufficient for capturing market information in the tails.

We identify that the relative weakness of the three-dimensional kernel regression is that

it only considers options with a delta of 0.2 to 0.8, which ignores market information

about the tails.

We proceed by comparing the smoothness of the volatility surfaces. Table II.8 displays

our smoothness measures, the sum of squared second derivatives of a volatility smile. A

smooth volatility surface has low second derivatives along the strike dimension and thus a

low smoothness measure. Conversely, a high smoothness measure is an indicator for more

curved volatility smiles. The volatility surface of the three-dimensional kernel regression

is the least smooth in our tests. On the other end, the one-dimensional kernel regression

appears to be smoother than most of the alternatives. For the spline interpolation, there

is an interesting divergence in the smoothness measure between its comparably rough

S&P 500 volatility surface and its very smooth Euro Stoxx 50 surface. This goes hand

in hand with the low errors of the spline interpolation in constructing the Euro Stoxx 50

surface. It seems like the spline interpolation is not able to cancel out all noise in the S&P
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Table II.8: Smoothness of the Volatility Surface

Method S&P 500 Euro Stoxx 50

3D Kernel Regression 1657 (115) 3315 (213)
1D Kernel Regression 600 (55) 303 (24)

Spline Interpolation 1402 (407) 196 (46)
Gram-Charlier Expansion 623 (46) 1096 (73)

This table shows the average smoothness of the constructed implied volatility surface for each
method. For each day and maturity, we sum up the squared second derivative along the mon-
eyness dimension, aggregate across all days and maturities by taking the mean and report the
root of this figure. The second derivative is calculated for a moneyness interval between -3 and
3 times the unconditional standard deviation of the underlying, de-annualized to the respective
maturity. Due to the existence of rare outliers, we remove the 1% largest and smallest single
smoothness values from the calculation. Standard errors are given in parenthesis.

500 data, which produces a more curved volatility surface and higher fitting errors. At

the same time, a smooth volatility surface does not necessarily imply low errors, as can

be seen from the S&P 500 results for the Gram-Charlier expansion. That method might

produce a smooth volatility surface, though it does not accurately reflect the information

in observed option prices as can be seen from its high error figures.

In short summary, the cross-validation of the data-rich environment recommends to use

a volatility surface that was constructed based on the one-dimensional kernel regression.

The spline interpolation is a good alternative for Euro Stoxx 50 data, though appears

to not be able to cancel out all noise in the S&P 500 data. The volatility surface of the

Gram-Charlier expansion should only be applied if one is interested in option-implied in-

formation from the at-the-money region and should be avoided when inferring conclusions

about the tails. The three-dimensional kernel regression produces RMSEs that relative

to the one-dimensional kernel regression are roughly 6 times larger for S&P 500 options

and roughly 14 times larger for Euro Stoxx 50 options.

II.6.2 Intraday: Data-poor Environment

Here, we summarize key findings for the intraday analysis. For the non-Bayesian methods,

we start with the highest time resolution (3 trades), followed by interpolations based on

4, 5 and 10 trades with distinct strikes. We compare the performance of these methods

with the intraday Bayesian volatility surface that is updated on each trade. The Bayesian

volatility surface requires the estimation of state and measurement variances within the

Kalman filter model. However, these parameters are hard to pin down in practice (Mehra,



II. THE RISK-NEUTRAL RETURN DISTRIBUTION 46

1970; Matisko and Havlena, 2012). We therefore investigate a second specification of the

Bayesian volatility surface, where the state variances are not estimated at all, but for each

day set fix to the historically observed variances of the principle components of the end-of-

day volatility surfaces of the 2 years preceding that day. The initial state variance is then

set to 5 times the historical state variance.17 The only parameter that is left to estimate in

this specification is the measurement variance. While this second specification is certainly

not optimal, it can be estimated much faster and is much less prone to estimation errors.

We call this second specification the rule-of-thumb Bayesian volatility surface, while the

first specification of section II.2.3 is called the optimal Bayesian volatility surface.

Our comparison of the accuracy of the intraday methods can be found in tables II.9 and

II.10. Our findings show that the Bayesian approach produces the most accurate intraday

volatility surfaces across all assets, error measures and regions of the volatility surface.

Overall, the best non-Bayesian approach shows a more than 7 (6) times higher RMSE

than the best Bayesian specification for the S&P 500 (Euro Stoxx 50). The magnitude

of the performance differential is similar with respect to the MAE. Especially the left-

tail regions of the implied volatility surface are captured much more accurately by the

Bayesian volatility surfaces, as can be seen by the highly increased errors of the non-

Bayesian methods here. The Bayesian volatility surface appears to benefit from the high

liquidity in left-tail options and manages to transmit this information to better describe

less liquid sections of the implied volatility surface. Among the two Bayesian volatility

surface specifications, the version with fixed state variances appears to be roughly at par

with the optimized state variances. For the S&P 500, the rule-of-thumb version shows

even lower errors, mainly due to the comparably bad performance of the optimal version

in the right tail. The optimal version is leading in most regions of the implied volatility

surface of both equity indices with respect to the MAE, while the picture is more disperse

with respect to the RMSE. In most cases, the performance between the two versions of

the Bayesian volatility surface is similar. Overall, we conclude that one can benefit from

the higher speed and estimation stability of the rule-of-thumb Bayesian volatility surface,

without having to sacrifice much accuracy.

Among the non-Bayesian methods, the one-dimensional kernel regression produces the

most accurate overall volatility surface. The three-dimensional kernel regression is the

17Our tests show that variations in the initial state variance do not have a significant impact on the
performance of the Bayesian volatility surface. We increase the initial state variance with respect to the
overall state variance since it captures the over-night innovation in the states, between the previous day’s
end-of-day volatility surface and the volatility surface of the first trade of the current day.
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Table II.9: Intraday Cross-Validation RMSE

(a) S&P 500

Non-Bayesian Bayesian

Region
3D Kernel
Regression

1D Kernel
Regression

Spline
Interpolation

Gram-Charlier
Expansion

Optimal Rule-of-thumb

all 835% 722% 2747% 917% 129% 100% (0.0098)

short
center 531% 379% 1659% 660% 100% (0.0098) 101%
left 1792% 1703% 5898% 1811% 100% (0.0085) 118%
right 316% 445% 834% 775% 103% 100% (0.0158)

medium
center 483% 401% 1685% 660% 235% 100% (0.0079)
left 1463% 1324% 6241% 1608% 104% 100% (0.0066)
right 361% 399% 880% 703% 196% 100% (0.0127)

long
center 347% 270% 813% 608% 100% (0.017) 102%
left 1645% 1267% 5818% 1757% 100% (0.0059) 117%
right 949% 729% 2361% 1663% 245% 100% (0.0087)

(b) Euro Stoxx 50

Non-Bayesian Bayesian

Region
3D Kernel
Regression

1D Kernel
Regression

Spline
Interpolation

Gram-Charlier
Expansion

Optimal Rule-of-thumb

all 673% 606% 1757% 924% 100% (0.0081) 104%

short
center 330% 228% 380% 439% 100% (0.0108) 108%
left 1282% 1253% 2446% 1371% 100% (0.0067) 109%
right 502% 547% 734% 906% 100% (0.0087) 110%

medium
center 792% 628% 1861% 1433% 105% 100% (0.0049)
left 1340% 1237% 5235% 1757% 100% (0.0050) 103%
right 839% 788% 1666% 1600% 118% 100% (0.0058)

long
center 1059% 669% 2952% 2063% 100% (0.0064) 127%
left 1628% 1238% 7637% 1886% 279% 100% (0.0052)
right 1398% 1107% 3042% 2616% 151% 100% (0.0062)

This table summarizes the out-of-sample RMSE for the data-poor (intraday) set-up overall and
by region of the implied volatility surface. The short maturity section groups options with
remaining maturities of less than 30 days, medium maturity refers to a remaining maturity of
30 to 365 days and long maturity represents options with a remaining maturity of more than
365 days. The moneyness m = K

F axis is dividend into a left, center and right section, with
the cutting lines being located at 0.95 and 1.05. Evaluations are performed based on 3 prior
trades on different strikes and the same maturity for the non-Bayesian methods. Error figures
are given in percent of the respective best-performing method’s RMSE for each section of the
implied volatility surface. For each section’s best performing method, we report its RMSE in
parenthesis.
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Table II.10: Intraday Cross-Validation MAE

(a) S&P 500

Non-Bayesian Bayesian

Region
3D Kernel
Regression

1D Kernel
Regression

Spline
Interpolation

Gram-Charlier
Expansion

Optimal Rule-of-thumb

all 796% 649% 904% 892% 103% 100% (0.0048)

short
center 482% 399% 465% 623% 100% (0.0048) 105%
left 2196% 1821% 2814% 2118% 100% (0.0045) 112%
right 289% 339% 470% 691% 100% (0.0088) 105%

medium
center 469% 454% 487% 613% 143% 100% (0.0036)
left 1880% 1604% 2739% 2109% 100% (0.0027) 112%
right 317% 418% 526% 731% 149% 100% (0.0057)

long
center 999% 870% 1277% 1813% 100% (0.0026) 109%
left 2086% 1457% 2297% 2241% 100% (0.0026) 120%
right 912% 907% 1501% 1932% 166% 100% (0.0035)

(b) Euro Stoxx 50

Non-Bayesian Bayesian

Region
3D Kernel
Regression

1D Kernel
Regression

Spline
Interpolation

Gram-Charlier
Expansion

Optimal Rule-of-thumb

all 672% 627% 621% 860% 100% (0.0032) 115%

short
center 299% 283% 182% 347% 100% (0.0043) 116%
left 1357% 1144% 887% 1279% 100% (0.0030) 122%
right 281% 342% 382% 579% 100% (0.0041) 122%

medium
center 676% 672% 624% 1059% 100% (0.0023) 111%
left 1548% 1368% 1779% 1805% 100% (0.0022) 114%
right 547% 705% 849% 1319% 100% (0.0027) 111%

long
center 970% 927% 1223% 2283% 100% (0.0026) 113%
left 1484% 1247% 3101% 2154% 104% 100% (0.0023)
right 1289% 1191% 1652% 2743% 100% 100% (0.0028)

This table summarizes the out-of-sample MAE for the data-poor (intraday) set-up overall and
by region of the implied volatility surface. The short maturity section groups options with
remaining maturities of less than 30 days, medium maturity refers to a remaining maturity of
30 to 365 days and long maturity represents options with a remaining maturity of more than
365 days. The moneyness m = K

F axis is dividend into a left, center and right section, with
the cutting lines being located at 0.95 and 1.05. Evaluations are performed based on 3 prior
trades on different strikes and the same maturity for the non-Bayesian methods. Error figures
are given in percent of the respective best-performing method’s MAE for each section of the
implied volatility surface. For each section’s best performing method, we report its MAE in
parenthesis.
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Figure II.4: Example for Over-Fitting in Spline Interpolation
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This figure visualizes the severity of the over-fitting in the spline interpolation methodology
for a particular data point of the Euro Stoxx 50 sample, namely 30-day options on May 16th,
2012 (01:35pm). The black dots represent the 5 previous trade observations based on which the
spline interpolation constructs the spline, which is drawn in blue. The red dot marks the next
trade observation.

second most accurate surface, though the performance differential between the two is

not as large as for the end-of-day set-up. In our sample, we find that the spline-based

volatility surface suffers from frequent outliers in the data, which increases the RMSE

enormously. This is not surprising, because the spline interpolation is prone to over-fitting

when it is applied to very few observations. Figure II.4 visualizes the potential problem

of over-fitting when constructing the spline-based volatility surface with 5 or less data

points. As the MAE is less responsive to occasional large errors, which are a result of

over-fitting, the spline interpolation performs better with respect to the MAE than with

respect to the RMSE. It even shows a slightly lower MAE than the one-dimensional kernel

regression for the Euro Stoxx 50 intraday set-up with 3 trades. The volatility surface of

the Gram-Charlier expansion ranks always in the back, though with a much smaller error

differential to the other non-Bayesian methods than in the end-of-day set-up. There does

not appear to occur any over-fitting in the Gram-Charlier expansion, however in all of

our tests, the general fit seems to be worse than for the kernel regression methods.

For the non-Bayesian methods, basing an implied volatility estimate on only 3 price

observations is certainly extreme. We therefore report our main findings for building

intraday volatility surfaces with 4, 5 and 10 price observations per maturity, respectively,
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Table II.11: Intraday Cross-Validation Errors for Varying Amount of Trades Used

(a) S&P 500

Traditional Bayesian

Interpolation
Base

3D Kernel
Regression

1D Kernel
Regression

Spline
Interpolation

Gram-Charlier
Expansion

Optimal Rule-of-thumb

RMSE 129% 100% (0.0098)
3 trades 835% 722% 2747% 917%
4 trades 766% 639% 1645% 846%
5 trades 730% 578% 1135% 807%
10 trades 640% 431% 514% 715%

MAE 103% 100% (0.0048)
3 trades 796% 649% 904% 892%
4 trades 707% 532% 527% 788%
5 trades 655% 450% 388% 734%
10 trades 514% 273% 238% 635%

(b) Euro Stoxx 50

Traditional Bayesian

Interpolation
Base

3D Kernel
Regression

1D Kernel
Regression

Spline
Interpolation

Gram-Charlier
Expansion

Optimal Rule-of-thumb

RMSE 100% (0.0081) 104%
3 trades 673% 606% 1757% 924%
4 trades 646% 536% 847% 893%
5 trades 627% 492% 567% 895%
10 trades 636% 393% 321% 882%

MAE 100% (0.0032) 115%
3 trades 672% 627% 621% 860%
4 trades 634% 528% 396% 831%
5 trades 604% 467% 333% 828%
10 trades 574% 341% 291% 853%

This table summarizes out-of-sample RMSE and MAE for different amount of trades used for the
implied volatility surface. Error figures are given in relative terms towards the lowest respective
error for each asset and error measure. This lowest error is given in paranthesis.

thus sacrificing time resolution in favor of increased precision of the estimated volatility

surfaces. Table II.11 summarizes the results and restates the performance of the Bayesian

methods for comparison. As one would expect, adding more observations as input for

the interpolations, improves the statistical accuracy for all methods. Clearly, the spline-

based volatility surface benefits most, since the higher amount of observations reduces

the tendency of over-fitting. Its RMSE differential towards the best method is falling

rapidly as the volatility surface is based on more price observations. With the decreasing

occurrence of over-fitting, spline interpolation quickly passes the one-dimensional ker-

nel regression with respect to the MAE and even out-performs the other non-Bayesian

approaches with respect to the RMSE in Euro Stoxx 50 options, when using 10 trades

for the volatility surface. Still, even with 10 trades at hand, no method can get close

to the performance of the Bayesian volatility surfaces. We conclude that the Bayesian
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approach is generally superior to its alternatives for the intraday set-up. In set-ups where

the Bayesian approach is not an option, such as data-poor end-of-day environments, the

spline interpolation is a good alternative for the one-dimensional kernel regression, if an

intermediate amount of price observations is used and if the occasional occurrence of an

over-fitted volatility smile is acceptable.

II.7 Summary

This chapter makes three contributions to the literature. First, we are the first to docu-

ment that option-implied information, such as well-known forward-looking measures for

variance, skewness and the variance risk premium, are sensitive to the choice of the un-

derlying volatility surface. These findings hold more generally for any quantity that is

extracted from the aggregation of option prices along the strike range.

Second, we propose a novel methodology for estimating the implied volatility surface tick-

by-tick, based on a Bayesian filtering model. For each maturity, the method maintains

an internal estimate of the volatility smile, which is updated each time a new trade

observation for that maturity becomes available. Crucially, the new observation causes

an update of the whole implied volatility smile, such that the implied volatility estimates

at different strikes than the observed trade’s strike are affected, too.

Third, we implement a thorough statistical assessment of the accuracy of common para-

metric, semi-parametric and non-parametric approaches that the literature has enter-

tained for constructing volatility surfaces at the end-of-day and intraday frequency. For

the intraday frequency, this assessment is expanded to our proposed Bayesian volatility

surface. The non-Bayesian methods under consideration are the Gram-Charlier expan-

sion, the spline interpolation of Figlewski (2008), the three-dimensional kernel regression

of OptionMetrics (2016) and the one-dimensional kernel regression with a linear tail ex-

trapolation in the end-of-day setting. We have recorded the root mean squared error

(RMSE) and mean absolute error (MAE) based on a leave-one-out cross-validation for

each method and have compared the smoothness of the constructed end-of-day volatility

surfaces directly. The test assets are S&P 500 and Euro Stoxx 50 options at the daily

and intraday frequency over 14 years.

The result of our analysis is that the volatility surface that is constructed with the one-

dimensional kernel regression is generally the most accurate one for end-of-day options
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on the S&P 500 and the Euro Stoxx 50. We recommend to use that volatility surface

for extracting option-implied information at the daily frequency. For the intraday set-up,

the proposed Bayesian volatility surface appears to be highly superior to the alternatives,

even if these alternatives form their estimates of the volatility surface on an intermediate

amount of trade observations. If the Bayesian volatility surface is not an option, for ex-

ample for data-poor end-of-day set-ups, the one-dimensional kernel regression showed the

highest accuracy again if only very few observations are available. However, if an interme-

diate amount of observations is available, spline interpolation might be a preferable alter-

native, despite the occasional occurrence of over-fitting. The parametric Gram-Charlier

volatility surface is in many cases too restrictive to approximate the true risk-neutral

distribution and thus the true volatility surface accurately. The three-dimensional kernel

regression of OptionMetrics (2016) performs only slightly worse than the one-dimensional

kernel regression in the intraday analysis, but shows severe shortcomings in capturing the

volatility surface for out-of-the-money Puts at the end-of-day frequency.



III The Physical Return Distribution

P , the conditional physical probability density function, is the key input to every ap-

plication of Expected Utility Theory, which itself builds the foundation to any modern

economic decision making problem.1 For instance, any valuation problem is solved by

finding the expected risk-adjusted present value of future payoffs, where the expectation

is taken with regard to P .2 Analogous, the optimal solution to any consumption and

investment problem depends crucially on P .3 The vast majority of the literature follows

parametric or non-parametric backward-looking approaches to identify P .4 One seri-

ous limitation of backward-looking methodologies is their limited informativeness about

forward-looking events in the presence of regime shifts or non-stationary data.5 A strand

of the literature has therefore relied on the seminal work of Ross (2015) and Hansen

and Scheinkman (2009) to identify P with forward-looking option data and parametric

assumptions on the representative investor’s marginal utility.6 Despite its theoretical ap-

peal, recent empirical evidence for the S&P 500 concludes that the forward-looking P
density of returns cannot be accurately recovered based on Ross (2015).7 We suggest

a third strategy for estimating P , which, similar to the important contribution of Linn

et al. (2018), is a pure econometric approach that relies only on minimal mathematical

continuity and differentiability assumptions and which hence can be considered free of

1In this work, our notion of P does not explicitly differentiate between objective and subjective
probabilities. Early seminal work that discusses both concepts are Ramsey (1931), de Finetti (1937),
von Neumann and Morgenstern (1947) and Savage (1954).

2For early work of this seminal concept see Gordon (1962), Lucas Jr (1978), Mehra and Prescott
(1985), Hansen and Singleton (1982), Hansen and Singleton (1983). Classical textbook treatments are
Cochrane (2001) and Duffie (2001).

3See Merton (1969), Merton (1975) for seminal work in optimal consumption and portfolio planning.
4Noteworthy applications of parametric models on historical returns are Rosenberg and Engle (2002),

Barone-Adesi et al. (2008), Barone-Adesi and Dall’O (2010). Important non-parametric kernel density
estimators on historical returns are Jackwerth (2000), Jackwerth (2004) and Aı̈t-Sahalia and Lo (1998).

5Thorough explanations of this concern can be found in Bliss and Panigirtzoglou (2004) and Linn
et al. (2018) and Cuesdeanu and Jackwerth (2018a).

6See Schneider and Trojani (2019), Jensen et al. (2019), Jackwerth and Menner (2018), Borovička
et al. (2016), Carr and Yu (2012) and Walden (2017) for recent generalizations of Ross (2015).

7See Jackwerth and Menner (2018) and Dillschneider and Maurer (2018).
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parametric assumptions of the underlying economy.

Our econometric methodology follows the economic idea of Ross (2015) to back out P
from inherently forward-looking option prices. Yet, instead of relying on simplifying as-

sumptions on an investor’s marginal utility, we do instead borrow from a well-developed

machine learning literature, which applies Mixture Density Networks (MDN) to approx-

imate any conditional probability density function to arbitrary precision (Bishop, 1994).

This allows us to extract P from option data with only minimal continuity and differ-

entiability requirements and to remain agnostic about the underlying structure of the

economy and preferences. Our method can also be applied to determine which factors

are truly useful in identifying P . Our analysis with S&P 500 return and option data also

documents that backward-looking information such as past S&P 500 returns, returns of

the Fama and French (1993) value and size factor, momentum returns and their respec-

tive realized volatilities do not add noteworthy information about P that is not yet part

of option-implied return moments.

Our option-implied MDN approach works as follows: We assume that the conditional

probability of next day’s S&P 500 return is a weighted sum of Gaussian distributions,

which introduces the aforementioned continuity and differentiability conditions on P . As

conditioning variables we use the risk-free rate and two sets of factors. One set of factors

captures forward-looking option-implied risk-neutral moments of the S&P 500; namely

(i) the SV IX2 from Martin (2017), (ii) the risk-neutral skewness and (iii) risk-neutral

kurtosis from Bakshi et al. (2003). The second set of factors captures a subset of classical

backward-looking return factors such as the return of the value, size and momentum factor

and their respective 10-trading-day rolling window variances. Each mean and variance

of the Gaussian mixture model as well as the weight that each Gaussian density obtains

is allowed to be a function of the conditioning variables. It is key that we are agnostic

about the type of function that these quantities follow. Instead, we approximate these

functions by a feed-forward neural network with one hidden layer of neurons and let the

neural network learn from the data, how to best approximate these functions and hence,

P . A detailed exposition of how to design well-specified MDNs and how to estimate them

can be found in (Rothfuss et al., 2019a) and (Rothfuss et al., 2019b).

We confront our methodology with end-of-day S&P 500 return and CBOE option data,

spanning the period January 2004 to July 2017, to answer five questions. First, do

backward-looking factor returns add information about P that is not yet spanned by
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forward-looking option-implied information? In order to answer this question we compare

the in-sample and out-of-sample log likelihood values of three MDNs which only differ

with regard to the set of conditioning variables. One MDN conditions on forward-looking

option data and the risk-free rate only. A second one conditions on backward-looking

factor returns and their historical volatility. A third MDN conditions on both types

of information, forward-looking option data including the risk-free rate and backward-

looking factor returns and their historical volatilities. When comparing the respective

log likelihood values, we follow Welch and Goyal (2008) and compare all likelihood values

to a baseline case, which we specify to be a non-parametric kernel density estimator

(Jackwerth, 2000; Aı̈t-Sahalia and Lo, 1998) of the unconditional return distribution. Our

analysis concludes that a MDN with only forward-looking option-implied information is

sufficient to beat the non-parametric kernel density estimator by a margin of roughly 5%,

both in- and out-of-sample. While adding backward-looking factor information further

increases the in-sample log likelihood by a relative margin of 0.6%, the out-of-sample

relative increase in the log likelihood is only 0.04%. We hence conclude that the backward-

looking factor returns and their historical volatilities do not add noteworthy information

about P and can hence be easily skipped when building a forward-looking P estimate.

The second question of this chapter is to test whether each of the four considered P
estimates could be the data generating process for the realized time series of daily S&P

500 returns. We follow Jackwerth and Menner (2018) and apply a Berkowitz (2001) and

Knüppel (2015) test. Based on out-of-sample data, we reject that the non-parametric

kernel density estimator and the backward-looking MDN are proper characterizations of

P . We fail to reject the hypothesis for the forward-looking MDN. These tests also show a

text book like pattern for over-fitting when working with backward-looking P estimates.

All of the considered backward-looking densities cannot be rejected using in-sample data,

yet, they do not generalize well to previously unseen out-of-sample data and are strongly

rejected here.

Based on the first two research questions we conclude that the forward-looking P estimate

that combines a MDN with forward-looking option data and the risk-free rate provides

an accurate statistical description of daily S&P 500 returns. As a third research question

we want to understand whether our forward-looking P estimate is useful from a financial

economic point of view. To assess that we implement two dynamic trading strategies

that rely on P as a signal for trading and compare the resulting Sharpe ratio to a static

trading strategy that does not rely on P . One strategy goes long (short) the S&P 500
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on days where the forward-looking expected return is positive (negative). We compare

the Sharpe ratio of this strategy to a buy-and-hold strategy. The second trading strategy

shorts delta-neutral straddles and closes the position after one day. We increase the short

position on days where the conditional forward-looking variance expectation is falling and

we reduce it for days where the variance forecast is rising. We compare the outcome of

the straddle timing strategy to a static short straddle strategy. With regard to the first

trading strategy, we document an in-sample (out-of-sample) Sharpe ratio of 0.69 (0.74),

relative to a 0.39 (0.65) Sharpe ratio of the static buy-and-hold strategy. We document

an in-sample (out-of-sample) Sharpe ratio for the dynamic straddle strategy of 4.9 (5.4),

relative to a 2.7 (3.2) Sharpe ratio for the static short straddle strategy. Based on the

in-sample and out-of-sample Sharpe ratio results, we conclude that the forward-looking

P density carries economically meaningful information about the time series properties

of daily stock returns.

Our fourth research question aims to understand which of the forward-looking option-

implied conditioning variables are especially important for the forward-looking P density.

We perform an adjusted Patton and Timmermann (2010) test to assess the impact of a

particular option-implied conditioning variable onto P . Our findings highlight that all of

the considered option-implied variables are informative about P at the 1% significance

level. From all option-implied quantities, we find SV IX2 to have the strongest effect

on the ex-ante mean, variance, skewness and kurtosis of P . Bakshi et al. (2003) option-

implied skewness and kurtosis are only important for pinning down the forward-looking

P skewness and kurtosis.

The adjusted Patton and Timmermann (2010) test does not reveal how the option-implied

moments feed into P . The fifth research question does therefore aim to learn from

the feed-forward neural network. We follow Davison and Hinkley (1997) and construct

confidence intervals for the predictive relationship that the neural-network-based MDN

implies. With regard to V IX2, we identify a close to linear positive predictive relationship

to the next day’s expected return, well in line with the economic model of Martin (2017).

Also of interest is the observation of a positive relationship between SV IX2 and the

expected P variance. The identified relationship is linear for days where the annualized

SV IX is above 17%. As to the relationship between SV IX2 and forward-looking P
skewness we document that as option-implied volatility drops from an annualized value

of 17.3% to 12.2%, next day’s P skewness reduces from roughly 0 to -0.62.
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Our work is closest related to the young, yet fast growing and influential, literature on

estimating P from option data. Ross (2015) develops an economic technique to recover

the physical return density from its risk-neutral counterpart. His key economic restric-

tion is that the representative investor’s ratio of marginal utility between two states is

transition independent and thus constant over time. The empirical success of the Ross

(2015) theorem is mixed. Audrino et al. (2015) show that a trading strategy with signals

extracted from Ross (2015) recovered P moments outperforms trading signals from risk-

neutral moments. On the other hand, Jackwerth and Menner (2018) apply a series of

statistical tests on the Ross (2015) implied P density. The authors reject the hypothesis

that realized S&P 500 returns are drawn from the Ross (2015) implied P density. Jack-

werth and Menner (2018) identify that a key challenge to the empirical success of the

Ross (2015) theorem is the difficulty to obtain the required transition state prices from

option price data. Findings in Bakshi et al. (2018) for options on 30-year Treasury bond

futures do also challenge the adequacy of the Ross (2015) required pricing kernel.

Jensen et al. (2019) generalize the work of Ross (2015). The authors replace the time-

homogeneity restriction on the pricing kernel with a weaker time-separability constraint.

The authors show that this extension improves the resulting accuracy of the implied

P volatility forecast, yet it still does not pass a Berkowitz (2001) test. In contrast to

these important contributions, we show how to transform option-implied information to

P without relying on the economically important, yet empirically difficult to measure,

concept of a pricing kernel. Our approach is only data-driven and uses a small-scale

feed-forward neural network as part of a MDN to uncover P from a panel of option

prices.

Our work is also related to the model-free P recoveries of Schneider and Trojani (2019)

and Linn et al. (2018). Schneider and Trojani (2019) use economically motivated sign re-

strictions on tradable higher moment risk premiums to derive constraints on the physical

conditional moments of returns. Their recovered P estimate is free of technical assump-

tions on the underlying economy and shown to predict S&P 500 returns. The model-free

approach of Linn et al. (2018) is an innovative econometric method that estimates P
using the forward-looking option-implied density and the inverse of the Radon-Nikodym

derivative. The authors’ approach relies on a finite order cubic B-spline to approximate

the inverse of the Radon-Nikodym derivative with a set of time-varying option-implied

densities and return realizations that are sampled from the corresponding P density.

Their model-free estimate for P shares the same information set as our option-implied
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forward-looking density and similar to Linn et al. (2018), our approach of recovering P
is a pure econometric approach. Different to the previous two contributions however,

we do not identify P based on the conceptually important, though rather indirect route

via a pricing kernel. Instead, we directly approximate the unknown P distribution by a

small-scale MDN with a feed-forward neural network that conditions on option-implied

information.

Our work also adds to the growing literature that uses machine learning and neural

network techniques in finance applications. Early work in this field includes Hutchinson

et al. (1994) and Yao et al. (2000) who use neural networks to price options on the S&P 500

and Nikkei 225 futures. More recently, Ludwig (2015) documents several advantages when

using a neural network to interpolate the option-implied volatility surface. Dunis et al.

(2011) and Zhao et al. (2018) show how to use neural networks for portfolio formation and

trading strategies. The influential study of Gu et al. (2019) compares a range of machine

learning techniques for time series and cross-sectional return predictions. The authors

conclude that well-performing machine learning techniques, such as neural networks,

benefit from their ability to capture important nonlinearities in the data. We add to

this literature by showing that machine learning techniques are not only useful for return

predictions, but they also help improve our understanding on deep financial economic

questions, such as how to use the rich cross-section of option data, which is available in

real time, to learn about the full conditional return density under P .

The concept of using MDNs and neural networks to approximate conditional probability

density functions has been primarily developed in the computer science literature. The

seminal work in that field is Bishop (1994). Recently, there has been a new interest in

the literature to further improve on that technique. Rothfuss et al. (2019a) develop a

noise regularization scheme for machine learning tools like MDNs to prevent over-fitting

in applications that have to rely on small training samples. In our implementation of

the MDN we test for over-fitting using their regularization technique. Rothfuss et al.

(2019b) use a controlled simulation study to assess how different non-parametric condi-

tional density estimators perform when asked to learn a specific density function. The

authors conclude that a MDN dominates the other considered non-parametric density

estimators. On a technical level, we differ from these studies by letting the training al-

gorithm choose the size of the neural network, which allows the data to determine the

proper degree of complexity and which renders noise regularization unnecessary in our

case. On an economic level, we differ from these studies by using this well developed
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tool from the computer science literature to address one of the most fundamental ques-

tions in financial economics, namely how to find a good forward-looking estimate for the

conditional density of daily S&P 500 returns.

III.1 Model-Free Return Density

In this section, we present our conditional density estimator, that is able (but not re-

stricted) to form physical density estimates based on forward-looking information alone.

We consider this estimator to be model-free in the sense that we do not restrict in any

way the shape of the distribution or the relationship between the distribution’s shape and

the inputs that it is conditioned on. Instead, the estimator learns these characteristics

during the training phase from the data. The estimator, called Mixture Density Network

(MDN), combines a neural network with the class of mixture density models and has

been developed by Bishop (1994).

Let rt = ln St
St−1

be the log return of an asset’s price at time t and Xt−1 = (x1,t−1, ...,

xi,t−1, ..., xN,t−1)ᵀ ∈ I ⊆ RN be a set of N predictor variables, that we can observe in

t− 1. We start by expressing the conditional physical log return density p(rt|Xt−1) as a

mixture density model, more precisely, as a Gaussian mixture model

p(rt|Xt−1) =
K∑
k=1

αk(Xt−1)N (rt|µk(Xt−1), σ2
k(Xt−1)). (III.1)

Here, the conditional density is constructed as the weighted sum of K Gaussian densities

with respective weights αk(Xt−1), means µk(Xt−1) and variances σ2
k(Xt−1). The weights,

means and variances of the mixture model are unknown functions of the input variables

Xt−1. In order to form a valid density, it must hold
∑K

k=1 αk(Xt−1) = 1. As Bishop (2006)

emphasizes, this specification is flexible enough to approximate almost any distribution

to arbitrary precision, provided the number of Gaussians K is large enough.

A MDN uses a feed-forward neural network to jointly estimate αk(Xt−1), µk(Xt−1) and

σ2
k(Xt−1). For robustness, we restrict ourselves to neural networks with one hidden layer

of neurons. To formalize that, we express the distribution’s parameters as a function of

the input variables that we condition on: f : I → RK
+×RK×RK

+ , f(Xt−1) = (α1(Xt−1), ...,

αK(Xt−1), µ1(Xt−1), ..., µK(Xt−1), σ2
1(Xt−1), ..., σ2

K(Xt−1))ᵀ and write the j-th element
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of f as

fj(Xt−1) =
H∑
h=1

w2,j,h φ

(
N∑
i=1

w1,i,h xi,t−1

)
+ w2,j,bias. (III.2)

Here, we assume that the input vector Xt−1 already contains a constant element. In

essence, the neural network, which is characterized by equation III.2, can be seen as a

weighted sum of homogeneous functionals of the input variables. The difference between

the functionals only lies in the weights that are assigned to each input. Note that these

first-level weights w1,i,h are shared among all elements of f , while the second-level weights

w2,j,h and w2,j,bias are element-specific. The function φ(·), called activation function,

should be continuous, bounded and non-constant and we follow common practice in the

literature in choosing the tangens hyperbolicus function, i.e., φ(z) = ez−e−z
ez+e−z

.

As Hornik (1991) showed, this neural network specification is flexible enough to approxi-

mate any continuous function fj(Xt−1) to arbitrary precision, provided that the number

of hidden neurons H is large enough. Put differently, the neural network’s parameters

w1,i,h, w2,j,h and w2,j,bias define the function fj(Xt−1), which is selected from the full

space of continuous functions in the model training phase. Beside the number of hidden

neurons H, which we let our training algorithm choose freely, we impose no restrictions

on fj(Xt−1) in any way. In combination with the flexible density definition in equation

III.1, the MDN can approximate any conditional distribution p(rt|Xt−1) without prior

restrictions about this distribution (Bishop, 1994).

III.1.1 Estimation

The parameters of our Gaussian mixture density from equation III.1 are subject to a

number of natural constraints: The variances of the component densities σ2
k(Xt−1) must

be positive. Also, the weights αk(Xt−1) must be positive and add up to 1. Translating

these restrictions into a set of constraints for the neural network’s weights would be very

challenging, if not impossible. Instead, we transform the weights and variances of the

Gaussian components in equation III.1 to enforce fulfillment of the constraints without

needing to constrain the neural network. More precisely, let α̃k(Xt−1) be the MDN output

for a weight and σ̃2
k(Xt−1) be the MDN output for the variance of a mixture component.
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The actual weight and variance of that component are then set to

σ2
k(Xt−1) = eσ̃

2
k(Xt−1), (III.3)

αk(Xt−1) =
eα̃k(Xt−1)∑K
i=1 e

α̃i(Xt−1)
. (III.4)

These transformations allow us to maintain an unconstrained output for the neural net-

work while fulfilling the natural parameter constraints of a mixture density model.

We now collect a training data set {(rt, Xt−1)}t∈[1,T ]. As we are aiming for a full density

estimator, we fit the neural network parameters θ = (w1,i,h, w2,j,h, w2,j,bias) by maximizing

the conditional log likelihood of the observed data points:

θ∗ = arg max
θ

T∑
t=1

ln p̂(rt|Xt−1; θ). (III.5)

There exists a large body of literature about the training of neural networks. Bishop

(2006) and Géron (2017) provide a good introduction and overview of different training

techniques. We use stochastic gradient descent with the adaptive learning rate method

of Kingma and Ba (2015) to train our Mixture Density Network. In a nutshell, this

local optimization technique repeatedly iterates over the complete training data set and

adjusts the parameters step-by-step to draw closer to the optimal solution. The starting

values for the weights of the MDN are set randomly. Within each iteration, the method

starts in the beginning of the training data set, feeds the respective input data point

into the neural network and computes the model-implied likelihood of the associated

observed return. The optimizer now slightly adjusts the weights along their gradients of

the likelihood function to increase the likelihood of that return in subsequent estimations.

Afterwards, it proceeds to the next observation and repeats updating the weights until

the end of the data set is reached. This process is repeated L times.

A central issue when training neural networks is determining the optimal degree of com-

plexity of the model. Models with too limited capacity may not be a able to sufficiently

capture the structure of the data, introducing a restriction bias. On the other hand,

if a model is too expressive, it is prone to over-fit the training data, resulting in poor

generalization. There are three hyper-parameters embedded in our approach that allow

to adjust the complexity of the Mixture Density Network: the number of mixture com-

ponents K, the number of hidden neurons H and the number of training iterations L.
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Increasing any of these hyper-parameters makes the model more complex.

In order to pin down the hyper-parameters and find the best degree of complexity for

our use case, we perform a cross-validation-based hyper-parameter grid search. First, we

consider a set of discrete values for each hyper-parameter and construct a grid by forming

all possible combinations of the respective hyper-parameter values. Next, we divide the

training data set into 10 equally sized folds. For each hyper-parameter combination on

the grid, we in turn leave out one of the folds and use the 9 remaining folds for training.

We now train the MDN 5 times on this trimmed training data set with different starting

values for the weight optimization. After each training, we record the average conditional

log likelihood for the returns in the fold that was left out. We arrive at a performance

figure for a given hyper-parameter combination by taking the average log likelihood across

all folds and starting values. Finally, we choose the hyper-parameter combination with

the highest performance, that is, the highest cross-validation conditional likelihood. If

any of the selected hyper-parameters is located at one of the borders of the grid, i.e., if the

lowest or highest value of the discrete value set of a hyper-parameter is picked, we expand

that parameter’s value set and repeat the entire grid search until no hyper-parameters at

the borders of the grid are picked.

III.1.2 Alternative Physical Density Estimators

Here, we present several alternative density estimators that we use in our robustness

tests. A large range of conditional density estimators are known to the literature. On a

high level, one can distinguish between parametric (Shumway and Stoffer, 2017) and non-

parametric methods (Li and Racine, 2007). Recently, a third class of modeling approaches

emerged, which is based on machine learning techniques (Bishop, 2006; Ambrogioni et al.,

2017). Our proposed MDN approach also belongs to this class. In essence, machine learn-

ing methods are parametric, but they are often so flexible that they can approximate a

very large class of alternative parametric models without requiring exogenous information

about which exact model to approximate. In a simulation study, Rothfuss et al. (2019b)

show the superiority of these methods compared to non-parametric density estimators

for a range of distributions that are relevant to financial applications.

In the following, we will give an overview of the methods that we employ in our analysis.

To fix notation, let rt stand for the log return of an asset’s price at time t. Let Xt−1 =

(xi,t−1)i∈{1,...,N} stand for a vector of predictor variables that can be observed in t − 1.
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We are now interested in the conditional density p(rt|Xt−1) of rt.

III.1.2.1 Parametric Density

A first approach to specifying p(rt|Xt−1) is to pose a parametric structure on the evolu-

tion of the asset price and thus return. The well-known class of ARMA-GARCH models

(Bollerslev, 1986) is a natural candidate for this task, however, it is by construction

backward-looking as it conditions on past return data. Engle and Patton (2007) and

Sharma et al. (1996) investigate such time series models that are enriched with exoge-

nous predictor variables. We follow their intuition, but shut down the backward-looking

channel by dropping past return information from the model. More precisely, we assume

that log returns are conditionally normally distributed, with mean and variance that are

linear in the forward-looking input variables:

rt = α + β Xt−1 + εt, εt ∼ N (0, σ2
t ), (III.6)

σ2
t = a+ bXt−1 + νt, νt ∼ i.i.d., E(νt) = 0. (III.7)

Here, Xt is the vector of forward-looking variables and log returns are distributed ac-

cording to rt ∼ N (α + β Xt−1, a + bXt−1). We estimate the parameters in a two-pass

estimation. In a first step, we regress the observed returns in the training set on Xt−1 via

OLS, thus obtaining initial estimates for α and β. We square the residuals and regress

these squared residuals on Xt−1 again, which provides us with OLS estimates for a and

b. In the second estimation step, we use the previous parameter estimates as starting

values for a joint maximum likelihood estimation.

III.1.2.2 Non-Parametric Density

Three kernel-based methods represent the non-parametric approach in our analysis. First,

we use the kernel density estimator to estimate the unconditional joint distributions of

(rt, Xt−1)ᵀ and the unconditional distribution of Xt−1 alone and form the ratio between

these two estimates to obtain the conditional distribution of rt. Putting more weight

on the training data points that are closest to the current (rt, Xt−1)ᵀ observation leads

to neighborhood kernel density estimation. Finally, least-squared conditional density

estimation relaxes the weight constraints that are imposed upon the estimator by the

previous methods. We will present the three methods in more detail in the following

paragraphs.
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Conditional Kernel Density Estimation Given a set of training data points

{yt}t∈[1,T ] the unconditional kernel density estimator for a potential point of interest

y reads as follows (Rosenblatt, 1956; Parzen, 1962):

p̂(y) =
1

Th

T∑
t=1

K

(
y − yt
h

)
(III.8)

Kernel density estimation (KDE) can be understood as placing a simple kernel function

K(·) into each data point yt and forming an equally weighted mixture of the T densities.

The difference between y and a training data point yt is scaled by the bandwidth param-

eter h. In the case of a multivariate variable y ∈ RJ , J > 1, the unconditional density

can be estimated as the product of marginal kernel density estimates:

p̂(y) =
J∏
j=1

p̂(yj) =
J∏
j=1

1

Thj

T∑
t=1

K

(
yj − yj,t
hj

)
. (III.9)

In that, yj denotes the j-th dimension of the column vector y and hj is the corresponding

bandwidth for that dimension. One popular choice of K(·), that we use, too, is the

Gaussian kernel

K(z) =
1√
2π
e−

z2

2 . (III.10)

Provided a continuous kernel function such as equation III.10, the estimated pdf in equa-

tion III.9 is continuous, too. Beyond the appropriate choice of K(·), a central challenge

in kernel density estimation is the selection of the bandwidth parameter h, which con-

trols the smoothness of the estimated pdf. We determine h by minimizing the Integrated

Mean Squared Error (IMSE) using a cross-validation approach, as recommended by Li

and Racine (2007).

The non-parametric KDE approach can be extended to the conditional case (Conditional

KDE; CKDE), in which we are interested in. Here, unconditional KDE can be used

to estimate both the joint density of returns and inputs by setting yt = (rt, Xt−1)ᵀ and

the marginal density of the inputs by setting yt = Xt−1. Then, the conditional density

estimate of returns follows as the density ratio

p̂(rt|Xt−1) =
p̂(rt, Xt−1)

p̂(Xt−1)
, (III.11)

where both the enumerator and denominator are the sums of kernel functions as in

equation III.9.
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Neighborhood Conditional Kernel Density Estimation Similar to kernel density

estimation, neighborhood conditional kernel density estimation (NKDE) employs stan-

dard kernel density estimation in a local ε-neighborhood around a point of interest y

(Sugiyama and Takeuchi, 2010). The method uses kernels in the training data points

as well, however, rather than using all past observations, NKDE only considers a local

subset of the training samples {yt}t∈Ky,ε , where Ky,ε contains all sample indices that fulfill

||yt − y||2 ≤ ε.

In order to obtain a conditional density estimate, we again first build unconditional

density estimates for p̂(rt, Xt−1) by setting yt = (rt, Xt−1)ᵀ and p̂(Xt−1) by setting yt =

Xt−1. We then apply equation III.11. Again, we use a Gaussian kernel function and

select both the bandwidth hyper-parameter h and the neighborhood hyper-parameter ε

via cross-validation.

Least-Squares Conditional Density Estimation The Least-Squares Conditional

Density Estimation (LSCDE) approach of Sugiyama and Takeuchi (2010) estimates the

conditional density as a linear combination of kernel functions K(·)

p̂α(rt|Xt−1) ∝ αTK((rt, Xt−1)ᵀ) (III.12)

Here, K((rt, Xt−1)ᵀ) = (K1((rt, Xt−1)ᵀ), ..., KM((rt, Xt−1)ᵀ))T is a vector of kernel func-

tions. The main difference between LSCDE and the previous kernel methods is the direct

estimation of the weights α via regression. Furthermore, the kernel functions are not nec-

essarily bound to the past observations. In principle, any number of kernel functions, that

are located anywhere in the domain of (rt, Xt−1)ᵀ is possible. Practically, Sugiyama and

Takeuchi (2010) advise picking randomly a number of past observations at which kernels

are located. This number is typically much smaller than the amount of observations, thus

making the estimation of α more robust. The parameters α ∈ RM are then obtained by

minimizing the integrated squared error

J(α) =

∫ ∫
(p̂α(rt|Xt−1)− p(rt|Xt−1))2p(Xt−1)dXt−1drt. (III.13)

Sugiyama and Takeuchi (2010) derive the closed-form solution for α for the case of Gaus-

sian kernels, which we follow. After having obtained α∗ = arg min
α
J(α), the conditional



III. THE PHYSICAL RETURN DISTRIBUTION 66

density of rt can be computed as follows:

p̂α(rt|Xt−1) =
(α∗)ᵀK((rt, Xt−1)ᵀ)∫

(α∗)ᵀK((rt, Xt−1)ᵀ)drt
(III.14)

The denominator in equation III.14 is traceable and can be computed analytically

(Sugiyama and Takeuchi, 2010). Hence, neither numerical optimization nor numerical

integration is needed for obtaining conditional density estimates with LSCDE. However,

three hyper-parameters need to be determined: the bandwidth parameter of the Gaus-

sian kernels, the number of kernel functions to use and a regularization parameter that

can be used in the estimation of α∗. As before, we estimate these hyper-parameters via

cross-validation.

III.1.2.3 Kernel Mixture Networks

Beside the Mixture Density Network, we consider one further neural network density esti-

mator, the Kernel Mixture Network (KMN). While MDNs resemble a purely parametric

conditional density model, the Kernel Mixture Network, combines both non-parametric

and parametric elements (Ambrogioni et al., 2017). Similar to MDNs, a mixture density

model of p̂(rt|Xt−1) is combined with a neural network, which takes the conditioning

variable Xt−1 as an input. However, the neural network only controls the weights of

the mixture components while the centers and scales of the Gaussian components are

fixed. Figuratively, one can imagine the neural network as choosing between a very large

amount of pre-existing kernel functions to build up the final combined density function.

Differing from the kernel density methods, multiple kernel functions with differing band-

widths but equal location are considered, giving the KMN an indirect way of controlling

the bandwidths and locations of the components, too. Still, the focus on representing the

weights as only output variable might result in a higher performance for the KMN. As for

MDNs, we employ Gaussians as mixture components, wherein the bandwidths parameter

directly coincides with the standard deviation.

Let M be the number of kernel centers µm and S the number of kernel scales σs. The

KMN conditional density estimate reads as follows:

p̂(rt|Xt−1) =
M∑
m=1

S∑
s=1

wm,s(Xt−1)N (rt|µm, σ2
s) (III.15)

Here, the neural network only models the weights wm,s(Xt−1), which must add up to
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1 in order to form a valid density estimator. Hence, as in equation III.4, the output

nonlinearity of the neural network is chosen as a softmax function. Ambrogioni et al.

(2017) propose to choose the kernel centers µm by sub-sampling the training data and

recursively removing each point (ri, Xi−1)ᵀ, i < t that is closer than a constant δ to any

of its predecessor points. This can be seen as a naive form of clustering which depends

on the ordering of the data set. Instead, we use the well-established clustering method

k-means for selecting the kernel centers. Overall, the KMN model is more restrictive

than the MDN as the locations and scales of the mixture components are fixed during

inference and cannot be directly controlled by the neural network.

The KMN has a number of hyper-parameters, namely the number of hidden neurons

in the neural network, the number of locations for the Gaussian components8 and the

number of training iterations. We select these hyper-parameters as described for the

MDN in section III.1.1.

III.2 Data

Our forward-looking estimate of the physical return density heavily relies on risk-neutral

information. We use the moments of the risk-neutral distribution, which can be inferred

from option prices, as inputs for our estimation. To this end, we obtain end-of-day quotes

for S&P 500 options from the Chicago Board Options Exchange (CBOE). The option data

spans the period January 2004 until July 2017 and comes with matched underlying prices

at the time of the option market’s close. Bakshi et al. (2003) showed how the variance,

skewness and kurtosis of the risk-neutral distribution can be backed out from option prices

in a model-free way via aggregation over the strike range. Martin (2017) introduced the

SVIX, a similarly constructed measure, that is closely related to the risk-neutral variance

and that constitutes a lower bound for the expected return under reasonable assumptions.

Due to its theoretical merits, we thus replace the risk-neutral variance estimate of Bakshi

et al. (2003) with the SVIX in our physical density predictions.

A careful and precise estimation of the SVIX and the risk-neutral moments from the raw

option data is crucial for our analysis. Several popular approaches for building the implied

volatility surface and thus risk-neutral moment estimates have been compared in chapter

II. Large differences in option-implied estimates due to the choice of the calculation

8We use k-means to determine the locations of the Gaussian components. At each location, we
consider two components with a scale of 0.3 and 0.7. The scales are independent of the volatility of
returns, as they are normalized to unit variance prior to estimation and model fitting.
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Table III.1: Summary Statistics

Percentiles

Mean Volatility 10% 25% 50% 75% 90%

S&P 500 return 0.03 1.17 -1.11 -0.39 0.07 0.53 1.13

Risk-free rate 0.005 0.007 0.00 0.00 0.001 0.008 0.019
SVIX2 394.30 494.35 134.12 167.20 238.33 413.58 720.12
QSkew -2.46 0.94 -3.46 -2.93 -2.41 -1.94 -1.51
QKurt 24.37 16.62 8.59 13.16 20.85 30.27 43.11

Value return 0.003 0.64 -0.57 -0.28 -0.00 0.26 0.58
Size return 0.002 0.57 -0.67 -0.34 0.01 0.34 0.67
Momentum return -0.002 0.96 -0.94 -0.38 0.06 0.43 0.89
S&P 500 risk 1.88 6.01 0.22 0.40 0.84 1.77 3.71
Value risk 0.41 0.92 0.04 0.07 0.14 0.29 0.77
Size risk 0.33 0.41 0.10 0.15 0.23 0.35 0.59
Momentum Risk 0.93 2.01 0.09 0.16 0.32 0.74 1.83

N 3303

The table shows summary statistics for our full S&P 500 data set. All figures are in percent.
We use log returns, the factor risk rows represent 10-trading-day rolling window variances of the
respective log returns. The SVIX is by definition a measure for risk-neutral volatility. We use
its squared version to make it consistent with our remaining risk measures, which are expressed
in variance terms, and because SVIX2 represents a lower bound for the expected equity risk
premium, according to Martin (2017). QSkew (QKurt) denote the risk-neutral skewness and
kurtosis measures. All quantities refer to the daily time-interval, beside the SVIX2, which is
annualized due to its definition.

method have been identified there. These differences are especially pronounced in the

tail regions of the risk-neutral density, which are of high importance for the risk-neutral

skewness and kurtosis measures that we use. Taking these findings into account, we use

the one-dimensional kernel regression over the strike range for interpolating the implied

volatility surface at observed maturities. After having obtained the risk-neutral measures

for observed maturities by aggregating appropriately over the strike range, we linearly

interpolate these along the maturity dimension to a fix maturity of 30 calendar days. In

that, we exclude options with maturities of less than 7 days as the term structure of risk-

neutral moments becomes increasingly nonlinear for very short-term options. At times,

this filter removes all observations with maturities that are shorter than 30 calendar days,

in which case we linearly extrapolate the moment estimates that relate to longer-term

maturities.

In order to compare our results for purely forward-looking inputs with density predictions
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based on backward-looking data, we also obtain time series information. First, as we are

interested in predicting the density of S&P 500 returns, we get daily S&P 500 closing

prices from Bloomberg. Furthermore, we collect daily return time series for the size,

value and momentum factor from Kenneth French’s website and treat the S&P 500 as

a measure for the market factor. To obtain a time-varying physical measure for factor

risk, we compute the variance of factor returns over rolling 10-trading-day windows for

each factor separately. We use Overnight Index Swap (OIS) rates as our measure for the

risk-free rate, which we source from Bloomberg. We obtain all of these time series data

for the same time frame as we have option data available.

We merge risk-neutral moment, return and physical risk time series that we gather and

match them with subsequent daily S&P 500 returns. We drop days for which one of our

inputs it not observed. Table III.1 contains summary statistics of our data set. We split

this full data set into a training and a validation subset. The training set consists of the

first 80% of observations, while the last 20% of observations form the validation set. The

estimation that we laid out in section III.1.1, including the hyper-parameter selection, is

only based on the training data set, such that the validation set is completely untouched

before we evaluate a predictor’s performance on it.

III.3 Forward-Looking Return Density

III.3.1 Purely Forward-Looking Information

We start our analysis by inspecting the predictive information content of risk-neutral

measures with respect to the complete daily return distribution. In particular, we check

whether restricting the predictor variables to purely forward-looking measures comes

along with a reduction in prediction performance. We measure performance of a density

predictor via the average log likelihood of the return observations {rt+1}t=1,...,T , given the

density estimator p̂(·) and the predictive variables {Xt}t=1,...,T :

1

T

T∑
t=1

ln p̂(rt+1|Xt) (III.16)

Intuitively, a conditional density estimator will reduce the likelihood of some potential

returns and increase the likelihood of other returns based on some observations of Xt. If

Xt is informative about the future return and if the density estimator is well specified,
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the ex post realizations of the returns will be more likely to show up in the regions with

increased likelihood, thus leading to an increase in the average log likelihood.

As the average log likelihood is a relative performance measure between competing model

specifications, we compare the Mixture Density Network estimator to a benchmark den-

sity estimator. In the spirit of Welch and Goyal (2008), who use the unconditional mean

of the in-sample data set as benchmark for in- and out-of-sample mean predictions, we

use the smoothed empirical in-sample return density as our benchmark. For smoothing,

we apply a Gaussian kernel density estimator and select the bandwidth parameter via

cross-validation, as suggested by Härdle (1991). We estimate three MDNs, which differ

in their input variables. The first MDN uses purely forward-looking information, i.e., the

risk-free rate, the SVIX2, risk-neutral skewness and kurtosis. The second MDN is based

on purely backward-looking information, which is past S&P 500, value, size and momen-

tum factor returns and variances. Finally, we consider a MDN specification that uses

both types of information as input variables. In all cases, including the benchmark kernel

density, we first construct the estimator based on the training data set. We then calculate

the average log likelihoods of the fitted density estimators for the training (in-sample)

and the validation (out-of-sample) data set, separately. As fitting a MDN employs a local

optimization routine, the final conditional estimator may depend on the random starting

values of the optimization. To address this concern, we fit each estimator 100 times with

different starting values and calculate the average performance across all fits. We also

calculate the standard deviation of the individual performance evaluations to get a sense

for the stability of the estimator with respect to the starting values.

Panel a of table III.2 contains the result of our performance evaluation. Throughout

our estimations, the MDN estimator showed a higher average log likelihood than the

benchmark method, both in-sample and out-of-sample. In relative terms, the average

log likelihood of the forward-looking estimator is 4.7% higher than the benchmark in-

sample and 4.6% higher out-of-sample. The similar performance increase in the in- and

out-of-sample data set is a first hint that the forward-looking estimator is generalizing

well. The standard deviation of the log likelihood due to different starting values is low,

indicating that the estimation method for the neural network is not easily trapped in

a local optimum, but converges to a robust estimator. Using purely backward-looking

information not only comes along with a lower log likelihood, but also only reaches

a 0.9% performance increase against the unconditional benchmark in the out-of-sample

data set, after a 4.0% increase in the in-sample data set. This decrease of the performance
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Table III.2: Performance and Validity of MDN Conditional Density Estimates

(a) Average Log Likelihood

Model In-Sample Out-of-Sample

Benchmark 3.1774 3.4318

Forward-looking 3.3327 (0.0056) 3.5968 (0.0094)
Backward-looking 3.3156 (0.0056) 3.4704 (0.0096)
All information 3.3524 (0.0082) 3.5984 (0.0141)

N 2642 661

(b) Density Test p-Values

Berkowitz (2001) Knüppel (2015)

Model In-Sample Out-of-Sample In-Sample Out-of-Sample

Benchmark 0.000 0.000 0.466 0.001

Forward-looking 0.066 0.81 0.7033 0.974
Backward-looking 0.767 0.000 0.681 0.000
All information 0.537 0.549 0.605 0.386

N 2642 661 2642 661

Panel a of this table shows the average log likelihood of S&P 500 return observations for
different conditional density estimators over 100 estimation runs with different starting
values in the optimization. We call the unconditional kernel density estimator on the
in-sample data set Benchmark. We estimate three conditional MDN estimators, which
differ in their input data. The forward-looking estimator is trained solely on risk-neutral
information, the backward-looking estimator conditions on past returns and physical risk
measures only. We also train an all information estimator, which uses both sets of input
variables. Standard errors of the neural network log likelihood estimates due to random
starting values of the neural network optimization are given in parenthesis in panel a.
Panel b shows p-values of the null hypothesis that the density estimator correctly specifies
the true return density.
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spread is a sign for over-fitting in the backward-looking estimator. Furthermore, adding

backward-looking information to the forward-looking MDN does not appear to improve

the estimator sustainably. The performance slightly increases in-sample, but does nearly

not change out-of-sample, leading to a decrease in the performance spread against the

bechmark between the in- and out-of-sample data sets. It thus seems like past return

and risk information only introduces a slight tendency of over-fitting into the estimator.

Our results show that a purely foreward-looking MDN estimator of the conditional return

density improves on the unconditional return density and is most favorable with respect

to performance and generalization. Figure III.1 shows time series charts of the S&P

500 price development along with the expected physical moments of our forward-looking

density estimator.

We continue by asking whether the MDN estimator is consistent with the data from a

statistical point of view. To this purpose, we apply the tests of Berkowitz (2001) and

Knüppel (2015). The null hypothesis of these tests is that the observations of a random

variable are drawn from a given density estimator. Panel b of table III.2 contains p-

values for this null hypothesis for the in-sample and out-of-sample data set, separately.

To obtain the p-values for the out-of-sample data set, we use the density estimator that

was trained on the in-sample data set. In general, the findings of the two tests are

strongly aligned. The tests reveal that the unconditional kernel density estimator appears

to be inappropriate, as it is strongly rejected out-of-sample and even in-sample by the

Berkowitz (2001) test. The forward-looking estimator shows high p-values and we cannot

reject the null that this estimator describes the true conditional density of returns. For

the backward-looking estimator, in-sample p-values are high, but the estimator is very

strongly rejected out-of-sample by both tests. Again, this is a clear sign of the over-fitting

behavior of the backward-looking estimator. The estimator that uses both backward- and

forward-looking information is not rejected by either test. Beside the Berkowitz (2001)

test of the in-sample data set, the p-values are considerably lower than for the forward-

looking estimator, though.

At first sight, it appears puzzling that the benchmark estimator is rejected in-sample

by the Berkowitz (2001) test. The p-value of the forward-looking estimator is low, too.

This finding can be explained by the structure of the Berkowitz (2001) test, which not

only checks whether the distribution matches, but also if there is autocorrelation in

the conditional probabilities. If we disable the autocorrelation check, the p-value of

the benchmark rises to 0.111, the forward-looking estimator’s p-value even increases to
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Figure III.1: S&P 500 Price Development and Expected P Moments
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Panel (a) shows the price development of the S&P 500 between January 2004 and July 2017.
Panels (b) to (e) show one-week rolling window averages of the MDN-implied forward-looking
mean, standard deviation, skewness and kurtosis expectation.
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0.805 in the in-sample data set. Autocorrelation in the conditional probabilities can be

induced by autocorrelation in the returns, if the estimator does not account for that.

As neither the benchmark nor the forward-looking estimator conditions on past return

data, they cannot correct for return autocorrelation. In contrast, the backward-looking

estimator, which makes use of past return data, shows a high in-sample p-value. The

exploitation of return autocorrelation is dangerous though, as can be seen from the out-

of-sample p-values. Here, the forward-looking estimator has a very high p-value, while

the backward-looking estimator is strongly rejected. The reason for this observation is

that the autocorrelation does not persist in the out-of-sample data set. Again, the result

is due to the over-fitting behavior of the backward-looking estimator, which does not

show up in the forward-looking estimator.

III.3.2 Trading on the Conditional Return Distribution

If the forward-looking MDN estimator is informative about the future return distribution,

as our previous results suggest, it should be possible to derive profitable trading strategies

based on the density forecasts. In this section, we present two simple trading schemes

that exploit information about the conditional physical mean and volatility, that the

MDN implicitly predict. Essentially, both trading strategies use the moment prediction

as a signal to increase or decrease a market position.

For our first strategy, we obtain the daily conditional one-day-ahead mean expectation

m̂1,t+1 as

m̂1,t+1 = E[rt+1|Xt] =

∫ ∞
−∞

u p̂(u|Xt) du. (III.17)

Here, p̂(·) denotes the MDN estimator and Xt is a vector of all forward-looking variables

that we observe at time t. Since the MDN allows to evaluate p̂(rt+1|Xt) at any rt+1, we can

numerically approximate the integral in equation III.17 with high precision (Atkinson,

1989, ch. 5). Each day, we invest a fraction of total wealth into the S&P 500 at its

closing price and hold that position for one day. The fraction of wealth that we invest is

defined as wt = m̂1,t+1

σ(m̂1,t+1)
, where σ(m̂1,t+1) represents the standard deviation of the mean

estimate. Note that the position size is determined by the expected mean itself. Any

other denominator beside the standard deviation could also be used and would only scale

the returns of our trading strategy. Our investment scheme can lead to negative position

sizes, in which case we initiate a short position in the S&P 500. If the wt exceeds 1, we

assume that the position is leveraged accordingly. We compare the strategy returns to a
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Table III.3: Mean Trading Strategy: Summary Statistics

Full data set Out-of-sample

Strategy Buy-and-Hold MDN Buy-and-hold MDN

Mean return 8.48 (5.11) 17.67 (7.02) 8.43 (7.89) 9.94 (8.25)
Mean excess return 7.18 (5.11) 16.38 (7.03) 8.28 (7.9) 9.78 (8.26)
Excess return volatility 18.52 25.45 12.79 13.38
Sharpe Ratio 0.388 0.694 0.647 0.743

N 3303 3303 661 661

The table shows the annualized expected return, excess return, excess return volatility and
Sharpe Ratio of the conditional mean trading strategy in the S&P 500, compared with the
buy-and-hold strategy. The numbers in parenthesis are standard errors of the average return
estimates. The full data set covers January 2004 to July 2017. The out-of-sample data set
covers the last 20% of the full data set and thus starts in November 2014.

simple buy-and-hold strategy’s returns.

Table III.3 gives an overview of this simple mean trading strategy. On average, the market

timing strategy is invested with 80.7% of total wealth, with a standard deviation of 100%.

Although the average fraction of wealth invested is lower than for the buy-and-hold

strategy, the market timing strategy manages to realize an average yearly excess return

of 16.4%, which is 9.2% higher than the average return of the buy-and-hold strategy.

However, this higher average excess return comes along with an increased volatility of

annualized 25.5%. Still, using the MDN mean forecast as a signal to time the market

increases the Sharpe ratio of the buy-and-hold strategy of 0.388 by more than 78% to

0.694. The results for the full data set are confirmed by looking at the out-of-sample

data set only. Although the market volatility and thus the potential for market timing

has been significantly lower in the out-of-sample set than in the full data set, our market

timing strategy still increases the Sharpe ratio of the buy-and-hold strategy from 0.647

to 0.743, an increase of nearly 15%. This increase results from a 1.5% higher annual

excess return for the market timing strategy with a volatility increase of only 0.59%. In

summary, timing the market based on the MDN’s mean return forecasts appears to be a

beneficial and robust trading strategy.

We proceed with our second trading strategy, which makes use of the implicit volatility

forecast of the MDN. Bakshi and Kapadia (2003) describe a negative variance risk pre-

mium, that can be earned by shorting options. We therefore base our volatility trading

strategy on shorting at-the-money (ATM) straddles. A straddle consists of a Call and
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a Put option with the same strike and maturity. On expiration, the position earns a

negative return, if the price of the underlying barely changed. On the other hand, if

the price of the underlying moved strongly, the position will earn a positive return. On

average, ATM straddles have significantly negative returns, which is consistent with a

negative variance risk premium. However, it might be possible to time straddle returns

if a robust volatility forecast is available.

To this purpose, we calculate the conditional one-day-ahead second moment m̂2,t+1 on a

daily basis as

m̂2,t+1 = E[r2
t+1|Xt] =

∫ ∞
−∞

u2 p̂(u|Xt) du. (III.18)

For each day, we select the strike that is closest to the S&P 500 price and the option

series with the shortest maturity larger than 6 days. Thus, the combined position’s delta

exposure is approximately 0. At the selected strike and maturity, we initiate a straddle

at the CBOE’s reported end-of-day mid price. After one day, we close the position at

its end-of-day mid price. Unconditionally, we would short the straddle position to earn

the variance risk premium (Bakshi and Kapadia, 2003). However, if we predict the S&P

500’s second moment to rise, we reduce the short position, or even go long the straddle.

On the other hand, if we predict a lower second moment for the next day than for today,

we increase the short position. More precisely, the position weight is defined as

∆m̂2,t+1 = m̂2,t+1 − m̂2,t

wt = −1 +
∆m̂2,t+1

σ(∆m̂2,t)
,

where σ(∆m̂2,t) is the standard deviation of the daily change in the second moment of

the P density. If our second moment is informative about ex post variation of returns, we

expect this straddle timing to be beneficial for two reasons. First, a higher second moment

increases the probability for larger returns in the underlying. Since a straddle essentially

represents a bet on variation and a large return realization increases the payoff, higher

second moments of the return distribution lead to higher expected straddle payoffs and

thus increase the straddle’s price. Second, as Bakshi and Kapadia (2003) show, higher

return variation comes along with an increase in the variance risk premium, which would

translate into an increased straddle price. Together, straddle prices should rise if variation

increases. For this reason, we reduce the short position if the MDN predicts an increase

in the second moment of the return distribution and vice versa.
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Table III.4: Variation Trading Strategy: Summary Statistics

Full data set Out-of-sample

Strategy Fix Short MDN Fix Short MDN

Mean return 523.86 (53.9) 1392.02 (79.03) 753.23 (144.12) 1464.58 (168.16)
Mean excess return 525.15 (53.9) 1393.29 (79.02) 753.61 (144.13) 1464.97 (168.17)
Excess return volatility 195.01 285.92 233.24 272.15
Sharpe Ratio 2.69 4.87 3.23 5.38
N 3299 3299 660 660

The table shows the annualized expected return, excess return, excess return volatility and
Sharpe Ratio of the conditional variation trading strategy in S&P 500 straddles, compared with
the fix short strategy. The numbers in parenthesis are standard errors of the average return
estimates. The full data set covers January 2004 to July 2017. The out-of-sample data set
covers the last 20% of the full data set and thus starts in November 2014.

Table III.4 compares the returns of the fix always-short strategy and our straddle timing

strategy. As is known in the literature, average returns to shorting options in general,

and straddles in particular, are sizable. Fix shorting of straddles earns an average log

excess return of 525% per year.9 This high average return is put into perspective by

the standard deviation of 195%, leading to a Sharpe ratio of 2.69. By using the MDN

estimator’s variation forecast, the Sharpe ratio can be increased by more than 80% to

4.87. Out-of-sample, our variation forecast increases the Sharpe ratio of 3.23 by 66% to

5.38.

Taken together, our results show that the MDN estimator can be used to time the market.

This market timing becomes possible due to the predictive capabilities of our forward-

looking estimator for the mean and volatility of S&P 500 returns. In both cases, the

results for the out-of-sample set strongly support the findings for the full data set. This

confirms our previous findings that the MDN is not over-fitting the training data and

generates a robust forward-looking density predictor.

III.3.3 Determinants of Index Return Distributions

In the previous sections, we’ve established the Mixture Density Network as a flexible and

robust predictor for the S&P 500 return distribution. The MDN bases its predictions

on moments of the risk-neutral distribution. As a result, we can express the conditional

9We calculate returns with respect to the initial price of the straddle, which is why they appear so
large. In the literature, returns are sometimes also calculated with respect to the underlying price, which
technically makes average returns appear lower. The true return depends on the degree of leverage that
an investor is willing to accept.
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return distribution, represented by its conditional moments, as a function of the risk-

neutral moments. We further ask whether all of these risk-neutral moments matter for

the density prediction. To this end, we apply an adjusted form of the test of Patton

and Timmermann (2010), to allow statistical inference about the impact of a predictor

variable on the conditional return distribution.

We start our analysis by estimating the MDN on the complete data set. Let xi be the i-th

predictor variable of the MDN, in our case the i-th risk-neutral moment, and X ′ = (x1, ...,

xi−1, xi+1, ..., xN)ᵀ be a vector of the remaining input variables. As it is not essential

for this analysis, we dropped the time index for ease of notation. We obtain the 10%

(90%) percentile of the observed value range of xi, x
low
i (xhighi ), and discretize the interval

[xlowi , xhighi ] into 100 data points with equal step size {x(n)
i }n∈[1,100]. For each discretized

data point, we calculate the MDN-implied conditional l-th centralized and normalized

moment for l ∈ [1, 2, 3, 4], i.e., mean, variance, skewness and kurtosis:

m̂
(n)
1,i = E(r1|(x(n)

i , X ′)), (III.19)

m̂
(n)
2,i = E((r − m̂(n)

1,i )2|(x(n)
i , X ′)), (III.20)

m̂
(n)
3,i =

E((r − m̂(n)
1,i )3|(x(n)

i , X ′))(
m̂

(n)
2,i

)1.5 , (III.21)

m̂
(n)
4,i =

E((r − m̂(n)
1,i )4|(x(n)

i , X ′))(
m̂

(n)
2,i

)2 (III.22)

In that, we set the elements of the vector X ′ to their unconditional medians. Following

Patton and Timmermann (2010), a test for the impact of xi on m̂l,i can now be built

on this empirical representation of the functional relationship between the i-th predictor

variable and the l-th conditional return moment. We identify the indices u and d that

satisfy m̂
(u)
l,i = max

n
m̂

(n)
l,i and m̂

(d)
l,i = min

n
m̂

(n)
l,i , that is, the indices on the discretized range

of {xi} for which we observed the lowest and the highest conditional moment estimate.

If xi does not predict the l-th conditional moment, this lowest and highest conditional

moment estimate should be equal, which leads us to the null hypothesis

H0 : ∆̂l,i = m̂
(u)
l,i − m̂

(d)
l,i = 0. (III.23)

We can quantify the likelihood of this null hypothesis via bootstrapping. We apply

the stationary bootstrap of Politis and Romano (1994) and resample the training data
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B = 1000 times. For each resampled data set, we refit the MDN and obtain the boot-

strapped moment samples along the discretized range of xi, m̂
(n,b)
l,i , b ∈ {1, ..., B}. For each

bootstrap, we calculate the test statistic ∆̂
(b)
l,i = m̂

(u,b)
l,i − m̂

(d,b)
l,i and eventually estimate

the p-value for H0 as

J
(b)
l,i = ∆̂

(b)
l,i − ∆̂l,i

p̂0
l,i =

1

B

B∑
b=1

1[
J
(b)
l,i >∆̂l,i

],

where 1[
J
(b)
l,i >∆̂l,i

] is an indicator function that is 1 if the condition in brackets is fulfilled

and 0 otherwise.

Table III.5 shows our estimated p-values for H0 for each input and the first four moments

of the forward-looking return density. All of our forward-looking input variables are in-

formative about the conditional return density at the 5% significance level. In particular,

SVIX2 helps predict the mean, standard deviation and higher moments of the return

distribution. For this input variable, the null hypothesis of no influence is very strongly

rejected for all P moments. Risk-neutral skewness and kurtosis are especially relevant for

predicting their physical counterparts. The evidence for an impact of these variables on

the conditional mean and volatility is comparably weak. Finally, the risk-free rate only

helps to pin down volatility expectations, which is significant at the 5% level. Surpris-

ingly, we cannot reject the null that the risk-free rate is uninformative about the S&P 500

return. Our tests reveal that especially option-implied variables are robust predictors of

the entire return distribution. However, these tests do not tell us about the shape of the

predicting relationships, which is in principle unconstrained. We will now take a detailed

Table III.5: Impact of Predicting Variable on the Conditional Return Density

Variable Mean Variance Skewness Kurtosis

Risk-free rate 0.416 0.037** 0.286 0.288
SVIX2 0.000*** 0.000*** 0.000*** 0.004***
QSkew 0.231 0.117 0.000*** 0.000***
QKurt 0.052* 0.165 0.007*** 0.001***

The table shows p-values for the null hypothesis that the predicting variable in the first column
is not informative about the moment in the column label of columns 2 to 5. We use stationary
bootstrapping with 1000 iterations and the test of Patton and Timmermann (2010) to obtain
these estimates. We add a ’*’ if the null hypothesis is rejected at the 10% level, ’**’ if it is
rejected at the 5% level and ’***’ for rejection at the 1% confidence level.
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look at these relationships, as estimated by the MDN.

In order to qualitatively and quantitatively inspect the impact of a forward-looking vari-

able on the return density prediction, we make use of our empirical representations of the

conditional moments along the input range, m̂
(n)
l,i , and their respective bootstrap samples

m̂
(n,b)
l,i . We follow Davison and Hinkley (1997) in constructing 90% confidence intervals

for the predicting relationships that the MDN identifies. For that, we first calculate the

differences δ
(n,b)
l,i = m̂

(n,b)
l,i − m̂(n)

l,i . Let δ
(n,0.05)
l,i (δ

(n,0.95)
l,i ) be the empirical 5% (95%) per-

centile of δ
(n,b)
l,i for each x

(n)
i and predicted return moment l. The bootstrapped confidence

interval for m̂
(n)
l,i is then [m̂

(n)
l,i − δ

(n,0.95)
l,i , m̂

(n)
l,i − δ

(n,0.05)
l,i ].

Figure III.2 plots m̂
(n)
l,i for the input-moment relationships that we identified as significant

at the 0.1% confidence level in our previous tests. We start our inspection with the only

forward-looking variable that predicts S&P 500 returns at that level of significance in

our set-up, the SVIX2. Panel a shows how the annualized conditional day-ahead return

expectation changes, as the SVIX2 changes. According to the MDN, the expected return

rises with an increase in SVIX2 and a linear relationship is well possible. This is in line

with Martin (2017), who shows that the SVIX2 constitutes a lower bound for the equity

risk premium under certain conditions. For high values of SVIX2 though, it appears like

the lower bound is not tight, at least on the daily horizon. For example, an annualized

SVIX2 of 0.07 leads to an annualized day-ahead mean expectation well above 40% if all

other variables are at their unconditional medians. It is important to note that we use

the SVIX2 at the 30-day horizon to form expectations about the day-ahead return. If

there exists a downward-sloping term structure in the SVIX, the lower bound relationship

might still be tight. Calculating backwards, an annualized day-ahead return expectation

of 40% would imply a value of the SVIX at the one-day horizon of 63.2%, if the lower

bound is tight.10

In essence, the SVIX2 is a measure for risk-neutral variance expectations. Several stud-

ies (Chernov, 2007; Busch et al., 2011; Bekaert and Hoerova, 2014) document a strong

relationship between risk-neutral variance expectations and subsequent variance realiza-

tions. Panel b of figure III.2 shows the MDN-implied variance forecast as a function of

the SVIX2. Note that the MDN is not constrained to a linear link between risk-neutral

and physical variance, but instead retrieves the relationship from the data. Neverthe-

less, the MDN also models an approximately linear relationship, but only if the SVIX

10The value results from the fact that SVIX2 represents the lower bound for the equity risk premium,
according to Martin (2017), and 0.632 ≈

√
0.4.
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Figure III.2: Conditional S&P 500 Moment by Risk-Neutral Moment

(a) Conditional Mean by SVIX2
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This figure shows selected predicting relationships between a forward-looking input variable
and a conditional physical moment. Each panel’s title indicates what it shows: A title of X
by Y would mean that the MDN moment forecast of X is plotted on the vertical axis, and
conditioned on Y, which is plotted on the horizontal axis. All other input variables beside
Y are set to their unconditional median. The conditional mean and variance forecasts are
annualized. Bootstrapped Davison and Hinkley (1997) 90% confidence bands are added in light
lines.
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is above 17% (SVIX2 > 0.03). For lower values of the SVIX though, there appears to

exist a nonlinearity, which causes higher physical variance expectations compared to an

overall linear relationship. At the same time, the 90% confidence bands become very

narrow at this point, indicating that the estimator is relatively certain about the shape

of the relationship for low SVIX values. The relationship allows the following interpre-

tation: An increase of the SVIX from low to intermediate levels is primarily driven by

an increase in the variance risk premium, as physical variance expectations are not rising

strongly. Further increases in the SVIX are then also driven by increases in physical

variance expectations.

We now turn to the impact of option-implied variables on physical expectations of higher

moments of the return density. Panels c and d of figure III.2 show, how skewness expec-

tations change with the SVIX2 and risk-neutral skewness, panels e and f illustrate the

response of conditional kurtosis to changes in risk-neutral skewness and kurtosis. The

MDN estimates strongly nonlinear responses of conditional higher moments to changes in

the forward-looking inputs. For example, an increase in SVIX2 from 0.015 (corresponds

to a SVIX of 12.2%) to 0.03 (corresponds to a SVIX of 17.3%) leads to a correspond-

ing increase in physical skewness from -0.62 to nearly 0. However, further increases in

the SVIX2 have nearly no significant impact on conditional skewness expectations. This

finding is consistent with a notion that risk hides in the left tail in times of low market

volatility. In times of higher risk-neutral volatility expectations, the daily return distribu-

tion is not significantly left skewed. A similar finding exists for the impact of risk-neutral

skewness. Here, an increase in risk-neutral skewness also increases physical skewness ex-

pectations, but only up to a risk-neutral skewness of about -2. Similarly, for low values

of risk-neutral skewness, conditional kurtosis is high and the return distribution becomes

less heavy-tailed as it becomes less left skewed under Q. Again, the effect disappears at a

risk-neutral skewness of about -2 and expected return kurtosis stays nearly constant for

larger risk-neutral skewness values. The MDN identifies a surprising relationship between

risk-neutral and physical return kurtosis. As risk-neutral kurtosis increases, physical kur-

tosis drops until it reaches the normal distribution’s kurtosis and stays roughly constant

beyond this point.

In summary, the MDN identifies a range of nonlinearities in the relationship of risk-

neutral and physical moments. The forward-looking return distribution appears to be

closer to the normal distribution in crisis times, when risk-neutral variance is high, and

more strongly left skewed in calm times. At the same time, strong priced-in fears about
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sudden crashes, as signaled by low risk-neutral skewness expectations, appear justified

by a more heavy-tailed and left skewed physical return distribution. Our tests show that

the MDN identifies relationships between risk-neutral and physical moments that are

statistically robust and economically relevant.

III.4 Robustness

III.4.1 Conditional Density Estimation Method

In this chapter, we present a forward-looking P density estimator that builds on a neu-

ral network. However, the forward-looking feature is introduced by basing our fore-

casts purely on risk-neutral information, which is independent of the use of a Mixture

Density Network as conditional density estimator. We therefore inspect in this section

whether more traditional density estimators can also be used to form valid P densities,

and whether the MDN does indeed perform better than these alternatives. To this pur-

pose, we perform an out-of-sample horse race between the MDN and popular parametric,

non-parametric and machine learning techniques. We compare these methods with re-

spect to their average conditional log likelihood, as defined in equation III.16, as well as

their root mean squared prediction error for the mean and volatility:

Mean RMSE =

√√√√ 1

T − t∗
T∑

t=t∗+1

(rt − E(rt|Xt−1))2, (III.24)

σ RMSE =

√√√√ 1

T − t∗
T∑

t=t∗+1

(|rt − E(rt|Xt−1)| − σ(rt|Xt−1))2, (III.25)

where E(rt|Xt−1) denotes the conditional mean expectation and σ(rt|Xt−1) the condi-

tional volatility expectation of a density estimator. All methods are trained on a training

data set {(rt, Xt−1)}t∈[1,t∗], such that we obtain out-of-sample performance figures based

on the validation data set {(rt, Xt−1)}t∈[t∗+1,T ]. As before, the validation data set consists

of the last 20% of our total available data. Finally, we test whether a conditional density

estimator can be rejected statistically by applying the distribution tests of Berkowitz

(2001) and Knüppel (2015).

We consider six alternative density estimators in our performance evaluations. We provide

a detailed description of these methods and how we perform estimation based on them in

section III.1.2. Here, we quickly recapitulate the six alternatives and fix abbreviations.
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Table III.6: Out-of-sample Performance of Conditional Density Estimators

Model Avg. log L Mean RMSE σ RMSE Berkowitz (2001) Knüppel (2015)

Benchmark 3.4318 0.8049 0.708 0.000 0.001
Linear 2.7125 0.8789 1.9254 0.000 0.000

CKDE 3.2231 0.8051 0.9914 0.000 0.000
NKDE 2.9564 1.2522 0.8617 0.000 0.000
LSCDE 3.0777 0.8041 1.2172 0.000 0.000

MDN 3.5968 0.8045 0.5284 0.81 0.974
KMN 3.5854 0.8042 0.5582 0.767 0.778

This table compares the out-of-sample performance for a range of forward-looking conditional
density estimators for the S&P 500. The alternative conditional estimators are: Linear Con-
ditional Gaussian (Linear), Conditional Kernel Density Estimation (CKDE), Neighborhood
Kernel Density Estimation (NKDE), Least-Squares Conditional Density Estimation (LSCDE),
Mixture Density Network (MDN) and Kernel Mixture Network (KMN). The second column
shows the average log likelihood of observed returns for each estimator. The third and the
fourth column report the root mean squared errors for the mean and standard deviation pre-
diction. For the methods that involve an optimization (LSCDE, MDN, KMN), we report the
error of the average estimator of 100 estimation runs with different starting values.

We use a Gaussian kernel density estimator as unconditional benchmark (Benchmark).

We further estimate a parametric model, where we assume that returns are conditionally

normally distributed and conditional mean and variance are linear in the forward-looking

predictor variables (Linear). We inspect three different non-parametric estimators. The

Conditional Kernel Density Estimator (CKDE) is closely related to our unconditional

benchmark. It first forms an estimate of the joint distribution of rt and Xt−1 and then

obtains a conditional density estimate by dividing by the marginal distribution of Xt−1.

Related to this approach, the Neighborhood Conditional Density Estimator (NKDE)

differs by only considering past observations whose inputs are close to Xt−1 when forming

the density estimate. The least-squares conditional density estimator (LSCDE) turns the

kernel density estimation into a regression task by reducing the number of kernels, fixing

their positions and only determining their weight for a given estimate. Finally, we consider

another neural network approach, the Kernel Mixture Network (KMN).

Table III.6 shows the results of our horse race. The two neural network approaches

show the highest average log likelihoods and lowest volatility prediction errors. As is

well known, returns are nearly not predictable at the daily horizon, but still the 0.8045

(0.8042) RMSE of the MDN (KMN) mean prediction corresponds to an out-of-sample

R2 of 0.1% (0.17%). We pick the MDN over the KMN in our main analysis due to its
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slightly higher average conditional log likelihood and lower volatility forecasting error.

The linear model shows the lowest out-of-sample performance of all analyzed methods.

Its unfavorable performance compared to the unconditional benchmark is a sign for over-

fitting in this set-up. At the same time, the non-parametric methods also underperform

the unconditional benchmark. One reason might lie in the size of our training set. Non-

parametric methods typically require a large amount of data to build a powerful estimator.

Our training data set contains 2642 data points, which might not be enough for these

approaches. Finally, no density estimator except for the neural network estimators passes

the Berkowitz (2001) and Knüppel (2015) tests. Put differently, we can reject the null

hypothesis that returns are sampled from the respective conditional densities with almost

certainty. Only the MDN and the KMN build conditional densities for which we cannot

reject this null hypothesis.

It seems like the neural network approaches in general, and the MDN in particular, rep-

resent a bridge between the parametric and non-parametric world. They are comparable

to non-parametric approaches in their flexibility, but their parametric structure enables

us to form expressive density estimators based on relatively small training data sets. Our

results suggest that neural network approaches are superior to standard alternatives and

in our tests, they were the only approaches that produced a valid forward-looking density

estimator.

III.4.2 International Evidence

It is thinkable that unknown characteristics in the relationship of the S&P 500 and its

associated options work in favor of the MDN. For this reason, we repeat the analysis of

section III.4.1 for the Euro Stoxx 50. The Euro Stoxx 50 represents the leading equity

index for the euro area and highly liquid options on the index are traded at the Eurex.

Table III.7 contains the results of our performance evaluation for the Euro Stoxx 50.

Throughout all methods and performance figures, it appears like the density of Euro

Stoxx 50 returns is harder to predict than the density of the S&P 500. However, in

our validation data set, daily S&P 500 returns had an average volatility of 0.8%, while

the volatility of daily Euro Stoxx 50 returns was at 1.26%. Relative to the benchmark

method, the MDN performs very similar as for the S&P 500: The average conditional log

likelihood is 3.2% higher than the benchmark, compared to 4.8% for the S&P 500. The

Mean RMSE grows by 0.1%, compared to a decrease of 0.05% in the S&P 500. Finally,
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Table III.7: Euro Stoxx 50 Out-of-sample Performance of Conditional Density Estimators

Model Avg. log L Mean RMSE σ RMSE Berkowitz (2001) Knüppel (2015)

Benchmark 2.9957 1.2615 1.0686 0.000 0.067
Linear 2.7309 1.2657 1.6516 0.000 0.000

CKDE 2.8856 1.2611 1.2321 0.000 0.000
NKDE 2.6432 1.7439 1.2161 0.000 0.000
LSCDE 2.7906 1.2609 1.4234 0.000 0.000

MDN 3.0924 1.2627 0.8297 0.434 0.966
KMN 3.0883 1.2608 0.8635 0.888 0.901

This table compares the out-of-sample performance for a range of forward-looking conditional
density estimators for the Euro Stoxx 50. The alternative conditional estimators are: Linear
Conditional Gaussian (Linear), Conditional Kernel Density Estimation (CKDE), Neighborhood
Kernel Density Estimation (NKDE), Least-Squares Conditional Density Estimation (LSCDE),
Mixture Density Network (MDN) and Kernel Mixture Network (KMN). The second column
shows the average log likelihood of observed returns for each estimator. The third and the fourth
column report the root mean squared errors for the mean and standard deviation prediction.
For the methods that involve an optimization (LSCDE, MDN, KMN), we report the error of
the average estimator of 100 estimation runs with different starting values.

the RMSE of the volatility forecast is 22.4% below the benchmark, compared to a decrease

of 25.4% in the S&P 500. In relative terms, the ordering of the different methods with

respect to their performance is very similar to the S&P 500 application. The results of

the Berkowitz (2001) and Knüppel (2015) tests also draw the same picture as for the S&P

500: The densities of all methods except for the neural network approaches are rejected

at the 0.1% confidence level by at least one test.

Overall, the results of the Euro Stoxx 50 exercise confirm our previous findings. Note

that our analysis does not state that the mechanics between forward-looking variables

and returns are the same for the S&P 500 and the Euro Stoxx 50. It rather shows that

the MDN is flexible enough to capture general and stable relationships between these

variables in both markets.

III.4.3 Over-Fitting

A central concern when working with neural network approaches is over-fitting. Neural

networks are highly flexible with respect to the approximated functional relationship in

the training data. It can therefore happen that the trained model traces input-output

characteristics that existed in the training data only due to randomness. The generaliza-

tion capability of such a model would be severely reduced.
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Table III.8: Out-of-sample MDN Performance with and without Noise Regularization

Noise Regularization Yes No

Avg. log L 3.5936 (0.0094) 3.5968 (0.0094)
Mean RMSE 0.8045 (0.0012) 0.8045 (0.0012)
Mean MAE 0.5566 (0.0017) 0.5566 (0.0017)
σ RMSE 0.5327 (0.0069) 0.5284 (0.0075)
σ MAE 0.4271 (0.0094) 0.4209 (0.0102)

The table shows the effect of noise regularization on the out-of-sample performance of the MDN
estimator. Avg. log L stands for the average log likelihood of the density prediction. Mean
RMSE and Mean MAE are the root mean squared error (RMSE) and mean absolute error
(MAE) of the mean forecast that is implied by the density prediction. σ RMSE and σ MAE
are the respective root mean squared error and mean absolute error of the implied volatility
forecast.

Over-fitting in neural networks is mainly driven by the size of the network and expresses

itself in a good in-sample, but bad out-of-sample performance. Our estimation method-

ology is designed to address the over-fitting issue.11 Still, ensuring that over-fitting does

not appear in our forward-looking density estimator is of first order importance. Roth-

fuss et al. (2019b) propose noise regularization to prevent over-fitting in Mixture Density

Networks. In particular, they propose to add small random noise terms to the input and

return data during the training phase. Intuitively, the noise slightly blurs the training

data, thus making it impossible for the neural network to identify the small random

pseudo-relationships in the training data that lead to over-fitting. At the same time,

fundamental relationships between the inputs and the returns are unaffected as they still

hold in expectation. More formally, Rothfuss et al. (2019b) show that noise regularization

introduces a curvature penalty term into the objective function of the estimator and thus

introduces a tendency to smooth the conditional density estimate.

We re-estimate our forward-looking density estimator with noise regularization to check

whether this additional shield against over-fitting improves the out-of-sample perfor-

mance. We treat the size of the noise that is added to the training data as a hyper-

parameter, which is determined in the hyper-parameter search phase of our training

algorithm. Table III.8 compares the out-of-sample performance of the MDN estimator

with and without noise regularization. None of the performance figures changes notably.

11We determine the network size during the hyper-parameter search. In that, different parts of the
training data set are treated as validation set, that is not used for model fitting. Over-fitting increases
the error in these validation sets. The algorithm chooses the network size such that the error in the
validation sets is minimized, thus counteracting over-fitting.
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Independent of the use of noise regularization, the variation in the performance figures

due to different starting values is low, indicating stable convergence of the estimation.

Together with the observation from table III.2 that the performance increase of the MDN

against the benchmark is nearly the same in the in-sample and the out-of-sample data

set, we conclude that our conditional density estimator does not over-fit.

III.5 Summary

In this chapter, we presented a forecasting method for the full physical distribution of

returns, that is based on Mixture Density Networks. Our estimator is forward-looking, as

it is purely based on option-implied, risk-neutral expectations about the future, which are

measured in a model-free way. The MDN places very little constraints on the statistical

return distribution and is agnostic about the stochastic discount factor. Our approach

can therefore be considered as model-free.

We showed that the forward-looking estimator generalizes predicting relationships better

than a backward-looking estimator, which is based on past return information. It also out-

performs a number of alternative parametric and non-parametric forward-looking return

distribution estimators. While the out-of-sample conditional densities of the backward-

looking estimator and the forward-looking alternatives are rejected in our statistical tests,

this is not the case for the conditional forward-looking return distribution of the MDN.

It is therefore well possible that the MDN correctly describes the true conditional phys-

ical return distribution. The MDN uncovers significant nonlinear relationships between

risk-neutral and physical moments. Our results indicate that an exploitation of these

nonlinearities, in combination with the adaptive complexity of our estimation approach,

is key in forecasting the return distribution.

The inclusion of other types of forward-looking information like analyst forecasts (Ulrich

et al., 2019) or text measures (Engle et al., 2019) may improve the performance of the

estimator even further. Furthermore, while we restrict our analysis to the inspection

of equity index returns, the method can easily be expanded to other asset classes with

associated options.



IV The Pricing Kernel

The pricing kernel is at the heart of modern asset pricing theory. Knowledge about its

empirical characteristics and time series evolution is therefore of central importance in the

modeling of financial markets. By definition, the pricing kernel arises as the ratio of the

risk-neutral and the physical density. Consequently, given estimates for these densities,

it is possible to invert out the implied pricing kernel and inspect its empirical properties.

Jackwerth (2000) was the first to use this relationship to extract the pricing kernel,

quickly followed by Aı̈t-Sahalia and Lo (2000) and Rosenberg and Engle (2002). Following

different approaches for estimating the P and Q densities of equity returns, all three

studies identify local increases in the pricing kernel. This finding was at odds with

the implications of most asset pricing models at that time, which generally assume a

monotonically decreasing pricing kernel in equity returns, and was thus labeled the pricing

kernel puzzle. Although the pricing kernel puzzle has been confirmed in many studies

since, the vast majority of these studies use backward-looking estimators for the P density

to compute the pricing kernel. At the same time, too restrictive models for the P density

can produce the pricing kernel puzzle for technical reasons (Sichert, 2020). Consequently,

Linn et al. (2018) proclaim the use of forward-looking estimators for the P density1 and

find monotonically decreasing pricing kernels, thus reviving a debate about whether the

pricing kernel puzzle actually exists. We add to this debate by presenting new evidence

about key characteristics of the pricing kernel in a forward-looking and model-free set-up.

In this chapter, we estimate the daily pricing kernel in a non-parametric manner, us-

ing forward-looking information only. To the best of our knowledge, this has not been

done before. The advantage of our approach lies in the minimal amount of necessary

assumptions, making our pricing kernel estimates largely free of exogenous constraints.

1A forward-looking P density is constructed based on expectations only, instead of observations
about past events. In particular, all types of GARCH models are backward-looking. Mostly (including
in this chapter), option data is used as input for forward-looking P densities. We discuss differences
between backward-looking and forward-looking P density estimators in detail in chapter III.

89
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In particular, we remain agnostic about preferences or the structure of the pricing kernel,

adopting an approach that ”lets the data speak freely”.

Chapter III presented several forward-looking estimators of the P density, most of which

are model-free in the sense that they can approximate any continuous probability density

function solely by learning from the presented samples. Recovering the pricing kernels,

that these methods imply, allows us to apply further tests to compare the estimators.

We test statistically whether the recovered pricing kernels are unbiased discount factors

for S&P 500 returns. Two neural network methods and a non-parametric conditional

kernel density estimator for the P density pass this test at reasonable variance levels of

the pricing kernel.

The three methods imply largely identical shapes for the recovered (log) pricing kernel,

especially with respect to its central part. All methods identify a strong U-shape and a

hump close to the zero log return. In order to be able to make reliable statements about

the shape of the pricing kernel, we apply the test of Patton and Timmermann (2010) and

directly test for shape characteristics. Tests of the pricing kernel puzzle in the literature

usually either assume a parametric structure of the pricing kernel or only indirectly check

for non-monotonicity. It appears like we are the first to apply non-parametric shape tests

to estimates of the pricing kernel directly, especially to forward-looking pricing kernels.

Our tests strongly confirm the existence of both a U-shape and a central hump in the

unconditional log pricing kernel during our sample period between 2004 and 2017.

But do these shapes always exist? We construct daily measures for the magnitude of

the U- and the hump shape and observe the U-shape reduce prior to the financial crisis

and during its first months. After the bankruptcy of Lehman brothers, the U-shape

strengthened again until 2010, since when it has become weaker. Despite these moves in

the magnitude of the U-shape, it is always present at least to some extent. We can connect

moves in the magnitude of the U-shape to the variance risk premium and the difference

between risk-neutral and physical skewness. The situation is different for the hump shape.

While it is clearly present in the non-crisis sample and statistically confirmed by our

tests there, it vanishes during the financial crisis. In regressions of the magnitude of the

hump on risk-neutral and physical return moments, we find that changes in risk-neutral

moments can explain some of the variation in the hump’s magnitude, but fluctuations

in associated risk premia cannot. Our results indicate that the pricing kernel was flatter

during the financial crisis than during calm times, as both the U- and the hump shape
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were less pronounced during the crisis.

Next, we combine our daily measurement of the pricing kernel for a spectrum of S&P

500 returns with our P density for S&P 500 returns and compute a daily estimate of the

expected variance of the log pricing kernel. Expected variance was low in the beginning

of the financial crisis. A low variance estimate implies that the pricing kernel is expected

to experience only relatively small shocks, which is again a sign for a rather flat pricing

kernel during that time. After a short spike following the Lehman collapse, variance only

sustainably increased after the financial crisis and has experienced a general downward

trend since. Applying the technique of Bollerslev and Todorov (2011), we split log pricing

kernel variance into components due to continuous shocks and due to jumps. Overall,

variation due to jumps accounts for 22% of pricing kernel variance, but the share of this

component rises up to 60% at times, indicating that jumps are an important source of

risk in the pricing kernel.

Finally, we use the tight theoretical connection between the pricing kernel and economic

state variables to obtain a time series of realized economic shocks. We find that the

distribution of these shocks is clearly left skewed and we can link spikes in the shock

time series to important historic events. At the same time, economic shocks are strongly

linked to the term spread, the credit spread, the Amihud (2002) illiquidity measure and

the policy uncertainty index of Baker et al. (2016) in linear regressions. A negative

economic shock is here connected to a decrease in the term spread and to an increase in

the other three measures. Our time series of economic shocks can also well be explained

by realized market returns and variance. Here, an one standard deviation upward shock

in variance leads to a 0.62 standard deviation downward economic shock, while an one

standard deviation upward return shock increases the economic shock by 0.35 standard

deviations. Hence, variance appears to play a more important role for economic shocks

than market returns do.

Our study adds to an active literature about the existence, the magnitude and the time

series characteristics of the pricing kernel puzzle. After the puzzle had been identified by

Jackwerth (2000), Aı̈t-Sahalia and Lo (2000) and Rosenberg and Engle (2002), doubts

about its existence re-emerged in Barone-Adesi et al. (2008), who find a monotonically

downward sloping pricing kernel based on the asymmetric GARCH model of Glosten et al.

(1993), fitted to both historic returns for the P density and option prices for theQ density.

More formally, Barone-Adesi et al. (2012) cannot reject the hypothesis of monotonically
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decreasing pricing kernels in their statistical tests for most maturities, although releasing

the parametric structure for the Q density and recovering it non-parametrically from

option prices instead. However, their relinquishment of smoothing the implied volatility

surface likely results in very noisy pricing kernel estimates, thus lowering the power of

their applied tests.

In opposition to these findings, a number of studies confirm the pricing kernel puzzle em-

pirically. Chabi-Yo et al. (2008) reproduce the findings of Jackwerth (2000) for the S&P

500 and in a sophisticated testing set-up Beare and Schmidt (2016) reject monotonically

decreasing pricing kernels for that equity index. Grith et al. (2013) and Golubev et al.

(2014) add international evidence by identifying the pricing kernel puzzle in data on the

German DAX. At the same time, Chaudhuri and Schroder (2015) find generally decreas-

ing pricing kernels for single stocks, which can be rationalized by the lower correlation

between single stock returns and overall wealth. Cuesdeanu (2016) examines time varia-

tion in the pricing kernel puzzle for the S&P 500 and finds a w-shaped pricing kernel, with

a hump around the zero return region during calm periods. Especially that central hump

in the pricing kernel is examined by Sichert (2020), who confirms it conditionally, but

who shows that at least its magnitude depends on the model that is used to construct the

P density. His approach, a regime-swichting GARCH specification, significantly reduces

humps, however, Sichert (2020) notes that the model might still not reflect nonlinearities

accurately enough and its structure prevents it from capturing changes in conditional

skewness. Note, that the conditional P density estimators in our study do not suffer

from these drawbacks.

Among others, the study of Sichert (2020) shows the strong dependency of estimated

pricing kernels on the backward-looking model specifications that are used in all of the

previously mentioned studies to estimate the P density. For this reason, Linn et al. (2018)

and Cuesdeanu and Jackwerth (2018a) make a strong case for using forward-looking P
densities for analyses about the pricing kernel. The idea is not entirely new, an early

example is Bliss and Panigirtzoglou (2004), but the technique has gained significantly

more popularity after Ross (2015) proposed to recover the P density from option data

alone. Evidence about the pricing kernel puzzle in forward-looking set-ups is mixed. Linn

et al. (2018) remain agnostic about the shape of the pricing kernel and estimate a mono-

tonically decreasing pricing kernel, thus concluding that the pricing kernel puzzle can be

attributed to mis-specified backward-looking P density estimators. Opposingly, Audrino

et al. (2015) and Cuesdeanu and Jackwerth (2018a) find U-shaped pricing kernels based



IV. THE PRICING KERNEL 93

on forward-looking P density estimators. The latter study explains the conflicting results

with Linn et al. (2018) with their lack of scaling the P density and their specific choice of

the objective function in fitting the pricing kernel estimates to the data. Jackwerth and

Menner (2018) perform a detailed assessment of different Ross (2015) recovery schemes

and reject decreasing pricing kernels in their statistical tests. All of these studies fit a fix

forward-looking pricing kernel estimate to the data, which cannot capture time variation

by design. Since we do not fit the pricing kernel, but estimate the P density directly, our

approach allows to construct a daily estimate for the conditional pricing kernel.

Due to the high amount of studies that touch upon the pricing kernel puzzle, this short

literature review is by no means complete and we certainly had to leave out important

contributions. A very recommendable and comprehensive survey of the related literature

can be found in Cuesdeanu and Jackwerth (2018b). Especially, their survey also discusses

theoretical approaches for resolving the pricing kernel puzzle.

IV.1 Construction

Cochrane (2001, ch. 3.2) defines the risk-neutral probability q(s) of a contingent future

state s as a weighted version of the physical probability of that state p(s), where the

weight is determined by the pricing kernel M(s):

q(s) =
M(s)

E(M(s))
p(s). (IV.1)

In line with Jackwerth (2000), we use the cum dividend log return of the S&P 500 index

rt,τ = ln St+τ+Dt,τ
St

as a measure for the state s, where St denotes the price of the S&P 500

in t and Dt,τ aggregates any dividend payments between t and t+ τ . Consequently, given

estimates for the risk-neutral (physical) probabilities at time t, qt(rt,τ ) (pt(rt,τ )), and the

gross risk-free rate Rf,t,τ = 1
E(Mt(rt,τ ))

, one can invert equation IV.1 to

Mt(rt,τ ) =
qt(rt,τ )

Rf,t,τ pt(rt,τ )
. (IV.2)

Chapters II and III are concerned with the precise estimation of the probabilities qt(rt,τ )

and pt(rt,τ ). We will build on the findings of these chapters to obtain our empirical

estimate for the pricing kernel at time t for the monthly horizon.

For each of the methods described in chapter III, we train a physical density estimator
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for the cum-dividend log return rt,τ , with the horizon τ set to one month. For the risk-

neutral probabilities, we obtain the volatility smile for the 30-day maturity from the

volatility surface of the one-dimensional kernel regression and transform it to the risk-

neutral density qt(K, τ) as described in II.1. Before we can use these risk-neutral density

estimates in equation IV.2, we need to measure the density with respect to cum-dividend

log returns. Since the strike of an option contract is quoted in terms of the forward price

of the underlying, it does not include dividends that are paid during the lifetime of the

option. At the same time, option prices are informative about the risk-neutral expected

dividend payment during the lifetime of the option, EQt (Dt,τ ), as described in section

II.2.1. Setting rt,τ = ln
K+EQt (Dt,τ )

St
, by the law of integration by substitution (Rohde

et al., 2012, ch. 3a), we can write for any two strikes Ka and Kb and their corresponding

cum-dividend log returns rt,τ,a and rt,τ,b∫ Kb

Ka

qt(K, τ)dK =

∫ rt,τ,b

rt,τ,a

qt(St e
rt,τ − EQt (Dt,τ ), τ)St e

rt,τdrt,τ =

∫ rt,τ,b

rt,τ,a

qt(rt,τ )drt,τ ,

(IV.3)

which yields for the risk-neutral density (RND) with respect to cum-dividend log returns

qt(rt,τ ) = qt(K, τ)St e
rt,τ .

Our thus obtained RND estimate has two unfavorable characteristic: First, the RND

can become spiky, especially in the rarely traded tails of the distribution. This is a

result of high sensitivity to noise in the numerical approximation of the second derivative

of the Call price function. We therefore smooth the RND estimate to cancel out such

approximation errors. We provide a detailed description of our smoothing methodology in

section IV.1.1. Second, our RND estimates do not expand into the very deep tails of the

distribution as options are not traded at such deep out-of-the-money strikes. We therefore

follow Figlewski (2008) and fit the tails of a Generalized Extreme Value distribution to

extrapolate the RND into the deep tails. Our procedure is described in detail in section

IV.1.2.

IV.1.1 Smoothing the Risk-Neutral Density Estimate

A noisy RND estimate is characterized by the existence of multiple local modes and

local minima, which can give the RND a ”spiky” shape. While such a RND estimate

does not hurt any of the formal criteria for a probability density function and is in line

with no-arbitrage constraints, intuition speaks in favor of a smooth RND. This notion is

strengthened when considering the sensitivity of a numerical second derivative approxi-
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mation to noise in the Call price measurement (Iott et al., 1985).2 For this reason, we

further smooth the RND to cancel out approximation errors. In order to do so, we need

to define a criterion that describes what a smooth RND actually is. Here, we need to

balance the smoothness objective with the desire to stay as close as possible to the data

and introduce as little restricting exogenous constraints as possible. We therefore con-

sider those RNDs as smooth that fulfill the following rule:

A smooth density is unimodal.

Enforcing the property of a single mode on the RND effectively bans all spikes from the

estimate. At the same time, saddle points in the RND estimate are accepted under this

constraint.

We follow a local averaging approach to transform a raw RND estimate into a version

that fulfills the smoothness constraint. The method smooths increasingly strongly until

the constraint is fulfilled. More precisely, let qt(rt,τ ) stand for the original RND estimate

with respect to cum-dividend log returns. Let Mt,τ = {rmodei }t,τ,i∈N be the set of log

returns, where the RND has a mode. Modes are identified by the following set of rules:

qt(rt,τ,l) + 0.0001 qmaxt < qt(r
mode
i ) > qt(rt,τ,r) + 0.0001 qmaxt (IV.4)

qmaxt = max
rt,τ

qt(rt,τ ) (IV.5)

rt,τ,l =


arg min

rt,τ<rmodei

qt(rt,τ ) if i = 1,

arg min
rt,τ ∈ (rmodei−1 ,rmodei )

qt(rt,τ ) otherwise
(IV.6)

rt,τ,r =


arg min

rt,τ>rmodei

qt(rt,τ ) if i = |M|,

arg min
rt,τ ∈ (rmodei ,rmodei+1 )

qt(rt,τ ) otherwise
(IV.7)

Here, inequality IV.4 states the identifying criterion for a mode, which is in essence a local

maximum. Inequality IV.4 is a bit more restrictive than a plain local maximum criterion

in that it requires the mode to stand out from the surrounding RND by a certain small

amount of 0.0001 qmaxt . If a mode stands out less than that amount, we consider the

RND as approximately constant in that region. Especially in the tails, where the RND

takes very small values, it might well happen that very small local maxima emerge due

2While the kernel regression, that is used for constructing the volatility surface, attempts to smooth
out noise in the Call price function, small error components may persist.
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to computational inaccuracies and erasing these local maxima might require a very large

amount of smoothing, which may result in over-smoothing. The minimum size condition

for the local maximum in inequality IV.4 prevents that from happening and thus stabilizes

the procedure and facilitates faster convergence.

The actual smoothing is done by applying a kernel regression with local bandwidth

parameter to the RND estimate. The bandwidth parameter is iteratively increased,

thus smoothing more and more strongly, until the smoothness constraint is fulfilled, i.e.,

|M| = 1. We start by discretizing the RND estimate qt(rt,τ ) into J points of equal return

step size {(qj, rj)}j≤J , with rj − rj−1 = ∆r, j > 1 and qj = q(rj). As all procedures apply

per point of time and maturity, we drop the time and maturity indices here in favor of

a slim notation. We set ∆r = 0.005, which is fine enough to capture all movements

in the RND. Each point of the discretized RND gets assigned an individual bandwidth

parameter bj that is initially set to 0.01. We then apply algorithm 1.

Algorithm 1: RND Smoothing

Input : Raw RND estimate qj
Parameters: bj ← 0.01, ∆b← 0.6, θ ← 0.2
Returns : Smoothed RND estimate q̄j

q̄j ← qj
modeIndices← findIndexOfModes(q̄j)
while size of modeIndices > 1 do

for i ∈ modeIndices[1 :] do
k ← arg min

j
qj, modeIndices[i− 1] ≤ j ≤ modeIndices[i]

b̃i,j ← bj, ∀j
b̃i,k ← b̃i,k + ∆b

lb← b̃i,k − θ; o← 1
while lb > 0.01 do

b̃i,k+o ← lb; b̃i,k−o ← lb
lb← lb− θ; o← o+ 1

end

end

bj ← max
i
b̃i,j

q̄j ←
∑J
l=1 φ

(
j−l
bj

)
ql∑J

l=1 φ

(
j−l
bj

) , φ(x) = 1√
2π
e−0.5x2

modeIndices← findIndexOfModes(q̄j)
end

Algorithm 1 identifies the local minimum between two modes of the current distribution

estimate and increases the local bandwidth here. Qualitatively, a higher local bandwidth
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Figure IV.1: Example for the Effect of RND Smoothing

The charts show the effect of smoothing on the 30-day maturity RND estimate of January
5th, 2004. The left plot shows the RND, the center plot shows the risk-neutral CDF and the
right plot shows the local bandwidth parameter that is used in the smoothing procedure. The
horizontal axes indicate the strike at which the RND is measured. In the left (center) plot, the
original RND (CDF) estimate is drawn in blue, the smoothed version is drawn in orange. At a
given strike, the original RND estimate is smoothed more strongly, the higher the bandwidth
is at this strike. A local bandwidth of 0 indicates no smoothing at the respective strikes.

comes along with an increased smoothing in that area. In order to reach a smooth

transition between highly and little smoothed areas of the density, the bandwidth is

also increased in the region around the minimum, though less and less strongly the

further away a point is from the minimum. Figure IV.1 shows a sample result of the

smoothing procedure, including the local bandwidths that were used in smoothing. The

local bandwidths are close to 0 in the central region of the RND, indicating that this

region is effectively not smoothed at all. As there are no local minima in this region in

the original RND estimate, it is already sufficiently smoothly measured according to our

smoothness criterion. The bandwidth is only increased in the tails of the distribution,

where the existence of local modes and minima suggests approximation errors. These

approximation errors are then smoothed out due to increased local bandwidths.

Two parameters affect the smoothing behavior. The bandwidth incremental ∆b and the

bandwidth decay θ. ∆b mainly impacts the convergence speed of smoothing. The higher

∆b, the faster is the algorithm in reaching bandwidth parameters that allow a high degree

of smoothing. However, if ∆b is set too high, a single iteration might move the estimate

from a multimodal, noisy RND to an over-smoothed RND. We set ∆b to 0.6 to prevent

over-smoothing to occur and the smoothing procedure to stop as soon as there’s a single

mode. To bring this value into perspective, keep in mind that the bandwidth parameter

can be seen as the standard deviation of the Gaussian kernel function that is used as

weighting function in the kernel regression. Since we form a local average of qj based on
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the index j, neighboring raw RND observations have a distance of 1 ((j+1)−j = 1) from

each other. Increasing the standard deviation of the kernel by 0.6 in each observation is

hence increasing the weight of a distant observation in the local average fairly slowly.

The bandwidth decay parameter θ must be chosen more carefully. If it is too large, the

bandwidth decreases very strongly, resulting in a direct neighborhood of unsmoothed and

smoothed sections of the RND. A sudden transition between such sections can introduce

discontinuities and thus new noise, which may even make it impossible for the algorithm

to produce unimodal RNDs. On the other hand, if θ is very small, the bandwidth is

increased in sections of the RND that actually don’t need any smoothing. We select

θ by minimizing the squared pricing error of the smoothed RNDs in implied volatility

space. To that end, we translate the smoothed RNDs to option prices and corresponding

implied volatilities as described in section II.1. Denote the thus obtained implied volatility

estimates as σ(q̄t(K, τ ; θ)), where q̄t(K, τ ; θ) denotes the smoothed RND based on θ. θ is

then selected in a grid search as the value that minimizes the squared implied volatility

pricing error against all observed implied volatilities σt(K, τ):

θ∗ = arg min
θ

∑
(σt(K, τ)− σ(q̄t(K, τ ; θ)))2 (IV.8)

In the remaining exposition of this chapter, we replace the original RND estimate with

its smoothed version, i.e., qt(rt,τ ) = q̄t(rt,τ ; θ
∗).

IV.1.2 Tail Extrapolation

In its deep tail regions, the RND takes very small values, especially during times of low

volatility. These low values are often too small to be accurately captured by the numerical

approximation of the second derivative of the Call price function and thus rounded to

0. However, due to its definition (eq. IV.1), the RND must not become zero for any

return with a non-zero physical probability. For all physical density estimators that we

considered in chapter III, the physical probability is greater than 0 for all contingent

future returns.

We solve this issue by following a procedure described by Figlewski (2008), who proposes

to fit the tail of a Generalized Extreme Value (GEV) distribution to the empirical tails of

the RND and to subsequently replace the empirical tails with the fitted GEV tails. The

theoretical foundation of this approach lies in the Fisher-Tippett theorem, which states

that the maximum sample, that was drawn from any unknown distribution, converges in



IV. THE PRICING KERNEL 99

distribution to a Gumbel, a Fréchet, or a Weibull distribution (McNeil et al., 2015). These

three distributions are special versions of the GEV distribution. The GEV distribution

hence plays a similar role for the tail of a distribution as the normal distribution plays

for its mean estimate in the central limit theorem.

A GEV distribution is characterized by three parameters: its location µ ∈ R, its scale

σ > 0 and a shape parameter ξ ∈ R. Its probability density function is given by

pGEV (x;µ, σ, ξ) =
1

σ
(t(x))ξ+1e−t(x), t(x) =


(
1 + ξ x−µ

σ

)− 1
ξ , if ξ 6= 0,

e−
x−µ
σ , if ξ = 0

(IV.9)

Figlewski (2008) proposes to determine the three parameters by matching 2 RND values

and the value of the risk-neutral CDF at a given percentile. However, this approach is

sensitive to noise in the RND estimates at the selected percentile. We therefore fit the

parameters of the GEV distribution such that the squared error between the empirical

RND estimate and the GEV tail is minimized. For a day t and maturity τ , let Cr be the

empirical 97.5% percentile of the RND q(r) (the time and maturity indices are dropped

for brevity). For the right tail, the parameters of the respective GEV distribution are

then determined by solving the optimization problem

{µ∗, σ∗, ξ∗}right = arg min
{µ,σ,ξ}

∫ ∞
Cr

(q(r)− pGEV (r;µ, σ, ξ))2dr. (IV.10)

Since the Fisher-Tippett theorem applies to the maximum of a distribution, we need to

flip the RND to approximate the left tail with a GEV distribution. Let q′(r) := q(−r)
and C l be the empirical 2.5% percentile of the RND q(r). The GEV parameters for the

left tail can then be obtained by solving

{µ∗, σ∗, ξ∗}left = arg min
{µ,σ,ξ}

∫ ∞
−Cl

(q′(r)− pGEV (r;µ, σ, ξ))2dr. (IV.11)

We approximate the integrals in equations IV.10 and IV.11 by discretely sampling the

empirical RND in steps of ∆r = 0.005 and computing the GEV tail at the same locations.

We then replace the integral by a sum and dr with ∆r. Having found the optimal

parameters for the GEV tail, we replace the empirical RND tail for returns below the

2.5% percentile (above the 97.5% percentile) with the respective left (right) GEV tail.
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IV.2 Data

Our analysis starts with option data, which we use to construct the end-of-day volatility

surface. Based on that volatility surface, we compute both empirical estimates for the

RND and the risk-neutral measures that are needed as input for the forward-looking P
density. Realized shocks to the pricing kernel are then analyzed in the light of popular

risk factors and further economic measures.

We collect end-of-day bid/ask quotes for S&P 500 options from the Chicago Board Op-

tions Exchange (CBOE). The data set includes matched underlying bid/ask prices, which

were sampled at the closing time of the option market. Our option data covers the pe-

riod between January 2004 and July 2017. We further collect daily Overnight Index Swap

(OIS) rates from Bloomberg for the same time period, which we use as our measure for

the risk-free rate. The OIS data comes in fix maturities between 1 day and 20 years

and we interpolate the rates linearly to the respective option maturities. We apply the

one-dimensional kernel regression methodology of section II.2.2 to construct the daily

implied volatility surface based on mid prices for options and the underlying. Using the

volatility smile of the 30-day maturity, we compute a daily risk-neutral density estimate

with the procedures of section IV.1.

For each observed option maturity, we compute an estimate for the SVIX2 of Martin

(2017) and the model-free risk-neutral skewness and kurtosis of Bakshi et al. (2003).

We linearly interpolate along the maturity dimension to obtain measures at a fix ma-

turity of 30 calendar days. We use this calculation scheme instead of estimating the

measures directly from the 30-day volatility smile to stick with conventions in the lit-

erature and industry (Martin, 2017; CBOE, 2019). We collect daily prices of the S&P

500 total return index, St, from Bloomberg and compute log returns rt = ln St+τ − ln St,
τ = 30 calendar days. If St+τ is not observed (e.g. because day t + τ is on a week-

end), we use the most recent observed price. We fit the density estimators of sections

III.1.1 and III.1.2 to obtain daily estimates for the forward-looking P density of cum-

dividend S&P 500 log returns, namely, the unconditional kernel density estimator as

benchmark (Benchmark), the conditional Gaussian density estimator where the mean

and variance are linear in the input variables (Linear), the conditional kernel density

estimator (CKDE ), the neighborhood conditional kernel density estimator (NKDE ), the

least-squares conditional density estimator (LSCDE ) and the two neural network estima-

tors based on a kernel mixture network (KMN ) and a mixture density network (MDN ).
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Table IV.1: Performance of Monthly Conditional Density Estimators

Model Avg. log L Mean RMSE σ RMSE Berkowitz (2001) Knüppel (2015)

Benchmark 1.8514 4.4463 3.5679 0.973 0.890
Linear 1.9140 4.4452 3.1255 0.908 0.361

CKDE 2.0256 4.4130 3.0158 0.764 0.832
NKDE 1.7584 4.8432 4.0280 0.000 0.037
LSCDE 1.6777 4.8485 4.1029 0.000 0.083

MDN 2.0431 4.3505 3.0373 0.639 0.767
KMN 2.0600 4.2525 3.0130 0.228 0.330

This table compares the performance for a range of forward-looking conditional density esti-
mators for the monthly cum-dividend return density of the S&P 500 in our data sample. The
methods are the same as in chapter III. The second column shows the average conditional log
likelihood of realized monthly returns. The third and the fourth column report the root mean
squared errors for the mean and standard deviation prediction in percent. Columns five and six
show p-values for the tests of Berkowitz (2001) and Knüppel (2015), based on non-overlapping
monthly return realizations.

Table IV.1 compares key performance measures for the monthly P return density pre-

dictions. The results broadly agree with the findings for daily returns in chapter III.

Generally, the neural network methods outperform the alternatives in terms of average

log likelihood and the root mean squared error of the mean and volatility prediction. At

the same time, the CKDE method is nearly at par with the neural network methods

for monthly return density predictions. This behavior was not observed for daily return

densities in chapter III. The tests of Berkowitz (2001) and Knüppel (2015) require in-

dependent return draws from the proclaimed distributions, which necessitates the use

of non-overlapping return realizations in the computation of their test statistics. The

reduced number of independent monthly return observations makes the tests only weakly

informative. At the 1% significance level, we can only reject the conditional densities

of the NKDE and the LSCDE methods based on the test of Berkowitz (2001) and we

cannot reject any conditional densities based on the test of Knüppel (2015). We will

therefore compute pricing kernels for all methods and apply additional tests on these in

our main analysis.

Finally, we collect returns for the US market, size, value and momentum risk factors from

Kenneth French’s website. The investor sentiment index (Sent) of Baker and Wurgler

(2006) is sampled from the website of Jeffrey Wurgler and the daily news-based economic

policy uncertainty index (EPU) of Baker et al. (2016) is collected from the website of
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Table IV.2: Summary Statistics

Percentiles

Mean Volatility 10% 25% 50% 75% 90%

r3m
f 1.203 1.666 0.02 0.06 0.19 1.86 4.55
Term 1.934 1.065 0.21 1.42 2.04 2.67 3.31
Credit 2.663 0.836 1.7 2.12 2.62 3.04 3.33
TED 0.465 0.462 0.19 0.22 0.32 0.48 0.97
Sent -0.028 0.351 -0.58 -0.19 0.01 0.19 0.37
EPU 102.84 68.5 36.36 54.75 85.51 132.69 191.85
ILLIQ 6.04 6.9 0.61 1.63 3.9 8.05 13.62

The table shows summary statistics for measures that we use in our analysis. r3m
f is the

yield of 3-month treasuries, Term is the yield spread between 10-year and 3-month treasuries,
Credit denotes the spread between the Moody’s seasoned Baa yield and 10-year treasury yields
and TED stands for the difference between 3-month Libor rates and the yield of 3-month US
treasuries. Sent denotes the investor sentiment index of Baker and Wurgler (2006), EPU is the
news-based economic policy uncertainty index of Baker et al. (2016). ILLIQ is the Amihud
(2002) illiquidity measure. Since the latter is very small, we multiple it with 1015. All yields
and spreads are given in annualized percentage values. The data set spans the period from
January 2004 to July 2017.

Scott Baker, Nick Bloom and Steven Davis. We also collect several interest rate related

data sets (our labels are given in parenthesis) from the Fred database of the Federal

Reserve Bank of St. Louis, namely, the yield on 3-month treasury bonds (r3m
f ), the

spread between 10-year and 3-month treasury yields (Term), the spread between the

Moody’s Seasoned Baa bond yields and 10-year treasury yields (Credit) and the spread

between the 3-month Libor and 3-month treasury yields (TED). Daily S&P 500 volume

figures for the calculation of the Amihud (2002) illiquidity measure (ILLIQ) are sampled

from Bloomberg. All of these time series cover at least the time period of our option data.

The investor sentiment index of Baker and Wurgler (2006) is only available in end-of-

month resolution. We interpolate its values linearly between two observations to obtain

daily estimates.

Many of the data sets that we use in this study have been presented in previous chapters

already. We therefore only provide summary statistics for the new data sets in table IV.2

and refer to tables II.3 and III.1 for information on the remaining data sets.
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IV.3 Empirical Pricing Kernels

We start our evaluation of forward-looking pricing kernels by checking whether alterna-

tive forward-looking P densities produce valid unconditional pricing kernels in the first

place. Since a valid P density estimate should produce valid pricing kernel estimates, this

analysis can be seen as a further evaluation step of the forward-looking density prediction

methods that were discussed in chapter III. Before we then turn to the inspection of time

variation in pricing kernels in the next section, we formally describe the shape of the av-

erage pricing kernel, including statistically testing key shape characteristics. All pricing

kernel estimates in this and the subsequent sections refer to the monthly maturity.

IV.3.1 Comparison

The Euler equation E[Mt(rt,τ ) exp(rt,τ )] = 1 is among the core concepts of financial re-

search. Under the absence of arbitrage opportunities, the equation must hold for the

true pricing kernel (Cochrane, 2001), such that any pricing kernel estimator that sys-

tematically hurts the constraint can be rejected. This thought gives rise to a simple

test for a candidate pricing kernel estimator: Given return realizations rt,τ , t ∈ [1, ..., T ],

we compute the realized pricing kernel Mt,τ = Mt(rt,τ ) as the pricing kernel in t at the

realized return in t + τ . We can now compute the average discounted realized return

Mτ Rτ = 1
T

∑T
t=1 Mt,τ Rt,τ , Rt,τ = ert,τ and apply a t-test to test for the null hypothesis

H0 : E(Mτ Rτ )− 1 = 0. (IV.12)

The t-test of the Euler equation can help identify biased pricing kernel estimators. How-

ever, it is not very effective if the volatility of the realized pricing kernel Mt,τ is very

large.3 At the same time, by rearranging the Euler equation, we know for the equity risk

premium (Cochrane, 2001, ch.1)

E(Rt,τ )−Rf,t,τ = −Rf,t,τρσMσR, (IV.13)

where σM is the unconditional volatility of the pricing kernel, σR is the unconditional

volatility of the market return and ρ is the correlation between the two. Rf,t,τ , E(Rt,τ )−
Rf,t,τ and σR can be estimated at high precision from market data. A very volatile pricing

3A large volatility of Mt,τ translates in a large volatility of Mt,τ Rt,τ (assuming no strong negative
correlation) and thus a large standard error for the Mτ Rτ estimate.
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Table IV.3: Comparison of Pricing Kernels

P Density p-value Euler eq. σM HJ bound

Benchmark 0.004 249.89% 6.289
Linear 0.223 4896.26% 67.6

CKDE 0.914 64.46% 2.232
NKDE 0.000 288.53% 6.672
LSCDE 0.141 32438.66% 68.878

KMN 0.076 43.16% 1.553
MDN 0.068 41.29% 1.483

The table shows key characteristics of different forward-looking pricing kernel estimators.
Benchmark is an unconditional kernel density estimator for returns, Linear makes mean and
variance of a Gaussian linearly dependent on the forward-looking variables. CKDE, NKDE
and LSCDE are conditional non-parametric kernel density estimators. The KMN and MDN
methods use neural networks to predict the P density. The second column shows the p-value
for the t-test of equation IV.12, the third column shows the unconditional volatility estimate for
the realized pricing kernel at the monthly maturity and the fourth column shows the Hansen
and Jagannathan (1991) bound of the unconditional pricing kernel estimate.

kernel estimate (high σM) would therefore imply a low absolute correlation between the

market return and the pricing kernel and thus shocks to aggregate wealth (low |ρ|).
Intuitively, a very low correlation between these two quantities appears unrealistic. We

therefore use the volatility of the pricing kernel realizations σM as a further measure for

comparing our pricing kernel estimators.

Finally, Hansen and Jagannathan (1991) showed that equation IV.13 gives rise to an

upper bound for the absolute Sharpe ratio of any tradable portfolio:

σM
E(Mt(rt,τ ))

≥ |E(Rt,τ )−Rf,t,τ |
σR

. (IV.14)

With a slight abuse of notation, we let Rt,τ stand for the gross return of any asset in this

equation and σR for its corresponding volatility. The condition directly follows from the

fact that Rf,t,τ = 1
E(Mt(rt,τ ))

and that the absolute correlation between an asset’s return

and the pricing kernel must be smaller or equal to 1, |ρ| ≤ 1. It is important to note

that a portfolio with the Sharpe ratio at the Hansen-Jagannathan (HJ) bound is indeed

tradable in a complete market. HJ bounds that are much higher than typically observed

Sharpe ratios are therefore puzzling as they would imply that highly compensated future

states cannot be traded.

Table IV.3 compares the alternative forward-looking pricing kernel estimators. At the
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1% significance level, the t-test of the Euler equation based on realized market returns

rejects the null hypothesis for the unconditional Benchmark method and the NKDE

method. These methods appear to produce biased pricing kernels. While not being

rejected in the test of the Euler equation, the Linear and LSCDE methods show extremely

high estimates for the volatility of the realized pricing kernel and subsequently very

high HJ bounds. Given the observed average risk-free rate, equity risk premium and

return volatility in our data sample and following equation IV.13, these figures would

translate into an unconditional correlation between the pricing kernel and the market

return of −0.003 for the Linear method and −0.0004 for the LSCDE method. These

correlation estimates appear unrealistically close to 0. The findings go hand in hand with

the comparably low prediction performance of the Linear and the LSCDE method for

the monthly P density of returns (see table IV.1). We therefore conclude that these two

methods are not well suited for building realistic estimates of the pricing kernel.

The remaining three methods, the non-parametric CKDE and the two neural network

estimators MDN and KMN appear to produce valid pricing kernel estimates. They

cannot be rejected in a test of the Euler equation at the 5% significance level, their

pricing kernel volatility estimates are roughly aligned and their estimates for the HJ

bound appear realistic for the monthly horizon. The three methods also showed the

highest prediction performance for the monthly P density of S&P 500 returns in table

IV.1, with the neural network methods slightly ahead of the CKDE method. We will

therefore use all three methods in our inspection of the shape of the unconditional pricing

kernel in the next subsection.

IV.3.2 The Shape of the Unconditional Pricing Kernel

The shape of the unconditional forward-looking pricing kernel is subject of an on-going

debate in the literature, which we sketched in the introduction of this chapter. We add

to this debate here by applying statistical tests to check for the existence of a U-shape

and a central hump in average pricing kernels based on forward-looking data. To that

end, we first compute the average log pricing kernel as a function of the market return

m(rτ ) =
1

T

T∑
t=1

mt(rt,τ ), mt(rt,τ ) = lnMt(rt,τ ). (IV.15)

Figure IV.2 shows the average log pricing kernels for the CKDE, the KMN and the MDN
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Figure IV.2: Average Empirical Log Pricing Kernels

(a) CKDE, full return spectrum
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Each row shows the average forward-looking log pricing kernels of another method over log
returns. All pricing kernels refer to the monthly maturity. The panels on the left show the
average log pricing kernel for the full spectrum of log returns, the panels on the right zoom
in on the important central part of the log return spectrum. Bootstrapped 90% confidence
intervals are drawn in dashed lines. The vertical lines show percentiles of the average return
distribution: the 10% (90%) percentiles are drawn in solid lines, the 5% (95%) percentiles are
dashed and the 1% (99%) percentiles are dotted.
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methods. For all methods, the central part of the average pricing kernels, between the 5%

and 95% percentiles of the return distribution, looks very much alike. The pricing kernels

follow an overall U-shape, with a clear hump at small negative returns. Judging from

the plots, it is not evident whether the local increase at the hump is robust or whether

a locally stable pricing kernel constitutes the hump. Our shape tests will answer this

question shortly.

The fact that most of our log pricing kernel estimates are positive may seem puzzling at

first, since the pricing kernel should discount a certain payoff in expectation. However,

our charts do not show how likely a certain return realization is. In fact, the regions of

the return spectrum where the log pricing kernel is negative are highly likely to realize.

Consequently, our estimated pricing kernels discount strong enough to offset the equity

risk premium, such that we cannot reject that the Euler equation holds.4

For large positive and negative returns, the average log pricing kernel estimates diverge

for the CKDE and MDN method on the one hand and the KMN method on the other

hand. However, as we will show in section IV.4.1, the KMN method does not produce

reliable pricing kernel estimates in crisis times, which are the times when most tail events

realize. For this reason, we discard the KMN estimates in our description of the shape

of the pricing kernel in the tails of the return distribution. For these regions of the

return distribution, the CKDE and the MDN imply very similar shapes. As expected,

the pricing kernel is increasing as one moves deeper into the left tail. For the right tail

however, the pricing kernel estimates turn again after forming the central U-shape and

eventually decrease for large positive returns. Our findings are consistent with investors

who dislike losses and variance, thus forming the central U-shape. The decreasing pricing

kernel in the right tail can be reconciled if variance aversion gets at some point outweighed

by the utility increase due to large positive returns.

We will now turn to our statistical tests for the U-shape and the local increase at the cen-

tral hump. Similar to the shape tests in chapter III, we will apply the testing framework

of Patton and Timmermann (2010). Their test was originally developed to test for mono-

tonically increasing average returns in a portfolio sorting exercise, but the technique can

easily be adjusted to monotonic decreases or zig-zag shapes by simply flipping signs. We

start by defining what we consider a U-shape: Let rmin be the return where the average

log pricing kernel reaches its global minimum. Moreover, let rl = −2σr and rr = 2σr, with

4The average monthly cum-dividend return for the S&P 500 has been 0.75% in our sample.
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Table IV.4: Shape Tests for Unconditional Pricing Kernels

P Density U-shape hump-shape

CKDE 0.000 0.000
KMN 0.000 0.000
MDN 0.000 0.010

The table shows p-values for the H0 hypotheses of equations IV.16 and IV.17, which are obtained
by bootstrapping the test statistic 10000 times using the stationary bootstrap of Politis and
Romano (1994) with an average block size of 22.

the unconditional log return volatility σr. A U-shape is given if m(rl) > m(rmin) < m(rr)

holds. For our test, this gives rise to the null hypothesis

HU
0 : ∃∆i ≤ 0, i ∈ {1, 2}, ∆1 = m(rl)−m(rmin), ∆2 = m(rr)−m(rmin). (IV.16)

If this null hypothesis is rejected, we must conclude that the U-shape in the log pricing

kernel estimates is robust within the return interval [−2σr, 2σr]. For the central hump,

we proceed similarly. Let rlmax be the return where the average log pricing kernel reaches

its local maximum in the hump and rlmin be the return where the average log pricing

kernel has its local minimum left of rlmax. A hump is given, if we can reject the null

hypothesis

Hhump
0 : ∃∆i ≤ 0, i ∈ {1, 2}, ∆1 = m(rlmax)−m(rmin), ∆2 = m(rlmax)−m(rlmin).

(IV.17)

Following Patton and Timmermann (2010), the test statistic is given by min∆i and we

obtain the distribution of the test statistic under the null hypothesis based on 10000

bootstrapped samples of m(rτ ). We use the stationary bootstrap of Politis and Romano

(1994) with an average block size of 22 days to account for time dependencies, which

exist due to the overlapping horizons of our daily pricing kernel estimates.

The bootstrapped p-values for HU
0 and Hhump

0 can be found in table IV.4. Clearly, HU
0

is rejected for all methods. We can thus conclude that a U-shape exists in the central

region of the return spectrum. A similar observation can be made for the hump shape.

Hhump
0 is rejected at any confidence level for the CKDE and the KMN estimators and

at the 1% confidence level for the MDN estimator. Thereby, our tests explicitly require

a local increase in the pricing kernel to form the hump. A hump-shaped disturbance of

the overall U-shape may also be formed by a saddle point in the pricing kernel. However,



IV. THE PRICING KERNEL 109

this possibility was explicitly rejected in our tests and we conclude that the average log

pricing kernel has a local increase for slightly negative returns, thus forming a hump, and

a larger increase for medium positive returns, thus resembling a U on a larger scale.

IV.4 Time Series Characteristics

A key advantage of our approach is the possibility to obtain daily pricing kernel estimates.

We can thus assess the evolution of conditional pricing kernels. In a first step, we analyze

how the shape of the pricing kernel changes over time. In that, we will put special

attention to the differences between crisis times and calm times. Afterwards, we will

inspect the conditional variance of the pricing kernel. Subsequently splitting our variance

estimates into a component for continuous and a component for jump risk completes this

section.

IV.4.1 Crisis and Calm Times Pricing Kernels

We start our evaluation of conditional pricing kernels by repeating the analysis of section

IV.3 for crisis periods and calm periods, separately. The NBER reports a single recession

period during our data sample, the financial crisis between December 2007 and June

2009. We use this time period as our crisis sample and the remaining data as our calm

sample. Table IV.5 shows the p-values for the null hypothesis that the Euler equation

holds for each sample. While we cannot reject the null hypothesis for the CKDE and

MDN pricing kernels with confidence, the KMN pricing kernels appear to not fulfill the

Euler equation in crisis times at the 1% significance level. For this reason, we discard

this method from further analysis of time variation.

Table IV.5: Testing the Euler Equation for Sub-Samples

P Density Crisis Sample Calm Sample

CKDE 0.675 0.911
KMN 0.006 0.321
MDN 0.159 0.14

The table shows p-values for the null hypothesis that the Euler equation is fulfilled by the
pricing kernel estimates of some methods. CKDE is the conditional non-parametric kernel
density estimator. The KMN and MDN methods use neural networks to predict the P density.
The crisis sample spans the NBER recession period between 12/2007 and 06/2009. The calm
sample combines the periods from 01/2004 - 11/2007 and 07/2009 - 07/2017.
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Figure IV.3: Average Log Pricing Kernels by Economic Regime

(a) CKDE, full return spectrum
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(c) MDN, full return spectrum
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Each row shows the average month-ahead empirical log pricing kernels of another method over
log returns. The panels on the left show the average log pricing kernel for the full spectrum
of log returns, the panels on the right zoom in on the central part of the log return spectrum.
The average log pricing kernel during crisis times is plotted in red, the calm times average log
pricing kernel is plotted in green. The vertical lines indicate the 10% (90%) percentiles of the
respective average return distribution. The percentiles for the crisis sample are in red, for the
non-crisis sample in green.

A visual comparison of the average log pricing kernel during crisis times and calm times

can be found in figure IV.3. We compute these period-specific average pricing kernels by

applying equation IV.15 for the crisis sample and calm sample, separately. Comparing

the estimates yields some interesting insights. First, the calm period pricing kernels look

very similar to the shapes of the unconditional pricing kernels. This may be a result of the

dominance of the calm period in our full data sample. At first sight, crisis times pricing

kernels look very different from calm times pricing kernels. However, return volatility

is much higher during crisis times, as indicated by the vertical lines, which depict the

10% and 90% percentiles of the conditional return distribution. The vertical lines cut

the respective pricing kernels at similar ”points” in their evolution. For example, the

10% percentile cuts the CKDE pricing kernel close to its left local minimum. This is



IV. THE PRICING KERNEL 111

Table IV.6: Shape Tests for Conditional Pricing Kernels

Crisis Sample Calm Sample

P Density U-shape hump shape U-shape hump shape

CKDE 0.000 0.000 0.000 0.000
MDN 0.000 0.182 0.000 0.001

The table shows p-values for the H0 hypotheses of equations IV.16 and IV.17, which were
obtained by bootstrapping the test statistic 10000 times using the stationary bootstrap of
Politis and Romano (1994) with an average block size of 22. The crisis sample spans the period
between 12/2007 and 06/2009. The calm sample combines the periods from 01/2004 - 11/2007
and 07/2009 - 07/2017.

the same for the crisis times and the calm times pricing kernel. On the other side of

the distribution, the 90% percentile cuts the MDN pricing kernel right after it turned

positive, again the same for the crisis times and calm times pricing kernel. It seems like

crises times pricing kernels resemble horizontally stretched versions of calm times pricing

kernels. Such an observation is consistent with the existence of one or several unpriced

components in equity index returns and a higher volatility of these components during

crisis times. In that case, the return density would widen during a crisis while the pricing

kernel remains unchanged, thus stretching the shape of the pricing kernel. Still, crisis

times pricing kernels are different even from their stretched calm times counterparts.

They generally appear to be slightly lower, which is consistent with stronger discounting

during crisis times. Also, the magnitude of the U- and hump shapes may be different,

which we analyze in detail in the next subsection.

The p-values of our shape tests for the U- and the hump shape in crisis and calm times log

pricing kernels can be found in table IV.6. The null hypothesis of no U-shape is clearly

rejected by our tests for both pricing kernel estimators. This finding holds for both crisis

times and calm times. Note that we use the period-specific volatility of the underlying for

identifying rl and rr, thus neutralizing potential effects of horizontal stretching. For the

hump shape, the results are less aligned between methods. While we can reject the null

hypothesis of no hump shape at all times for the CKDE estimator, we cannot confirm

this finding with the MDN estimator for crisis times. Here, a hump is identified for calm

times at the 0.1% confidence level, but we cannot conclude the existence of a hump with

a local increase in the pricing kernel during crisis times. This finding reinforces a question

that asks about the time variation in the magnitude of the U- and hump shapes.
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Figure IV.4: Illustration of the Shape Measures for the Pricing Kernel
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The figure illustrates how the U- and hump shape measures for the pricing kernel are defined.
The blue line indicates a log pricing kernel estimate over log returns on the horizontal axis. The
orange lines indicate the shape measures. In the chart, we depict the case of the majority of
observations, where the hump is to the left of the global minimum of the pricing kernel.

IV.4.2 The Shape of Conditional Pricing Kernels

We now continue with the investigation of day-to-day time variation in the shape of the

pricing kernel. We define two measures for the magnitude of the U-shape and the hump.

For the U-shape, the measure is defined as follows:

MU
t =

(
mt(rl) +

rmin − rl
rr − rl

(mt(rr)−mt(rl))

)
−mt(rmin). (IV.18)

Here, we determine rmin, rl and rr for each day separately according to the day’s pricing

kernel estimate and its respective expected P variance. By using the daily conditional

variance estimate, we neutralize any effect that may arise from varying volatility of un-

priced components in equity returns. For the hump shape, our measure is

Mhump
t = mt(rlmax)−mt(rlmin). (IV.19)
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Figure IV.5: Time Series Evolution of Pricing Kernel Shape Measures
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The plots show the time series ofMU
t (left plot) andMhump

t (right plot). The blue line depicts
pricing kernels that are induced by CKDE P density, while the orange line uses the MDN P
density. For the sake of a smoother exposition, the plots show 22-trading-day moving averages
of the respective daily measures.

When inspecting pricing kernels of single days, it occurs regularly that the local minimum

of the log pricing kernel at slightly negative returns is below the local minimum at slightly

positive returns. This feature of the data leads to a switch in the location of the hump,

from the left of the overall pricing kernel’s minimum to its right. In order to still be

able to capture the hump as a deviation from the overall U-shape, we therefore need to

slightly re-define rlmax and rlmin in these situations. We still let rlmax be the return where

the hump reaches its maximum. If rlmax < rmin, we let rlmin < rlmax be the return where

the log pricing kernel has its minimum before continuing the overall U-shape. This is the

same situation as in the unconditional case. If however rlmax > rmin, the local minimum

that constitutes the hump switches sides to the right of the hump’s top and rlmin > rlmax

is again the return where the log pricing kernel has its minimum before continuing the U-

shape for even larger returns. Figure IV.4 gives a visual impression of our two measures.

Effectively, they measure the vertical magnitude of the respective shapes.

Time series charts of these magnitudes are shown in figure IV.5. In order to smooth out

noise, we apply a 22-trading-day moving average to all estimates. For both measures,

the time series of shape magnitudes as implied by the CKDE and the MDN methods

strongly co-move. With 0.87, correlation between the two methods’ shape measures

is higher for the U-shape than for the hump shape, where we detect a correlation of

0.66. During our entire data sample, the U-shape never vanishes enduringly.5 However,

5Keep in mind that MU
t would become 0 for a monotonically declining convex pricing kernel, as

rmin = rr in that case.
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it appears to decrease in calm times and increase in and after crisis times. If the U-

shape reflects investor’s aversion to variance (Cuesdeanu and Jackwerth, 2018b), these

movements suggest that investors become increasingly averse to variance changes during

crises, but their aversion reduces again after some time passed in calm periods. For the

hump shape, the situation is different. It appears to vanish in the late financial crisis

and in its aftermath. During calm times, it appears to become increasingly pronounced.

Generally, the hump shape appears to manifest more clearly if the U-shape reduces. The

correlation between the two measures is -0.34 according to the MDN and -0.21 according

to the CKDE.

We will now describe time variation in MU
t and Mhump

t a bit more formally, by regressing

the measures on expected moments. More precisely, we estimate the following regressions

via OLS:

M{U,hump}
t = α + β µt + e

{U,hump}
t ; e

{U,hump}
t ∼ i.i.d., E(e

{U,hump}
t ) = 0. (IV.20)

Here, µt is a vector of mean, variance and skewness estimates under P or Q at time t

for the same (monthly) time horizon thatM{U,hump}
t spans. We calculate these measures

from our estimates of the P and Q density via numerical integration. Prior to the

regression, we normalize all variables to a mean of zero and unit standard deviation.

We run multiple regressions that differ in the set of moments that we use as exogenous

information. The β coefficients of our regressions can be found in table IV.7. For the sake

of a slim representation, we only report the coefficient estimates for the MDN estimator

here.

The regression results confirm our previous intuition. Expected returns have a weakly

significant influence on the magnitude of the U-shape, which tends to become more

pronounced if expected returns are higher. However, the effect is not very strong. At the

same time, the variance risk premium, the difference in variance expectations under Q
and under P , is a strong determinant of the U-shape, which can be seen from the very

significant and nearly equal coefficients of opposite sign in regression (4) of panel (a). A

one standard deviation increase in the variance risk premium comes along with a nearly

2.5 standard deviation increase in the magnitude of the U-shape. The finding confirms

our previous notion that the U-shape is primarily an expression of variance aversion.

Finally, expected Q skewness appears to be an important driver of the U-shape, too.

Here, more negative Q skewness reduces the U-shape. With constant P skewness, Q
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Table IV.7: Explaining Shape Changes in the Pricing Kernel

(a) U-shape

µ1,P µ1,Q µ2,P µ2,Q µ3,P µ3,Q Adj. R2

(1)
0.176*

0.031
(2.32)

(2)
0.17* -0.013

0.03
(2.21) (-0.15)

(3)
-0.029

0.001
(-0.51)

(4)
-2.467*** 2.475***

0.181
(-8.66) (8.77)

(5)
-0.225***

0.05
(-3.32)

(6)
-0.147* 0.378***

0.187
(-2.49) (7.28)

(b) Hump Shape

µ1,P µ1,Q µ2,P µ2,Q µ3,P µ3,Q Adj. R2

(1)
0.037

0.001
(0.82)

(2)
-0.019 -0.136***

0.016
(-0.42) (-3.78)

(3)
-0.219***

0.048
(-8.18)

(4)
0.36 -0.588**

0.058
(1.92) (-2.88)

(5)
-0.031

0.001
(-0.74)

(6)
-0.091** -0.288***

0.08
(-2.61) (-7.29)

The tables show the β coefficients of the regressions from equation IV.20. µ1,{P,Q}, µ2,{P,Q}

and µ3,{P,Q} represent the expected mean, variance and skewness under the respective measure.
All variables are de-meaned and normalized to a standard deviation of 1. Newey-West adjusted
t-statistics with 22 lags are given in parenthesis. ’*’ marks parameter estimates at the 5%
significance level, ’**’ marks the 1% significance level and ’***’ marks the 0.1% significance
level.
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skewness becomes more negative if investors fear large downward returns more strongly.

This may be an expression of rising risk aversion against losses relative to risk aversion

against variance, thus flattening out the U. At the same time, an increased likelihood

of negative returns, as expressed by a more negative P skewness, comes along with a

strengthening U-shape. In any case, the low absolute size of the coefficients implies that

the effect of skewness on the magnitude of the U-shape is weaker than the effect of the

variance risk premium.

For the hump shape, the regression results differ in a few important aspects. Instead of

the mean P return, the risk-free rate as first moment of the Q density affects the hump.

Very significantly, a rise in the risk-free rate reduces the hump. The effect is not very

strong, though. Much more strongly, P and Q variance expectations appear to affect

the hump shape, with a higher variance expectation reducing the hump. Importantly,

it is not the variance risk premium that drives this result, but the variance estimates

themselves. Finally, the hump also gets larger if Q skewness becomes more negative.

Jointly, we conclude that the hump shape strengthens in economic environments that are

characterized by low interest rates, low variance and considerable risk-neutral skewness.

IV.4.3 Expected Pricing Kernel Variance

Having described time variation in pricing kernel shapes in detail in the previous sub-

section, we now turn to the conditional variance of the log pricing kernel. Variance is

defined as the second central moment of a random variable, which can be obtained via

integration:

σ2
m,t,τ =

∫ ∞
−∞

(mt(rt,τ )− E(mt(rt,τ )))
2 pt(rt,τ )drt,τ =

∫ ∞
−∞

ν(rt,τ )drt,τ . (IV.21)

Since we have daily empirical estimates of the P density pt(rt,τ ) and the pricing kernel

mt(rt,τ ) as functions of market returns for a dense grid of monthly returns {r1, ..., rN}, we

can numerically approximate the integral in IV.21. To that end, we apply the trapezoidal

rule and calculate

σ̂2
m,t,τ =

N∑
i=2

ν(ri) + ν(ri−1)

2
(ri − ri−1), (IV.22)

where the return grid reaches from r1 = −0.45 to rN = 0.45 in a step size of ri − ri−1 =

0.0025.6 Our tests showed that both truncation and discretization errors are negligible

6In parallel to the definition of log pricing kernel variance, we estimate the expected value of the log
pricing kernel by numerically evaluating the integral E(mt,τ ) =

∫∞
−∞mt(rt,τ ) p(rt,τ ) drt,τ with the same
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Figure IV.6: Expected Variance of the Log Pricing Kernel
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The figure shows the daily one-month-horizon expected variance of the pricing kernel in black
over time. The orange line shows a 22-trading-day moving average.

at these values. In order to mitigate the impact of outliers, we winsorize our log pricing

kernel estimates at the 0.5% and 99.5% percentiles.

A time series chart of the evolution of log pricing kernel variance can be found in figure

IV.6. Conditional variance was especially low during the first months of the financial

crisis. This finding matches our observation from section IV.4.1 that the pricing kernel is

much flatter during the crisis than during calm times. Directly following the bankruptcy

of Lehman brothers on September 15, 2008, pricing kernel variance increases strongly,

before dropping again to relatively low values for the final months of the financial crisis.

Only after the S&P 500 had reached its minimum in March 2009, pricing kernel variance

persistently increased. In general, we observe similar patterns of low variance during

the event and an increase in variance after the event for the two major waves of the

Greek debt crisis in April/May 2010 and June to August 2011. It took until 2014 for the

variance of the log pricing kernel to stabilize again close to its pre-crisis levels.

For the purpose of further analysing the evolution of pricing kernel variance, we follow

Bollerslev and Todorov (2011), who decompose return variance into a continuous and

a jump component. The authors first estimate the conditional standard deviation of

continuous shocks, label realized returns as jump or continuous shocks based on whether

the absolute return is below some multiple of the continuous volatility and then separately

calculate variance for jump and continuous returns. Effectively, this procedure splits the

return distribution at predetermined percentiles. The central part of the distribution,

parametrization of the trapezoidal rule.
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between the splitting percentiles, is considered as continuous and the tails, outside of the

splitting percentiles, are considered as jumps. We follow their notion for the variance of

the log pricing kernel and decompose equation IV.21 as

σ2
m,t,τ =

∫ bt

at

(mt(rt,τ )− E(mt(rt,τ )))
2 pt(rt,τ )drt,τ+∫ at

−∞
(mt(rt,τ )− E(mt(rt,τ )))

2 pt(rt,τ )drt,τ+∫ ∞
bt

(mt(rt,τ )− E(mt(rt,τ )))
2 pt(rt,τ )drt,τ

= σ2
mc,t,τ + σ2

mlj,t,τ + σ2
mrj,t,τ , (IV.23)

where σ2
mc,t,τ measures the variance of the central part of the distribution, the expected

continuous variation, and σ2
mlj,t,τ (σ2

mrj,t,τ ) measures the variation due to downward (up-

ward) jumps.

In line with Bollerslev and Todorov (2011), we use the bipower variation of Barndorff-

Nielsen and Shephard (2004) to estimate realized continuous return variation based on

daily realized S&P 500 returns rt,1 over a monthly time interval:

(
σ̂CVr,t,τ

)2
=

22∑
i=1

|rt+i−1,1| |rt+i,1|. (IV.24)

We estimate expected continuous variation via an AR(1) model. Andersen et al. (2003)

strongly recommend to use the log of variance estimates for such prediction models as

the log is approximately normally distributed, while actual variance estimates exhibit

strong positive skewness, which may bias regression coefficient estimates. Consequently,

our prediction model for the log of continuous variance reads

ln
(
σ̂CVr,t+τ,τ

)2
= α + β ln

(
σ̂CVr,t,τ

)2
+ εr,t+τ,τ , (IV.25)

which we estimate via OLS to obtain parameter estimates α̂ and β̂. Let ECVt,τ =

exp
(
α̂ + β̂ ln

(
σ̂CVr,t,τ

)2
)

stand for the expected continuous variation of returns at time t

for the time horizon τ . We follow Bollerslev and Todorov (2011) and set the splitting

percentiles to at = −3
√
ECVt,τ and bt = 3

√
ECVt,τ .

The idea behind the definition of at and bt is that it is highly unlikely to observe con-

tinuous shocks, which follow a normal distribution, beyond the 3 standard deviation
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bound. Virtually all variation due to shocks outside of these bounds must therefore be

attributable to jumps. We progress on that thought by assuming that a jump in the

market return is accompanied by a jump in the pricing kernel. The same assumption

is made by factor models that use the market return as a risk factor. While we closely

follow the procedure of Bollerslev and Todorov (2011), our approach differs from theirs

in one aspect. With their daily return observations, Bollerslev and Todorov (2011) only

observe a single draw from each day’s conditional density, thus making it necessary to

assume a parametric structure for the evolution of variance and the relationship between

continuous and jump variation to obtain time-varying estimates of continuous and jump

variation. As we estimate the full density of returns for each day, we do not need to make

this assumption, but obtain a daily measure of expected continuous and jump variation

model-free, by separately evaluating the integrals in equation IV.23. As before, we use

the trapezoidal rule to numerically approximate these integrals.

Unconditional and conditional sample estimates for the different components of pricing

kernel variance and their relative share are given in panel (a) of table IV.8. Overall,

jump variation represents about one fifth to one fourth of log pricing kernel variance.

This relative share is approximately the same in the crisis and calm sample. However,

differences arise for the components of jump variation. In absolute terms, negative jump

variation during the financial crisis was less than half its value during non-crisis times.

Also, its contribution is lower in relative terms. The reverse is true for positive jump

variation, which is higher during the crisis, both in absolute and relative terms.

Figure IV.7 shows the time series decomposition of pricing kernel variance into its con-

tinuous, its negative jump and its positive jump component. The bulk of time variation

in pricing kernel variance can be attributed to changes in continuous risk. In contrast,

negative jump variation appears to stick relatively closely to its unconditional mean

throughout our sample, with the exception of the financial crisis, where we measure

lower estimates. In relative terms, the contribution of negative jump variation varies

strongly though, taking values between 2.3% and 54.8% of total pricing kernel variance.

However, changes in the relative contribution of negative jump variation are largely gov-

erned by the moves of continuous variation: If negative jump variation remains constant

and continuous variation drops, the relative contribution of negative jump variation to

the overall variance of the pricing kernel must rise. Consequently, as panel (b) of table

IV.8 shows, the correlation between absolute continuous variation and relative left jump

variation is at -0.7, while the correlation between the two absolute variation components
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Table IV.8: Decomposition of Expected Log Pricing Kernel Variance

(a) Sample Averages

Sample σ̂2
mlj,t,τ σ̂2

mc,t,τ σ̂2
mrj,t,τ

Full
Absolute 0.0156 (0.0001) 0.0718 (0.0008) 0.0051 (0.0001)
Relative 16.8 (0.2) 77.7 (0.9) 5.5 (0.2)

Crisis
Absolute 0.0078 (0.0006) 0.0571 (0.0026) 0.006 (0.0004)
Relative 11.1 (0.8) 80.4 (3.6) 8.5 (0.5)

Non-Crisis
Absolute 0.0166 (0.0001) 0.0738 (0.0009) 0.0049 (0.0002)
Relative 17.4 (0.1) 77.4 (1.0) 5.2 (0.2)

(b) Correlations

Absolute Relative

σ̂2
mc,t,τ σ̂2

mlj,t,τ σ̂2
mrj,t,τ σ̂2

mc,t,τ σ̂2
mlj,t,τ σ̂2

mrj,t,τ

A
b
so

lu
te σ̂2

mc,t,τ 1.0 0.26 0.4 0.71 -0.7 -0.22
σ̂2
mlj,t,τ 1.0 0.31 -0.3 0.37 -0.06
σ̂2
mrj,t,τ 1.0 -0.06 -0.27 0.7

R
el

at
iv

e σ̂2
mc,t,τ 1.0 -0.9 -0.48
σ̂2
mlj,t,τ 1.0 0.05
σ̂2
mrj,t,τ 1.0

The table shows sample statistics of our daily estimates for the components of log pricing kernel
variance. σ̂2

mc,t,τ , σ̂2
mlj,t,τ and σ̂2

mrj,t,τ are the expected variation due to continuous shocks,
negative jumps and positive jumps. Our crisis sample covers the time period between 12/2007
and 06/2009, the non-crisis sample consists of the remaining data. Absolute values show the
estimates themselves, relative figures show the estimates divided by the conditional total log
pricing kernel variance. Relative figures are given in percent. Panel (a) shows the sample
averages of our estimates along with standard errors in parenthesis, panel (b) their time series
correlations.
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Figure IV.7: Decomposition of Expected Pricing Kernel Variance

(a) Absolute Contribution to Overall Variance Expectation
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The plots show how log pricing kernel variance expectations decompose into their continuous
and jump components over time. The continuous component is depicted in yellow, the negative
jump component in red and the positive jump component in green. All time series use a 22-
trading-day moving average to smooth out noise.

is at 0.25. Right jump variation plays a less important role, with a contribution to overall

variance between 0.2% and 28.3%. The correlation between the two jump components is

0.31, indicating that they tend to rise and fall simultaneously. Together, the two jump

components contribute between 4.9% and 60% to the expected variance of the log pric-

ing kernel. In summary, our results suggest that jumps add a non-negligible portion to

the variance of the pricing kernel overall and at times even contribute more than the

continuous part.
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Table IV.9: Sample Statistics of Economic Shocks

Percentiles

Sample Skewness Kurtosis 5% 25% 50% 75% 95%

Full -1.48 7.05 -1.47 -0.47 0.23 0.79 1.15
Crisis -0.04 5.73 -1.57 -0.33 0.31 0.78 1.42
Non-Crisis -1.82 7.11 -1.45 -0.5 0.21 0.79 1.12

Sample statistics for the time series of economic shocks, ε̂t,τ . The shocks refer to the one-month
horizon and are standardized to zero mean and unit variance in expectation. The crisis sample
spans the NBER recession period between 12/2007 and 06/2009, the non-crisis sample contains
the remaining estimates between 01/2004 and 07/2017.

IV.5 Shocks to the Economy

The pricing kernel is a random variable that is determined by shocks to fundamental

economic state variables (Cochrane, 2001, ch. 1). We can therefore express the log

pricing kernel as

mt,τ = δt,τ − γ εt,τ , (IV.26)

where δt,τ captures the predictable component and εt,τ is a random variable with

Et(εt,τ ) = 0, which aggregates the shocks to all economic state variables. We call εt

the economic shock. As described in section IV.3.1, given our measurement of the pric-

ing kernel as a function of S&P 500 returns, mt(rt,τ ), we can obtain a time series of

realized log pricing kernel values by evaluating mt(rt,τ ) at the observed log return rt,τ :

mt,τ = mt(rt,τ ). Combining this realization with our measurement for the expected

value and variance of the log pricing kernel from section IV.4.3, we obtain standardized

estimates for the realized economic shock as

ε̂t,τ = −mt,τ − Et(mt,τ )

σ̂m,t,τ
. (IV.27)

The remaining subsections of this chapter are devoted to the analysis of the time series

of economic shocks.

IV.5.1 Distribution and Time Series of Economic Shocks

The empirical distribution of economic shocks is depicted in figure IV.8. Table IV.9

provides summarizing sample statistics. By design, the time series of economic shocks
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Figure IV.8: Distribution of Economic Shocks
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This chart depicts a histogram of realized economic shocks. The orange line shows a kernel
density estimate for the distribution of economic shocks. The shocks are normalized to have
E(εt) = 0 and V ar(εt) = 1.

has in expectation zero mean and unit volatility.7 Clearly, economic shocks are left

skewed and heavy tailed. In our sample, 59% of the economic shocks realized higher than

expected (ε̂t,τ > 0), however, a positive economic shock has an average size of 0.69 and

is thus smaller in absolute terms than the average negative economic shock of -0.82. The

distribution of economic shocks appears less skewed during the crisis sample than during

the calm sample, which is puzzling as we would expect more large negative events to have

realized during the financial crisis than large positive events. We will return to this issue

in detail shortly.

We first take a look at the time series chart of economic shocks in figure IV.9. In the

chart, daily economic shock estimates are plotted in grey and the filled black spikes mark

tail events, which we identify based on the realized S&P 500 return. More precisely, if

the ex ante probability of a realized return was below 2.5% or above 97.5% according to

the MDN conditional P density estimator, we classify the return and the corresponding

pricing kernel shock as a tail event. Generally, we observe that a tail event in the S&P 500

also comes along with a spike in the economic shock. The spikes can be traced very well

to historic events, figure IV.9 contains labels for some of them. Interestingly, while about

43% of the tail events are generated by large positive S&P 500 returns, the pricing kernel

nearly always spikes downwards. This is a direct result of the U-shape in the pricing

7To be precise, since we use the conditionally expected log pricing kernel mean and variance in the
estimation, instead of their realized counterparts, mean and variance of our economic shock time series
differ slightly from these expected values. Our empirical mean of economic shocks is 0.064 and volatility
is 0.983.
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Figure IV.9: Time Series of Economic Shocks
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The figure shows our estimates of daily realized one-month-horizon shocks to the economy in
gray. The black areas are realized tail events, with a 2-sided ex ante probability of less than
5%, i.e., less than 2.5% for either side of the return distribution. The orange line shows a
22-trading-day moving average.

kernel: Large positive returns, just like large negative returns, lead to high pricing kernel

realizations, which translate into negative economic shocks.

The upward spike following the bankruptcy of Lehman Brothers on September 15, 2008,

clearly stands out. While our estimators anticipate a large economic shock following that

event, its positive sign is highly unrealistic. At the same time, this high positive shock

is the reason for our close-to-zero skewness measurement of economic shocks during the

crisis sample. If we exclude September and October 2008, the two months around the

Lehman collapse, from our crisis sample, the skewness of economic shocks in the remaining

crisis sample drops to -1.47, suggesting that negative economic shocks dominated at that

time. Due to the unrealistic measurement of the Lehman shock, we are cautious about

our estimates of economic shocks around that event.

Especially considering these concerns, it remains to show whether our recovered economic

shocks are actually connected to shocks of known risk factors from the literature. We

continue to do so in the next subsection.
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IV.5.2 Drivers of Economic Shocks

In order to identify links between our economic shock estimates and established sources

of risk, we run linear regressions of the type

ε̂t,τ = α + β Xt,τ + ηt,τ . (IV.28)

Here, Xt,τ is a vector of realized risk variables, that are measured at the same time and

over the same horizon as ε̂t,τ . ηt,τ is an error term with E(ηt,τ ) = 0. Prior to estimation,

we normalize all variables to zero mean and unit variance and estimate the regressions

via OLS. Throughout our analysis, we will present all results twice: The first estimation

excludes the two months of September and October 2008 from our data sample due

to our unrealistic measurement of the economic shock around the Lehman collapse. A

similar approach is followed by Joslin et al. (2014), who even exclude the entire financial

crisis sample in their model estimation due to concerns about structural breaks. The

two months stand for 1.3% of all observations in our full data set. For completeness, our

second set of estimation results uses our full data sample. If not specified differently, our

comments below relate to the first estimation set-up.

We start our analysis with the market return and variance. Cuesdeanu and Jackwerth

(2018b) emphasize that a U-shape in the pricing kernel can be rationalized by investors

that are averse against both market and variance shocks. In line with this notion, some

recent studies model the pricing kernel as a function of the market return and its variance

(Christoffersen et al., 2013; Schneider et al., 2019). Such a set-up implies that both

variables should be closely connected to economic shocks. For robustness, we do not use

the S&P 500 returns, that we used as target variable in the estimation of our P density

estimator, to proxy for the shocks to the overall market, but use the market risk factor

from Kenneth French’s website instead. We compute daily realizations of one-month log

returns of the market factor and square them to obtain measures for realized variance.

Table IV.10 shows the β coefficients for our first set of regressions. Market returns are

clearly connected to economic shocks. A one standard deviation decrease in market

returns leads to a 0.35 standard deviation decrease in the economic shock. For variance,

the relationship is even stronger. Here, a one standard deviation positive variance shock

relates to a 0.62 standard deviation downward economic shock. Both effects appear to

be independent of each other as the coefficients are estimated at nearly the same values
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Table IV.10: Regression Results of Economic Shocks on Market Returns and Variance

(a) Excluding Lehman Shock

(1) (2) (3)

rmarkett,τ
0.35*** 0.33***
(3.27) (3.84)

(rmarkett,τ )2
-0.62*** -0.59***

(-4.6) (-3.24)

Adj. R2 0.099 0.112 0.2

(b) Full Sample

(1) (2) (3)

rmarkett,τ
0.2 0.22

(1.65) (1.82)

(rmarkett,τ )2
-0.05 0.05

(-0.35) (0.26)

Adj. R2 0.04 0.002 0.042

Each column shows the beta estimates of an explaining regression for economic shocks. rmarkett,τ

is the log Fama and French (1993) market return and (rmarkett,τ )2 is the squared return as mea-
surement for realized variance. The returns are measured over the same period that εt,τ covers
and normalized to zero mean and unit variance. Newey-West adjusted t-statistics with 22
lags are given in parenthesis. ’*’ marks parameter estimates at the 5% significance level, ’**’
marks the 1% significance level and ’***’ marks the 0.1% significance level. Panel (a) excludes
September and October 2008 from the estimation, panel (b) uses our full data sample.

in a joint regression. In all of that, all β coefficient are highly significant. Including the

Lehman shock into the estimation changes the picture dramatically, as panel (b) of table

IV.10 reveals. Neither market returns nor variance are estimated to have a significant

connection with economic shocks, the β coefficient for variance is even close to 0. The

effect is especially remarkable given the small amount of data points that constitute the

Lehman shock.

We proceed with the regression of economic shocks on the Fama and French (1993)

market, size and value and the Carhart (1997) momentum risk factor log returns. β

estimates of these regressions are given in table IV.11. While economic shocks only

seem to be significantly connected to the size factor in the individual regressions, this

relationship breaks down after controlling for the market return. The size and value factor

are cross-sectional risk factors. Our measurement of economic shocks is based on the

projection of the pricing kernel on market returns, though. The projection marginalizes

over cross-sectional elements in the pricing kernel, thus yielding a measure for economic

shocks with respect to the overall market return dimension. These shocks should in fact

be unrelated to cross-sectional risk factors, which are orthogonal to the market factor.

Our result confirm this notion with low and insignificant β estimates when we control

for market returns. However, our results do not imply that shocks to the pricing kernel

are unrelated to shocks to the size or value factor, as the pricing kernel may well have

cross-sectional components, which we just cannot capture in our set-up.
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Table IV.11: Regression Results of Economic Shocks on Risk Factors

(a) Excluding Lehman Shock

(1) (2) (3) (4) (5)

rmarkett,τ
0.36*** 0.41***
(3.57) (4.31)

rSMB
t,τ

0.17*** 0.05 0.04
(3.54) (1.17) (0.98)

rHML
t,τ

0.03 -0.08 -0.02
(0.52) (-1.41) (-0.35)

rMOM
t,τ

0.05 0.17**
(0.72) (2.46)

Adj. R2 0.028 0.001 0.002 0.107 0.128

(b) Full Sample

(1) (2) (3) (4) (5)

rmarkett,τ
0.2 0.25*

(1.6) (2.01)

rSMB
t,τ

0.13* 0.05 0.04
(2.3) (1.17) (1.01)

rHML
t,τ

0.01 -0.06 0.01
(0.19) (-1.13) (0.18)

rMOM
t,τ

0.07 0.18**
(1.1) (2.57)

Adj. R2 0.016 0.000 0.004 0.045 0.067

Each column shows the beta estimates of an explaining regression for economic shocks. rmarkett,τ ,

rSMB
t,τ and rHML

t,τ are the log Fama and French (1993) market, size and value return. rMOM
t,τ is

the Carhart (1997) log momentum return. The returns are measured over the same period that
εt,τ covers and normalized to zero mean and unit variance. Newey-West adjusted t-statistics
with 22 lags are given in parenthesis. ’*’ marks parameter estimates at the 5% significance
level, ’**’ marks the 1% significance level and ’***’ marks the 0.1% significance level. Panel (a)
excludes September and October 2008 from the estimation, panel (b) uses our full data sample.

Our last regression exercise relates our estimates of economic shocks to several more

fundamental risk measures. Four of these measures relate to bond markets, namely the

3-month US treasury yield, the term spread, the credit spread and the TED spread.

Further, we use the sentiment index of Baker and Wurgler (2006), the text-based policy

uncertainty index of Baker et al. (2016) and the illiquidity measure of Amihud (2002). For

all of these measures, we compute the change over the time period that εt,τ covers, i.e.,

∆xt = xt+τ − xt, and regress εt,τ on these changes. The β coefficients of the regressions

are given in table IV.12.

At the 5% significant level, a downward economic shock is linked to a decreasing term

spread, an increasing credit spread, an increase in the Baker et al. (2016) policy uncer-

tainty index and higher Amihud (2002) illiquidity. These relationships generally match

intuition. However, the β estimates of the four measures differ in their size and signif-

icance. Illiquidity appears to have the strongest impact on the economic shock in our

regressions, with a one standard deviation increase coming along with a 0.27 standard

deviation lower economic shock. The connection between the credit spread and our eco-

nomic shocks appears to be similarly strong, however diminishes and turns insignificant

after controlling for illiquidity. The term spread has a somewhat smaller impact on the

economic shock, but remains significant with a nearly equal coefficient in a joint regression

with illiquidity. Together, the two variables can explain 8% of the variation in our eco-
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Table IV.12: Regression Results of Economic Shocks on Economic State Variable Shocks

(a) Excluding Lehman Shock

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆r3mf,t
-0.03 -0.12**

(-0.84) (-2.78)

∆Termt
0.17** 0.13** 0.15**
(2.92) (2.76) (2.94)

∆Creditt
-0.22*** -0.08 -0.27***
(-3.54) (-1.59) (-3.88)

∆TEDt
-0.05

(-0.95)

∆SentBW,t
0.03

(0.81)

∆EPUt
-0.06* -0.04
(-2.22) (-1.87)

∆ILLIQt
-0.27*** -0.22*** -0.25***
(-4.45) (-4.34) (-4.77)

Adj. R2 0.001 0.029 0.036 0.001 0.001 0.003 0.058 0.085 0.08 0.046

(b) Full Sample

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆r3mf,t
-0.03 -0.07
(-0.9) (-1.39)

∆Termt
0.16** 0.16*** 0.16***
(2.95) (3.38) (3.24)

∆Creditt
-0.08 0.03 -0.11

(-0.94) (0.37) (-1.06)

∆TEDt
-0.02

(-0.52)

∆SentBW,t
0.01
(0.2)

∆EPUt
-0.06* -0.06*
(-2.32) (-2.25)

∆ILLIQt
-0.15 -0.16*** -0.15

(-1.76) (-3.13) (-1.95)

Adj. R2 0.001 0.026 0.007 0.000 0.000 0.003 0.022 0.052 0.048 0.011

Each column shows the beta estimates of an explaining regression for economic shocks. We
use the changes in the 3-month treasury yield (∆r3m

f,t ), the term spread (10-year US bond yield
minus 3-month treasury yield, ∆Termt), the credit spread (Moody’s Baa yield minus 10-year
US bond yield, ∆Creditt), the TED spread (3-month Libor minus 3-month treasury yield,
∆TEDt), the Sentiment index of Baker and Wurgler (2006) (∆SentBW,t), the economic policy
uncertainty index of Baker et al. (2016) (∆EPUt) and the illiquidity measure of Amihud (2002)
(∆ILLIQt). All changes are measured over the same period the εt covers and normalized to zero
mean and unit variance. Newey-West adjusted t-statistics with 22 lags are given in parenthesis.
’*’ marks parameter estimates at the 5% significance level, ’**’ marks the 1% significance level
and ’***’ marks the 0.1% significance level. Panel (a) excludes September and October 2008
from the estimation, panel (b) uses our full data sample.
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nomic shock measures. The economic policy uncertainty index is weakly significant, with

low β estimates and low explanation power for economic shocks. It turns insignificant

when controlling for illiquidity, too. Finally, a joint regression of the 3-month treasury

yield and the credit spread can also explain 4.6% of the variation in economic shocks,

indicating that economic shocks are linked to corporate refinancing rates.

Overall, our regressions reveal that the realized economic shock is connected to a range of

market-related and economic state variables during nearly our entire data sample. The

β estimates in our regressions appear intuitive and economically relevant. We find clear

evidence that shocks to the pricing kernel are linked to both market returns and variance,

speaking in favor of at least a two-dimensional structure of the pricing kernel.

IV.6 Summary

In this chapter, we constructed model-free daily estimates of the pricing kernel. Our

estimates are forward-looking and non-parametric, thus requiring only minimal exogenous

assumptions about the shape of the pricing kernel, investor preferences or the dynamics

of these characteristics.

Despite their high flexibility, our estimates for the realized pricing kernel appear to ro-

bustly discount equity market returns and are closely connected to economic state vari-

ables. Jointly, market returns and variance can explain 20% of the variation in shocks

to the pricing kernel, with market variance playing an even more important role than

returns. These results align with our finding of a clear U-shape in the pricing kernel,

which persists throughout our entire data sample. We also identify a hump in the pricing

kernel around the zero return region, which strongly reduced or even vanished during the

financial crisis. Further, we find clear signs for time variation in the expected variance of

the pricing kernel. Jumps appear to account for 22% of expected pricing kernel variance

on average, but their relative contribution sometimes reaches up to 60% of total expected

variance, indicating that they represent an important source of risk in the pricing kernel.

Our findings are in line with the notion of a multi-dimensional pricing kernel. Such a

model could explain the relationship of pricing kernel shocks to returns, variance and

further economic state variables and at the same time produce non-monotonicities in

the projection of the pricing kernel on returns. However, reasons for the changes in the

conditional variance of the pricing kernel and the mechanics behind the time variation in
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the shape of the pricing kernel remain to be explored. Here, our method for recovering

the forward-looking pricing kernel in a model-free fashion represents a tool for future

research for the precise measurement of the actual object of interest.



V Conclusion and Outlook

This thesis develops and examines tools for the model-free, precise and robust estimation

of the risk-neutral and physical distribution of equity returns and the pricing kernel.

In a first step, chapter II compares a range of popular state-of-the-art estimators for

the implied volatility surface, and thus the risk-neutral return distribution, with two

newly proposed techniques. In a thorough statistical assessment, we inspect how accu-

rately the volatility surfaces of Figlewski (2008), OptionMetrics (2016) and Beber and

Brandt (2006) represent option market information and find that they perform consider-

ably worse than a simple one-dimensional kernel regression for the end-of-day set-up. For

high-frequency applications, our proposed Bayesian volatility surface is more than 6 times

more accurate than the second-best alternative, thanks to its ability to infer information

about changes in the entire volatility smile from single trade observations. Our finding of

severe differences in volatility surfaces is especially troublesome as we document consid-

erable sensitivity in option-implied measures like Bakshi et al. (2003) implied volatility

or skewness with respect to the employed volatility surface. These measures are popular

inputs to financial analyses in the literature and biases in them may directly affect the

implications of these analyses, such that the choice of the construction method for the

implied volatility surface is of high practical importance. Our proposed methods render

themselves as natural candidates for this choice, as they reflect option market information

most accurately.

We turn to the estimation of the physical density of equity returns in chapter III. Here,

we propose a novel forward-looking predictor of the entire return distribution, that is

based on a neural network architecture. Our predictor bases its forecasts on risk-neutral

moment estimates and is model-free in the sense that it can approximate any continuous

conditional return density solely by learning from presented samples. We benchmark our

estimator against a battery of forward-looking and backward-looking alternatives and find

131
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a higher conditional log likelihood and lower prediction errors for realized moments of

equity returns. In contrast to the alternatives in our study and forward-looking estimators

in the literature (Jensen et al., 2019; Jackwerth and Menner, 2018), our physical return

density predictions cannot be rejected in statistical tests. In a sensitivity analysis, we

identify that our estimator builds on significant nonlinear relationships between risk-

neutral and physical moments. Exploiting these nonlinearities appears to be an important

ingredient for the robust translation of risk-neutral to physical expectations.

In chapter IV, we analyze the empirical properties of the pricing kernel, which we obtain

model-free as the ratio of our risk-neutral and physical density estimates. Unconditionally,

we identify a strong overall U-shape in the log pricing kernel and a hump around the zero

return region. The magnitude of these shapes varies and while we can link variation

in the U-shape to changes in the variance risk premium, the markedness of the hump

shape appears to co-move with risk-neutral moments. These hints for time variation in

the pricing kernel are supported by fluctuations in conditional expected pricing kernel

variance. We further decompose this variance and find that a significant and varying

portion of the overall risk in the pricing kernel is due to jumps. Obtaining a time series

of realized pricing kernels, we show that they are connected to economic state variables

like the term spread, the credit spread or illiquidity. A joint model of market returns and

variance explains 20% of the variation in shocks to the pricing kernel, thus indicating

that the true pricing kernel is multi-dimensional. Besides their economic implications,

our results indicate on a methodological level that our approach is capable of measuring

the conditional pricing kernel in a model-free fashion.

While the methods that we describe in this thesis perform well in our statistical assess-

ments, they can still be improved and extended. Describing multiple volatility surfaces

with joint latent factors and modeling the evolution of these factors in a filtering frame-

work could be a route to a significant extension of the Bayesian intraday volatility surface

towards a stable representation of the volatility surfaces of single stocks. At the same

time, such an approach could uncover hidden drivers of time variation in cross-sectional

volatility surfaces. Open research questions also remain for our forward-looking physical

density estimator. Currently, it is only possible to create a robust estimator for relatively

short time horizons up to one month. For higher time horizons, the lack of a sufficient

amount of independent training samples increases the probability of over-fitting. It might

therefore proof beneficial to explore additional ways of regularization for the neural net-

work estimator, such that it becomes possible to obtain a robust estimator based on
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only few observations.1 Approaches for combining the advantages of neural networks and

Bayesian modeling (Mullachery et al., 2018) or shrinkage techniques towards an uncon-

ditional estimate of the return distribution could lead a path to such advancements.

Our tools and insights can help to answer interesting research questions, that go beyond

the scope of this thesis. While we sticked to the equity market as our object of study in

this thesis, it is straight-forward to apply our risk-neutral and physical density estimators

to other asset classes with only minimal adjustments. For example, it would be interesting

to see whether the relationships between expected risk-neutral and physical moments are

different in the bond market from what we observed for the equity market. Exploring the

dependencies between forward-looking physical densities at different maturities provides a

path to the model-free estimation of term structures for the variance and higher moments

of interest rates. Further, estimating the pricing kernel with respect to bond returns in

addition to our estimates for equity returns might be a promising approach. The two

pricing kernel estimates would be projections of the same entity on the returns of different

asset classes, thus giving the researcher the opportunity to use different lenses to analyze

the same object of interest.

1Using only a small amount of training data likely leads to a less powerful estimator. Still, such an
estimator would be desirable as long as it does not over-fit and improves upon the unconditional physical
return density.
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Härdle, W. 1991. Applied Nonparametric Regression. Econometric Society monographs ;

19, 1st ed. Cambridge [u.a.]: Cambridge Univ. Pr.

Iott, J., R. T. Haftka, and H. M. Adelman. 1985. Selecting Step Sizes in Sensitiv-

ity Analysis by Finite Differences. NASA Technical Memorandum 86382. URL:

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19850025225.pdf.

Jackwerth, J. C. 1999. Option-Implied Risk-Neutral Distributions and Implied Binomial

Trees: A Literature Review. The Journal of Derivatives, 7:66–82.

Jackwerth, J. C. 2000. Recovering Risk Aversion from Option Prices and Realized Re-

turns. The Review of Financial Studies, 13:433—-451.

Jackwerth, J. C. 2004. Option-Implied Risk-Neutral Distributions and Risk Aversion.

Working Paper.

Jackwerth, J. C., and M. Menner. 2018. Does the Ross Recovery Theorem work Empiri-

cally? Working Paper. URL https://ssrn.com/abstract=2960733.

Jackwerth, J. C., and M. Rubinstein. 1996. Recovering Probability Distributions from

Contemporaneous Security Prices. The Journal of Finance, 51:1611–1631.

Jensen, C. S., D. Lando, and L. H. Pedersen. 2019. Generalized Recovery. Journal of

Financial Economics, 133:154–174.

Jiang, G. J., and Y. S. Tian. 2005. The Model-Free Implied Volatility and Its Information

Content. The Review of Financial Studies, 18:1305–1342.

Jondeau, E., and M. Rockinger. 2000. Reading the smile: the message conveyed by meth-

ods which infer risk neutral densities. Journal of International Money and Finance,

19:885–915.

Joslin, S., M. Priebsch, and K. J. Singleton. 2014. Risk Premiums in Dynamic Term

Structure Models with Unspanned Macro Risks. The Journal of Finance, 69:1197–

1233.

Kalman, R. E. 1960. A New Approach to Linear Filtering and Prediction Problems.

Journal of Basic Engineering, 82:35–45.

Kingma, D. P., and J. Ba. 2015. Adam: A Method for Stochastic Optimization. In ICLR.

URL http://arxiv.org/abs/1412.6980.

https://ssrn.com/abstract=2960733
http://arxiv.org/abs/1412.6980


V. BIBLIOGRAPHY 142
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Schönbucher, P. J. 1999. A market model for stochastic implied volatility. Philosophical

Transactions of the Royal Society of London. Series A: Mathematical, Physical and

Engineering Sciences, 357:2071–2092.

Sharma, J. L., M. Mougoue, and R. Kamath. 1996. Heteroscedasticity in stock market

indicator return data: volume versus GARCH effects. Applied Financial Economics,

6:337–342.

Shumway, R. H., and D. S. Stoffer. 2017. Time Series Analysis and Its Applications:

With R Examples. Springer Texts in Statistics, fourth edition ed. Cham, Switzerland:

Springer.

Sichert, T. 2020. The Pricing Kernel Is U-shaped. Working paper. URL https://ssrn.

com/abstract=3095551.

Sugiyama, M., and I. Takeuchi. 2010. Conditional density estimation via Least-

Squares Density Ratio Estimation. In Proceedings of the Thirteenth Interna-

tional Conference on Artificial Intelligence and Statistics, vol. 9, pp. 781–788.

URL http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_

SugiyamaTSKHO10.pdf.

Swanson, E. T. 2016. Discussion of Options-Implied Probability Density Functions for

Real Interest Rates. Available here: http://www.ijcb.org/journal/ijcb16q3a3 disc.pdf.

Ulrich, M., S. Florig, and C. Wuchte. 2019. A Model-Free Term Structure of U.S. Dividend

Premiums. Working Paper. URL https://ssrn.com/abstract=3217096.

https://arxiv.org/abs/1903.00954
https://ssrn.com/abstract=3095551
https://ssrn.com/abstract=3095551
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_SugiyamaTSKHO10.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_SugiyamaTSKHO10.pdf
https://ssrn.com/abstract=3217096


V. BIBLIOGRAPHY 145

van der Vaart, A. W. 2000. Asymptotic Statistics. 1st ed. Cambridge, UK: Cambridge

University Press.

Vergote, O., and J. M. P. Gutiérrez. 2012. Interest rate expectations and uncertainty

during ECB governing council days: evidence from intraday implied densities of 3-

month Euribor. Journal of Banking & Finance, 36:2804–2823.

von Neumann, J., and O. Morgenstern. 1947. Theory of games and economic behavior,

2nd rev. Princeton University Press.

Walden, J. 2017. Recovery with Unbounded Diffusion Processes. Review of Finance,

21:1403–1444.

Walther, S., and M. Ulrich. 2019. Option-Implied Information: What’s the Vol Surface

Got to Do With It?,. Working Paper. URL https://ssrn.com/abstract=3184767.

Walther, S., M. Ulrich, J. Rothfuss, and F. Ferreira. 2019. Forward-looking P. Working

Paper. URL https://ssrn.com/abstract=3437281.

Welch, G., and G. Bishop. 2001. An Introduction to the Kalman Filter. Proc of SIG-

GRAPH, Course, 8:41.

Welch, I., and A. Goyal. 2008. A Comprehensive Look at The Empirical Performance of

Equity Premium Prediction. The Review of Financial Studies, 21:1455–1508.

World Bank. 2020. Market capitalization of listed domestic companies (current US$).

URL https://data.worldbank.org/indicator/CM.MKT.LCAP.CD.

Wright, J. H. 2016. Options-Implied Probability Density Functions for Real Interest

Rates. International Journal of Central Banking, 12:129–149.

Yao, J., Y. Li, and C. L. Tan. 2000. Option price forecasting using neural networks.

Omega, 28:455–466.

Zhao, B., and S. D. Hodges. 2013. Parametric modeling of implied smile functions: a

generalized SVI model. Review of Derivatives Research, 16:53–77.

Zhao, Y., C. Stasinakis, G. Sermpinis, and Y. Shi. 2018. Neural network copula portfolio

optimization for exchange traded funds. Quantitative Finance, 18:761–775.

https://ssrn.com/abstract=3184767
https://ssrn.com/abstract=3437281
https://data.worldbank.org/indicator/CM.MKT.LCAP.CD

	Introduction
	Motivation
	Structure of the Thesis

	The Risk-Neutral Return Distribution
	Relationship between the RND and the Volatility Surface
	Constructing a Volatility Surface
	Estimation of Expected Dividend Yields
	One-Dimensional Kernel Regression with Tail Extrapolation
	A Bayesian Intraday Volatility Surface
	Alternative Volatility Surface Estimators
	Gram-Charlier Expansion
	Smoothing Spline
	Three-Dimensional Kernel Regression


	Data
	On the Uniqueness of Option-Implied Information
	Assessing the Accuracy of a Volatility Surface
	The Accuracy of Volatility Surfaces
	End-of-day: Data-rich Environment
	Intraday: Data-poor Environment

	Summary

	The Physical Return Distribution
	Model-Free Return Density
	Estimation
	Alternative Physical Density Estimators
	Parametric Density
	Non-Parametric Density
	Kernel Mixture Networks


	Data
	Forward-Looking Return Density
	Purely Forward-Looking Information
	Trading on the Conditional Return Distribution
	Determinants of Index Return Distributions

	Robustness
	Conditional Density Estimation Method
	International Evidence
	Over-Fitting

	Summary

	The Pricing Kernel
	Construction
	Smoothing the Risk-Neutral Density Estimate
	Tail Extrapolation

	Data
	Empirical Pricing Kernels
	Comparison
	The Shape of the Unconditional Pricing Kernel

	Time Series Characteristics
	Crisis and Calm Times Pricing Kernels
	The Shape of Conditional Pricing Kernels
	Expected Pricing Kernel Variance

	Shocks to the Economy
	Distribution and Time Series of Economic Shocks
	Drivers of Economic Shocks

	Summary

	Conclusion and Outlook

